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Abstract 

The increasing energy demand and the growing environmental concerns have lately 
encouraged the exploitation of fossil-free, renewable energy sources. In this context, 
anaerobic digestion represents an interesting technology since it allows the production 
of biogas starting from substances made of waste (e.g., animal manure, agro-industrial 
and organic waste types, sludges), achieving at the same time their valorization and 
disposal. Single substrate digestion frequently leads to an under-exploitation of the 
raw material due to poor feedstock characteristics, resulting in low methane 
production. On the other hand, it has been demonstrated that the methane yield could 
be significantly increased by properly combining two or more substrates, performing 
an anaerobic co-digestion. Throughout the years, many studies have been carried out 
to understand how different raw materials should be combined to maximize their co-
digestion performances; however, an easy-to-use and quick technology able to predict 
their best blending conditions does not exist in literature. Consequently, the purpose 
of this project is to create a model that with few, simple inputs is able to estimate with 
good precision the optimal blending ratios of mixtures of substrates to maximize the 
methane yield of their co-digestion. The extremely large number of possible raw 
materials and the high variability of their compositions depending on their source 
reflect the high complexity of the problem; thus, the starting point has been the 
creation of a database where data about commonly used substrates have been collected 
from literature. These data have been then analysed and exploited to build a data-
driven optimization model that, through the maximization of an objective function 
representing the biomethane potential (BMP) of a mixture, is able to calculate the 
optimal composition of the feedstock. This model, initially based on lab-scale batch 
tests, has also been improved to make it suitable for industrial-scale scenarios, so that 
the optimal feedstock blending of batch and CSTR-based digesters is calculated taking 
into account supply chain factors such as substrates availability and storage 
capabilities of the plant. In addition, an Excel dashboard linked with a PythonTM 
algorithm has been developed to make calculations more practical in view of an 
industrial usage. The optimization model has been validated by the comparison of its 
results with the ones of experimental batch tests available in literature and with 
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industrial data that have been provided by two companies. After validation, this 
innovative model has demonstrated to yield satisfactory and practical findings.  

 

Key-words: anaerobic co-digestion; biogas; feedstock; optimization; model; data-
driven; software; programming. 
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Abstract in lingua italiana 

 

La crescente domanda di energia e l’interesse nella transizione ecologica hanno 
incoraggiato negli ultimi anni lo sfruttamento di fonti di energia alternative rispetto a 
quelle di origine fossile. In questo contesto, la digestione anaerobica ha guadagnato 
particolare attenzione in quanto permette la produzione di biogas a partire da scarti di 
varia natura (letame animale, rifiuti agro-industriali e organici, fanghi di 
depurazione), permettendone allo stesso tempo lo smaltimento e la valorizzazione. La 
digestione di un singolo tipo di substrato porta spesso a basse rese in biometano in 
quanto l’alimentazione potrebbe presentare caratteristiche non ottimali. È stato invece 
dimostrato che rese maggiori possono essere ottenute alimentando due o più substrati, 
effettuando in questo caso una co-digestione anaerobica. Negli anni sono stati 
effettuati numerosi studi riguardo come diversi substrati dovrebbero essere combinati 
per ottenere la massima resa possibile; tuttavia, in letteratura non esistono modelli in 
grado di fornire in maniera semplice e veloce le migliori condizioni di miscelazione. 
Lo scopo di questo progetto, quindi, è quello di creare un modello che, con pochi e 
semplici input, riesca a predire in quali rapporti certi substrati debbano essere 
miscelati in modo da ottenere la massima resa possibile in biometano. Il grande 
numero di possibili materie prime e l’alta variabilità delle loro composizioni a seconda 
dell’origine riflettono la complessità di questo problema; il punto di partenza è stato 
quindi raccogliere in un database un gran numero di dati riguardo i substrati più 
comuni. Grazie all’analisi di questi dati, è stato costruito un modello di ottimizzazione 
data-driven che, attraverso la massimizzazione di una funzione rappresentante il 
potenziale di biometano (BMP) della miscela, è in grado di calcolare la composizione 
ottima del feedstock. Questo tool, inizialmente costruito sulla base di batch test in scala 
di laboratorio, è stato poi migliorato per renderlo adeguato all’applicazione su scala 
industriale, in modo da calcolare il blending ottimo dell’alimentazione di digestori 
anaerobici industriali di tipo batch e CSTR, tenendo anche in considerazione fattori 
relativi alla supply chain quali la disponibilità delle materie prime e la capacità di 
stoccaggio dei rifiuti dell’impianto.  In più, è stata anche creata una dashboard su 
Excel, connessa ad un algoritmo scritto nel linguaggio PythonTM, in modo da rendere i 
calcoli più pratici in vista di un utilizzo a livello industriale. I risultati del modello sono 



iv Abstract in lingua italiana 

 

 

stati validati grazie al confronto con quelli di sperimentazioni in scala di laboratorio, 
disponibili in letteratura, e con dati industriali che sono stati forniti da due aziende del 
settore. A seguito della sua validazione, è possibile affermare che questo modello 
innovativo è in grado di fornire risultati soddisfacenti e affidabili. 

 

Parole chiave: co-digestione anaerobica; biogas; alimentazione; ottimizzazione; 
modello; data-driven; software; programmazione. 
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1. Introduction: Anaerobic Digestion 
and co-Digestion 

Anaerobic digestion (AD) is a process through which a variety of 
substrates is degraded to produce mainly methane and carbon dioxide – which 
together represent the biogas – and a liquid-solid residue called digestate. Substrates 
that can be used are typically waste such as manure, agricultural and organic waste, 
sludges which are this way recovered as renewable energy sources. On the other hand, 
up to now, due to the complexity of the process itself, there is not much 
information about its optimization and often methane yields result to be low with 
respect to the potential of the raw materials. One of the possible causes of low 
yields lays on an inappropriate feedstock composition, which may cause process 
inhibition. A possible solution to obtain optimal feedstock conditions is the anaerobic 
co-digestion (AcoD) of two or more substrates, which may allow to obtain a balance 
of macro and micronutrients, optimal properties, and synergistic effects.   
This chapter aims at giving an overview of the anaerobic digestion and co-digestion 
processes and describing the purpose of this project.   

1.1 Anaerobic Digestion  

1.1.1  Reactions 
Anaerobic digestion  consists of the degradation of substrates through anaerobic 
bacteria, which leads to the production of biogas – composed mainly of methane (50-
70%) and carbon dioxide (30-50%) – and a digestate, which is often used in 
agriculture as fertilizer [1,2]. 

The anaerobic digestion of substrates involves four main stages: 

 Hydrolysis: stage during which carbohydrates, proteins and lipids undergo 
hydrolysis reactions with the help of extracellular enzymes and are turned into 
simpler molecules such as amino acids, sugars and long-chain fatty acids. It is 
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often considered as the “rate-determining step” of the anaerobic digestion 
process, and great attention is turned towards the speeding up of this stage. 

 Acidogenesis: during this stage the hydrolysed compounds 
are further converted to a mixture of short-chain volatile fatty acids (VFAs) and 
other minor products such as ethanol and lactate. Amino acids breakdown also 
leads to the production of ammonia, which, at sufficiently high concentrations, 
is known to be an inhibitor of anaerobic digestion. 

 Acetogenesis: process during which VFAs and other intermediates are turned 
into acetate, carbon dioxide and hydrogen. 

 Methanogenesis: final stage during which methanogenic bacteria convert 
the acetogenesis products to methane. This stage is carried out following 
mainly two routes: the main route, through which about 70% of the total 
biomethane is produced, involves acetoclastic bacteria that turn acetate into 
methane and carbon dioxide; the other route involves hydrogenotrophic 
bacteria which produce methane through a redox reaction of hydrogen and 
carbon dioxide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The simplified scheme of pathways in anaerobic digestion [1]  
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Anaerobic bacteria are usually already present in the initial matter and the digestion 
process takes place spontaneously in absence of oxygen. Process performances, 
however, depend on many factors, involving mainly the characteristics of the 
feedstock and of the microbial community, and the operating conditions. 

1.1.2  Classification of Anaerobic Digestion Processes 
At industrial level, anaerobic digestion can be carried out through both a 
discontinuous and continuous layout, and the process can also be classified depending 
on the operating conditions [3]. 

In first place, AD can be classified depending on the temperature at which the digester 
is operated, and the related digestion time. Three temperature conditions can be 
identified: 

 Psychrophilic conditions: temperature of about 20°C and digestion times 
comprised between 30 and 90 days. 

 Mesophilic conditions: temperature of about 35°C and digestion times of 20-30 
days. 

 Thermophilic conditions: temperature of about 55 °C and digestion times of 14-16 
days. 

Increasing the digester’s temperature, the reactions’ kinetics is sped up, and residence 
times are reduced. Consequently, psychrophilic conditions are rarely used due to the 
extremely high reaction times. Working at high temperatures, however, implies high 
energy costs, and it has been demonstrated that in thermophilic conditions the process 
is less stable than in mesophilic conditions, leading to a reduction of the methane 
content in the produced biogas: this happens because most of the microorganisms 
are more active in mesophilic conditions, while they deactivate at higher 
temperatures. Therefore, mesophilic conditions represent are the most employed ones 
[2,4].  

Another distinction for anaerobic processes is based on the concentration of solids in 
the digester. Defining Total Solids (TS) as the amount of dry solid matter contained in 
the feedstock, three process types can be defined: 

 Wet digestion: TS < 10% 
 Semi-dry digestion: 10 % < TS < 20 % 
 Dry digestion: TS > 20% 

The most widespread processes at industrial level are the wet and, less often, semi-dry 
digestion. Indeed, high solids amount may cause inhibition due to VFAs 
accumulation, resulting in a general reduction of the methane yield for dry digestion 
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processes; moreover, the management of the influent might be difficult due to high 
viscosities. Further details about this parameter will be given in Section 2.3. 

1.2 Anaerobic co-Digestion  
Anaerobic co-digestion consists of the simultaneous digestion of two or more 
substrates. This technology has gained lot of attention nowadays because it gives the 
possibility to significantly improve process performances. Indeed, the digestion of a 
single substrate might lead to poor performances in terms of substrate utilization and 
methane yield due to the lack of some nutrients or non-optimal parameters. By co-
digesting different substrates that show “complementary” characteristics, instead, 
methane yield and process stability can be significantly improved, and synergistic 
effects may be observed too. On the other hand, an improper choice of co-substrates 
could lead to a system imbalance and create antagonistic effects, reducing the methane 
generation with respect to the mono-digestion [2,4]. 

1.3 Feedstocks for AD and AcoD 
The feedstock for anaerobic digestion can be defined as any substrate – ranging from 
readily degradable to complex high-solids wastes – which can be turned into biogas 
and a digestate following the reactions described in Section 1.1.1. 

Historically, AD has been associated with the treatment of animal manure and 
wastewater active sludge; however, after the 70s, the increasing demand for new waste 
management strategies and the necessity of renewable energy forms, broadened the 
field of applications for this technology and new substrates started to be exploited: for 
example, wastes such as harvest remains, energy crops, garden wastes, algal 
biomasses, food wastes, municipal wastes, industrial wastes and wastewaters are 
currently used as possible feedstocks [5]. 

As mentioned in the previous section, anaerobic co-digestion involves the use of 
mixtures of complementary substrates as feedstocks, which brings economic 
advantages since it allows to recover many typologies of wastes coming from nearby 
waste sources (such as farms, industries, wastewater treatment plants). However, to 
have a considerable increment of performances, the different substrates should be 
mixed in appropriate ratios so that the methane yield can be significantly improved 
with respect to the mono-digestion, avoiding antagonistic effects too. Many research 
studies have demonstrated that some of the parameters characterizing the feedstock 
should be kept within defined ranges to obtain high methane yields, and mixtures of 
substrates should respect such constraints to obtain good performances. 
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1.4 Aim and Innovativeness of the Project 
Summarizing, to improve the performances of AcoD processes, it is necessary to 
understand how to properly combine different substrates to maximize the methane 
yield.  

In the last years, numerous studies have been carried out to find the optimal blending 
conditions of mixtures of substrates by carrying out experimental tests, however the 
results that were obtained from such kind of experimentations are not general and are 
only representative of the analysed mixture. On the other hand, some attempts to build 
mathematical models able to predict the optimal feedstock blending have been done 
in the past: a control system involving a linear programming algorithm has been 
developed to perform a continuous optimization of the composition, loading rate and 
retention time during the operation of existing plants [6–8]; moreover, a model based 
on an ant-colony approach have been proposed to perform a blending optimization 
accounting also for the distance and the transport of the waste from the source  to the 
plant [9,10] – further details about these two models are shown in Chapter 3. These 
models, however, are both intended to be applied as on-line control systems and 
involve the measurement of hardly measurable variables. The purpose of this work, 
instead, is the development of an easy-to-use and quick tool that with few, simple 
inputs can estimate with good precision the optimal blending ratios of mixtures of 
substrates, aiming at supporting industrial realities with decision-making processes 
related to the feedstock management.  

The topic is extremely innovative and complex, due to the wide number of possible 
raw materials that can be co-digested and the high variability of their compositions 
according to their source. This project, therefore, aims first at generalizing as possible 
the feedstock properties through the building of a database, and then at understanding 
how different substrates interact with each other through the development of a model 
able to return the best blending conditions of available wastes, allowing to maximize 
the methane yield through a better exploitation of raw materials.  
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2. Feedstock Properties  

To understand how to optimize the feedstock composition, it is important to identify 
the parameters and properties that mostly characterize the influent.  

2.1 Macronutrients content 
Substrates are mainly composed of proteins, carbohydrates, and lipids, which are 
progressively turned into methane and carbon dioxide following the reactions 
described in Section 1.1.1.  

Compounds like proteins, fats, sugars, starch and easily degradable carbohydrates are 
digested in a relatively short time by anaerobic bacteria thanks to 
their high biodegradability; conversely, the presence of lignocellulosic components – 
represented by hardly degradable polysaccharides such as lignin, cellulose, and 
hemicellulose – make the digestion difficult and reduce the overall biodegradability of 
the organic matter.  

A balance between nutrients to obtain a good biodegradability is fundamental in 
AcoD, which can be obtained by feeding complementary substrates and possibly 
taking advantage of pre-treatments of lignocellulosic matters. 

Other macronutrients that may affect digestion are inorganic compounds 
such as heavy metals and contaminants such as antibiotics, deriving mainly from 
animals’ diets [5]. AcoD represents a beneficial technology also from this point of 
view since it allows the dilution of these compounds by other substrates, reducing 
their impact on methane yield. 

2.2 Micronutrients content 
AD is carried out thanks to the presence of anaerobic bacterial species, then the 
micronutrients content of the substrate is an extremely important factor. Substrates fed 
to the digester usually already contain the bacteria needed for digestion, 
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however, different substrates may contain different quantities and types of microbial 
species: livestock wastes, for example, usually contain high concentrations of 
micronutrients, while agro-industrial and food waste may show a lack in microbial 
concentrations [11]. Therefore, also in this case, by mixing complementary feedstocks 
the process performances could be improved. 

2.3 Total Solids and Volatile Solids 
As mentioned in Section 1.1.2, Total Solids (TS, [% w/w]) represent the mass 
percentage of dry matter contained in a certain feedstock. Depending on the substrate, 
the quantity of TS may vary from few point percentages to near 100%, and often 
substrates need to be diluted to reach the desired solids concentration in the 
digester. Volatile Solids (VS, [%TS w/w]) represent instead the organic fraction of the 
TS: the higher this parameter, the higher the organic content of the substrate that could 
potentially be converted to methane. Substrates with dry organic content lower than 
60 %TS are rarely considered as valuable [5]. This parameter doesn’t 
account for the real biodegradability of the substrate, neglecting the fact that not all the 
organic matter can be degraded within the digestion time due to the presence of 
lignocellulosic compounds and ashes. 

Generally, the higher the TS inside the digester, the higher the 
methane productivity per unit volume of the reactor (measured in [𝑚 /𝑚 /𝑑]); 
however, increasing solids concentration, an over-accumulation of VFAs could be 
observed, inhibiting the methanogenesis and lowering the efficiency of the process in 
terms of methane production per mass of VS added (i.e., methane yield, [𝑚 /𝑘𝑔 /

𝑑]) [12]. In addition, high solids content makes the management of the influent more 
difficult due to high viscosities, causing poor heat transfer and uneven distribution 
during stirring, making it necessary to adopt more complex reactor designs 
[2]. Therefore, to improve the substrate utilization, at expenses of higher reactor 
volumes, many research studies have demonstrated that wet digestion (TS < 10%) is 
the most convenient option, and an optimal TS within this range usually exists. For 
example, the experimental study of [12] showed how, for mixtures of municipal solid 
wastes and sewage sludge in a mass ratio of 60:40, optimal conditions for methane 
yields were achieved for a concentration of TS of 5% and any further increase would 
imply a methane yield reduction. 

2.4 C/N ratio 
The ratio between organic carbon and nitrogen in the feedstock is a dimensionless 
parameter that is commonly used to characterize its nutrients and stresses the fact that 
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not only the organic carbon content but also nitrogen content represents a crucial 
factor in biogas production [1]. 

To obtain good methane yields, it has been demonstrated that this 
parameter should be maintained in a range between 20 and 40: below this 
range substrates result rich in proteins – that are the main nitrogen source – , whose 
degradation causes an increase in ammonia concentration that may inhibit the 
digestion process due to an impediment of microbial growth; above this range, 
instead, the substrate results rich in carbon sources, leading to the production of high 
concentrations of VFAs, which are another cause of inhibition due to 
methanogenic bacteria deactivation [4].  

C/N ratio is one of the main parameters affecting the anaerobic digestion process, 
however substrates are often characterized by non-optimal C/N. Therefore, many 
studies have been carried out about the maximization of the methane yield by co-
digesting substrates so that the global carbon to nitrogen ratio falls within the optimal 
range. For example, the research study of [13] investigated the possibility of 
improving the methane yield of a mixture of dairy manure (DM), chicken manure 
(CM) and wheat straw (WS) through the optimization of the C/N ratio: using a Central 
Composite Design associated to Response Surface Methodology to carry out 
experiments, the conclusion was that the maximum methane production is achieved 
with a mixture containing 32.5%w/w of DM, 48.1%w/w of CM and 19.5% w/w of WS, 
characterized by a global C/N ratio of 27.2 – which falls within the aforementioned 
optimal range. Similarly, [14] performed Biomethane Potential (BMP) tests of ternary 
mixtures of sugar beet root waste, cow dung and poultry manure and concluded that 
maximum methane yield was obtained with an overall C/N ratio of 26.24. 

Like VS, this parameter is calculated by considering the total amount of organic 
carbon, of which just a part is biodegradable. To exclude the carbon that is not affected 
by microorganisms, an available carbon to nitrogen ratio has been proposed by [15]. 

2.5 pH 
pH is another important parameter since it influences the solubilization of organic 
matter and contributes to the creation of a favorable environment for microbes [4].  

The microorganism species acting in the AD process are characterized by different 
optimal pH ranges: hydrolytic and acidogenic bacteria prefer a pH within the range 
5.5-6.5, while the optimal pH for methanogenic bacteria is near 7. All things 
considered, many researchers have found out that maintaining a pH between 6.8 and 
7.5 is usually preferable in AD processes, therefore the pH of the feedstock should be 
inside this optimal range. Many research studies that support this statement have been 
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carried out: for example, [16] investigated the effect of initial pH on the co-digestion 
of food waste and rice straw using a Central Composite Design, obtaining an optimal 
methane yield at a C/N ratio of 30 and an initial pH of 7.3. 

2.6 Organic Loading Rate and Hydraulic Retention Time  
In continuous digesters, the organic loading rate (OLR, [𝑘𝑔 /𝑚 /𝑑]) represents the 
amount of dry organic solids fed to the reactor per unit volume and unit time, 
while the hydraulic retention time (HRT, [𝑑]) represents the average time that the 
influent spends inside the reactor (generally mesophilic digestion is accomplished 
with HRT within 20-30 days).  

The HRT depends on the volume of the digester and on the inlet volumetric flow rate 
(defined as Q, [𝑚 /𝑑]), and their relationship can be expressed as in Equation 2.1 [1]: 

𝐻𝑅𝑇 =
𝑉

𝑄
 (2.1) 

The OLR is strictly connected to the HRT and to the TS and VS content inside the 
digester:  supposing to deal with a CSTR with fixed volume, higher OLRs correspond 
to shorter HRTs and higher TS content. Similarly to TS, if the ORL is too 
high overloading is observed, leading to an accumulation of VFAs and performances 
reduction. The OLR, then, should be maintained within an optimal range [4], and 
many research studies have been carried out for the determination of the best OLRs 
for the mono and co-digestion of a variety of substrates. For example, [17] studied the 
co-digestion of a mixture of rice straw and cow manure at a massive ratio of 50:50 
varying OLR from 3 to 12 𝑘𝑔 /𝑚 /𝑑: the conclusion was that the best performances 
were achieved at 6 𝑘𝑔 /𝑚 /𝑑, while at higher values the process was inhibited 
by accumulation of VFAs. Similarly, the study of [18] identified an optimal 
OLR range of 5-6 𝑘𝑔 /𝑚 /𝑑 for the digestion of a mixture of rice husk and food 
waste. 

2.7 Biodegradability  
The biodegradability (BD) represents the fraction of organic matter that is available for 
degradation and can be effectively converted to methane. Indeed, the organic fraction 
of substrates, represented by VS, may be composed both by readily degradable 
components such as simple carbohydrates, proteins, and lipids, and by hardly 
degradable fractions, represented by the lignocellulosic components, whose 
bioavailability is typically low. Generally, the higher the biodegradability, the higher 
the methane production.  
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Many definitions of biodegradability can be found in literature, which are now 
reported:  

1. Ratio between the Biological Oxygen Demand (𝐵𝑂𝐷) and the Total Chemical 
Oxygen Demand (𝐶𝑂𝐷 ) [19]: 

𝐵𝐷 =  
𝐵𝑂𝐷

𝐶𝑂𝐷
     (4.2) 

The 𝐶𝑂𝐷  represents the amount of oxygen present in a sample that can be 
consumed in a reaction with oxidising agents, thus it is a measure of the organic 
fraction of the substrate. The 𝐵𝑂𝐷, instead, represents the degradable fraction 
of the 𝐶𝑂𝐷 , and thus a measure of the biodegradable organics present in a 
substrate [1]. If divided by the 𝐶𝑂𝐷 , therefore, the obtained value represents 
the biodegradability of the substrate. 

