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Abstract

Over recent decades, global improvements in the quality of life have led to an increase
in the aging population [1], with a notable rise in age-related neurodegenerative diseases
(NDDs). Among these, dementia, characterized by chronic cognitive disorders, presents
a significant challenge [2]. Early diagnosis of dementia remains elusive due to its subtle
onset and sporadic clinical assessments [3]. At the state of art, between all the most promi-
nent diagnostic methods [4], electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) result to prove invaluable in developing therapeutic strategies for
NDDs [5], thanks to their common attributes such as minimal invasiveness, safety, ease
of use, and repeatability.

The primary objective of this work is the implementation and validation of a hybrid de-
vice, called Glymphometer, capable of simultaneously acquiring and real-time monitoring
both EEG and fNIRS signals, with the ultimate goal of commercializing it and making
it suitable for future studies in order to improve methods of early detection of NDDs.
Currently under development at the University of Oulu by Professor Teemu Myllylä and
his research group [6], the Glymphometer is a wearable medical device, easy to use given
its small size and non-invasiveness. These features make it suitable for continuous brain
monitoring, both during waking and sleeping phases, with both home and hospital use. In
addition to the several brain health parameters, it also allows measurement of the activity
of the brain cleaning system, which is closely related to the function of the glymphatic
system.

For this work, the Glymphometer prototype adopted consists of a main unit box connected
to a headcap that incorporates fNIRS sensors - two photodiodes (PDs) and two LEDs -
positioned in the middle of the forehead a few centimeters above the eyebrows, and two
EEG electrodes placed above them. For the Glymphometer validation, a sample of nine
healthy controls affiliated with the University of Oulu - including both Erasmus students
and employees of different gender (2 males and 7 females), nationality and age (between
21 and 47) - has been analyzed. Data collection took place in Kieppi lab, located in the
Kontinkangas campus of the University of Oulu, between March and May 2023.
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In order to validate this brand new device - especially for a future developments in the
field of NDDs - two acquisition protocols have been defined from sketch. One concerns
the acquisition of the Baseline signal, while the other the acquisition of the Memory
Activation signal. In particular, the last one is based on a previous study [7] where it was
demonstrated that resting fNIRS signals recorded from the prefrontal cortex can provide a
promising methodology for detecting NDDs, resulting in a relatively lower hemodynamic
activity in patients affected by them. In the Baseline Acquisition Protocol, subjects were
made to sit in a relaxed position, eyes closed, trying to minimize their thinking. A 5-
minute signal was recorded under these conditions. The Memory Activation Protocol
consisted of two segments: a 1.5-minute open-eyed rest phase and a memory activation
task. The task itself includes three phases: visualization, memorization and recall. In
the visualization phase, subjects were presented 10 images of common objects, each one
displayed for 2 seconds, and were instructed to name aloud these objects in English. After
the presentation, they closed their eyes for 15 seconds (memorization), thinking about the
images they had just seen. Finally, the subjects opened their eyes and verbally recalled
as many images as they could remember (recall).

After collection, fNIRS and EEG data have been fully analyzed in MATLAB®. fNIRS
data underwent signal pre-processing, moving average filtering, and calculation of absolute
and relative concentration for Hb02 and HbR levels. The Variation of Concentration
Index (VCI) was introduced as a metric to assess hemodynamic activation, defined as the
percentage variation of Hb02 concentration during task performance with respect of the
one during baseline condition. On the other hand, pre-processing of EEG data included
bandpass filtering, removal of artifacts and calculation of power spectral density (PSD).
In this case, however, the Attention Index (AI) was introduced as a metric to assess
attention, defined as the ratio of α power to β power.

For the statistical analysis, distributions of AI and VCI were first analyzed individually
across task phases and sensor locations through the use of Normality Test - Shapiro-
Wilk Test - and then compared, within the same index, using non-parametric inter-group
tests - Wilcoxon Signed Rank Test and the Friedman’s Test. For what concerns the
combined analysis, aimed to find potential correlations between EEG (AI) and fNIRS
(VCI), scatterplots and linear regression lines were used to visually explore the relationship
between the two indices. Additionally, Pearson Coefficient was calculated to quantitatively
measure this correlation.

In general, it resulted that during the performance of the memory activation task, VCI got
positive values, indicating a general brain hemodynamics activation. At the same time,
AI got values below 1, signifying greater β power than α power, corresponding to the
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intensification of β oscillations when cognitive resources are directed toward active sensory
processing and focused attention. It follows that, for both signals, results have been
consistent with what expected and learned in the literature [8–12], revealing interesting
patterns of hemodynamic responses and electrical activation during cognitive task phases
with respect of resting condition.

Despite the small sample size, this study provided valuable insights into the signal ac-
quisition capabilities of the Glymphometer. In conclusion, it can be stated that the
Glymphometer is capable of producing reliable and consistent data, having succeeded in
validating its measurements. The importance of the present study lies mainly in being
the starting point for its better future validation in order to extend its use to the field of
cognitive research and NDDs.

0.1. Organisation of the Thesis

This work is based over ’The Glymphometer’ Research to Business project, in collabora-
tion with University of Oulu, in particular with Professor Teemu Myllylä and his research
team. The thesis is organised in seven chapters as following: (1) scientific context and
introduction to the research; (2) overview over fNIRS and EEG; (3) adopted materials
and methods; (4) obtained results; (5) discussion of results; (6) future developments and
(7) general conclusion.

Keywords: EEG, fNIRS, wearable device, brain health, signal processing
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Abstract in lingua italiana

Negli ultimi decenni, i miglioramenti globali nella qualità della vita hanno portato a un
notevole invecchiamento della popolazione [1], con un notevole incremento delle malattie
neurodegenerative (NDD) legate all’età. Tra queste, la demenza, caratterizzata da dis-
turbi cognitivi cronici, rappresenta ad oggi una delle sfide più rilevanti [2]. La possibilità
di diagnosi precoce della demenza, infatti, rimane ancora elusiva a causa della sua subdola
insorgenza e delle valutazioni cliniche che avvengono in maniera sporadica [3]. Allo stato
dell’arte, tra i metodi diagnostici più noti [4], l’elettroencefalografia (EEG) e la spettro-
scopia funzionale nel vicino infrarosso (fNIRS) risultano essere preziosi per lo sviluppo di
strategie terapeutiche per le NDD [5], grazie ad alcune loro caratteristiche comuni come
la minima invasività, la sicurezza, la facilità d’uso e la ripetibilità delle misurazioni.

L’obiettivo primario di questo lavoro è l’implementazione e la validazione di un dispositivo
ibrido, chiamato Glymphometer, in grado di acquisire simultaneamente e di monitorare
in tempo reale entrambi i segnali EEG e fNIRS, con l’obiettivo finale di commercializzarlo
e renderlo adatto a studi futuri, al fine di migliorare i metodi di diagnosi precoce delle
NDD. Attualmente in fase di sviluppo presso l’Università di Oulu da parte del Professor
Teemu Myllylä e del suo gruppo di ricerca [6], il Glymphometer è un dispositivo medico
indossabile, di facile utilizzo, date le sue ridotte dimensioni e la sua non invasività. Tali
caratteristiche lo rendono adatto per un monitoraggio continuo del cervello, sia durante
la veglia che durante le fasi di sonno, con una destinazione d’uso sia domestica che os-
pedaliera. Oltre ai diversi parametri di salute cerebrale, esso consente di misurare anche
l’attività del sistema di pulizia cerebrale, strettamente legata alla funzionalità del sistema
glinfatico.

Per il presente lavoro, il prototipo di Glymphometer adottato consiste in un’unità princi-
pale collegata a una calotta cranica che incorpora il sistema fNIRS - due fotodiodi (PD)
e due LED - posizionato al centro della fronte, pochi centimetri sopra le sopracciglia, e
due elettrodi EEG posti al di sopra di esso. Per la validazione del dispositivo è stato
analizzato un campione di nove controlli sani affiliati all’Università di Oulu - studenti
Erasmus e dipendenti, di diverso sesso (2 maschi e 7 femmine), nazionalità ed età (tra i
21 e i 47 anni). La raccolta dei dati è avvenuta nel laboratorio Kieppi, situato nel campus
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Kontinkangas dell’Università di Oulu, tra marzo e maggio 2023.

Per convalidare questo nuovissimo dispositivo - soprattutto in vista di futuri sviluppi nel
campo degli NDD - sono stati definiti due protocolli di acquisizione ex-novo. Uno riguarda
l’acquisizione del segnale di base, mentre l’altro l’acquisizione del segnale di attivazione
della memoria. In particolare, quest’ultimo si basa su un precedente studio [7] in cui è
stato dimostrato chei segnali fNIRS registrati a riposo dalla corteccia prefrontale possono
fornire una metodologia promettente per individuare le NDD, risultando in un’attività
emodinamica relativamente più bassa nei pazienti che ne sono affetti. Nel protocollo di
acquisizione di base, i soggetti sono stati fatti sedere in posizione rilassata, ad occhi chiusi,
cercando di pensare il meno possibile. In queste condizioni è stato registrato un segnale di
5 minuti. Il protocollo di attivazione della memoria, invece, è formato da due parti, una di
riposo a occhi aperti - dalla durata di 1,5 minuti - e una di task di attivazione della memoria
vero e proprio. Il task, a sua volta, comprende tre fasi: visualizzazione, memorizzazione
e richiamo. Nella fase di visualizzazione, ai soggetti sono state presentate 10 immagini di
oggetti comuni, ciascuna per 2 secondi, ed è stato chiesto loro di nominarli ad alta voce e
in inglese. Successivamente, gli è stato richiesto di chiudere gli occhi (memorizzazione, 15
secondi), ripensando alle immagini appena viste, per poi riaprirli e richiamare verbalmente
il maggior numero di immagini che riuscivano a ricordare (richiamo).

Dopo la loro raccolta, i dati fNIRS ed EEG sono stati analizzati completamente in MAT-
LAB®. I dati fNIRS sono stati sottoposti a pre-elaborazione, filtraggio a media mobile
e calcolo della concentrazione assoluta e relativa per i livelli di Hb02 e HbR. L’indice
di variazione della concentrazione (VCI) è stato introdotto come metrica per valutare
l’attivazione emodinamica, essendo definito come la variazione percentuale della concen-
trazione di Hb02 durante l’esecuzione del task cognitivo rispetto a quella della condizione
basale di riposo. D’altra parte, la pre-elaborazione dei dati EEG ha compreso il filtraggio
passa-banda, la rimozione degli artefatti e il calcolo della densità spettrale di potenza
(PSD). Anche in questo caso, è stato introdotto l’indice di attenzione (AI) come metrica
per valutare l’attenzione, essendo definito come il rapporto tra la potenza in banda alfa

e la potenza in banda beta del segnale EEg.

Per l’analisi statistica, le distribuzioni di AI e VCI sono state analizzate singolarmente -
rispetto le singole fasi del task e le posizioni dei sensori - prima attraverso l’uso del test
di normalità (Shapiro-Wilk Test), e poi utilizzando test intergruppo non parametrici -
Wilcoxon Signed Rank Test e Test di Friedman. D’altra parte, per l’analisi combinata,
volta a trovare potenziali correlazioni tra EEG (AI) e fNIRS (VCI), sono stati utilizzati
scatterplot e rette di regressione lineare. In aggiunti, al fine di quantificare tali correlazioni,
sono stati calcolati i coefficienti di Pearson in ogni singola fase del task.



In generale, è emerso che durante l’esecuzione del compito di attivazione della memo-
ria, il VCI ha assunto prevalentemente valori positivi, indicando un’attivazione generale
dell’emodinamica cerebrale. Allo stesso tempo, l’AI ha assunto valori inferiori a 1, indi-
cando una maggiore potenza beta rispetto a quella alfa, corrispondente all’intensificazione
delle oscillazioni beta quando le risorse cognitive sono dirette all’elaborazione sensoriale
attiva e all’attenzione focalizzata. Ne consegue che, per entrambi i segnali, i risultati
sono stati coerenti con quanto atteso e appreso dalla bibliografia [8? –11], rivelando in-
teressanti pattern di risposte emodinamiche e di attivazione elettrica durante le fasi del
compito cognitivo, rispetto alla condizione di riposo.

Nonostante le dimensioni ridotte del campione, questo studio ha fornito preziose indi-
cazioni sulle capacità di acquisizione dei segnali da parte del Glymphometer. In con-
clusione, si può affermare che il Glymphometer è in grado di produrre dati affidabili e
coerenti, essendo riusciti a validare le sue misurazioni. L’importanza del presente studio
risiede principalmente nell’essere il punto di partenza per una sua migliore validazione
futura, al fine di estenderne l’utilizzo all’ambito della ricerca cognitiva e delle NDD.

0.2. Organizzazione della tesi

Questo lavoro si basa sul progetto "The Glymphometer" Research to Business, in collab-
orazione con l’Università di Oulu, in particolare con il professor Teemu Myllylä e il suo
gruppo di ricerca. La tesi è organizzata in sette capitoli come segue: (1) contesto scien-
tifico e introduzione alla ricerca; (2) panoramica sulla fNIRS e sull’EEG; (3) materiali e
metodi adottati; (4) risultati ottenuti; (5) discussione dei risultati; (6) sviluppi futuri e
(7) conclusione generale.

Parole chiave: EEG, fNIRS, dispositivo indossabile, benessere cerebrale, elaborazione
del segnale
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1| Introduction

During the last decade, the noticeable improvement in the quality of life has led to an
increase in aging among world populations [1]. From 1990 until 2019 - excluding the
Covid-19 pandemic years, which show some abnormalities - the global life expectancy at
birth has increased from 65.6 years to 73.3 [13]. As a consequence, a significant increase
in the incidence of numerous chronic neurodegenerative diseases, characterized by age-
associated cognitive neurodegenerative diseases (NDDs), is inevitable. As estimated by
the Alzheimer’s Disease International, in 2020, more than 50 million people were living
with dementia and this number is going to double every 20 years, reaching 82 million in
2030 and 152 million in 2050 [14]. Given the significant global incidence, the attention to
the category of persons with NDDs is expressed not only by the medical sphere, which is
concerned with developing drugs and treatments, but also by all those social bodies that
are aimed to adapt day-to-day services to all categories, especially the weakest [2]. For that
reasons, NDDs represent one of the major challenges of modern science. These diseases
include dementia - a chronic and irreversible cognitive impairments mainly affecting elder
people - in it several forms.

1.1. Dementia: forms and characteristics

Generally, dementia is defined as a syndrome characterized by progressive deficit in cog-
nitive functions, with a major emphasis in memory loss, interfering with social and occu-
pational activities [15]. However, this memory-based definition fails to identify the large
number of patients affected by dementia who show declines in other cognitive domains. As
listed by the Alzheimer’s Disease International (ADI) [16], the several forms of dementia
that exist are:

• Alzheimer’s disease (AD);

• Vascular dementia (VaD);

• Lewy bodies dementia (LBD);

• Fronto-temporal dementia (FTD).
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1.1.1. Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the most common form of dementia and its diagnosis is
based on the ‘A/T/N’ classification system, referring to the presence, in the nervous
system, of three categories of different substances named β-amyloid-Aβ deposits (A),
hyperphosphorylated τ aggregates (T), and neurodegeneration or neuronal injury (N) [17],
which are hypothesized to may disrupt the communication among nerve [18]. It results
in the loss of communicative efficiency between neurological brain networks, caused by
the progressive loss of synaptic plasticity [19], which is the ability of neurons to be able
to easily change their synaptic connections as needed. Under physiological conditions,
a certain loss of dendritic spines is identifiable through normal ageing processes, but in
the specific case of neurodegenerative diseases this loss can be considerably accelerated
[20]. The criteria currently used for AD diagnosis were firstly defined in 1984 by the
National Institute for Neurological and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association (NINCDS – ADRDA) [21]. From a
symptomatic point of view, AD syndrome is characterized by prominent episodic memory
impairment, with secondary deficits in word-finding skills, spatial cognition and executive
functions [22].
A preclinical stage of AD can be identified with the ’mild cognitive impairment’ syndrome,
also known as MCI, characterised by an isolated - also multiple - cognitive impairment,
considered as abnormal by statistical methodologies. It refers to the period in which
the presence of a cognitive impairment is evident, but it still not interferes with daily
activities. Since it is necessary to test that the cognitive impairment of the subject is
not as severe as to affect the performance of his social or professional activities - as in
that case the most appropriate diagnosis would be dementia [23] - the diagnosis of MCI
requires numerous clinical examinations. The reason why it can be considered as a pre-
dementia state is that it could happen that some MCI patients remain stable over time.
On the other side, the importance of an early diagnosis of the MCI condition lies in the
fact that it could allow clinicians to provide timely treatment to the patient [24], as better
described in Section 1.2. For that reason, MCI has recently become an important object
of investigation in the prevention of dementia [25].

1.1.2. Vascular dementia (VaD)

On the contrary, patient affected by VaD syndrome rarely present symptoms of memory
impairment, but they show executive dysfunction - like slowing of motor function, small-
step gait, Parkinsonian features or urinary disturbances... - or multiple focal cognitive
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deficits - like slow information processing, impaired memory, inattention or depressive
mood changes [26]. VaD can be caused by several factors, ranging from multiple cortical
infarcts - due to large vessels diseases - to white matter ischemia and strokes - due to small
vessels diseases like hypertension and diabetes. Additionally, to the ones defined by the
NINDS–AIREN, also California Alzheimer’s Disease Diagnostic and Treatment Centers
(CAD–DTC) [27] criteria are used, especially to correct distinguish VaD from AD. Since
the distinction of these two forms of dementia is rather complicated - because of the
high occurrence of AD patients with cardiovascular lesions (CVD) or, on the contrary,
of VaD patients with pathological symptoms consistent with AD - they can be seen as a
continuum that is commonly referred as mixed dementia [28].

1.1.3. Lewy bodies dementia (LBD)

Dementia with Lewy bodies and Parkinson’s disease (PD) dementia - more generally
called Lewy body dementias (LBD) - are the second most common type of degenerative
dementia in patients elder, accounting for 10% to 15% of all cases [29]. The difference
between them is in the sequence of onset of dementia and parkinsonism symptoms, even
if the progression of both could become similar to the extent that they can be viewed as a
continuum - as defined in Section 1.1.2 for AD and VaD. However, not all patients affected
by dementia with Lewy bodies develop parkinsonism [30], while patients affected by PD
tend to manifest LBD [31]. Typically, LBD patient present early dementia symptoms in
association with visual hallucinations or with characteristic signs of PD [32]. The main
hallmark of LBD is the presence of synuclein neuronal inclusions - Lewy bodies and Lewy
neurites - which cause neuronal losses, even if it is still unclear whether neural inclusions
have a neuroprotective or neurotoxic role [33]. In particular, cortical α-synuclein inclusions
have a more prominent role in Parkinson’s disease dementia, while β-synuclein ones in
dementia with Lewy bodies [34]. The biggest challenges in the diagnosis of LBD are both
the differentiation from AD - since LBD is often misdiagnosed with AD - and, especially
for patient already affected by PD, the early identification of cognitive impairments [35].

1.1.4. Fronto-temporal dementia (FTD)

Fronto-temporal dementia (FTD) is a relatively rare form of dementia which affects the
frontal lobe of the brain [36]. FTD diagnosis results very challenging since its symp-
toms overlap with both AD - both show a progressive decline of cognitive abilities during
years, even if the later has more prominent deficits - and LBD - they have a set of
common symptoms like hallucinations and executive dysfunction, even if LBD has pre-
dominant parkinsonism features [37]. From a genetics point of view, patients with FTD
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show proteins mutations involving progranulin (GRN), microtubule-associated protein tau
(MAPT) and chromosome 9 open reading frame 72 (C9orf72) [38].

