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Abstract: Lamb waves have been widely utilized for assessing structural damage
due to their sensitivity to defects. Despite their ease of excitation and acquisition,
significant processing is often necessary to derive single-valued indicators, known
as damage indices, from the acquired signals. Traditionally, damage indices have
been developed using tomographic algorithms to create damage probability maps,
though this approach is subject to limitations. Recently, machine learning has
been employed to enhance the accuracy of guided wave frameworks for damage
diagnosis. However, many existing methods still involve extracting damage indices
from the acquired signals, potentially leading to the loss of diagnostic information
and decreased accuracy. Recently, a new approach within the machine learning
field has risen in popularity for its flexibility and explainability: physics-informed
neural networks. These networks allow embedding some known physical laws in
the algorithm to make sure the predictions adhere to the physics of the problem.
However, little to no applications can be found in the field of damage diagnosis.
In this context, the present work aims to present a physics-informed framework to
perform damage diagnosis using Lamb waves avoiding damage indices extraction.
Various case studies were considered for evaluating the performance of the proposed
framework.
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1. Introduction

Every component during its lifespan is subjected to different types of loads that inevitably lead to damages
and safety concerns. In order to operate engineering structures in safe conditions, different strategies have
been developed and tested during years of technological advancement. The first one employed is preventive
maintenance which is a time-based approach where equipment or systems are regularly serviced or replaced
regardless of their current condition. The primary goal is to prevent breakdowns and extend the lifespan of assets.
This strategy involves scheduled inspections, routine replacements of components, and general maintenance
activities. Following this approach, unnecessary shutdown and replacement are often performed in order to
avoid risks that are not quantifiable due to the limited information on component status available. In recent
years thanks to technological development a new approach has raised in popularity that is condition-based
maintenance, particularly in the context of Structural Health Monitoring (SHM), which relies on real-time
data and sensor information to assess the current health of equipment or structures. Instead of performing
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maintenance at predetermined intervals, actions are taken based on the actual condition of the asset. This
new way of approaching maintenance allows both cost reduction and increased safety. SHM is becoming very
common in safe critical applications, e.g., for dealing with oil and gas pipelines, wind turbines, aeroplanes and
many more, where the correct operation of a component is crucial to avoid accidents. Also, SHM has been
adopted for cost-critical applications where the cost related to replacing or repairing the component is large
enough that minimizing downtimes is crucial to save money.
In this context, among the many SHM methods proposed in the literature, Lamb wave-based algorithms for dam-
age diagnosis have shown satisfactory performance when thin-walled structures are considered [1–6]. Typically,
these waves are generated and detected by placing a network of piezoelectric (PZT) devices on the structure
[7–13]. The process of diagnosing damage generally involves two stages. Initially, signals are recorded when the
structure is undamaged, forming a dataset known as the healthy baseline. Subsequently, current measurements
are compared to the baseline to detect any deviations indicative of damage [14, 15]. Many methods following
this approach utilize diagnostic algorithms based on tomographic reconstruction to detect and pinpoint damage
[15]. A notable example is the probabilistic inspection of damage reconstruction algorithm (RAPID) [16]. How-
ever, tomographic algorithms require that features, or damage indices (DIs), be extracted from the diagnostic
signals [5, 17–26]. This traditional approach has some limitations: (i) due to uneven sensing network density
some artefacts can appear on damage probability maps, (ii) some parameters need to be selected subjectively,
thus strongly affecting damage diagnosis performance, and (iii) information on damage quantification are hardly
retrievable. In order to address such issues, different machine learning (ML) approaches have been developed
recently. Among the first ML-based methods proposed in the literature, the work in Ref. [27, 28] is worth
mentioning. Here, feed-forward neural networks (FFNNs) were leveraged to identify and characterise damage.
However, those simple networks still need DIs extraction in order to achieve good performance [27, 28]. Damage
diagnosis performance using ML-based frameworks has been improved using deep learning algorithms such as
convolutional neural networks (CNNs), for their capability of dealing with multi-dimensional signals [29–32].
Although using classification to localise and quantify damage makes the task easier, prediction accuracy is
limited by the resolution used to discretise damage position and extent. This limitation has been overcome
in [33], where a CNN for regression has been proposed to localise damage in Aluminum plates. Despite the
satisfactory performance, the CNN used in this framework does not deal with unprocessed acquired signals, but
it requires previous extraction of DIs. Different ML methods have been tested and compared in [34]. CNNs
turned out to be the best-performing tools for damage diagnosis in thin-walled structures. However, such net-
works belong to the supervised learning scheme, which has been identified as costly and unfeasible in some real
scenarios. Unsupervised algorithms that can solve the aforementioned issues are the Physics-Informed Neural
Networks (PINNs). This class of algorithms aims to solve partial differential equations where the solution field
is approximated with a neural network whose weights and biases are learned by minimizing the residual of a
differential equation evaluated at collocation points. This general formulation allows for solving a large vari-
ety of problems, drastically reducing the required data compared to a traditional supervised surrogate model.
Using PINNs as forward solvers, i.e., to solve partial differential equations, is not as efficient as the classical
well-established solvers, e.g., the finite element and the finite difference methods. However, in particular, in
contexts where classical methods show some limitations, PINNs are still promising [35]. Moreover, PINNs are
considered grey boxes, i.e., models that contain both data and theoretical models, thus rendering the model
itself more understandable to the user. From the SHM point of view, the solution to the inversion problem,
i.e., the reconstruction of material properties starting from signals of Lamb waves measured by the sensor net-
work arranged on the component without the need for any pre-processing or extraction of DIs from the sensors
signals. Several attempts to use PINNs to solve inversion problems have been presented in the literature, with
satisfactory results. In the field of SHM, the work in [36] proposed to use two nets working together, one
that reconstructs the continuous displacement field, and one that predicts the material properties. Despite the
satisfactory performance, the optimization problem that needs to be solved for training the networks is complex
and excessively time consuming. In order to overcome these limitations, a finite difference solver was embedded
in the method, and only a network predicting the material distribution was developed. That is, a network
predicted the material distribution, which was taken in by the forward solver to compute the expected displace-
ment. This choice allowed for simplification of the optimization process and increased the method performance
[37]. However, the wave type considered was not suitable for analysing thin-walled structures, like panels and
other elements of aeronautical devices.
In this context, the goal of the present work is (i) to develop tools and methods in a PINNs framework to
perform damage diagnosis using Lamb waves, without extraction of DIs from the signals, and (ii) to assess
the possibility of deploying PINNs for SHM applications. Two different approaches have been tested, i.e., a
more traditional physics-informed approach and a promising new technique called the Physics-informed method
coupled with a finite difference solver. The wave excited to perform damage detection was a symmetric mode
Lamb wave using a tone-burst, commonly used in the SHM field. The approaches were later verified using
various case studies:

• Damage localization in a string: the two methods proposed were tested on a one-dimensional and
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non-homogeneous domain with clamped extremities. The wave excited with a tone-burst is applied on
the middle of the domain.

