
POLITECNICO DI MILANO

School of Industrial and Information Engineering

Department of Electronics, Information and

Bioengineering

Master of Science in Computer Engineering

Active Transfer of Samples in
Reinforcement Learning

AI & R Lab
The Artificial Intelligence and Robotics Lab

of the Politecnico di Milano

Supervisor: Prof. Marcello Restelli

Co-Supervisor: Dr. Andrea Tirinzoni

Candidate:

Mahsa Shekari

Matr. 864207

Academic Year 2019-2020

To My Parents

Acknowledgement

I would like to express my sincere gratitude to my advisor Professor Marcello

Restelli for giving me the opportunity to work on this project in a professional

area (PoliMi AI & R Lab) and all his support and guidance in writing this

thesis.

I would also like to thank my co-advisor, Dr. Andrea Tirinzoni, who was a

source of motivation for this new experience in the research world and his

constant, valuable and honest help and feedback.

My sincere gratitude goes to my family and my parents, who genuinely sup-

ported me in this process.

I am grateful to all my friends for their support and contributions.

Thanks to my advisors in my previous school, Dr. Morteza Saberi and Dr.

Peyman Shahverdi, who encouraged me to pursue my study.

Thanks to all professors who taught me at Politecnico di Milano University.

Thanks to my dear and supportive friend Shirin Nobakhti.

I would like to thank my great friend, the person to whom words are not

enough to express my gratitude, Dr. Marjan Hosseini.

At the end, thanks to my love Alireza Javadian Sabet, who has always been

there for me in achieving my dreams.

II

Glossary

AWFQI Active Importance Weighted Fitted Q-Iteration

DM Data Mining

DP Dynamic Programming

FQI Fitted Q-Iteration

GPI Generalised Policy Improvement

GPs Gaussian Processes

HiP-MDP Hidden Parameter Markov Decision Process

IS Importance Sampling

IWFQI Importance Weighted Fitted Q-Iteration

LP Linear Programming

MAB Multi-Armed Bandit

MABs Multi-Armed Bandits

MDP Markov Decision Process

MDPs Markov Decision Processes

MI Mutual Information

MIS Multiple Importance Sampling

ML Machine Learning

MRP Markov Reward Process

MRPs Markov Reward Processes

III

MSE Mean Square Error

POMDP Partially Observable Markov Decision Process

RBT Relevance-based Transfer

RL Reinforcement Learning

SARSA State-action-reward-state-action

SDT Shared-dynamics Transfer

SFs Successor Features

TD Temporal Difference

TL Transfer Learning

Contents

Abstract XII

Sommario XIII

1 Introduction 1

1.1 Context and Motivations . 1

1.2 Contribution . 2

1.3 Structure of the Work . 3

2 Theoretical Background 4

2.1 Reinforcement Learning . 4

2.1.1 Elements of Reinforcement Learning 6

2.2 Markov Decision Processes . 9

2.2.1 Definition . 9

2.2.2 Partially Observable Markov Decision Process 9

2.2.3 Value Functions . 10

2.2.4 Bellman Equations and Operators 11

2.2.5 Optimality Conditions 13

2.2.6 Policies in Markov Decision Processes 14

2.3 Planning in Markov Decision Processes 16

2.3.1 Dynamic Programming 16

2.3.2 Policy Iteration . 17

2.3.3 Value Iteration . 18

2.4 Reinforcement Learning Taxonomy 19

2.4.1 Reinforcement Learning Bandit vs. MDP 19

2.4.2 Model-based vs. Model-free 20

2.4.3 Infinite Horizon vs. Episodic 20

2.4.4 Episodic vs. Non-Episodic 20

V

2.4.5 On-line vs. Off-line . 20

2.4.6 Greedy vs. ε−Greedy 20

2.4.7 On-policy vs. Off-policy 21

2.5 Learning Policy . 22

2.5.1 Temporal Difference Methods 22

2.5.2 Batch Learning Methods 23

2.5.3 Other approaches . 23

2.5.4 Fitted Q-Iteration . 24

2.6 Regression . 25

2.6.1 Gaussian Processes Regression 26

2.6.2 Extra Tree Regression 26

3 Transfer Learning in Reinforcement Learning 28

3.1 Overview . 28

3.2 Motivation . 29

3.3 Evaluation Methods . 30

3.4 Negative Transfer . 31

3.5 Related Works . 33

3.5.1 Transfer of Samples . 33

3.5.2 Trade-off between Information and Reward 35

3.5.3 Transfer of Value Function 37

3.5.4 Transfer of Policy . 38

3.5.5 Modeling Global Task Dynamics 39

4 Active Transfer in Reinforcement Learning 40

4.1 Score Function Criteria . 40

4.1.1 Problem Setting . 41

4.1.2 Proposed Approach . 41

4.1.3 Active Learning over the State-Action Space

(Choosing the State-Action Pairs) 44

4.1.4 Near-Optimal Policies for Markov Decision Processes

with Discrete Uncertainty 47

4.1.5 Score Function Criteria Evaluation 48

4.2 Score Function Construction 51

4.2.1 Ideal Score Function 52

4.2.2 Realistic Score Function 53

4.3 Active Weighted Fitted-Q Iteration 55

4.3.1 AWFQI Algorithm . 56

5 Empirical Evaluation 58

5.1 Experimental Settings . 58

5.1.1 Environment . 59

5.1.2 Setting 1: Source Data Mode 61

5.1.3 Setting 2: Grid Mode 62

5.1.4 Setting 3: Source Data and Grid Mode (Both) 62

5.2 Experimental Results . 62

5.2.1 Setting 1: Source Data Mode 63

5.2.2 Setting 2: Grid Mode 67

5.2.3 Setting 3: Source Data and Grid Mode (Both) 71

6 Conclusions & Future Work 76

Bibliography 78

List of Figures

2.1 The Reinforcement Learning framework [71]. 5

2.2 Policy iteration algorithm: it is a sequence of policy evaluation

and a greedy policy improvement steps until the optimum is

reached [73]. 17

2.3 Three main phases of the process of batch learning in Reinforcement

Learning (RL). The first phase is collecting transitions with

an arbitrary sampling strategy(sampling phase). The second

stage corresponds to the application of (batch) RL algorithms

in order to learn the best possible policy from the set of tran-

sitions(learning phase). The third phase is the application of

the learned policy. Note that in this step, the exploration is

not part of the batch learning task. During the application

phase, that is not part of the learning task either, policies

stay fixed and are not improved further [39] 24

2.4 An example of prediction using Gaussian Processes (GPs).

The gray region accounts for the uncertainty of the model to

predict the output considering input values. 26

3.1 Different learning processes between (a) traditional machine

learning and (b) transfer learning [55]. 29

3.2 Visual representation of the performance measures, in this case

the transfer algorithm outperforms the no transfer one. The

plot shows the advantages to the jumpstart, asymptotic per-

formance, time to threshold and total reward (the area under

the learning curve) [75]. 31

3.3 This figure represents a pair of tasks which are likely to result

in negative transfer for TL methods [75]. 32

VIII

4.1 An example of a Grid World. 48

4.2 Percentage of the time sampling by different scoring criteria

correctly identify true Markov Decision Process (MDP). 49

4.3 Performance of the approach. 50

4.4 Score table in Active Importance Weighted Fitted Q-Iteration

(AWFQI) oracle, grid mode, generated using exact rewards

and next states for the grid nodes state-actions. 53

4.5 Score table in AWFQI oracle, source data mode, generated

using exact rewards and next states for the state-action pairs

in all the source files. 53

4.6 Score table in AWFQI oracle, grid and source data mode, gen-

erated using exact rewards and next states for the state-actions

in the grid and in all the source files. 54

4.7 Score table in AWFQI, grid mode, generated using predicted

rewards and next states for the state-action pairs in the grid. . 54

4.8 Score table in AWFQI, source data mode, generated using

predicted rewards and next states for the state-action pairs in

source data. 55

4.9 Score table in AWFQI, grid mode mix with source data, gen-

erated using predicted rewards and next states for the state-

action pairs in the grid and in source data. 55

5.1 Source Markov Decision Processes (MDPs) 60

5.2 Target MDP . 60

5.3 The algorithms performance. In this setting, the score func-

tion restricts both AWFQI oracle and AWFQI to collect only

the samples that their (s, a) exist in source data. Samples

are collected using scores in Figure 4.5 in AWFQI oracle and

Figure 4.8 in normal AWFQI. 63

5.4 All algorithms collected (s, a) on target MDP through steps.

In this setting, the score function restricts both AWFQI oracle

and AWFQI to collect only the samples that their state-action

pair exist in source data files. Samples are collected using

score function in Figure 4.5 in AWFQI oracle and Figure 4.8

in AWFQI. 64

5.5 The algorithms performance. In this setting, the score func-

tion restricts both AWFQI oracle and AWFQI to collect only

the samples that their (s, a) exist in source data. Samples

are collected using scores in Figure 4.5 in AWFQI oracle and

Figure 4.8 in normal AWFQI. 65

5.6 All algorithms collected (s, a) on target MDP through steps.

In this setting, the score function restricts both AWFQI oracle

and AWFQI to collect only the samples that their state-action

exist in source data files. Samples are collected using score

function in Figure 4.5 in AWFQI oracle and Figure 4.8 in

AWFQI. 66

5.7 The algorithms performance. In this setting, the score func-

tion/table contains only the (s, a) in grid, and both AWFQI oracle

and AWFQI collect the samples that their (s, a) exist in the

grid. Samples are collected using scores in Figure 4.5 in AWFQI oracle

and Figure 4.8 in AWFQI. 67

5.8 All algorithms collected (s, a) on target MDP through steps.

In this setting, the score function/table contains only the (s, a)

in grid, and both AWFQI oracle and AWFQI collect the sam-

ples that their (s, a) exist in the grid. Samples are collected

using scores in Figure 4.5 in AWFQI oracle and Figure 4.8 in

AWFQI. 68

5.9 The algorithms performance. In this setting, the score func-

tion/table contains only the (s, a) in grid, and both AWFQI oracle

and AWFQI collect the samples that their (s, a) exist in the

grid. Samples are collected using scores in Figure 4.4 in AWFQI

and Figure 4.7 in AWFQI. The sub-plot on the bottom pro-

vides a closer view on the asymptotic behaviors of the algorithms. 69

5.10 All algorithms collected (s, a) on target MDP through steps.

In this setting, the score function/table contains only the (s, a)

in grid, and both AWFQI oracle and AWFQI collect the sam-

ples that their (s, a) exist in the grid. Samples are collected

using scores in Figure 4.4 in AWFQI oracle and Figure 4.7 in

AWFQI oracle. 70

5.11 The algorithms performance. In this setting, the AWFQI oracle

score function/tables contains (s, a) from grid and source data.

AWFQI contains grid state-action pairs and the pairs from

source data files. Both types of (s, a) are predicted from source

data files. Samples are collected using scores in figure 4.6 in

AWFQI oracle and figure 4.9 in AWFQI. 71

5.12 All algorithms collected (s, a) on target MDP through steps.

In this setting, the AWFQI oracle score function/tables con-

tains state-action pairs from both grid and source data. AWFQI

contains grid state-action pairs and the ones from source data

files. Both types of (s, a) are predicted from source data files.

Samples are collected using scores in figure 4.6 in AWFQI oracle

and figure 4.9 in AWFQI. 72

5.13 The algorithms performance. In this setting, the AWFQI oracle

score function/tables contains (s, a) from grid and source data.

AWFQI contains grid state-action pairs and the pairs from

source data files. Both types of (s, a) are predicted from source

data files. Samples are collected using scores in figure 4.6 in

AWFQI oracle and figure 4.9 in AWFQI. The sub-plot on the

bottom provides a closer view on the asymptotic behaviors of

the algorithms. 73

5.14 All algorithms collected (s, a) on target MDP through steps.

In this setting, the AWFQI oracle score function/tables con-

tains state-action pairs from both grid and source data. AWFQI

contains grid state-action pairs and the ones from source data

files. Both types of (s, a) are predicted from source data files.

Samples are collected using scores in figure 4.6 in AWFQI oracle

and figure 4.9 in AWFQI. 74

Abstract

In this work, we address the shortcomings of previous sample transferring meth-
ods by handling the dissimilarity between tasks efficiently. The contribution of
this work is designing an active algorithm, Active Weighted Fitted Q-Iteration
(AWFQI), for transferring the samples from the source tasks to the target task,
under the assumption that a generative model of the target task is available. Our
algorithm actively demands samples that yield high information for solving the task
itself. For this purpose, we estimate the conditional variance among the source
tasks by applying Gaussian process regression to the collected samples. This vari-
ance captures the dissimilarities among tasks, and it is applicable in both discrete
and continuous domains. In particular, we treat it as a score function indicating
what state-action pairs are likely to be more informative for solving the target task
and use it to actively query the generative model. We compare the performance of
our method with other state-of-the-art algorithms on transferring the samples such
as Relevance-based Transfer, Shared-dynamics Transfer, Importance Weighted Fit-
ted Q-Iteration and a non-transfer algorithm (Fitted Q-Iteration). We show that
our method outperforms these algorithms in many situations, specifically when
the budget for transferring is limited.

Keywords: Reinforcement Learning; Transfer Learning; Importance Weighted
Transfer; Active Transfer; Sample Reuse; Transfer of Samples; Batch Learning.

XII

Sommario

In questo lavoro cerchiamo di risolvere alcune delle maggiori limitazioni di lavori es-
istenti sul trasferimento di campioni nel contesto di apprendimento per rinforzo. Il
maggior contributo consiste nella progettazione e valutazione empirica di un nuovo
algoritmo, Active Weighted Fitted Q-Iteration (AWFQI), per trasferire campioni
da task sorgenti ad un task target gestendo in modo efficiente le dissimilarita’
fra i task. L’algoritmo proposto richiede attivamente campioni (ovvero richiede
l’esecuzione di certe azioni in stati arbitrari) al task target sotto l’assunzione che un
modello generative di quest’ultimo sia disponibile. Tali campioni sono selezionati
in modo da portare molta informazione per la risoluzione del task stesso. A questo
fine proponiamo di stimare la varianza condizionata dei modelli di transizione e di
reward fra i task sorgenti usando processi Gaussiani per effetttuare regressione sui
campioni osservati. Questa varianza cattura le dissimilirita’ fra i task e puo’ essere
calcolata sia in domini discreti che in quelli continui. Nel nostro caso viene trattata
come una funzione indicatrice di quali coppie stato-azione sono piu’ informative
per la risoluzione del task target e, di consequenza, viene usata per richiedere
attivamente campioni al modello generativo. Infine, valutiamo empiricamente ll
nostro algoritmo in un dominio continuo, confrontandolo con approcci allo stato
dell’arte come Relevance-based Transfer, Shared-dynamics Transfer, Importance
Weighted Fitted Q-Iteration e un algoritmo che non effettua alcun trasferimento di
conoscenza (Fitted Q-Iteration). Mostriamo che il nostro algoritmo ottiene spesso
le performance migliori, in particolare in casi in cui il budget di campioni che e’
possibile richiedere dal task target o che e’ disponibile dai sorgenti e’ limitato.

Chapter 1

Introduction

This chapter provides an overview of the work. In Section 1.1, we explain

the context and motivations, which led us to conduct this research. In Sec-

tions 1.2, we specify the objectives and possible improvements over existing

methods and our contribution. Then, Section 1.3 presents the structure of

the work.

1.1 Context and Motivations

Many situations in the real-world involve the interaction between two en-

tities, essentially an entity which we can call the agent that interacts with

another entity i.e. environment which it deals with. In these types of prob-

lems, the real challenge is finding the optimal solution such that the agent

can benefit the environment. These problems usually involve some agents’

actions in specific states at a time and can be modeled as Markov Decision

Processes (MDPs). The main objective in these problems is solving such

MDPs i.e. finding an optimal policy which can be efficiently addressed em-

ploying Reinforcement Learning (RL) algorithms [70].

Many of these real-world problems are defined in the field of Machine Learn-

ing (ML) and Data Mining (DM), in which knowing about the benefits of

past experiences to solve the new problems. In almost all of the ML ap-

proaches, we consider test data, as well as training data. The challenge is

understanding the pattern of the test data through the acquired knowledge

from training samples. In fact, Transfer Learning (TL) is a generalization

that knowledge can be transferred not only within tasks but also across dif-

ferent tasks [75]. Now, if the characterization and features in the training

(previous) and test (new) data are similar, TL is helpful to discover the pat-

terns in a new environment. However, if the characteristics/distribution of

the past experiences and future situations do not quite match, the perfor-

mance of our prediction/solution [62] deteriorates. Consequently, the learner

needs to adopt more efficient ways to transfer knowledge. In the RL termi-

nologies, we call these past experiences/training data as source tasks, and

the future environment/test data as target tasks.