2. Percentage of removed VS [20–22]: 

𝐵𝐷 =
𝑉𝑆 − 𝑉𝑆

𝑉𝑆
     (4.3) 

The biodegradability can be defined as the percentage of VS that is consumed – 
i.e., turned into methane – during the digestion process. Therefore it can be 
expressed as the difference between the VS at the initial and final condition, 
divided by the VS of the feedstock.    

3. Percentage of removed 𝐶𝑂𝐷  [20,21]: 

𝐵𝐷 =
𝐶𝑂𝐷 , − 𝐶𝑂𝐷 ,

𝐶𝑂𝐷 ,
    (4.4) 

The biodegradability can also be defined as the 𝐶𝑂𝐷  reduction between the 
initial and final condition, divided by the initial 𝐶𝑂𝐷  in the feedstock. The 
meaning of this expression is analogue to the one of 𝐵𝐷 . 

4. Ratio between the Experimental Biomethane Potential (EBMP) and the 
Theoretical Biomethane Potential (TBMP) of the feedstock [14,23,24]: 

𝐵𝐷 =
𝐸𝐵𝑀𝑃

𝑇𝐵𝑀𝑃
     (4.5) 

Finally, the biodegradability can be defined as the ratio between the cumulative 
methane yield obtained through a Biomethane Potential (BMP) test and the 
cumulative yield calculated by theoretical methods. Both TBMP and EBMP are 
expressed in [𝑚𝐿/𝑔 ]. 
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2.7.1 Theoretical Biomethane Potential 
The theoretical biomethane potential (TBMP) represents the theoretical methane yield 
that could be achieved if the feedstock would be completely degraded, and if the use 
of the substrate by microorganisms as an energy source is assumed as insignificant 
[25]. Several methods can be used to calculate the TBMP, among which two are the 
most used: one based on the elemental composition of substrates (𝑇𝐵𝑀𝑃 ), and one 
based on organic fractions composition (𝑇𝐵𝑀𝑃 ).  

2.7.1.1  Elemental Composition Method 

One of the main formulas used for the estimation of the TBMP is the Buswell equation 
[26], which is based on the assumption that the organic matter, expressed with the 
general chemical formula 𝐶 𝐻 𝑂 , is completely degraded to methane and carbon 
dioxide through an approximate redox reaction involving water, represented by the 
following empirical equation: 

𝐶 𝐻 𝑂 + 𝑐 −
ℎ

4
−

𝑜

2
𝐻 𝑂 

                     
⎯⎯⎯⎯⎯  

𝑐

2
+

ℎ

8
−

𝑜

4
𝐶𝐻 +

𝑐

2
−

ℎ

8
+

𝑜

4
𝐶𝑂  

This equation is derived by balancing the total conversion of the organic material 
𝐶 𝐻 𝑂  to  𝐶𝐻  and 𝐶𝑂  with 𝐻 𝑂 as the only external source, i.e. under anaerobic 
conditions [27].  

Such equation has been improved by Boyle by including in the chemical formula of 
the organic matter nitrogen and sulfur, that are assumed to be entirely converted to 
𝑁𝐻  and 𝐻 𝑆, and to negatively affect anaerobic digestion [28,29]. In this case, for a 
generic organic matter 𝐶 𝐻 𝑂 𝑁 𝑆 , the empirical reaction is represented as: 

𝐶 𝐻 𝑂 𝑁 𝑆 + 𝑐 −
ℎ
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−

𝑜

2
+

3𝑛

4
+

𝑠

2
𝐻 𝑂 

                     
⎯⎯⎯⎯⎯  
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+

ℎ

8
−

𝑜

4
−

3𝑛

8
−

𝑠

4
𝐶𝐻  

+
𝑐

2
−

ℎ

8
+

𝑜

4
+

3𝑛

8
+

𝑠

4
𝐶𝑂 + 𝑛𝑁𝐻 + 𝑠𝐻 𝑆 

Considering this last reaction, the theoretical methane yield TBMP can be calculated 
with the empirical formula shown in Equation 4.7.  

𝑇𝐵𝑀𝑃 =

𝑐
2

+
ℎ
8

−
𝑜
4

−
3𝑛
8

−
𝑠
4

∙ 22415

12𝑐 + ℎ + 16𝑜 + 14𝑛 + 32𝑠
 (4.7) 

The term 22415 is the coefficient that allows to obtain the desired unit of measure 
(𝑚𝐿/𝑔 ). This formula doesn’t account for the content of non-degradable components 
such as lignin, considering the substrate as completely degradable: the real methane 
yield, then, is for sure lower than the TBMP.  
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2.7.1.2 Organic Fractions Composition Method 

Another method for the calculation of the TBMP takes advantage of the knowledge of 
the organic fractions of lipids, carbohydrates, and proteins, using Equation 4.8 [30] for 
the calculation of the TBMP: 

𝑇𝐵𝑀𝑃 = 415 ∙ %𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 + 496 ∙ %𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠 + 1014 ∙ %𝐿𝑖𝑝𝑖𝑑𝑠 (4.8) 

The coefficients appearing in this equation represent the 𝑇𝐵𝑀𝑃  calculated with the 
general chemical formulas for carbohydrates (𝐶 𝐻 𝑂 ), proteins (𝐶 𝐻 𝑂 𝑁) and lipids 
(𝐶 𝐻 𝑂 ), obtained with the modified Buswell formula.  

The drawbacks of this formula are that the fractions of carbohydrates, lipids and 
proteins must be quantified by analytical techniques, which are time-consuming and 
expensive; plus, also in this case, the fraction of poorly available carbon isn’t 
considered – since carbohydrates include lignocellulosic compounds.  

Generally, the elemental analysis method  gives slightly higher results with respect to 
the ones calculated with the organic fractions analysis method, however it could be 
said that both methods give similar results [23]. Therefore, in the building of the 
database, it has been decided to report just the 𝑇𝐵𝑀𝑃  of substrates, which is the most 
used method in literature and which, from now on, will be simply called 𝑇𝐵𝑀𝑃.  

2.7.2 Experimental Biomethane Potential 
The BMP of substrates can be experimentally calculated by performing lab-scale batch 
tests. The BMP evaluated with such assays represents the ultimate cumulative 
methane yield that substrates give in “optimal” conditions, using appropriate solids 
concentrations and substrate/inoculum ratios to create the best environment for 
methane production, as well as appropriate digestion times. Despite the usefulness 
and inexpensiveness of BMP tests, they don’t follow a universally accepted protocol 
and they aren’t currently standardized, so they might give quite different results even 
for the same type of substrate. The variabilities that can be observed in BMP tests are 
due to possible differences in operating conditions, the substrate/inoculum ratio, the 
inoculum source, the substrates concentration and composition; moreover, the 
experimental setups might differ in their gas measurement and analytical techniques. 
Therefore, the EBMPs resulting from these kind of tests should be carefully compared 
and discussed [31].  

2.7.3 Choice of Biodegradability Definition 
All the four definitions of Biodegradability are effective in giving a measure of the 
biodegradable fraction of a substrate. However, since one of the goals of this thesis is 
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to build a database based on data available in literature, the first three definitions are 
difficult to be used. The first and third definition of biodegradability, 𝐵𝐷  and 
𝐵𝐷 , often cannot be calculated because information about the 𝐵𝑂𝐷 and 𝐶𝑂𝐷  of the 
substrates and digestate are quite rare in literature, since their determination requires 
dedicated experimental tests. Similarly, 𝐵𝐷  requires information about the VS 
content in digestate, which is rarely reported in literature. 

The definition of biodegradability based on Experimental and Theoretical BMPs 
(𝐵𝐷 ) is the most convenient one since these information are often available in 
scientific articles and, if properly analysed and averaged on a wide number of data, 
general mean values for these quantities can also be obtained for each substrate. The 
convenience of this parameter will be also demonstrated in Chapter 4, where 
significant correlations between the 𝐵𝐷  and other parameters will be derived. 
Consequently, from now on, the 𝐵𝐷  will be simply called BD.  
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3. Previous Studies 

As mentioned in Section 1.4, two research studies about the development of feedstock 
optimization models have been carried out in the last years. This chapter aims at 
describing these models and then disclosing how they differ from the one developed 
in this project.   

2.8 Control System based on Linear Programming 
Optimization 

The study carried out by [7,8] proposes a control system based on linear programming 
for anaerobic digesters to perform an on-line optimization of the feeding 
composition, to obtain higher methane productivities and higher COD removal 
efficiencies.  

 

 

 
 

 

 

 

 

 
Figure 3.1: Proposed closed-loop control system architecture 
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As shown in Figure 3.1, the architecture of the control strategy comprises four blocks, 
executed as a loop and connected to the digester: (1) Substrate Blender, (2) Filter, (3) 
Diagnosis, (4) Controller.  

The Blender block contains a linear programming method that involves the 
maximization of an objective function, subjected to a set of linear restrictions on 
some selected parameters. The objective function represents the methane production 
(measured in [𝑔 /𝐿/𝑑]) expected in a continuous AcoD system and is calculated 
as in Equation 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

max 𝑓 =  
∑ 𝑝𝑀𝑒𝑡 ∙  𝐶𝑂𝐷𝑡 ∙ 𝑥

𝐻𝑅𝑇
(3.1) 

As shown in Figure 3.2, the expression of the methane production is built by exploiting 
experimental information from batch BMP assays and the knowledge of the physic-
chemical properties of the single substrates: 𝑝𝑀𝑒𝑡  represents the percentage of 
methanogenic conversion of a substrate i obtained in a BMP test at a time equal to the 
HRT, assuming that the expected methanation of each substrate in a continuously-
operated digester working at a certain HRT would be similar to the one obtained in a 
batch assay; 𝐶𝑂𝐷𝑡  represents the total Chemical Oxygen Demand of substrate i; 𝑥  
represents the volumetric fraction of substrate i in the blend. 

Figure 3.2: Visual representation of the building of the objective function 
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The maximization of this function involves two steps, performed on MATLAB: first, 
using the ‘linprog’ function, the blends of substrates maximizing the objective function 
at varying HRTs are calculated; secondly, the function ‘fminbnd’ is used to find the 
HRT that optimizes the methane productivity. Such maximization is subjected to 
linear restrictions that define a maximum and a minimum value for the following 
parameters: (i) organic loading rate (OLR); (ii) total Kjeldahl nitrogen (TKN); (iii) 
moisture or liquid fraction; (iv) lipid content; (v) total alkalinity; (vi) 
𝑁𝑎  concentration; (vii) 𝐾  concentration; (viii) 𝐻 𝑆 content in biogas; (ix) effluent 
COD content. The optimal ranges for these parameters should be appropriately 
selected according to the operating conditions, the stage of operation (start-up, 
dynamic or steady-state operations), the substrates’ nature and the objective of the 
digestion (biogas or digestate’s use), and they can be modified during the 
operation. For example, Table 3.1 shows a possible list of optimal ranges for the nine 
parameters at the start-up. 

  

Linear restriction Minimum Maximum 
OLR [gCOD/L/d] 0 2.5 

TKN [gN/L] 0.2 4 
Liquid fraction [kg liquid/kg wet] 0.85 1.00 

Lipids [g/L] 0 10 
Alkalinity [gCaCO3/L] 2 8 

𝑁𝑎  [g/L] 0 3 
𝐾  [g/L] 0 3 

Biogas quality [ppm 𝐻 𝑆] 0 10000 
Digestate quality [gCOD/L] 0 6 

Table 3.1: Initial values of the substrate blending optimization restrictions [8] 

The linear programming, in addition, informs about the restrictions that are actively 
limiting and that could be modified to potentially move the operation towards a new 
optimum with a higher methane yield.  

After the Blending block, a Filter module calculates the average values of the physic-
chemical parameters monitored in the reactor and used as diagnosis indicators during 
a specific period. In particular, the chosen diagnosis indicators are the alkalinity ratio 
(Ratio) and methane flow (𝐹 ), whose average values are defined by Equations 3.2 
and 3.3. 
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𝑅𝑎𝑡𝚤𝑜 =

∫ 𝐼𝐴 𝑑𝑡

∫ 𝑑𝑡

∫ 𝑇𝐴 𝑑𝑡

∫ 𝑑𝑡

(3.2) 

𝐹 =
∫ 𝐹 (𝑡)  𝑑𝑡

∫ 𝑑𝑡
 (3.3) 

IA stands for intermediate alkalinity, which represents the alkalinity due to VFA, and 
TA stands for the total alkalinity, which represents the alkalinity due to both VFA and 
bicarbonate. The integration time is ¼ of the current HRT, which is the time period 
when the controller is executed.  

Then, the Diagnosis block informs about the stability of the process and methane 
production performance, comparing the average values of alkalinity and methane 
flow with reference values, considered as thresholds of process stability: Ratio*, which 
is assumed equal to 0.4, and 𝐹∗ , set equal to 15 𝑚 /𝑚 /𝑑. Two stability factors can 
be defined:  

𝑓 =

⎩
⎪
⎨

⎪
⎧

1 −
𝑅𝑎𝑡𝚤𝑜

𝑅𝑎𝑡𝑖𝑜∗
     𝑖𝑓 𝑅𝑎𝑡𝚤𝑜 ≤ 𝑅𝑎𝑡𝑖𝑜∗

𝑅𝑎𝑡𝑖𝑜∗

𝑅𝑎𝑡𝚤𝑜
− 1       𝑖𝑓 𝑅𝑎𝑡𝚤𝑜 > 𝑅𝑎𝑡𝑖𝑜∗

 (3.4) 

 

𝑓 =
∝∙ 𝐹∗

𝐹 +∝∙ 𝐹∗      (∝= 0.1, 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟) (3.5) 

After that, the Controller block calculates at the end of each period (¼ HRT) a control 
indicator, 𝑓 , as the product of 𝑓  and 𝑓  when the system is stable, or equal 
to 𝑓  when the system is unstable and 𝑓  is negative. The value of 𝑓  is 
comprised between [-1,1] and determines the extent of the control action that modifies 
the operational restrictions of the linear programming problem (in the Blender 
module).  

𝑓 =
𝑓 ∙ 𝑓        𝑖𝑓 𝑓 > 0
𝑓                   𝑖𝑓 𝑓 ≤ 0

 (3.6) 

Then, 𝑓  modifies the boundaries of the most active restriction following Equation 
3.7. 

𝐿𝑖𝑚𝑖𝑡 = 𝐿𝑖𝑚𝑖𝑡 + 𝑓 ∙ (𝐿𝑖𝑚𝑖𝑡 − 𝐿𝑖𝑚𝑖𝑡 )  (3.7) 
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When the system is stable, 𝑓  is positive, so the control promotes the use of 
feedings with higher methane production potential by relaxing the limits of the most 
active restriction. When 𝑓  is negative, instead, instability is observed, and the 
control promotes the use of feedings with lower methane production to prevent the 
system from possible acidification.  

This control model was validated with simulations using an ADM1-based AcoD 
model and then with continuous experiments performed at pilot scale in an Upflow 
Anaerobic Sludge Blanket – Anaerobic Filter (UASB-AF) reactor and the conclusions 
were that this substrate blending control strategy was proven capable of changing 
operating conditions to increase methane productivities and to recover the system 
from transient acidifications.  

2.9 Blending Optimization using Ant Colony Approach 
This research works of [9,10] aim at building a new co-digestion optimization tool 
based on an enhanced version of the Ant Colony Approach (ACO) algorithm to 
simultaneously optimize the feedstock composition and the logistics – focusing on the 
transport route and substrate availability – associated with each 
component. Therefore, the objective function, in this case, involves both substrate 
biochemical characterization (for biogas production maximization) and logistics 
characterization (for route optimization). 

The problem statement considers a set of substrate generators 𝑤 ∈ {1, … , 𝑁}, located at 
different distances 𝑑  (measured in km) from the anaerobic digester; each generator 
has a certain capacity to store its waste until it is transported to the anaerobic digester.  

Each substrate is characterized by a volume 𝑉  and a set of parameters 𝐶 , where: 

 𝐶  is the Chemical Oxygen Demand concentration (COD, measured in [𝑔/𝑚 ]) 
 𝐶  is the ratio of COD to total nitrogen concentration (COD/TN, dimensionless) 
 𝐶  is the alkalinity concentration (Alk, measured in [𝑔/𝑚 ])  
 𝐶  is the toxicity level (Tox, dimensionless) 

Each volume 𝑉  can be selected as a substrate contribution to be transported to the 
digester, and it must respect the volumetric possibilities 𝑉  (with 𝑠 ∈ {1, … , 𝑙 }, where 
𝑙  represents the number of different volumetric configurations) of the waste 
generator, that are determined as a multiple of a number (e.g., 1000) such that 
1000𝑙 = 𝑉 . The selection of each volumetric possibility is determined by the 
corresponding value of a binary decision variable 𝑦 , where 𝑦 ∈ {0,1}, with 𝑦 = 0 
when the substrate 𝑤 is not selected, and 𝑦 = 1 when it is selected. Also, it must be 



Previous Studies 19 

 

 

noted that for each waste generator there are  𝑙  different volumetric configurations, 
but only one is selected at a time, so that the Equation 3.8 is satisfied. 

 𝑦 = 1   ∀ 𝑤 ∈ {1, … , 𝑁} (3.8) 

The conveyance of the selected volumes implies a distance 𝑑  with a social impact 𝐼  
and an economic cost 𝑋 . 𝐼 = 1, … ,3 is a dimensionless parameter that depends on 
different criteria such as route traffic density or proximity to pedestrian/sensitive 
areas, and it is assigned qualitatively accounting for all these factors. 𝑋  is defined in 
[€/𝑘𝑚] and represents the cost of substrate transport. 

The blend of all transported substrates, which represents the digester’s input, must 
also fulfil a certain set of restrictions: the maximum acceptable total volume 𝑉; the 
optimal range of COD/TN ratio [𝐶 , 𝐶 ]; the optimal alkalinity range [𝐶 , 𝐶 ]; 
the toxicity threshold 𝑇𝑜𝑥 < 𝐶 . 

The optimization problem, in this case, consists of the minimization of an objective 
function expressed as follows: 

𝐵 =  
1

∑ ∑ 𝑦 𝑉 𝑇 (∑ 𝐹 )𝜌 +
𝜌

𝑋 𝑑 𝐼

   (3.9) 

Where 𝑦  is the binary decision variable; 𝑉  is the substrate contribution of generator 
𝑤, measured in [𝐿]; 𝑇  is the substrate toxicity level (dimensionless);  𝐹  is a set of 
coefficients corresponding to the substrate composition (dimensionless); 𝜌  is the 
quality coefficient (dimensionless); 𝜌  is the logistics coefficient (dimensionless); 𝑋  is 
the economic cost of transport in [€/𝑘𝑚]; 𝑑  the distance in [𝑘𝑚]; 𝐼  is the social impact 
(dimensionless). 

The coefficients 𝐹  (c=1,…,3) and 𝑇  are related to the value of the parameters 𝐶  of 
the single substrates: 

 𝐹  is related to the COD content of the substrate: 

𝐹 = 0.00001 ∙ 𝐶 − 0.01 (3.10) 

 𝐹  is related to the ratio COD/TN, whose optimum value is comprised between 
20 and 60: 

𝐹 = 𝑒
( )  

 (3.11) 

 𝐹  is related to the alkalinity concentration, whose optimal range is 3000-6000 
𝑔/𝑚 : 

𝐹 =  𝑒
( )  

∙  (3.12) 
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 𝐹  is related to the toxicity level: 

𝑇 = 𝑒
( )  

.   (3.13) 

The objective function in Equation 3.9 contains a term related to the quality 
composition of the substrate, and a term related to the transport: the two coefficients 
𝜌  and 𝜌  represent the relative importance of the two terms, allowing to state whether 
the priorities are more focused on the maximization of biogas production or logistics.  

The minimisation of this function is performed running an ACO algorithm, which 
executes an iterative procedure that uses a population of ants, initially placed in a 
random location of the search space of the solution. To build the solution, each ant 
traces a path through the search space following a probabilistic rule known as state 
transition, which is defined by Equation 3.14: 

𝑝 (𝑡) =
[𝜏 (𝑡)] [𝜂 (𝑡)]

∑ [𝜏 (𝑡)] [𝜂 (𝑡)]
  (3.14) 

At iteration 𝑡, 𝑝 (𝑡) represents the probability that the m-th ant chooses the volume 
𝑉 ; 𝜏 (𝑡) is the pheromone trail; α is the importance assigned to the pheromone trail; 
𝜂 (𝑡) is the specific heuristic information, defined by Equation 3.15; β is the 
importance assigned to the heuristic information.  

𝜂 (𝑡) =
𝑉 ∑ 𝐹

𝑑
 (3.15) 

The pheromone trail 𝜏 (𝑡) is updated at each iteration following Equation 3.16. 

 𝜏 (𝑡 + 1) = 𝜌𝜏 (𝑡) + Δ𝜏  (3.16) 

The quantity 𝜌 (comprised between 0 and 1) is the persistence of the pheromone in the 
trails at iteration 𝑡, and Δ𝜏  is the amount of pheromone added to the trail of the 
ant that has achieved the best solution 𝐵∗ at iteration 𝑡: 

Δ𝜏 = 𝐵∗ (3.17) 

The rest of the paths followed by ants that have not achieved the best solution do not 
increase their pheromone trails, and at the beginning of iteration 𝑡 + 1 their amounts 
are those corresponding to iteration 𝑡 decreased by the value of the persistence 𝜌. This 
way, only the pheromone trails of the ants that have achieved the best solutions 
increase. For all iterations, all pheromone trails have values in the range [𝜏 , 𝜏 ]. 