1.2. The importance of an early diagnosis

Diagnosing dementia at an early stage results insidious since its onset is characterized by
proper symptoms of “normal ageing”, together with the ability of patients to try to hide
or deny them [39]. Indeed, normal aging cognitive decline refers to only one of the five
neuropsychologic domains associated with dementia, which are: memory and learning,
attention and concentration, thinking, language, and visuospatial functioning [40]. Addi-
tional problems concern the sporadic way clinical examinations are carried out together
with the fact that, when a subject decides to undergo them, he or she usually already has
significant symptoms [3]. All these reasons make currently remote the possibility of an
early diagnosis of dementia. As a consequence of this lack of early diagnostic tools, the
main issue related to dementia results in its treatment: unfortunately, given dementia’s
neurodegenerative nature, any kind of pharmacological therapy results actually ineffec-
tive when neurodegeneration has yet become too severe [41]. Additionally, several clinical
studies have shown that, if a patient starts cognitive training during the preclinical stage
of the disease, this could slow down the normal course of the disease increasing the pa-
tient’s independent life span [42]. Other advantages of an early diagnosis of dementia also
concern the personal sphere of an individual: during the early stage of the neurodegener-
ation, the patient is still able to plan his or her future life, to make important decisions
about care and support, additionally to financial and legal matters [43]. However, as
biochemical changes at brain level already occur in the previous two decades before clin-
ical symptom onset, the best way to provide prompt therapeutic intervention [44], early
risk evaluation and clinical diagnosis could be the identification of sensitive and specific
biomarkers [45] - indicators of normal or pathogenic processes [46], which can be chemical,
physical, biological [47] and imaging [48].

In conclusion, despite the best way to provide a prompt therapeutic intervention is through
an early diagnosis, what happens in practice is that a clinical diagnosis of dementia is
made when a patient has already shown a memory decline [49]. However, only an early
diagnosis could allow a patient to compensate for his or her disability, improving the
quality of his or her life, but also of the people around him or her [50]. Therefore, the
focus of researches in this area - and also of this work - is currently on developing methods
and tools to diagnose neurodegenerative diseases even before the onset of symptoms.
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1.3. State of the Art

1.3.1. NDDs Diagnosis Techniques

Researchers from all across the world are drawn to the intricate systems that govern
human brain circulation [51]. The primary goal of cerebral circulation is to maintain the
brain’s supply of oxygen and energy, both of which are necessary for appropriate brain
function. The measurements of cerebral blood flow (CBF), cerebral perfusion pressure
(CPP), cerebrovascular resistance (CVR), and intracranial pressure (ICP) are the most
significant indicators of cerebral circulation [52]. The analysis of brain mechanisms aims to
diagnose unhealthy conditions, like NDDs, in order to prevent and cure them. Nowadays,
among several methods used to measure human cerebral activity, the most famous are
imaging biomarkers [4], such as:

• positron emission tomography (PET);

• computed tomography (CT) or single-photon emission computed tomography (SPECT);

• magnetic resonance imaging (MRI);

• xenon computed tomography (Xe-CT).

The methods mentioned above, based on contrast imaging, are considered as direct meth-
ods. Their main disadvantage is that they do not give continuous information. On the
other side, they deliver images with great spatial resolution, and it makes them useful
for spotting potential problems associated with cerebral circulation architecture. Ad-
ditionally to them, also indirect methods - based on the measurement of physiological
parameters which reflect cerebral perfusion - are used for brain disease analysis:

• functional near-infrared spectroscopy (fNIRS) [53];

• diffuse correlation spectroscopy (DSC) [54];

• transcranial doppler ultrasound (TCD) [55];

• electroencephalogram (EEG) [56].

Nowadays, the presence of objective memory impairment is firstly documented through
the administration of short screening paper-based neuropsychological tests, like Mini-
Mental State Examination (MMSE) [57], clock drawing [58], Addenbrooke’s cognitive
examination [59]. Between them, best-known and the most often used is the MMSE [60]:
it is a simple pen-and-paper test based on a total possible score of 30 points, able to test
concentration, attention, verbal memory and visuospatial skills [61]. It is used specially to
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indicate the severity of AD: ’mild’ if the score ranges between 21-26, ’moderate’ between
10-20, ’moderately severe’ between 10-14 and ’severe’ if less than 10 [57]. For what
concerns the above-mentioned methods, they role during the diagnostic process is also
crucial to understand causes and development of the cognitive decline.

Direct Methods

Between the direct methods, the most used are PECT, MRI and CT (and SPECT) [49].
Through PET it is possible to evaluate brain functions by measuring brain metabolic
energy: in AD patients, for example, it could identify a bilateral hypometabolism of the
superior posterior temporal and parietal lobes, with a sensitivity and a specificity of 93%
and 63%, respectively [62]. It is also able to measure the Aβ deposition in the brain
[63]. MRI allows the identification of neuronal degeneration, injury, and brain atrophy,
also by differentiating AD from healthy elderly persons, with an accuracy of 80% [64].
Although CT and SPECT are less sensitive than PET, they can be more beneficial in
the identification of hypoperfusion of both the temporoparietal junction and the posterior
cingulate, with a sensitivity and specificity of 63% and 93%, respectively [62].

Indirect Methods

On the other side, between the indirect methods, the most used are EEG and fNIRS.
Over the last two decades, there has been a significant increase in clinical practice and
research interest in EEG, a potential non-invasive tool of investigation of neurodynamic
time-sensitive biomarker, that helps in detecting cortical abnormalities associated with
cognitive decline and dementia [56]. EEG is a technique that records the changes in elec-
trical activity on the cerebral cortex due to postsynaptic potentials produced by brain
neurons. It acquires signals by measuring the neural electrical potentials using electrodes
placed on standard, fixed locations on the scalp [65]. Its functionality is better explained in
Section 2.2. EEG-based method is one of the most used neuroimaging techniques because
of its low cost, its wide availability, and the fact that it is faster than other NDDs diag-
nostic devices [66]. All these reasons make also EEG widely employed for NDDs diagnosis.

In the modern literature, many studies have shown how EEG can useful to study the
correlation between several degrees of dementia [67–69] or to differentiate unhealthy pa-
tients from controls [9–11], showing also that EEG may be more accurate than MRI or
CT [70]. As a general result, consequently to the slowing of the oscillatory brain activity
in patients affected by dementia, in particular AD , EEG signal usually shows reduced
complexity [71, 72] and synchrony between alpha and beta frequencies [10]. However, the
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reliability of EEG as biomarkers for an early diagnosis of preclinical dementia is not yet
fully validated, as the above-mentioned studies all have focused on EEG as biomarker for
later stages of the dementia, after the onset of symptoms. Additionally to EEG, has been
recently demonstrated that also fNIRS can accurately record functional brain activities.
Previous studies have found a high correlation between the hemodynamic response mea-
sured by fNIRS signals and the blood oxygen level dependent (BOLD) response obtained
by functional Magnetic Resonance Imaging (fMRI) [73], but with the main advantage
that fNIRS allows to study neural mechanisms that are not possible to analyze because
of the constraint environment of fMRI [74]. Generally speaking, fNIRS is a scalp-located
non-invasive optical methodology based on injection of light into the scalp using several
wavelengths. The changing of the detected back-scattered light, which depends directly
on the concentration of oxy- (Hb02) and deoxy- (HbR), is used to quantify the hemo-
dynamic changes [75]. This technique is explained better in Section 2.1. With respect
of fMRI, fNIRS offers multiple benefits: it is also non-invasive but is has higher tempo-
ral resolution, higher portability, lower cost, lower susceptibility to movement artifacts,
the lack of strong external magnetic field and poses less constraint to subjects during
the measurement [76]. These benefits make fNIRS a potential alternative technique to
fMRI for NDDs diagnosis. Despite the introduction of innovative and advantageous new
techniques, fMRI can still be considered a cornerstone of functional neuroimaging, with
the main advantage of having excellent spatial resolution [77], as it can accurately detect
the exact location of the source of neuronal activity, in addition to the fact that it can
provide three-dimensional maps of large brain volumes [78]. Recently, several studies Li,
Guoxing Rui, Wei Chen, Sheng Li, Paul E Schulz, and Yingchun Zhang. Early detection
of alzheimer’s disease using non-invasive near-infrared spectroscopy. Frontiers in aging
neuroscience, 10:366, 2018.tearaki2014effects, uemura2016reduced, beishon2017cerebral,
vermeij2017prefrontal have examined the feasibility of using fNIRS to compare hemody-
namic responses in healthy controls and NDDs patients, showing that, in general, NDDs
patients exhibited lower levels of activation at specific brain regions when compared to
healthy controls, during various cognitive tasks. More specifically, the concentration of
Hb02 decreases significantly in the frontal and bilateral parietal areas of NDDs subjects
but only in the right parietal area in MCI patients [79]. That might happen because the
frontal cortex is highly associated with memory, attention, and higher cognitive function
[80]. These results suggest that fNIRS might have the potential to detect the presence
of NDDs, even at early stages. In his study, Jahani et al. (2017) [8] suggested that
paired-associate learning task (PAL), which requires the use of episodic memory to form
an association between the paired items which come from different domains, could be
useful in early detection of memory impairment. This task is composed by four different
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phases, which include the encoding and the recalling of novel and same faces. The most
relevant results show that, during the encoding and recalling of novel faces, Hb02 increases
in the left inferior frontal cortex. On the other hand, the difference between the encoding
of novel and same faces is shown in the Hb02 concentration in the lateral superior medial
frontal cortex, which decreases in the first case, while decreases in the second one. For
what concerns the recalling phase, a changing in the Hb02 concentration occurs in the
right superior frontal cortex, but in case of novel faces it increases, while in case on same
faces it decreases.

EEG and fNIRS for Early NDDs Diagnosis

Out of all the methods listed in Section 1.3.1, the focus of this work is over the analysis
of two different kinds of imaging signals biomarkers, also called biosignals, recorded from
electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). This
interest is due to the fact that the integration of these brain signals, able to compensate
for each other’s weaknesses, could provide a more complete and comprehensive picture
of several functions and physiological processes of the brain, such as neuronal electrical
and hemodynamic activities [81]. Even if both these two techniques have been exten-
sively utilized by the researchers to develop high-performance classification models, they
still present specific challenges which can often compromise their applicability in a clinical
setting. About EEG recordings, they offer a high temporal resolution, but they also suffer
from a relatively low spatial resolution, principally due to the conductivity distribution
of the human head. It is also high sensitive to environmental noise and general artifacts
(see Section 3.6.2), making this technique not highly reliable when used alone, especially
in the field of NDDs [82]. In contrast to EEG, fNIRS is caracterized for having a higher
spatial resolution but a lower temporal resolution, but the main advantage that fNIRS
holds over EEG is the negligible crosstalk effect (see Section 2.1.2) when the activation
region distance is greater than one centimeter [83]. At the state of art, the integration
between EEG and fNIRS is widely investigated. Nowadays, they are principally applied
in clinical brain state monitoring, especially in NDDs, since the development of thera-
peutic strategies for these disorders is based on properties characterizing both EEG and
fNIRS, such as minimal invasiveness, safety, ease of use, and repeatability [5]. In 2021,
a systematic search about the investigation EEG-fNIRS devices, based on PubMed and
Web of Science databases from 2000 to 2020, has been conducted by Yang et al. [84],
with the aim to review the actual state-of-art of this innovative hybrid technique. Always
relying on that study, it turned out that EEG has been used in most studies, while fNIRS
has still been involved only in a few, as shown in Figure 1.1.
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Figure 1.1: The figure shows the number of EEG-fNIRS papers per brain disorder, such as
traumatic brain injury (TBI), stroke, Parkinson’s Disease (PD), schizophrenia, epilepsy,
attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), de-
pression and AD/MCI [84]. It results that, at the state-of-art, hybrid EEG-fNIRS devices
are principally used for the investigation of stroke, PD and depression.

Nevertheless, there are still some problems related with EEG, and one of the most lim-
iting is about the simultaneous use of EEG and brain stimulation technique - such as
transcranial electrical stimulation (tES) - since they can be affected by electric and mag-
netic fields. For these specific applications, signal processing algorithms and techniques
are strongly needed, in order to remove these interference components [85]. That’s the
reason why a technique free of limitation, such as fNIRS, should start to be considered as
a validation method in these kind of applications, in order to improve detection accuracy
and provide more compelling support from different perspectives [86]. Of all the various
studies, in 2020, Ciclaese et al. [87] presented a hybrid device for the diagnosis of NDDs,
composed by the combination of both fNIRS and EEG methods to compensate for each
other’s weaknesses: while EEG recordings offer a high temporal resolution even if they
suffer from a relatively low spatial resolution, fNIRS is noted for having a higher spatial
resolution but a lower temporal resolution. Consequently, the same study shows that
integration EEG/fNIRS devices is able to achieve a higher accuracy (79.31%) compared
to using EEG (65.52%) or fNIRS (58.62%) alone.

The purpose of the present work is the implementation and the validation of an hybrid
device, called Glymphometer, able to simultaneously acquire and real-time monitor EEG
and fNIRS signals, in order to involve such device in future studies, especially about the
investigation of NDDs.
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1.3.2. Acquisition Protocols

Since NDDs are characterized by the progressive degeneration of neurons, they manifest
in subtle and complex ways that require comprehensive and advanced methodologies for
an accurate assessment. In recent years, the integration of neuroimaging and biosignal
acquisition techniques has shown promise for improving an increasingly specific under-
standing of NDDs to aid in their early diagnosis. Several techniques, such as EEG and
fNIRS, have been widely employed individually to investigate NDDs, but the synergy
resulting from their simultaneous and combined modality provides a broader perspective,
exploiting both electrical and hemodynamic data. Unfortunately, at the stet-of-art, nu-
merous protocols have emerged for the separate acquisition of these signals, while there
is a lack of validated and reliable protocols for their simultaneous use. In order to find
a suitable cognitive task protocol to apply in this work, a detailed research has been
conducted on PubMed, ranging between years 2011 and 2022 [12, 88–95]. Between them,
one signal acquisition protocol has resulted particularly interesting, relatively to both the
tools available and the purposes of this work. The protocol, also called ’Memory activa-
tion test’, was established in a previous study of Karin et al. (2011) [12], that involved
13 controls, 13 MCI patients and 11 AD patients. The study was based on the acqui-
sition and comparison between EEG and electromyography (EMG) due to the activity
of scalp, facial, and jaw muscles, with the aim to assess muscle characteristics from two
different points of view, respectively, electrical and muscular [96]. For the performance of
the protocol, subjects were asked to be sit on a chair, 1.5 meters in front of a computer
screen and signals were registered in three periods: eyes-closed (10 minutes), open-eyed
(3 minutes) and memory activation. For the memory activation task, subjects were con-
secutively shown 10 pictures - each picture is presented for 2 seconds, for a total of 20
seconds - of common objects (visualization phase). In the meantime, they named the
shown objects aloud. After the presentation of all the pictures, they closed their eyes for
15 seconds, while memorizing the pictures just seen (memorization phase). Then, they
opened their eyes and name as many pictures as they could remember (recall phase). The
memory activation task has been performed for three times by each subject. The number
of remembered pictures for each subject was notated and taken into account for the fur-
ther signals analysis, that principally involved a statistical signal analysis assessed using
ANOVA test, with Bonferroni correction. About the EEG signal analysis, after the ap-
plication of the fast Fourier transformation (FFT), it focused on two types of parameters:
theta θ relative power during eyes-closed, and alpha α reactivity - which is the percentile
decrease in the alpha power during the open-eyed period, compared to the eyes-closed one
- during both open-eyed and memory activation periods. For what concerns the EMG
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analysis, signals were averaged and the standard deviations were calculated over the three
samples available for each task phase, for each subject. From the statistical analysis, it
resulted significant that AD patients remembered less pictures than MCI, which remem-
bered less pictures than controls. About EEG, group differences in θ relative power were
found during eyes-closed, which significantly increased in AD as compared with MCI and
controls. On the contrary, α reactivity during both open-eyed and memory activation
periods significantly decreased in AD patients as compared with controls. About EMG
signal - so muscular activation - during both eyes -closed and -open, it significantly in-
creased in AD, showing more frontal activity than in controls.
Additionally, also for the acquisition of the baseline signal, inspiration has been taken
from an already validated protocol. In Hasan Onur et al (2022) [7] study it has been
demonstrated that resting fNIRS signals recorded from the prefrontal cortex can provide
a promising methodology for detecting AD, since it results a relatively lower hemody-
namic activity in patients with AD. For this purpose, 21 AD patients and 18 healthy
controls, both over 60 years, have been involved. In order to acquire a baseline signal,
subjects were asked to sit on a chair in a relaxed position, without speaking, to also close
their eyes and think as little as possible, trying not to sleep. In these condition 5-minutes
signal is recorded. Then, for the analysis, standard deviations in non-overlapping 10-
seconds windows and median absolute deviation (MAD) were calculated for each channel.
It was preferred to the mean value because, increasing hemodynamic responses increase
the standard deviation of the signal in a window, while the mean remains close to zero.
As for the present study, the focus was principally over Hb02 activation - which refers to
the variation of Hb02 concentration relatively to the performance of a specific task. As a
general result, the left prefrontal cortex (PFC) activation in AD patients turned out to
be significantly reduced compared to healthy controls, suggesting that left PFC is the site
of activation that better discriminate AD from controls. In the present work, the main
purpose of the application of consistent protocols (described in Section 3.4) has been to
find if there is a useful correlation between fNIRS and EEG signals, firstly when recorded
from healthy human controls, in order to extend this analysis, one day in the future, over
NDD patients.

1.4. ’The Glymphometer’

Research to Business project, University of Oulu

The Glymphometer - Research to Business project [97] aims to validate and commer-
cialise a novel monitoring method and take the first steps towards the commercialisation



12 1| Introduction

of this important invention. The following work is based on the use of an EEG-fNIRS
hybrid device for the acquisition of biosignals, which is part of a more complex device
called Glymphometer. Currently in development at the University of Oulu by the re-
search team of professor Teemu Myllylä [6], the Glymphometer is an easy-to-use wearable
brain monitoring medical device, aimed to allow an easy measurement of several brain
health parameters and the activity of the brain’s cleansing system, both related with the
functionality of the glymphatic system, at home and in hospital, thus further developing
early diagnostic methods and the possibility of contributing to brain well-being. The
macroscopic glymphatic system is located into the brain. It has been recently discovered
to principally work as a waste clearance system, but it is also involved in the distribution
of non-waste compounds, such as glucose, lipids, amino acids, and neurotransmitters re-
lated to volume transmission [98]. Intriguingly, the glymphatic system functions mainly
during sleep and is largely disengaged during wakefulness. Recent studies [99–101] have
discovered that it is suppressed in various diseases and that its failure might generate
NDDs, causing the accumulation of hyperphosphorylated proteins which, as explained
above, make the brain more vulnerable to developing or escalate the progression of cogni-
tive dysfunction. The initial Glymphometer prototype - shown in Figure 1.2 - is composed
by a main unit box connected to a headcap unit embedding both fNIRS sensors placed in
the middle of the forehead, a few centimeters above the eyebrows - with two photodiodes
(PDs) two LEDs - and EEG sensors placed along the scalp. Additionally, a chest sensor
accelerometer is used for the acquisition of signals due to cardiac beating chest movements
- also called seismocardiographic or SCG signals.
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Figure 1.2: Both the pictures show the prototype schematics of the Glymphometer device
and sensors setup, better explained in Section 3.1.

Thanks to its small dimensions and its non-invasiveness, the main advantage of this device
should be that it can be used for continuous brain monitoring, both during awake and sleep
phases. However, more detailed specifics about the implementation and the electronics
composition of the actual Glymphometer are given in Chapter 3.1.
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2.1. Functional Near-Infrared Spectroscopy

Functional near-infrared spectroscopy (fNIRS) is an optical-based method able to map
neuronal activity by applying light - in the near-infrared (NIR) spectrum, between 650
and 950 nm - that can travel through tissues. Generally, the experimental setup (existing
in several configuration, as shown in Figure 2.1) consists of light sources - LEDs that emit
NIR light at particular wavelengths - and detectors - photodiodes (PDs) that acquire the
reflected and refracted light at shifted wavelengths - whose number can vary depending
on the application [102].

Figure 2.1: On the left, an example of fNIRS cap for monitoring the hemodynamic re-
sponse of the brain; on the right, an example of eight-channel fNIRS device for monitoring
the hemodynamic response of the prefrontal cortex [103].