TL has been studied and used in various contexts. The range of its applica-

tion spread from very seemingly irrelevant fields such as psychology [63, 89]

and cognitive architectures [15, 37] to more relevant applications such as in

ML [14, 77] and planning tasks [23, 30]. In addition, TL in RL is a worthy

topic to address, since recently the contribution of RL in solving hard prob-

lems has been considerable compared to ML. Examples of this success can

be TD-Gammon [76], job shop scheduling [90], elevator control [18], heli-

copter control [52], marble maze control [12], Robot Soccer Keepaway [66],

quadruped locomotion [34, 38]. Moreover, many traditional ML approaches

in classification, regression and etc. are sufficiently well-established to be

employed in TL. Finally, TL algorithms have shown promising results in

terms of effectiveness in solving problems and accelerating the solutions.

With these motivations, TL in the domains of RL has been discussed deeply

in [42,45,61,75].

1.2 Contribution

In this work, we studied TL in RL. Previous methods in transferring samples

such as TIMBREL [74] transfers all the samples as a bulk without accounting

for the inherent difference between the source and target MDPs. The meth-

ods that considered these criteria like Relevance-based Transfer (RBT) [43],

do not expect any specific condition for deciding what to transfer and makes

an assumption in terms of similarity between the source and target tasks.

Moreover, since RBT [43] computes the compliance and relevance metric

such that they mutually account for both the reward and transition mod-

2

els, it ignores the samples in case one of the models is very different among

the tasks. Shared-dynamics Transfer (SDT) [40] transfers the samples into

Fitted Q-Iteration (FQI) with the assumption that tasks follow the same

transition dynamics. This assumption potentially hinders its applicability as

a transfer method in most of the real-world tasks. In this work, we aimed to

design an algorithm so that it can efficiently handle the dissimilarity while

considering the trade-off discussed in [25]. We base our work on the method

proposed by Tirinzoni et. al [82] in 2018 (Importance Weighted Fitted Q-

Iteration (IWFQI)), as they address many of the above mentioned shortcom-

ings in previous methods. IWFQI uses standard exploration strategies (like

ε−Greedy) to get samples from the target task while transferring the source

instances to augment the available samples. However, since some samples

are already available from the source tasks, standard exploration might be

overkill as it might collect samples where they are not really needed (e.g.,

where everything is known from the sources). Therefore, it is important

to design exploration strategies that are aware of the knowledge that is al-

ready available from the sources and the one that still needs to be obtained.

Here, under the assumption that we have a generative model, we present

a technique, Active Importance Weighted Fitted Q-Iteration (AWFQI), for

obtaining samples from regions of the state-action space where little is known

about the target task without further assumption about the characteristics

of the source and target tasks.

1.3 Structure of the Work

The rest of the work is organized as follow. Chapter 2 explains some of

the theoretical frameworks and concepts applied in this work. In Chapter

3, we discuss the background and related works in transfer learning. In

Chapter 4, we explain our proposed solution for designing an active transfer

learning algorithm. The empirical evaluation of the proposed methodology

are presented in Chapter 5. Finally, Chapter 6 presents the conclusion and

future works.

3

Chapter 2

Theoretical Background

This chapter provides the reader with the basic theoretical frameworks and

concepts used in this work. First, we discuss fundamental elements of RL,

then we provide discussions regarding Markov Decision Process (MDP) and

how to learn policies in that setting. Then we compare some of the important

concepts in RL and describe some methods in learning policy. After that, we

explain the regression methods used for prediction.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a discipline in ML in which the agent learns

by interacting with an environment, and this is the nature of learning. As an

example of RL consider when a newborn waves its arms, it has no teacher,

but it does have a direct connection to its environment. Therefore, a child,

according to the consequences of actions and what to do for the sake of

achieving goals, learns about its environment [71]. In RL, the agent selects

some actions at a time; accordingly, that action leads to changes in the state

the agent is in and obtain some reward returned by the environment. The

agent’s goal is to maximize rewards over a defined time horizon [51]. In

the example mentioned above, although the baby does not have any explicit

teacher to tell the rules, it can evaluate possible actions according to the

rewards it receives from the environment. The agent is learning to choose

actions that maximize rewards and minimize punishments or losses. RL is

much more focused on goal-directed learning from interaction in comparison

with other ML approaches.

So, we need to maximize the numerical reward signal according to the way

we map situations to actions, which is part of the goal of RL as it is depicted

in Figure 2.1.

Figure 2.1: The Reinforcement Learning framework [71].

As it can be inferred from the figure, RL problems are closed-loop. In general,

the following are the most important characteristics of RL problems [72].

1. The problem is a closed-loop, i.e. at each time step, the agent action

is dependent on the feedback that it receives from the process in the

form of a value called reward or the discounted reward [20].

2. There is no direct instructions. The agent is not told explicitly which

actions they should take, as opposed to some other areas of ML, but

instead must discover which actions yield the most reward by taking

those actions.

3. Actions may affect not only the immediate reward but also the next

situations and through that, all subsequent rewards. So the reward an

agent receives at one timestamp is partly due to not only the previous

action but also the consequences of all the previous actions it has taken.

Agent – Environment Interface: In RL, the learner and decision-maker

are called the agent, and everything outside is considered as the environment

in which the agent interacts with. According to the agent selection of the ac-

tions, the environment responds to those actions and presents new situations

to the agent. The environment also generates rewards.

5

More in detail, the agent and environment interact at a sequential discrete

time step, starting from 0. At each time t, the agent receives some signal

which shows the state in which it is in which we call the environment’s state or

St ∈ S, where S is the whole states space, and accordingly selects a possible

action, At ∈ A(St), where A(St) is the set of actions available in state St.

One time step later, the agent receives a numerical reward, Rt+1 ∈ R ⊂ R,

because of its action,then the state position changes to the new state of St+1.

We use Rt+1 instead of Rt to denote the reward due to At because it implies

that the next reward and state, Rt+1 and St+1, are determined together. At

each time step, the agent considers a mapping from states to probabilities of

choosing one action in the action space. This mapping is actually the agent’s

policy [71] and is denoted by πt, where πt(a|s) is the probability that At = a

if St = s.

Trade-off between exploration and exploitation: One of the most

critical challenges in the RL domain is finding a trade-off between exploration

and exploitation. Exploration means the agent selects actions to collect in-

formation about the environment (e.g., randomly), while in exploitation,

the agent selects actions to maximize rewards according to its knowledge

about the environment greedily. To obtain more rewards, an agent must

prefer actions that it has tried in the past and found effective in producing

reward. However, to discover such actions, it has to try actions that it has

not selected before. The agent has to exploit what it already knows to obtain

reward, but it also has to explore in order to make better action selections in

the future. The dilemma is that neither exploration nor exploitation can be

pursued exclusively without failing at the task. On a stochastic task, each

action must be tried many times to gain a reliable estimate of its expected

reward [71].

2.1.1 Elements of Reinforcement Learning

In the area of RL, we can consider four main elements as follow: Policy,

Reward, Value Function, Model. For the sake of completeness, we explain

them briefly; then, in the later sections, they will be explained in more detail.

6

Policy

The policy defines how the learning agents should behave at a given time

step. In other words, a policy is a mapping from perceived states of the

environment to the most appropriate action to be taken that maximizes the

overall reward [83]. The optimal policy is usually denoted as π∗ [48]. In some

cases, the policy may be a simple function or lookup table, whereas it might

involve extensive computation, such as a search process. Simply, the policy

might be greedy. The greedy policy follows a greedy algorithm for solving

the problem of finding the best action at a given step [11]. Greedy policies

heuristically maximize the immediate reward and not the overall reward.

As a result, they fail to find the global optimum, and they are often sub-

optimal. On the other hand, ε− greedy policies [70] take a random action

with a probability of ε. These policies will be explained more in detail in

section 2.4.6. Another trivial policy is a random policy, which picks actions

uniformly from the action state at a given time without considering the

reward value either immediate or discounted [7, 31].

Reward

A reward signal determines the goal in a RL problem. A reward is a single

number that the environment sends to the agent at a time step. In a typi-

cal RL problem, the agent’s objective is maximizing the total reward. The

reward signal thus defines what the good and bad events are for the agent.

The agent has no access to the process that generates the reward function,

however, it can have access and modify the signal that the process produces

directly by its actions and indirectly by changing its environment’s state since

the reward signal depends on these, but the agent cannot alter the function

that generates the signal. Since if the agent could change the reward signal,

that would mean that it can modify the first problem it is facing into another

problem. The reward signal is the primary component needed for updating

the policy, in a sense that the policy tries to select the actions according to

the reward the agent receives if that action is taken. Accordingly, if an action

selected by the policy yields a low reward, the policy learns not to select that

action in that particular situation in the future. Nevertheless, it is essential

for an algorithm to sacrifice some immediate rewards if they lead the agent

to gain higher rewards in the long term [72].

7

Value Function

As mentioned before, the reward signal indicates what is good at each state,

in an immediate sense. However, the value function determines what is good

in the long run. In fact, the value of a state is equal to the total amount

of reward an agent can expect to collect in the future if it starts from that

particular state [70, 72]. In other words, the reward signal determines the

immediate, intrinsic desirability of environmental states. In contrast, values

function (value of a state) indicate the long-term desirability of that partic-

ular state after considering the states that are likely to follow if a specific

action is taken, and the rewards available in those states. For instance, we

could have a state that gives a low immediate reward for taking different

actions, but it still has a high value because it is regularly led to some other

states that yield high rewards. A state can be exactly the opposite too.

Rewards are making the values, and without them, values cannot be defined,

and the goal of estimating values is to achieve a higher overall reward. In

this sense, we are more concerned with knowing the value rather than the

reward when making and evaluating decisions. Correspondingly, we search

among the actions for the one that brings the states of the highest value, not

the highest reward, because, in the long run, we could make more reward by

taking these actions. In fact, the most crucial component of reinforcement

learning algorithms is to estimate values efficiently. It is typically harder to

determine values rather than rewards [65].

Model

Another element of some of the RL problems is a model of the environment

that simulates the behavior of the environment. Intuitively, the model makes

inferences about how the environment will behave. For instance, the model

can predict the next state and reward, given that the agent is in a particular

state and takes an action. Models are used for planning, i.e. for deciding on

a course of action by considering possible future situations in advance. In

general, having a model is optional, but models can easily be used if they are

available, or they can be learned [57].

8

2.2 Markov Decision Processes

MDPs are useful in many of the planning applications in the presence of

uncertainty [59]. In this section, we explain about MDPs, their definition,

and some of the background information that is relevant or related to a better

understanding of the topic.

2.2.1 Definition

MDPs bring a mathematical framework for modeling sequential decision-

making problems when results are randomly [2] and in controlling a goal-

directed agent [83]. Here we consider MDPs are discrete-time stochastic

control processes in which the agent decides which action to take in each

state then observes a reward for taking that action in that particular state.

Maximizing the long-term total reward is an agent’s goal according to the

sequence of actions [8].

Definition 1. A discounted MDP is a tuple M = 〈S,A, p, q, p0, γ〉, where:

• S is the set of states that the agent can have in the environment;

• A is the set of actions that the agent can apply in the environment;

• p : S ×A → P(S) are the transition probabilities;

• q : S ×A → P(R) is the reward distribution;

• p0 ∈ P(S) is the initial state distribution, where p0(s) is the probability

that is the state where the process starts;

• γ ∈ [0, 1] is a discount factor.

If the set of states S and the set of actions A are finite, an MDP can be

finite or discrete. Otherwise, it is called infinite or continuous. As we know,

stationary is one of the important properties of MDPs, which means the

reward function q, and the transition function p does not change over time.

2.2.2 Partially Observable Markov Decision Process

Partially Observable Markov Decision Process (POMDP) is a generalization

of the MDP by considering that the hidden states and exploring the obser-

vations and observation of state probability [53]. Intuitively consider the

9

following example. We usually go to our favorite restaurant and try anew

dish that we had not tried before intending to find a better dish. If our choice

for every restaurant never changes, the bandit is a very proper formulation

RL. If our preference changes to Chinese food after having Japanese food,

then modeling and exploring the state transition is more suitable MDP. Fi-

nally, if the restaurant’s choice is decided by many hidden factors, e.g. hidden

interest, mood, etc. it is preferable to consider POMDP [56].

Definition 2. A POMDP is a tuple 〈S,A,Ω, p, O, q, b0, γ〉 ,where:

• S is a finite set of states;

• A is a finite set of actions;

• Ω is a finite set of observation, partial information about the state the

agent provides by each observation;

• p : S ×A → P(S) are the transition probabilities;

• O are the conditional observation probabilities, where O(ot+1|st+1, at) is

the probability of observing ot+1 after taking action at and transitioning

to next state st+1;

• q : S ×A → P(R) is the reward distribution;

• b0 is the initial state probability distribution(initial belief state);

• γ ∈ [0, 1] is the discounted factor and it is used to discount future

rewards in infinite-horizon processes.

At time t = 1, where the first state s1 is drawn from b0 process is started. As

far as, the agent cannot observe such a state directly, it receives an observa-

tion o1. Then, the agent selects an action a1, transitions to the unobserved

state s2 according to p(s2|s1, a1), receives an observation o2 according to

O(o2|s2, a1), and at the end collects a reward q(s1, a1). After that, the pro-

cess is repeated (forever in case of infinite-horizon). The agent’s goal is to

select the sequence of actions maximizing the total (discounted) reward over

time.

2.2.3 Value Functions

In this section, we briefly discuss state-value and action-value Functions.

10

State-Value Functions

As far as an agent needs to know some information about the utility of being

in a state or select an action in a specific state, this function provides this

information. A function of states that estimates how good it is for the agent

to be in a given state, which means we need to evaluate future rewards that

can be expected in terms of expected return. Of course, the rewards the

agent can expect to receive in the future depend on what actions it will take.

Accordingly, value functions are defined w.r.t. particular policies. Recall

that a policy, π , is a mapping from each state, s ∈ S and action a ∈ A(s),

to the probability π(a|s) of taking action a when in state s. Generally, the

value of a state s under a policy π, denoted V π(s), is the expected return

when starting in s and following π after that. Given a policy π, it is possible

to define the utility of each state. For MDP we can define V π(s) formally as:

V π(s) = Eπ

[
T−t∑
k=0

γkR(st+k, at+k)|st = s

]
(2.1)

Action-Value Functions

For control purposes, it is easier to compute the action-value function, Qπ(s, a)

as it is more intuitive to know the value of a specific action in a given state,

and then derive the optimal policy [71]. It is defined as the expected return

starting from s, taking the action a, and after that following policy π. We

call Qπ the action-value function for policy π.

Qπ(s, a) = Eπ

[
T−t∑
k=0

γkR(st+k, at+k)|st = s, at = a

]
(2.2)

2.2.4 Bellman Equations and Operators

If we decompose the definition of the value function, V π(s) and consider

the value function as the sum of an immediate reward in state s with the

expected discounted reward in the following state. This kind of recursive

definition will show itself useful in solving MDPs.

11

Bellman Expectation Equation

The Bellman Expectation Equation [9] for state-value function is decomposed

into immediate reward plus discounted value of next state:

V π(s) = Eπ[rt+1 + γV π(st+1)|st = s]

=
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

)
(2.3)

The action-value function can be decomposed in the same way as presented

in equation 2.4:

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)|st = s, at = a]

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a∈A

π(a′|s′)Qπ(s′, a′)

(2.4)

We can write the Bellman Expectation Equation in a concise matrix form of

the equation 2.5, by using the Markov Reward Process (MRP) induced by

policy π.

V π = Rπ + γP πV π (2.5)

Where V π is ”vector” notation which holds for finite MDPs, while for con-

tinuous MDPs this is ”operator” notation.

Besides, the solution presents in the equation 2.9 which has a high compu-

tational complexity for inverting the matrix (I − γP π) :

V π = (I − γP π)−1Rπ (2.6)

So, a way to solve the MDP while avoiding the complexity inversion is to use

the Bellman Operator [9] defined as T π : R(|S|) → R(|S|) :

12

(T πV π)(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

)
, ∀s ∈ S (2.7)

It can be proved that the state value function vπ is the unique fixed point of

the Bellman Operator, T π , i.e., it satisfies T π[V π] = V π [59].

For Q function also we can define the Bellman Expectation Operator as well,

T π : RS×A → RS×A, defied as:

(T πQπ)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a∈A

π(a′|s′)Qπ(s′, a′) ∀s ∈ S (2.8)

Similar to the value function, Qπ is the unique fixed point of T π , i.e.