• Damage localization in a plate section: The physics-informed method coupled with a finite difference
solver was further tested on a plate subjected to plane strain in one direction and clamped and both ends.
Again, the wave propagated from the middle.

• Damage localization in a full plate: The physics-informed method coupled with a finite difference
solver was also tested on a 3D plate subjected to transverse loading. The plate was clamped at the
extremities and the force was placed in the middle.

The results showed that the proposed method allows characterizing damage using Lamb waves.

This paper is organized as follows. In Section 2 the theoretical background on Lamb waves, inversion problems
and PINNs is provided. In the same section, the tools and methods developed are presented showing the general
workflow of the paper. The tools were verified in 3 against validated numerical simulations carried out using the
Abaqus software package. Finally, in Section 4 the conclusions are drawn out and possible future developments
are presented.

2. Methodology

2.1. Theoretical Background

Lamb waves are ultrasonic-guided waves that propagate through thin-walled structures, such as plates and
shells. Unlike bulk waves, which travel through a material in all directions, Lamb waves are confined to the
thickness of the structure, allowing them to interact with defects, boundaries, and other features within the
material. This property makes them highly valuable for detecting hidden flaws or assessing the structural
integrity of a wide range of engineering components, from aircraft wings to pipelines and bridges. Lamb waves
can be further categorized into different modes, such as the symmetric mode (S0) and the anti-symmetric mode
(A0) as shown in Figure 1 and Figure 2 respectively, each with its own unique characteristics and applications.

Figure 1: Symmetric mode particle movement (S0)

Figure 2: Anti-symmetric mode particle movement (A0)

The equation governing elastic waves, and in particular Lamb waves, propagation is represented by the equation
(1):

ρutt = ∇ · (σ) + f (1)

where material properties of the domain are considered trough elastic modulus E and Poisson ratio ν inside
the constitutive relationship for elastic material hence relating stress tensor σ and displacement vector u. The
density is represented by ρ, forcing vector by f and ∇· is the divergence operator applied to stress tensor σ.
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From the general equation (1) can be derived three different models: one-dimensional, two-dimensional and
three-dimensional. The equations presented assume an homogeneous material, making it impractical to accu-
rately describe domains where material properties vary. The introduction of variable material properties becomes
essential for representing real scenarios such as damages and holes within the domain. To non-destructively
estimate material properties, addressing the full wave inversion problem is crucial. The solution involves in-
troducing a parameterization γ for material properties, which is then multiplied by the material properties to
determine the material distribution within the domain.

First in order of complexity is the 1D wave, where the wave equation in its simplest form is solved, an axial wave
that propagates along the coordinate x through a one-dimensional string with the two ends fully constrained.
Parametrization used to solve full inversion problem for one-dimensional wave equation is the one written in
equation (2):

c(x)2 = γ(x)c20 = γ(x)
E

ρ
(2)

where c0 is the constant wave speed defined as a function of density ρ and elastic modulus E, instead γ(x) is
the parameter that is a function of the position x and multiplied with the material property c0, gives the actual
material property of the domain in that position. Introducing this parametrization general wave equation (1)
in one-dimensional form with variable material property is obtained:

utt = c20
∂

∂x
(γ(x)

∂u

∂x
) +

f

ρ
(3)

where u is the displacement in x direction and f is the force applied in the same direction.

The one-dimensional equation proves inadequate for adequately describing the behaviour of Lamb waves. To
address this limitation, the wave equation transforms into a system of partial differential equations. In the
simplest case, the two dimensions under consideration are length x and thickness z of a plate section with plane
strain applied on the dimension y. This constraint renders the third equation zero, simplifying the model. To
enhance our comprehension of the domain’s orientation and shape, Figure (3) displays the axes and the plate.
It’s important to note that in this two-dimensional context, the y direction is disregarded due to the imposition
of plane strain, thereby rendering the partial differential equation in that direction negligible.

x

y

z

Figure 3: Plate coordinate system valid both for 2D and 3D

To simplify the treatment is useful to define cL and cT longitudinal wave speed and shear wave speed respectively:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(4)

c2L =
λ+ 2µ

ρ
, c2T =

µ

ρ
(5)

where λ and µ represent the Lamé parameters, another formulation of material properties in the general wave
equation, all these parameters depend on the elastic properties of the materials i.e. elastic modulus E and
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Poisson ratio ν. To consider variable material properties shear wave speed and longitudinal wave speed are
parametrized as in equations (6).

c2L(x) = γ(x)c2L, c2T (x) = γ(x)c2T (6)

Applying this substitution the wave equation in the direction x and z and their associated displacement u and
w becomes the following system of equations:

utt = (c2Lγux + (c2L − 2c2T )γvy)x + c2T (γ(uy + vx))y +
fx
ρ

wtt = c2T (γ(uz + wx))x + ((c2L − 2c2T )γux + c2Lγwz)z +
fz
ρ

(7)

The three-dimensional model is obtained by adding the third spatial direction in the equation therefore the
solution of this system of equations is the most general wave solution obtainable. Material properties are still a
handful to write in the same way as equations (5) to get a clear formulation, therefore the parametrization of
the properties is an extension of the two-dimensional case, the new parametrization is shown in equations (8).

c2L(x, y) = γ(x, y)c2L, c2T (x, y) = γ(x, y)c2T (8)

Adding a new dimension lead to a system of three equation each for a displacement in a particular direction
u, v, w associated with the following direction x, y, z. The system of equations has the following form:

utt = (c2Lγux + (c2L − 2c2T )γ(vy + wz))x + c2T (γuy)y + c2T (γuz)z +
fx
ρ

vtt = (c2Lγvy + (c2L − 2c2T )γ(ux + wz))y + c2T (γvx)x + c2T (γvz)z +
fy
ρ

wtt = (c2Lγwz + (c2L − 2c2T )γ(vy + ux))z + c2T (γwx)x + c2T (γwy)y +
fz
ρ

(9)

Note that in both two-dimensional and three-dimensional equations, the actual dimensions of the parametriza-
tion are lower than the dimensions of the domain, this is the consequence of the choice made that material does
not change along z direction and thus γ(x, y), the parameter γ depends only on x and y coordinates.