In order to reach the brain, the light generated by the LED sources has to travel through
different layers, i.e. the scalp skin, the skull, the cerebrospinal fluid..., each one having
different optical properties. Then, when it reaches the cerebral cortex, it reflects off and
returns back to the PD detectors. This interaction between NIR light and human brain
tissues can be simplified considering light attenuation due to absorption and scattering
phenomena [104]. Absorption involves the conversion of the energy of light photons into
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internal energy of the medium it passes through, depending on its optical properties [105].
Since human body is made of approximately 70% of water - whose absorption is minimum
in the NIR spectrum - NIR light can travel through tissues without be strongly influenced
by it. However, the working principle of fNIRS is strictly related to hemoglobin (Hb), the
most absorbing NIR light molecule in human brain. A common hemodynamic response
during neuronal activity involves an increase in oxygenated hemoglobin (Hb02) concentra-
tion, accompanied by a decrease in deoxygenated hemoglobin (HbR) concentration [106]:
during the execution of a certain task, the activation of the involved brain area leads into
an oversupply of the regional cerebral blood flow (CBF), in order to meet the increased
metabolic brain’s demand for oxygen and glucose [107], producing an increase in Hb02

and a decrease in HbR concentrations.

Modified Beer-Lambert’s law

Hemoglobin (Hb) is a complex protein that assumes different geometries, depending if
the oxygen is or is not bound to it. That’s because of the presence of four binding
sites - molecular structures composed of iron, known as Heme groups - which alter the
shape of Hb when oxygen bounds with them [108]. Since oxygen determines different
Hb extinction coefficients h when is or is not bound to it, the most useful feature of NIR
light is that, at specific wavelengths, behaves differently when interacts with Hb02 or HbR.
Since the absorption coefficient of a medium α depends on the Modified Beer-Lambert’s
law (MBLL)

α = log
Io
I

= ϵ(λ) · C · l (2.1)

where Io is the incident light intensity, I is the transmitted light intensity, ϵ is the molar
absorption coefficient of the medium at a certain wavelength λ, C is the molar concentra-
tion of the analyzed molecule and l is the optical path length, it is possible to conclude
that the extinction coefficient ϵ determines the overall absorption [109]. Figure 2.2 shows
the relationship between wavelength λ and extinction coefficient ϵ for Hb02 and on HbR:
on the x-axis there is the wavelength λ range - where λ1 corresponds to the light emit-
ted by the red LED (around 650 nm) and λ2 to the light emitted by the infra-red LED
(around 940 nm) - while on the y-axis there is extinction coefficient ϵ.
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Figure 2.2: In the graph, the two curves - one for Hb02 , the other for HbR - represent the
variation of the extinction coefficient ϵ with respect to the wavelength λ [110].

It can be noticed that, until 800 nm the extinction coefficient of HbR (ϵHbR) is higher than
the one of Hb02 , while, around 800 nm, they are the same. This specific wavelength is
called isosbestic wavelength. For higher values of wavelength, in particular in the infrared
region λ2, the extinction coefficient of Hb02 (ϵHb02

) is higher than the one of HbR. This
difference in Hb absorption reflects also on blood’s color, which results more red for arterial
blood (98% saturated) and more purple for venous blood (75% saturated) [111].

Additionally to be absorbed, NIR lights are also scattered through brain tissues. When
a photon is scattered, its travelled path increases, so it penetrates several centimeters
through the tissue; as a consequence, its probability of being absorbed increases [111].
Therefore, by placing a light detector at a certain distance from the NIR light source, it is
possible to collect the backscattered light, in order to measure changes in light attenuation,
as shown in Figure 2.3.
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Figure 2.3: In red, the path of NIR photons, from the LED source to the PD detectors,
through the different brain layers - scalp, skull, cerebrospinal fluid (CSF), gray matter and
white matter. The penetration depth of the light is proportional to the source–detector
distance, where d1 refers to the deeper channel, while d2 to the superficial one. A chan-
nel is defined by the pair source–detector and reaches a depth of around half of the
source–detector distance [111].

2.1.1. fNIRS Principles

Continuous Wave fNIRS

Most of the commercially available systems are based on the Continuous Wave (CW)
fNIRS principle. Light is continuously emitted by NIR LEDs - typically at two or three
different wavelengths - and the measurement of its attenuation is based on the Beer-
Lambert’s law (Equation 2.1). The first attenuation measurement is subtracted from the
following attenuation measurements, in order to remove the effect of scattering and water
concentrations. This technique is also defined as differential spectroscopy. The changes
in attenuation ∆α results to be related to the changes in Hb02 or HbR concentration ∆C,
as described by Equation 2.2

∆α = ϵ(λ) ·∆C · d ·DPF (λ) (2.2)

where ϵ is the extinction coefficient of the Hb at a certain wavelength λ, d represents
the source–detector distance and DPF is the differential pathlength factor that indicates
the increase in the photon path due to scattering [111]. Alternative methods to the CW,
could Frequency Domain (FD) and Time Domain (TD) NIRS.
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Frequency Domain fNIRS

Frequency Domain (FD) fNIRS, also called phase modulation spectroscopy (PSM), is
based on both (1) Frequency Modulation and (2) Phase Shift and Phase Delay. The
intensity of the emitted NIR light is modulated - in amplitude and phase - as a function of
the modulating frequency of a radio frequencies (RF) laser light, typically between 50 MHz
to 1 GHz [112]. When light passes through brain tissues, it is scattered and absorbed by
Hb molecules: absorption leads to light amplitude attenuation, while scattering modifies
the photons’ optical pathlength, leading to light phase changes proportional to the Hb
oxygenation levels. The analytical expressions for amplitude and phase modulation can
be obtained by the Fourier Transform (FT) of the time resolved theoretical expression

F (ω) =

∫ ∞

−∞
f(t)e−iωt dt (2.3)

where

• F (ω) represents the Fourier Transform of the time-resolved theoretical expression
f(t), as a function of the angular frequency ω;

• ω, expressed in [rad/s], represents the Angular Frequency, a measure of how rapidly
the phase of the sinusoidal FT waveform changes over time. It specifies the frequency
components at which the FT is evaluated;

• f(t) is the time-resolved theoretical expression of the signal that has to be trans-
formed, in order to reveal the frequency content of that signal;

•
∫∞
−∞ represents the mathematical operation of integration that combines the time-

domain information of f(t) with the complex exponential e−iωt in the frequency
domain;

• e−iωt is the complex exponential term that represents a sinusoidal wave with a
frequency of ω and a phase angle of −ωt. This term is crucial for the conversion
between the time and frequency domains;

• dt is the differential element of time, indicating that the integration is performed
with respect to time. It ensures that the result of the Fourier transform is a function
of frequency ω.

On the other side, the estimation of the optical properties of the brain tissues can be
performed as for the CW, basing on absorption and scattering phenomena mathematically
described by the MBLL (Equations 2.2 and 2.1). The FD-NIRS technique is very similar
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to the CW, with all the advantages and disadvantages related to it, but one of the most
important improvement is that the FD allows to calculate absolute values of the optical
parameters [113].

Time Domain fNIRS

In the Time Domain (TD) or Time Resolved (TR) fNIRS modality, pulses of light - on
the order of ps - are injected into brain tissues and then, after travelling inside them, are
detected, in order to study the Temporal Point Spread Function (TPSF) and the impulse
response of these tissues. The detected pulses are broadened, attenuated and delayed,
and from these modification it is possible to extrapolate the absolute value of the optical
parameters [114]. Additionally, from the photon’s arrival time it is possible to extrapolate
information about depth tissues composition and, in this way, discriminate between signal
coming from the surface and the deeper part of the head. That’s the reason why detectors
with a very high time resolution - as for the light source, on the order of ps - are necessary
[115].

The CW method is one of the most widely applied in fNIRS [104]. The main advan-
tage of CW fNIRS is that it provides information about concentration changes of Hb02

and HbR, but it is not able to quantify separately the contribution of absorption and scat-
tering. However, this technique is well suited for applications in cognitive neuroscience,
as functional activity is usually evaluated relatively to a subjective baseline. In the fol-
lowing work, a CW fNIRS device was adopted. However, additionally to CW, other two
techniques exist: time-domain (TD) and frequency-domain (FD). Unlike CW, both allow
to separate light absorption and scattering contributions, by obtaining absolute value of
Hb02 and HbR concentrations. However, both systems are more sophisticated since re-
quire NIR light sources of few picosecond pulses and fast time-resolved detectors [105].
In general, the main strengths of fNIRS are that it is a non-invasive, cost-effective, safe,
accommodating of physical movements, and portable neuroimaging technique. These
characteristics make it adaptable for subjects of any kind of demographics, from infants
to the elderly, and for several experimental settings, both inside and outside the labora-
tory. Another advantage is that it allows continuous monitoring, with respect to other
neuroimaging techniques, like PET and SPECT, which can not detect dynamic variations
in cerebral blood flow [116]. Due to these benefits, fNIRS has recently resulted as a very
promising approach for examining cortical disturbances in mental diseases, becoming one
of the most used techniques for NDDs studies [111].
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2.1.2. Crosstalk Effect

In fNIRS, crosstalk effect refers to the interference of signals between adjacent optodes -
light sources and detectors. This phenomena is due to the light scattering and propagation
through human tissues which lead to the possibility that light emitted from one source-
detector pair might be detected by adjacent detectors meant for other source-detector
pairs. This can result in inaccurate measurements of Hb concentration changes in the
brain and can lead to false interpretations of brain activity. Additionally, crosstalk can
occur also between Hb02 and HbR since the assumption generally made in the fNIRS
analysis - that in the MBLL concentration changes are spatially homogeneous - does not
hold true for the all the multilayered head tissue structures [117]. Since the MBLL relates
exponentially the measured light to Hb, through the extinction coefficients at a specific
wavelengths and the effective source-detector distance traveled by light photons (Section
2.1), it is important to take into account that this distance, in a diffusive media, is not
equal to the source–detector geometrical distance. In fact, because of the light scattering
in the brain tissues, the effective distance is between four and seven times longer the
geometrical one [118]. This characteristic is enclosed in the differential pathlength factor
(DPF) of the MBLL, that is dependent on the microscopic and macroscopic composition
of the investigated tissues, that can show variability among different subjects and head
regions [119]. Since the empirical estimation of DPF is quite complex - it requires the
calculation of the photons’ average time-of-flight - it is usually assumed a priori in CW
recordings - as in this work, where it has been assumed to be equal to 5 after several
attempts - not accounting for intersubject and interhead region variability [120]. The
main problematic related with the DPF choice is that systematic errors in its definition
result in systematic errors in the estimation of Hb concentration changes, which can lead
to crosstalk between species [121]. However, since crosstalk is a common challenge in
many optical imaging techniques, researchers in the field of fNIRS continually work on
improving methods to minimize its impact and ensure reliable measurements of brain
activity, for example, by deriving it from the effective absorption coefficient α that, in
turns, is accurately computed employing specific algorithms [122].

2.2. Electroencephalography

Electroencephalography (EEG) is a time course measurement recorded by electrodes
placed on the scalp, usually on a cap, as shown in Figure 2.4. It can integrate a variable
number of electrodes, depending on the application. Usually, the reference electrode is
located in the center of the scalp, while the ground electrode is on the lobe of one ear.
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Figure 2.4: The picture shows a general EEG setup [123].

The EEG signal - defined as a biopotential - represents, in amplitude (µV ), the amount
of summed electrical activity occurring somewhere in the cortex [124]. Basically, EEG
signal generation occurs at cellular level, since it reflects the change in the potential across
neuronal membranes. The difference in the ionic concentrations between the inside and
the outside of a neuron - high concentrations of potassium ion K+ and low concentra-
tions of sodium ions Na− inside, vice versa outside - generates a resting electric potential
(around -90 mV ) across the membrane (Nernst potential). Since neurons are excitable
cells, the resting potential can evolve into an action potential - a rapid flux (around 1 ms)
of ions across the membrane - in response of a stimulus [125]. It is generated by the Na−

influx that reverses the polarity of the potential across the membrane (depolarization)
and it ends because of the opening of voltage-gated K+ channels, which help to restore
the resting potential by a K+ efflux (repolarization) [126]. However, the amplitude of
these action potentials is too small and their duration is too short to be registered ex-
tracellularly. Whereas, postsynaptic potentials having durations of up to 10 ms are the
real source able to produce potentials that can be easily recorded by EEG electrodes
placed on the scalp. A postsynaptic potential occurs at the neural synaptic level, where
neuronal activity is transferred from one cell to another via a neurotransmitters released
from a presynaptic cell, directed to specific receptors located on the postsynaptic cell: if
the integration between postsynaptic potentials coming from other neurons results in a
supra-threshold depolarization, an action potential is generated and it propagates along
the axon directly to the synaptic terminal, causing neurotransmitter release - relatively to
the type of neurotransmitter and receptor, synapses can be excitatory or inhibitory [127].
For what concerns EEG acquisition, clinical standard silver/silver chloride (Ag/AgCl)
wet electrodes are the most used noninvasive electrodes for picking up biopotentials, since
they can reduce the electrode-skin interface impedance - thanks to the use of a conduc-
tive gel - and they have an high biocompatibility [128]. Their equivalent circuit is shown
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in Figure 2.5, where the potential Ehc represents the half-cell potential generated at the
electrode-electrolyte interface (so between the ionic charges into the human body and the
electron charges into the external electrode), the parallel between the resistor Rd and the
capacitor Cd represents the interface, the series resistor Rg is associated with gel effects,
the potential Ese represents the Nernst potential, the parallel between the resistor Re and
the capacitor Ce represents the epidermis and the resistor Ru represents the dermis and
all the subcutaneous tissues.

Figure 2.5: Electrical equivalent circuit of electrode–skin interface for wet electrodes [128].

EEG signal waveform (Figure 2.6) is characterized by many features like location, ampli-
tude and frequency. However, the most used classification method is based on frequency.
Commonly, delta (0.5 to 4Hz), theta (4 to 8Hz), alpha (8 to 13Hz) and beta (13 to 30Hz)
are the waveforms of interest. Outside the conventional bandwidth of clinical EEG, there
is another high-frequency oscillation (HFOs) waveform greater than 30Hz, which is called
gamma [129].

• Delta δ (0.5 to 4 Hz): it is physiologically seen in the non-REM phase of deep sleep,
so it is present in awake states only in pathological cases of encephalopathy and
focal cerebral dysfunction [130].

• Theta θ (4 - 8 Hz): it is seen during drowsiness phases as well as early stages of sleep.
It is dominant in infants, even if emotional tensions can enhance theta rhythm also
in children and young adults. Intense theta activity during awake states can suggest
some kind of cerebral dysfunction [129].

• Alpha α (8 - 13 Hz): it is present in normal awake EEG recordings, especially with
eyes closed and during mental relaxation. It is the defining feature of the normal
background rhythm of an adult EEG recording. Slowing of the alpha rhythm is
considered a sign of generalized cerebral dysfunction, while an attenuation could
occur in case of eye-opening or mental effort [131].
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• Beta β (13 - 30 Hz): it is the most frequent rhythm in normal adults and children
open-eyed and its amplitude increases during drowsiness. Intense beta activity can
be identified as an alert state of mental employment [129]. Since this interval results
wide, it can be divided into two sub-intervals: beta inferior (13 - 2α Hz) and beta
superior (2α - 30 Hz).

• Gamma γ (> 30Hz): it has been attributed to sensory perception integrating differ-
ent areas. Epileptic attacks are known to generate episodes of very high-frequency
activity. In a healthy situation, they show an increase during moments of peak
performance (physical and mental) and deep concentration [129].

Figure 2.6: Waveforms of the brain rhythms a) delta frequency band, b) theta frequency
band, c) alpha frequency band, d) beta frequency band [132]. Gamma usually results
difficult to be represented, since it is a very high-frequency band.

Several studies have recently proved that the most pronounced effects of neurodegen-
eration are shown in the frontocentral regions of the brain, with an increase of β and γ

amplitude and a decrease of δ amplitude, additionally to an increase of the functional con-
nectivity measured through θ band [133]. It results that preclinical EEG measurements
are valuable biomarkers for neurodegenerative illness finding [134].

For all of these above-mentioned reasons, nowadays, EEG remains a major technique for
investigating the assessment of cerebral function rather than for detecting structural brain
abnormalities [135].

2.2.1. Blink Artifacts

The eye blink is an instinctive movement related to a rapid eyelid closure and reopening.
It is an essential function that allows to lubricate the eye surface and to remove foreign
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bodies from it [136]. It can be natural, induced or forced: from now on in this work, the
term ‘blink’ is referred uniquely to spontaneous blinks. Eye-blink activity is a common
type of artifact that can contaminate the EEG signal trace, since it involves high voltage
levels that propagate from the eyeball through the scalp, the skull and neuronal tissues in
the head [137]. The voltage intensity of the event is called blink amplitude, while the time
needed to a subject for the complete eyelid movement is the blink duration. Typically, an
eye-blink pattern in EEG shows an ascent tract - with respect of the baseline - correspond-
ing to the eyelid closing phase, a positive and a negative peak corresponding, respectively,
to the complete closure and opening phase, and a descendent part corresponding to the
eyelid reopening phase, as shown in Figure 2.7.

Figure 2.7: A general one channel EEG signal with the waveform of eye-blinks [138].

Since eye-blinks cause a change in the electric field that surrounds the eyes, which in
turn affects the electric field over the frontal scalp generated by neural potentials, they
interfere significantly with frontal EEG channels: since in this work EEG electrodes are
located on the forehead, eye-blinks have turned out to be an issue. A common way to
remove eye-blinks from an EEG trace is the Independent Component Analysis (ICA), a
statistical technique which can separate mixed signals through the separation of ICs by
a specified measure of statistical independence [139]. The main limitation related with
ICA is that it can be employed to remove artifacts from multichannel EEG signals [140],
so the only two EEG channels used in this work are not enough. For this reason, an
alternative manual method - based on the implementation of a MATLAB® code - has
been developed, as better explained in Section 3.6.2.
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3.1. Acquisition Device: the Glymphometer

Initially, the idea was to utilize the EEG system integrated into the Glymphometer device
but, after some attempts, we realized that using both EEG and fNIRS sensors caused a
very high battery consumption in the actual prototype. Therefore, for this pilot study,
we decided to use an external EEG acquisition system, the Bittium NeurOne™ Tesla cap
[141]. It is composed by 32 EEG electrodes made of Ag/AgCl, integrated into a cap made
of a certified and skin kindness material, the so-called Oeko-Tex. Since fNIRS signal
is acquired from the forehead, also the EEG signal is acquired from the same place, so
just two electrodes (Fp1 and Fp2) located on the forehead were considered. They are
placed in the middle of the forehead, a few centimeters above the eyebrows and around
0.5 centimeters above the fNIRS setup, while the ground electrode is located behind the
right earlobe and the reference electrode (Cz) in the middle of the head, as shown in
Figure 3.1.

Figure 3.1: Bittium NeurOne™ Tesla cap electrodes schematics. Schematic configuration
of 32 EEG channels Bittium NeurOne™ Tesla cap. Colors indicate four regions of interest
per hemisphere: frontal (F, pink), fronto-temporo-central (FTC, blue), centro-parietal
(CP, green) and parieto-occipital (PO, yellow) [142].
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The version of Glymphometer utilized for this work is the number three (G3 version),
composed by:

• Main unit box: it is placed around the neck with a lanyard, connected to a headcap
unit embedding, for now, only the fNIRS system. It is connected to the laptop with
a USB-C cable.

Figure 3.2: Glymphometer main unit box.

• Sensing part: it is composed of an fNIRS system - composed of two photodiodes
(PDs) sensors and two LEDs - and EEG sensors - with two electrodes. The fNIRS
part is integrated under a headband which is placed in the middle of the forehead,
a few centimeters above the eyebrows, as shown in Figure 3.3, while the two EEG
sensors are integrated into NeurOne™ cap, as shown in Figure 3.4.

Figure 3.3: fNIRS system and headband.
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Figure 3.4: Bittium NeurOne™ Tesla EEG device.