This model was validated by using real data from an actual sanitation network 
composed of 12 wastewater treatment plants and 7 industries, where waste are 
produced, in the area of the Besòs river basin in Catalonia. Therefore, the methodology 
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was applied to a set of 19 substrate generators, distinguishing between two scenarios 
– O1 and O2 – in which 0% and 50% weights are given to the logistics importance term  
𝜌 : hence, in scenario O1 the optimization is only focused on the quality of the blend, 
while in O2 the quality of the blend and the logistics are given the same importance. 

The result of this study was that the ACO algorithm allows an optimized logistic 
planning proposal in terms of average volume extracted from each waste generator, 
and allows to estimate average travels per month, biogas production and the resulting 
OPEX. Consequently, it represents a very complete algorithm that permits to optimize 
the co-digestion from many points of view, and if applied along with an online 
digester monitoring and diagnosis system it should assure system stability and 
control. 

2.10 Remarks about the previous studies and the current 
project   

The model developed by [7,8] consist of a control system that can be applied for an on-
line monitoring of existing plants. The definition of the model exploits the results of 
batch tests made specifically on the supplied substrates and requires the in-line 
measurement of physic-chemical parameters such as the COD – which appears in the 
objective function – and the alkalinity of the effluent.  

The work of [9,10] is also meant for the on-line monitoring of biogas plants, focusing 
the attention on logistics optimization besides biomethane production, which makes 
it interesting from this point of view. Indeed, also in this project factors related to the 
supply chain such as substrates availability and storage capabilities of plants will be 
considered. 

The aim of this thesis, however, is different from the ones of these two works. Indeed, 
they are both intended to be applied as on-line control systems and involve the use of 
analytical techniques and laboratory experiments for the measurement of variables. 
The purpose of this work, instead, is the development of a tool that with few inputs, 
possibly available in a specially built database, can estimate with good precision the 
optimal blending ratios of substrates to maximize the methane potential of their 
mixture, complying also with supply chain requirements at industrial level. Such kind 
of tool could enable industrial realities to understand how to better exploit their raw 
materials by changing their blending ratios, or possibly to predict the effect of adding 
a new substrate to the ones that are already fed to an existing digester, without the 
need to perform laboratory-scale analysis.  
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The first goal of this project, therefore, is the building of a database where data about 
the most common substrates are gathered and statistically analysed. Then, such data 
are used to build correlations between parameters and develop a data-driven 
optimization model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Database Building and Data Analysis 23 

 

 

 

4. Database Building and Data Analysis 

The first aim of this project is to build a database where data about a large number of 
substrate properties are collected from literature. Due to the many factors that affect 
the composition of substrates, even feedstocks of the same nature may show different 
characteristics depending on their source, thus it is impossible to describe them in an 
absolute way. However, common features can be identified in similar substrates, and 
their parameters are characterized by a distribution. Consequently, to obtain general, 
reliable values for each parameter of a certain substrate, an averaging process should 
be carried out, together with the calculation of standard deviations to express the 
parameters variability. The main reasons to build a database are that it makes it 
possible not to necessarily carry out laboratory experiments to obtain values of 
substrate properties, moreover it can be used to build correlations and data-driven 
models.  

After having created the database, it has been possible to analyse data and identify 
correlations between parameters. The feedstocks that have been considered for the 
database are among the most common substrates that are employed in anaerobic 
digestion, about which much information is found in literature. 

4.1 Parameters  
During a preliminary collection of data, a large number of parameters were initially 
considered: TS, VS, content of C, N, P, H, O [%TS], C/N ratio, total Chemical Oxygen 
Demand (𝐶𝑂𝐷 ), soluble Chemical Oxygen Demand (𝐶𝑂𝐷 ), Biological Oxygen 
Demand (𝐵𝑂𝐷), Volatile Fatty Acids (VFA) content, Total Ammonium Nitrogen 
(TAN) content, Alkalinity, pH, percentages [%TS] of lipids (LIP), proteins (PROT), 
sugars, starch and easily degradable carbohydrates (collected in the same quantity 
named SSEDC), lignin (LIG), cellulose (CEL), hemicellulose (HCEL) and ash (ASH), 
Theoretical Biomethane Potential (TBMP) Experimental Biomethane Potential (EBMP), 
and Biodegradability (BD).  
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In the final version of the database some of these parameters were not reported due to 
their poor availability. In particular, information about 𝐶𝑂𝐷 , 𝐶𝑂𝐷  and 𝐵𝑂𝐷 of 
substrates are difficult to find in literature, since they are obtained by carrying out 
specific tests and are rarely reported in scientific articles, making it impossible to 
obtain reliable mean values. Similarly, scarce information is generally available for the 
VFA, TAN and Alkalinity contents. On the other hand, it has been decided not to 
include information about the C, N, P, H, O contents of the substrates and their pH 
because their role in this technology development is quite irrelevant.  

The parameters that have been finally reported – and their unit of measure – are the 
following: 

 Total Solids – TS [% w/w] 
 Volatile solids – VS [%TS w/w] 
 C/N ratio – dimensionless 
 Lipids content – LIP [%TS] 
 Proteins content – PROT [%TS] 
 Sugars, starch and easily degradable carbohydrates content – SSEDC [%TS] 
 Lignin content – LIG [%TS] 
 Cellulose content – CELL [%TS] 
 Ash content – HCELL [%TS] 
 Theoretical Biomethane Potential – TBMP [𝑚𝐿 /𝑔 ] 
 Experimental Biomethane Potential – EBMP [𝑚𝐿 /𝑔 ] 
 Biodegradability – BD, dimensionless 

The definition of BD, as mentioned in Section 2.7.3, is the ratio between the 
Experimental Biomethane Potential (EBMP) and the Theoretical Biomethane Potential 
(TBMP): 

𝐵𝐷 =
𝐸𝐵𝑀𝑃

𝑇𝐵𝑀𝑃
  (4.1) 

The TBMP comes from the elemental analysis of the substrate, while the EBMP comes 
from batch assays to assess the biomethane potential of the substrates. The database 
reports the TBMPs and EBMPs evaluated by previous studies reported by scientific 
articles.  The BMP tests often follow different protocols for their experimental setup: 
in general, they are performed with a concentration of VS comprised between 5 and 
15 [𝑔 /𝐿], a substrate/inoculum ratio between 0.5-2 and in mesophilic conditions (35-
37°C).  
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4.2 Database 
The database has been built by first defining four macro-categories, containing each a 
certain number of substrates: 

1. Manure 
2. Agro-Industrial Waste 
3. Organic Waste 
4. Sludges 

The substrates comprised in each macro-category are shown in Figure 4.1. Data about 
the chosen parameters for each substrate were collected from over eighty papers and 
used to build the so-called Complete Database, which will be entirely shown in Section 
4.2.1. Then, data about each substrate were averaged to obtain mean values for each 
parameter – characterized by a certain standard deviation –, which were used to build 
the Primary Averaged Database, described in Section 4.2.2: indeed, after a re-elaboration 
of averaged data – in order to infer missing data and to obtain coherent values of 
component percentages (whose sum have to be 100 %TS) – the obtained values can be 
considered as reliable for the creation of an averaged database. After that, the same 
reasoning was done to perform another averaging process for each macro-category, 
leading to the building of a Secondary Averaged Database, described in Section 4.2.3.  

A schematic procedure for this process is reported in Figure 4.1. 
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Figure 4.1: Schematic representation of the building process of the Complete 
Database, Primary Averaged Database and Secondary Averaged Database  
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4.2.1 Complete Database 
In this paragraph, the Complete Database for each substrate is reported and commented.  

4.2.1.1 Manure 

 Dairy Manure (DM) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

DM 

14.40 78.60 22.10                 177.40   
8.50 80.00 13.00 3.87 10.32 42.97 5.57 13.92 7.50 15.85   165.00   

16.00 82.90 19.40               336.64 252.27 0.75 
23.40 74.60 12.40                     
14.00 68.70 16.00                     
12.40 82.26   13.24 4.69 13.57 11.35 7.90 4.69 44.56 473.43 242.70 0.51 
26.62 72.76 17.83 2.26 7.99 32.02 4.72 14.58 18.23 20.20   175.84   
26.64 79.80 14.19               490.00 323.00 0.66 
                    551.41 360.00 0.65 
11.56 81.57         11.91 16.58 7.97   525.10 197.00 0.38 
17.36 55.76         6.49 15.58 3.56   522.70 223.60 0.43 
38.50 74.81 23.40 0.00 17.00 5.60 17.40 19.50 15.20 25.30 505.00     
10.94 73.01   3.63 7.55   10.41 17.51 23.26     222.08   
18.16 64.42   2.16 8.79   16.24 19.84 21.54     153.01   
16.91 60.62 25.00 2.56 8.59   9.33         204.00   

Table 4.1: Complete Database of Dairy Manure (DM) [5,13,14,17,19,21,23,24,26,29–32] 

Dairy manure is typically collected by a scraper system, and often straw – used as 
bedding material – is present too, resulting in slight variations of the TS and of the 
content of lignocellulosic compounds (lignin, cellulose, and hemicellulose). The high 
variability in composition, C/N ratio, TS and VS content depends on many factors such 
as the animal housing system, the location, animals’ age, and diet [5]. The C/N ratio of 
DM is generally quite low, typical of manures, due to the high proteins content, which 
is one of the main nitrogen carriers. The high lignin, cellulose and hemicellulose 
content are due to the presence of straw, while lipids content is quite low and shows a 
high variability. The EBMP is extremely variable too since it depends on the 
composition and on the method used to carry out the BMP tests.  

 Pig Manure (PM) 

Pigs are usually kept in feedlots with open floors where the excrements are collected 
through slots or scraper systems [5]. According to the housing system, the TS is highly 
variable, and PM can be collected both as a liquid slurry (TS = 1÷5 %) or with a higher 
dry matter content. Similarly, also all the other parameters may change according to 
the same factors mentioned in the previous paragraph.  
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

PM 

5.50 75.00 6.50 6.41 14.92 35.75 4.58 11.03 12.59 14.72   225.00   
36.60 54.00 8.49                   0.63 
21.56 78.60 13.10                     
20.00 74.80 13.00                     

1.73 67.63   8.67 6.36 53.18               
27.16 74.10 17.00               554.03     
22.10 71.76 13.12                     

3.32 65.36 5.30   17.17                 
31.22 74.54 10.89 5.15 14.58 32.13 1.66 6.00 15.01 25.46   330.00   

1.88 67.55 13.89               754.00 558.00 0.74 
    10.33               641.88 487.90 0.76 
16.20 72.84         0.38 3.76 0.97   449.60 417.20 0.93 
30.40 72.40 15.80 0.00 13.20 15.70 4.30 11.30 27.70 27.80 468.00 322.00 0.69 
19.40 82.88   7.89 24.73   6.88 10.47 17.88     443.55   
31.02 86.81 12.00 9.40 26.80   3.81         323.00   

Table 4.2: Complete Database of Pig Manure (PM) [5,6,14,21,23,26,29–36] 

As all manures, the C/N ratio of PM is very low, indeed the proteins content is high. 
Lignin, cellulose, and hemicellulose contents are quite high due to the presence of 
lignocellulosic compounds such as straw coming from the housing system. The lipids 
content is also quite high and the EBMP is generally higher than for DM. 

 Sow Manure (SM) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

SM 

4.90 77.96         10.34 21.41 15.36   537.50 213.80 0.40 
10.94 82.45         9.58 23.22 14.79   531.00 248.80 0.47 
37.20 75.83   2.10 14.86   16.19 12.86 15.52     177.73   
31.89 81.93   13.09 18.00 32.87         529.00 250.00 0.47 
29.68 81.01   14.64 14.16 31.88         536.00 260.00 0.49 
31.70 74.55   17.51 17.51 30.89         524.00 317.00 0.60 
28.92 74.78 10.30       1.08 18.48 26.64         

Table 4.3: Complete Database of Sow Manure (SM) [24,31,37,38] 

Sows’ manure, especially when gestating, is usually distinguished from PM due to 
some differences in their composition and on their methane production, which is 
usually lower for SM.  

From Table 4.3 it can be noted that few information about the C/N ratio has been found 
in literature and just one datum has been included in the database; this value is 
reasonable and similar to other manures, therefore it will be used in the Secondary 
Averaged Database as the mean value itself, with a standard deviation equal to zero. 
Similarly, no information about ash content have been found. 
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 Chicken Manure (CM) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

CM 

20.00 75.00 6.50                 475.00   
26.80 62.30 8.84                 126.90   
47.06 82.65 11.20               381.90     
    6.35                     
32.36 72.62 6.01       5.08 24.29 4.90         
20.96 67.98 11.92               486.00 290.00 0.60 
25.90 75.29 10.60 0.00 20.50 9.70 1.60 20.00 23.20 25.00 468.00 295.00 0.63 
47.50 70.02 10.00 1.01 27.00   5.07         259.00   
29.90 75.92 10.90               617.00 291.00 0.47 
24.90 77.91 10.10 0.00 15.60 17.10 2.30 20.00 23.20 21.90 476.90 291.10 0.61 

Table 4.4: Complete Database of Chicken Manure (CM) [5,13,23,26,32,39–43] 

Chickens are usually kept in open feedlots holding up to several hundred thousand 
animals. Keeping chickens in open feedlots typically causes a significant 
contamination of manure with sand and bedding materials such as straw [5], then CM 
is usually characterized by high TS contents (20÷50%) and high quantities of ash and 
lignocellulosic compounds. 

From Table 4.4 it can be noted that the C/N ratios are the lowest among all the manures: 
this is because CM is characterized by high concentrations of ammonia and proteins. 
The lipids content is generally the lowest among manures, and the EBMP is quite low 
as well. 

 Chicken Litter (CL) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

CL 

77.20 50.65 13.02                     
66.20 70.85  2.70 28.44   4.61   19.85         
    8.78               544.05 437.60 0.80 
66.28 69.61 8.15   24.70 19.65       20.13   113.20   
40.50 71.36 10.00                     
66.00 61.00                   245.00   
      0.40 31.20   9.20 21.80 16.80 12.40       
      0.39 14.40   9.60 30.20 18.80 12.30       
      0.29 20.60   8.20 22.80 28.60 12.20       

Table 4.5: Complete Database of Chicken Litter (CL) [30,44–49] 

Compared to chicken manure, the litter contains a higher quantity of bedding 
materials such as straw and wood shavings, which are typical lignocellulosic matters. 
Therefore, CL contains more carbon and less nitrogen with respect to CM and can be 
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classified as an independent substrate. The composition of CL may considerably vary 
according to the bedding materials and animals’ diet. 

From Table 4.5 it can be observed that the TS is generally very high, due to the high 
solids content, and that the mean C/N ratio, lignin content, cellulose content and 
hemicellulose content are higher than those of CM. On the other hand, the lipids, 
proteins and SSEDC contents are quite similar than those of CM. The higher quantity 
of lignocellulosic compounds leads to a lower mean value of the EBMP, and thus a 
lower biodegradability. 

 Sheep Manure (SHM) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

SHM 

38.96 71.71 11.79               507.00 305.00 0.60 
22.27 83.92 14.59       8.59 11.63 13.27 16.08       
53.58 82.42 13.51               346.54 135.98 0.39 
25.39 58.42   1.26 10.18   15.21 16.67 26.12     150.55   

Table 4.6: Complete Database of Sheep Manure (SHM) [26,31,50, 51] 

Few information has been found about sheep manure, which are reported in Table 4.6. 
As all manures, SHM is characterized by a low C/N ratio and by the presence of 
bedding materials, which lead to a quite high TS and lignin content.  

Only one datum was found for lipids, proteins, and ash content, then, during the 
averaging process, the mean value will correspond to the datum itself and the standard 
deviation is assumed as zero. No data about SSEDC components were found. 

 Goat Manure (GM) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

GM 

79.86 83.55 18.02 3.96 0.09 35.51 4.96 13.40 16.67 25.41   204.30   
35.26 57.01   2.45 10.18   14.58 13.33 19.51     169.86   
81.63 78.68 20.00 3.33 14.70   13.68         159.00   
62.30 84.75 15.70       17.60     10.00 290.00 274.00 0.94 
64.90 84.20               10.50 313.40 206.00 0.66 

Table 4.7: Complete Database of Goat Manure (GM) [29,31,32,52,53] 

Similarly to SHM, few data about goat manure have been found, generally 
characterized by quite high TS (from about 35% to 80%), low C/N ratios and high lignin 
content, which stresses the fact that GM usually contains high quantities of bedding 
materials.  
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4.2.1.2 Agro-Industrial Waste  

 Straw (ST) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

ST 

86.10 90.60 81.10                 121.20   
82.90 96.24 81.50                     
91.42 97.47         18.38     5.73       
    84.22                     
88.95 94.40 92.72       6.53 44.44 32.59         
87.59 92.31 60.90               447.00 0.00 0.00 
93.60 96.73         6.41 47.97 28.38   447.70 289.50 0.65 
90.50 86.10 99.80 0.00 2.50 6.60 7.60 42.20 27.20   456.00 245.00 0.54 
93.72 95.26 47.50               333.06     
94.09 80.50 43.00                     
92.90 84.60 44.10 0.00 5.60 2.50 10.80 40.50 25.20   455.00 281.00 0.62 
84.00 93.00                   120.00   

Table 4.8: Complete Database of Straw (ST) [13,16,17,24,26,40,41,44,45,48,54] 

This substrate comprises different species of straws, particularly wheat straw and rice 
straw, which have similar characteristics and can be generalized in the same category. 
Since straw is a dry substrate, it is generally characterized by a very high TS and a high 
organic content. The percentages of lipids, SSEDC and proteins are usually low, 
leading to high C/N ratios, while the principal components are lignin, cellulose, and 
hemicellulose. Since the lignocellulosic content is very high, the EBMP is usually low, 
and highly depend on the operating conditions of the batch test and on eventual pre-
treatments (the experimental methane yield can vary from a minimum of 0 to a 
maximum 289.5 mL/gVS).  

 Rice Husk (RH) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

RH 
90.00 81.09 38.48                     
90.20 82.40 103.5 0.00 2.50 20.80 15.80 38.70 19.20   485.00 49.00 0.10 
    80.56       13.00 29.40 17.70         

Table 4.9: Complete Database for Rice Husk (RH) [18,23,55] 

Only few data have been found about rice husk, however this substrate is very 
important since it is an abundant by-product of rice cultivation and is characterized 
by a very low degradability, therefore it could be interesting to see how its methane 
production would improve with AcoD. Similarly to straw, the TS content is very high, 
and the major components are lignin, cellulose and hemicellulose. Furthermore, being 
the proteins content very low, the C/N ratio can reach very high values.  
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 Sugar Beet By-Products (SBB) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

SBB 

88.50 89.30 35.70       9.90 26.40 19.50     219.60   
88.73 91.65 37.00                     
30.40 94.50 32.90 1.50 8.70         5.50   430.00   
11.80 71.30 15.00 2.50 12.80         28.70   481.00   
17.40 71.84   0.70 16.00         28.10 453.67 388.80 0.86 
18.95 71.61   0.80 6.90         28.40 553.00 428.17 0.77 
11.00 84.00 14.00               520.00     
                    439.76 369.40 0.84 
                    447.40 412.50 0.92 
                    468.43 443.60 0.95 

Table 4.10: Complete Database for Sugar Beet By-Products (SBB) [21,35,56–59] 

This substrate comprises all the by-products that come from sugar beets cultivation 
and processing, like roots, leaves, exhausted pulp, and molasses. According to the 
composition of this substrate its parameters can considerably change: for example, the 
TS content and the C/N ratio are highly variable. Few information about the lignin, 
cellulose and hemicellulose content have been found, while no information about the 
SSEDC content have been found. The EBMPs of this category are usually very high. 

 Dry Grass (DG) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

DG 

84.60 95.86 42.17                     
87.82 86.18 57.03       5.51 42.21 28.45         
93.01 97.29   0.00 0.68 0.00 8.08 47.48 41.06 2.71 362.32 122.20 0.34 
93.40 94.24         5.98 35.99 22.89   461.40 306.30 0.66 
91.30 95.70 109.0 0.00 2.50 7.10 11.30 43.10 31.70 4.30 448.00 246.00 0.55 

Table 4.11: Complete Database for Dry Grass (DG) [19,23,24,41,44] 

In this substrate different types of grass have been included, such as switchgrass, 
meadow grass and hay grass, which are characterized by similar compositions. 
Similarly to straw, DG is characterized by high TS, high C/N ratios, high quantities of 
lignocellulosic compounds and quite low EBMP. 

 Maize Residue (MR) 

MR comprises by-products from maize cultivation and processing such as fresh maize, 
maize plant and silage.  
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

MR 

38.75           2.40 23.74 37.68   452.30 399.40 0.88 
29.92           2.98 26.86 35.92   443.80 405.30 0.91 
27.89           1.81 22.31 36.73   445.20 360.50 0.81 
    60.00                     
    59.10       1.90 32.80 44.10         
40.50 96.30     7.90 40.70               
38.60 96.37     8.20 41.40               
38.50 96.36     8.20 45.70               
39.10 96.16     7.80 43.50               
38.50 96.62     8.00 38.40               
38.30 96.34     7.70 42.10               
      2.70                   
      4.70 10.41         5.36       

Table 4.12: Complete Database for Maize Residue (MR) [24,60–63] 

The C/N ratio is usually about 60, and the main components are generally SSEDC, 
cellulose and hemicellulose, while lignin content is quite low.  The EBMPs of MR are 
usually quite high. 