T π[Qπ] = Qπ. It worth mentioning that both operators are linear. As far as

they satisfy the contraction property in L∞ norm, i.e. ‖ T πf1 − T πf2 ‖∞≤
γ ‖ f1−f2 ‖∞, so the repeated application of T π makes any function converge

to the value function which is very important property in RL. A partial order

over policies are defined. Namely, for any two policies π, π′:

π ≥ π′ if V π(s) ≥ V π′(s), ∀s ∈ S (2.9)

2.2.5 Optimality Conditions

If we call Π the set of all possible Markovian policies then the optimal value

function, V ∗ is:

Definition 3. The optimal value function in any state s ∈ S in a given MDP

M is:

V ∗(s) = max
π∈Π

V π(s), ∀s ∈ S (2.10)

Solving an MDP means finding the optimal value function and the optimal

value function specifies the best possible performance an agent can gain in

any state of the MDP. In addition, we can describe the optimal action-value

13

function, Q∗(s, a) as:

Definition 4. The optimal action-value function in any state-action pair

(s, a) ∈ S × A in a given MDP M is:

Q∗(s, a) = max
π∈Π

Qπ(s, a), ∀(s, a) ∈ S × A (2.11)

Bellman Optimality Equation

Likewise, the value function of a given policy, we can define the optimal value

function of an MDP in a recursive way, [73]as:

V ∗(s) = max
a∈A

Q∗(s, a) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
(2.12)

Definition 5. The Bellman optimality operator, T ∗ : R|S| → R|S| is defined

as:

(T ∗V)(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)
, ∀s ∈ S (2.13)

This operator has the same properties as the Bellman Expectation Operator

mentioned before, namely, its a contraction w.r.t. ‖ · ‖∞, and the optimal

value function V ∗ is a unique fixed point of the operator.

2.2.6 Policies in Markov Decision Processes

A policy determines the behavior of an agent in a given state. A distribution

over actions given the state is a policy π. In other words, a policy at any

given point in time chooses which action the agent selects because MDPs

have the Markovian property, the current state st is enough to determine the

next action at. [71]. These kinds of policies are called Markovian Policies.

On another side, the policy is called stationary if the actions mapped are not

dependent on the time step t.

14

π(a|s) = P[a|s] (2.14)

Definition 6. A stationary randomized (deterministic) control policy is a

mapping π : S → P(A) (π : S → A). The set of all stationary randomized

(deterministic) policies is denoted as ΠSR (ΠSD). At each time step t, the

agent is in some state St, it takes an action At ∼ π(·|St) according to a

possibly randomized policy π, it transitions to a new state St+1 ∼ p(·|St, At),

and it receives a reward Rt ∼ q(·|St, At). As far as the goal of RL is finding

the policy which maximizes the cumulative reward collected.An MDP paired

with a policy π is called Markov Reward Processes (MRPs) denoted by the

tuple 〈S,Pπ,Rπ, γ, µ〉. For s ∈ S,Pπ(·|s) is a probability measure over S.

P π is a probability density function gained by marginalizing the transition

model of the MDP, P over the actions:

P π(s′|s) =
∑
a∈A

π(a|s)P (s′|s, a), ∀s, s′ ∈ S (2.15)

P π(s′|s) gives the probability of ending up in state s’, starting from state s,

in one time step. Correspondingly, Rπ(·|s, s′) for all s, s′ ∈ S is a probability

measure over with the corresponding density function R obtained from the

reward model of MDP as:

Rπ(r|s, s′) =
∑
a∈A

π(a|s)R(r|s, s′, a), ∀s, s′ ∈ S (2.16)

MRPs are suitable model for uncontrolled processes. We are left with Markov

Chains or Markov Processes by removing the concept of reward from the

MRPs.

Optimal Policies

Theorem 1. For any Markov Decision Process

• There is an optimal policy π∗ which is better or equal to all other policies

π ∈ Π;

• All optimal policies achieve the optimal value function, V π∗(s) = V ∗(s);

15

• All optimal policies achieve the optimal action-value function, Qπ∗(s, a) =

Q∗(s, a);

• There is always a deterministic optimal policy for any MDP

Therefore, according to the theorem, by finding the optimal Q function, Q∗,

and taking ”greedy” action in each state, we can discover the optimal policy

of an MDP which means:

π∗(s) = argmax
a∈A

Q∗(s, a) ∀s ∈ S (2.17)

2.3 Planning in Markov Decision Processes

As far as an MDP is defined as the tuple M = 〈S,A,P ,R, µ, γ〉, we can

solve the MDP (find the optimal policy), if we know all the elements of the

tuple [33]. In Artificial Intelligence, planning is solving a decision making

problem without ever making a decision. Some of the most used planning

algorithms are dynamic programming, policy iteration, and value iteration.

2.3.1 Dynamic Programming

By finding an optimal policy, we can solve an MDP. For finding this policy,

the usual approach is to find the optimal value function (or action-value func-

tion) and drive from it the optimal policy. When the state transition model

(P) of the MDP is known, Dynamic Programming (DP) is the most common

approach used to solve MDPs. In general, DP [9,10] is a common technique

to solve problems which can be divided into sub-problems or problems that

satisfy the following two properties:

• Problems must have an optimal substructure i.e., the solution can be

decomposed into sub-problems;

• Problems must have overlapping sub-problems i.e., sub-problems recur

repeatedly, and solutions can be cached and reused.

As far as sub-problems are solved, the main problem is also solved, and this

recursive problem solving is a definition of the Bellman operator. In fact

MDPs have both these properties:

• Bellman equation gives recursive decomposition;

16

• Value function stores and reuse solutions.

DP algorithms require full knowledge of the MDP, and that is the main

disadvantage of this approach. As far as the number of states and/or actions

may be infinite or the dynamics of the process may be unknown, it is difficult

in MDPs to model real problems, and sometimes it is impossible.

2.3.2 Policy Iteration

By alternating the policy evaluation and policy improvement phases, policy

iteration solves MDPs [29]. The algorithm starts from a random policy, π0

than the policy iteration phase tried to extract the value function of the cur-

rent policy. Also, the closed-form solution could be used to get a specific

solution, but as we know, this comes with a high computational cost. As a

matter of choice, we can apply recursively to the Bellman Expectation Oper-

ator. By applying this operator recursively, we get an approximation of the

value function of the policy, but for most applications, we look for an approx-

imation of the value function. In addition, in modified policy iteration [60],

the algorithm does not wait until convergence, defending that a sufficiently

good approximation is enough.

Policy Iteration

Figure 2.2: Policy iteration algorithm: it is a sequence of policy evaluation and a
greedy policy improvement steps until the optimum is reached [73].

17

After the policy evaluation phase, policy improvement generates the greedy

policy from the value function, by selecting, in each state, the action that

maximizes it.

πt+1(s) = argmax
a∈A

Qπt(s, a), ∀s ∈ S (2.18)

Theorem 2. Let π, π′ be two deterministic policies such that

Qπ(s, π′(s)) ≥ V π(s), ∀s ∈ S (2.19)

then the policy π′ is not worse than π:

V π′(s) ≥ V π(s), ∀s ∈ S (2.20)

Of course, by evaluating the policy employing the value function, to generate

the greedy policy, we need the state transition model, P . If the model is not

available, Q-iteration is used. Here, instead of evaluating the value function

of the policy, we evaluate the action-value function in a similar way.

Policy iteration at each iteration has a policy evaluation step that is ensured

to converge only at the limit, so this is the main drawback of the policy

iteration, which causes the reason why the value iteration algorithm has

been introduced.

2.3.3 Value Iteration

Value iteration is based on the iterative application of the Bellman Optimal-

ity Operation discussed before, which finds the optimal value function (and

from it the optimal policy) for finite MDPs without the intermediate use of

policies. It should be noted that there also exist Approximate Value Iteration

algorithms for continuous MDPs, such as FQI, which is discussed in 2.5.4.

Value iteration starts from an initial value function, V 0, and then applies

the Bellman operator iteratively until a stopping condition. Obviously, the

stopping condition might be a maximal number of iterations or based on

some minimal metric of the distance between two subsequent estimations of

the value function. Finally, the optimal policy is found in the same way as

18

in policy iteration, by taking the greedy policy induced by the optimal value

function. Also, the state transition model is required; otherwise, we need

to estimate the optimal action-value function instead. The convergence to

the optimal value function is guaranteed. Principally, given two consecutive

approximations of the optimal value function, we can bound the error w.r.t

the true optimal value function:

‖ V t+1 − V s ‖∞< ε ⇒ ‖ V t+1 − V ∗ ‖∞<
2εγ

1− γ
(2.21)

Value iteration focuses on the value function only, while policy iteration

represents explicitly the policy. Therefore, intermediate value functions may

not correspond to any policy. Both have polynomial time complexity for

MDPs with fixed discount factor [49]. If we consider a single iteration, we

will see policy iteration is more computationally demanding w.r.t. value

iteration, since it requires evaluating the policy and performing the greedy

improvement, but it tends to converge in a smaller number of iterations.

However, Linear Programming (LP) becomes impractical at a much smaller

number of states than DP methods do, besides DP; also, LP can be employed

to recover the optimal value function.

2.4 Reinforcement Learning Taxonomy

When we are trying to solve a MDP, according to the problem setting, several

algorithms can be applied. The goal of this section is to introduce some RL

terminologies.

2.4.1 Reinforcement Learning Bandit vs. MDP

In RL, when the environment is unknown, one can describe it by observations,

states, actions, reward, state transition probability, and conditional observa-

tion probabilities. Bandit, MDP, and POMDP model the environment by

considering different elements differently. Bandit only explores which ac-

tions are optimal regardless of the state. In the classical Multi-Armed Ban-

dit (MAB) [13, 36] policies, we assume the rewards are i.i.d. for each action

in all the time [91]. Multi-Armed Bandits (MABs) are MDPs with only one

state, so the actions do not change the state of the environment while in RL

19

in general, the actions can change the state in the environment. In addition,

one-state RL (MAB) explores only the stochastic rewards, however MDP

explores state transition probability too [44].

2.4.2 Model-based vs. Model-free

The goal of RL is to maximize rewards for our actions, and these rewards

are dependent on the policy and system dynamics (model). If the agent has

certain knowledge about the environment’s model, and the model is known,

it means the algorithm is model-based. On the other hand, if the learning

process occurs without any accurate information of the transition model, it

means we have a model-free algorithm.

2.4.3 Infinite Horizon vs. Episodic

If we have a unique infinite trajectory according to the experience which is

presented to the algorithm, it means we have a task with an infinite horizon.

On the other hand, the task is episodic if we have trajectories of finite length,

which means every trajectory is a different episode.

2.4.4 Episodic vs. Non-Episodic

Algorithms that need a full episode to perform an update are episodic. How-

ever, non-episodic algorithms can learn even from incomplete episodes, which

are the only ones applicable to MDPs where episodes can be infinite.

2.4.5 On-line vs. Off-line

On-line algorithms update their information (value functions and/or policy)

for finding the problem’s solution during the generation of data while off-line

algorithms require a full dataset to perform the learning.

2.4.6 Greedy vs. ε−Greedy

These algorithms are the simplest possible algorithms for the trading of ex-

ploration and exploitation, but they suffer from the difficulty, which is they

have sub-optimal regret. Absolutely the regret of both Greedy and Epsilon

Greedy increases linearly by the time.

20

It is understandable, as the Greedy will lock on one action that happened to

have good results at one point in time, but it is not, in reality, the optimal

action. So Greedy will keep exploiting this action while ignoring the others,

which might be better. As a result, it exploits too much. The ε− Greedy,

on the other hand, explores too much because even when one action seems

to be the optimal one, the methods keep allocating a fixed percentage of the

time for exploration, thus missing opportunities and increasing total regret.

In contrast, the decaying ε−Greedy methods try to decrease the percentage

dedicated to exploration as time goes by.

2.4.7 On-policy vs. Off-policy

As far as we have two policies, one is used to interact with the environment,

which is called behavioral, and the second one that is learned from the algo-

rithm is target. If the two policies are the same, we speak about On-policy

learning algorithms. If the two policies are different, we are referring to

Off-policy learning algorithms.

Q-Learning

Q-learning is an off-policy RL algorithm that aims to find the best action to

take given the current state. It is considered off-policy because Q-learning

function learns from actions outside the current policy. In general, it seeks

to learn a policy that maximizes the total reward. In this regard, Q-value

can be updated using the following rule:

Q(S,A)← Q(S,A) + α[R + γmax
a
Q(S ′, a)−Q(S,A)] (2.22)

In Q-Learning, the agent learns optimal policy by using absolute greedy

policy and behaves using other policies such as ε-greedy policy. As far as

the updated policy is different from the behavior policy, so Q-Learning is

off-policy.

SARSA

One of the algorithms which can be used for learning a MDP policy is State-

action-reward-state-action (SARSA). In this algorithm, updating the Q-

value depends on the current state of the agent S1, the action the agent

21

selects A1, the reward R which agent gets for choosing this action, the next

state S2 that the agent arrives after taking that action, and the next ac-

tion A2 the agent selects in its new state. The acronym for the quintuple

(st, at, rt, st+1, at+1) is SARSA [71].

Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)] (2.23)

Updating policy is how the agent learns the optimal policy, behavior policy

is how the agent behaves. In SARSA, the agent learns optimal policy and

behaves using the same policy, such as ε-greedy policy. So as opposed to

Q-learning, SARSA is on-policy because the updated policy is the same as

the behavior policy.

2.5 Learning Policy

As discussed in section 2.2.6, a policy, π : S → A explains how a learner

interacts with the environment, which maps recognized environmental states

to actions. An optimal policy, π∗, is a policy that maximizes the total reward

it receives in the long run. There are many possible approaches to learn such

policy [74]. Here we discuss some of them.

2.5.1 Temporal Difference Methods

Temporal Difference (TD) methods, such as Q-learning [73, 85] and SARSA

[74], learn by backing up experienced rewards through time. An estimated

action-value function, Q : S×A → R is learned, where Q(s, a) is the expected

return found when executing action a from state s, and greedily following

the current policy after that. According to the Q, which selects the action

with the highest value for the current state, the current best policy will be

generated. Exploration means that when the agent chooses an action to learn

more about the environment, it must be balanced with exploitation, which

means when the agent picks what it believes to be the best action. ε -greedy

action select in, i.e., the agent selects a random action with chance ε, and

the current action is selected with probability 1−ε, is a simple approach that

balances the two [75].

22

2.5.2 Batch Learning Methods

Batch learning methods (e.g., Least-Squares Policy Iteration [35] and FQI

[22] are offline so they do not attempt to learn as the agent interacts with

the environment. Batch methods can save several interactions with the en-

vironment and use the data multiple times for learning, so they are designed

to be more sample efficient. Moreover, these kinds of methods allow a dis-

tinct separation of the learning mechanism from the exploration mechanism,

which is useful to understand whether to attempt to gather more data about

the environment or exploit the current best policy.

2.5.3 Other approaches

Some other approaches such dynamic programming (see Section 2.3.1) and

model-based or model-free are also available for learning an optimal a policy,

and model-based or model-free, which discussed in Section 2.4.2.

The Batch Learning Problem

According to Sutton and Barto [73], the goal in the batch learning problem

is finding a policy that maximizes the sum of expected rewards in the agent-

environment loop. In addition, in this setting, the agent is not allowed to

interact with the system during learning. It means that the learner only

receives a set f = {(st, at, rt+1, st+1)|t = 1, ..., p} of p transitions (s, a, r, s
′
)

sampled from the environment instead of observing a state s, then selects an

action a and modify the policy based on the subsequent state s
′

and reward

r [39]. In the generalization case for the batch learning setting, the learner

cannot consider any assumption on the transitions’ sampling procedure. We

only can sample arbitrarily, which can be purely random or uniform from

the sate-action space S×A. In the end, the agent uses only this information

to find a policy for interacting with the environment. The policy cannot be

improved in this application phase, even with new observation. The learner

cannot be anticipated to find an optimal policy because it should not interact

with the environment; also, the given set of transitions mostly is finite [39].

The goal here is to obtain the best possible policy from the given data instead

of learning an optimal policy. According to figure 2.3, the whole procedure

separate into three phases, the exploration phase that collects samples of

the form < s, a, s
′
, r > (sampling phase), and the offline algorithm which is

23

on the base of samples compute action-value function (learning phase) and

application of the learned policy [39,42].