• Accelerometer: a small sensor accelerometer (Figure 3.5) is attached to the chest
above the sternum using tape. It is used for the measurement of chest movements,
directly related to heart rate and breathing - also called seismocardiographic or SCG
signals.

Figure 3.5: The accelerometer shown in the picture should be placed in the center of the
chest.

• Thermoresistor: a variable resistance, sensible to temperature changes, attached
under the nose using tape (Figure 3.6). It is needed for the measurement of the
breathing rate.
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Figure 3.6: The thermoresistor shown in the picture should be placed under the nose.

3.2. Acquisition Software: GlYmphometer

The "GlYmphometer" software (SW) is an advanced and comprehensive platform, totally
developed by the Glymphometer research team at the University of Oulu. It has been
designed for the simultaneous acquisition and real-time visualization of both EEG and
fNIRS signals - even if for this work, it was just involved for the fNIRS signal acquisition:
for the EEG acquisition it was used the NeurOne™ Software, produced by Bittium [143],
whose basic interface is shown in Figure 3.7.

Figure 3.7: Screenshot of the NeurOne™ SW main page. Each row represents the EEG
signal - in µV - acquired from a specific electrode.

The innovative GlYmphometer SW allows to integrate both EEG and fNIRS technologies,
with the aim to provide, one day in the future, a powerful tool to study brain activity
easily but accurately. "GlYmphometer" SW key feature are:

• Multi-Modal Acquisition: it supports the acquisition of several types of neural sig-
nals simultaneously, allowing the concurrent recording of both the EEG and the
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fNIRS signals from both sides of the forehead. About fNIRS, it additionally captures
four distinct signals for each side: the one generated at λ = 690nm (HbR-sensitive),
the one at λ = 810nm, the one at λ = 830nm (Hb02-sensitive) and the one at λ =
980nm (water-sensitive). For this work, only λ = 690nm and λ = 830nm have been
considered.

• Basic Signal Pre-Processing: it allows a first basic processing of the signals since
it is possible to apply bandpass and notch filters to them. The cut-off frequency
values can be set directly from the ’Setting’ page of the SW, as shown in Figure 3.8.

• Real-Time Monitoring: it offers real-time visualization of acquired EEG and fNIRS
data (Figure 3.9), allowing users to observe brain activity as it unfolds. This fea-
ture enables quick check and adjustments of the device functionality and provides
immediate insights into the neural and hemodynamic responses to different stimuli
or tasks. As an example, the LED light level (LL) can be adjusted by moving the
’LED light level’ bar with the mouse or by pressing CTRL+ and CTRL- on the
keyboard (Figure 3.8). In this way, LL can be changed in relation to physiological
differences between subjects - for example, a skin with higher melanin would need
more LL because it can absorb more light.

• fNIRS Signal Band Filtering: additionally to the basic pre-processing implementa-
tions, it allows to spread the fNIRS signals into three sub-bands: cardiac (0.6-5 Hz),
respiratory (0.1-0.6 Hz) and very low frequency (VLF, 0.008-0.1 Hz).

• Data Export: it generates data to be exported in standard formats (.csv) for further
analysis with external tools. In this way, it is possible to easily integrate acquired
data with third-party SW - as, in this case, MATLAB®.
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Figure 3.8: Screenshot of the GlYmphometer SW ’Setting’ page. The picture has been
taken when device is not connected, that’s why in the left side there is a text ’Find
Glymphometer’. By clicking that button, the device should be found when connected
by USB cable. After the device is connected, the ’Battery Level’ bar should go green,
to indicate the established connection and the percentage of charge. Additionally, it is
possible to directly modify some filtering parameters: in this specific case, fNIRS signals
are bandpass filtered between 0.1 and 30 Hz, while EEG signals between 1 and 40 Hz. In
both cases, a notch filter at the frequency of 50 Hz is applied.

Figure 3.9: Screenshot of the GlYmphometer ’Real-Time Monitoring’ page. The picture
has been taken when device is connected, with a level of battery of 78 and a light intensity
(LL) of 20. The four distinct signals (λ = 690nm, λ = 810nm, λ = 830nm, λ = 980nm)
are acquired and shown simultaneously, for each side.
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3.3. Participants and Location

The sample is composed by 9 healthy controls from the University of Oulu, both Erasmus
students or employers. Before starting the acquisition of their biosignals, they were asked
to fill up a written consent and give general information about their nationality, age
and gender. The age of the subjects ranges from 21 to 47 years and, between them, 2
are males and 7 females. Additionally, also their family history has been briefly noted:
exceptionally for subjects ID05 and ID06, which both have one member of their family
with Alzheimer’s Disease (AD), the other subjects declared not to have any member of
their family with NDDs. The table in Figure 3.10 shows the collected information of each
anonymized subject.

Figure 3.10: Representative table of the sample subjects.

For better understanding each other, the test was explained and performed in English.
After the first pre-processing phase, the first subject (ID01) has been excluded because
both his EEG and fNIRS signal traces were to much noisy to be processed like the other
subjects. Measurements took place in Kieppi lab, in the Kontinkangas campus of the
University of Oulu, between March and May 2023.

3.4. Acquisition Protocols

In the following section, the protocols adopted for this work are explained in detailed. As
already explained in Section 1.3.2, both the baseline and the memory activation protocols
are based on previous studies [7, 12] whose results are taken into account for the present
work.
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3.4.1. Baseline Acquisition

In order to acquire a baseline signal, subjects were placed sitting on a chair, in the middle
of a quiet and normally lit room. They were asked to sit in a relaxed position, without
speaking, to close their eyes and to think as little as possible, trying not to sleep. In these
condition 5-minutes signal is recorded.

3.4.2. Memory Activation Protocol

For the ’Memory activation protocol’, subjects were asked to be sit on a chair, 1.5 meters
in front of a computer screen, and signals were registered in two periods: a 1.5 minutes
open-eyed and the memory activation task. For the acquisition of the 1.5 minutes open-
eyed signal, subjects were asked to sit in a relaxed position, to not to speak and to think
as little as possible. About the task signal, it was divided into three phases: visualization,
memorization and recall. During the visualization phase, subjects were consecutively
shown 10 pictures - each picture was presented for 2 seconds, for a total of 20 seconds -
of common objects, i.e. an apple, a tree, a dog... Meanwhile, they were asked to name
the shown objects, aloud and in English. After the presentation of all the pictures, they
were asked to close their eyes for 15 seconds while memorizing the pictures just seen
(memorization phase). Then, they were asked to open their eyes and name as many
pictures as they could remember (recall phase). The number of remembered pictures
for each subject is then notated, in order to take this information into account for the
following signals analysis.

The organization of the above-mentioned protocols is better clarified in Figure 3.11.
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Figure 3.11: Representative table of the acquisition protocols.
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3.5. fNIRS Signal Analysis

For the fNIRS signal analysis, a MATLAB® code was implemented from sketch (Ap-
pendix A), so its flexibility allows it to be applied to different cognitive tasks and to be
adapted to specific research questions. It enables to process the raw fNIRS data directly
acquired from both the left and the right side of the forehead with the fNIRS system
embedded into the Glymphometer, in order to extract relevant features - such as concen-
tration changes of HbR and Hb02 during different phases of the memory activation task -
and to visualize these results.

3.5.1. Signal Pre-processing

The pre-processing is strongly needed to ensure that the fNIRS signals are in a suitable
format for being analyzed. The raw fNIRS data, consisting of voltage values acquired
from the 4 fNIRS detectors, were imported as two different N-by-5 matrices: one for the
baseline signal (the first and the last 100 seconds of recording are removed) and another
for the task signal. The number of rows in each matrix depends on the length of the
signal, while the number of columns is fixed to 5, where:

• 1st column: represents the time, expressed in milli-seconds;

• 2nd and 3rd columns: represent, respectively, the left λ=830 nm and λ=690 nm
sensitive-detector signals;

• 4th and 5th columns: represent, respectively, the right λ=830 nm and λ=690 nm
sensitive-detector signals;

To standardize the sampling rate, data were downsampled from the original 250 Hz to a
lower frequency of 10 Hz, using the ’resample()’ MATLAB® function. This reduction in
sampling rate reduced computational burden while preserving essential information - the
original sampling rate of 250 Hz was extremely high and useless for this type of data.

3.5.2. Moving Average Filtering

A moving average (MA) filter was then applied to both the baseline and task signals. The
purpose of this filtering step was twofold: (1) to improve the signal-to-noise ratio (SNR)
and (2) to smooth the data. For each channel, both the forward and backward MA
filtering have been applied, with the aim to reduce as possible the time-delay introduced
by this filtering technique. The window size chosen was of 100 samples - corresponding
to 10 seconds at the new sampling rate.
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3.5.3. Extraction of Hb02 and HbR Absolute Concentrations

The core of the analysis involves calculating the concentration changes of Hb02 and HbR.
To achieve it, the optical density (OD) was calculated from the filtered signals through
the MBLL - in this specific case, the reference light intensity value I0 was considered equal
to 1

OD = log
I0
I

= −logI (3.1)

Since data acquired with the Glymphometer are referred to voltages, they can assume
both positive or negative values. In order to apply the logarithm, they must be made
positive, in this case, by a translation: for each channel, all the values have been increased
by adding a quantity equal to 1.1 times the absolute value of the minimum of that specific
channel. Then, the Hb02 and HbR concentrations have been derived from the MBLL, using
the following parameters values:

• source-detector distance (d) = 3 [cm];

• differential pathlength factor (DPF) = 5.93;

• extinction coefficient of Hb02 at λ690 (eHb0690) = 0.3123 L
cm∗mol

;

• extinction coefficient of HbR at λ690 (eHbR690) = 1.0507 L
cm∗mol

;

• extinction coefficient of Hb02 at λ830 (eHb0830) = 2.1382 L
cm∗mol

;

• extinction coefficient of HbR at λ830 (eHbR830) = 0.7804 L
cm∗mol

;

For both the left and the right side channels, the Hb02 and HbR concentrations (CHb02

and CHbR, respectively) were calculated as follow:

CHb02 =
(eHb0830 ∗OD830 − eHb0690 ∗OD690)

(eHbR690 ∗ eHb0830 ∗ d ∗DPF − eHbR830 ∗ eHb0690 ∗ d ∗DPF )
(3.2)

CHbR =
(eHbR690 ∗OD690 − eHbR830 ∗OD830)

(eHbR690 ∗ eHb0830 ∗ d ∗DPF − eHbR830 ∗ eHb0690 ∗ d ∗DPF )
(3.3)

where OD830 and OD690 are, for each side-channel, the OD at the wavelength of 830 nm
and 690 nm, respectively. Both Hb02 and HbR concentrations are expressed in mol

L
. Only

for the baseline signal, the mean mHb02 and mHbR concentrations were also calculated
by applying the ’mean()’ MATLAB® function.
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3.5.4. Calculation of Hb02 and HbR Relative Concentrations

At this point, the variations in Hb02 and HbR concentrations relative to the baseline have
been computed for each of the three phases of the memory activation task: visualization
(20 sec), memorization (15 sec) and recall (around 15 sec). For each channel, the mean
concentrations mHb02 and mHbR - previously calculated from the baseline - have been
subtracted to the relative Hb02 and HbR concentrations calculated from the task (Equation
3.4). Then, only for the Hb02 concentrations, the mean percentage variations differentiated
for each task phase have been calculated as following:

CHb02 = CHb02 −mHb02; (3.4)

Hb02v = mean((CHb02(1 : 20 ∗ 10, :))/mHb02) ∗ 100; (3.5)

Hb02v = mean((CHb02(20 ∗ 10 : 350 ∗ 10, :))/mHb02) ∗ 100; (3.6)

Hb02v = mean((CHb02(35 ∗ 10 : 50 ∗ 10))/mHb02) ∗ 100; (3.7)

were Hb02v , Hb02m , Hb02r are, respectively, the percentage variations of Hb02 during the
phases of visualization, memorization and recall, CHb02 is the Hb02 concentration split
into three time-windows - from 0 to 20 seconds for the visualization, from 20 to 35 seconds
for the memorization, from 35 to 50 seconds for the recall - and mHb02 is the mean Hb02

baseline concentration.

3.5.5. Results Visualization

Results have been presented through a series of plots, in order to facilitate a clear visual
understanding of the Hb02 and HbR concentrations temporal evolution across different
cognitive task phases. For each subject, 4 plots are shown, respectively:

• Hb02 and HbR temporal evolution of concentrations during the baseline condition;

• Hb02 and HbR temporal evolution of concentrations during the visualization phase,
with respect of the mean baseline concentrations;

• Hb02 and HbR temporal evolution of concentrations during the memorization phase,
with respect of the mean baseline concentrations;

• Hb02 and HbR temporal evolution of concentrations during the recall phase, with
respect of the mean baseline concentrations;
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Additionally, for each plot, both the left and right channel are shown.

3.5.6. Results Visualization

Finally, plots of the Hb02 and HbR variations during each task phase (visualization, mem-
orization, and recall) with respect of the baseline - so after the Hb02 and HbR mean value
removal - have been displayed, for each wavelength of interest (690 nm and 830 nm) and
for each forehead side. Additionally, both the baseline Hb02 and HbR concentrations have
been also displayed, to provide a comparative reference. These visualizations allow an
easy identification of any variation in brain activity during the three task.

3.5.7. Variation of Concentration Index Calculation

For each subject, a Variation of Concentration Index (VCI) referred to the baseline has
been calculated during the different task phases, for each forehead side and for both Hb02

and HbR. It is defined as percentage mean variation of Hb concentration during each
single task phases, so as

Hbtask = Hbtask −mHb; (3.8)

V CIv = mean((Hbtask(1 : 20 ∗ 10, :))/mHb) ∗ 100; (3.9)

V CIm = mean((Hbtask(20 ∗ 10 : 35 ∗ 10, :))/mHb) ∗ 100; (3.10)

V CIr = mean((Hbtask(35 ∗ 10 : end))/mHb) ∗ 100; (3.11)

where mHb is the average Hb concentration derived from the baseline signal, Hbtask is
the Hb concentration during the task phase before and after the mHb removal, V CIv,
V CIm and V CIr are the relative VCI during visualization, memorization and recall phase,
respectively, calculated as the percentage mean value - through the ’mean()’ MATLAB®
function - of the Hb concentration during each single phase - divided into three time
sequences form 1 to 20 seconds, from 20 to 35 seconds and from 35 seconds until the end
of the task - over the overall mean value of Hb concentration during the baseline.

The VCI can provide an estimation of the subject’s level of activation. Referring to Section
2.1, it is possible to state that a positive VCI (Hbtask > mHb) indicates hemodynamics
activation, since Hb02 concentration during the task performance increases with respect
of the baseline, meaning that the subject requires higher 02 supply. Vice versa, a negative
VCI (Hbtask < mHb) indicates hemodynamics inhibition, since the Hb02 concentration
during the task performance decreases with respect of the baseline.
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3.6. EEG Signal Analysis

As for the fNIRS signal analysis, also for the EEG signal analysis a MATLAB® code
was implemented from sketch (Appendix B). It enables to process the raw EEG data
directly acquired from both the left (Fp1) and the right (Fp2) side of the forehead with
two frontal electrodes of the NeurOne™ cap, in order to extract relevant features - such
as power modulations in the θ, α and β during different phases of the memory activation
task - and to visualize these results. The code performs various signal processing steps:
it calculates Power Spectral Density (PSD) in order to compare the variations in PSD
power bands - especially in θ, α and β - during the three phases of the memory activation
task with respect of the baseline and then calculates the AI as α/β. The analysis was
conducted separately for Fp1 and Fp2 electrodes, enabling also a comparison of the brain
activity between the two sides.

3.6.1. Signal Pre-processing with EEGLAB® toolbox

The pre-processing is strongly needed to ensure that the EEG signals are in a suitable
format for being analyzed. The raw EEG data, consisting of voltage values acquired from
both the 2 EEG electrodes - Fp1 and Fp2 - were initially imported as .ses file, using
the NeurOne plugin of the free MATLAB® EEGLAB® toolbox[144]. In a preliminary
analysis, the raw EEG data were dowsampled from 1000 Hz to 250 Hz and then a digital
finite impulse response (FIR) bandpass filter is applied between 0.5 and 45 Hz - which are
typically associated with EEG brainwave activity, as explained in Section 2.2. This filter
technique, whose general frequency response is shown in Figure 3.12, is able to perform a
zero-phase filtering, which helps avoid phase distortions.
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Figure 3.12: The plot of the magnitude (above) and phase (below) of the frequency
response of a FIR filter.

The plot of the magnitude and phase of the frequency response of a FIR filter is a common
way to visualize and analyze the behavior of a filter in the frequency domain. It provides
valuable insights into how the filter affects different frequencies of the input signal:

• Magnitude Response: the magnitude response plot shows the magnitude (ampli-
tude) of the filter’s output signal as a function of frequency. It represents how the
filter amplifies or attenuates different frequencies in the input signal. The x-axis
of the plot represents frequency, usually in Hertz (Hz), and the y-axis represents
the magnitude response, typically in decibels (dB) or linear scale. From the plot
it is possible to understand that frequencies with a high magnitude are amplified
by the filter (passband), while frequencies with a low magnitude are attenuated or
suppressed (stopband);

• Phase Response: the phase response plot shows the phase shift introduced by the
filter at different frequencies. It represents how the filter delays or advances differ-
ent frequencies in the input signal. Like the magnitude response plot, the x-axis
represents frequency (Hz), but the y-axis represents the phase response, typically in
degrees or radians. from the plot, it is possible to understand that positive phase
values indicate a delay in the signal at that frequency, while negative phase values
indicate an advancement or lead in the signal at that frequency.
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3.6.2. Blink Artifacts removal

At this point, data were imported in MATLAB® as two different N-by-3 matrices: one
for the baseline signal and another for the task signal. The number of rows in each matrix
depends on the length of the signal, while the number of columns is fixed to 3, where:

• 1st column: represents the time, expressed in milliseconds;

• 2nd column: represents the left side signal (Fp1);

• 3rd column: represents the right side signal (Fp2).

The first phase of the pre-processing (Appendix C) involves the blink artifacts removal in
both the baseline and task signals. After filtering, the pre-processed signal was divided
into 2-seconds non-overlapping epochs, short segments of the EEG signal. For each epoch,
the signal was linearly detrended, using the ’detrend()’ MATLAB® function, in order
to remove any linear trends, like slow drifts or baseline shifts in the EEG signal, that
could compromise the accuracy of subsequent analyses. Additionally, only for the baseline
epochs, a threshold 50 µV has been defined: if the maximum absolute amplitude of a single
epoch was below this threshold, the epoch was considered a baseline epoch, and kept;
otherwise, the epoch was discarded, as it may contain significant blink artifacts. Between
all the selected epochs, for each subject only 30 of them were definitely considered.