 Corn Stover (CS) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

CS 

86.02 94.04 88.35 6.60 1.49 38.16 2.30 24.24 21.24 5.96   217.70   
84.90 90.60 54.00 0.00 5.00 3.20 10.30 42.30 29.80 9.40 469.00 241.00 0.51 
94.48 91.83 63.50       7.10 38.81 29.50   564.00 311.00 0.55 
88.80 94.14 63.20 0.00 4.40 8.50 9.40 42.30 29.80 5.90 437.60 260.70 0.60 
80.00 93.00                   180.00   

Table 4.13: Complete Database of Corn Stover (CS) [23,29,43,48,64] 

Corn stover derives from maize cultivation too, and consists of dried leaves, stalks and 
cobs of maize plants. This makes it a lignocellulosic substrate similar to straw. Indeed, 
the C/N ratio is usually high, and the lignin, cellulose and hemicellulose contents are 
high as well.  

 Potato Waste (PW) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

PW 

17.74 92.16   0.74 9.68 72.99 0.00 8.76 0.00 7.84   334.50   
19.86 95.92 38.89               422.00 345.00 0.82 
14.40 96.81         20.69     0.58       

9.10 96.00                       
11.50 90.07 40.78   14.78             349.00   

8.10 88.21 28.59   15.72             348.00   

Table 4.14: Complete Database of Potato Waste (PW) [19,26,48,65,66] 
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This substrate comprises mainly fresh potato residues and potato peels. It is mainly 
composed of SSEDC, while all the other organic compounds represent the minority of 
the substrate; the C/N ratio is usually comprised between 30 and 40, then the EBMPs 
are generally quite high. 

 Yard Waste (YW) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

YW 

72.50 83.30 25.90 0.00 10.00 21.70 10.50 21.00 20.10 16.70 503.00 183.00 0.36 
97.30 91.90 74.70       23.20 19.30 12.30 9.10 498.90 116.50 0.23 
16.69 88.03   1.52 9.39   6.35 27.87 31.18     220.53   
27.00 89.00   6.23 4.45 38.27 11.57 19.58 8.90 11.00 504.00 237.00 0.47 
87.00 84.32 59.12       10.87 18.21 23.53         
94.30 91.70 55.30       23.00 24.30 9.70         

Table 4.15: Complete Database of Yard Waste (YW) [23,31,67–70] 

YW comprises house-garden grass and plants, leaves, tree trimming, and harvest 
remains. Usually the C/N ratio is high, and a high quantity of hardly degradable 
matter is contained, then the EBMP is usually quite low. 

 Vinegar Residue (VR) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

VR 

92.40 91.80 22.90 0.00 11.90 11.20 12.40 23.30 33.00 8.20 468.00 253.00 0.54 
92.37 91.57 22.68       9.73 28.15 32.56   473.34 242.69 0.51 
96.60 94.38 18.68       9.20 22.96 38.90 5.62 433.94 203.91 0.47 
91.41 91.65 23.06       9.58 28.38 32.77         

Table 4.16: Complete Database of Vinegar Residue (VR) [23,71–73] 

The vinegar residue is a typical solid by-product of the vinegar production process. It 
is characterized by a very high C/N ratio and a high content of lignocellulosic 
compounds. Few information has been found about lipids, proteins and SSEDC 
contents.  

4.2.1.3 Organic Waste 

 Food Waste (FW) 

Food waste includes all the animal and vegetable food waste coming from houses, 
kitchens and supermarkets, thus it is a very abundant substrate. FW contains a high 
quantity of readily biodegradable organic materials, so anaerobic digestion is an ideal 
solution for energy recovery from it.  
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

FW 

27.90 94.27 18.10                     
16.60 94.52 18.83 4.74 19.33 19.50         550.87     
27.45 91.99 16.81                     
19.69 67.75                       
27.60 68.88                       
26.30 86.30 20.30 35.50 16.00 2.90 4.30 15.20 9.20 16.90   541.00   
41.00 84.00   21.00 10.08 43.68 1.68 10.08 5.88 7.60 582.00 572.00 0.98 
24.00 93.00   13.02 4.65 49.29 4.65 3.00 9.30 16.09 518.00 425.00 0.82 
22.17 80.60   33.82 16.88 21.60               
16.93 90.02 21.82 16.50 13.00             264.00   
24.91 92.77 18.24 23.00 17.30             276.00   
21.14 93.33 19.03 27.60 16.40             306.00   
22.71 91.24 18.90 30.40     1.80 4.12 9.68     507.00   
29.00 95.00                   290.00   
23.90 91.30 16.30       0.60 2.00 2.40 9.70 543.50 526.80 0.97 

Table 4.17: Complete Database of Food Waste (FW) [16,18,22,23,44,48,64,67,68,74–76]  

It usually contains a high amount of lipids, proteins and SSEDC, which are easily 
degradable compounds, and a quite low quantity of lignin, cellulose and 
hemicellulose; the C/N ratio, however, is usually quite low and comprised between 
about 16 and 22 depending on the composition. Thanks to the high organic content the 
EBMP is usually high, making this substrate one of the most promising for AcoD.  

 Fruit and Vegetable Food Waste (FVFW) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

FVW 

3.70 89.20 13.10 0.00 20.60 30.90 7.90 12.00 5.90 10.80 476.00 342.00 0.72 
4.40 89.32 22.66 5.59 12.52 13.85           338.37   
4.50 89.11 16.27 5.30 12.46 30.30           363.00   
7.86 91.60   1.28 16.31 40.85 0.00 33.16 0.00 8.40 397.13     
7.94 84.89 17.21 1.09 11.80 24.50               

10.80 78.00 6.84 1.36 26.90                 

Table 4.18: Complete Database of Fruit and Vegetable Food Waste (FVFW) [19], [23], 
[78], [80], [81] 

This substrate includes food waste of vegetable origin only. With respect to FW, the 
lipids content of FVFW is lower due to the absence of animal-based food residues, and 
the C/N ratio is often lower than FW. Consequently, the EBMP is generally lower than 
the one of FW. 
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 Organic Fraction of Municipal Solid Waste (OFMSW) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

OFMSW 

23.00 74.10 28.67                     
46.80 84.19 51.80               494.30 201.50 0.41 
29.40 77.21 16.50                     
18.40 61.41 11.40                 314.00   
46.30 75.38 27.00                     
37.40 90.11 13.30                     
15.00 88.67 36.36 8.50 6.87   8.50 15.50 9.50 11.50   320.00   
21.10 82.46 12.80                     
25.90 95.37 17.00               460.00     
28.30 77.74 14.00                     
42.20 71.09 21.00               412.00     
52.83 63.52 25.00 4.36 8.26 21.60 11.69 16.01 3.30 34.79 557.00     
  93.00   11.00 15.00 48.30 5.00 9.00 5.10 6.60   430.00   
  93.00   31.00 17.00 25.10 4.90 10.00 5.00 7.00       
  92.00   19.00 16.00 36.20 5.00 11.00 5.10 7.70   490.00   
29.40 95.30   19.00 18.10         4.70 549.00     

Table 4.19: Complete Database of OFMSW [12,20,79–83] 

The OFMSW represents a household waste that generally includes food waste, garden 
waste, paper, and textile residues. Its composition varies depending on a range of 
factors, reflecting the population density, the location and season of production. 
Globally, an enormous amount of OFMSW is generated, most of which is burnt or 
landfilled; its uncontrolled decomposition contributes to climate change and pollution 
of soil, water, and air. Thanks to its high organic content anaerobic digestion is an 
environmentally friendly solution to recover OFMSW, preventing its related pollution.  

Due to the extreme variability in its composition, all the parameters characterizing 
OFMSW can considerably vary depending on its source: the C/N ratio may vary from 
low values such as 11.4 to relatively high values as 51.8, then an average value with a 
certain distribution will be defined; the TS may considerably change depending on the 
moisture content of the waste; the organic composition is variable too.  The EBMP is 
usually quite high due to the presence of a high amount of organic matter, however it 
is meanly lower than the one of FW since in this case the substrate contains a higher 
amount of hardly degradable fractions (e.g., lignin content).  

 Fish Waste (FIW) 

Fish waste consists of residues coming from fish processing, such as heads, tails, fish 
bones and viscera. 
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

FIW 

36.90 73.17   7.59 55.77 9.81              
60.00 97.47   86.01 15.00   1.08 0.25 0.52         
31.00 83.40 23.20 23.35 22.02           604.00 571.00 0.95 
26.60 86.40 24.70 23.16 26.96           601.00 516.00 0.86 
42.70 97.40 33.30 53.86 17.82           761.00 496.00 0.65 
30.00 69.80   5.24 20.45           484.00 312.00 0.64 
33.60 63.40   0.19 18.26           440.00 136.00 0.31 
34.30 84.50 20.40 21.46 23.66           590.00 445.00 0.75 

Table 4.20: Complete Database of Fish Waste (FIW) [6,31,84] 

This substrate contains a high quantity of lipids, and despite the high proteins content, 
it shows quite high C/N ratios, that fall into the optimal range of 20÷40. The 
lignocellulosic content is generally low, while no information is available about the ash 
content. The EBMP is generally high, which makes this substrate very promising for 
anaerobic digestion.  

 Slaughterhouse Residue (SR) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

SR 

16.97 82.56   20.80 12.45   9.64 20.39 31.11     326.60   
16.20 91.70   14.38 17.49   7.95 8.97 14.18     217.45   
29.70 86.20 8.31 15.30 40.10           644.00 411.00 0.64 
29.70 85.39 21.59 4.00 15.10           517.00 357.00 0.69 
      28.40 15.00         13.40       
      11.00 16.40         21.90       

Table 4.21: Complete Database of Slaughterhouse Residue (SR) [31,85,86] 

SR represents the residues coming from meat processing – for example, viscera, 
intestine and digestive tract contents – of animals such as pigs, cows, chicken, sheep, 
goats, and rabbits. Few information are available about this substrate; just two values 
of C/N ratio were found, one of 8.21 and one of 21.59: this suggests that the C/N ratio 
may vary depending on the meat’s nature, and it is generally quite low. Lipids and 
proteins content is generally high, and high contents of lignin, cellulose and 
hemicellulose are observed too, probably due to the presence of lignocellulosic 
bedding materials. No information about SSEDC was available.  The EBMP is usually 
quite high.  

 Blood (BL) 

Blood is a slaughterhouse waste as well, but it is considered separately due to some 
characteristics that distinguish it from other slaughterhouse wastes.  
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

BL 

21.30 99.11 3.41               317.00 219.00 0.69 
22.33 21.34 3.36               321.00 231.00 0.72 
18.00 94.44 3.24 1.10 93.00   0.00 0.00 0.00   539.00     
10.80 86.11 2.80 0.20                   
19.00                 1.00       
22.00 91.00   2.00                   
13.24 95.38 3.41 3.00 89.69           512.00 250.00 0.49 
19.70 95.60     96.50                 
17.90 93.85   0.30 88.60         2.45       
18.00 94.44 3.24 1.10 93.00           538.00 443.00 0.82 
23.31 95.80 3.20 0.30 94.40                 
13.50   3.15               518.00 323.00 0.62 

Table 4.22: Complete Database of Blood (BL) [61,85,87,88] 

The C/N ratio of blood is extremely low, usually around 3: this because the most 
abundant component of Blood are proteins, which can even reach 96.5 %TS. No 
information about SSEDC is available, while the content of all the other compounds is 
generally low if compared to proteins. Although the C/N ratio is very low the EBMPs 
are quite high.  

 Pre-Cooked Waste (PCW) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

PCW 
42.26 96.47   3.28 15.92 77.28 0.00 0.00 0.00 3.53   326.10   
38.18 87.76   12.29 16.94 58.54 0.00 0.00 0.00 12.24 473.43 316.20 0.67 
41.50 95.00 22.68 1.36 13.80 57.90               

Table 4.23: Complete Database of Pre-Cooked Waste (PCW) [19,78] 

This substrate involves precooked starchy food, such as pasta, generally rejected from 
the quality control line. Few information is available about PCW: only one datum was 
found for the C/N ratio, equal to 22.68; The SSEDC content represents the highest one, 
followed by proteins and lipids, while no lignocellulosic compounds are present. The 
EBMP is generally quite high.  

 Exhaust Kitchen Oil (EKO) 
This substrate represents exhaust oil – of both animal and vegetable origin – coming 
from kitchens. EKO is mainly composed of lipids, that represent nearly the 100 %TS, 
and the C/N ratio is usually quite high.  
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

EKO 

99.10 99.78   99.78 0.00 0.00 0.00 0.00 0.00 0.22 980.00 648.50 0.66 
75.40 95.00 48.50               629.00 586.00 0.93 
99.60 99.90   99.90 0.00 0.00 0.00 0.00 0.00 0.10   811.00   
99.70 99.90   99.90 0.00 0.00 0.00 0.00 0.00 0.10   776.00   

Table 4.24: Complete Database of Exhaust Kitchen Oil (EKO) [19,23,26] 

Due to these characteristics, both the TBMP and the EBMP are extremely high, then 
this substrate represents a sort of “outlier” with respect to the other substrates, and it 
won’t be considered during the analysis of the database.  

4.2.1.4 Sludges 

 Sewage Sludge (SS) 

Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

SS 

26.00 50.70 10.70                     
9.45 60.30 10.00 6.50 14.56 0.00         370.59     
1.91 74.35                       
6.98 81.52 8.90               333.90 164.50 0.49 

30.70 88.21                 527.00 342.00 0.65 
3.50 65.43 10.59 7.47 22.10 6.95           248.77   
5.43 42.17 6.14 2.73 19.12                 

16.90 57.60 6.80       5.60 1.90 7.10 43.40 709.50 254.60 0.36 
33.00 69.70 10.00               298.00     

1.60 75.00 5.40               305.60 200.39 0.66 

Table 4.25: Complete Database of Sewage Sludge (SS) [12,20,22,26,67,74,75,77,80,89] 

Sewage sludge represents the active sludge coming from wastewater treatment plants. 
This substrate is extremely abundant and contains pathogens such as viruses and 
bacteria, therefore it needs to be treated before being disposed and used, for example, 
as fertilizer. The quite high organic content allows it to be suitable for anaerobic 
digestion, even if C/N ratio is usually low and it is highly contaminated by heavy 
metals and ashes. Then, generally the EBMP is not so high. Its composition is very 
variable, it depends on the sludge source and few information is available. 

 Food Industry Sludge (FIS) 

This type of sludge can be distinguished from SS since it derives from the treatment of 
food industry wastewaters. 
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Substrate 
TS  VS C/N  LIP PROT  SSEDC  LIG  CELL HCELL  ASH  TBMP  EBMP BD  
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-] 

FIS 

13.52 69.67 5.65               510.00 397.00 0.78 
7.65 89.80 11.35               493.00 415.00 0.84 

24.24 74.38 18.05               824.00 680.00 0.83 
39.14 95.58 53.40               824.00 706.00 0.86 
37.88 61.25 5.05               549.00 399.00 0.73 

9.10 94.50                       
11.30 75.00 7.63 3.15 31.90                 

0.60 66.67 5.50               197.50 80.20 0.41 
2.40 54.17 9.20               294.90 149.40 0.51 
3.80 89.47 9.20               411.80 246.81 0.60 

10.70 80.37 21.80                     

Table 4.26: Complete Database of Food Industry Sludge (FIS) [26,48,78,89] 

Actually, the quantity and the quality of the information collected about this substrate 
is quite poor, then it won’t be considered for the building of the Primary Averaged 
Database, as it will be shown in the next section.  

4.2.2 Primary Averaged Database  
In order to build a first version of an averaged database, the data gathered for each 
substrate were averaged – except for BD – by using the Excel tool AVERAGE, while 
standard deviations were calculated using the tool STDEV.P. The mean value of the 
BD of the substrates, instead, was calculated with Equation 4.2 by dividing the mean 
EBMP for the mean TBMP. 

𝐵𝐷 =
𝐸𝐵𝑀𝑃

𝑇𝐵𝑀𝑃
 (4.2) 

The averaged values and their standard deviations are reported in Tables 4.27, 4.28 
and 4.29.  

 

 

 



Database Building and Data Analysis 41 

 

 

 

Table 4.27: First version of the Prim
ary A

veraged D
atabase for M

anures 

Calculated
TS 

VS
C/N

 
LIP

PRO
T 

SSED
C 

LIG
 

CELL
H

CELL 
A

SH
 

TBM
P 

EBM
P

BD
 

quantity
[%

]
[%

TS]
[-]

[%
TS]

[%
TS]

[%
TS]

[%
TS]

[%
TS]

[%
TS]

[%
TS]

[m
L/gVS]

[m
L/gVS]

[-]
A

VG
18.24

73.56
18.15

3.96
9.28

23.54
10.38

15.68
12.74

26.48
486.33

224.66
0.46

SD
7.77

8.14
4.37

3.97
3.53

14.75
4.19

3.55
7.28

10.96
65.46

60.27
-

A
VG

19.15
72.73

11.62
6.25

16.82
34.19

3.60
8.51

14.83
22.66

573.50
388.33

0.68

SD
11.48

7.60
3.37

3.13
6.48

13.31
2.10

3.06
8.63

5.70
113.24

100.83
-

A
VG

25.03
78.36

10.30
11.84

16.13
31.88

9.30
18.99

18.08
531.50

244.56
0.46

SD
11.21

3.17
0.00

5.84
1.65

0.81
5.39

3.92
4.95

4.88
42.71

-

A
VG

30.60
73.30

9.24
0.34

21.03
13.40

3.51
21.43

17.10
23.45

485.96
289.71

0.60

SD
9.63

5.61
2.08

0.48
4.67

3.70
1.58

2.02
8.63

1.55
75.37

93.97
-

A
VG

63.24
64.69

9.99
0.95

23.87
19.65

7.90
24.93

21.01
14.26

544.05
265.27

0.49

SD
12.15

7.97
1.87

1.01
5.93

0.00
1.97

3.75
4.52

3.39
0.00

133.21

A
VG

35.05
74.12

13.30
1.26

10.18
11.90

14.15
19.70

16.08
426.77

197.18
0.46

SD
12.40

10.21
1.15

0.00
0.00

3.31
2.52

6.43
0.00

80.23
76.47

A
VG

64.79
77.64

17.91
3.25

8.32
35.51

12.71
13.37

18.09
15.30

301.70
202.63

0.67

SD
16.67

10.54
1.76

0.62
6.11

0.00
4.70

0.04
1.42

7.15
11.70

40.21

M
acro-Category

M
A

N

D
MPMSMCMCL

SH
M

G
M

Substrate



42 Database Building and Data Analysis 

 

 

 

 
Ca

lc
ul

at
ed

TS
 

VS
C/

N
 

LI
P

PR
O

T 
SS

ED
C 

LI
G

 
CE

LL
H

CE
LL

 
A

SH
 

TB
M

P 
EB

M
P

BD
 

qu
an

ti
ty

[%
]

[%
TS

]
[-

]
[%

TS
]

[%
TS

]
[%

TS
]

[%
TS

]
[%

TS
]

[%
TS

]
[%

TS
]

[m
L/

gV
S]

[m
L/

gV
S]

[-
]

A
VG

89
.6

2
91

.5
6

70
.5

4
0.

00
4.

05
4.

55
9.

94
43

.7
8

28
.3

4
5.

73
42

7.
75

17
6.

12
0.

41

SD
3.

83
5.

30
20

.6
8

0.
00

1.
55

2.
05

4.
51

2.
79

2.
70

0.
00

47
.4

9
10

4.
71

A
VG

90
.1

0
81

.7
5

74
.1

8
0.

00
2.

50
20

.8
0

14
.4

0
34

.0
5

18
.4

5
48

5.
00

49
.0

0
0.

10

SD
0.

10
0.

66
26

.9
2

0.
00

0.
00

0.
00

1.
40

4.
65

0.
75

0.
00

0.
00

A
VG

38
.1

1
82

.0
3

26
.4

0
1.

38
11

.1
0

9.
90

26
.4

0
19

.5
0

22
.6

8
45

2.
45

42
1.

92
0.

93

SD
32

.4
8

9.
50

9.
41

0.
72

3.
55

0.
00

0.
00

0.
00

9.
92

9.
42

33
.8

2

A
VG

90
.0

3
93

.8
5

69
.4

0
0.

00
1.

59
3.

55
7.

72
42

.1
9

31
.0

2
3.

50
42

3.
91

22
4.

83
0.

53

SD
3.

35
3.

96
28

.6
5

0.
00

0.
91

3.
55

2.
28

4.
10

6.
59

0.
80

43
.8

9
76

.6
3

A
VG

36
.6

7
96

.3
6

59
.5

5
3.

70
8.

32
41

.9
7

2.
27

26
.4

3
38

.6
1

5.
36

44
7.

10
38

8.
40

0.
87

SD
4.

22
0.

14
0.

45
1.

00
0.

87
2.

27
0.

47
4.

03
3.

23
0.

00
3.

72
19

.8
7

A
VG

86
.8

4
92

.7
2

67
.2

6
2.

20
3.

63
16

.6
2

7.
28

36
.9

1
27

.5
8

7.
09

49
0.

20
24

2.
08

0.
49

SD
4.

76
1.

35
12

.7
6

3.
11

1.
53

15
.3

9
3.

10
7.

45
3.

67
1.

64
53

.7
4

43
.6

9

A
VG

13
.4

5
93

.2
0

36
.0

9
0.

74
13

.3
9

72
.9

9
10

.3
5

8.
76

0.
00

4.
21

42
2.

00
34

4.
13

0.
82

SD
4.

32
3.

27
5.

36
0.

00
2.

65
0.

00
10

.3
5

0.
00

0.
00

3.
63

0.
00

5.
75

A
VG

65
.8

0
88

.0
4

53
.7

6
2.

58
7.

95
29

.9
9

14
.2

5
21

.7
1

17
.6

2
12

.2
7

50
1.

97
18

9.
26

0.
38

SD
32

.1
9

3.
30

17
.6

5
2.

65
2.

49
8.

29
6.

48
3.

36
8.

08
3.

23
2.

21
46

.3
4

A
VG

93
.2

0
92

.3
5

21
.8

3
0.

00
11

.9
0

11
.2

0
10

.2
3

25
.7

0
34

.3
1

6.
91

45
8.

43
23

3.
20

0.
51

SD
2.

01
1.

17
1.

82
0.