1. Exploration 2. Learning 3. Application
transitions

(s,a,r,s')

policy

Sampling Phase Learning Phase

Figure 2.3: Three main phases of the process of batch learning in RL. The first
phase is collecting transitions with an arbitrary sampling strategy(sampling phase).
The second stage corresponds to the application of (batch) RL algorithms in order to
learn the best possible policy from the set of transitions(learning phase). The third
phase is the application of the learned policy. Note that in this step, the exploration
is not part of the batch learning task. During the application phase, that is not part
of the learning task either, policies stay fixed and are not improved further [39]

2.5.4 Fitted Q-Iteration

Fitted Q-iteration (FQI) algorithm [22] is a model-free, off-policy batch mode

RL algorithm that belongs to the family of approximate Value Iteration. Its

main goal is to learn a good approximation of the optimal action-value func-

tion Q∗(s, a), by iteratively extending the optimization horizon [21]. FQI

can be applied in supervised learning techniques. It considers a full dataset

f containing the information that gets from experience because the algo-

rithm is offline. Each sample in the dataset describes an interaction with the

environment, and includes four tuples:

• sit belongs to current state;

• ait denotes to action performed;

• rit+1 is the immediate reward;

• sit+1 expresses the next state.

f = {(sit, ait, rit+1, s
i
t+1)|i = 1, 2, ..., |f |}. (2.24)

The data represents all the experience the an agent has collected i.e. ex-

ploited to infer an estimate of the optimal action-value function Q∗(s, a). In

FQI, the agent cannot directly interact with the environment, which gener-

ates the samples and updates a policy or a value function.

24

In continuous or very large discrete state and/or action spaces, the dataset

does not contain all possibilities. To deal with this issue FQI performs a

Supervised Learning regression with the action-value function as the output

that must be learned. If the regressor can predict the value of any state-

action pair, it can also estimate the action-value function. At each iteration

of the algorithm, the horizon in which the optimization of the action-value

function is performed increases one step. Q∗1(s, a) is estimated at the first

iteration, so the action-value function becomes optimal only concerning the

next step, which means the immediate reward. By applying the regressor

to the training set, an approximation of this function can be obtained. The

current state and action pair (st, at) is considered as an input and immediate

reward (rit+1) is a target. Generally, for N th iteration, the estimated function

will be Q∗N(s, a), which is the optimal action-value function according to N

steps. Then the training set will be once again the couple (st, at) of current

state and action; on the other side, the target will be iteratively computed

as the immediate reward and the discounted best value over N − 1 steps.

As expected, the first step is separately determined by the action, while the

following N−1 steps have the optimal value given by Q∗N−1(st+1, at+1) which

is the function that was approximated in the previous iteration.

2.6 Regression

In ML, regression is a supervised learning approach in which we estimate the

model that encompasses the relationship between input variables and the

output. This allows us to predict or estimate the conditional expectation of

the output variable, given a set of input variables’ values. In the simplest

way, it is linear, where we are dealing with a single variable, and we drew this

relationship to fit best such that the Mean Square Error (MSE) between the

predicted value and the real value of the output would be minimized. Non-

linear forms of regression include polynomial regression or any other type of

function that provides non-linearity [24]. In this work, we used regression

methods in order for prediction purposes, and in the following, we explain

briefly about the methods we used.

25

2.6.1 Gaussian Processes Regression

GPs [88] is a nonlinear Bayesian approach to perform regression. It is a

non-parametric method in the sense that it is of a particular functional form;

accordingly, it calculates the probability distribution over a set of functions

that fits the data rather than calculating the probability distribution of a

specific function’s parameters [16,87]. In the Bayesian setting, a GPs can be

considered as a prior probability for making inference [46, 88]. An example

of prediction using GPs is presented in Figure 2.4.

Let the covariance matrix of multivariate Gaussian parameters be the Gram

matrix of points in the dataset with any kernel, and we can sample from

the Gaussian distribution. Then, another covariance matrix is constructed,

which explains the correlations between all input and output variables consid-

ering the dataset points in the desired domain [3]. The inference of continuous

values using a GPs prior is known as Gaussian process regression [64].

Figure 2.4: An example of prediction using GPs. The gray region accounts for the
uncertainty of the model to predict the output considering input values.

2.6.2 Extra Tree Regression

It is a tree-based ensemble method for regression problems. The main idea

that randomized decision trees perform as well as the classical trees has

introduced by Mingers et. al in 1989 [50].

The Extra-Trees algorithm constructs a group of unpruned decision or re-

26

gression trees according to the typical top-down approach. Its only difference

with other tree-based ensemble methods is that in the Extra Tree algorithm,

the nodes are split in some cut-points, which are selected entirely randomly.

In addition, it uses the whole learning sample instead of a bootstrap replica

to grow the trees. Extra tree regression, in the extreme case, constructs to-

tally randomized trees whose structures are independent of the output values

of the learning sample. One advantage of this randomization is that it can

be tuned to a particular problem we are dealing with by selecting the appro-

priate hyperparameter, hence it is very accurate. Besides it is computational

efficient [26].

27

Chapter 3

Transfer Learning in

Reinforcement Learning

In this chapter, we provide the reader with the background and related works

in the transfer learning. In Section 3.1, we provide a brief overview of the

TL in general. Since the scope of this work is the TL in RL domain, the

rest of the chapter is focused on the TL in RL. In Section 3.5 we discuss

the related works done in TL; and since the objective of this work is to

design an active transfer of samples we dedicated Section 3.5.1 to discuss

state-of-the-art algorithms in the sub-field of Transfer of Samples in RL.

3.1 Overview

TL is a broad research area that serves well many ML and DM applications;

many ML and DM algorithms are built upon a primary assumption indicating

that the data used for training the algorithms share the same feature space

and distribution with the future data. However, when dealing with real-

world problems, this assumption may not hold for many of the applications.

For instance, consider a classification task which suffers from the scarcity of

training data in the domain of interest while we have access to a sufficient

amount of data from another domain with different feature space and/or data

distribution. For such a problem, proper TL would improve the performance

of learning while avoiding expensive efforts such as data-labeling [55].

The intuition behind TL, is that not only the generalization can happen

within tasks, but also it may happen across tasks [75]. As depicted in Figure

3.1a, traditional ML algorithms learn each task independently, while TL

algorithms (see Figure 3.1b) aim at transferring the knowledge obtained from

some source tasks (the tasks learned before) to a target task in case of access

to fewer but high-quality training data for the target task.

Figure 3.1: Different learning processes between (a) traditional machine learning and
(b) transfer learning [55].

For more explanations of the TL in various fields, we refer the reader to [55,86]

surveys, and the rest of the work focuses on the applications of TL in RL.

3.2 Motivation

In RL problems [73], agents aim at maximizing their obtained reward (maybe

time-delayed) through taking a sequence of actions. The popularity of the

RL framework comes from its learning methods’ capability, which makes it

powerful to handle extremely complex problems [75]. Nevertheless, when

RL agents begin learning tabula rasa, mastering difficult tasks could become

extremely long that it is infeasible. In short, the advantages of TL algorithms

notably when dealing with budget constraint are as follow:

• Accelerate the learning process.

• Minimize the required data from the target task.

29

In the following, we will discuss the taxonomies and state-of-the-art concern-

ing this work, and we refer the reader to the surveys [42, 75] for broader

information regarding TL in RL.

3.3 Evaluation Methods

This section explains some of the concepts related to the evaluation of TL

algorithms. The first evaluation metric is autonomy. It is said that the agent

in TL algorithms should perform the following steps to be fully autonomous:

1. According to the target task, an appropriate source task is selected.

2. Learn the relation between source task and target task

3. Transfer knowledge from the source task(s) to the target task.

TL research considers each of them independently, and until now, no TL

methods are capable of accomplishing all three goals. The majority of al-

gorithms, however, consider the first two steps performed by a human, and

ignore the time spent learning the source tasks.

In addition, there are many metrics to measure transfer’s effectiveness [75]:

1. Jumpstart : Transfer from the source tasks can cause an improvement

of the initial performance in the target task

2. Asymptotic Performance: The final learned performance of an agent

in the target task may be improved via transfer.

3. Total Reward : The total reward accumulated by an agent, can be im-

proved transferring from the source tasks, for learning without per-

forming the transfer.

4. Transfer Ratio: The ratio of the total accumulated rewards with the

transfer to the total accumulated rewards without transfer.

5. Time to Threshold : The number of samples needed by an agent to

achieve a pre-specified performance level may be reduced via transfer.

One problem of these metrics is that during different times one algorithm can

perform well in some metrics and bad in others, so evaluation under multiple

metrics is a good suggestion. There is a visual representation of these metrics

in figure 3.2 [75].

30

Figure 3.2: Visual representation of the performance measures, in this case the trans-
fer algorithm outperforms the no transfer one. The plot shows the advantages to the
jumpstart, asymptotic performance, time to threshold and total reward (the area under
the learning curve) [75].

3.4 Negative Transfer

Negative transfer is one of the main challenges in TL. Intuitively, it is the neg-

ative impact of using a part of the knowledge that deteriorates the learning

algorithm’s performance with respect to learning from scratch. Therefore, it

happens in case the transfer introduces incorrect learning biases and results,

which can be a result of a similar source and target task.

Although we can say that it is possible to promote learning in a target task

faster by transferring the knowledge, there are few methods for determining

when the method might fail or the usefulness of a given transfer approach.

These methods, such as Master [74] and region transfer [43] try to measure

task similarity, and according to that, the agent decides about when and

what to transfer; however, many of them do not guarantee the effectiveness

of transferring. One of the methods for controlling negative transfer is IWFQI

[82] proposed by Tirinzoni et. al in 2018 which is discussed in section 3.5.1.

Figure 3.3 depicts an example of negative transfer. It considers the pair of

tasks, one source and one target, which are extremely similar, but direct

transfer of a policy or action-value function is harmful [75].

31

Figure 3.3: This figure represents a pair of tasks which are likely to result in negative
transfer for TL methods [75].

According to Figure 3.3, the agent begins from state I and action East.

Other states can go East or West, except for state A, which also has North

and South actions. Once the agent plays North or South in state A, it will

remain in state B or C, respectively, and follow self-transitioning. Except

for the self-transition in state B, no transition has a reward. Then consider

the target task, which is the same as the source task, except that the self-

transition from C’ is the only reward transition in the MDP. Q∗(I’, East) in

the target task is the same as Q∗(I, East) in the source task. As expected, the

optimal policy in the target task is different at only a single state, A’, and only

at states A’, B’, and C’ the optimal action-value function is different [75]. In

this figure, transferring the knowledge involving these different states leads

to negative transfer, which concerns mostly the reuse of policies or value

functions, while other kinds of knowledge (such as samples) might still be

transferred without harming the learning process.

32

3.5 Related Works

In this section, we provide the related works regarding TL in the domain

of RL. In Section , we discuss the state-of-the-art algorithms concerning

the Transfer of Samples, and the recent advancement in Trade-off between

Information and Reward are presented in Section 3.5.2. Moreover, in Sections

3.5.3, 3.5.4 and 3.5.5 we provide the other related works in Transfer of Value

Function, Policy Transfer and Modeling Global Task Dynamics respectively.

3.5.1 Transfer of Samples

In this section, we review the state-of-the-art methods related to our work

in the sub-field of Transfer of Samples in RL.

Taylor et al. in 2008 propose TIMBREL [74] as a method to transfer the

samples in model-based RL. They assumed that the state-action space of

tasks might be different and employed intertask mappings to map source

samples to target. Since TIMBREL does not acknowledge the differences

in the transition or reward models, it can potentially result in considerable

negative transfers if the tasks are different.

In [17], Crammer et. al extend the classical generalization bounds to the case

where samples from source tasks are directly transferred. They investigate

the trade-off between the total number of samples transferred and the total

number of source tasks. According to their findings, the variance decreases as

the total number of samples transferred increases and potentially introduces

bias due to the differences between the tasks. Asymmetrically, bias decreases,

and variance increases as the total number of samples is transferred due to

the limited number of samples.

Garcke & Vanck in 2014 [25] is another related work concerning the transfer

of samples from different datasets. They proposed a method that employs

importance weighting aiming at correcting the distribution shift. Their idea

leverages from density-ratio estimation, for example, work [68], and since

they suppose a given parametric form for the weight function, it has to be

estimated directly from the data.

Another related work is the RBT method proposed by Lazaric et al., 2008

[43]. They build the algorithm under the assumption that tasks have similar

transition models and reward functions. In order to reduce the learning

33

complexity of the batch RL, RBT reduces the number of samples an agent

requires to collect from the target task by selecting samples from those source

tasks, which are mostly similar to the target task.

The reported results confirm that RBT effectively reduces the complexity of

learning even in the situations that some source tasks are extremely different

from the target task. To do so, RBT computes two criteria: Task Compliance

and Sample Relevance. Task Compliance determines the degree in which

each source task is different from the target task in the form of a model

identification problem. Using these criteria, RBT can transfer samples from

each source task proportionally. On the other hand, since Task Compliance

is not able to suggest which samples in a given source task are actually better

to transfer, RBT is empowered with Sample Relevance measurement, which

indicates which samples to be transferred.

The work [40] by Laroche & Barlier in 2017 introduced an algorithm named

as SDT for a particular set of Transfer RL problems. SDT is designed for

the problems in which all tasks share the same transition models, and only

the reward functions differ from task to task. SDT aims to reuse the learned

transition model from one task for other tasks, and for each sample, an

immediate reward estimator is learned. Besides, because of the knowledge of

the transferred dynamics from tasks, the optimism in the face of uncertainty

principle enables SDT to explore a new task efficiently.

To solve a target task, most of the works focus on selecting the most rele-

vant source samples but ignoring the differences between the task models.

However, in 2018 Tirinzoni et al. proposed a novel model-based algorithm

named as IWFQI [82] to transfer samples. IWFQI automatically estimates

the relevance (i.e. importance weight) of each source sample for solving

the target task and transfer all the samples by employing Importance Sam-

pling (IS) [54]. To maximize the transformation of the information, they

employ two different GPs for reward and transition models. Then, the trans-

ferred samples, along with their estimated relevance, are used by a batch RL

(in their case FQI) to solve the target task. The contribution of each sample

to the learning process is proportional to its estimated relevance.

To test their proposed algorithm, they conducted some experiments and com-

pared the performance of IWFQI versus SDT, RBT, and FQI discussed ear-

lier. The results confirm that IWFQI accomplishes better learning perfor-

34

mance, and even in the case of substantial differences among some of the

source tasks with target tasks, it is truly robust to the negative transfer (see

Section 3.4).

In 2019, Tirinzoni et al. proposed an approach for reusing samples in policy

search methods [80]. The proposed method takes a complex case situation

into account, in which the complete trajectories (i.e. the followed steps

during each episode) between environments that are not similar in transition

models should be transferred by the agent. The proposed method makes

use of IS techniques for transferring the source samples while it corrects

the bias introduced due to the differences in the source distributions. To

reduce the sample complexity and convergence time while transferring entire

trajectories for improving the gradient estimates of a policy search algorithm,

they employed ideas from Multiple Importance Sampling (MIS), introduced

by Veach & Guibas in 1995 [84].

To reduce the variance of the MIS estimator while avoiding introducing any

bias, they employed two techniques. The first technique is Per-decision Es-

timators (Precup, 2000 [58]) i.e. a common variance reduction approach.

The other one is Regression-based Control Variates. The control variates are

among the widely utilized variance reduction techniques for general Monte

Carlo estimators [28].

3.5.2 Trade-off between Information and Reward

The intention of this section is to discuss two recent works in 2020 con-

cerning the strategies for the trade-off between information and rewards for

identifying tasks.

Tirinzoni et. al in [78] proposed a novel phased confidence-based algorithm

for structured bandits problems in which the arms’ rewards are potentially

correlated. It exploits the provided structure, utilizes sets of confidence over

the target bandit problem’s parameters, and quickly dumps all sub-optimal

arms. It promptly dumps all the sub-optimal arms by exploiting the provided

structure and utilizing sets of confidence over the target bandit problem’s

parameters.

To do so, at the start of each phase, the algorithm builds a set of bandit mod-

els that are compatible with the already computed confidence intervals, and

35

matching optimal arms are pulled in order till the end of the phase. Their

interesting finding is that to detect sub-optimality, unlike existing works,

which confide only in the obtained samples from arm i, the proposed method

exploits the information obtained during pulling other arms, which reduces

the number of pulls to the sub-optimal arm i. Moreover, as a result of

the algorithm’s requirements to know the horizon n, they designed a prac-

tical anytime extension (under the same assumptions in [41]) that derives a

constant-regret bound which scales better in the relevant structure-dependent

quantities; and, for specific structures which follow these assumptions, they

derive matching lower bound which confirms the optimality of the proposed

algorithm in the constant-regret regime.