3.6.3. Power Spectral Density calculation

At this point, data were suitable for subsequent analysis, such as Power Spectral Density
(PSD) computation. The PSD is a frequency-domain representation, used to assess the
power distribution across different frequencies present in the EEG signal, providing a
graphical or numerical representation of how much power is contained in various frequency
bands of the EEG signal. To compute the PSD, several frequency domain signal processing
techniques are commonly used, such as the Fourier Transform (FFT) or the Welch method.
The FFT is a fast algorithm used to transform a signal from the time-domain to the
frequency-domain by mean of the application of the Discrete Fourier Transform (DFT)

X̂[k] = FFT(x[n]) =
N−1∑
n=0

x[n]e−
2πi
N

kn (3.12)

where X̂[k] represents the component of the FFT at the k-th frequency bin, x[n] represents
the discrete signal in the time domain, N is the length of the signal and i is the imaginary
unit. It provides a precise single spectrum as the estimation of the frequency content
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of the entire signal over its entire duration. Its main limitation is that it assumes that
the underlying signal is stationary, meaning its statistical properties do not change over
time. For this reason, it better suits for analyzing signals with stationary characteristics,
like simple periodic signals or signals with constant frequency components. On the other
side, the Welch method (or Welch’s Periodogram) is a modification of the periodogram
approach used in the FFT method. It works by dividing the signal into overlapping
windows, computing the periodogram for each segment and then averaging each individual
periodograms to obtain the final power spectral density estimation. By the variation of
the size of the windows, it provides a trade-off between time and frequency resolution:
smaller window sizes offer better frequency resolution but poorer time resolution, and
vice versa. By dividing the signal into segments, the Welch method reduces the impact
of non-stationarities and allows the analysis of signals with varying characteristics over
time. It makes this method particularly suitable for analyzing signals that are not strictly
stationary, such as signals with transient events or varying frequency components, as an
EEG. For that reasons, the Welch method has been preferred over the FFT. It has been
applied by mean of the ’pwelch()’ MATLAB® function, with the following parameters
and outputs:

[Pxx, F] = pwelch(x, window, noverlap, nfft, fs) (3.13)

where

• x: the input signal to analyze, in the way of a vector or a one-dimensional array;

• window: the window function applied to each segment of the signal before computing
the FFT. It helps reduce spectral leakage and noise. Common window functions
include ’hamming’, ’hann’, ’rectwin’, etc. The length of each window is provided
through the number of samples;

• noverlap: the number of samples of overlap between adjacent segments. It is usually
set to be less than the window length to have overlapping segments;

• nfft: the number of data points used for the FFT. It determines the number of
frequency points in the resulting PSD;

• fs: the sampling frequency of the input signal x in Hz;

• Pxx: the vector representing the power spectral density at different frequencies of
the input signal x;

• F: the frequency vector corresponding to the PSD values in Pxx. It is typically
returned in units of Hz and ranges from 0 to the Nyquist frequency (fs/2) if nfft is
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even or (fs/2)*(1 - 1/nfft) if nfft is odd.

Specifically, for the present work, the parameters has been set as follows:

• window = hamming(250) (it corresponds to a duration of 1 second);

• noverlap = 50;

• nfft = 1000;

• fs = 250.

Once the PSD is computed, it is usually graphically represented using a log-log or a semi-
log plot, where the x-axis represents the frequencies, and the y-axis represents the power
expressed in µV2/Hz.
For this work, the PSD has been calculated, for each channel, both for the baseline and
the three phases of the memory activation task.

3.6.4. Frequency Band Extraction

For both the baseline and each task phase, the PSD was analyzed within the θ (3-8 Hz),
α (8-13 Hz), and β (13-30 Hz) frequency bands. For each band, the dominant frequency
has been determined as the value of frequency corresponding to the maximum value of
power. Then, for each band, the power has been averaged between ±2 Hz the dominant
frequency. It has been computed for both the Fp1 and Fp2 electrode. To sum up, all the
steps applied for the frequency band extraction are listed:

1. the portion of PSD that corresponds to the frequency band of interest has been
selected;

2. the MATLAB® ‘max()‘ function has been used to find, as first output, the maxi-
mum power value within the specific band and, as second output, the index corre-
sponding to the maximum value, so the dominant frequency:

3.6.5. Results Visualization

Finally, for each frontal electrode, PSDs during each task phase (visualization, memoriza-
tion, and recall) have been displayed. The baseline PSD has been also displayed, as a
comparative reference. These visualizations allow an easy identification of any variation
in brain activity during the three task phases. Additionally, after the PSD calculation,
the power distribution over time in each frequency band - δ = 0.5-3 Hz, θ = 3-8 Hz, α =
8-13 Hz, β = 13-30 Hz, γ > 30 Hz - was calculated and displayed for each signal.
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3.6.6. Attention Index Calculation

For each subject, an Attention Index (AI) has been calculated during both the baseline
and the different task phases, for each side electrode. It is defined as the ratio between
α power and β power, and provides an estimation of the subject’s level of attention.
Referring to Section 2.2, it is possible to state that an AI higher than 1 (α power > β

power) indicates low level of attention, since it means that the the α frequency is dominant
over the β one, so that the subject is in a state of mental relaxation. Vice versa, an higher
value of β power means that the subject is in a state of mental employment. If the AI
related to one phase of the task is lower than the one related to the baseline, it means
that the subject needs to increase his attention level for performing this specific phase of
the task.

3.7. Statistical Analysis

3.7.1. Normality

In order to proceed with the data exploration, aimed at conducting a careful statistical
analysis, both the the AI and the VCI have been considered as a variables of interest. First
of all, the overall distribution of that indices have been analyzed over 6 classes of interest,
identifiable with the 3 stages of the cognitive test over the 2 forehead sides: memorization
left (ML), visualization left (VL), recall left (RL), memorization right (MR), visualization
right (VR) and recall right (RR). Through the use of the statistic Shapiro-Wilk (SW)
normality test, it was tested whether or not the related null hypothesis (H0 ’data come
from a normally distributed population’ could be accepted at a 5% of significance level.
For this purpose it was used the ’swtest()’ MATLAB® function, defined as

[H, pValue, SWstatistic] = swtest(X, ALPHA) (3.14)

where X represents a vector of data from an unknown distribution, ALPHA is the desired
significance level (0.05 by default), H represents the outcome of the test (if H = 0 the
null hypothesis is not rejected at significance level ALPHA, while if H = 1 the null
hypothesis is rejected at significance level ALPHA), pV alue represents the p-value or the
probability of observing the given result by chance given that the null hypothesis is true
and SWstatistic represents the non normalized statistic test. The outputs H (outcome
of the statistic) and pV alue (p-value) for each categorical variable were calculated.



46 3| Materials and Methods

3.7.2. Inter-Groups

Given the small number of samples - only 8 subjects - independently from the outcomes
obtained from the SW normality test, supplemental statistical tools have been used in
order to validate these results, such as (1) plotting the Q-Q plot and (2) considering
alternative approaches, such as the application of non-parametric inter-group tests that
do not assume a specific distribution. For that reason, in this case, both the Wilcoxon
signed rank test and the Friedman’s test have been used in replace of the one-way ANOVA,
that is preferred with a large sample size that follows a normal distribution.

For the Wilcoxon signed rank test, the ’signrank()’ MATLAB® function has been use,
defined as

[p, tbl, stats] = signrank(X,Y) (3.15)

where X and Y represent two input vectors that identify two continuous distribution that
are compared so that the difference between the matched samples in these vectors comes
from a distribution whose median is zero, p is the p-value resulting from the Wilcoxon
signed rank test that indicates whether there are statistically significant differences among
the group medians (a p-value lower than 0.05 suggests that at least one group differs sig-
nificantly from the others), tbl is a structure containing various statistics and information
related to the test (this includes the ranks and sums of ranks for each group, as well as
the overall test statistic value) and stats is a structure containing additional statistics,
such as the test statistic and the degrees of freedom associated with the test. Since the
Wilcoxon signed rank test is a non-parametric test that can be applied to two populations
when the observations are paired, it has been applied in order to compare all the three
indices from the left with the other from right side, for both AI and VCI. Additionally, for
a better visualization, for each pairing, boxplots have been generated and both median
and interquartile range (the distance between q25 and q75) have been calculated.

For the Friedman’s test, the ’friedman()’ MATLAB® function has been use, defined as

[p, tbl, stats] = friedman(X) (3.16)

where X represents a matrix whose columns represent different conditions of the factor
to be tested and the rows represent different subjects, p, tbl and stats have the same
role has described for the Wilcoxon signed rank test. Since Friedman’s test is a non-
parametric test that can be applied to a populations containing observations related to
different conditions, it has been applied in order to compare indices from the same side
with each other. Also in this case, for a better visualization, boxplots have been generated



3| Materials and Methods 47

and both median and interquartile range (the distance between q25 and q75) have been
calculated.

3.8. EEG-fNIRS Combined Statistical Analysis

Understanding the intricate relationships between different measurements, as EEG and
fNIRS, can provide valuable insights into the functioning of the human brain. Both
the previously investigated indices - AI for EEG and VCI for fNIRS - can offer distinct
windows into neural and hemodynamics activity. Among the several goals of this work,
one of them is trying to find out potential correlations between these two indices, so
between these two different neurophysiological signals. For an immediate comparison
between these two indices - that came from different scales - scatterplots were shown
as a visual support, since they are considered as pivotal in the examination of bivariate
data relationships: by plotting corresponding EEG and fNIRS indices against each other,
potential patterns, trends, and clusters can be visually identified. These plots offer a more
nuanced understanding of how changes in one index correspond to changes in the other,
thereby revealing the extent of potential correlation. Firstly, a scatterplot highlighting
the behavior of both AI and VCI for each single patient has been shown. Then, after
removing subjects that visually results as outliers, scatterplots aimed at comparing AI
and VCI - both in general and for each single task phase - have been shown. In both cases,
the linear regression line as been plotted on the scatterplots, by using the MATLAB®
function ’lsline’, in order to visually analyze the presence of a possible linear trend. Then,
to get a quantitative measure of the correlation between variables, the Pearson correlation
coefficient has been also calculated, as following:

cm = corrcoef(AI, VCI) (3.17)

where ’corrcoef()’ is a MATLAB® function able to calculate the correlation matrix be-
tween two vectors and cm represents the 2x2 correlation matrix between the two vectors
AI and VCI. In order to get the correlation coefficient corresponding with one between
AI and VCI, the element in position (1,2) should be selected. If this coefficient is close to
+1, it confirms a strong positive correlation, if it is close to -1, it would indicate a strong
negative correlation, while values close to 0 indicate weak or no correlation.
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The main aim of this thesis involves the comprehensive validation of the Glymphometer
acquisition system and the subsequent analysis of the data extracted through it. The lat-
ter is pivotal to ensure the reliability and accuracy of the gathered information. Within
this section, the emphasis lies on offering a detailed exposition of the acquired signals,
shedding light on their characteristics. In this context, visual representation becomes in-
strumental in conveying the effects of pre-processing, not only by showing the effectiveness
of the applied techniques but also serve as a reference point for the subsequent statistical
analysis.

4.1. fNIRS Results

The role of fNIRS signal analysis in brain activity investigation extends beyond the visual
analysis of the fluctuations in Hb02 and HbR levels. The exploration of the hemodynamic
response offers a comprehensive insight into the variation of Hb02 and HbR concentrations
among time, in order to identify when brain activation occurs.

4.1.1. fNIRS Pre-processing:

Downsampling and Moving Average Filtering

Here the outcomes obtained from a preliminary pre-processing applied to the initial raw
fNIRS data are shown. As explained in Section 3.5, for each signal - both baseline and
task - the following 2 pre-processing steps were performed:

• downsampling from 250 Hz to 10 Hz;

• Moving Average filtering with number of samples per window (N) = 100.

Figures 4.1, 4.2, 4.3 show the the initial raw fNIRS signal compared with the results
obtain after each step - referred to the baseline signal of the subject ID02, as an example.
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Figure 4.1: The plot shows the raw fNIRS baseline signals - 690 nm and 830 nm from
both the left and the right side - of the subject ID02, before downsampling and moving
average filtering. The x-axis represents the time in seconds, while the y-axis represents
the amplitude of the signal.
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Figure 4.2: The plot shows the fNIRS baseline signals - 690 nm and 830 nm from both
the left and the right side - of the subject ID02, after downsampling and before moving
average filtering.
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Figure 4.3: The plot shows the fNIRS baseline signals - 690 nm and 830 nm from both
the left and the right side - of the subject ID02, after downsampling and moving average
filtering.

It results immediately how just this preliminary filtering process has been extremely able
to clean signal, principally from high frequencies and external noise.

4.1.2. Calculation of Hb02 and HbR Concentrations

The present work aims to demonstrate all the tangible benefits of pre-processing fNIRS
data through filtering techniques, in order to reveal the intricate landscape of brain os-
cillations via Hb02 and HbR concentration visualization. By showing the impact of pre-
processing on the resulting concentrations, the aim is to focus on the importance of data
processing for an accurate and meaningful fNIRS analysis. In Figure 4.4 all the visual
representations of the variations of concentration of both Hb02 and HbR obtained after
the processing of the fNIRS signals are shown, from all the good-quality signals of the 8
subjects considered.
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(a) ID01 (b) ID02

(c) ID03 (d) ID04

(e) ID05 (f) ID06
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(g) ID07 (h) ID08

Figure 4.4: The plots show the variations of Hb02 and HbR concentration - in [mol
L

] - of
the fNIRS signals of all the 8 good-quality subjects. For each picture, the first row show
the baseline signal, the second row show the task signals temporally divided into the three
phases of the memory activation test - visualization, memorization and recall.

This type of visualization focuses principally on Hb02 and HbR concentration variations
graphs, offering a direct representation of the hemodynamic response of the human brain
during rest and a memory activation task.

4.1.3. Variation of Concentrations Index

As already explained, the Hb02 concentration variation plays a key role in the hemody-
namics response activation. The present analysis highlights the landscape of activation
using a new metric, the Variation of Concentration Index (VCI), which exploits the Hb02

variation during a specific task phase, with respect of the baseline mean value. This in-
dex is able to identify when activation occurs, in relation to the different task phases: a
positive index value indicates that the subject requires an higher 02 supply in order to
perform a specific task, while a negative index value indicates hemodynamics deactivation
and relaxation.

All the values obtain from the VCI calculation are listed in Table 4.3.
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ID ML VL RL MR VR RR
ID01 1.6528 -11.4028 7.0779 2.7135 -0.7435 1.3519
ID02 -16.7282 -22.8090 -16.0392 15.2912 -6.0722 19.7176
ID03 -22.9355 -30.2530 -17.7486 -4.8590 -7.2698 -3.7809
ID04 0.9051 -9.3962 3.4043 -0.8364 -2.2794 3.0686
ID05 -13.4853 1.6639 -11.4721 2.9324 14.2168 -1.3928
ID06 44.1217 53.1549 46.8526 22.0471 8.6120 22.6963
ID07 0.8365 10.1822 -8.1650 -46.3163 -38.9180 -47.7506
ID08 145.0888 215.2824 136.8477 139.7521 189.4521 124.9106

Table 4.1: The table shows the value of the VCI divided between the 6 different classes,
for each of the 8 subjects.

4.2. EEG Results

The EEG signals analysis plays a central role in the investigation of the intricate dynamics
of brain activity. Following pre-processing, the visual exploration of the PSD offers a
comprehensive insight into the frequency distribution of EEG signal power, contributing
to a deeper understanding of brain dynamics, in relation with the performance of a specific
cognitive task.

4.2.1. EEG Pre-processing: Downsampling and Bandpass Fil-

tering

Here are shown the outcomes obtained from a preliminary pre-processing applied to the
initial raw EEG data. As explained in Section 3.6, for this purpose it was used the free
MATLAB® EEGLAB® toolbox. For each signal - both baseline and task - the following
2 pre-processing steps were performed:

• downsampling from 1000 Hz to 250 Hz;

• Butterworth bandpass FIR filtering between 0.5 Hz and 45 Hz.

Figures 4.5, 4.6, 4.7 show the results obtain after each step, compared with the initial raw
EEG signal - referred to the baseline signal of the subject ID02, as an example.
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Figure 4.5: The plot shows the raw EEG baseline signal of the subject ID02, before
downsampling and bandpass filtering. The x-axis represents the time in seconds, while
the y-axis represents the amplitude of both Fp1 and Fp2 electrodes.

Figure 4.6: The plot shows the EEG baseline signal of the subject ID02, after downsam-
pling and before bandpass filtering.
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Figure 4.7: The plot shows the EEG baseline signal of the subject ID02, after downsam-
pling and bandpass filtering.

Also in this case, it results immediately how just this preliminary filtering process has
been extremely able to clean signal, principally from high frequencies and external noise.

4.2.2. Blink Artifact Removal

By applying the implemented MATLAB® function (described in Section 3.6.2), blink
artifacts, principally due to eye movements, have been also removed. It involves the
decomposition of the signal in into 2-seconds time windows, their linear detrend and
then, only for the baseline signal, the removal of all the segments that exceed over 50
µV . The remaining segments are then out together. An example of comparison between
before and after the blink artifacts removal is shown in Figures 4.8 and 4.9.
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Figure 4.8: The plot shows the EEG baseline signal of the subject ID02, before blink
artifacts removal. The x-axis represents the time in seconds, while the y-axis represents
the amplitude in µV of both Fp1 and Fp2 electrodes.
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Figure 4.9: The plot shows the EEG baseline signal of the subject ID02, after blink
artifacts removal.

4.2.3. PSD Visualization

The present work aims also to demonstrate all the tangible benefits of pre-processing
EEG data through filtering techniques, in order to reveal the intricate landscape of brain
oscillations via PSD visualization. By showing the impact of pre-processing on the re-
sulting PSD, the aim is to focus on the importance of data processing for an accurate
and meaningful EEG analysis. In Figure 4.10 all the visual representations of the PSDs
obtained after the processing of the EEG signals are shown, from all the good-quality
signals of the 8 subjects considered.
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(a) ID01 (b) ID02

(c) ID03 (d) ID04

(e) ID05 (f) ID06
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(g) ID07 (h) ID08

Figure 4.10: The plots show the PSDs of the EEG signals - expressed in [µV
2

Hz
] - of all the 8

good-quality subjects. For each picture, on the left is shown the PSD of the baseline signal,
on the right are shown the PSDs of the different task phases of the memory activation
test, from top to bottom: visualization, memorization and recall.

This type of visualization focuses principally on spectral analysis based on PSD graphs,
offering a direct representation of the dynamic response of the human brain during rest
and a memory activation task. Through that, the different behaviors of θ, β and α

rhythms governing cognitive states are highlighted.

4.2.4. Power Frequency Band over Time Visualization

Additionally, also the distribution of the power over time between different frequency
bands has been plotted for both the baseline (Figure 4.11) and the task (Figure 4.12)
signals.
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(a) ID01-left (b) ID01-right

(c) ID02-left (d) ID02-right

(e) ID03-left (f) ID03-right
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(g) ID04-left (h) ID04-right

(i) ID05-left (j) ID05-right

(k) ID06-left (l) ID06-right
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(m) ID07-left (n) ID07-right

(o) ID08-left (p) ID08-right

Figure 4.11: The plots show the power frequency bands of the EEG signals of all the 8
good-quality subjects. For each picture, on the left is shown the power frequency bands
of the left baseline signal, on the right is shown the power frequency bands of the right
baseline signal.
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(a) ID01-left (b) ID01-right

(c) ID02-left (d) ID02-right

(e) ID03-left (f) ID03-right
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(g) ID04-left (h) ID04-right

(i) ID05-left (j) ID05-right

(k) ID06-left (l) ID06-right



4| Results 67

(m) ID07-left (n) ID07-right

(o) ID08-left (p) ID08-right

Figure 4.12: The plots show the power frequency bands of the EEG signals of all the 8
good-quality subjects. For each picture, on the left is shown the power frequency bands
of the left task signal, on the right is shown the power frequency bands of the right task
signal.

4.2.5. Attention Index

As already explained, among all the oscillatory dynamics of the human brain, α and β

rhythms play a key role in the modulation of attention. The present analysis highlights
attention using a new metric, the Attention Index (AI), which exploits the α-β ratio to
reveal the flow of cognitive engagement during distinct phases - baseline and task. This
index is able to encapsulate the balance between relaxation and active engagement: an
index value higher than 1 identifies a prevalence of α oscillations, characteristic of a calm
and reflective state; conversely, an index value lower than 1 indicates β predominance, a
hallmark of cognitive engagement - the lower the index, the higher the level of engagement,



68 4| Results

and vice versa.
All the values obtain from the AI calculation derived from the task phases are listed in
Table 4.3.

ID ML VL RL MR VR RR
ID01 0.3910 0.2864 0.5434 0.3684 0.3335 0.4373
ID02 0.2205 0.3173 0.5353 0.2262 0.3270 0.5939
ID03 0.3827 0.2288 0.3084 0.2525 0.2471 0.3743
ID04 0.5533 0.3112 0.5925 0.6595 0.3626 0.4830
ID05 0.5412 0.1808 0.3357 0.4690 0.2315 0.3891
ID06 0.3549 0.2703 0.2702 0.3997 0.2993 0.3072
ID07 0.2861 0.1384 0.2595 0.2654 0.3749 0.2966
ID08 0.5109 0.4430 0.2782 0.5097 0.4881 0.2833

Table 4.2: The table shows the value of the AI divided between the 6 different classes, for
each of the 8 subjects.