00
0.

00
0.

00
1.

27
2.

57
2.

66
1.

29
17

.4
5

21
.1

3

A
IW

ST RH SB
B

D
G

M
R

CS PW YW VR

M
ac

ro
-C

at
eg

or
y

Su
bs

tr
at

e

Ta
bl

e 
4.

28
: F

ir
st

 v
er

si
on

 o
f t

he
 P

ri
m

ar
y 

A
ve

ra
ge

d 
D

at
ab

as
e 

fo
r A

gr
o-

In
du

st
ri

al
 W

as
te

 



Database Building and Data Analysis 43 

 

 

 
Calculated

TS 
VS

C/N
 

LIP
PRO

T 
SSED

C 
LIG

 
CELL

H
CELL 

A
SH

 
TBM

P 
EBM

P
BD

 
quantity

[%
]

[%
TS]

[-]
[%

TS]
[%

TS]
[%

TS]
[%

TS]
[%

TS]
[%

TS]
[%

TS]
[m

L/gVS]
[m

L/gVS]
[-]

A
VG

24.75
87.66

18.70
22.84

14.21
27.39

2.61
6.88

7.29
12.57

548.59
411.98

0.75

SD
5.70

8.55
1.58

9.59
4.48

16.97
1.59

5.02
2.80

4.00
22.82

120.71

A
VG

6.53
87.02

15.22
2.44

16.76
28.08

3.95
22.58

2.95
9.60

436.57
347.79

0.80

SD
2.54

4.50
5.20

2.18
5.46

8.85
3.95

10.58
2.95

1.20
39.44

10.86

A
VG

32.00
82.16

22.90
15.48

13.54
32.80

7.02
12.30

5.60
12.05

494.46
351.10

0.71

SD
11.53

10.74
11.39

8.74
4.35

10.45
2.71

2.89
2.07

10.37
54.54

100.24

A
VG

36.89
81.94

25.40
27.61

24.99
9.81

1.08
0.25

0.52
580.00

412.67
0.71

SD
9.83

11.60
4.82

26.99
12.14

0.00
0.00

0.00
0.00

102.22
147.43

A
VG

23.14
86.46

14.95
15.65

19.42
8.80

14.68
22.65

17.65
580.50

328.01
0.57

SD
6.56

3.31
6.64

7.62
9.37

0.85
5.71

8.47
4.25

63.50
70.63

A
VG

18.26
86.71

3.23
1.14

69.91
0.00

0.00
0.00

1.73
457.50

293.20
0.64

SD
3.78

22.03
0.19

0.96
33.55

0.00
0.00

0.00
0.73

98.43
83.15

A
VG

40.65
93.08

22.68
5.64

15.55
64.57

0.00
0.00

0.00
7.88

473.43
321.15

0.68

SD
1.77

3.81
0.00

4.76
1.31

8.99
0.00

0.00
0.00

4.36
0.00

4.95

A
VG

93.45
98.64

48.50
99.86

0.00
0.00

0.00
0.00

0.00
0.14

804.50
705.38

0.88

SD
10.42

2.10
0.00

0.06
0.00

0.00
0.00

0.00
0.00

0.06
175.50

91.69

A
VG

13.55
66.50

8.57
5.57

18.59
3.47

5.60
1.90

7.10
43.40

424.10
242.05

0.57

SD
11.59

13.42
2.00

2.05
3.10

3.47
0.00

0.00
0.00

0.00
148.88

59.90

A
VG

14.58
77.35

14.68
3.15

31.90
513.03

384.18
0.75

SD
12.81

13.22
13.93

0.00
0.00

209.91
211.78

SL

SSFIS

M
acro-Category

Substrate

O
W

FW

FVW

O
FM

SW

FIWSRBL

PCW

EKO

Table 4.29: First version of the Prim
ary A

veraged D
atabase for O

rganic W
aste and Sludges 
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As it can be observed in Tables 4.27, 4.28 and 4.29, some of the substrates show missing 
data (highlighted in red colour), which for the sake of completeness should be 
calculated. Moreover, the sum of the percentages of lipids, proteins, SSEDC, lignin, 
cellulose, hemicellulose, and ash should be equal to 100%TS, but after the averaging 
process their final sum could be lower or exceed this value. Therefore, a re-elaboration 
of data was done in two steps: 

1) First, the attention was focused on the imputation of the missing mean values, 
which are present in: 
o Sow Manure (SM) – ash content 
o Sheep Manure (SHM) – SSEDC content 
o Rice Husk (RH) – ash content  
o Sugar Beet By-products (SBB) – SSEDC content 
o Fish Waste (FIW) – ash content 
o Slaughterhouse Residue (SR) – SSEDC content 
o Blood (BL) – SSEDC content 
o Food Industry Sludge (FIS) – SSEDC, lignin, cellulose, hemicellulose and ash 

contents 

Since FIS shows five missing values, this substrate was excluded from the database 
due to the lack of data. Besides FIW, all the other substrates have only one missing 
data: ash content or SSEDC content. Then, since the sum of the components must be 
100%TS, ash content – for SM, RH and FIW – and SSEDC content – for SHM, SBB, SR 
and BL – were calculated respectively with Equations 4.3 and 4.4: 

𝐴𝑆𝐻 = 100 − (𝐿𝐼𝑃 + 𝑃𝑅𝑂𝑇 + 𝑆𝑆𝐸𝐷𝐶 + 𝐿𝐼𝐺 + 𝐶𝐸𝐿𝐿 + 𝐻𝐶𝐸𝐿𝐿) (4.3) 

𝑆𝑆𝐸𝐷𝐶 = 100 − (𝐿𝐼𝑃 + 𝑃𝑅𝑂𝑇 + 𝐿𝐼𝐺 + 𝐶𝐸𝐿𝐿 + 𝐻𝐶𝐸𝐿𝐿 + 𝐴𝑆𝐻) (4.4) 

2) After having obtained the missing values, the attention was shifted to the other 
substrates to normalize their organic components percentages to make their sum 
be equal to 100%TS, imposing Equation 4.5. 

𝐿𝐼𝑃 + 𝑃𝑅𝑂𝑇 + 𝑆𝑆𝐸𝐷𝐶 + 𝐿𝐼𝐺 + 𝐶𝐸𝐿𝐿 + 𝐻𝐶𝐸𝐿𝐿 + 𝐴𝑆𝐻 = 100  (4.5) 

This was done by applying a simple relationship that allows to preserve the relative 
ratios between the component contents and to obtain a global sum of 100%TS. 
Supposing to refer to a generic organic component (i.e., LIP, PROT, SSEDC, LIG, 
CELL, HCELL or ASH) simply as 𝐶𝑂𝑀𝑃, the formula to calculate the normalized 
percentage of that component is given by Equation 4.6. 

𝐶𝑂𝑀𝑃 =
100 ∙ 𝐶𝑂𝑀𝑃

(𝐿𝐼𝑃 + 𝑃𝑅𝑂𝑇 + 𝐿𝐼𝐺 + 𝐶𝐸𝐿𝐿 + 𝐻𝐶𝐸𝐿𝐿 + 𝐴𝑆𝐻)
 (4.6) 
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The final version of the Primary Averaged Database is shown in Table 4.30 (standard 
deviations are not reported in this case). In this final averaged database, no missing 
values are observed, and all the constraints are respected. 

FIS is not reported since it has not been possible to collect enough data about it; the 
line concerning EKO is highlighted in yellow because it was decided not to consider it 
during the following data analysis, being this substrate composed almost completely 
of lipids and having a mean EBMP significantly higher than the other substrates, then 
it has been considered as an “outlier”.  
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Table 4.30: Final version of the Primary Averaged Database 

TS VS C/N LIP PROT SSEDC LIG CELL HCELL ASH TBMP EBMP BD 
[%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-]

DM 18.24 73.56 18.15 3.88 9.09 23.07 10.17 15.36 12.49 25.94 486.33 224.66 0.46

PM 19.15 72.73 11.62 5.85 15.74 31.99 3.37 7.97 13.88 21.20 573.50 388.33 0.68

SM 25.03 78.36 10.30 9.40 12.81 25.32 7.38 15.08 14.36 15.65 531.50 244.56 0.46

CM 30.60 72.26 8.93 0.34 20.98 13.36 3.50 21.37 17.06 23.39 485.96 289.71 0.60

CL 63.24 64.69 9.99 0.94 23.64 19.47 7.83 13.18 20.82 14.12 544.05 265.27 0.49

SHM 35.05 74.12 13.30 1.26 10.18 26.74 11.90 14.15 19.70 16.08 426.77 197.18 0.46

GM 64.79 77.64 17.91 3.05 7.81 33.33 11.93 12.55 16.98 14.36 301.70 202.63 0.67

ST 89.62 91.56 70.54 0.00 4.20 4.72 10.32 45.42 29.40 5.94 427.75 176.12 0.41

RH 90.10 81.75 74.18 0.00 2.50 20.80 14.40 34.05 18.45 9.80 485.00 49.00 0.10

SBB 38.11 82.03 26.92 1.38 11.10 9.05 9.90 26.40 19.50 22.68 452.45 421.92 0.93

DG 90.03 93.85 69.40 0.00 1.78 3.96 8.61 47.10 34.63 3.91 423.91 224.83 0.53

MR 36.67 96.36 59.55 2.92 6.57 33.14 1.79 20.87 30.48 4.23 447.10 388.40 0.87

CS 86.84 92.72 67.26 2.17 3.58 16.41 7.18 36.43 27.23 7.00 490.20 242.08 0.49

PW 13.45 93.20 36.09 0.73 13.27 72.32 0.84 8.67 0.00 4.17 422.00 344.13 0.82

VR 93.20 92.35 21.83 0.00 11.87 11.17 10.20 25.64 34.22 6.89 458.43 233.20 0.51

YW 60.10 87.31 53.24 2.44 7.52 28.38 11.83 20.05 18.17 11.61 501.97 189.26 0.38

FW 24.75 87.66 18.70 24.35 15.15 29.21 2.78 7.34 7.77 13.40 548.59 411.98 0.75

FVFW 6.53 87.02 15.22 2.82 19.41 32.52 4.57 26.15 3.42 11.11 436.57 347.79 0.80

OFMSW 32.00 82.16 22.90 15.67 13.70 33.20 7.10 12.45 5.67 12.20 494.46 351.10 0.71

FIW 36.89 81.94 25.40 27.61 24.99 9.81 1.08 0.25 0.52 35.74 580.00 412.67 0.71

SR 23.14 86.46 14.95 15.65 19.42 1.16 8.80 14.68 22.65 17.65 580.50 328.01 0.57

BL 18.26 86.71 3.23 1.14 92.53 4.60 0.00 0.00 0.00 1.73 457.50 293.20 0.64

PCW 40.65 93.08 22.68 6.02 16.61 68.95 0.00 0.00 0.00 8.42 473.43 321.15 0.68

EKO 93.45 98.64 48.50 99.86 0.00 0.00 0.00 0.00 0.00 0.14 804.50 705.38 0.88

SS 13.55 66.50 8.57 6.50 21.71 4.06 6.54 2.22 8.29 50.68 424.10 242.05 0.57

Substrate
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4.2.3 Secondary Averaged Database 
The Secondary Averaged Database was simply obtained by averaging the mean values 
of the substrates for each macro-category, so to obtain mean values for Manure, Agro-
Industrial Waste, Organic Waste and Sludges.   

 

 

The SD of Sludges is equal to zero since, after having removed FIS from the database, 
only one substrate (SS) has remained.  

4.3 Data Analysis 
The Primary Averaged Database shown in Table 4.30 was analysed to understand 
which are the correlations between parameters and why certain substrates are 
characterized by a higher EBMP than others. First, two-dimensional plots were created 
in Excel to search dependencies on single variables, then three-dimensional plots were 
created in MATLAB – using a multi-dimensional regression tool – when a certain 
parameter seemed to depend on more variables. Finally, a four-dimensional function 
for the EBMP was also developed on MATLAB. 

4.3.1 2D Plots 
4.3.1.1 C/N ratio 

First, the attention was focused on the search of the dependencies of the C/N ratio on 
other parameters by plotting the C/N ratios of the substrates of the Primary Averaged 
Database as function of the other parameters: in particular, C/N ratio was found to 
have a clear correlation with the content of proteins, since – together with eventual free 
ammonia – they represent the main nitrogen carrier. The C/N ratio as function of the 
proteins content is represented in Figure 4.2, where the points represent the single 

Calculated TS VS C/N LIP PROT SSEDC LIG CELL HCELL ASH TBMP EBMP BD 
Quantity [%] [%TS] [-] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [%TS] [mL/gVS] [mL/gVS] [-]

AVG 36.59 73.34 12.88 3.53 14.32 24.75 8.01 14.24 16.47 18.68 478.54 258.90 0.54

SD 18.20 4.15 3.49 2.98 5.64 6.44 3.32 3.71 2.85 4.42 84.67 61.06 -

AVG 63.11 89.85 57.15 1.21 6.31 23.60 8.11 29.87 22.23 8.67 456.30 254.47 0.56

SD 29.07 5.17 19.57 7.67 4.72 19.69 4.63 12.86 10.78 5.99 40.43 122.16 -

AVG 41.03 87.87 21.34 23.39 24.64 15.21 4.32 10.81 9.28 12.36 545.07 384.29 0.71

SD 31.35 5.10 12.09 30.52 26.56 13.26 3.75 10.19 11.72 10.43 111.41 132.74 -

AVG 13.55 66.50 8.57 6.50 21.71 4.06 6.54 2.22 8.29 50.68 424.10 242.05 0.57

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -

Macro-Category

Organic Waste

Sludges

Manure

Agro-Industrial Waste

Table 4.31: Secondary Averaged Database 
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substrates – characterized by a certain C/N and PROT, according to the Primary 
Averaged Database – and the curve represents the data trendline.  

 

  

 

 

 

 

 

 

 

 

 

As it can be observed in Figure 4.2, increasing the proteins content, the C/N ratio 
decreases due to the increase of nitrogen content. In particular, the substrate with the 
lowest C/N ratio is blood, which is on average composed of 92.5 %TS of proteins, while 
the substrate with highest C/N ratio is rice husk, which contains 2.50 %TS of proteins.  

4.3.1.2 Biodegradability (BD) 

Dependencies of BD on other parameters were searched to validate the importance of 
this parameter and to better understand its meaning.  

As shown in Figure 4.3, the first dependency found for BD is on the lignin content. 
Indeed, BD decreases at increasing the amount of lignin because it represents the main 
hardly degradable component of substrates, reducing the organic content available for 
degradation.  

 

Figure 4.2: C/N ratio as function of Proteins content; the points represent the 
substrates of the database, and the curve represents the data trendline 
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Furthermore, BD also depends on the C/N ratio (Figure 4.4), showing a maximum 
when the C/N ratio is comprised between the optimal range: this stresses the 
importance of optimizing the C/N ratio when performing AcoD.   

 

4.3.1.3 Experimental Biomethane Potential (EBMP) 

Lastly, the dependencies of EBMP were analysed to understand how parameters 
influence the methane production of the substrates. 

Figure 4.3: Biodegradability as function of Lignin content 

Figure 4.4: Biodegradability as function of the C/N ratio 



50 Database Building and Data Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 2D plot of the EBMP as function of the C/N ratio (Figure 4.5) confirms again that 
the optimal range of C/N is between 20 and 40, where the EBMP shows a maximum. 
The fitting is however quite poor, and this suggests that the EBMP depends on other 
parameters too.  

 

  

 

Figure 4.5: EBMP as function of the C/N ratio 

Figure 4.6: EBMP as function of Biodegradability (a) and on Lignin content (b) 

(a) (b) 
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As predictable from the definition of Biodegradability, the EBMP increases at 
increasing the BD of the substrates, and highly degradable substrates generally show 
high EBMPs too (Figure 4.6 (a)). Furthermore, since BD decreases with the lignin 
content, the EBMP is characterized a similar trend, as shown in Figure 4.6 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.7, the trend of EBMP as function of lipids is reported. The fitting in this case 
is quite poor, but it shows how, increasing the lipids content, the EBMP increases too 
reaching a sort of plateau. Actually, in literature it has been demonstrated that the 
EBMP should reach a maximum as function of lipids content, since too high amounts 
of lipids lead to inhibition by VFA accumulation [93].  

Finally, the dependence of EBMP on VS was analysed. In Figure 4.8 (a), it apparently 
seems that there is no correlation between EBMP and VS: this because the VS 
represents the overall organic content of the TS, without considering the real amount 
of VS that can be actually degraded. Therefore, it has been defined a parameter 
representing the available fraction of TS, named corrected VS (𝑉𝑆 ), that is calculated 
by multiplying the VS for the BD of the substrate: 

𝑉𝑆 = 𝑉𝑆 ∙ 𝐵𝐷 (4.7) 

Figure 4.7: EBMP as function of Lipids content 
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By plotting the EBMP as function of 𝑉𝑆  (Figure 4.8 (b)) an almost linear fitting is 
observed, showing an actual dependence on this parameter.  

4.3.2 3D Plots 
Starting from the 2D plots described in Section 4.3.1, 3D plots expressing the 
dependence of BD and EBMP on two variables at a time can be obtained by using 
regression tools. Once having selected a dependent variable 𝑌 (e.g., EBMP) and two 
independent variables 𝑥  and 𝑥  (e.g., C/N ratio and BD), 3D surfaces were obtained 
by performing a multi-dimensional regression analysis using the MATLAB tool 
rstool. This tool allows to calculate the coefficients 𝛽  of the surface that better 
interpolates the points, giving the possibility of choosing between four possible 
models: 

 Linear model: constant and linear terms 

𝑌 = 𝛽 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥  (4.8) 

 Pure Quadratic model: constant, linear, and squared terms 

𝑌 = 𝛽 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥  (4.9) 

 Interaction model: constant, linear, and interaction terms 

𝑌 = 𝛽 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 ∙ 𝑥  (4.10) 

 Full Quadratic model: constant, linear, interaction, and squared terms 

𝑌 = 𝛽 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥  (4.11) 

(a) (b) 

Figure 4.8: EBMP as function of VS (a) and 𝑉𝑆  (b) 
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4.3.2.1 Biodegradability (BD) 

The first 3D plot describes the biodegradability as function of the C/N ratio and of the 
lignin content, merging the two correlations shown in Section 4.3.1.2. In this case, a 
Pure Quadratic model was chosen with the rstool, obtaining the surface represented 
in Figure 4.9 (a), that is described by Equation 4.12.  

𝐵𝐷 = 𝛽 + 𝛽 ∙
𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛  (4.12) 

⎩
⎪
⎨

⎪
⎧

𝛽 = 0.4955
𝛽 = 0.0177
𝛽 = 0.0071

𝛽 = −0.0002
𝛽 = −0.0023

 

In Figure 4.9 (b), the rstool graphical user interface for interactively investigating 
one-dimensional contours of the multidimensional response surface is also reported: 
here, the 2D projections of the surface at two fixed values of the C/N ratio and lignin 
content (that in this case are chosen by default by the tool and are 29.2019 for the C/N 
ratio and 6.7507 %TS for the lignin content) are represented. Furthermore, the dotted 
lines represent the confidence band of the prediction.  

The plots in Figure 4.10 show that BD depends both on the C/N ratio and the 
biodegradability: BD shows indeed a maximum with respect to the C/N ratio and 
decreases by increasing the content of lignin.  
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Figure 4.9: (a) Surface plot of BD as function of C/N ratio and lignin content; (b) 
graphical user interface of rstool with 2D projections of the surface 

(a) 

(b) 

C/N ratio [-] Lignin [%TS] 
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4.3.2.2 Experimental Biomethane Potential (EBMP) 

Since the EBMP depends on a high number of variables, as demonstrated in Section 
4.3.1.3, several 3D plots can be obtained, representing each the EBMP as function of 
two variables at a time.  

o EBMP as function of C/N ratio and Biodegradability 

The first relationship that was considered is the EBMP as function of the C/N ratio and 
BD. The surface model was obtained by choosing a Pure Quadratic model and the 
obtained 3D plot is shown in Figure 4.10 (a), which is represented by Equation 4.13.  

𝐸𝐵𝑀𝑃 = 𝛽 + 𝛽 ∙
𝐶

𝑁
+ 𝛽 ∙ 𝐵𝐷 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐵𝐷  (4.13) 

 

⎩
⎪
⎨

⎪
⎧

𝛽 = 21.6613
𝛽 = 1.2558

𝛽 = 445.7076
𝛽 = −0.0223
𝛽 = −7.8201

 

 

Figure 4.10 (b) represents the rstool interface showing the 2D projections of the 
EBMP at fixed values of its variables, chosen by default by the tool. The dotted lines 
represent the uncertainty of the prediction.  

At fixed BD, the EBMP shows a maximum as function of the C/N ratio, and the value 
of such maximum increases by increasing the biodegradability. This confirms the 
trends that were obtained in the 2D plots of Figures 4.5 and 4.6.   
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Figure 4.10: (a) Surface plot of EBMP as function of C/N ratio and BD; (b) graphical 
user interface of rstool with 2D projections of the surface 
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o EBMP as function of C/N ratio and lignin content 

Since BD decreases by increasing lignin content, a similar plot has been obtained by 
considering the EBMP as function of the C/N ratio and of the lignin content, 
represented in Figure 4.11 (a). In this case, the EBMP shows a maximum with respect 
to the C/N ratio and decreases at increasing lignin content, since the biodegradability 
is reduced.  

For this surface, a Full Quadratic model on rstool was chosen, which is described by 
Equation 4.14.  