Once introduced the physics of the problem is useful to present the other main argument of this paper which
is a recently developed class of ML techniques. This paper is inspired by the application PINN which is a
powerful and innovative approach that combines neural networks with physical principles to solve complex
scientific and engineering problems. It bridges the gap between traditional physics-based models and data-
driven ML techniques. In a PINN, neural networks are used to approximate the solution to a physical system
while respecting the governing laws of physics. This is achieved by incorporating the equations describing the
underlying physical phenomena as constraints during the training of the neural network. By doing so, PINNs
can learn from limited or noisy data and extrapolate to predict the behaviour of the system in regions where
data may be scarce. The key advantages of PINNs include their ability to efficiently solve partial differential
equations, model complex systems, and adapt to various types of data. The structure of a neural network of
this kind is typically an FFNN that receives in input the coordinates of the partial differential equation that
is to be solved, the output is the solution of the partial differential equation in each coordinate. In Figure 4 is
represented the net with inputs x and outputs u as explained before, at each step of the training both data
and physics in form of partial differential equation residual are fed into the optimization algorithm in order to
change the weights θ of the net to best fit the solution of the partial differential equation that is being solved.
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Figure 4: Simple scheme of a PINN that uses both data and physics during training

More complex PINN configurations are able to solve both the forward problem and inversion problem [37],
the introduction of another net that predicts material properties is crucial to solving the inversion problem
working alongside the net that solves the forward problem. This PINNs approach towards inversion approximate
displacement u and material distribution γ using two neural networks Au and Aγ :

u = Au(x, t,θu)

γ = Aγ(x, t,θγ)
(10)

where θ = {θu,θγ} are the model parameters of the neural network, u and γ in equation (10) represent the
approximation provided by the net of the quantities. In order to set up the loss function for network training is
useful to subdivide the loss terms contributions in the respective conditions on the partial differential equation
problem:

N = utt(x, t)− c20
∂

∂x
(γ(x)

∂u(x, t)

∂x
)− f

ρ
(11)

B = u(x, t) (12)

I0 = u(x, t)

I1 = ut(x, t)
(13)

where N is the residual of the partial differential equation, B are the boundary conditions and I are the initial
conditions. Those equations are evaluated in N points of the domain called collocation points defined in this
way N = NN +NB +NI . Once defined these residuals the loss functional L is then built considering the mean
square of those residuals evaluations (the differential equation residual LN , the boundary conditions residual
LB, and the initial condition residual LI) at the collocations points:

LN (u,γ) =
1

NN

NN∑
i=1

(N [ui; γi])
2 (14)

LB(u) =
1

NB

NB∑
i=1

(B[ui])
2 (15)

LI(u) =
1

NI0

NI0∑
i=1

(I0[ui])
2 +

1

NI1

NI1∑
i=1

(I1[ui])
2 (16)

L(u,γ) = LN (u,γ) + LI(u) + LB(u) (17)

In this way the optimization problem is set for a PINN approach, and the minimization of the loss functional
(17) lead to the solution of both inverse and direct problem improving at each step the approximation of both
neural networks. This is the traditional PINN approach to solve inverse problems for wave equation as presented
in [36].
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2.2. Workflow

In order to develop a class of methods that solve the inverse problem is necessary to create a finite difference
solver that is fast and accurate enough to be embedded in the code and used alongside the ML tools. Three
different solvers are presented increasing the spatial dimension considered at each step and thus complexity.

One dimensional finite difference solver is the numerical effort to solve wave equation (3), the domain selected
is a one-dimensional string along dimension x with the edges fully constrained and thus the displacement u
at those points is set to zero. The wave equation is then solved in the finite difference framework using the
following stencils for partial differential equation [38], initial and boundary conditions:

un+1
i = 2un

i − un−1
i + c2

dt2

2dx2
[(γi + γi+1)(u

n
i+1 − un

i )− (γi+ γi−1)(u
n
i − un

i−1)] +
dt2

ρ
fn
i (18)

BC : un
0 = 0, un

Nx
= 0 (19)

IC : u0
i = 0 (20)

where i is the index for the space position node and assumes values between i = 0 and i = Nx, while n is the
index for time, varying across n = 0 to n = Nt. Consider that Nt + 1 is the number of time nodes and Nx + 1
is the number of spatial nodes of the grid, as a consequence dx and dt are defined as the step in respectively
space and time, computed as follows:

dx =
Lx

Nx
, dt =

Lt

Nt
(21)

where Lx is the length of the domain in x direction, while Lt is the end time of the simulation. The stencil of
the initial condition on the derivative is not important because the derivative of a null quantity is already zero.