Additionally, also the values obtain from the AI calculation derived from the baseline are
listed in Table 4.3.

ID baseline
ID01 14.8204
ID02 3.7881
ID03 3.2234
ID04 1.8257
ID05 2.1192
ID06 2.8109
ID07 2.0357
ID08 2.4042

Table 4.3: The table shows the value of the AI during the baseline condition, for each of
the 8 subjects.

4.3. Statistical Analysis

In this work the statistical investigation turns out to be an important element, as a support
for the validation of the outcomes obtained from the analysis of the signals acquired
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directly with the Glymphometer device, as well as the starting point for the continuation
of this study with a view to the future.

4.3.1. fNIRS Statistical Analysis

fNIRS Analysis of Normality

In Table 4.4 are shown the results obtained from the preliminary phase of the investigation,
focused on the analysis of the distribution of the VCI index over the 6 task classes, by
applying the Shapiro-Wilk parametric hypothesis test (’swtest()’ MATLAB® function)
of composite normality:

SW ML VL RL MR VR RR
p-value 0.0042 0.0029 0.0050 0.007 0.0010 0.0147

Table 4.4: The table shows the p-value resulting from the Shapiro-Wilk normality Test.

As a remind, the 6 task classes considered were represented by the 3 different phases
of the cognitive task, divided between the 2-sides electrodes: memorization left (ML),
visualization left (VL), recall left (RL), memorization right (MR), visualization right (VR)
and recall right (RR). Since a p-value lower than 0.05 indicates that there is sufficient
evidence to reject the null hypothesis (H0) that data in this specific class follow a normal
distribution, in this case, data can be considered as not normally distributed among the
6 classes. In order to better inspect over data distributions, quantile-quantile (Q-Q) plots
have been displayed for each class (Figure 4.13)
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Figure 4.13: The Q-Q plots of the 6 task classes: for all the classes, it results that points
don’t follow the straight line.

In this case, since points in the graph don’t follow a straight line but distributions assume
the so-called ’S-shape’, suggesting that data are not normally distributed, but asymmet-
rically.
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fNIRS Inter-Groups Analysis

Because of data do not follow a normal distribution, the non-parametric Wilcoxon signed
rank test has been used. As already explained in Section 3.7.2, this test has been applied
in order to compare all the three indices from left with the other from right. The following
results have been obtained:

median iqr
left 0.8708 41.9142

right 2.0327 21.8243

Table 4.5: The table shows both median and interquartile range (iqr) of the VCI divided
into the two sides.

KW left-right
p-value 0.7317

Table 4.6: The table shows the p-value resulting from the Wilcoxon signed rank test
between the indices from left and right. The value is higher than 0.05, meaning that there
is no significant difference between the two distributions.

Figure 4.14: Comparison of boxplots between the VCI from left and right.

Francesca Mannini
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On the other side, in order to compare indices from the same side with each other, the
Friedman’s test has been applied. The following results have been obtained:

medianleft iqrleft medianright iqrright
VL 0.8708 37.9940 2.8229 21.5168
ML -3.8662 48.7745 -1.5114 18.0853
RL -2.3803 40.7209 2.2102 23.7938

Table 4.7: The table shows both medians and interquartile ranges (iqr) of the left and
right VCIs divided into the three task phases.

KW left right
p-value 0.6065 0.6873

Table 4.8: The table shows the p-value resulting by considering the Friedman’s test to
compare indices from the same side with each other. The value is higher than 0.05,
meaning that there is no significant difference between the distributions.

(a) LEFT (b) RIGHT

Figure 4.15: The boxplots show how data are distributed into the 6 classes, comparing
VCI from the same side with each other.

Since no significant results have been obtained, no more detailed statistical analysis among
individual subgroups was conducted.

Francesca Mannini

Francesca Mannini
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4.3.2. EEG Statistical Analysis

EEG Analysis of Normality

In Table 4.9 are shown the results obtained from the preliminary phase of the investi-
gation, focused on the analysis of the distribution of the AI index over the 6 classes, by
applying the Shapiro-Wilk parametric hypothesis test (’swtest()’ MATLAB® function)
of composite normality:

SW ML VL RL MR VR RR
p-value 0.5229 0.8593 0.0316 0.5798 0.6323 0.4408

Table 4.9: The table shows the p-value resulting from the Shapiro-Wilk normality Test.

As a remind, the 6 classes considered were represented by the 3 different phases of the
cognitive task, divided between the 2-sides electrodes: memorization left (ML), visualiza-
tion left (VL), recall left (RL), memorization right (MR), visualization right (VR) and
recall right (RR). Since a p-value higher than 0.05 indicates that there is not sufficient
evidence to reject the null hypothesis (H0) that data in this specific class follow a normal
distribution, in this case, data can be considered as approximately normally distributed
among 5 out of 6 classes - in every class, except for RL. However, when working with
small datasets, it’s advisable (1) to supplement statistical tests with visual inspections of
data distributions - as in this case, by plotting the quantile-quantile (Q-Q) plot - and (2)
to consider alternative approaches that are robust to deviations from normality - as the
application of non-parametric tests that do not assume a specific distribution. For these
reasons, for each class, the Q-Q plots have been also displayed (Figure 4.16).
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Figure 4.16: The Q-Q plots of the 6 classes: for all the classes, except for the class RL, it
results that points roughly follow the straight line.

This type of graph compares the quantiles of a single class of data with those of a theoret-
ical distribution - usually the normal distribution. If points in the graph roughly follow a
straight line, this suggests that the data are approximately normally distributed.
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EEG Inter-Groups Analysis

In order to consider alternative approaches that are robust to deviations from normality,
the non-parametric Wilcoxon signed rank test has been used in replace of the one-way
ANOVA, since it does not assume any specific distribution. As already explained in
Section 3.7.2, this test has been applied in order to compare all the three indices from
Fp1 with the other from Fp2. The following results have been obtained:

median iqr
Fp1 0.3142 0.2067
Fp2 0.3346 0.2108

Table 4.10: The table shows the median and interquartile range (iqr) of the AI divided
into the two sides.

KW Fp1-Fp2
p-value 0.1374

Table 4.11: The table shows the p-value resulting from the Wilcoxon signed rank test
between the indices from Fp1 and Fp2. The value is higher than 0.05, meaning that there
is no significant difference between the two distributions.

Figure 4.17: Comparison of boxplots between the AI from Fp1 and Fp2.

On the other side, in order to compare indices from the same side with each other, the
Friedman’s test has been applied. The following results have been obtained:

Francesca Mannini
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KW Fp1 Fp2
p-value 0.0724 0.2231

Table 4.12: The table shows the p-value resulting by considering the Friedman’s test
to compare indices from the same side with each other. The value is higher than 0.05,
meaning that there is no significant difference between the distributions.

(a) Fp1 (b) Fp2

Figure 4.18: The boxplots show how data are distributed into the 6 classes, comparing
AI from the same side with each other.

medianFp1 iqrFp1 medianFp2 iqrFp2

VL 0.3868 0.2056 0.3841 0.2304
ML 0.2783 0.1094 0.3302 0.0955
RL 0.3221 0.2651 0.3221 0.2651

Table 4.13: The table shows the medians and interquartile ranges (iqr) of the Fp1 and
Fp2 AIs divided into the three task phases.

Since no significant results have been obtained, no more detailed statistical analysis among
individual subgroups was conducted.

Francesca Mannini
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4| Results 77

4.3.3. EEG-fNIRS Combined Statistical Analysis

In order to better investigate about an hypothetical trend between changes in AI and
VCI, scatterplots have been plotted. Firstly, a scatterplot showing the behavior of AI and
VCI divided into each single subject has been shown.

(a) AI

Figure 4.19: Scatterplot between AI and VCI, divided into the 8 subjects.

After the removal of subject ID06 and ID08, whose 6 points visually resulted to be outliers,
the new scatterplot has been show.

Francesca Mannini
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(a) AI

Figure 4.20: Scatterplot between AI and VCI, divided into the remaining 6 subjects.

Only considering the remaining 6 subjects, another boxplot highlighting the general linear
regression trend of the two indices has been also shown.

(a) AI

Figure 4.21: Scatterplot between AI and VCI, with the linear regression line.

Francesca Mannini

Francesca Mannini
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In this case, the Pearson coefficient results to be equal to 0.2117.

For a deeper investigation, the regression line as been also calculated and shown for each
single task phases, separately.



80 4| Results

(a) AI

Figure 4.22: Scatterplots between AI and VCI, divided into the three task phases with
the linear regression line.
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Also in this case, the Pearson coefficients result to be equal to

Pearson V M R
coefficient 0.1746 -0.4842 0.6209

Table 4.14: The table shows the Pearson coefficients between AI and VCI divided into
the three task phases (visualization V, memorization M, recall R).

The strongest correlation can be noticed in the recall phase, where the Pearson coefficient
tend to be quite close to +1.
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5.1. fNIRS Discussion

The visualization of hemodynamic changes, so of the fluctuation of Hb02 and HbR con-
centrations over time, can provide a window into the dynamic neural brain activity. This
graphical representation not only offers insights into the cerebral responses to stimuli but
also serves as a fundamental tool for comprehending the intricate interplay between neural
function and hemodynamic response. The plotted course of Hb02 and HbR concentrations
enables to identify regions of increased neural engagement and uncover hemodynamic
patterns characteristic of various cognitive processes, facilitating the identification of the
activation time instant, in relation with the performance of a specific cognitive task. Ad-
ditionally, visualizing the plot of Hb02 and HbR responses not only aids in the extraction of
valuable insights, but also ensures data integrity and the accuracy of subsequent analyses.

Understanding the behavior of Hb02 and HbR during a resting state, without explicit
external stimuli, holds significant relevance in elucidating the baseline dynamics of brain
activity. Elevated Hb02 levels and reduced HbR are commonly observed during the resting
state, indicating heightened blood flow and metabolic activity in certain brain regions.
As for this case, these findings are confirmed [77], suggesting ongoing neuronal processes
associated with maintenance, introspection, and internal thought processes happening in
the forehead region. As a consequence, the level of engagement of the brain during rest
condition is quantified by the concentration level of Hb02 . On the other side, the behavior
of Hb02 and HbR during cognitive tasks reflects the brain’s adaptive and finely tuned
responses to cognitive demands, providing valuable insights into the cognitive processes
at play and the underlying neurovascular mechanisms that support them. Positive Hb02

levels often accompany heightened neural activity, signifying augmented blood flow to
regions engaged in the task, with respect of the baseline. Conversely, increased HbR

concentrations suggest localized 02 consumption driven by the metabolic demands of
neural firing. For this reason, studying the variations in Hb02 and HbR concentrations
during cognitive tasks enables the identification of spatially and temporally task-specific
activation patterns.
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Discussing about the VCI, it seeks to quantify the hemodynamic response in fNIRS sig-
nals. By defining the variation of the Hb02 concentration with respect of the one during
the baseline condition, the VCI provides a quantitative depiction of brain’s activation
relatively to the performance of a specific task. A positive VCI indicates an increasing of
Hb02 concentration, while a negative VCI indicates a decreasing in Hb02 concentration,
with respect of the baseline and during the performance of a specific task phase. In this
specific case, particularly interesting was the behavior of the VCI during two distinct
cognitive conditions: the eyes-closed baseline and the cognitive task - which in turn was
analyzed in 6 sub-classes. From what can be seen, also the behavior of the VCI seems
to be consistent with the expected results [8]. During the performance of the memory
activation task, in general, the VCI results to be positive - even though with no rele-
vant differences between the three task phases - indicating a positive variation of Hb02

concentration during the performance of the task, with respect of the baseline condition.
This pattern agrees with the conceptualization that activation occurs when the brain is
involved into the performance of a cognitive task, as in this case.

5.2. EEG Discussion

The PSD plot of an EEG signal is not just a simple visualization, but it is able to unveil
the brain’s adaptability and responsiveness to cognitive tasks. The transition from α-
dominant rest to β-dominant task involvement demonstrates the brain’s capability to shift
between contemplative states and heightened cognitive pursuits. However, the importance
of the outcomes obtained from this first spectral analysis lies mainly in their scientific
consistency [9–11], a very important factor in support of one of the main purposes of this
work, as well as validation of the device used for their acquisition. During the baseline
acquisition phase, which concerns the rest state of the subjects - with eyes-closed and
thinking as less as possible - the PSD plot highlights a sort of ’brain’s introspective pause’.
A dominant peak within the α rhythm (8-13 Hz), echoing the relaxation and tranquility
of wakefulness, appears evident in the most of the baseline PSDs. This α-dominance
indicates the prevalence of inactive but responsive neural networks, devoid of excessive
cognitive engagement. On the other side, the β rhythm (13-30 Hz) manifests itself with
minimal and limited energy - practically equal to zero - while the θ rhythm (4-8 Hz) has
high energy, compared to the other rhythms, but limited when compared to itself in a state
of memory activation. About the memory activation task, the PSD plot shows how this
cognitive transformation happens. The once-dominant α rhythm decreases, giving way
to an increase in β rhythm. This elevation of β activity indicates the brain’s shift from
idleness to cognitive engagement: it reflects the brain’s response to cognitive demand,
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symbolizing focused attention, memory encoding, and active cognitive processing. About
θ rhythm, it results to increase, noticeably in some subjects quantifying the degrees of
cognitive employment required by a subject.

As for PSD, by plotting the power frequency bands over time, it can be seen how the
powers in the individual bands evolve at each time instant. During the baseline condition,
it can be noticed that, on average, the power of α rhythm is dominant over that of β

rhythm, supporting the fact that the α rhythm is recorded principally during mental
relaxation, especially with eyes closed. On the other side, during the performance of the
memory activation task, it can be noticed how the dominant frequency changes in relation
with time, thus in relation to the different phases of the task. In general, is interesting
to notice that during the initial 90 seconds - when the subject is in an open-eyed rest
condition - it results, on average, a dominance of the α power. On the contrary, when the
task starts, there is a general decreasing of the α power and, especially in some subjects,
a consequent increasing of the average β power.

Discussing about the AI, it seeks to quantify the relative dominance of α and β power
in EEG signals. By quantifying the equilibrium between these frequency bands, the AI
provides a quantitative depiction of the brain’s attentional allocation, offering a pivotal
vantage point into cognitive dynamics since the α band is traditionally associated with
a state of relaxation or idleness, prevailing during periods of reduced cognitive demand,
while the β band is indicative of cognitive engagement and focused attention. In this
specific case, particularly interesting was the behavior of the AI during two distinct cog-
nitive conditions: the eyes-closed baseline and the cognitive task - which in turn was
analyzed in 6 sub-classes. From what can be seen, also the behavior of the AI seems to be
consistent with the expected results [12]. During the baseline condition with eyes closed,
the AI shows an intriguing tilt toward values above 1, indicating a preponderance of α
power over β power. This observation is in line with the established understanding that α
rhythm predominates in relaxed states, a feature often observed when the eyes are closed.
In contrast, when the cognitive task is performed open-eyed, a contrasting phenomenon
emerges. In this scenario, the AI shows a predilection for values lower than one, emblem-
atic of greater β power than α power. This pattern agrees with the conceptualization
that β oscillations are intensified when cognitive resources are directed to active sensory
processing and focused attention, particularly in tasks involving cognitive employment.
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5.3. Statistical Analysis

It’s essential to approach all the statistical outcomes with caution, since it results challeng-
ing to drawn robust conclusions about the significance of the data when the sample size is
limited. Normality tests, such as the Shapiro-Wilk test here used, assess whether the data
deviate significantly from a normal distribution. However, with a small sample size, these
tests can be influenced by inherent variability, such as outliers or random variations, that
might not accurately reflect the true distribution of the underlying population, compro-
mising the reliability of the test outcomes. Thus, it’s important to interpret these results
cautiously and consider the potential impact of the small sample size on the reliability of
the analysis. As already explained in Section 3.7, the two solutions adopted have been
(1) to supplement statistical tests with visual inspections as the quantile-quantile (Q-Q)
plot, and (2) to consider alternative approaches that are robust to deviations from nor-
mality, as the application of non-parametric tests as the Wilcoxon signed rank test and
the Friedman’s test. Although no statistical significance resulted, taking into account
the small sample size, slight differences can be considered visually noticeable. For that
reasons, the data obtained have been analyzed in a more straightforward way, basing on
boxplot visualization and both median and interquartile range (distance between q25-q75)
calculation.

fNIRS Statistical Analysis

By visually comparing the boxplots derived from the left and the right side VCI (Figure
4.14) it results that the left box shows a distribution within a relatively wider range -
iqrleft = 41.9142, medianleft = 0.8708 - than the one in the right side - iqrright = 21.8243,
medianright = 2.0327 - suggesting greater variability in the data in the left group. The
red lines within the boxes represent the medians, which appear almost similar in both
groups, suggesting that the data are distributed over fairly similar values. The whiskers,
extending from the edges of the boxes through the data excluding outliers, appear longer
in the left group, indicating an higher dispersion of data in it. Additionally, there appear
to be outliers in both groups, meaning that data might contain abnormal values. In
general, it could suggest the VCI - so the level of hemodynamic activation - is similar for
both sides of the prefrontal cortex. Additionally, by visually analyzing the boxplots of
the distribution of the VCI in each single task phase (Figure 4.15), it is possible to notice
that its distribution results to be quite similar in all the three phases for both sides, so
that there are no significant differences.

These results can be considered as quite consistent with the normal pattern of Hb02 and
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HbR variations during the performance of these specific cognitive tasks [8], since the values
of the VCI indices result to be principally positive - meaning that there is an increase of
Hb02 concentration - so that activation mostly occurs during all the three task phases.

EEG Statistical Analysis

By visually comparing the boxplots derived from Fp1 with Fp2 AI (Figure 4.17) it results
that both boxes show a distribution within a relatively narrow range, indicating that most
of the data fall within it. The Fp1 box seems slightly wider - iqrFp1 = 0.2067, medianFp1

= 0.3142 - than the Fp2 one - iqrFp2 = 0.2108, medianFp2 = 0.3346 - suggesting greater
variability in the data in the Fp1 group. The red lines inside the boxes represent the
medians, that appears to be higher in Fp2 than in Fp1, suggesting that data in the Fp2
group might be slightly higher on average. The whiskers, extending from the edges of
the boxes through the data excluding outliers, appear almost the same length for both
groups, indicating that the dispersion of data is similar. However, there appear to be no
obvious outliers in the two groups, indicating that data do not contain very extreme or
abnormal values. In general, it could suggest that the AI - so the level of mental effort
and engagement - is slightly higher in the right side (Fp2) of the prefrontal cortex than
in the left side (Fp1). Additionally, by visually analyzing the boxplots of the distribution
of the AI in each single task phase (Figure 4.18), it is possible to notice that it results to
be higher in the visualization phase, to decrease in the recall phase and to get the lowest
values in the memorization phase, on both sides.

Once again, these results are consistent with the normal pattern of α and β rhythms
during the performance of these specific cognitive tasks [12], since the phase with the lower
values of AI (memorization) corresponds with the phase where the mental effort could
be considered higher - so, where the α rhythm decreases and the β rhythm increases, as
explained in Section 2.2.

Combined Statistical Analysis

By generally comparing the scatterplot between AI (x-axis) and VCI (y-axis) - Figure
4.22 - it results that points are distributed quite elongated along the horizontal axis. This
suggests that there may be some trend or relationship between the two variables, since
the values seem to follow a common horizontal direction. About data scattering, it is
interesting to notice also the vertical distribution of data that results quite obvious in
the left side of the plot. It suggests quite high data variability in this specific region -
where the AI values are lower than 0.4 - meaning that, while there is a positive correlation



88 5| Discussion

trend, there are still variations in the values of VCI for similar values of AI. The linear
regression line drawn through the scatter points provides an indication of the correlation
between the two variables and, in this case, it appears to cross the data approximately
linearly from bottom left corner to top right corner. This suggests a positive correlation
between the variables. In other words, as the values of AI increase, the values of VCI
tend to increase, too. However, the Pearson coefficient equal to 0.2117 indicates that the
general correlation between AI and VCI can be quantitatively considered as week and
meaningless.