𝐸𝐵𝑀𝑃 = 𝛽 + 𝛽 ∙
𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙

𝐶

𝑁
∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛  (4.14) 

 

⎩
⎪
⎨

⎪
⎧

𝛽 = 277.1885
𝛽 = 5.8153
𝛽 = 4.3002

𝛽 = −0.0110
𝛽 = −0.0776
𝛽 = −1.4598

 

 

Figure 4.11 (b) represents the 2D projections obtained with rstool along with the 
confidence band for the fitted response surface. 
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Figure 4.11: (a) Surface plot of EBMP as function of C/N ratio and lignin content; (b) 
graphical user interface of rstool with 2D projections of the surface 
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(b) 

Lignin [%TS]  C/N ratio [-] 
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o EBMP as function of lipids and lignin contents 

Another interesting surface plot is the one representing the EBMP as function of lignin 
and lipids content, which is found with rstool using a Pure Quadratic model (Figure 
4.12 (a) and (b)). As shown in Figure 4.12 (a), the EBMP is characterized by a maximum 
with respect to the lipids content, and the value of such maximum increases when the 
lignin content gets lower. This confirms that when the lipids content is too high, the 
methane production is reduced due to VFA accumulation, therefore an optimal range 
for the lipids content exists.  

The surface represented in Figure 4.12 (a) is described by Equation 4.15. 

𝐸𝐵𝑀𝑃 = 𝛽 + 𝛽 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠 + 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠 + 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛  (4.15) 

 

⎩
⎪
⎨

⎪
⎧

𝛽 = 315.7248
𝛽 = 6.1546
𝛽 = 2.1954

𝛽 = −0.1194
𝛽 = −1.2959
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(a) 

(b) 

Figure 4.12: (a) Surface plot of EBMP as function of lipids and lignin content; (b) 
graphical user interface of rstool with 2D projections of the surface 
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o EBMP as function of Biodegradability and Volatile Solids 

Lastly, the dependence of EBMP on VS and BD (whose product is the so-called 
parameter 𝑉𝑆 , defined by Equation 4.7) has been investigated.  

In this case a Linear model was chosen with the rstool and the resulting surface is 
shown in Figure 4.13 (a), while in Figure 4.13 (b) the 2D projections given by the user 
interface of rstool at fixed values of BD and VS are reported. From Figure 4.12 (a) it 
can be observed that the points distribute themselves on a surface that increases 
linearly with the BD, while the dependence on VS is almost negligible. The surface is 
described by Equation 4.16. 
 

𝐸𝐵𝑀𝑃 = 𝛽 + 𝛽 ∙ 𝑉𝑆 + 𝛽 ∙ 𝐵𝐷 (4.16) 

𝛽 = 74.2090
𝛽 = −0.9394
𝛽 = 489.3507
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(a) 

(b) 

Figure 4.13: (a) Surface plot of EBMP as function of BD and VS; (b) graphical user 
interface of rstool with 2D projections of the surface 
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4.3.3 4D EBMP Function 
Finally, a function of the EBMP depending on three variables was developed, that are 
the C/N ratio and the contents of lignin and lipids. This function was obtained still 
with rstool by choosing a full quadratic model for a three-variables function, which 
can be expressed as Equation 4.17: 

 

𝑌 = 𝛽 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 ∙ 𝑥 + 𝛽 ∙ 𝑥 ∙ 𝑥  

+𝛽 ∙ 𝑥 ∙ 𝑥   + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥 + 𝛽 ∙ 𝑥   (4.17) 

 

Assuming 𝑌 as EBMP, 𝑥  as the C/N ratio, 𝑥  as the lignin content, 𝑥  as the lipids 
content and applying the rstool, the obtained coefficients are reported in Equation 
4.18. 

𝐸𝐵𝑀𝑃 = 𝛽 + 𝛽 ∙
𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠 + 𝛽 ∙

𝐶

𝑁
∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙

𝐶

𝑁
∙ 𝐿𝑖𝑝𝑖𝑑𝑠  

+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠  + 𝛽 ∙
𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠   (4.18) 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝛽 = 249.3464
𝛽 = 7.6699
𝛽 = 5.8635

𝛽 = −2.0732
𝛽 = 0.0041

𝛽 = −0.0901
𝛽 = 0.3424

𝛽 = −0.1014
𝛽 = −1.5273
𝛽 = 0.1586

 

 

In this case a four-dimensional function is obtained, therefore it cannot be represented 
in a plot. The 2D projections returned by rstool user interface are shown in Figure 
4.14 to understand how the EBMP varies as function of the three variables.  

 

 

 



64 Database Building and Data Analysis 

 

 

 

 

In Figure 4.14 it can be observed that the EBMP still shows a maximum with respect 
to the C/N ratio and a decreasing trend with respect to the lignin content; it doesn’t 
show instead a maximum with respect to the lipids content probably due to numerical 
reasons and due to the high number of variables involved in the regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Graphical user interface of rstool with 2D projections of the function 
at fixed values of its variables 

C/N ratio [-] Lignin [%TS] Lipids [%TS] 
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5. Blending Optimization Model 

This chapter is dedicated to the development of the optimization algorithm that 
permits to calculate the optimal blending of substrates, aiming at maximizing the 
methane yield of the co-digestion.  

The blending optimization consists of the maximization of an objective function 
representing the BMP of a mixture of substrates; when maximized, this function 
returns the highest possible BMP and the corresponding optimal mass fractions of the 
substrates. Such function should depend on the properties of the single and blended 
substrates and on their mass fractions and should take into account eventual 
synergistic effects deriving from the co-digestion. Moreover, it must be subjected to 
appropriate constraints when maximized.   

The development of this tool represents a great innovation since it could be useful for 
industries that are interested in increasing their methane production by adopting 
better blending strategies, therefore a suitable programming environment has been 
chosen to make it accessible to the industrial world. 

5.1 Optimization Algorithm Structure 
The structure of the optimization algorithm developed in this project is shown in the 
block diagram in Figure 5.1.  

When two or three substrates are co-digested, this algorithm is able to return the best 
mass fractions of these substrates to obtain the maximum possible methane yield: after 
having defined a first guess composition, the algorithm maximizes the objective 
function to obtain the optimized composition and the corresponding optimal BMP, 
calculated by the objective function itself. At the same time, the maximization must 
respect certain constraints, therefore the algorithm will find a solution that complies 
to them.  
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Figure 5.1: Block diagram of the blending optimization algorithm 
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5.2 Objective Function Definition – AcoD of Two 
Substrates 

A considerable work was done to define an objective function that represents the BMP 
of a mixture of substrates and that shows a maximum in correspondence of the optimal 
blending composition.  

5.2.1 Objective Function Structure  
To define the objective function some considerations were done concerning its 
boundary conditions, considering at first the co-digestion of only two substrates: since 
the objective function should represent the co-digestion BMP, then when a mono-
digestion is performed, it should be equal to the EBMP of the single substrate. 
Therefore, the conditions 5.1 should hold. 

𝑥 = 1,  𝑥 = 0           𝑓 = 𝐸𝐵𝑀𝑃

𝑥 = 0,  𝑥 = 1           𝑓 = 𝐸𝐵𝑀𝑃
(5.1) 

Consequently, the objective function was defined in a way that these two boundary 
conditions would be respected, assuming a structure of the type in Equation 5.2. 
 

𝑓 , = 𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝑥 ∙ 𝐵𝑀𝑃  (5.2) 
 
The last term of Equation 5.2 represents the interaction term of the two substrates: when 
one of the two mass fractions is zero, this term zeroes too; when the two mass fractions 
are nonzero, this term represents the synergy of the co-digestion, that makes the actual  
𝐵𝑀𝑃  higher than the weighted average of the EBMPs of the single substrates. 
Therefore, a definition for 𝐵𝑀𝑃  is necessary. 

𝐵𝑀𝑃  has been defined as the BMP of a pseudo-single substrate representing the 
blended mixture. In fact, after several trials, it has been decided to calculate this 
parameter by using the EBMP correlations obtained from the database analysis: 
𝐵𝑀𝑃   is indeed calculated as the EBMP of a substrate characterized by weighted 
parameters with respect to the composition of the mixture, through the data-driven 
correlations shown in Chapter 4. In particular, two EBMP correlations have been 
identified as suitable for the definition of 𝐵𝑀𝑃 : the one depending on C/N ratio and 
BD (Equation 4.13) and the one depending on C/N ratio, lignin content and lipids 
content (Equation 4.14). These two definitions have both been used to maximize the 
objective function during tests and have been compared to determine which one works 
best.  
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5.2.2 First 𝐵𝑀𝑃  Definition: 𝐵𝑀𝑃 , 𝐵𝐷  

This definition is obtained by taking advantage of the mathematical correlation of the 
EBMP with the C/N ratio and the BD shown in Section 4.3.2.2. 

𝐵𝑀𝑃
𝐶

𝑁
, 𝐵𝐷 = 𝛽 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐵𝐷 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐵𝐷 (5.3) 

⎩
⎪
⎨

⎪
⎧

𝛽 = 21.6613
𝛽 = 1.2558

𝛽 = 445.7076
𝛽 = −0.0223
𝛽 = −7.8201

 

 

In Equation 5.3 the 𝐵𝑀𝑃  is calculated with the same expression of the EBMP as 
function of the C/N ratio and the biodegradability, however in this case these 
parameters are calculated as weighted average of the ones of the substrates composing 
the blend, as shown in Equations 5.4 and 5.5. 

𝐶

𝑁
=  𝑥 ∙

𝐶

𝑁
 (5.4) 

𝐵𝐷 =  𝑥 ∙ 𝐵𝐷  (5.5) 

In these equations, i represents the i-th substrate, 𝑁𝐶 represents the number of 
substrates (i.e., 2 in this case), 𝑥  is the mass fraction of substrate i, and  and 𝐵𝐷  

are the C/N ratio and the biodegradability of substrate i, respectively. 

5.2.3 Second 𝐵𝑀𝑃  Definition: 𝐵𝑀𝑃 , 𝐿𝑖𝑔𝑛𝑖𝑛, 𝐿𝑖𝑝𝑖𝑑𝑠  

The second definition of 𝐵𝑀𝑃  aims at considering the dependency of the EBMP on 
the C/N ratio and on the content of two important organic components of substrates – 
lignin and lipids content. The function used in this case is the one of Section 4.3.3, that 
is the 𝐵𝑀𝑃  calculated as function of the weighted values of the C/N ratio, lignin, 
and lipids content.  
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𝐵𝑀𝑃
𝐶

𝑁
, 𝐿𝑖𝑔𝑛𝑖𝑛, 𝐿𝑖𝑝𝑖𝑑𝑠 = 𝛽 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠  

+ 𝛽 ∙
𝐶

𝑁
∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙

𝐶

𝑁
∙ 𝐿𝑖𝑝𝑖𝑑𝑠 + 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠  

+𝛽 ∙
𝐶

𝑁
+ 𝛽 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝛽 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠  (5.6) 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝛽 = 249.3464
𝛽 = 7.6699
𝛽 = 5.8635

𝛽 = −2.0732
𝛽 = 0.0041

𝛽 = −0.0901
𝛽 = 0.3424

𝛽 = −0.1014
𝛽 = −1.5273
𝛽 = 0.1586

 

The mix parameters are calculated as: 

𝐶

𝑁
=  𝑥 ∙

𝐶

𝑁
 (5.7) 

𝐿𝑖𝑔𝑛𝑖𝑛 =  𝑥 ∙ 𝐿𝑖𝑔𝑛𝑖𝑛  (5.8) 

𝐿𝑖𝑝𝑖𝑑𝑠 =  𝑥 ∙ 𝐿𝑖𝑝𝑖𝑑𝑠    (5.9) 

Both these expressions of 𝐵𝑀𝑃  were used and compared during tests on 
experimental data.  

5.3 Objective Function Definition – AcoD of Three 
Substrates 

Since often biogas plants treat more than two substrates, an extension to the case of the 
co-digestion of three substrates was done, making hypothesis on the possible structure 
of the objective function. Also in this case, boundary conditions were first considered: 
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𝑥 = 1,  𝑥 = 0,  𝑥 = 0           𝑓 = 𝐸𝐵𝑀𝑃

𝑥 = 0,  𝑥 = 1,  𝑥 = 0           𝑓 = 𝐸𝐵𝑀𝑃

𝑥 = 0,  𝑥 = 0,  𝑥 = 1           𝑓 = 𝐸𝐵𝑀𝑃

 (5.10) 

After some trials, it was decided that the function that better represents the co-
digestion of three substrates is the one reported in Equation 5.11. 
 

𝑓 , = 𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + (𝑥 ∙ 𝑥

                             +𝑥 ∙ 𝑥 + 𝑥 ∙ 𝑥 + 𝑥 ∙ 𝑥 ∙ 𝑥 ) ∙ 𝐵𝑀𝑃   (5.11)
 

Here, three binary interaction terms and one ternary interaction term are present, 
representing the synergy between the different substrates two by two and between the 
three of them. 𝐵𝑀𝑃   can be still calculated with the two expressions shown in 
Sections 5.2.2 and 5.2.3.  

Several trials about this function were done to demonstrate its validity – with both the 
definitions of 𝐵𝑀𝑃 .  

5.4 Maximization Constraint  
In Table 5.1 all the possible versions of the objective function are reported. When 
maximizing the objective function, whatever the number of substrates or the 𝐵𝑀𝑃  
definition, proper constraints must be applied to obtain reasonable results. 

 𝒇𝒐𝒃𝒋 𝑩𝑴𝑷𝒎𝒊𝒙 

 𝑓 = 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝑥 ∙ 𝐵𝑀𝑃  
𝐵𝑀𝑃

𝐶

𝑁
, 𝐵𝐷  

𝐵𝑀𝑃
𝐶

𝑁
, 𝐿𝑖𝑔𝑛𝑖𝑛, 𝐿𝑖𝑝𝑖𝑑𝑠  

 
𝑓 = 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + (𝑥 ∙ 𝑥

+𝑥 ∙ 𝑥 + 𝑥 ∙ 𝑥 + 𝑥 ∙ 𝑥 ∙ 𝑥 ) ∙ 𝐵𝑀𝑃  
 

𝐵𝑀𝑃
𝐶

𝑁
, 𝐵𝐷  

𝐵𝑀𝑃
𝐶

𝑁
, 𝐿𝑖𝑔𝑛𝑖𝑛, 𝐿𝑖𝑝𝑖𝑑𝑠  

Table 5.1: Summary table of the four versions of the objective function  

Three 
Substrates 

Two 
Substrates 
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In particular, the fundamental constraint that must always be imposed during this 
optimization is that the sum of the mass fractions composing the blend must be equal 
to one (Equation 5.12). 

𝑥 = 1 (5.12) 

Maximizing the function by varying the mass fractions 𝑥 , it is possible to calculate the 
compositions 𝑥  that maximize the co-digestion BMP. 

5.5  AcoD of Non-Synergistic Substrates 
Sometimes it may happen that two or more substrates, due to the lack of 
complementarity, do not show synergy during co-digestion; therefore, another model 
was developed for this eventuality. In this case no interaction terms are present, and 
the 𝐵𝑀𝑃  is calculated as the weighted average of the EBMPs of the single substrates 
(Equation 5.13). This holds for any number NC of substrates. 

𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃  (5.13) 

By calculating the 𝐵𝑀𝑃  with this formula, the resulting value will be always 
intermediate between the EBMPs of the involved substrates, thus no synergy is 
observed. Therefore, in this case the optimization cannot be performed since no 
maximum exists. Additional tests were done to validate this model.  
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6. Tests on Literature Data 

This chapter aims at presenting the findings of the tests carried out to validate the 
objective functions described in Chapter 5, during which the model results have been 
compared to experimental data available in scientific journals. In particular, eight 
experimental studies performing BMP tests on mixtures of two or three substrates at 
varying blending ratios were selected in literature and analysed. 

6.1 AcoD of Synergistic Substrates 
In case of synergistic substrates, to compare the model results to the experimental 
results some operations were done for each trial: 

1) The objective function (i.e., 𝐵𝑀𝑃 ) was first maximized to obtain the 
optimized composition and the corresponding BMP. 

2) The 𝐵𝑀𝑃  was also calculated at varying compositions. 
3) The calculated and experimental BMPs were compared in plots. 
4) Root Mean Square Error between the experimental and the corresponding 

calculated values was calculated according to Equation 6.1. 
 

𝑅𝑀𝑆𝐸 =  
∑ 𝐵𝑀𝑃 , − 𝐵𝑀𝑃 ,

𝑁
 (6.1) 

N is the number of experimental blending ratios i at which BMP tests are 
performed, 𝐵𝑀𝑃 ,  is the experimental Biomethane Potential obtained at a 
certain blending ratio i, and 𝐵𝑀𝑃 ,  is the corresponding Biomethane 
Potential calculated with the objective function.  

The tests were performed with both the definitions of 𝐵𝑀𝑃  shown in Sections 5.2.2 
and 5.2.3, however in this chapter only the results obtained with the best version are 
shown (i.e., the one that shows on average lower RMSEs). 
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6.1.1 Choice of 𝐵𝑀𝑃  Definition 
The eight tests were carried out with both the two definitions of 𝐵𝑀𝑃  reported in 
the previous chapter, however the one that depends on the  and 𝐵𝐷  

demonstrated to lead to lower RMSEs most of the times. In Table 6.1 the RMSEs 
obtained with the two definitions are shown.  

As observed in Figure 6.1, the RMSE obtained calculating 𝑓  with 𝐵𝑀𝑃 , 𝐵𝐷  is 
most of the times (six out of eight cases) lower than the other case, therefore it has been 
concluded that the first definition is more reliable. In addition, parameters such as the 

  RMSE [𝒎𝑳/𝒈𝑽𝑺] 

𝐵𝑀𝑃 ,   𝐵𝑀𝑃 ,  

5° [20] 15.69 30.14 

6° [98] 26.01 19.53 

7° [98] 20.11 26.77 

8° [98] 42.85 35.20 

  RMSE [ 𝒎𝑳/𝒈𝑽𝑺] 

𝐵𝑀𝑃 ,   𝐵𝑀𝑃 ,  

1° [94] 15.60 18.36 

2° [95] 15.36 18.19 

3° [96] 19.88 29.06 

4° [97] 31.26 55.33 

Figure 6.1: RMSEs associated with each trial with both the definitions of 𝐵𝑀𝑃 :  
𝐵𝑀𝑃 , 𝐵𝐷  – indicated as 𝐵𝑀𝑃 ,  – and 𝐵𝑀𝑃 , 𝐿𝑖𝑔𝑛𝑖𝑛, 𝐿𝑖𝑝𝑖𝑑𝑠  – indicated 

as 𝐵𝑀𝑃 ,  
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 ratio and the 𝐵𝐷 are more often available than others like lignin and lipids content, 
which are extremely variable and difficult to determine through analytical techniques.  

6.1.2 Optimization Procedure 
The tests were performed in Excel environment, defining the objective function as in 
Equations 6.2 and 6.3 for two and three substrates, respectively. Information about the 
EBMPs of the single substrates were usually given by the article. 
 

𝑓 = 𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝑥 ∙ 𝐵𝑀𝑃  (6.2) 

𝑓 = 𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + 𝑥 ∙ 𝐸𝐵𝑀𝑃 + (𝑥 ∙ 𝑥

                   +𝑥 ∙ 𝑥 + 𝑥 ∙ 𝑥 + 𝑥 ∙ 𝑥 ∙ 𝑥 ) ∙ 𝐵𝑀𝑃   (6.3)
 

𝐵𝑀𝑃  is calculated as defined in Equation 6.4. Parameters such as the C/N ratios and 
the TBMPs of the substrates were taken from the paper if available, otherwise data 
from the Primary Averaged Database were used.  

𝐵𝑀𝑃
𝐶

𝑁
, 𝐵𝐷 = 𝛽 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐵𝐷 + 𝛽 ∙

𝐶

𝑁
+ 𝛽 ∙ 𝐵𝐷 (6.4) 

⎩
⎪
⎨

⎪
⎧

𝛽 = 21.6613
𝛽 = 1.2558

𝛽 = 445.7076
𝛽 = −0.0223
𝛽 = −7.8201

 

 

𝐶

𝑁
=  𝑥 ∗

𝐶

𝑁
 (6.5) 

𝐵𝐷 =  𝑥 ∗ 𝐵𝐷  (6.6) 

 

Once defined 𝑓 , it was firstly maximized with the Excel Solver (using the GRG 
Nonlinear Solving Method), then its trend as function of the composition of the blend 
was calculated, comparing it with the experimental points. Finally, the RMSE between 
the experimental and the corresponding calculated points was evaluated.  
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The maximization was performed by imposing the constraint in Equation 6.7. 

𝑥 = 1 (6.7) 

6.1.3 AcoD of Two Substrates 
6.1.3.1 Food Waste (FW) and Pig Manure (PM) - 1 

In the work of [94], BMP tests were performed at six different mixing ratios of FW and 
PM, obtaining the methane yields shown in Table 6.1. 

𝐱𝐅𝐖 [-] 𝐱𝐏𝐌 [-] BMP [mL/gVS] 
0 1 260 

0.2 0.7 320 
0.4 0.6 443 
0.6 0.4 489 
0.8 0.2 521 
1 0 516 

Table 6.1: Experimental co-digestion BMPs obtained at varying compositions 

To calculate the objective function, the EBMPs of the two substrates have been 
considered equal to 260 𝑚𝐿/𝑔  for PM and 516 𝑚𝐿/𝑔  for FW. Other data about the 
two substrates weren’t available in the article, therefore the average values of the C/N 
ratio and the TBMP of the substrates – that are needed to calculate the 𝐵𝑀𝑃  – were 
taken from the Primary Averaged Database and are reported in Table 6.2. The BD of 
substrates was calculated by dividing the EBMP reported in the article by the TBMP 
from the database.  

 

 

 

Table 6.2: Main substrates data used for the optimization 

 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

PM 11.62 573.50 260 0.45 

FW 18.70 548.59 516 0.94 



76 Tests on Literature Data 

 

 

 

Maximizing the objective function, the model prediction about the optimal co-
digestion conditions is shown Figure 6.2; there, the plot representing the comparison 
between the objective function – calculated as function of the mass fraction of FW – 
and the experimental points is reported too.  

 

 
Figure 6.2: Comparison between experimental points (blue points) and model 

prediction (grey line); the optimization results are reported in the table 

As shown in Figure 6.2, the correspondence between experimental data and the model 
is very good, with a RMSE between experimental points and the corresponding 
predictions of 15.60 𝑚𝐿/𝑔 . Therefore, in this case the model can accurately predict 
the BMP at every blending condition, allowing to calculate which blend is the best in 
terms of methane yield.  