The second solver developed is capable of solving two-dimensional wave equation presented in equations (7), to
solve a meaningful problem that allow Lamb waves propagation is necessary to define the domain as mentioned
in Subsection 2.1. Lamb waves are a phenomenon typical of thin plates and thus boundary condition are chosen
accordingly, the plate is constrained on the two edges and thus no displacement both u and w is null while the
upper and lower surface are free to move i.e. z = 0 and z = Nz surfaces. Those boundaries require special
treatment to impose stress-free conditions represented by the following equations:

σzz|z=0 = 0 becomes (c2L − 2c2T )wz + c2Lux = 0

σzx|z=0 = 0 becomes uz + wx = 0
(22)

σzz|z=Nz
= 0 becomes (c2L − 2c2T )wz + c2Lux = 0

σzx|z=Nz
= 0 becomes uz + wx = 0

(23)

where σ is the stress in the direction indicated by the respective indices evaluated in a particular position.
Equations (22) and (23) are directly obtained from constitutive relations that relate stress σ and strain ϵ then
is used strain/displacement equation that allows to write those equations in term of displacement u,w and their
derivatives. Starting from the partial differential equations described in (7) the finite difference stencil is derived
similarly to [39]:

un+1
i,k = 2un

i,k − un−1
i,k +

c2L
dt2

2dx2
[(γi,k + γi+1,k)(u

n
i+1,k − un

i,k)− (γi,k + γi−1,k)(u
n
i,k − un

i−1,k)]+

(c2L − 2c2T )
dt2

8dxdz
((γi,k + γi+1,k)(w

n
i+1,k+1 − wn

i+1,k−1)− (γi,k + γi−1,k)(w
n
i−1,k+1 − wn

i−1,k−1))+

c2T
dt2

2dz2
[(γi,k + γi,k+1)(u

n
i,k+1 − un

i,k)− (γi,k + γi,k−1)(u
n
i,k − un

i,k−1)]+

dt2
fxn

i,j

ρ

(24)
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wn+1
i,k = 2wn

i,k − wn−1
i,k +

c2L
dt2

2dz2
[(γi,k + γi,k+1)(w

n
i,k+1 − wn

i,k)− (γi,k + γi,k−1)(w
n
i,k − wn

i,k−1)]+

(c2L − 2c2T )
dt2

8dxdz
((γi,k + γi,k+1)(u

n
i+1,k+1 − un

i+1,k−1)− (γi,k + γi,k−1)(u
n
i−1,k+1 − un

i−1,k−1))+

c2T
dt2

2dx2
[(γi,k + γi+1,k)(w

n
i+1,k − wn

i,k)− (γi,k + γi−1,k)(w
n
i,k − wn

i−1,k)]+

dt2
fzni,j
ρ

(25)

where i is the spatial position index associated with x direction varying between i = 0 and i = Nx, similarly k
is the spatial position related to direction z assuming values between k = 0 and k = Nz. Consider that Nt + 1
is the number of time nodes, Nx + 1 is the number of spatial nodes of the grid in x direction while in thickness
direction z the number of nodes is Nz +1, as a consequence dx, dz and dt are defined as the step in respectively
space and time, computed as follows:

dx =
Lx

Nx
, dz =

Lz

Nz
, dt =

Lt

Nt
(26)

where Lx is the length of the domain in x direction, Lz is the length in z direction and Lt is the end time of the
simulation. The time grid is described by index n as before. Concerning boundary conditions the free surfaces
discussed before are implemented using the following stencil for both surfaces changing only the z index. Initial
conditions are enforced in the same way as the one-dimensional solver and for the sake of simplicity are not
reported.

BC : un
i,0 =

dz

2dx
(wn

i+1,1 − wn
i−1,1) + un

i,1

wn
i,0 =

c2L − 2c2T
c2L

dz

2dx
(un

i+1,1 − un
i−1,1) + wn

i,1

un
i,Nz

=
dz

2dx
(wn

i+1,Nz−1 − wn
i−1,Nz−1) + un

i,Nz−1

wn
i,Nz

=
c2L − 2c2T

c2L

dz

2dx
(un

i+1,Nz−1 − un
i−1,Nz−1) + wn

i,Nz−1

(27)

un
0,k = 0, wn

0,k = 0, un
Nx,k = 0, wn

Nx,k = 0 (28)

The group of equations (27) represent the stencil for stress-free boundary conditions while equations (28)
represent the null displacement conditions at the sides with normal x.

The three-dimensional equation is solved by means of the finite difference method considering a plate that is
constrained at the four sides and therefore no displacement is allowed on that surface, i.e., surfaces with normal
x and y. Similarly to the two-dimensional case surface free boundary condition has to be applied to the free
surface of the plate i.e. surfaces with normal z. This condition is implemented employing equations (29) for
surface with z = 0 and equations (30) for surface with z = Nz.

σzz|z=0 = 0 becomes (c2L − 2c2T )wz + c2Lux + c2Lvy = 0

σzx|z=0 = 0 becomes wx + uz = 0

σzy|z=0 = 0 becomes wy + vz = 0

(29)

σzz|z=Nz = 0 becomes (c2L − 2c2T )wz + c2Lux + c2Lvy = 0

σzx|z=Nz = 0 becomes wx + uz = 0

σzy|z=Nz = 0 becomes wy + vz = 0

(30)

The stencils of the three-dimensional finite difference solver are not reported for the sake of simplicity, they can
be easily derived from the system of equations (9) by applying finite difference schemes to the derivatives. In
the same way boundary condition stencils are obtained by performing those operations on equations grouped
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in (29) and (30).

Methods developed make use of a neural network that predicts the distribution of the material on the domain,
they differ on how the loss function is defined. Prediction of material distribution is devoted to an FFNN with
a simple architecture, the spatial position is fed in the network and the output is the material distribution γ
a function that multiplied to the material property gives the material property in that particular point. A
simplified physics-informed method uses displacement measurement um coming from sensors placed on the
domain and the material distribution prediction γ from the neural network Aγ to compute the residual of the
partial differential equation. This residual represents the loss function that is minimized by the optimization
algorithm modifying neural network parameters θ. The loss functional is described by the following equation:

loss =
ρ

dt2
(un+1

i − 2un
i + un−1

i )− ρc2(
∂γ

∂x

(un
i+1 − un

i−1)

2dx
+

un
i+1 − un

i + un
i−1

dx2
)− fn

i (31)

lpde =
1

nm

nm∑
i=0

loss2 (32)

Spatial and temporal derivatives with respect to displacement are computed using a finite difference scheme
prone to numerical errors, whereas the one relative to material distribution i.e ∂γ

∂x is computed using automatic
differentiation to ensure high accuracy considering that this derivative is the one used by the optimization algo-
rithm to improve γ prediction. This very simple and computationally inexpensive method has some limitations
in particular derivatives computed with finite differences to be accurate need a fine grid, not feasible on a real
component due to limitations on the number of sensors that can be installed on it. A common solution is to
use another network with collocation points that predict displacement where sensors are not present, similar to
the classical PINNs approach for the inversion problem explained in Subsection 2.1. This approach has been
extensively tested by [36]. Figure 5 represents the scheme of the method above where the main steps are in
the following order: spatial coordinates of the domain x are fed into the neural network Aγ , the output is the
material distribution γ that is then used to compute loss function following equations (31) and (32). Loss value
is then necessary to perform the backpropagation step where neural network parameters are optimized to fit
with the solution.