At the start of each phase, the algorithm builds a set of bandit models that

are compatible with the already computed confidence intervals, and match-

ing optimal arms are pulled in order till the end of the phase. The interesting

finding on their work detecting sub-optimality. Unlike existing works, which

confide only in the obtained samples from arm i, the proposed method ex-

ploits the information obtained during pulling other arms which reduces the

number of pulls to the sub-optimal arm i.

The other work concerning the trade-off between information and reward

is the one conducted by Tirinzoni et. al in [79], which is about sequential

transfer in RL in the situations in which the agent has access to a genera-

tive model of the state-action pairs. The main objective of this work is to

investigate information to determine the optimal solution very fast, but sac-

rificing the good initial behaviour of the agent. At first, according to a given

set of solved tasks that encompass an approximation of the target task, the

proposed methodology through the so-called Policy Transfer from Uncertain

Models (PTUM) algorithm pursues the most informative state-action pairs

in order to instantly singles out a precise solution. To evidence the advan-

tages of utilizing the methodology with such a piece of prior knowledge, they

derived PAC bounds [67] on its sample complexity. Afterward, for the sake

of learning the approximate tasks, the proposed Sequential Transfer algo-

rithm reduces the transfer setting into a hidden Markov model and apply

spectral methods, i.e. the tensor decomposition approach introduced in [4]

for recovering the parameters.

36

3.5.3 Transfer of Value Function

TL of value function reuse the knowledge learned in one task to improve

learning another related task.

In 2018, Tirinzoni et. al proposed a method [81], they addressed the prob-

lem of transferring value functions in RL. In this work, they proposed an

approach using Gaussian and Gaussian mixtures and analyzed them by de-

riving a finite-sample in different domains. This approach used source tasks

to learn from a prior distribution over all optimal value functions and em-

ployed variational approximation for estimating the corresponding posterior

in a new target task. As a result, both algorithms achieved excellent perfor-

mance in simple tasks, but mixtures of Gaussian deal better in a complex

environment.

Another method for transferring value function is [6], which introduces a

transfer framework that considers the reward function changes between tasks

in the same environment’s dynamics. The proposed approach is based on two

concepts: Firstly, Successor Features (SFs), which means a value function

design that separates the dynamics of the environment from the rewards.

Secondly, Generalised Policy Improvement (GPI) i.e. a generalization of

dynamic programming’s policy improvement operation by considering a set

of policies instead of a single one. In the end, the whole idea allows the

free exchange of information across tasks. Two theorems proposed in this

approach, show improvement in transferring the value function in practice.

According to [6], a framework [5] introduced based on two ideas SFs and

GPI which is a novel way to transfer skills. The method contribution is to

extend the SFs and GPI in two ways. Another method assumption is that the

rewards for all the tasks of interest can be calculated as linear combinations

of a particular set of features. At the same time, they relaxed this assumption

and theoretically proved that the framework could be extendable for any set

of tasks that are only different in the reward function. Besides, they show

that one can use the reward functions themselves as features for future tasks

hence removing the requirement to define a set of characteristics previously.

Now it make sense to combine SFs and GPI with deep learning. Afterward,

they empirically verified the method usefulness on a 3D environment where

observations are images from a first-person perspective. They show that

the transfer raised by SFs and GPI leads to very good policies on invisible

37

tasks almost directly. Moreover, they discuss the way of learning policies

specialized to the new tasks such that it can be added to the agent’s set of

skills, and then be reused in the future.

Another related work is presented in [47], which uses structure mapping, i.e.

finding the mapping between the source and target tasks and thus building

the transfer automatically. It proposes an optimized version of the struc-

ture mapping engine and uses a heuristic search to find the most desirable

maximal mapping. The source and target task features are the input of

the algorithm, which are introduced as qualitative dynamic Bayes networks.

They apply this method to the Keepaway task from RoboCup, a simulated

soccer for comparing the result of the automated transfer to that from the

non-automated transfer.

3.5.4 Transfer of Policy

MAXQINIT [1] addresses the problem of which knowledge should be trans-

ferred in lifelong RL. They formalized the answer through two families of

results. First, they distinguish the initial policy that maximizes anticipated

performance over the distribution of tasks for more complex classes of policies

and task distributions. They then use these results to introduce MAXQINIT,

an algorithm for updating initialization in enduring learning that trades off

between tempered optimism and decreasing sample complexity. Running ex-

periments explores the performance of the jump start policies and showcase

the practicality of MAXQINIT for improvement of the algorithms in lifelong

RL in domains in terms of speed.

A probabilistic approach introduced by [47] tries to reuse policies that are

from past learned similar policies in order to improve RL. This method

employs past policies as a probabilistic bias, where the learning agent faces

three choices:

• The exploitation of the ongoing learned policy

• The exploration of random unexplored actions

• The exploitation of past policies

The new algorithm and its elements use an exploration strategy to incorpo-

rate the new reuse bias; also, they provide a similarity function for calculating

38

the extent to which the past policies are similar to a new one. The empirical

results indicate that policy reuse improves learning performance over other

methods that do not re-use policies.

3.5.5 Modeling Global Task Dynamics

Hidden Parameter Markov Decision Process (HiP-MDP) [19] addresses the

domain in which we have similar but not identical tasks by making a model

with few numbers of latent parameters, which uses data and a semiparametric

regression approach to learn the structure of the new environment, such that

the agent can efficiently adapt to the variations in the new task. It builds

the model upon two assumptions.

1. there exists a finite number of latent parameters that, knowing such,

would allow fully understanding the dynamics of the tasks.

2. the parameter values of the task remain fixed in the experiment.

The agent can be adapted to the dynamics of the new task rapidly by keeping

and updating its distribution (or belief) over the hidden model parameters.

The algorithm applies a point estimate for needed policy in the new environ-

ment based on the parameter values or does the planning in the belief space.

The model uses the structure of Indian Buffet Process [27] and Gaussian

processes [88]. They validated the method by an experiment on acrobat [70]

domain challenge.

According to the formulation of the HiP-MDP [19], the method proposed

in [32] try to model the joint uncertainty in the latent parameters and the

state space. So this approach leverages a latent embedding to approximate

the true dynamics of a task. They also replace the original Gaussian Process-

based model with a Bayesian Neural Network, and this adjustment provides

robust and efficient learning and also the scope of the is expended by higher

dimensions and more complex dynamics.

39

Chapter 4

Active Transfer in

Reinforcement Learning

This chapter includes the discussion about the TL method that we propose

in this work. The algorithm transfers the samples from the source task to

the target task. To do so, an evaluation metric is needed to decide which

samples should be transferred. In Section 4.1, we explain the approach to find

the best criteria as a score for ranking samples in the source tasks. Then in

Section 4.2, we discuss how we employ such criteria in the algorithm. Finally

the AWFQI algorithm is explained in Section 4.3.

4.1 Score Function Criteria

Active transfer learning encompasses selecting a set of state-action pairs to

transfer to the target MDP, such that the policy performance would be

maximized. The number of state-action pairs is constrained by a user-defined

budget. At first, we need to decide which state-action candidates we should

select, such that querying them from target MDP results in optimizing policy

in target MDP. This criterion creates the motivation for the scoring function

for AWFQI algorithm in a sense that we score each state-action pair according

to this criterion so that we can use it in later stages. It should be noted that

the underlying assumption here is that we only have access to the samples

from source MDPs and not their generate models. On the other hand, we

have access to the generative model of the target MDP.

4.1.1 Problem Setting

To design score functions, we start from a simplified setting in which we

have access to a finite set of discreet MDPs, which we have access to their

generative models, and the target task is among them. Then we need to

identify which of the MDPs is the target one. Then, in Section 4.2, we

relax these assumptions and extend the score functions to the setting where

we only have samples from a finite set of continuous source MDPs without

necessarily having the target among them, and we have only access to the

generative model of the target MDP.

We suppose each MDP Mθ is parameterized by some parameter θ ∈ Θ

characterizing its transition probabilities and reward distribution (the other

components are fixed and shared among all MDPs). We assume we are given

a finite set of possible MDP parameters Θ = {θ1, θ2, . . . , θK}. Each MDP

Mθ, for θ ∈ Θ, is fully known. However, the identity of true MDP that

the agent is facing Mθ∗ , parameterized by θ∗ ∈ Θ, is unknown. We further

suppose that we have access to a generative model of the true environment

which takes as input any state-action pair (s, a) and returns a sample next

state S ′ ∼ pθ∗(·|s, a) and a sample reward R ∼ qθ∗(·|s, a). Then, for a

given budget n > 0, our goal is to choose n state-action pairs to query the

generative model, which allows us either to identify the true parameters θ∗

or to compute the optimal policy π∗.

4.1.2 Proposed Approach

A high-level procedure for solving our problem is outlined in Procedure 1,

which is composed of four main steps. We described these steps in the next

paragraphs.

41

Procedure 1
Input: Set of possible MDP parameters Θ, budget n, prior belief b0

θ

Output: Policy π∗

1: Choose n state-action pairs: Dsa = {(si, ai) | i = 1, . . . , n} ← Sample-
SA(Θ, n)

2: Obtain next states and rewards: D = {(si, ai, S ′i, Ri) | i = 1, . . . , n} ←
GenerativeModel(Dsa)

3: Update belief of each MDP: bθ ← UpdateBelief(Θ, D, b0
θ) ∀θ ∈ Θ

4: Compute optimal policy: π∗ ← ComputePolicy(Θ, bθ)

Choosing the state-action pairs

The function Sample-SA(Θ, n) takes as input the set of MDP parameters

Θ and the budget n and produces a dataset Dsa of state-action pairs at

which the agent should query the generative model. This is the key step

of the algorithm. Intuitively, state-action pairs should be chosen such that

the dataset obtained after querying the generative model is informative for

identifying or solving the unknown MDPMθ∗ . Different approaches to solve

this step are discussed in Section 4.1.3.

Querying the generative model

Once we have the set Dsa computed at the previous step, we call the gener-

ative model of the true environment (Mθ∗) to obtain a sample next state

and reward for each (s, a) ∈ Dsa. The output is another dataset D =

{(si, ai, S ′i, Ri) | i = 1, . . . , n} where S ′i ∼ pθ∗(·|si, ai) is a sample from the

transition probability at (si, ai), while Ri ∼ qθ∗(·|si, ai) is a sample from the

reward distribution at (si, ai). We notice that pθ∗(·|s, a) is a categorical dis-

tribution over the finite set S for each (s, a) ∈ S ×A and drawing a sample

from it is simple. On the other hand, we could model qθ∗(·|s, a) as a Gaussian

distribution with mean rθ∗(s, a) and variance vθ∗(s, a). Therefore, drawing a

sample from qθ∗ reduces to drawing a samples from N (rθ∗(s, a), vθ∗(s, a)).

Updating the belief over the true MDP

The algorithm keeps a probability distribution over Θ representing its belief

over which of the given MDPs is the true one. The initial belief b0
θ is provided

as input. In the simplest (non-informative) settings, such belief could be

42

uniform over Θ, i.e., b0
θ = 1

K
∀θ ∈ Θ. Once we are given the set D computed

at the previous step, this belief can be updated as follow:

For each θ ∈ Θ, we want to compute the probability that the true parameter

θ∗ is θ. By applying Bayes’ rule we have:

P(θ∗ = θ|D) =
P(Dsr|θ∗ = θ,Dsa)P(θ∗ = θ)

P(Dsr|Dsa)

=
P(Dsr|θ∗ = θ,Dsa)P(θ∗ = θ)∑

θ′∈Θ P(Dsr|θ∗ = θ′,Dsa)P(θ∗ = θ′)
,

(4.1)

where the dataset D has been decomposed into the two parts Dsa and Dsr.
Let us forget the normalization term and focus on the numerator. The term

P(Dsr|θ∗ = θ,Dsa) can be further decomposed by exploiting the fact that

samples are i.i.d.,

P(Dsr|θ∗ = θ,Dsa) =
n∏
i=1

P(S ′i, Ri|θ∗ = θ, si, ai)

=
n∏
i=1

P(S ′i|θ∗ = θ, si, ai)P(Ri|θ∗ = θ, si, ai)

=
n∏
i=1

pθ(S
′
i|si, ai)qθ(Ri|si, ai).

(4.2)

On the other hand, the term P(θ∗ = θ) is simply the initial belief of the

parameter P(θ∗ = θ) = b0
θ. Putting all together, the updated (unnormalized)

belief can be computed as

b̃θ =
n∏
i=1

pθ(S
′
i|si, ai)qθ(Ri|si, ai)b0

θ ∀θ ∈ Θ. (4.3)

The corresponding final belief can be computed after normalizing,

bθ =
b̃θ∑

θ′∈Θ b̃θ′
∀θ ∈ Θ. (4.4)

43

Computing the final policy

This is another key step in the algorithm. Now that we have an updated belief

over the identity of the true MDPMθ∗ , we must exploit this information to

return the best possible policy.

4.1.3 Active Learning over the State-Action Space

(Choosing the State-Action Pairs)

We propose different methodologies for sampling the state-action space. In

all cases, we first define a score function φ ∈ P(S × A) which is a valid

probability distribution over the state-action space. Then, we take n i.i.d.

samples (Si, Ai) ∼ φ.

Uniform baseline

The first very naive approach is to sample different states and actions with

equal probability. Thus, for i = 1, . . . , n, we sample si with probability 1
S

and ai with probability 1
A

. Equivalently, the score function for this approach

is φ(s, a) = 1
SA

for all s ∈ S, a ∈ A.

It should be noted that this approach works only for discrete MDPs since

the number of states actions must be finite. For continuous MDPs we need

to adapt to a continuous uniform distribution.

Variance-based sampling

Intuitively, the state-action pairs that are most informative for identifying θ∗

are those where the MDPs differ the most. Therefore, we consider a score

proportional to the variance of rewards and next states between models.

Consider the reward function at some state-action pair (s, a). Using the law

of total variance,

Var[R|s, a] = Eθ[Var[R|s, a, θ]] + Varθ[E[R|s, a, θ]]
= Eθ[vθ(s, a)]︸ ︷︷ ︸

Intra-MDP

+ Varθ[rθ(s, a)]︸ ︷︷ ︸
Inter-MDP

. (4.5)

Since our goal is to gather information about θ∗, we maximize the

inter-MDP variance. Thus, we set the score for the reward function as

44

φr(s, a) =
Varθ[rθ(s, a)]∑

s′∈S
∑

a′∈A Varθ[rθ(s′, a′)]
(4.6)

Let us now consider the transition probabilities. In this case we directly take

the variance of the probabilities rather than the random next states. The

score is

φp(s, a) =

∑
s′∈S Varθ[pθ(s

′|s, a)]∑
s′′∈S

∑
a′′∈A

∑
s′′′∈S Varθ[pθ(s′′′|s′′, a′′)]

. (4.7)

Then, our final score is simply the sum of two terms in Equations 4.6 and

4.7

φ(s, a) = φr(s, a) + φp(s, a) (4.8)

Information-based sampling

This approach uses the Mutual Information (MI) between the rewards/tran-

sition probabilities and the true parameter θ∗ to define a score function that

explicitly encodes the expected amount of knowledge gained when sampling

a specific state-action pair.