Investigating in more detail, considering the three task phases individually, it results that
during memorization there is a medium-strength negative correlation (Pearson coefficient
= -0.4842), meaning that if the AI increases, then the VCI decreases. It means that, during
a closed-eye memorization task, the increasing of mental relaxation - so the increasing of α
power with respect of β power - resulted into a decreasing in oxygen supply to the frontal
brain region. About visualization and recall phases, the Pearson coefficient results in both
case positive - 0.1746 and 0.6209 respectively - showing a stronger positive correlation
during the recall phases. The presence of a positive linear trend between AI and VCI
during the open-eyed recall task means that the higher the subject’s concentration in
recalling previously seen images - so the lower the AI - the lower the amount of oxygen
required by the frontal region of the brain - so the lower the VCI. However, this statement
seems counterintuitive from a physiological standpoint since, has already explained in
Section 2.6, in the most of the cases, higher cognitive engagement and concentration
would require more energy and oxygen, leading to higher HbO2 levels. Conversely, a
more relaxed state associated with higher α activity would typically correspond to lower
cognitive demand and lower oxygen requirements. Given this understanding, since the
recall task involves mental and visual effort, it could be possible that higher α activity
during open-eyed recall phases is indicative of a specific state that requires higher oxygen
levels. This could be interpreted as an adaptive response, where increased α activity is
used to modulate cognitive effort during open-eyed tasks, and it is compensated by the
increase in oxygen supply.

In this case, however, at first sight these results seem to be not so consistent with the
normal mutual behavior between AI and VCI during the performance of these specific cog-
nitive tasks. However, the interpretation of this behavior as adaptive and compensating
results to be quite interesting and reasonable.

Additionally, since fNIRS usually involves the use of specific event-related stimulations
[145–148] - also known as event-related potentials (ERPs) [149] - in this specific case, the
absence of a time reference made its investigation more treacherous.
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5.4. General Discussion

Understanding and discussing the implications and significance of the results of the study
on the analysis of EEG and fNIRS signals is pivotal in trying to validate the new de-
veloped Glymphometer device. As mentioned earlier, the central themes of the present
work include data collection, analysis and investigation, with the goal of obtaining re-
sults to support the exceptional robustness, consistency, and coherence of the EEG and
fNIRS data collected directly through the Glymphometer device. For these reasons, this
data discussion section focused on aligning the Glymphometer data with predicted brain
behavior.

The direct acquisition approach adopted by the Glymphometer produced data sets char-
acterized by robust, coherent and consistent patterns of brain activity during the per-
formance of the memory activation task, which align with the expected and predicted
responses of the human brain. All this is intended to underscore the validity of the
device’s measurements.

The validation of the Glymphometer’s measurements is based on EEG and fNIRS method-
ologies that have been established over the years, and it is this validity that underscores
the reliability and credibility of the device. Moreover, such validation not only reinforces
the results of the present work, but also tries to increasingly bridge the gap between new
technological advances and already established practices in the cognitive neuroscience
field.

The implications of the present study are thus reflected throughout the field of cognitive
neuroscience, with the potential to broaden and deepen our understanding and knowl-
edge of the mechanisms that regulate the activation of cognitive processes about human
memory use.

This discussion would not be complete without acknowledging the methodological strengths
that underlie the results of our study. The meticulous design of the experiments, rigorous
data collection protocols and sophisticated data analysis methodologies contribute to the
robustness and credibility of these findings. Indeed, it is the combination of innovation
and methodological rigor that strengthens the foundation on which these results rest.

As repeated over and over again, the Glymphometer emerges as the protagonist of the
present work, resulting as a device whose role goes beyond simple data acquisition, but
it aims at contributing to innovation and further research in cognitive neuroscience. Its
validation, could open the door to its uses beyond memory activation tasks, sparking
curiosity about its utility in different cognitive domains, as for NDDs investigation.
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Last but not least, this discussion also cuts across the ethical considerations that underlie
research initiatives of this nature. The development and deployment of new devices, such
as the Glymphometer, require a conscientious approach to ensure responsible and ethical
use of the technology. Moreover, the social impact of these advances invites contemplation
of the innovative potential they have in fields ranging from cognitive neuroscience to health
care and education.
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The overall goal of this master’s thesis is to mark a more or less significant milestone in
the exploration of the Glymphometer device for the acquisition and analysis of EEG and
fNIRS signals, both under resting conditions and during memory activation tasks. The
study undertaken here not only offers valuable insights into the robustness and potential of
this new technology, but also paves the way for a multitude of future developments that
promise scientific advances and clinical applications, especially in the field of cognitive
neuroscience. For this chapter of future developments, it was interesting to explore the
potential trajectories that the Glymphometer device could follow in the coming years, from
improved validation for its commercialization to broader applications in neuroscience and
beyond.

Commercialization and Wider Adoption

An immediate and crucial future step to the validation of the Glymphometer device is its
subsequent commercialization. The promising results already obtained from this prelim-
inary study instill confidence in the device’s capabilities and warrant further validation
studies with larger and more diverse participant populations. Once successfully validated,
the Glymphometer has the potential to become a useful tool for researchers, clinicians, and
neuroscientists seeking to study cognitive processes and brain function in greater depth.
The commercialization of this device would mark a fundamental leap from innovation to
practical utility, ushering in a new era of brain research.

EEG Integration within the Glymphometer

Based on the successful validation of the device, a necessary future development is the full
integration of the EEG acquisition system within it, since - for the reasons stated above -
an EEG acquisition system external to the Glymphometer was used for this work. Indeed,
this synergy would greatly improve the capabilities and practicality of using the device.
The main obstacle that has been encountered in attempting such integration relates solely
to the energy expenditure that the power supply of the current Glymphometer prototype
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is unable to sustain. A problem that can simply be solved by using electronic components
capable of sustaining higher power loads. In fact, the SW developed specifically for real-
time acquisition of signals directly recorded with the device has already been prepared
for combined and simultaneous acquisition of fNIRS and EEG signals.

Improving Robustness and Data Quality

As the future intention is to bring the Glymphometer from prototype to commercial
product, efforts to improve its robustness and optimize data quality become imperative.
Even before its commercialization, as well as for the realization of this work, three proto-
types have already been built. The ongoing quest to acquire cleaner and more accurate
signals is critical to establishing the credibility of the device within the scientific commu-
nity. The use of increasingly advanced components and fine-tuning of signal acquisition
parameters, refinement of electrode and optical sensor placement, and simplification of
data pre-processing methodologies will be critical to ensuring that the device consistently
provides reliable and informative data.

Advancing in NDDs Research

One of the most exciting future directions is to extend the applications of the Glym-
phometer beyond healthy subjects, using individuals with NDD. The potential of using
this device for early diagnosis, real-time and remote monitoring of brain condition pro-
gression, and evaluation of treatment efficacy is very promising. By adapting the Glym-
phometer to specific neurodegenerative diseases-such as Alzheimer’s disease-researchers
could potentially discover new biomarkers and pathways associated with them. This ex-
pansion would not only further validate the usefulness of the device, but also contribute
to the understanding and management of debilitating disorders for which, to date, there
are still no effective treatments, other than techniques to slow cognitive decline that can
be implemented mostly at an early stage, when the disease has not yet taken over by
manifesting itself in the form of the most common symptoms - of which memory loss is
the most prevalent.

Broadening the Scope: Brain Signal Dynamics

When we scan the horizon of future possibilities, the versatility of the Glymphometer
makes its use expandable to all kinds of applications, even beyond the scope of NDDs.
In addition to the present work, a further research work also designed and supervised by
Professor Myllylä is taking place at the University of Oulu right now, focused over the
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study of brain signals during sleep. The potential of the Glymphometer in highlighting
the many nuances of brain signal dynamics during sleep could provide insights into dis-
turbances in this regard, but also into the unknown mechanisms of cognitive restoration
and connectivity patterns of neural networks that occur during sleep.

Ethical and Societal Considerations

As the capabilities of the Glymphometer evolve and its applications diversify, ethical
considerations remain paramount. Researchers and developers must know how to nav-
igate the ethical landscape carefully, ensuring responsible use of acquired information,
data privacy, and avoidance of unintended consequences. Moreover, the societal impact
of the Glymphometer extends beyond the laboratory, potentially affecting health care,
education, and our understanding of human cognition and behavior.

Machine Learning and Artificial Intelligence for Automated Anal-
ysis

An innovative pathway that lies ahead involves harnessing the power of machine learn-
ing (ML) and artificial intelligence (AI) to revolutionize the analysis of EEG and fNIRS
signals acquired using the Glymphometer. As the volume and complexity of data con-
tinue to expand - especially in the medical field with the generation of the so-called ’Big
Data’ - the application of these technologies holds immense potential to streamline data
interpretation, enhance diagnostic accuracy, and expedite decision-making processes.

ML algorithms can assimilate vast datasets derived from Glymphometer measurements,
discerning intricate patterns, correlations and abnormalities that might escape even the
most attentive human observation. These algorithms can be trained to recognize subtle
changes in brain activity indicative of cognitive states or neurological conditions. By
learning from normal and abnormal brain responses, AI models could potentially improve
the human ability to discern very subtle and imperceptible abnormalities.

In addition, ML holds promise for the identification of personalized biomarkers, distinctive
neurological signatures that could aid in the early diagnosis of NDDs and assessment of
prognosis. Precise data acquisition by the Glymphometer could contribute to the creation
of personalized profiles, allowing physicians to tailor treatment strategies and interventions
as effectively as possible based on a patient’s unique neurophysiological characteristics,
fitting fully into the innovative scenario of so-called "personalized medicine" ??.

Eventually, the synergy of AI with the Glymphometer could culminate in the development
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of clinical decision-making support systems. These systems, powered by ML, could assist
medical specialists in making accurate and timely diagnoses. By integrating patient-
specific data, history, and real-time neurophysiological information, these systems could
offer useful recommendations, enhancing clinicians’ experience and promoting informed
decision making.

In this path aimed as much as possible at automating the interpretation of data obtained
from the Glymphometer device, ethical considerations remain paramount. Although AI-
driven analysis has immense potential, it must be guided by human expertise and ethical
principles. The collaborative interaction between AI and clinicians must strike a balance
that ensures the responsible use of technology and preserves the human touch, vital and
primary importance in patient care.

In summary, the Glymphometer emerges as a technological device with the main purpose
of increasing understanding of the complexities of human brain activity. The potential
future developments outlined here constitute a prospective view of the evolution of such
a device in a broad sense, situating it in each and every aspect and for each and every
purpose within the field of neuroscience.
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In this study, the validation of the Glymphometer - a novel device designed from sketch
by professor Teemu Myllylä for concurrently acquiring EEG and fNIRS data for real-time
monitoring of vital neural parameters - marks a significant beginning of a path toward the
field of neurodegenerative disease diagnosis. Through rigorous signals collection, analysis,
and then validation, it has been demonstrated that the device works as intended, provid-
ing coherent and consistent results that align with expectations based on empirical reality
and scientific researches. The successful convergence of EEG and fNIRS technologies in
the Glymphometer device is trying to unlock a new avenue for comprehensive brain moni-
toring, since the acquisition and synchronization of these two distinct modalities enable a
more comprehensive and global understanding of neurophysiological dynamics. By lever-
aging the strengths of EEG and fNIRS, the Glymphometer offers a unique opportunity
to delve into the intricate interplay between neural - EEG - and hemodynamic - fNIRS -
processes. The validation phase, which involved meticulous data collection from a diverse
- albeit not overly broad - range of subjects, nonetheless affirmed the reliability and appli-
cability of the device. The consistent results from both signals, under different conditions
- baseline and memory activation task - and from different individuals, underscore its
robustness and potential to become a valuable tool in clinical settings. In addition, the
existence of correlation between data derived from the Glymphometer and benchmarks
derived from careful scientific literature searches further validates its ability to accurately
capture vital parameters. In addition, the already validated real-time monitoring capa-
bilities of the Glymphometer show great promise for its future use in early diagnosis of
NDDs. As explained in the introduction of this thesis, early diagnosis of NDDs is a critical
factor in increasing the effectiveness of treatments and improving the lives of the patients
themselves, as well as those around them. By providing a means to track even the most
subtle neurological changes over time, the Glymphometer could revolutionize the diag-
nostic landscape, allowing intervention in the earliest and most hidden stages of disease
progression, stages in which its decline appears to be remarkably slowing, though still not
totally curable. However, as with any innovative technology, there are opportunities for
further exploration and refinement.
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In conclusion, the present study not only solidifies the technical credibility of the Glym-
phometer device, but also opens the way for a new era of proactive and personalized
neurological care.
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f unc t i on f n i r s_ i nd i c e s = f n i r s ( a , b)
% a = task s i g n a l
% b = ba s e l i n e s i g n a l

5 %% Resampling ( from 250 hz to 10 Hz)
s2 = a . data ;
b2 = b . data ;
f s = 10 ; %new sampling f requency

10 s = [ ] ;
f o r i =1:9
s ( : , i ) = resample ( s2 ( : , i ) , f s , 250) ;
end

15 b = [ ] ;
f o r i =1:9
b ( : , i ) = resample ( b2 ( : , i ) , f s , 250) ;
end

20 %% Moving Average f i l t e r i n g
N = 100 ; % number o f windows

s ignal_fw = movmean(b , f s ∗N) ;
signal_bw = f l i p ud (movmean( f l i p ud (b) , f s ∗N) ) ;

25 ba s e l i n e 1 = ( signal_fw + signal_bw ) / 2 ;

base = [ ] ;
f o r i= 1 : s i z e ( base l i ne1 , 2 )

base ( : , i ) = fn i r s_ex t r a c t ( ba s e l i n e 1 ( : , i ) ) ;
30 end

ba s e l i n e = base (100∗ f s : end−100∗ f s , : ) ;

s ignal_fw = movmean( s , f s ∗N) ;
signal_bw = f l i p ud (movmean( f l i p ud ( s ) , f s ∗N) ) ;

35 s i g n a l 1 = ( s ignal_fw + signal_bw ) / 2 ;
s i g n a l 1 = s i gna l 1 (60∗ f s :110∗ f s , : ) ;

s i g n a l 1 = [ ] ;
f o r i= 1 : s i z e ( s i gna l1 , 2 )

40 s i g n a l 1 ( : , i ) = fn i r s_ex t r a c t ( s i g n a l 1 ( : , i ) ) ;
end

%% OPTICAL DENSITY ba s e l i n e (making the ba s e l i n e s i g n a l p o s i t i v e to apply the logar i thm )
b = ( ba s e l i n e ) +1.1∗ abs (min ( b a s e l i n e ) ) ;

45 OD = (− l og10 (b) ) ;
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DPF = 3∗5 ; % source−de t e c t o r d i s t anc e ∗ d i f f e r e n t i a l pathway f a c t o r

% Absorption c o e f f i c i e n t s
eHb0690 = 0 . 3123 ;

50 eHbR690 = 1 . 0507 ;
eHb0830 = 2 . 1382 ;
eHbR830 = 0 . 7804 ;

Hb02_s = ( eHb0830∗DPF∗OD( : , 2 ) − eHb0690∗DPF∗OD( : , 4 ) ) /( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;
55 mHb02_s = mean(Hb02_s) ;

HbR_s = (eHbR690∗DPF∗OD( : , 4 ) − eHbR830∗DPF∗OD( : , 2 ) ) /( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;
mHbR_s = mean(Hb02_s) ;

Hb02_d = ( eHb0830∗DPF∗OD( : , 6 ) − eHb0690∗DPF∗OD( : , 8 ) ) /( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;
60 mHb02_d = mean(Hb02_d) ;

HbR_d = (eHbR690∗DPF∗OD( : , 8 ) − eHbR830∗DPF∗OD( : , 6 ) ) /( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;
mHbR_d = mean(HbR_d) ;

% Plo t t i ng
65 f i g u r e ;

subplot ( 2 , 2 , 1 )
p l o t ( ( 1 : 1 : l ength (Hb02_s) ) / f s , Hb02_s , ’r’ ) ;
hold on ;
p l o t ( ( 1 : 1 : l ength (HbR_s) ) / f s , HbR_s, ’b’ ) ;

70 l egend ( ’Hb02 baseline left’ , ’HbR baseline left’ ) ;
t i t l e ( ’left’ ) ;

subp lot ( 2 , 2 , 2 )
p l o t ( ( 1 : 1 : l ength (Hb02_d) ) / f s , Hb02_d , ’r’ ) ;

75 hold on ;
p l o t ( ( 1 : 1 : l ength (HbR_d) ) / f s , HbR_d, ’b’ ) ;
l egend ( ’Hb02 baseline right’ , ’HbR baseline right’ ) ;
t i t l e ( ’right’ ) ;

80 %% OPTICAL DENSITY s i g n a l (making the ba s e l i n e s i g n a l p o s i t i v e to apply the logar i thm )
s = ( s i g na l 1 ) +1.1∗ abs (min ( s i g n a l 1 ) ) ;
OD = (− l og10 ( s ) ) ;

Hb02_s = ( eHb0830∗DPF∗(OD( : , 2 ) ) − eHb0690∗DPF∗(OD( : , 4 ) ) ) / . . .
85 ( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;

Hb02_s = Hb02_s − mHb02_s ;
Hb02_sv = mean ( (Hb02_s ( 1 : 2 0 0 , : ) ) /mHb02_s) ∗100 ;
Hb02_sm = mean ( (Hb02_s ( 2 0 0 : 3 5 0 , : ) ) /mHb02_s) ∗100 ;
Hb02_sr = mean ( (Hb02_s (350 : end ) ) /mHb02_s) ∗100 ;

90

HbR_s = (eHbR690∗DPF∗(OD( : , 4 ) ) − eHbR830∗DPF∗(OD( : , 2 ) ) ) / . . .
( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;

HbR_s = HbR_s − mHbR_s;
HbR_sv = mean ( (HbR_s( 1 : 2 0 0 , : ) ) /mHbR_s) ∗100 ;

95 HbR_sm = mean ( (HbR_s( 2 0 0 : 3 5 0 , : ) ) /mHbR_s) ∗100 ;
HbR_sr = mean ( (HbR_s(350 : end ) ) /mHbR_s) ∗100 ;

Hb02_d = ( eHb0830∗DPF∗(OD( : , 6 ) ) − eHb0690∗DPF∗(OD( : , 8 ) ) ) / . . .
( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;

100 Hb02_d = Hb02_d − mHb02_d;
Hb02_dv = mean ( (Hb02_d ( 1 : 2 0 0 , : ) ) /mHb02_d) ∗100 ;
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Hb02_dm = mean ( (Hb02_d( 2 0 0 : 3 5 0 , : ) ) /mHb02_d) ∗100 ;
Hb02_dr = mean ( (Hb02_d(350 : end ) ) /mHb02_d) ∗100 ;

105 HbR_d = (eHbR690∗DPF∗(OD( : , 8 ) ) − eHbR830∗DPF∗(OD( : , 6 ) ) ) / . . .
( eHbR690∗eHb0830 − eHbR830∗eHb0690 ) ;

HbR_d = HbR_d − mHbR_d;
HbR_dv = mean ( (HbR_d( 1 : 2 0 0 , : ) ) /mHbR_d) ∗100 ;
HbR_dm = mean ( (HbR_d( 2 0 0 : 3 5 0 , : ) ) /mHbR_d) ∗100 ;

110 HbR_dr = mean ( (HbR_d(350 : end ) ) /mHbR_d) ∗100 ;

f n i r s_ i nd i c e s = [ Hb02_sv , Hb02_sm, Hb02_sr , Hb02_dv , Hb02_dm, Hb02_dr ] ;

% P lo t t i ng
115 subp lot ( 2 , 2 , 3 )

p l o t ( ( 1 : 1 : l ength (Hb02_s) ) / f s , Hb02_s , ’r’ ) ;
hold on ;
x l i n e (20) ;
hold on ;

120 x l i n e (35) ;
hold on ;
p l o t ( ( 1 : 1 : l ength (HbR_s) ) / f s , HbR_s, ’b’ ) ;
l egend ( ’Hb02 left’ , ’HbR left’ ) ;
t i t l e ( ’left’ ) ;

125

subp lot ( 2 , 2 , 4 )
p l o t ( ( 1 : 1 : l ength (Hb02_d) ) / f s , Hb02_d , ’r’ ) ;
hold on ;
x l i n e (20) ;

130 hold on ;
x l i n e (35) ;
hold on ;
p l o t ( ( 1 : 1 : l ength (HbR_d) ) / f s , HbR_d, ’b’ ) ;
l egend ( ’Hb02 right ’ , ’HbR right ’ ) ;

135 t i t l e ( ’right ’ ) ;

end
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f unc t i on eeg_ind ices = eeg (a , b)
% a = task s i g n a l
% b = ba s e l i n e s i g n a l

5 %% pre−pro c e s s i ng
[ data_basel ine_s , data_baseline_d ] = ex t r a c t (b) ;
[ segnale_s , segnale_d ] = ext rac t_s i gna l ( a ) ;
segnale_s = segnale_s ’ ;
segnale_d = segnale_d ’ ;

10

data_basel ine_s = data_basel ine_s ’ ;
data_basel ine_s = data_basel ine_s ( 1 : 3 0∗250 , : ) ;
data_basel ine_s = ( data_basel ine_s − mean( data_basel ine_s ) ) ;

15 data_baseline_d = data_baseline_d ’ ;
data_baseline_d = data_baseline_d ( 1 : 3 0∗250 , : ) ;
data_baseline_d = ( data_baseline_d − mean( data_baseline_d ) ) ;

%% PSD parameters
20 f s = 250 ; % sampling f requency

window_size = f s ; % window dimension (250 samples = 1 second )
window = hamming( window_size ) ;
nover lap = 50 ; % 50% over lapp ing
n f f t = f s ∗4 ; % number o f sampling po int ( $∗250 = 1000)

25

%% PSD ba s e l i n e
[ Pxx_baseline_s , f_base l ine_s ] = pwelch ( data_basel ine_s , window , . . .

noverlap , n f f t , f s ) ;
[ Pxx_baseline_d , f_basel ine_d ] = pwelch ( data_baseline_d , window , . . .