Figure 5: Simplified traditional physics-informed method

In order to overcome the limitations presented in the previous method the Physics-informed method coupled
with a numerical solver is developed starting from the work done in this paper [37]. The original method was
modified so it could deal with Lamb waves. Such a method is selected due to the reduction in complexity of the
optimization process compared to a more traditional PINN approach that uses a neural network to solve both
forward and inverse problems as shown in Subsection 2.1. This method implements a finite difference solver
(Forward Solver) that computes the wave field u using material distribution γ predicted from the neural network,
in this way the partial differential equation is always satisfied and therefore the loss function is the mean of the
square difference between predicted displacement in the sensors points u(xm) and the actual displacement in
those points um:

lm =
1

nm

nm∑
i=0

[u(xm)− um]2 (33)
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In equation (33) nm represents the number of sensors installed on the domain. Minimizing this relation the
solution predicted by the neural network tends to the unknown material distribution, the network makes a
prediction of material distribution γ given spatial position x, material distribution predicted is then fed with
spatial position x and time t in the forward solver to obtain partial differential equation solution. The last
step involves confronting the displacement field computed with material distribution predicted from the net
u and the one measured by the sensors um, to do this the loss function has equation (33), then by means of
backpropagation algorithm weights and biases of the net are tuned to reduce as much as possible the loss function.
In this way the material distribution predicted converges towards the actual material properties distribution,
nevertheless local minimum in the loss function can prevent the optimization process from reaching the actual
solution.

Forward
Solver

automatic differentiation

Figure 6: Physics-informed method coupled with finite difference solver

3. Case studies

3.1. Solver validation: comparison with Abaqus

The first model to be tested and validated is the one-dimensional finite difference solver that is capable of solving
the one-dimensional wave equation with certain initial and boundary conditions as mentioned in Subsection 2.2.
The domain is one dimensional and thus wave propagates across this dimension x and thus to excite the wave,
force is applied on the middle of the domain with direction x. The forcing term applied is a sine wave modulated
by the Hanning window described by Equation (34), in this particular case the frequency is set to f = 200kHz
and the number of cycles ncycles = 4.

f(t) =

{
sin(2πft) sin( πft

ncycles
), for 0 ≤ t ≤ ncycles

f

0, for ncycles

f < t
(34)

The forcing term signal is represented in Figure 7, the one employed to validate the solvers presented.
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Figure 7: Forcing term

Validation is carried out by comparing the results of the finite difference solver developed and the Abaqus finite
element method solution in different positions of the domain with variable material properties. Geometry and
other parameters are reported in Table 1.

String parameters

Elastic modulus 1 [GPa] E1 = 70

Elastic modulus 2 [GPa] E2 = 35

Density [Kg/m3] ρ = 2700

Length x [cm] Lx = 30

Position of material change [cm] Lx = 7.5

Simulation time [s] 3.6 · 10−5

dt [s] 2 · 10−8

Table 1: Property and parameters of the model

Abaqus model is a wire geometry with explicit beam elements to simulate correctly the wave propagation, the
section assigned to the beam is a square with side l = 1 cm. The two edges of the beam are both constrained
with no displacement allowed. Sensors and material distribution are shown in Figure 8, the black part of the
domain represents a material with elastic modulus E1 and the yellow part is the one with E2.

x

Figure 8: Domain configuration, each colour represents a different material, red dots are the positions
of the sensors
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Figure 9: Sensor displacement measurement, positioned where the force is applied
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Figure 10: Sensor displacement measurement, positioned at 3.75 [cm] from the source position

The measured displacement in the position of the sensors shows almost the same results, wave propagation
speed is coherent with a chosen material, waveform remains the same in both the simulations, and a similar
discussion is for amplitude attenuation that shows similar behaviour. The wave reflected from the change in
wave speed is the second wave shown in both Figure 9 and 10, once has been reflected comes back and thus can
be measured from the sensors.

The finite difference solver in three dimensions capable of simulating Lamb wave propagation in a plate is tested
and compared to the Abaqus finite element software with the aim of validating the results obtained by the tool
developed. Lamb wave type excited is symmetrical mode S0 due to limitation introduced by discretization of
surface free boundary condition that is not accurate enough to show dispersion behaviour in particular for anti
symmetrical mode A0, more information on dispersion phenomenon is reported in Appendix B. The forcing
frequency utilized ranged from 200 kHz to 400 kHz, a value that appears to be in the region of lowest dispersion
for S0 mode while this region for A0 mode has a much higher frequency. Therefore symmetrical mode S0 prove
to be the right choice in our scenario to simulate realistic Lamb wave propagation. Geometry and parameters
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selected for this comparison are reported in Table 2.

Plate parameters

Elastic modulus 1 [GPa] E1 = 70

Elastic modulus 2 [GPa] E2 = 35

Poisson ratio ν = 0.33

Density [Kg/m3] ρ = 2700

Length x [cm] Lx = 30

Length y [cm] Ly = 30

Thickness [cm] Lz = 0.1

Position of material change [cm] Lx = 7.5

Simulation time [s] 3.6 · 10−5

dt [s] 2 · 10−8

Table 2: Property and parameters of the model

Shell continuum with explicit step is selected for the Abaqus model in order to maintain the model as simple as
possible and computationally fast to solve, the number of elements differs due to the necessity in finite difference
solver of having more than one node along thickness to apply boundary conditions schemes, while shell elements
in Abaqus can have only one element in that direction. The forcing term is the same as the one selected in
1D validation and therefore follows equation (34). This force is applied symmetrically in order to excite the S0
Lamb wave as shown in Figure 11 and both are positioned in the middle of the plate.