According to the model, the optimal mixture is composed of 84.2% of FW and 15.8% 
of PM: FW has a higher EBMP and BD than PM, moreover it is characterized by a 
higher C/N ratio, therefore it is the most abundant substrate in optimal conditions. For 
what concerns the C/N ratio, the optimal range should be in between 20 and 40, but in 
this case this range cannot be reached since both the substrates fall below it. The fact 
that the mixture shows a higher BMP than both the single substrates is due to the 
synergy that is often observed between two or more substrates.       

6.1.3.2 Food Waste (FW) and Pig Manure (PM) - 2 

Another test about the co-digestion of FW and PM was performed by [95]. The paper 
reported experimental data about BMP tests at different ratios of FW and PM, 
obtaining the results reported in Table 6.3.  

 

Model Optimal Conditions 

𝒙𝑭𝑾,𝒐𝒑𝒕  [-] 0.842 

𝒙𝑷𝑴,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑭𝑾,𝒐𝒑𝒕  [-] 0.158 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 17.80 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 530.89 
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𝐱𝐅𝐖 [-] 𝐱𝐏𝐌 [-] BMP [mL/gVS] 
0 1 248.14 

0.167 0.833 314.38 
0.250 0.750 641.64 
0.500 0.500 398.95 
0.750 0.250 415.49 
0.833 0.167 411.19 

1 0 386.80 

Table 6.3: Experimental co-digestion BMPs obtained at varying compositions 

According to these data, in this case the EBMPs of FW and PM are equal to 386.80 and 
248.14 𝑚𝐿/𝑔 , respectively. The paper also gives in this case information about the 
C/N ratios and the TBMPs of the two substrates, therefore there was no need to get 
those data from the database. 

 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

PM 10.63 406.82 248.14 0.61 

FW 18.88 545.33 386.80 0.71 

Table 6.4: Main substrates data used for the optimization 

The maximization results and the objective function calculated as function of the mass 
fraction of FW are reported in Figure 6.3. 

 

Model Optimal Conditions 

𝒙𝑭𝑾,𝒐𝒑𝒕  [-] 0.720 

𝒙𝑷𝑴,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑭𝑾,𝒐𝒑𝒕  [-] 0.280 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 16.57 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 415.81 

Figure 6.3: Comparison between experimental points (blue points) and model 
prediction (grey line); the optimization results are reported in the table 
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Also in this case, it can be concluded that the objective function is able to estimate the 
BMP of the mixtures in a quite precise way, with a RMSE of 15.36 𝑚𝐿/𝑔 . The optimal 
composition calculated by the model is similar to the one obtained in the previous test, 
indeed the mixed substrates are the same, while the optimal BMP is lower because the 
EBMPs used in this case – given by the article – are lower too. 

6.1.3.3 Dairy Manure (DM) and Straw (ST)  

In the work of [96] the co-digestion of dairy manure and straw was analysed, 
performing BMP tests on different blends of these two substrates with the results 
shown in Table 6.5. 

𝐱𝐃𝐌 [-] 𝐱𝐒𝐓 [-] BMP [mL/gVS] 
0 1 151.80 

0.167 0.833 189.44 
0.250 0.750 205.26 
0.500 0.500 237.60 
0.750 0.250 242.31 
0.833 0.167 237.09 

1 0 216.00 

Table 6.5: Experimental co-digestion BMPs obtained at varying composition 

The EBMPs of DM and ST are equal to 216.0 and 151.8 𝑚𝐿/𝑔 , respectively. The values 
of the C/N ratios of DM and ST are available in the paper, while the TBMPs are taken 
from the Primary Averaged Database. 

  

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

PM 16.70 483.33 216.00 0.44 

ST 55.40 427.75 151.80 0.35 

Table 6.6: Main substrates data used for the optimization 

Calculating the objective function by varying the mass fraction of DM and maximizing 
it, the obtained results are shown in Figure 6.4.  
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Also in this case, the objective function is effectively able to predict the mixing ratio 
that produces the highest methane yield, in accordance with the experimental data, 
with a RMSE equal to 19.88 𝑚𝐿/𝑔 . According to the model, the optimal composition 
is 33.5% ST and 66.5% DM: this can be explained by the fact that straw contributes to 
increasing the C/N ratio to make it fall inside the optimal range, but at the same time 
it is characterized by a lower biodegradability due to the high lignocellulosic content, 
therefore the main substrate of the optimal blend should be DM to have a good overall 
degradability.  

6.1.3.4 Fruit and Vegetable Food Waste (FVFW) and Sewage Sludge (SS)  

The anaerobic co-digestion of FVFW and SS is studied by [97] at different mixing 
ratios, obtaining the results in Table 6.7. 

 

 

 

 

Table 6.7: Experimental co-digestion BMPs obtained at varying composition 

Model Optimal Conditions 

𝒙𝑫𝑴,𝒐𝒑𝒕  [-] 0.665 

𝒙𝑺𝑻,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑫𝑴,𝒐𝒑𝒕  [-] 0.335 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 29.66 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 244.08 

𝐱𝐅𝐕𝐅𝐖 [-] 𝐱𝐒𝐒 [-] BMP [mL/gVS] 

0 1 119 
0.3 0.7 135 
0.5 0.5 141 
0.7 0.3 119 
0.8 0.2 107 
1 0 134 

Figure 6.4: Comparison between experimental points (blue points) and model 
prediction (grey line); the optimization results are reported in the table 
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The paper doesn’t give information about the C/N ratios and TBMPs of the two 
substrates, therefore these parameters were taken from the Primary Averaged 
Database and used for the numerical tests.  

 

 

 

 

Table 6.8: Main substrates data used for the optimization 

These data were used to maximize the objective function and to represent it in a plot 
as function of the mass fraction of FVFW, as shown in Figure 6.5. 

 

 

The correspondence between experimental data and the objective function prediction 
is worse than in the previous cases, with a RMSE equal to 31.36 𝑚𝐿/𝑔 . Indeed, an 
overestimation of the real BMP is observed: this could be due to the overestimation of 
the synergistic effect that the two substrates have together. On the other hand, the 
prediction of the optimal composition, that is 55.8% FVW and 44.2% SS, is in 
accordance with experimental data, therefore the model is able to successfully predict 
the best mixing ratio – which is the main goal of the project.  

 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

FVFW 15.22 436.57 134.00 0.31 

SS 8.57 424.10 119.00 0.28 

Model Optimal Conditions 

𝒙𝑭𝑽𝑭𝑾,𝒐𝒑𝒕  [-] 0.558 

𝒙𝑺𝑺,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑭𝑽𝑭𝑾,𝒐𝒑𝒕  [-] 0.442 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 12.28 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 167.98 

Figure 6.5: Comparison between experimental points (blue points) and model 
prediction (grey line); the optimization results are reported in the table 
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6.1.3.5 Organic Fraction of Municipal Solid Waste (OFMSW) and Sewage Sludge (SS)  

In the work of [20], the co-digestion of the OFMSW and SS is analysed at various 
mixing ratios, obtaining the results in Table 6.9. 

 

 

 

 

 

 

 

The article gives information about all the needed parameters for the optimization, 
therefore no data were taken from the database. 

 

 

 

 

Table 6.10: Main substrates data used for the optimization 

The optimization results and the comparison between the model and the experimental 
points are reported in Figure 6.6.  

𝐱𝐎𝐅𝐌𝐒𝐖 [-] 𝐱𝐒𝐒 [-] BMP [mL/gVS]  
0 1 164.50 

0.2 0.8 200.20 
0.4 0.6 212.30 
0.6 0.4 217.50 
0.8 0.2 220.60 
1 0 201.50 

Table 6.9: Experimental co-digestion BMPs obtained at varying composition 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

OFMSW 51.8 494.3 201.5 0.41 

SS 8.9 333.9 164.5 0.49 

Model Optimal Conditions 

𝒙𝑶𝑭𝑴𝑺𝑾,𝒐𝒑𝒕  [-] 0.554 

𝒙𝑺𝑺,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑶𝑭𝑴𝑺𝑾,𝒐𝒑𝒕  [-] 0.446 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 32.68 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 243.30 

Figure 6.6: Comparison between experimental points (blue points) and model 
prediction (grey line); the optimization results are reported in the table 
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In this case it can be noted that the difference between predicted and experimental 
values is quite low, indeed the RMSE is equal to 15.69 𝑚𝐿/𝑔 , however the model 
optimal composition predicted by the model is different from the experimental one: 
experimentally, the highest methane yield is obtained at a concentration of OFMSW of 
80%, while the model predicts an optimal composition of 55.4% OFMSW. Moreover, a 
general overestimation of the BMP is observed. These problems could be caused by 
some possible reasons: 

 The overestimation of the BMP by the model could be due to a wrong 
estimation of the synergy between the two substrates, which may also lead to a 
wrong prediction of the optimal mixture composition. 

 The experimental BMP obtained at 𝑥 = 0.8 could be wrong due to failure 
of analytical techniques or altered experimental conditions. 

6.1.4 AcoD of Three Substrates 
6.1.4.1 Dairy Manure (DM), Chicken Manure (CM) and Straw (ST)  

The co-digestion of DM, CM and ST was tested in the work of [98] by varying the 
composition of the blend and measuring the BMP for each case. In particular, the 
results in Table 6.11 were obtained.  

 

 

 

 

 

 

 

 

The article gives information about the C/N ratios and the EBMPs of the substrates – 
261, 176 and 123 𝑚𝐿/𝑔   for DM, CM and ST, respectively – while the TBMPs were 
extrapolated from the Primary Averaged Database.  

 

𝐱𝐃𝐌 [-] 𝐱𝐂𝐌 [-] 𝐱𝐒𝐓 [-] BMP [mL/gVS]  

1 0 0 261 
0 1 0 176 
0 0 1 123 

0.5 0.5 0 252 
0.5 0 0.5 247 
0 0.5 0.5 222 

0.667 0.167 0.167 310 
0.167 0.667 0.167 244 
0.167 0.167 0.667 239 
0.333 0.333 0.333 302 

Table 6.11: Experimental co-digestion BMPs obtained at varying composition 
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 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

DM         23.50  486.33 261.00 0.54 

CM           9.02  485.96 176.00 0.36 

RS         51.70  427.75 123.00 0.29 

Table 6.12: Main substrates data used for the optimization 

In this case, the objective function was calculated with Equation 6.3 and its 
representation as function of the mass fractions of DM and CM is plotted together with 
the experimental points in Figure 6.7. The optimization results are also reported in the 
dedicated table in Figure 6.7.   

 

As shown in Figure 6.7, the model well approximates the experimental data, with a 
RMSE of 26.01 𝑚𝐿/𝑔 . The objective function maximization indicates that the 
maximum possible BMP, equal to 291.97 𝑚𝐿/𝑔 , is obtained with a mixture of 64.5% 
DM, 25.1% CM and 10.4% ST. This is in accordance with experimental data since the 
experimental maximum BMP is recorded at 66.7% DM, 16.7% CM and 16.7% RS.  

Model Optimal Conditions 

𝒙𝑫𝑴,𝒐𝒑𝒕  [-] 0.645 

𝒙𝑪𝑴,𝒐𝒑𝒕  [-] 0.251 

𝒙𝑺𝑻,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑫𝑴,𝒐𝒑𝒕 −

                        − 𝒙𝑪𝑴,𝒐𝒑𝒕  [-] 0.104 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 22.81 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 291.97 

Figure 6.7: Comparison between experimental points (blue points) and model 
prediction (surface); the optimization results are reported in the table. 
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6.1.4.2 Dairy Manure (DM), Pig Manure (PM) and Straw (ST) 

In the work of [98], various mixtures of DM, PM and ST were tested, and results are 
shown in Table 6.13.  

 

 

 

 

 

 

 

 

As in the previous case, data about C/N ratios and EBMPs of the single substrates are 
present in the article, while data about TBMPs are taken from the database. 

 

 

 

 

Table 6.14: Main substrates data used for the optimization 

The optimization results and the comparison between experimental points and 
objective function are reported in Figure 6.8. 

 

 

𝐱𝐃𝐌 [-] 𝐱𝐏𝐌 [-] 𝐱𝐒𝐓 [-] BMP [mL/gVS]  

1 0 0 261 
0 1 0 188 
0 0 1 123 

0.5 0.5 0 247 
0.5 0 0.5 231 
0 0.5 0.5 231 

0.667 0.167 0.167 301 
0.167 0.667 0.167 259 
0.167 0.167 0.667 228 
0.333 0.333 0.333 287 

Table 6.13: Experimental co-digestion BMPs obtained at varying composition 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

DM         23.50  486.33 261.00 0.54 

PM         13.00  573.50 188.00 0.33 

RS         51.70  427.75 123.00 0.29 
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The RMSE between the model and the experimental data is 20.12 𝑚𝐿/𝑔 , thus the 
approximation of experimental data is good. The optimization results are similar to 
the ones obtained experimentally: the highest experimental BMP was obtained with a 
mixture composed of 66.7%DM, 16.7% PM and 16.7% RS, while the optimization 
returns an optimal composition of 63.9% DM, 26.6% PM and 9.5% RS.  

6.1.4.3 Chicken Manure (CM), Pig Manure (PM) and Straw (ST) 

Mixtures of CM, PM and ST were also analysed by [98], obtaining the results in Table 
6.15. 

 

 

 

 

 

 

 

 

Model Optimal Conditions 

𝒙𝑫𝑴,𝒐𝒑𝒕  [-] 0.639  

𝒙𝑷𝑴,𝒐𝒑𝒕  [-] 0.266  

𝒙𝑺𝑻,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑫𝑴,𝒐𝒑𝒕 −

                        − 𝒙𝑷𝑴,𝒐𝒑𝒕  [-] 0.095 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 23.39 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 294.07 

𝐱𝐂𝐌 [-] 𝐱𝐏𝐌 [-] 𝐱𝐒𝐓 [-] BMP [mL/gVS]  

1 0 0 176 
0 1 0 188 
0 0 1 123 

0.5 0.5 0 241 
0.5 0 0.5 242 
0 0.5 0.5 278 

0.667 0.167 0.167 269 
0.167 0.667 0.167 261 
0.167 0.167 0.667 226 
0.333 0.333 0.333 294 

Table 6.15: Experimental co-digestion BMPs obtained at varying composition 

Figure 6.8: Comparison between experimental points (blue points) and model 
prediction (surface); the optimization results are reported in the table. 
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The data used in the optimization process are shown in Table 6.16, where the C/N 
ratios and the EBMPs are furnished by the article while the TBMPs are taken from the 
database.  

 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

DM         23.50  486.33 261.00 0.54 

PM         13.00  573.50 188.00 0.33 

RS         51.70  427.75 123.00 0.29 

Table 6.16: Main substrates data used during optimization 

The optimization results and the comparison with experimental data are shown in 
Figure 6.9. 

 

 

In this case the objective function underestimates the real biomethane potential, 
probably due to model issues concerning the synergy between substrates, showing a 
RMSE of 42.85 𝑚𝐿/𝑔 . On the other hand, it succeeds in predicting the optimal 
composition – which is the main interest of this project – which is 36.3% CM, 40.5% 

Model Optimal Conditions 

𝒙𝑪𝑴,𝒐𝒑𝒕  [-] 0.363  

𝒙𝑷𝑴,𝒐𝒑𝒕  [-] 0.405 

𝒙𝑺𝑻,𝒐𝒑𝒕 = 𝟏 − 𝒙𝑪𝑴,𝒐𝒑𝒕 −

                        − 𝒙𝑷𝑴,𝒐𝒑𝒕  [-] 0.232 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 20.53 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 235.30 

Figure 6.9: Comparison between experimental points (blue points) and model 
prediction (surface); the optimization results are reported in the table  
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PM and 23.2% RS: this can be considered an acceptable result since the best 
experimental conditions are obtained with 33% CM, 33% PM and 33% RS. 

6.2 AcoD of Non-Synergistic Substrates 
In some cases, no synergy between substrates is observed during tests, and the 
𝐵𝑀𝑃  is calculated as the weighted average of the EBMPs of the single substrates, 
as shown in Equation 6.8. 

𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃  (6.8) 

When substrates don’t show a synergistic effect, the optimization cannot be used to 
predict which blend maximizes the BMP, since the 𝐵𝑀𝑃  would always be 
comprised between the lowest and the highest EBMP of the involved substrates.  

Therefore, in these cases, another type of test was done to validate the expression of 
𝐵𝑀𝑃  shown in Equation 6.8:  

1) 𝐵𝑀𝑃  was calculated as function of the composition of the blend. 
2) If possible, the 𝐵𝑀𝑃  and the experimental points were represented in 2D or 

3D plots.  
3) The calculated 𝐵𝑀𝑃  were then compared with the experimental ones at each 

blending conditions and the RMSE between experimental and calculated values 
was found through Equation 6.1.  

6.2.1 Tests on Non-Synergistic Mixtures 
6.2.1.1  Food Waste (FW) and Dairy Manure (DM) 

The co-digestion of DM and FW was analysed by [99], obtaining the results shown in 
Table 6.17.  

 

 

 

 

𝐱𝐅𝐖 [-] 𝐱𝐃𝐌 [-] BMP [mL/gVS] 

0 1 144.3 
0.50 0.50 297.0 
0.67 0.33 310.3 
0.75 0.25 318.7 

1 0 362.2 

Table 6.17: Experimental co-digestion BMPs obtained at varying composition 
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The EBMPs of FW and DM, in this case, are equal to 362.2 and 144.3 𝑚𝐿/𝑔   
respectively, and it can be noted that all the BMPs associated to their mixtures are 
intermediate between the EBMPs of the two single substrates, showing no synergy. In 
this situation the optimization tool cannot be used because the maximum BMP is 
achieved with food waste only. Therefore, the predicted 𝐵𝑀𝑃  was calculated with 
Equation 6.7. In Figure 6.10 the comparison between the prediction of Equation 6.7 and 
the experimental results is reported. 

 

 

 

 

 

 

 

 

 

In Figure 6.10 it is demonstrated that, since experimental values show no maximum, a 
linear model is suitable to represent the co-digestion BMP, with a RMSE between 
calculated and experimental values of 24.23 𝑚𝐿/𝑔 .  

In this case it cannot be decided which mixture is the best, however AcoD can 
successfully be used to improve the anaerobic digestion of dairy manure, whose EBMP 
is increased by adding food waste, and Equation 6.7 can be used to predict the co-
digestion BMP.  

6.2.1.2 Dairy Manure (DM), Pig Manure (PM) and Food Waste (FW)  

In the case of [100], the co-digestion of three substrates was analysed, and the results 
are shown in Table 6.18.  

 

 

 

 

Figure 6.10: Comparison between experimental points (blue points) and model 
prediction (grey line) 
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The EBMPs of DM, FW and PM in this case are equal to 176 𝑚𝐿/𝑔 , 188 𝑚𝐿/𝑔  and 
123 𝑚𝐿/𝑔 , respectively. In Figure 6.11 the comparison between the model’s 
prediction and the experimental points is presented in a three-dimensional plot.  

 

 

 

 

 

 

 

 

 

 

The model predicts the BMP of the mixture with good accuracy, with a RMSE of 35.82 
𝑚𝐿/𝑔 , and this confirms that it is suitable to describe substrates that undergo 
anaerobic digestion without synergy.  

𝐱𝐃𝐌 [-] 𝐱𝐅𝐖 [-] 𝐱𝐏𝐌 [-] BMP [mL/gVS]  

1 0 0 176 
0 1 0 188 
0 0 1 123 

0.5 0.5 0 241 
0.5 0 0.5 242 
0 0.5 0.5 278 

0.667 0.167 0.167 269 
0.167 0.667 0.167 261 
0.167 0.167 0.667 226 
0.333 0.333 0.333 294 

Table 6.18: Experimental co-digestion BMPs obtained at varying composition 

Figure 6.11: Comparison between experimental points (blue points) and model 
prediction (surface) 
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It is interesting to note that in this case the food waste doesn’t show synergy with dairy 
manure, and neither with pig manure, contrarily to what shown in Sections 6.3.1 and 
6.3.2. This could be caused by differences in the composition of these substrates from 
one test to another, showing a different synergy between each other.  Therefore, a great 
improvement of the model could be given by the ability of predicting the synergy level 
of substrates depending on their composition and on their complementarity.  

6.2.2 Future Development: Synergy Prediction 
At this moment, it is not possible to predict when substrates do or do not show 
synergy, and therefore which of the two different BMP models apply. Furthermore, 
antagonistic effects are not considered at all by the objective function, and at times an 
over/underestimation of the real BMP is observed. The model should be improved to 
automatically predict these effects. This could be done, for example, by introducing 
correction factors inside the objective function able to modify its response according to 
the prediction of the synergy of substrates. This would require additional tests and 
model validation, and it represents one of the most important future developments of 
this project.  
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7. Tests on Industrial Data 

The developed optimization tool was also applied to optimize industrial data 
provided by two companies. 

7.1 Rota Guido s.r.l.  
Rota Guido s.r.l. provided data about a 100 kW biogas plant, involving a CSTR 
anaerobic digester fed with 26.4 𝑚 /𝑑 of dairy manure (DM), 2.2 𝑚 /𝑑 of sorghum 
(SR) and 2.2 𝑚 /𝑑 of triticale (TR), with a total inlet volumetric flowrate of 30.8 𝑚 /𝑑. 
Considering a density of 1000, 740 and 740 𝑘𝑔/𝑚  for dairy manure, sorghum, and 
triticale respectively, it was also possible to calculate the mass fractions of the 
components of the inlet mixture.  

 

 

 

 

 

 

Using the developed model, it was possible to calculate the optimal composition that 
would maximize the methane potential of the inlet mixture (i.e., the BMP), and thus 
would increase the methane production of the reactor.  