30 noverlap , n f f t , f s ) ; % c a l c o l a l a PSD

%% ba s e l i n e l e f t − search f o r f requency cor re spond ing to the maximum power f o r each band
f req_teta = f_base l ine_s ( f_basel ine_s>=3 & f_basel ine_s <8) ;
[ q , t e ta ] = max( Pxx_baseline_s ( c e i l ( f r eq_teta ) ) ) ;

35 t e t a = te ta +2;
f r eq_a l f a = f_base l ine_s ( f_basel ine_s>=8 & f_basel ine_s <13) ;
[ q , a l f a ] = max( Pxx_baseline_s ( c e i l ( f r eq_a l f a ) ) ) ;
a l f a = a l f a +7;
freq_beta = f_base l ine_s ( f_basel ine_s >=13 & f_basel ine_s <=30) ;

40 [ q , beta ] = max( Pxx_baseline_s ( c e i l ( freq_beta ) ) ) ;
beta = beta +12;

[ teta_power_baseline_s ] = mean( Pxx_baseline_s ( teta −2: t e t a ) ) ;
[ al fa_power_basel ine_s ] = mean( Pxx_baseline_s ( a l f a −2: a l f a ) ) ;

45 [ beta_power_baseline_s ] = mean( Pxx_baseline_s ( beta −2: beta ) ) ;
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i b l = alfa_power_basel ine_s /beta_power_baseline_s ;

%% b s e l i n e r i g h t − search f o r f requency cor re spond ing to the maximum power f o r each band
50 f r eq_teta = f_basel ine_d ( f_baseline_d>=3 & f_baseline_d <8) ;

[ q , t e t a ] = max( Pxx_baseline_d ( c e i l ( f r eq_teta ) ) ) ;
t e t a = te ta +2;
f r eq_a l f a = f_basel ine_d ( f_baseline_d>=8 & f_baseline_d <13) ;
[ q , a l f a ] = max( Pxx_baseline_d ( c e i l ( f r eq_a l f a ) ) ) ;

55 a l f a = a l f a +7;
freq_beta = f_basel ine_d ( f_baseline_d>=13 & f_baseline_d <=30) ;
[ q , beta ] = max( Pxx_baseline_d ( c e i l ( freq_beta ) ) ) ;
beta = beta +12;

60 [ teta_power_baseline_d ] = mean( Pxx_baseline_d ( teta −2: t e t a ) ) ;
[ alfa_power_baseline_d ] = mean( Pxx_baseline_d ( a l f a −2: a l f a ) ) ;
[ beta_power_baseline_d ] = mean( Pxx_baseline_d ( beta −2: beta ) )

i b r = alfa_power_baseline_d/beta_power_baseline_d ;
65

%% PSD task
[ Pxxs , f_s ] = pwelch ( segnale_s , window , noverlap , n f f t , f s ) ;
[ Pxxd , f_d ] = pwelch ( segnale_d , window , noverlap , n f f t , f s ) ;

70 %% Signa l d i v i s i o n in to the three phases : v i s u a l i z a t i o n − memorization − r e c a l l

y2_v i sua l i z zaz i one1 = segnale_s (90∗250 :110∗250) ; % 20 sec
[ y2_v i sua l i z za z i one ] = extract_task ( y2_vi sua l i z zaz ione1 , 1000 ) ;
y2_v i sua l i z za z i one = y2_v i sua l i z za z i one ;

75 [ Pxx1_visua l i zzaz ione , fv1 ] = pwelch ( y2_v i sua l i z zaz ione , window , noverlap , n f f t , f s ) ;

y2_memorizzazione1 = segnale_s (110∗250+1:125∗250) ; % 15 sec
[ y2_memorizzazione ] = extract_task ( y2_memorizzazione1 , 1000 ) ;
y2_memorizzazione = y2_memorizzazione ;

80 [ Pxx1_memorizzazione , fm1 ] = pwelch ( y2_memorizzazione , window , noverlap , n f f t , f s ) ;

y2_reca l l1 = segnale_s (125∗250+1: end ) ;
[ y2_reca l l ] = extract_task ( y2_reca l l1 , 1000 ) ;
y2_reca l l = y2_reca l l ;

85 [ Pxx1_recall , f r 1 ] = pwelch ( y2_reca l l , window , noverlap , n f f t , f s ) ;

y3_v i sua l i z zaz i one1 = segnale_d (90∗250 :110∗250) ; % 20 sec
[ y3_v i sua l i z za z i one ] = extract_task ( y3_vi sua l i z zaz ione1 , 1000 ) ;
y3_v i sua l i z za z i one = y3_v i sua l i z za z i one ;

90 [ Pxx2_visua l i zzaz ione , fv2 ] = pwelch ( y3_v i sua l i z zaz ione , window , noverlap , n f f t , f s ) ;

y3_memorizzazione1 = segnale_d (110∗250+1:125∗250) ; % 15 sec
[ y3_memorizzazione ] = extract_task ( y3_memorizzazione1 , 1000 ) ;
y3_memorizzazione = y3_memorizzazione ;

95 [ Pxx2_memorizzazione , fm2 ] = pwelch ( y3_memorizzazione , window , noverlap , n f f t , f s ) ;

y3_reca l l1 = segnale_d (125∗250+1: end ) ;
[ y3_reca l l ] = extract_task ( y3_reca l l1 , 1000 ) ;
y3_reca l l = y3_reca l l ;

100 [ Pxx2_recall , f r 2 ] = pwelch ( y3_reca l l , window , noverlap , n f f t , f s ) ;
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%% PSD p l o t t i n g
f i g u r e ;
subp lot ( 3 , 2 , 2 )

105 p lo t ( fv1 ( fv1>=0 & fv1 <=50) , Pxx1_visua l i zzaz ione ( fv1>=0 & fv1 <=50)) ;
hold on ;
p l o t ( fv2 ( fv2>=0 & fv2 <=50) , Pxx2_visua l i zzaz ione ( fv2>=0 & fv2 <=50)) ;
t i t l e ( ’visualization ’ ) ;
l egend ( ’left’ , ’right ’ ) ;

110 subp lot ( 3 , 2 , 3 )
p l o t ( f_base l ine_s ( f_basel ine_s>=0 & f_basel ine_s <=50) , Pxx_baseline_s ( f_basel ine_s>=0 &

f_basel ine_s <=50)) ;
hold on ;
p l o t ( f_basel ine_d ( f_baseline_d>=0 & f_baseline_d <=50) , Pxx_baseline_d ( f_baseline_d>=0 &

f_baseline_d <=50)) ;
l egend ( ’left’ , ’right ’ ) ;

115 subp lot ( 3 , 2 , 4 )
p l o t ( fm1 ( fm1>=0 & fm1<=50) , Pxx1_memorizzazione ( fm1>=0 & fm1<=50)) ;
hold on ;
p l o t ( fm2 ( fm2>=0 & fm2<=50) , Pxx2_memorizzazione ( fm2>=0 & fm2<=50)) ;
t i t l e ( ’memorization ’ ) ;

120 l egend ( ’left’ , ’right ’ ) ;
subp lot ( 3 , 2 , 6 )
p l o t ( f r 1 ( f r1 >=0 & fr1 <=50) , Pxx1_recal l ( f r1 >=0 & fr1 <=50)) ;
hold on ;
p l o t ( f r 1 ( f r1 >=0 & fr1 <=50) , Pxx2_recal l ( f r1 >=0 & fr1 <=50)) ;

125 t i t l e ( ’recall ’ ) ;
l egend ( ’left’ , ’right ’ ) ;

%% v i s u a l i z a t i o n l e f t
f r eq_teta = fv1 ( fv1>=3 & fv1 <8) ;

130 [ q , t e t a ] = max( Pxx1_visua l i zzaz ione ( c e i l ( f r eq_teta ) ) ) ;

f r eq_a l f a = fv1 ( fv1>=8 & fv1 <13) ;
[ q , a l f a ] = max( Pxx1_visua l i zzaz ione ( c e i l ( f r eq_a l f a ) ) ) ;

135 f req_beta = fv1 ( fv1>=13 & fv1 <=30) ;
[ q , beta ] = max( Pxx1_visua l i zzaz ione ( c e i l ( freq_beta ) ) ) ;

t e t a = te ta +2;
a l f a = a l f a + 7 ;

140 beta = beta + 12 ;

[ teta_power ] = (mean( Pxx1_visua l i zzaz ione ( teta −2: t e t a ) ) ) ;
[ alfa_power ] = (mean( Pxx1_visua l i zzaz ione ( a l f a −2: a l f a ) ) ) ;
[ beta_power ] = (mean( Pxx1_visua l i zzaz ione ( beta −2: beta ) ) ) ;

145

i v l = alfa_power/beta_power ;

%% v i s u a l i z a t i o n r i g h t
f req_teta = fv2 ( fv2>=3 & fv2 <8) ;

150 [ q , t e t a ] = max( Pxx2_visua l i zzaz ione ( c e i l ( f r eq_teta ) ) ) ;
f r eq_a l f a = fv2 ( fv2>=8 & fv2 <13) ;
[ q , a l f a ] = max( Pxx2_visua l i zzaz ione ( c e i l ( f r eq_a l f a ) ) ) ;
freq_beta = fv2 ( fv2>=13 & fv2 <=30) ;
[ q , beta ] = max( Pxx2_visua l i zzaz ione ( c e i l ( freq_beta ) ) ) ;

155
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t e t a = te ta +2;
a l f a = a l f a + 7 ;
beta = beta + 12 ;

160 [ teta_power ] = (mean( Pxx2_visua l i zzaz ione ( teta −2: t e t a ) ) ) ;
[ alfa_power ] = (mean( Pxx2_visua l i zzaz ione ( a l f a −2: a l f a ) ) ) ;
[ beta_power ] = (mean( Pxx2_visua l i zzaz ione ( beta −2: beta ) ) ) ;

i v r = alfa_power/beta_power ;
165

%% memorization l e f t
f r eq_teta = fm1 ( fm1>=3 & fm1<8) ;
[ q , t e t a ] = max( Pxx1_memorizzazione ( c e i l ( f r eq_teta ) ) ) ;
f r eq_a l f a = fm1 ( fm1>=8 & fm1<13) ;

170 [ q , a l f a ] = max( Pxx1_memorizzazione ( c e i l ( f r eq_a l f a ) ) ) ;
freq_beta = fm1 ( fm1>=13 & fm1<=30) ;
[ q , beta ] = max( Pxx1_memorizzazione ( c e i l ( freq_beta ) ) ) ;
t e t a = te ta +2;
a l f a = a l f a + 7 ;

175 beta = beta + 12 ;

[ teta_power ] = (mean( Pxx1_memorizzazione ( teta −2: t e t a ) ) ) ;
[ alfa_power ] = (mean( Pxx1_memorizzazione ( a l f a ) ) )
[ beta_power ] = (mean( Pxx1_memorizzazione ( beta ) ) )

180

iml = alfa_power/beta_power ;

%% memorization r i gh
f req_teta = fm2 ( fm2>=3 & fm2<8) ;

185 [ q , t e t a ] = max( Pxx2_memorizzazione ( c e i l ( f r eq_teta ) ) ) ;
f r eq_a l f a = fm2 ( fm2>=8 & fm2<13) ;
[ q , a l f a ] = max( Pxx2_memorizzazione ( c e i l ( f r eq_a l f a ) ) ) ;
freq_beta = fm2 ( fm2>=13 & fm2<=30) ;
[ q , beta ] = max( Pxx2_memorizzazione ( c e i l ( freq_beta ) ) ) ;

190 t e t a = te ta +2;
a l f a = a l f a + 7 ;
beta = beta + 12 ;

[ teta_power ] = (mean( Pxx2_memorizzazione ( teta −2: t e t a ) ) ) ;
195 [ alfa_power ] = (mean( Pxx2_memorizzazione ( a l f a −2: a l f a ) ) ) ;

[ beta_power ] = (mean( Pxx2_memorizzazione ( beta −2: beta ) ) ) ;

imr = alfa_power/beta_power ;

200 %% r e c a l l l e f t
f r eq_teta = f r 1 ( f r1 >=3 & fr1 <8) ;
[ q , t e t a ] = max( Pxx1_recal l ( c e i l ( f r eq_teta ) ) ) ;
f r eq_a l f a = f r 1 ( f r1 >=8 & fr1 <13) ;
[ q , a l f a ] = max( Pxx1_recal l ( c e i l ( f r eq_a l f a ) ) ) ;

205 f req_beta = f r 1 ( f r1 >=13 & fr1 <=30) ;
[ q , beta ] = max( Pxx1_recal l ( c e i l ( freq_beta ) ) ) ;
t e t a = te ta +2;
a l f a = a l f a + 7 ;
beta = beta + 12 ;

210

[ teta_power ] = (mean( Pxx1_recal l ( teta −2: t e t a ) ) ) ;
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[ alfa_power ] = (mean( Pxx1_recal l ( a l f a −2: a l f a ) ) ) ;
[ beta_power ] = (mean( Pxx1_recal l ( beta −2: beta ) ) ) ;

215 i r l = alfa_power/beta_power ;

%% r e c a l l r i g h t
[ teta_power0 , t e t a ] = max( Pxx2_recal l ( f r2 >=3 & fr2 <8) ) ;
[ alfa_power0 , a l f a ] = max( Pxx2_recal l ( f r2 >=8 & fr2 <13) ) ;

220 [ beta_power0 , beta ] = max( Pxx2_recal l ( f r2 >=13 & fr2 <=30)) ;
f r eq_teta = f r 2 ( f r2 >=3 & fr2 <8) ;
[ q , t e t a ] = max( Pxx2_recal l ( c e i l ( f r eq_teta ) ) ) ;
f r eq_a l f a = f r 2 ( f r2 >=8 & fr2 <13) ;
[ q , a l f a ] = max( Pxx2_recal l ( c e i l ( f r eq_a l f a ) ) ) ;

225 f req_beta = f r 2 ( f r2 >=13 & fr2 <=30) ;
[ q , beta ] = max( Pxx2_recal l ( c e i l ( freq_beta ) ) ) ;
t e t a = te ta +2;
a l f a = a l f a + 7 ;
beta = beta + 12 ;

230

[ teta_power ] = (mean( Pxx2_recal l ( teta −2: t e t a ) ) ) ;
[ alfa_power ] = (mean( Pxx2_recal l ( a l f a −2: a l f a ) ) ) ;
[ beta_power ] = (mean( Pxx2_recal l ( beta −2: beta ) ) ) ;

235 i r r = alfa_power/beta_power ;

%% Attent ion Ind i c e s (AI ) vec to r
% i b l = AI ba s e l i n e l e f t
% i v l = AI v i s u a l i z a t i o n l e f t

240 % iml = AI memorization l e f t
% i r l = AI r e c a l l l e f t
% ib r = AI ba s e l i n e roght
% i v r = AI v i s u a l i z a t i o n r i g h t
% imr = AI memorization r i g h t

245 % i r r = AI r e c a l l r i g h t

eeg_ind ices = [ i b l , i v l , iml , i r l , ibr , ivr , imr , i r r ] ;

end
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f unc t i on [ base l ine_s , base l ine_d ] = ex t r a c t ( s i g n a l )
%% l e f t channel
s i gna l_s = s i g n a l . data ( : , 2 ) ;

5 epochDuration = 2 ; % epoch durat ion ( in seconds )
f s = 250 ; % S igna l sampling f requency

%% F i l t e r i n g
f_low = 0 . 5 ;

10 f_high = 45 ;
[ b1 , a1 ] = butte r (4 , [ f_low f_high ] / ( f s / 2) , ’bandpass ’ ) ;
s i gna l_s = f i l t f i l t ( b1 , a1 , s igna l_s ) ;

epochSamples = epochDuration ∗ f s ; % Samples per epoch
15

epochs_s = [ ] ;

% S igna l d i v i s i o n in epochs
f o r i = 1 : epochSamples : l ength ( s igna l_s )

20 i f i+epochSamples−1 <= length ( s igna l_s )
epoch = s igna l_s ( i : i+epochSamples −1) ’ ;
epoch = detrend ( epoch ) ;
epochs_s = [ epoch ; epochs_s ] ;

end
25 end

base l ine_s = [ ] ;

% De le t ing epochs over the th r e sho ld
30 f o r i = 1 : s i z e ( epochs_s , 1 )

threshold_s = 50 ;
i f max( abs ( epochs_s ( i , : ) ) ) < threshold_s
base l ine_s = [ base l ine_s , epochs_s ( i , : ) ] ;
end

35 end

%% r i gh t channel
s ignal_d = s i g n a l . data ( : , 3 ) ;

40 epochDuration = 2 ; % epoch durat ion ( in seconds )
f s = 250 ; % S igna l sampling f requency

[ b1 , a1 ] = butte r (4 , [ f_low f_high ] / ( f s / 2) , ’bandpass ’ ) ;
s ignal_d = f i l t f i l t ( b1 , a1 , s ignal_d ) ;

45
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epochSamples = epochDuration ∗ f s ; % Samples per epoch

epochs_d = [ ] ;

50 % Signa l d i v i s i o n in epochs
f o r i = 1 : epochSamples : l ength ( s ignal_d )

i f i+epochSamples−1 <= length ( s ignal_d )
epoch = signal_d ( i : i+epochSamples −1) ’ ;
epoch = detrend ( epoch ) ;

55 epochs_d = [ epoch ; epochs_d ] ;
end

end

base l ine_d = [ ] ;
60

% Dele t ing epochs over the th r e sho ld
f o r i = 1 : s i z e ( epochs_d , 1 )

threshold_d = 50 ;
i f max( abs ( epochs_d ( i , : ) ) ) < threshold_d

65 base l ine_d = [ basel ine_d , epochs_d ( i , : ) ] ;
%base l ine_d = detrend ( base l ine_d ) ;
end

end
i f l ength ( base l ine_s ) > length ( base l ine_d )

70 base l ine_s = base l ine_s ( 1 : l ength ( base l ine_d ) ) ;
e l s e i f l ength ( base l ine_s ) < length ( base l ine_d )

base l ine_d = basel ine_d ( 1 : l ength ( base l ine_s ) ) ;
end

75 end
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