F

F

Figure 11: Symmetrical mode S0 excitation scheme

Different sensors are placed to compare the wave obtained by solving the partial differential equations with
those two different approaches, in Figure 13 represents the displacement as a function of time in the position
where the force is applied on the surface of the plate. While in Figure 14 the sensor is placed at a distance of
x = 3.75 [cm] from the source of the signal, the first wave is the one emitted by the source while the two peaks
following is the wave reflected by the change in material properties. Figure 12 shows the top view of the plate
with sensor positions and material distribution highlighted.
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Figure 12: Plate domain configuration, each color represent a different material, red dots are sensors
positions
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Figure 13: Sensor displacement measurement, positioned where the force is applied
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Figure 14: Sensor displacement measurement, positioned at 3.75 [cm] from the source position

Though the results are not completely similar, the waveform behaves in the same way in both simulations, the
propagation speed is very similar, and the only notable difference is the phenomenon of amplitude attenuation
that shows some differences accountable to slight differences in element number and type, that are the essential
differences between the two methods. The finite difference solver presented has some limitations related to
the type of Lamb waves simulated, while the solver works numerically fine in simulating A0 mode, the wave
propagating does not show the same dispersion as the one simulated with Abaqus. This is due to the surface-
free boundary condition schemes that are not accurate enough to simulate the correct dispersion behaviour as
indicated by [40].

3.2. 1D

The first model developed and analyzed is the one-dimensional model with two variants studied in order to assess
the capabilities and performance of the methods presented in this paper. Simulating a wave in one-dimensional
domain is comparably simple to propagating Lamb waves in a plate and thus makes the one-dimensional case
a perfect environment to compare the two methods.
In order to discuss the results obtained is necessary to specify the geometry and the important parameters of
the two models, the domain can be considered a beam clamped at both ends with the property listed in Table
3, where a wave excited in the middle of the domain propagates along x direction, the displacement produced
by the wave is in the same direction of the propagation direction i.e. x. Sensors are equally spaced along the
beam length and record the displacement u in time, note that the sensor readings are computed using the finite
difference solvers developed once validated to simplify the testing phase.

String parameters

Wave speed[m/s] c = 5000

Wave speed damage[m/s] cd = 2500

Density [Kg/m3] ρ = 2700

Length [cm] Lx = 10

Number of Sensors 9

Damage position[cm] 6.5− 7.5

Table 3: Property and parameters of the model
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The domain and sensors’ position is shown in detail in Figure 15, note that sensors at the tips of the beam are
not useful considering the boundary condition selected being null displacement, for this reason, no displacement
would be measured and thus no contribution in the loss function.

x

Figure 15: Domain configuration, the black line is the beam, while the red dots represent the sensors

The neural network used to predict material distribution has one input which is the spatial coordinate x and
one output, the material distribution γ. In Figure 16 is visible the structure of the neural network employed in
this section consists of 1 neuron at the input layer, 4 hidden layers with, respectively, 5,10,10,5 neurons and the
output layer with 1 output neuron. The activation function of the neurons is a sigmoid except for the output
neuron which has no activation function.

Figure 16: Neural network structure for 1D and 2D

The simplified physics-informed method is applied following the procedure shown previously, the major difficulty
related to this method is the error introduced by computing displacement u derivative in the loss function
equation (31) using finite difference schemes. Problems arise when the number of measuring points is reduced,
the solution becomes unstable and the algorithm is no longer capable of identifying the damage. This issue
can be mitigated by reducing the frequency of the forcing term, for more information about this behaviour
see Appendix A. Therefore reducing the number of sensors down to 9 needs a reduction of the frequency with
respect to the one used typically in Lamb wave studies, in order to maintain the derivative computed with finite
difference accurate enough to allow the algorithm to reach a satisfying solution. Forcing term is a sine wave
modulated with Hanning window of frequency f = 25 kHz with 3 cycles, using this configuration condition
(37) is satisfied.
The results obtained are reported in Figure 17, note that this method is not capable of predicting material
distribution outside the point where the sensor is placed. The training process takes 200,000 epochs in around
500 seconds, with a learning rate lr = 0.005 with step decrease down to lr = 3.9 · 10−5 value where the loss
stabilizes.
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Figure 17: Simplified physics-informed method material distribution prediction after training

Physics-informed coupled with finite difference solver method has far less limitation than the other method
hence allows to use of a forcing term with the desired frequency, more suitable for a Lamb waves study, that is
sine wave modulated with Hanning window of frequency f = 300 kHz and 3 cycles. The results obtained by
the training process are represented in the following Figure 18. Epochs needed to train the neural network are
around 10,000 epochs completed in 2000 seconds. The learning rate selected is the same as the other method
lr = 0.005 with step decay down to lr = 3.2 · 10−4 to reach a stable loss value.

Figure 18: Physics-informed coupled with finite difference solver method material distribution predic-
tion after training

Comparing the solution obtained by the different methods is evident that the solution provided by Physics-
informed coupled with the finite difference method is much more accurate allowing to use wider range of
frequencies and a lower amount of sensors maintaining a good level of accuracy in the prediction of material
distribution. This advantage comes with an increased computational cost, in more complex scenarios this can
become a great limitation for this method. In fact, the time needed to perform a fine prediction by the last
method presented is 4 times greater than the time occupied by the other method.
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3.3. 2D

The natural step following mono-dimensional analysis is introducing the second dimension to consider more
complex waves such as Lamb waves, following the hypothesis introduced with the two-dimensional finite dif-
ference solver presented in Section 2.2 is possible to prove the capability of this method in predicting material
distribution and hence damages in presence of Lamb waves. The method applied is the Physics-informed cou-
pled with solver method preferred to the traditional one due to difficulties in treating waves with high frequency
typical of Lamb waves. Another important aspect that rendered impossible the use of such a method is the
addition of the equation for displacement w in z direction, to compute the residual of this equation to build
the loss function required displacement in that direction, this leads to the necessity of measuring w through the
thickness of the plate that is not feasible in a real scenario. The increased computational cost of this new solver
leads to the necessity of reducing the domain to keep the algorithm fast enough, in Table 4 are reported the
property and the parameters of the model. Sensors are evenly spaced and measure displacement at the surface
of the plate. The geometry selected is, as anticipated in Subsection 2.1, a plate section obtained by enforcing
plane strain condition that renders the three-dimensional plate problem a two-dimensional problem, simplifying
greatly the formulation.