In the documentation of Rota Guido s.r.l. it is indicated that dairy manure, sorghum 
and triticale are characterized by a mean EBMP of 260, 285 and 265 𝑚𝐿/𝑔  
respectively; no information about C/N ratios and TBMPs are available instead. 

 Volumetric Flow Rate 
[𝒎𝟑/𝒅] 

Density    
[𝒌𝒈/𝒎𝟑] 

Mass Fraction 
[-] 

DM 26.4 1000 0.890 

SR 2.2 740 0.055 

TR 2.2 740 0.055 

Table 7.1: Inlet conditions at the anaerobic digester 
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Therefore, missing data about DM were taken from the Primary Average Database, 
while for SR and TR mean values were obtained by gathering information from 
scientific papers (for sorghum [98–103] and for triticale [104–106]), and adopting the 
same averaging procedure used to obtain the Primary Averaged Database. The final 
data used for this optimization are shown in Table 7.2.  

 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

Dairy Manure 18.15 486.33 260.00 0.53 

Sorghum 46.50 456.20 285.00 0.62 

Triticale 38.45 415.79 265.00 0.64 

Table 7.2: Dairy Manure, Sorghum and Triticale data used during optimization 

These data can be used to calculate and maximize the objective function, obtaining the 
optimal inlet composition and the associated co-digestion BMP that are shown in Table 
7.3. 

 

 

 

 

 

 

 

Table 7.3 shows that the optimal composition is very different from the actual inlet 
composition: the digester, indeed, is currently mainly fed with dairy manure, while 
the optimization tool suggests increasing the sorghum and triticale content at 37.7% 
and 33.4%, respectively. This increment should be coherent with the actual daily 
availability of these substrates, however data about the supply chain of the feedstocks  
were not available.  

Model Optimal Conditions 

𝒙𝑫𝑴,𝒐𝒑𝒕  [-] 0.289 

𝒙𝑺𝑹,𝒐𝒑𝒕  [-] 0.377 

𝒙𝑻𝑹,𝒐𝒑𝒕  [-] 0.334 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 35.63 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 382.89 

Table 7.3: Optimal inlet composition predicted by the objective function 
maximization 
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The 𝐵𝑀𝑃 ,  represents the highest BMP associated with a mixture of CM, TR and 
ST, that is the cumulative methane production that would be obtained after a batch 
test. Actually, the methane is continuously withdrawn from the CSTR anaerobic 
digester, thus the BMP of the mixture cannot be considered as indicative of the actual 
methane production; however, since it represents the methane potential of the inlet 
mixture, even in a continuous reactor it can still be used to predict the best composition 
to be fed to the reactor.   

Supposing a total inlet flowrate of 30.8 m3/d, it is also possible to calculate the new, 
optimal inlet volumetric flowrates (shown in Table 7.4) by using the same densities of 
Table 7.1. 

 

 

 

 

 

 

7.2 Thӧni s.r.l. 
The data shared by Thӧni s.r.l. record the inlet conditions of a CSTR anaerobic digester 
over the month of January 2022 and the related methane flux. Such biogas plant allows 
the generation of 1000 kW of electricity. 

The substrates that enter the reactor can be included into the three categories of chicken 
manure (CM), fruit and vegetable food waste (FVFW) and straw (ST), and their daily 
massive flows are shown in Figure 7.1. In addition, in Figure 7.1 the total inlet mass 
flow rate and the outlet methane flow are reported.  

In Figure 7.1 it can be observed that the CM supply is maintained constant at 5 ton/d 
during the whole month, and that the ST supply as well is almost constant except at 
the end when it decreases from an initial value of 13 ton/d to a final value of 11 ton/d. 
The most variable flow is the FVFW, which initially decreases from 12 ton/d to 7.5 
ton/d, and then increases again to a final value of 15.50 ton/d. Summing up all the 
substrates, the total daily massive load varies between a minimum of 25 ton/d and a 
maximum of 33.5 ton/d. The total daily load, indeed, is chosen according both to the 
capacity of the reactor and to the amount of currently produced methane: indeed, since 

 Optimal Mass 
Fraction [-] 

Density 
[kg/m3] 

Optimal Volumetric 
Flow Rate [m3/d] 

Dairy Manure 0.289 1000 7.1 

Sorghum 0.377 740 12.6 

Triticale 0.334 740 11.1 

Table 7.4: Optimized Inlet Conditions 
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the produced power must be maintained at 1000 kW, if a methane surplus is observed 
less load is added and vice versa. This is evident in Figure 7.1: when the methane flux 
starts to drop, the total daily load is slowly increased to increase methane production. 
Obviously, due to the high reaction times, some time is needed to observe a new 
increase of the methane production.  Similarly, the effects of the inlet composition on 
the outlet gas production are observed with a certain lag time. Therefore, a certain 
delay between inlet and outlet conditions should be considered when analysing these 
industrial data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Industrial data about the inlet mixture and the methane production over 
the month of January 2022 
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To maximize the methane yield of the supplied load, the BMP of the inlet mixture 
should be maximized: knowing the categories of the substrates that are fed to the 
reactor, it is possible to use the optimization tool to calculate the composition that 
maximizes the BMP of the inlet blend.  

To calculate the optimal inlet composition, data about CM, FVFW and ST were taken 
from the Primary Average Database, which are reported in Table 7.5. 

 

 C/N [-] TBMP [mL/gVS] EBMP [mL/gVS] BD [-] 

CM 8.93 485.96 289.71 0.60 

FVFW 15.22 436.57 347.79 0.80 

ST 70.54 427.75 176.12 0.41 

Table 7.5: CM, FVFW and ST data used for the optimization 

These data can be used to maximize the objective function and calculate the optimal 
blending conditions (Table 7.6).  

 

 

 

 

 

 

 

In Table 7.6, the optimal conditions for the inlet mixture have been reported: the 
mixture of chicken manure, fruit and vegetable food waste and straw with the highest 
co-digestion BMP is a mixture of 31.2% CM, 55.7% FVFW and 13.1% ST.  

Since the total mass flow that is fed to the reactor can vary between 25 and 33.5 ton/d 
(Figure 7.1), the associated mass flows of CM, FVFW and ST in optimal conditions can 
be calculated and represented as function of the total daily load (Figure 7.2).  

Model Optimal Conditions 

𝒙𝑪𝑴,𝒐𝒑𝒕  [-] 0.312 

𝒙𝑭𝑽𝑭𝑾,𝒐𝒑𝒕  [-] 0.557 

𝒙𝑺𝑻,𝒐𝒑𝒕  [-] 0.131 

𝑪

𝑵 𝒎𝒊𝒙,𝒐𝒑𝒕
  [-] 20.50 

𝑩𝑴𝑷𝑨𝒄𝒐𝑫,𝒐𝒑𝒕  [mL/gVS] 420.80 

Table 7.6: Optimal conditions for a mixture of CM, FVFW and ST calculated 
with the optimization tool. 
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Since the total mass flow rate is changed every day according to the current methane 
production, supposing to fix the daily total mass flow rates at the same values used by 
Thӧni s.r.l. during the month, it is possible to plot the corresponding optimal 
substrates mass flow rates as function of time to make a comparison with the actual 
ones: the trend of the optimal massive loads as function of time is reported in Figure 
7.3, where also a comparison between the BMPs of the optimal blends and the ones 
associated to the actual mixtures that are fed to the digester – that can be calculated by 
using the objective function – is reported. There, it can be observed that maintaining 
the optimal composition the BMP is maintained at its maximum value, therefore the 
methane production should increase with respect to the real case. On the downside, 
the optimized mass flow rates are significantly different from the actual ones, and do 
not take into account the real availabilities of the substrates and the storage capabilities 
of the plant: this will be the topic of the following chapter, in which the optimization 
tool will be modified to make it return feasible results taking into account supply chain 
factors. 

 

 

Figure 7.2: Optimal mass flow rates of CM, FVFW and ST depending on the value of 
the total mass flow rate. 
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Figure 7.3: Mass flow rates associated to the optimal composition and comparison 
between optimal and actual feedstock BMP 
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8. Model Improvements for Industrial 
Applications 

As anticipated in the previous chapter, when dealing with industrial scenarios, new 
factors must be considered with respect to lab-scale batch tests. In this chapter an 
improved version of the optimization model is proposed, and an industrial case study 
is also presented.  

8.1 Model Improvements  
In case of industrial realities, besides the composition of the optimal mixture in terms 
of highest methane potential, other issues must be faced, like the real availability of 
the substrates and the storage capability of the plant. Therefore, to consider these 
additional factors, the model presented in the previous chapters has been improved 
with new constraints both in case of batch and CSTR-based anaerobic digesters. 

8.1.1 Batch Industrial Anaerobic Digester  
In case of a batch anaerobic digester, besides the optimal composition of the mixture, 
other factors must be taken into account: 

 The tons of available substrates for a certain batch cycle. 
 The storage capability of the plant for those substrates, that determines the 

minimum quantity (in tons) of each substrate that must be necessarily disposed 
in the digester not to have excessive waste accumulation. 

 The total capacity of the reactor. 
 
The model that was previously developed is able to return the optimal composition of 
the mixture, but the corresponding massive loads might be incoherent with the 
aforementioned factors. To avoid that, the model has been modified adding new 
constraints in order to obtain feasible results.  



Model Improvements for Industrial 
Applications 

99 

 

 

Supposing to fix the total mixture quantity – measured in tons and named 𝑚  – that 
can be loaded into the reactor (to which eventual water could be added to reach the 
desired solids concentration and volume), it is possible to calculate the optimal loads 
of the single substrates by performing an improved optimization. This can be done by 
imposing a lower and an upper threshold for each substrate load and imposing that 
their sum must be equal to the fixed total load. Such constraints can be written as: 
 

𝑚 , ≤ 𝑚 ≤ 𝑚 ,  (8.1) 

𝑚 = 𝑚  (8.2) 

Where i stands for the substrates i = 1…NC, 𝑚 ,  represents the minimum quantity 
of substrate i that must be disposed in the digester and 𝑚 ,  represents the maximum 
availability of substrate i. 

The mass fraction of each substrate i can be then calculated by dividing the substrate 
load 𝑚  for the total massive load 𝑚 , as shown in Equation 8.3. 

𝑥 =
𝑚

𝑚
 (8.3) 

After having defined the new constraints and having calculated the mass fractions, it 
is possible to calculate 𝑓  and perform the optimization by varying the massive loads 
𝑚  of each substrate – instead of the mass fractions, as it was previously done – to 
maximize the BMP of the feedstock. This way the feedstock optimization is performed 
considering supply chain requirements and optimal values of 𝑚  are obtained. 

8.1.2 CSTR Industrial Anaerobic Digester 
In case of an industrial CSTR digester, the reactor is fed with a continuous flowrate 
and a methane flux is continuously withdrawn. Therefore, in this case, the variables 
that have to be optimized are the substrates mass flow rates, generally measured in 
ton/d.  

The continuous case is analogous to the batch one, however in this case different 
constraints have to be considered:  

 The daily availability (in ton/d) of each substrate.  
 The minimum daily quantity (in ton/d) of a certain substrate that must be 

necessarily disposed in the digester not to have excessive waste accumulation.  
 The total mass flow rate of the mixture that is fed to the reactor, which is  

usually fixed depending on the reactor capacity or, as in the Thӧni s.r.l. case, to 
maintain a constant electricity production. 



100 Model Improvements for Industrial 
Applications 

 

 

 

Supposing to fix the total mass flow rate of the feedstock – measured in ton/d and 
named  �̇�  – and the lower and higher limits of the substrates flow rates, it is possible 
to write analogous constraints with respect to the batch case: 

 

�̇� , ≤ �̇� ≤ �̇� ,  (8.4) 

�̇� = �̇�  (8.5) 

In order to calculate the objective function 𝑓 , the mass fractions can be calculated 
according to Equation 8.6. 

𝑥 =
�̇�

�̇�
 (8.6) 

Once having calculated 𝑓  the optimization can be performed by varying the massive 
flow rates �̇� , allowing to obtain the feedstock conditions that, complying to all the 
given constraints, maximize the inlet co-digestion BMP.  

8.2 Interactive Dashboard Development 
To perform the described optimization in an easy and immediate way, both for a batch 
and CSTR layout, a dedicated software, consisting of an interactive Excel dashboard, 
has been developed. Such dashboard, being connected with a PythonTM algorithm, is 
able to return the optimization results by compiling it with the required inputs.  

In Figures 8.1 and 8.2, two examples of usage of the dashboard are reported. In Figure 
8.1 (a) the initialization conditions in case of the co-digestion of two substrates (e.g., 
chicken manure and OFMSW) are reported, while in Figure 8.1 (b) the compiled 
dashboard and are the results of the related optimization – whose inputs have been 
specifically elaborated for the sake of the example – are reported. Similarly, Figure 8.1 
(a) represents the initialization conditions of the dashboard with three selected 
substrates (e.g., chicken manure, OFMSW and straw), and Figure 8.2 (b) shows the 
related results as an example.  

The functioning of the software involves that, in the “Substrates Selection” section, the 
dashboard is linked through a Pivot Table to the database, allowing to select through 
a slicer the desired substrates and, automatically, their corresponding parameters used 
for the co-digestion optimization (the C/N ratio, the EBMP and the Biodegradability). 
The slicer allows the selection of two or three substrates since, up to now, the objective 
function has been defined in these two cases.  
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Once having selected the desired substrates, the data are transferred to the 
“Optimization Section”, where the input data of a batch or CSTR-based digester have 
to be inserted in the dedicated cells – the ones marked with the words “add value”. In 
particular, the required inputs are the pre-optimization conditions – used as first-guess 
values by the PythonTM algorithm –, the two thresholds of each mass flow for a CSTR 
or of each load for a batch digester, and the desired total mass flow rate/load that must 
be fed to the digester.  

Once having added the required values, by clicking the “Optimization” button, a 
macro connected to a PythonTM algorithm allows to obtain in the dedicated cells – the 
ones marked with the word “result” – the optimal mass flow rates or loads for each 
substrate, and the related composition complying to the imposed constraints. The 
algorithm is able to distinguish the cases in which of two or three substrates are 
selected. 

In addition, two pie charts and a histogram are present to compare the optimized and 
non-optimized compositions and feedstock BMPs, respectively. 

The PythonTM algorithm has been linked to the Excel sheet by using the package 
PyWin32, which allows to pick the input values from the desired cells to perform the 
optimization. Then, the Optimization macro has been built by creating a link to Python 
through the Visual Basic Advance language. 

This dashboard allows to easily select the desired substrates and perform a blending 
optimization exploiting a reliable database.  
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(a) 

        (b) 

Figure 8.2: Initialization of the Excel dashboard (a) and practical exam
ple (b) w

ith three substrates  
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8.3 Industrial Case Study – CSTR Model Validation 
This case study aims at validating the improved version of the optimization tool for a 
CSTR reactor and is based on the data provided by Thӧni s.r.l. – already presented in 
Chapter 7. 

By looking at the experimental data shared by Thӧni s.r.l., each substrate is 
characterized by a lower and a higher value between which the daily load varies 
during the month, that are shown in Table 8.1. 

 

 

 

 

As it can be observed in Table 8.1, the lower and higher thresholds for CM are equal 
since the CM load is always equal to 5 ton/d; the thresholds of FVFW and ST are 
instead given by the lowest and highest amount of these substrates that have been fed 
during the month of January.  

The total inlet flowrate of the plant is decided on a daily basis according to the current 
methane production: the total mass flow rate, indeed, is changed day by day in order 
to reduce or increase the methane output to maintain a constant electricity production. 
Therefore, to make a comparison between optimized and non-optimized data, in this 
case study the optimization is performed for each day considering the same total mass 
flow rate of the real case. 

The aim of the study is then to optimize day by day, during the month of January, the 
daily substrate loads respecting the constraints given by the daily availabilities, the 
needed consumptions, and the total required mass flow rate.   

To do that, the additional constraints must be imposed: each day, the substrates mass 
flow rates must be comprised between the two thresholds, and the total mass flow rate 
should be equal to the one assigned to that day. Thus, for each day j = 1…31 the 
following constraints are imposed: 

4 ≤ �̇� , ≤ 5 (8.7) 
7.5 ≤ �̇� , ≤ 15.5 (8.8) 

Mass Flow Rate [ton/d] Minimum Maximum 
CM 5 5 

FVFW 7.5 15.5 
ST 11 13 

Table 8.1: Lower thresholds (minimum required daily consumption) and higher 
threshold (daily maximum availability) of the daily loads 
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11 ≤ �̇� , ≤ 13 (8.9) 
�̇� , = �̇� , + �̇� , + �̇� ,  (8.10) 

Where �̇� ,  is fixed and stands for the total load assigned to day j depending on the 
gas production; the thresholds are assumed to be valid for any day j. It must be noted 
that �̇� ,  is assumed as comprised between 4 and 5 ton/d in order to introduce a 
variability of this quantity. 

The optimization tool proposes itself to optimize the inlet flow rates so that the inlet 
BMP is maximized, respecting at the same time the new constraints. Therefore, the 
mass fractions, that are needed to calculate the objective function, are now calculated 
as function of the mass flow rates as in Equation 8.11. 

𝑥 , =
𝑚 ,

𝑚 ,
 (8.11) 

After that, the objective function 𝑓  can be calculated day by day and maximized to 
obtain the daily optimal mass flow rates of the substrates.  

The optimal daily flow rates that are obtained are reported in Figure 8.3, where the 
flow rates before optimization are reported too.  

As it can observed in Figure 8.3, the optimized mass flow rates now comply to the 
imposed thresholds, therefore it is here proposed a feasible way in which the methane 
production of the month of January could have been increased thanks to the 
maximization of the inlet BMP.  

In Figure 8.4 a comparison between the BMP associated with the actual blends and to 
the optimized ones is presented: there it can be noted that the optimized BMP is 
significantly higher than the actual one until January 22, after which the optimized 
blends correspond to the actual ones and so the actual BMPs result to be already 
optimized. 

The described calculations can be quickly performed by using the Excel-PythonTM 
dashboard described in the previous section. The model results obtained using the 
dashboard for the first day of January are reported in Figure 8.5. 



106 Model Improvements for Industrial 
Applications 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: Actual mass flow rates and optimized mass flow rates over the 
month of January 

Figure 8.4: Comparison between the actual and optimized BMPs of the inlet 
mixtures over the month of January 
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Figure 8.5: Feedstock optim
ization using the Excel-Python

TM dashboard for the day January 1st 
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Conclusions 

The aim of the thesis was to lay the foundations and develop an optimization tool able 
to predict the optimal feedstock blending of anaerobic digesters, in order to improve 
biomethane production thanks to a better exploitation of raw materials.  

The project started with wide bibliographic research, during which hundreds of 
scientific articles were carefully read and analysed to deeply understand the subject 
and to gather information about feedstock properties. During this phase, the main 
parameters characterizing the substrates were identified, and a parameter 
representing the biodegradability of the substrates was also defined.  

After the bibliographic research, over eighty scientific papers were used to build a 
database, named Complete Database, where data about commonly used substrates were 
collected. By analysing this database, it was concluded that, even if substrates of the 
same nature may show differences in their compositions depending on their source, 
clear similarities could be observed: this allowed the building of another database, the 
Primary Averaged Database, where general values were proposed for the main 
parameters of substrates.  

The data contained in the Primary Averaged Database were then analysed to understand 
if correlations between parameters did exist: the data analysis made it possible to 
develop mathematical relationships between parameters and also allowed to validate 
the definition of biodegradability that was previously proposed. 

Thanks to the correlations emerged from the Primary Average Database analysis, an 
objective function representing the co-digestion BMP of mixtures of two or three 
substrates was then developed. The maximization of the objective function allows to 
calculate the composition of the mixture that maximizes the methane yield. This model 
was validated by comparing the model results with experimental batch co-digestion 
tests.   

Afterwards, the optimization tool was tested on industrial data, however in this case 
problems related to the large-scale application had to be faced: because of that, an 
improvement of the model was proposed to make it suitable for industrial realities, 
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validating its results with an industrial case study based on the data provided by the 
company Thӧni s.r.l. 

The final version of the optimization model represents an efficient and simple way to 
understand at industrial level how to efficiently combine the different substrates that 
are supplied to anaerobic digesters, both in case of continuous and discontinuous 
layouts.  

This data-driven model represents an innovative tool that could be helpful in the 
decision-making processes of biogas plants related to the feedstock management: 
indeed, it requires only a few, easily available input data to return how substrates 
should be combined to maximize their biomethane potential; moreover, it could also 
be used to predict the effect of adding new substrates to the ones that are already fed 
to an existing digester.   

This project, however, is still at its beginnings, and an extremely higher number of 
factors could be considered to obtain even more realistic and flexible results. 
Improvements to this model could be given by: 

 Enlarging the database with even more data and substrates.  
 Adding information about the localization of the biogas plant and about the 

transport of the substrates, in order to consider not only the availability of 
substrates and storage capabilities, but also how they are brought from the 
source to the plant. This could be done by connecting this model to the ADPL 
(Anaerobic Digestion Plant Locator) software [110], which represents a decision 
support system for the optimization of the localization of anaerobic digestion 
plants. 

 Connecting the optimization model to anaerobic digestion kinetic models such 
as ADE [111], that would allow to automatically compare the biogas production 
in optimized and non-optimized conditions.  

 The introduction in the objective function of correction factors to improve the 
prediction of synergistic and antagonistic effects between substrates, since at 
times an over/under-estimation of the biomethane potential is observed; 
moreover, they should also allow to predict if substrates do not show synergy 
at all. 

 Extending the objective function expression to an indefinite number of 
substrates.  

 Validating the model results with dedicated experimental tests. 

Even if improvements can be certainly done, it is interesting to see how a seemingly 
chaotic matter such as waste has been somehow rationalised throughout this project, 
and a tool able to propose how to efficiently combine different substrates has been 
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developed. Hopefully this technology, once properly improved and experimentally 
validated, could be made available for industries that are interested in improving their 
methane production by better exploiting their raw materials. The high practicality of 
this technology represents indeed its major point of strength. 
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