Let us start with the transition probabilities. The MI is defined as:

I(S ′; θ∗|s, a) =
∑
θ∈Θ

∑
s′∈S

P(s′, θ|s, a) log
P(s′, θ|s, a)

P(s′|s, a)P(θ|s, a)

=
∑
θ∈Θ

b0
θ

∑
s′∈S

pθ(s
′|s, a) log

pθ(s
′|s, a)

P(s′|s, a)

=
∑
θ∈Θ

b0
θ

∑
s′∈S

pθ(s
′|s, a) log

pθ(s
′|s, a)∑

θ′∈Θ pθ′(s
′|s, a)b0

θ′
,

(4.9)

which can be evaluated in closed-form. Similarly, the MI for the reward

function is

45

I(R; θ∗|s, a) =
∑
θ∈Θ

∫
R

P(x, θ|s, a) log
P(x, θ|s, a)

P(x|s, a)P(θ|s, a)
dr

=
∑
θ∈Θ

b0
θ

∫
R
qθ(x|s, a) log

qθ(x|s, a)

P(x|s, a)
dr

=
∑
θ∈Θ

b0
θ

∫
R
qθ(x|s, a) log qθ(x|s, a)dr

−
∑
θ∈Θ

b0
θ

∫
R
qθ(x|s, a) log P(x|s, a)dr

= H(R|s, a)︸ ︷︷ ︸
(a)

−
∑
θ∈Θ

b0
θH(R|s, a, θ)︸ ︷︷ ︸

(b)

,

(4.10)

where H(X) := −
∑

x∈X p(x) log p(x) (or H(X) := −
∫
X p(x) log p(x)dx) is

the entropy of a random variable X. As it is well known, the MI can be

rewritten as the reduction in entropy before (term (a)) and after (term (b))

observing the value of θ∗. Since the entropy of a Gaussian distribution can

be expressed in closed-form, term (b) can be easily computed as:∑
θ∈Θ

b0
θH(R|s, a, θ) =

1

2

∑
θ∈Θ

b0
θ log(vθ(s, a)) +

1

2
log(2πe). (4.11)

On the other hand, term (a) cannot be in general computed in closed-form

since the distribution of R (conditioned on s, a) requires marginalizing over

Θ. Therefore, we consider an empirical approximation by drawing m i.i.d.

samples from P(R|s, a) as follows: for each j = 1, . . . ,m, first draw θj ∼ b0
θ,

then draw Rj ∼ qθj(·|s, a). Given these samples, we use a simple maximum-

likelihood estimator of the entropy. First, we divide the reward space in K

bins B1, . . . ,BK and compute the empirical distribution as:

p̂k :=
1

m

m∑
j=1

1{Rj ∈ Bk}. (4.12)

Then, our entropy estimator is:

46

Ĥ(R|s, a) = −
K∑
k=1

p̂k log p̂k. (4.13)

Hence, the MI can be approximated as:

Î(R; θ∗|s, a) = Ĥ(R|s, a)− 1

2

∑
θ∈Θ

b0
θ log(vθ(s, a)), (4.14)

where we neglected the term −1
2

log(2πe) since it does not depend on (s, a).

Finally, since I(S ′, R; θ∗|s, a) = I(S ′; θ∗|s, a) + I(R; θ∗|s, a) due to the condi-

tional independence between S ′ and R given (s, a), we set our score to:

φ(s, a) =
I(S ′; θ∗|s, a) + I(R; θ∗|s, a)∑

s′∈S
∑

a′∈A I(S ′; θ∗|s′, a′) + I(R; θ∗|s′, a′)
. (4.15)

This step indeed requires the assumption that P(S ′, R|s, a) = P(S ′|s, a)P(R|s, a).

4.1.4 Near-Optimal Policies for Markov Decision Pro-

cesses with Discrete Uncertainty

Given the set of possible MDP parameters Θ and a distribution over Θ (our

belief bθ), we ideally would like to find a Markovian policy maximizing the

expected return, where the expectation accounts also for the uncertainty over

the true MDP:

argmax
π∈ΠSR

∑
θ∈Θ

bθESt+1∼pθ(·|St,At)
At∼π(·|St)

[
∞∑
t=0

γtr(St, At)

]
. (4.16)

Since the problem is very complicated, we employ an approximate solution.

Maximum-a-posteriori is the simplest solution to return the optimal policy

for the most likely MDP. That is, we first take θ̂ = argmaxθ∈Θ bθ and then

compute the optimal policy for Mθ̂. This last step can be done using stan-

dard algorithms such as value iteration. This approach is likely to work well

47

when the true MDP has been identified with very high probability (i.e., there

exists some θ ∈ Θ with bθ ' 1). Unfortunately, it is likely to fail when this

does not happen, and the optimal policies for different MDPs significantly

differ. Solving the problem presented in Equation 4.16 remains an open

question to be worked on in future work.

4.1.5 Score Function Criteria Evaluation

We heuristically evaluate the effectiveness of approaches explained in Section

4.1 using Grid World environment and reporte the results in Figures 4.2 and

4.3.

The Grid World environment [72] is a two-dimensional discrete environment

and an instance of a deterministic distribution model. A scheme of a simple

Grid World is presented in Figure 4.1.

Figure 4.1: An example of a Grid World.

In this environment, the state and action spaces are both discrete. The size

of the Grid World corresponds to the number of states along each axis. For

example in figure 4.1 the size is four. Given a state s and an action a, we

can get an array of the probability of the reward to receive and the next

state. The goal of the agent is to reach it to one of the two gray corners.

To encourage agent, every move will have a reward of −1 [20]. In this work,

we employed a Grid World with only one goal state with reward = +1 and

reward = 0 for the rest of the states. The size of the Grid World is 10× 10.

Source MDPs have different goal states, and the reward is only positive in

that state. The agent start at state (0, 0).

48

5 10 15 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

Number of samples

0

20

40

60

80

100

Ac
cu

ra
cy

Uniform baseline
Variance-based
Information-based

Figure 4.2: Percentage of the time sampling by different scoring criteria correctly
identify true MDP.

Figure 4.2 compares the percentage of the times different approaches identify

true MDP in 10 independent runs of the algorithm. The x-axis is the number

of samples we select as our budget in that run, and the bars associated with

that budget show the percentage of times different approaches select the true

MDP correctly constrained by that particular budget. As expected and is

clear in Figure 4.2, the random selection of the samples lead to different

accuracy percentage in different sample sizes. In other words, increasing the

budget does not necessarily increase the accuracy (certainty) of the selection.

This randomness is more obvious in smaller budget size since as the number

of samples increases, the algorithm selects almost all the source samples.

This happens because the environment is discrete, and the number of state-

action pairs is finite. Sampling, according to MI, also fluctuates occasionally

in different sample numbers. However, variance-based sampling showed the

best results through the runs, and even with few samples, this method can

correctly identify the true MDP.

49

0 50 100 150 200 250 300 350
Number of samples

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 R
ew

ar
d

Optimal Policies Performances

Uniform baseline
Variance-based
Information-based

Figure 4.3: Performance of the approach.

We provide another comparison in Figure 4.3, which illustrates the expected

reward in different approaches. This experiment is also done in the same

setting of Grid World as explained before.

In this figure, the x-axis is the number of samples that can be selected (bud-

get), and the y-axis shows the expected reward or policy performance using

different approaches. This figure suggests that the policy performance in

variance-based sampling has a distinguishable jumpstart compared to other

approaches. However, the asymptotic behavior is similar among different

sampling approaches.

50

4.2 Score Function Construction

In Section 4.1, we presented and analyzed three score functions for a simpli-

fied setting (where there is only finite possible known MDPs containing the

unknown target) and assessed empirically that the variance-based sampling

outperforms the other approaches (according to the results in Section 4.1.5).

Hereof, we employ the variance-based approach to design a score function.

Now we move to a more general transfer setting where we consider a set of

tasks, i.e., MDPs, {Mj = 〈S,A,Pj,Rj〉, j = 0, ...,m}, where M0 stands

for the target MDP and M1, ...,Mm denote the source MDPs. We sup-

pose all MDPs share the same state-action space and but have potentially

different transition probabilities (dynamics) and rewards. Suppose that, for

j = 0, ...,m, we are given a dataset of Nj samples from the j-th MDP,

Dj = {〈si, ai, s
′
i, ri〉}

Nj
i=1, where state-action pairs are drawn from a common

distribution µ ∈ ∆(S × A). The goal of TL is to employ the samples in

D1, ...,Dm such that they boost the learning process in the target task M0.

Unlike the setting discussed in 4.1, we no longer assume that we have access

to the generative model of the source MDPs. Moreover, the target MDP is

no longer fully known but for which we can access a generative model for

at most n samples (i.e. budget). In addition, the current transfer setting

applies to both discrete and continuous environments.

It should be noted that, only for the sake of comparison, here we designed

two score functions: an ideal score function that has access to the source

generative models, and other score function which respects the mentioned

assumption as it is expected in real TL algorithms. Then we use both versions

of score functions in the proposed algorithm (AWFQI), and accordingly, We

call the algorithm which uses the ideal score function as AWFQI oracle and

the other version of the algorithm which uses the realistic score function

simply as AWFQI, since that is the real algorithm proposed here. With

these explanations, we discuss the design of the score functions as follow.

1. Ideal score function

2. Realistic score function

As mentioned before, our motivation for implementing both score functions

is being able to compare them and understand to what extent the errors of

predictions affect the results.

51

The main goal is drawing samples from a score function score : S×A → R+,

in which S and A are state and action space respectively. So the score

function is a mapping from state-action space to a real value between 0 and

1. Practically, the output of both score functions is a table which potentially

can have enough number of rows to be considered as continuous when we

want to draw sample from. This table is the posterior of score functions.

For simplifying the exposition, we provide an example where the state space

is two dimensional, but the method directly extends to many dimensions.

In the case were the environment has two dimension, the table is composed

of eight columns idx, sx, sy, a, var(r|(s, a)), var(s′x|(s, a)), var(s′y|(s, a)) and

score i.e.
∑7

col=4.

score(s, a) ∝ V ar[R|(s, a)] + V ar[s′x|(s, a)] + V ar[s′y|(s, a)] (4.17)

We can consider only column 4 (variance of rewards) as the final score. In

fact, in all the experiences here, we considered only the variance of rewards

(column 4, not column 7). Eventually, we pass this table to the algorithm

(the step core function), where we draw samples according to these scores.

4.2.1 Ideal Score Function

Here we computed the variance of rewards and next states according to their

real values obtained from the source MDPs. This score function is imple-

mented only to compare with when we predict these values (Section 4.2.2).

Grid Mode

In this mode, we make a grid with a dx, dy as granularity in both dimensions.

Then we obtain the actual values of rewards and next states for all nodes of

the grid using source MDPs. Then we compute the variance of these values

and make the score table (Figure 4.4). Note that the grids dx and dy can be

very small to make the function/table continuous.

52

Figure 4.4: Score table in AWFQI oracle, grid mode, generated using exact rewards
and next states for the grid nodes state-actions.

Source Data mode

In this mode, we obtain the actual values of rewards and next states for all

the source MDPs state-action pairs (available in the source dataset). Then

we compute the variance of these values and make the score table as Figure

4.5. This mode cannot be considered as continuous because it has only the

state-action pairs from the source files. Here we could fit a GPs on the score

to make the function continuous, but we wanted to avoid any prediction since

it is the oracle score function.

Figure 4.5: Score table in AWFQI oracle, source data mode, generated using exact
rewards and next states for the state-action pairs in all the source files.

Grid and Source Data Mode (Both)

This score function (table) is the concatenation of the two previous tables,

we collect the state-action pairs in a grid with a user-defined dx and dy and

also source dataset state-action pairs and obtain the real values of reward

and next states for all of them (Figure 4.6).

4.2.2 Realistic Score Function

In this mode, we use GPs to predict the rewards and next states of the

state-action pairs. To fit this model, we use source file data only, in all the

following modes.

53

Figure 4.6: Score table in AWFQI oracle, grid and source data mode, generated using
exact rewards and next states for the state-actions in the grid and in all the source
files.

Grid Mode

We first create a grid according to dx and dy which can be small enough

for the continuity of the output (score function/table). Then for each state-

action pair node in that grid, we predict the values of rewards and next states

in all MDPs using their source data (source dataset). Then we compute the

variance of them and fill in the 8-column table (idx, sx, sy, a, var(r|(s, a)),

var(s′x|(s, a)), var(s′y|(s, a)), score(i.e.
∑7

col=4)) as showed in Figure 4.7.

Figure 4.7: Score table in AWFQI, grid mode, generated using predicted rewards and
next states for the state-action pairs in the grid.

Source Data Mode

In this mode, we predict the values of rewards and the next states of state-

action pairs that are in the source data. We do it by fitting GPs models on

reward and next states of available data for each MDP. Then we compute

the function/table as before (Figure 4.8).

54

Figure 4.8: Score table in AWFQI, source data mode, generated using predicted
rewards and next states for the state-action pairs in source data.

Grid and Source data mode (Both)

This score function (table) in this mode is the concatenation of two previous

tables; we collect the state-action pairs in a grid with a user-defined dx and

dy and also the source dataset state-action pairs (Figure 4.9).

Figure 4.9: Score table in AWFQI, grid mode mix with source data, generated using
predicted rewards and next states for the state-action pairs in the grid and in source
data.

4.3 Active Weighted Fitted-Q Iteration

We investigated the state-of-the-art algorithms in the transfer of samples

discussed in Section 3.5.1 as the candidates for the foundation of our active

TL approach. For the variety of reasons we decided to utilize IWFQI [82] as

our main backbone in combination with variance-based sampling.

First of all, unlike TIMBREL [74], IWFQI selectively discards samples ac-

cording to the estimated difference between the MDPs. Contrary to RBT

[43], IWFQI does not expect any certain condition for deciding what to

transfer, nor does it require any assumption of similarity between the tasks.

Moreover, since RBT [43] computes the compliance and relevance criteria

such that they mutually account for both the reward and transition models,

55

it ignores the samples in case one of the models is very different among the

tasks. However, IWFQI preserves the part of the sample that is similar, at

the cost of introducing a negligible bias. SDT [40] transfers the samples into

FQI with the assumption that tasks follow the same transition dynamics.

Although similar to IWFQI it learns the reward function at the first iter-

ation and substitutes the predicted values to the reward of samples in the

dataset; its assumption regarding the shared dynamics potentially hinders its

applicability as a transfer method in most of the real-world tasks. Another

advantage of IWFQI is that it handles the trade-off discussed in [17] since

it transfers all the samples while accounting for the differences between the

tasks. They reported a slight bias due to the errors in the estimation of the

task models, which can be reduced by increasing the sample size. Finally, as

opposed to the method by Garcke & Vanck [25], IWFQI estimates the densi-

ties involved and characterizes the weight distribution, taking its expectation

as the final estimation.

Due to the reasons as mentioned above, we base our work on IWFQI, and

by incorporating the sampling at each step, we call it AWFQI, which will be

described in the next section.

4.3.1 AWFQI Algorithm

The high-level representation of AWFQI algorithm is shown in Algorithm 2.

Given a set of samples from source tasks, according to the mode discussed

in Sections 4.2.1 and 4.2.2 the GenerateScoreFunction computes the

variance of the rewards and next states for the (s, a) pairs and after normal-

izing the variances build the ScoreFunction. After that, the DrawSA

function takes as input the ScoreFunction and, according to the provided

budget, draw candidate (s, a) pairs to be sampled from the target MDP.

In line 3, the CollectTargetSamples function employs the generative

model of the target MDP and collects the candidate (s, a) pairs list. In the

next step, the CalculateWeights function computes the weights of the

rewards and next states for the (s, a) pairs and provides the final dataset to

be used by FQI for solving the target task. Finally, in each iteration, FQI

updates the policy over the target task, and at the end of the iterations,

provides the optimal learned policy π∗.

56

Algorithm 2 Active Importance Weighted Fitted Q-Iteration (AWFQI)

Input: Target MDPM0, Samples from Source MDPs D1, ...,Dm, budget n,
Number of iteration n iter, The score function mode sf mode
Output: Policy π∗

1: ScoreFunction(·) ← GenerateScoreFunction(D1, ...,Dm, sf mode)
2: SA ← DrawSA(ScoreFunction(·), n)
3: D0 ← CollectTargetSamples(M0, SA)
4: D̃+ ← CalculateWeights(D0, ...,Dm)
5: Set iter = 0
6: R̂ ← FitInitialModel(R0)
7: Q0 ← R̂
8: for iter in n iter do
9: FitModel(D̃+)

10: Qiter+1 ← ComputeValueFunction(Qiter)
11: end for
12: return Policy π∗

57

Chapter 5

Empirical Evaluation

In this chapter, we present the experiments in order to evaluate and compare

the performance of AWFQI oracle and AWFQI (real setting with when we

do not have source MDPs).

Among the transfer of samples algorithms discussed in 3.5.1, we compare the

performance of our proposed AWFQI algorithm to RBT, SDT and IWFQI.

To be fair, in these algorithms, we set the policy that generates episodes

at the beginning of the algorithms to uniform policy, but we set ε−greedy

for the updates and evaluation of the policy in the iterations. Moreover, in

AWFQI, the budget = batch size × horizon in all the tests. As for the score,

we considered only the variance of the rewards (column 4).

5.1 Experimental Settings

According to the score functions used in oracle and real AWFQI (introduced

in Sections 4.2.1 and 4.2.2 respectively), three main settings seem logical to

be considered, which are presented in Sections 5.1.2, 5.1.3 and 5.1.4. We

tested the algorithms mentioned above with all these settings in the Puddle

World environment. The environment setting is provided in Section 5.1.1.

In the algorithm, max iteration for updating policy is 60 and for AWFQI

algorithm score function implementation we set (dx, dy) = (0.1, 0.1) when

applicable.