Plate parameters

Elastic modulus [GPa] E = 70

Poisson ratio ν = 0.33

Density [Kg/m3] ρ = 2700

Length [cm] Lx = 5

Thickness [cm] Lz = 0.1

Number of Sensors 4

Damage position [cm] 3− 3.75

Table 4: Property and parameters of the model

To better visualize the position of the sensor and the domain itself comes in handy illustration in Figure 19,
sensors are placed on one surface of the plate, is also possible to observe the particular force configuration that
is specifically designed to excite Lamb wave symmetrical mode S0, to do this in the middle of the plate at the
two free surfaces the same force is placed but with opposite direction. The force is a sine wave modulated with
a Hanning window of frequency f = 400 kHz and 3 cycles.

x

z

Figure 19: Domain configuration, the rectangle is the plate section while red dots are the sensors

The neural network employed is the same as the one in Subsection 3.2, material distribution is predicted only
in the x direction since the objective of the work is to detect damaged position and hence is assumed that the
material is constant along thickness direction z. Material distribution obtained by running the algorithm is
shown in Figure 20 compared to the expected one. Increased complexity of the solver greatly increases the time
needed to train the network, maintaining the same number of epochs around 10,000 the time needed becomes
20,000 s.

18



0 1 2 3 4 5
position [cm]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

g
a
m

m
a
 [

]

predicted
exact

Figure 20: Neural network material distribution prediction after training

In this particular case the network prediction is able to detect accurately the discontinuity created by the
presence of the damage and furthermore quantify correctly the entity of the material property discontinuity
both in value, position and length.

3.4. 3D

In order to prove this framework on a case as close as possible to reality, the algorithm has to run on a full plate
with a damaged region present to evaluate its performance. This is possible by implementing the finite difference
solver presented in Subsection 2.2 with all three spatial dimensions x, y, z to simulate Lamb wave propagating
through a three-dimensional domain. The type of Lamb wave selected is pure symmetrical mode S0 excited with
force configuration as shown in Figure 11 applied on the middle of the plate. Property and parameters of the
model are listed in Table 5. Material distribution for the case study is represented in Figure 21 alongside with
sensors’ position in Figure 22, which are equally distributed on the plate surface, the middle sensor is excluded
due to the presence of the forcing term that generated considerably bigger displacement then the other sensors
and then can impair the process of optimization. Sensors positioned on the edge of the plates are not useful
considering that the plate is constrained and thus no displacement is allowed on that surface rendering sensors
useless. Note that similarly to the two-dimensional algorithm, material distribution is constant along thickness
direction z.

Plate parameters

Elastic modulus [GPa] E = 70

Poisson ratio ν = 0.33

Density [Kg/m3] ρ = 2700

Length x [cm] Lx = 5

Length y [cm] Ly = 5

Thickness z [cm] Lz = 0.1

Number of Sensors 24

Table 5: Property and parameters of the model
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Figure 21: Material distribution of the plate
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Figure 22: Sensors distribution on the plate represented by the red dots

In this scenario, the neural network remained the same FFNN used since the beginning of the paper however
the input is no more one spatial coordinate x but two x and y represented in the Illustration 23, this is due to
the geometry of the problem that is a plate, while the output is the material distribution parameters γ(x,y),
that do not depend from z coordinate that is constant in that direction. The architecture is then two neurons
at the input layer, the hidden layers have the following number of neurons 5,10,10,5 and finally, the output layer
has one neuron without any activation function.
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Figure 23: Neural network scheme

The addition of one dimension greatly increases the complexity of the optimization process with respect to
the previous cases due to the increased size of the domain. As a consequence training process needs around
25000 epochs, and computational cost is very high, nevertheless, there are possible solutions that can improve
drastically the performance of the algorithm that are discussed in Section 4.
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Figure 24: Neural network material distribution prediction after training

Once performed the training of the net illustrated in Figure 23, using the Physics-informed method coupled
with finite difference solver, the approximation of material properties γ(x,y) across the domain is presented in
Figure 24. The application of this method on the plate shows less precise prediction than the previous cases
but is still capable of indicating correctly the region of the damage which is a great achievement considering
the only information given to the model is the displacement measured at the sensors positions.
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4. Conclusions

In this work, two physics-informed data-driven methods that process Lamb waves to localise damage in thin-
walled structures have been presented. These types of algorithms were considered to explore the possibility of
performing damage diagnosis without relying on black box-like neural networks and without performing any
feature extraction processes.
The two data-driven methods only differed by the way the known physical laws were implemented. The tra-
ditional physics-informed method included the physics of the problem, i.e., the underlying partial differential
equations, directly in the loss function. Instead, the physics-informed method coupled with the finite difference
solver was composed of a normal neural network predicting the material distribution, and the physics of the
problem was satisfied by an in-house finite difference solver specifically developed to solve 1D, 2D and 3D elas-
todynamic simulations involving Lamb waves. Three case studies have been considered. The following main
conclusions can be drawn from this work:

• 1D case: Simplified physics-informed method and Physics-informed coupled with finite difference solver
method are tested with the aim to detect damage position in a string domain, both methods are capable of
detecting damages on the domain. However, the first method is not able to quantify correctly the material
property in the damaged region as well as the position due to the low resolution. Another drawback is the
numerical stability problem developed with the reduction of the number of sensors needing a reduction
in the frequency of the wave, the second method overcomes all these limitations however increasing the
computational.

• 2D case: only the most promising method is tested, that is the Physics-informed coupled with finite
difference solver method, the domain selected is a plate under plane strain in one dimension and thus
problem becomes two dimensional, that is a plate section. The method tested is capable of detecting
damage position and evaluating the wave speed change in the damaged area.

• 3D case: the method used in the previous case is then tested on a plate, the algorithm after the training
phase is capable of detecting damage position, however, the solution is not as accurate as the previous
cases. Considering the lower accuracy the method is still promising, taking into account that the only
data used where the displacement was measured in sensor positions, no DIs or other processing has been
done to the signals.