For each of these settings, we ran the algorithms using two sub-settings. The

first one is very similar to the setting provided in [82], in which the number

of steps is 6, and in each step, we have 10 episodes (batch-size). In AWFQI

the budget in each step is 500 (horizon × batch size = 500). We ran the

algorithms in this setting for 3 independent runs. In the second sub-setting,

the number of episodes (batch size) is 1 at each step and the budget for

AWFQI in each step is 50 (horizon × batch size = 50). Since for other

algorithms in each step, the policy is updated by adding 50 samples, which

is the number of horizon, AWFQI should transfer 50 samples at each step

too. We ran the algorithms in this setting for 10 independent runs.

We provided two plots1. The first one is the performance of the policy up-

dates in algorithms, through the steps. The next plot shows the collected

points on target MDP in all steps by algorithms along with the scatter of

source MDPs states on the environment.

5.1.1 Environment

As discussed, the experiments carried out in Section 4.1.5 to evaluate score

function criteria are based on Grid World environment. To test the perfor-

mance of the proposed algorithm we set up our experiment using the Puddle

World environment. In the following we detail the characteristics of this

environment.

Puddle World was proposed by Sutton et. al. [69]. It is a repeated rectangular

two-dimensional continuous grid with a goal area that is unknown to the

agent and some elliptical puddles. The agent’s goal is to reach the goal state

while avoiding the puddle areas.

In this work, we employed a modified version of the Puddle World as de-

scribed in [82]. Here, the Puddle World is a discrete-action, continuous-state

(stochastic) problem, with the state-space in the range [0, 10]2. The action-

space is discrete and allows the agent to move in the four cardinal directions.

At each time-step, the agent receives a reward of −1. A penalization pro-

portional to the distance from all puddles (presented in Equation 5.1) can

be added to the reward.

1IWFQI algorithm is denoted by WFQI in the legend of the plots.

59

R(s, a) = −1− 100
∑
u∈U

Wu(s) (5.1)

Where U is the set of puddles and Wu(s) is the weight of puddle u for state

s, modeled as a bi-variate Gaussian. Each action moves the agent by α

(according to the formula presented in Equation 5.2) in the corresponding

direction [82].

α = (1 + 5
∑
u∈U

Wu(s
′))−1 (5.2)

The agent takes one of the four actions (i.e. Right, Left, Up, Down) at each

time step which changes its position by α according to the selected direction.

Tirinzoni et. al [82] designed two variations of the environment. In the

first version i.e. shared dynamics, α = 1 is fixed. In the other version i.e.

puddle-based dynamics, α slows down the agent according to the distance

from all puddles. In this work, we utilized the shared dynamics version of

the Puddle World. The sources and target Puddle Worlds utilized for this

work are rendered in Figures 5.1 and 5.2.

Figure 5.1: Source MDPs

Figure 5.2: Target MDP

60

In the Puddle World setting, we set horizon = 50. Other general character-

istics of the MDPs are reported in Table 5.1.

Start Goal # Puddles Puddle Mean

Source MDP1 (0,0) (5,10) 4 (1.0,10.0)
(1.0,8.0)
(6.0,6.0)
(6.0,4.0)

Source MDP1 (0,0) (5,10) 6 (2.0,2.0)
(4.0,6.0)
(1.0,8.0)
(2.0,4.0)
(8.5,7.0)
(8.5,5.0)

Source MDP3 (0,0) (7,10) 5 (8.0,2.0)
(1.0,10.0)
(1.0,8.0)
(6.0,6.0)
(6.0,4.0)

Target MDP (0,0) (5,10) 5 (1.0,4.0)
(1.0,10.0)
(1.0,8.0)
(6.0,6.0)
(6.0,4.0)

Table 5.1: MDPs general characteristics.

5.1.2 Setting 1: Source Data Mode

In this setting, both AWFQI and AWFQI oracle can potentially transfer only

the (s, a) pairs presented in the source data files as described in Section 4.2.

In this sense, the score function here is not considered continuous. In other

words, the probability that the score function selects (s, a) pairs from the

source MDPs samples is proportional to the variance of the rewards of that

particular state-action among the source MDPs is the highest.

61

5.1.3 Setting 2: Grid Mode

In this setting, both AWFQI and AWFQI oracle transfer samples from a set

of (s, a) pairs that are on a user-defined grid. The score function is continuous

as we are using grids, so we can make small enough dx and dy in the functions

such that we can draw samples from continuous function. These two modes

are explained in Section 4.2.

5.1.4 Setting 3: Source Data and Grid Mode (Both)

In this setting, the AWFQI and AWFQI oracle can potentially collect/trans-

fer (s, a) pairs which are either on a user-defined grid or from the data from

the source MDPs. So it is considered continuous 4.2.

5.2 Experimental Results

In this section, we provide the results that we obtained by running the men-

tioned algorithms and AWFQI-oracle and AWFQI with the settings we ex-

plained in the previous section. Note that we have two sub-settings for each

setting with minor changes in the number of episodes at each step (see Section

5.1 for detailed explanations).

Our motivation for designing these sub-settings is comparing the performance

of algorithms when the number of transferred samples are relatively few ver-

sus when this number is high. We can also obtain an insight into how AWFQI

is robust to the different numbers of budget, specifically we would like to ob-

serve the usefulness of the algorithm when the number of budget is low.

We can acknowledge the efficiency of using variance-based score function in

AWFQI to be consistent with Figure 4.2. Also, in that figure, we noticed that

variance-based performs better than the other algorithms when the number

of budget is low.

62

5.2.1 Setting 1: Source Data Mode

Number of episodes (n episode = 10)

The following are the results of the experiment when n episode = 10.

10 20 30 40 50 60
n episodes

350

300

250

200

150

100

50

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

Figure 5.3: The algorithms performance. In this setting, the score function restricts
both AWFQI oracle and AWFQI to collect only the samples that their (s, a) exist in
source data. Samples are collected using scores in Figure 4.5 in AWFQI oracle and
Figure 4.8 in normal AWFQI.

Neither of AWFQI oracle and AWFQI are efficient in this setting because we

have forced them to select among only the limited number of (s, a) i.e. the

state-action pairs of the source MDPs. This leads AWFQI to collect the same

points from target MDP in different steps. Particularly, since the source

MDP data points are limited, AWFQI tends to select redundant samples

when episodes are growing. So we are actually updating the policy using the

same samples we have already had in previous steps.

63

Figure 5.4: All algorithms collected (s, a) on target MDP through steps. In this
setting, the score function restricts both AWFQI oracle and AWFQI to collect only the
samples that their state-action pair exist in source data files. Samples are collected
using score function in Figure 4.5 in AWFQI oracle and Figure 4.8 in AWFQI.

As depicted in Figure 5.4, we can see that both AWFQI and AWFQI oracle

are restricted to the samples to the regions which were part of the trajectories

collected from the source MDPs which resulted in a bias for those regions

and restrict these algorithms to collect samples from other regions which

could potentially resulted in better results. It could be a potential reason

why these algorithms perform worse than the others.

64

Number of episodes (n episode = 1)

In this section in all the tests the number of episodes is 1.

1 2 3 4 5 6 7 8
n episodes

300

250

200

150

100

50

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

Figure 5.5: The algorithms performance. In this setting, the score function restricts
both AWFQI oracle and AWFQI to collect only the samples that their (s, a) exist in
source data. Samples are collected using scores in Figure 4.5 in AWFQI oracle and
Figure 4.8 in normal AWFQI.

Both AWFQI oracle and AWFQI are not performing satisfactorily here as

well. In this setting, the other algorithms were, in general, worse than the

previous sub-setting because the number of samples is less here. Compared

to AWFQI algorithms, they outperform because they have the opportunity

to collect samples randomly (using u niform policy), and they are not re-

stricted to pre-defined (s, a). Besides, here we can see that AWFQI oracle

and IWFQI performance deteriorates compared to before, which could be

another consequence of few numbers of samples size (budget).

65

Figure 5.6: All algorithms collected (s, a) on target MDP through steps. In this
setting, the score function restricts both AWFQI oracle and AWFQI to collect only the
samples that their state-action exist in source data files. Samples are collected using
score function in Figure 4.5 in AWFQI oracle and Figure 4.8 in AWFQI.

This figure shows the state-action pairs collected through the runs. Due to

the limitation of the number of samples in the source MDPs, we notice that

the data points collected in AWFQI oracle and AWFQI in Figure 5.4 and 5.6

are comparable.

66

5.2.2 Setting 2: Grid Mode

Number of episodes (n episode = 10)

In this section, in all the tests, the number of episodes is 10.

10 20 30 40 50 60
n episodes

40

35

30

25

20

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

Figure 5.7: The algorithms performance. In this setting, the score function/table
contains only the (s, a) in grid, and both AWFQI oracle and AWFQI collect the samples
that their (s, a) exist in the grid. Samples are collected using scores in Figure 4.5 in
AWFQI oracle and Figure 4.8 in AWFQI.

In this setting, both AWFQI oracle and AWFQI perform better than other

algorithms. They have a good jumpstart compared to other algorithms,

which shows their satisfactory performance with even very few samples. Also,

the difference between AWFQI oracle and AWFQI seems very little, which

suggests the predicted scores were consistent with the true scores.

67

Figure 5.8: All algorithms collected (s, a) on target MDP through steps. In this set-
ting, the score function/table contains only the (s, a) in grid, and both AWFQI oracle
and AWFQI collect the samples that their (s, a) exist in the grid. Samples are collected
using scores in Figure 4.5 in AWFQI oracle and Figure 4.8 in AWFQI.

The sampled state-action pairs in this figure show that both AWFQI oracle

and AWFQI transfer samples from the regions near the goal state. As de-

picted in Figure 5.8, AWFQI tends not to sample from the bottom-middle

part of the grid, where indeed the MDPs are the same. Also, the similar-

ity between the asymptotic behavior of performance of AWFQI oracle and

AWFQI algorithm and the samples they collected show that GPs is working

quite well in predicting the variance of rewards in the score function.

68

Number of episodes (n episode = 1)

In this section in all the tests the number of episodes is 1.

1 2 3 4 5 6 7 8
n episodes

400

300

200

100

0

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

n episodes

60

50

40

30

20

10

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

 7 8

Figure 5.9: The algorithms performance. In this setting, the score function/table
contains only the (s, a) in grid, and both AWFQI oracle and AWFQI collect the samples
that their (s, a) exist in the grid. Samples are collected using scores in Figure 4.4 in
AWFQI and Figure 4.7 in AWFQI. The sub-plot on the bottom provides a closer view
on the asymptotic behaviors of the algorithms.

In this setting, AWFQI’s starting point is not as good as the previous setting

69

(especially we have ups and downs in the plots), but it converges to the

same point (as shown in the sub-plot on the bottom of Figure 5.9) with even

much less number of budget, since we have only one episode in each step

and algorithms add 50 samples for updating their policy. In general, they

outperform other algorithms which confirms that the active version with a

generative model is indeed more sample efficient.

Figure 5.10: All algorithms collected (s, a) on target MDP through steps. In this set-
ting, the score function/table contains only the (s, a) in grid, and both AWFQI oracle
and AWFQI collect the samples that their (s, a) exist in the grid. Samples are collected
using scores in Figure 4.4 in AWFQI oracle and Figure 4.7 in AWFQI oracle.

70

This figure confirms the results we obtained in Figure 5.9, and we can see

that the points that are collected in steps in AWFQI oracle and AWFQI are

almost in the same regions.

5.2.3 Setting 3: Source Data and Grid Mode (Both)

Number of episodes (n episode = 10)

In this section, in all the tests, the number of episodes is 10.

10 20 30 40 50 60
n episodes

70

60

50

40

30

20

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

Figure 5.11: The algorithms performance. In this setting, the AWFQI oracle score
function/tables contains (s, a) from grid and source data. AWFQI contains grid state-
action pairs and the pairs from source data files. Both types of (s, a) are predicted
from source data files. Samples are collected using scores in figure 4.6 in AWFQI oracle
and figure 4.9 in AWFQI.

Here, the figures show good performance for both algorithms. The reason

could be we keep both state-action pairs from the source MDPs and the

ones from the grid; consequently, the score function can select each of those

samples and does not have the limitation as setting 1. Besides, the function

is continuous, as we can potentially select very small dx and dy. AWFQI

71

performs slightly better than AWFQI oracle version. They have a very higher

jumpstart rather than other algorithms and converge to a higher value.

Figure 5.12: All algorithms collected (s, a) on target MDP through steps. In this
setting, the AWFQI oracle score function/tables contains state-action pairs from both
grid and source data. AWFQI contains grid state-action pairs and the ones from
source data files. Both types of (s, a) are predicted from source data files. Samples
are collected using scores in figure 4.6 in AWFQI oracle and figure 4.9 in AWFQI.

Although the spread of sampling in AWFQI oracle and AWFQI are different

suggested by this figure, the overall performances of these algorithms are

higher than the others. It could be because they have collected samples from

different regions of the environment.

72

Number of episodes (n episode = 1)

In this section in all the tests the number of episodes is 1.

1 2 3 4 5 6 7 8
n episodes

400

300

200

100

0

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

100

80

60

40

20

Pe
rfo

rm
an

ce

SDT
FQI
RBT
WFQI
AWFQI_oracle
AWFQI

n episodes

Pe
rfo

rm
an

ce

20

40

60

80

100

 7 8

Figure 5.13: The algorithms performance. In this setting, the AWFQI oracle score
function/tables contains (s, a) from grid and source data. AWFQI contains grid state-
action pairs and the pairs from source data files. Both types of (s, a) are predicted
from source data files. Samples are collected using scores in figure 4.6 in AWFQI oracle
and figure 4.9 in AWFQI. The sub-plot on the bottom provides a closer view on the
asymptotic behaviors of the algorithms.

73

Figure 5.14: All algorithms collected (s, a) on target MDP through steps. In this
setting, the AWFQI oracle score function/tables contains state-action pairs from both
grid and source data. AWFQI contains grid state-action pairs and the ones from
source data files. Both types of (s, a) are predicted from source data files. Samples
are collected using scores in figure 4.6 in AWFQI oracle and figure 4.9 in AWFQI.

In this setting, even when the number of collected samples is very few, both

AWFQI oracle and AWFQI work well and converge to the same value as

before relatively fast. In terms of convergence point, AWFQI converges in

the third step, while AWFQI oracle version converges sooner in step two.

The algorithms have worse jumpstart than the previous setting due to fewer

budget for transferring the samples but as clearly can be seen in the sub-

74

plot on the bottom of Figure 5.13 the asymptotic behaviors of the active

algorithm outperforms the non-active algorithms.

As presented in Figure 5.14, the collected points in AWFQI are in the optimal

trajectory, while AWFQI oracle does not collect samples from all the path

on the trajectory but still performs very well.

All in all, through out the experiments, we could show that the proposed

active transfer of samples with a generative model is indeed more sample

efficient.

75

Chapter 6

Conclusions & Future Work

In this work, we proposed an active transfer learning algorithm as a con-

tinuation of previous research conducted by Tirinzoni et. al IWFQI in TL.

We designed a scoring function that scores the samples collected from the

source tasks by capturing the dissimilarities among them. In this regard,

we implemented several score functions based on Uniform distribution (ran-

dom), Mutual Information MI and variance among the source tasks and vali-

dated the usefulness of these approaches by an experiment which showed the

variance-based score function defeated other approaches in terms of accuracy

of predicting the target task.

Then, we predict the conditional variance among the source MDPs given the

already collected samples by applying GPs regression method. An advantage

of using GPs is its potential for estimating the variance in environments such

as Puddle World since the rewards surface follows Gaussian distribution.

After that, we actively used this function through the runs of the algorithm

(AWFQI) for updating the policy and solving the target MDP task. This

function can be applied in discrete and continuous domains and does not

consider any prior assumption about the distribution of the source or target

MDPs. We compared the performance of our method with other state-of-the-

art algorithms on transferring the samples such as RBT, SDT, IWFQI, and a

non-transfer algorithm (FQI). We showed that our method outperforms these

algorithms in many situations, especially when the budget for transferring is

limited. We further implemented an oracle version of the AWFQI algorithm

to show the extent to which our method is affected by estimating the source

environment in unknown regions. Moreover, we empirically examined the

proposed active transfer of samples with access to the generative model,

which shows the proposed algorithm’s sample efficiency. We noticed that

AWFQI performs almost the same as the oracle version.

Nevertheless, as future work, it would be interesting to utilize other regres-

sors or ML models for better estimation of the dissimilarity among the source

MDPs. Apart from that, one could investigate more forms of scoring criteria

in the score function construction as we tested only three approaches. Be-

sides, it might be interesting to combine multiple distinct measures instead

of utilizing only one criterion to devise an ensemble method for calculating

the state-action pair’s scores. In addition, in some of the observations in the

results, we noticed that sometimes the estimated scores work better than

the oracle version. It raises the thought to incorporate exploration factor

supplementary to the used score function.

77

Bibliography

[1] David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and

Michael Littman. Policy and value transfer in lifelong reinforcement

learning. In International Conference on Machine Learning, pages 20–

29, 2018.

[2] Oguzhan Alagoz, Heather Hsu, Andrew J Schaefer, and Mark S Roberts.

Markov decision processes: a tool for sequential decision making under

uncertainty. Medical Decision Making, 30(4):474–483, 2010.

[3] Mauricio A Alvarez, Lorenzo Rosasco, and Neil D Lawrence. Kernels

for vector-valued functions: A review. arXiv preprint arXiv:1106.6251,

2011.

[4] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and

Matus Telgarsky. Tensor decompositions for learning latent variable

models. Journal of Machine Learning Research, 15:2773–2832, 2014.

[5] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver,

Matteo Hessel, Daniel Mankowitz, Augustin Ž́ıdek, and Remi Munos.

Transfer in deep reinforcement learning using successor features and

generalised policy improvement. arXiv preprint arXiv:1901.10964, 2019.

[6] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom

Schaul, Hado P van Hasselt, and David Silver. Successor features for

transfer in reinforcement learning. In Advances in neural information

processing systems, pages 4055–4065, 2017.

[7] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional

perspective on reinforcement learning. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70, pages 449–458.

JMLR. org, 2017.

78

[8] Richard Bellman. A markovian decision process. Journal of mathematics

and mechanics, pages 679–684, 1957.

[9] Richard Bellman. Dynamic programming. Science, 153(3731):34–37,

1966.

[10] Richard E Bellman and Stuart E Dreyfus. Applied dynamic program-

ming. Princeton university press, 2015.

[11] Gareth Bendall and François Margot. Greedy-type resistance of combi-

natorial problems. Discrete Optimization, 3(4):288–298, 2006.

[12] Darrin C Bentivegna, Christopher G Atkeson, and Gordon Cheng.

Learning tasks from observation and practice. Robotics and Autonomous

Systems, 47(2-3):163–169, 2004.

[13] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochas-

tic and nonstochastic multi-armed bandit problems. arXiv preprint

arXiv:1204.5721, 2012.

[14] Rich Caruana. Learning many related tasks at the same time with

backpropagation. In Advances in neural information processing systems,

pages 657–664, 1995.

[15] Dongkyu Choi, Tolgo Konik, Negin Nejati, Chunki Park, and Pat Lan-

gley. Structural transfer of cognitive skills. In Proceedings of the eighth

international conference on cognitive modeling, pages 115–120. Citeseer,

2007.

[16] Rasmussen CE& Williams CKI. Gaussian processes for machine learn-

ing, 2006.

[17] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from

multiple sources. Journal of Machine Learning Research, 9(Aug):1757–

1774, 2008.

[18] Robert H Crites and Andrew G Barto. Improving elevator performance

using reinforcement learning. In Advances in neural information pro-

cessing systems, pages 1017–1023, 1996.

[19] Finale Doshi-Velez and George Konidaris. Hidden parameter markov

decision processes: A semiparametric regression approach for discovering

79

latent task parametrizations. In IJCAI: proceedings of the conference,

volume 2016, page 1432. NIH Public Access, 2016.

[20] Anders Eriksson, Genci Capi, and Kenji Doya. Evolution of meta-

parameters in reinforcement learning algorithm. In Proceedings 2003

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2003)(Cat. No. 03CH37453), volume 1, pages 412–417. IEEE,

2003.

[21] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Iteratively extend-

ing time horizon reinforcement learning. In European Conference on

Machine Learning, pages 96–107. Springer, 2003.

[22] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch

mode reinforcement learning. Journal of Machine Learning Research,

6(Apr):503–556, 2005.

[23] Alan Fern, SungWook Yoon, and Robert Givan. Approximate policy

iteration with a policy language bias. In Advances in neural information

processing systems, pages 847–854, 2004.

[24] David A Freedman. Statistical models: theory and practice. cambridge

university press, 2009.

[25] Jochen Garcke and Thomas Vanck. Importance weighted inductive

transfer learning for regression. In Joint European Conference on Ma-

chine Learning and Knowledge Discovery in Databases, pages 466–481.

Springer, 2014.

[26] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-

ized trees. Machine learning, 63(1):3–42, 2006.

[27] Thomas L Griffiths and Zoubin Ghahramani. The indian buffet process:

An introduction and review. Journal of Machine Learning Research,

12(4), 2011.

[28] J.M. Hammersley and D.C. Handscomb. Monte Carlo Methods.

Methuen’s monographs on applied probability and statistics. Methuen,

1964.

[29] Ronald A Howard. Dynamic programming and markov processes. 1960.

80

[30] Okhtay Ilghami, Hector Munoz-Avila, Dana S Nau, and David W Aha.

Learning approximate preconditions for methods in hierarchical plans.

In Proceedings of the 22nd international conference on Machine learning,

pages 337–344, 2005.

[31] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-

forcement learning: A survey. Journal of artificial intelligence research,

4:237–285, 1996.

[32] Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-

Velez. Robust and efficient transfer learning with hidden parameter

markov decision processes. In Advances in neural information processing

systems, pages 6250–6261, 2017.

[33] Andrey Kolobov. Planning with markov decision processes: An ai

perspective. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 6(1):1–210, 2012.

[34] J Zico Kolter, Pieter Abbeel, and Andrew Y Ng. Hierarchical appren-

ticeship learning with application to quadruped locomotion. In Advances

in Neural Information Processing Systems, pages 769–776, 2008.

[35] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration.

Journal of machine learning research, 4(Dec):1107–1149, 2003.

[36] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive

allocation rules. Advances in applied mathematics, 6(1):4–22, 1985.

[37] John E Laird, Paul S Rosenbloom, and Allen Newell. Chunking in

soar: The anatomy of a general learning mechanism. Machine learning,

1(1):11–46, 1986.

[38] Gerhard Lakemeyer, Elizabeth Sklar, Domenico G Sorrenti, and To-

moichi Takahashi. RoboCup 2006: Robot Soccer World Cup X, volume

4434. Springer, 2007.

[39] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforce-

ment learning. In Reinforcement learning, pages 45–73. Springer, 2012.

[40] Romain Laroche and Merwan Barlier. Transfer reinforcement learning

with shared dynamics. In Proceedings of the Thirty-First AAAI Confer-

81

ence on Artificial Intelligence, AAAI’17, page 2147–2153. AAAI Press,

2017.

[41] Tor Lattimore and Rémi Munos. Bounded regret for finite-armed struc-

tured bandits. In Advances in Neural Information Processing Systems,

pages 550–558, 2014.

[42] Alessandro Lazaric. Transfer in reinforcement learning: a framework and

a survey. In Reinforcement Learning, pages 143–173. Springer, 2012.

[43] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of

samples in batch reinforcement learning. In Proceedings of the 25th In-

ternational Conference on Machine Learning, ICML ’08, page 544–551,

New York, NY, USA, 2008. Association for Computing Machinery.

[44] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A

contextual-bandit approach to personalized news article recommenda-

tion. In Proceedings of the 19th international conference on World wide

web, pages 661–670, 2010.

[45] H. Liang, W. Fu, and F. Yi. A survey of recent advances in transfer

learning. In 2019 IEEE 19th International Conference on Communica-

tion Technology (ICCT), pages 1516–1523, 2019.

[46] Weifeng Liu, Jose C Principe, and Simon Haykin. Kernel adaptive fil-

tering: a comprehensive introduction, volume 57. John Wiley & Sons,

2011.

[47] Yaxin Liu and Peter Stone. Value-function-based transfer for reinforce-

ment learning using structure mapping. volume 1, 01 2006.

[48] Patrick Mannion, Jim Duggan, and Enda Howley. An experimental

review of reinforcement learning algorithms for adaptive traffic signal

control. In Autonomic road transport support systems, pages 47–66.

Springer, 2016.

[49] Yishay Mansour and Satinder Singh. On the complexity of policy iter-

ation. arXiv preprint arXiv:1301.6718, 2013.

[50] John Mingers. An empirical comparison of selection measures for

decision-tree induction. Machine learning, 3(4):319–342, 1989.

82

[51] Emre O Neftci and Bruno B Averbeck. Reinforcement learning in artifi-

cial and biological systems. Nature Machine Intelligence, 1(3):133–143,

2019.

[52] Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie

Schulte, Ben Tse, Eric Berger, and Eric Liang. Autonomous inverted

helicopter flight via reinforcement learning. In Experimental robotics IX,

pages 363–372. Springer, 2006.

[53] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Plan-

ning under uncertainty for robotic tasks with mixed observability. The

International Journal of Robotics Research, 29(8):1053–1068, 2010.

[54] Art B Owen. Monte carlo theory, methods and examples. Monte Carlo

Theory, Methods and Examples. Art Owen, 2013.

[55] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[56] Christos H Papadimitriou and John N Tsitsiklis. The complexity

of markov decision processes. Mathematics of operations research,

12(3):441–450, 1987.

[57] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based

reinforcement learning: Applications on robotics. Journal of Intelligent

& Robotic Systems, 86(2):153–173, 2017.

[58] Doina Precup. Eligibility traces for off-policy policy evaluation. Com-

puter Science Department Faculty Publication Series, page 80, 2000.

[59] Martin L Puterman. Markov decision processes: Discrete stochastic

dynamic programming, 1994.

[60] Martin L Puterman and Moon Chirl Shin. Modified policy iteration

algorithms for discounted markov decision problems. Management Sci-

ence, 24(11):1127–1137, 1978.

[61] Jan Ramon, Kurt Driessens, and Tom Croonenborghs. Transfer learning

in reinforcement learning problems through partial policy recycling. In

European Conference on Machine Learning, pages 699–707. Springer,

2007.

83

[62] Hidetoshi Shimodaira. Improving predictive inference under covariate

shift by weighting the log-likelihood function. Journal of statistical plan-

ning and inference, 90(2):227–244, 2000.

[63] Burrhus Frederic Skinner. Science and human behavior. Number 92904.

Simon and Schuster, 1965.

[64] Michael L Stein. Interpolation of spatial data: some theory for kriging.

Springer Science & Business Media, 2012.

[65] Robert F Stengel. Optimal control and estimation. Courier Corporation,

1994.

[66] Peter Stone, Richard S Sutton, and Gregory Kuhlmann. Reinforcement

learning for robocup soccer keepaway. Adaptive Behavior, 13(3):165–

188, 2005.

[67] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement

learning in finite mdps: Pac analysis. Journal of Machine Learning

Research, 10(11), 2009.

[68] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio

estimation in machine learning. Cambridge University Press, 2012.

[69] Richard S Sutton. Generalization in reinforcement learning: Successful

examples using sparse coarse coding. In Advances in neural information

processing systems, pages 1038–1044, 1996.

[70] Richard S Sutton and Andrew G Barto. Reinforcement learning: an

introduction cambridge. MA: MIT Press.[Google Scholar], 1998.

[71] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. 2011.

[72] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[73] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement

learning, volume 135. MIT press Cambridge, 1998.

[74] Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring

instances for model-based reinforcement learning. In Joint European

84

conference on machine learning and knowledge discovery in databases,

pages 488–505. Springer, 2008.

[75] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement

learning domains: A survey. Journal of Machine Learning Research,

10(Jul):1633–1685, 2009.

[76] Gerald Tesauro. Td-gammon, a self-teaching backgammon program,

achieves master-level play. Neural computation, 6(2):215–219, 1994.

[77] Sebastian Thrun. Is learning the n-th thing any easier than learning

the first? In Advances in neural information processing systems, pages

640–646, 1996.

[78] Andrea Tirinzoni, Alessandro Lazaric, and Marcello Restelli. A novel

confidence-based algorithm for structured bandits. In Silvia Chiappa

and Roberto Calandra, editors, Proceedings of the Twenty Third Inter-

national Conference on Artificial Intelligence and Statistics, volume 108

of Proceedings of Machine Learning Research, pages 3175–3185, Online,

26–28 Aug 2020. PMLR.

[79] Andrea Tirinzoni, Riccardo Poiani, and Marcello Restelli. Sequential

transfer in reinforcement learning with a generative model. In Interna-

tional Conference on Machine Learning, 2020.

[80] Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of

samples in policy search via multiple importance sampling. In Kama-

lika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the

36th International Conference on Machine Learning, volume 97 of Pro-

ceedings of Machine Learning Research, pages 6264–6274, Long Beach,

California, USA, 09–15 Jun 2019. PMLR.

[81] Andrea Tirinzoni, Rafael Rodriguez Sanchez, and Marcello Restelli.

Transfer of value functions via variational methods. In Advances in

Neural Information Processing Systems, pages 6179–6189, 2018.

[82] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli.

Importance weighted transfer of samples in reinforcement learning. In

Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Inter-

national Conference on Machine Learning, volume 80 of Proceedings

85

of Machine Learning Research, pages 4936–4945, Stockholmsmässan,

Stockholm Sweden, 10–15 Jul 2018. PMLR.

[83] Hado Van Hasselt. Reinforcement learning in continuous state and ac-

tion spaces. In Reinforcement learning, pages 207–251. Springer, 2012.

[84] Eric Veach and Leonidas J Guibas. Optimally combining sampling tech-

niques for monte carlo rendering. In Proceedings of the 22nd annual con-

ference on Computer graphics and interactive techniques, pages 419–428,

1995.

[85] Christopher John Cornish Hellaby Watkins. Learning from delayed re-

wards. 1989.

[86] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of

transfer learning. Journal of Big data, 3(1):9, 2016.

[87] William J Welch, Robert J Buck, Jerome Sacks, Henry P Wynn, Toby J

Mitchell, and Max D Morris. Screening, predicting, and computer ex-

periments. Technometrics, 34(1):15–25, 1992.

[88] Christopher KI Williams and Carl Edward Rasmussen. Gaussian pro-

cesses for machine learning, volume 2. MIT press Cambridge, MA,

2006.

[89] Robert S Woodworth and EL Thorndike. The influence of improve-

ment in one mental function upon the efficiency of other functions.(i).

Psychological review, 8(3):247, 1901.

[90] Wei Zhang and Thomas G Dietterich. A reinforcement learning approach

to job-shop scheduling. In IJCAI, volume 95, pages 1114–1120. Citeseer,

1995.

[91] Li Zhou. A survey on contextual multi-armed bandits. arXiv preprint

arXiv:1508.03326, 2015.

86

	Abstract
	Sommario
	Introduction
	Context and Motivations
	Contribution
	Structure of the Work

	Theoretical Background
	Reinforcement Learning
	Elements of Reinforcement Learning

	Markov Decision Processes
	Definition
	Partially Observable Markov Decision Process
	Value Functions
	Bellman Equations and Operators
	Optimality Conditions
	Policies in Markov Decision Processes

	Planning in Markov Decision Processes
	Dynamic Programming
	Policy Iteration
	Value Iteration

	Reinforcement Learning Taxonomy
	Reinforcement Learning Bandit vs. MDP
	Model-based vs. Model-free
	Infinite Horizon vs. Episodic
	Episodic vs. Non-Episodic
	On-line vs. Off-line
	Greedy vs. -Greedy
	On-policy vs. Off-policy

	Learning Policy
	Temporal Difference Methods
	Batch Learning Methods
	Other approaches
	Fitted Q-Iteration

	Regression
	Gaussian Processes Regression
	Extra Tree Regression

	Transfer Learning in Reinforcement Learning
	Overview
	Motivation
	Evaluation Methods
	Negative Transfer
	Related Works
	Transfer of Samples
	Trade-off between Information and Reward
	Transfer of Value Function
	Transfer of Policy
	Modeling Global Task Dynamics

	Active Transfer in Reinforcement Learning
	Score Function Criteria
	Problem Setting
	Proposed Approach
	Active Learning over the State-Action Space (Choosing the State-Action Pairs)
	Near-Optimal Policies for Markov Decision Processes with Discrete Uncertainty
	Score Function Criteria Evaluation

	Score Function Construction
	Ideal Score Function
	Realistic Score Function

	Active Weighted Fitted-Q Iteration
	AWFQI Algorithm

	Empirical Evaluation
	Experimental Settings
	Environment
	Setting 1: Source Data Mode
	Setting 2: Grid Mode
	Setting 3: Source Data and Grid Mode (Both)

	Experimental Results
	Setting 1: Source Data Mode
	Setting 2: Grid Mode
	Setting 3: Source Data and Grid Mode (Both)

	Conclusions & Future Work
	Bibliography