• The computational cost of the Physics-informed coupled with finite difference solver is very high due
to the presence of the finite difference solver embedded in the algorithm. There are different solution
well known in the literature that can drastically improve performance and thus render this approach less
time-consuming: implementing CNN, which allows physically bound solutions and prove to be efficient
in [37]. Use of gradient clippings and loss function weighting, valuable techniques to reduce convergence
time. Utilizing GPU implementation of the finite difference solvers, to run the whole algorithm on a
graphics card that is faster for this type of computation compared to the CPU.

• Finite difference formulation for wave equation is complex and developing the correct stress-free boundary
conditions has proven to be a limitation in possible Lamb wave mode simulated. Dispersion phenomena
were consequently not represented correctly in a certain configuration of the forcing term actually limiting
the range of frequencies available.

As a future extension, testing the method’s damage detection ability using sensor measurements from a real
plate with installed piezoelectric sensors could further assess its capabilities in a real-world scenario.
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A. Stability in finite difference solvers

To asses the stability of a finite difference solver is necessary to introduce those concepts, for sake of simplicity
the discussion is for one dimensional case, nevertheless can be easily extended for higher dimensions scenarios.
The first concept to be introduced is the Courant number represented in equation (35):

C =
c∆t

∆x
(35)

where c is the wave speed, ∆t is the dimension of the grid in time and ∆x is the dimension of the grid in
space. This number has a crucial importance in finite difference method for its physical meaning that is the
ratio between the space travelled by the wave in one time-step and the dimension of the grid. In this way it is
easy to evaluate the consequences of this number, if the wave travel more space than the spatial grid, problem
of stability will rise. From this consideration a safe condition enforced on this number is C ≤ 1. Is useful
to extend this consideration to higher dimension scenarios, in the simplest case where ∆x = ∆y = ∆z the
time-step dimension ∆t has satisfy Equation (36) in order to guarantee stability:

∆t ≤ ∆x√
c2L + c2T

(36)

where cL is the longitudinal wave speed and cT is the shear wave speed. Another important aspect of stability is
the wave frequency that can be represented on a certain grid discretization, this condition is crucial to guarantee
accurate derivative in particular for Simplified physics-informed method presented in this paper, coarse grid
generated by low number of sensors avoid the computation of accurate derivative for waves with too high
frequency. This condition is the mathematical proof of this behavior, represented in Equation (37):

λ =
c

f
> 2∆x (37)

where λ is the wavelength, c is the wave speed and f is the frequency of the wave. Equation (37) represent the
shortest wave length that can be represented on a grid discretization, as a consequence waves with wavelength
lower then the double of the grid discretization dimension ∆x are not represented having too small dimension.
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B. Dispersion in Lamb waves

As with most guided waves, Lamb waves are dispersive, and their velocities are dependent on wave frequency
and plate thickness. This phenomenon is referred to as dispersion. A manifestation of this phenomenon is
shown in this example, a wave excited at a central frequency of 300 kHz. The S0 mode peaks at 293 kHz and
the A0 mode at 332 kHz in the captured signal, deviating from the original central frequency of 300 kHz. Such
a shift in the central frequency from the original excitation frequency is a key manifestation of wave dispersion,
that in a plate under plane strain can be modelled with following equations:

tan(qh)

q
+

4k2p tan(ph)

(k2 − q2)2
= 0 for symmetric modes (38)

q tan(qh) +
(k2 − q2)2 tan(ph)

4k2p
= 0 for anti-symmetric modes (39)

where h is the half-thickness of the plate, ω is the circular frequency and cL, cT and cP represent the longitudinal,
transverse and phase wave velocity, respectively. Moreover, p2, q2 and the angular wavenumber k are variables
related to the circular frequency and to the wave velocities.

p2 =
ω2

c2L
− k2, q2 =

ω2

c2T
− k2, k =

ω

cP
(40)

The equations above are the dispersion equations of Lamb waves (38) and (39), the graphic depiction of solutions
of the dispersion equations is called the dispersion curves shown in Figure 25. Dispersion curves are used to
describe and predict the relationship among frequency, phase/group velocity and thickness [7]. In our case study
is crucial to note that there is a region with particular frequency of the signal and thickness of the plate were
the wave express a reduced dispersion. This region is the one highlighted in Figure 25 with a dotted rectangle,
and is the one were the finite difference solver perform better in term of wave dispersion obtained. The values
for the product thickness and frequency typical of the cases presented in this paper range between 200 Hz ·m
and 400 Hz ·m, values that are well inside the region explained above.

Figure 25: Dispersion curve for anti-symmetric modes

27



Abstract in lingua italiana

Le Lamb waves sono ampiamente utilizzate per valutare i danni strutturali a causa della loro sensibilità ai
difetti. Nonostante la facilità di eccitazione e acquisizione, spesso è necessario elaborare i segnali per ottenere
indicatori univoci, noti come indici di danneggiamento. Tradizionalmente, gli indici di danneggiamento sono
stati sviluppati utilizzando algoritmi tomografici per creare mappe di probabilità di danneggiamento, anche se
questo approccio è soggetto a limitazioni. Recentemente, l’applicazione del machine learning è stata impiegata
per migliorare l’accuratezza dei modelli che usano Lamb waves per la diagnosi dei danni. Tuttavia, molti metodi
esistenti richiedono ancora l’estrazione degli indici di danneggiamento dai segnali acquisiti, potenzialmente
portando a una perdita di informazioni diagnostiche e a una diminuzione dell’accuratezza. Un nuovo approccio
appartenente al machine learning è recentemente emerso in popolarità per la sua flessibilità e spiegabilità:
questa categoria di modelli è chiamata physics-informed neural networks. Queste reti permettono di incorporare
nell’algoritmo alcune leggi fisiche conosciute, per assicurarsi che le previsioni aderiscano alla fisica del problema.
Tuttavia, non si trovano molte applicazioni nel campo della diagnosi dei danni. In questo contesto, il presente
lavoro si propone di presentare un framework informato dalla fisica per eseguire la diagnosi dei danni utilizzando
le Lamb waves evitando l’estrazione degli indici di danneggiamento. Per valutare le prestazioni del framework
proposto sono stati presi in considerazione diversi casi studio.

Parole chiave: PINN, Machine Learning, Rete Neurale, SHM
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