
Politecnico di Milano, Scuola del Design, Corso di Laurea Magistrale
in Design della Comunicazione

A Visual Framework
for the End-User Development
of Conversational Agents
for Data Exploration

Maristella Matera
Ludovica Piro
916299
2019/2020

Relatrice
Laureanda
Matricola
A. A.

CI

A Visual Framework
for the End-User Development
of Conversational Agents
for Data Exploration

Maristella Matera
Ludovica Piro
916299
2019/2020

Relatrice
Laureanda
Matricola
A. A.

Politecnico di Milano, Scuola del Design, Corso di Laurea
Magistrale in Design della Comunicazione

Ringraziamenti
I miei più sentiti ringraziamenti vanno alla professoressa Matera
per la disponibilità e il tempo dedicatomi e per i sempre utili
consigli che mi ha dato. Ringrazio anche il professor Desolda e
Giulia Cosentino per avermi seguito nel corso della tesi.
Inoltre, ringrazio Emanuele Pucci e tutti i programmatori di Awhy
per la disponibilità e la loro fondamentale partecipazione per
la scrittura di questa tesi. Ringrazio anche Sara Mosca per aver
sviluppato il front-end dell’interfaccia.

In ultimo vorrei ringraziare l’Ospizio di Brigida. Senza il loro
supporto emotivo questa tesi non avrebbe mai visto la luce.

Table of Contents
Sommario 18
Abstract 19

1. Introduction
 21
1.1. What Is a Chatbot? 22

1.2. Conversational UIs and Data Exploration 28

1.3. Contribution 31

1.4. Thesis Structure 32

1.5. Glossary 33

1.5.1. Conversational Agents concepts 33

1.5.2. Relational Databases concepts 33

2. State of the Art 35
2.1. Summary 36

2.2. Chatbot Taxonomy 36

2.3. End-User Development 39

2.4. Chatbot Frameworks 42

2.4.1. Context 42

2.4.2. Implementation 42

2.4.3. Intelligence 43

2.4.4. Channel integration 43

2.4.5. Dialogflow	 45

2.4.6. Amazon Lex 48

2.4.7. IBM Watson Assistant 50

2.4.8. Flow.ai 51

2.4.9. Flow XO 54

2.4.10. ManyChat 58

2.5. The Gap in the State of the Art 60

3. CHATIDEA 65
3.1. Summary 66

3.2. Relational databases 66

3.3. Structure of CHATIDEA 68

3.3.1. Annotation of the Database Schema 70

4. Methodology For Dialogue Design 77
4.1. Summary 78

4.2. Design Requirements 78

4.3. The Conversational Paradigm 79

4.4. Uniqueness of the Methodology 80

5. Design of the Interface 83
5.1. Summary 86

5.2. Concept 86

5.3. Target 87

5.4. Visual Identity 87

5.4.1. Colour palette 88

5.4.2. Icon system 89

5.4.3. Data visualization 90

5.4.4. Logo 91

6. Information Architecture 93
6.1. Summary 95

6.2. Home 96

6.3. Database Schema Screen 96

6.4. Concept File Annotations Screen 98

6.5. Concept File Generation 100

6.5.1. First pattern: conversational object
annotation, display attributes, and order by 100

6.5.2. Second pattern: category annotation 100

6.5.3. Third pattern: conversational attributes 102

6.5.4. Fourth pattern: conversational relationships 102

7. User-based Evaluation 105
7.1. Summary 106

7.2. Preliminary Evaluation 106

7.2.1. Takeaways 107

7.3. Second Evaluation Study 110

7.3.1. Takeaways 110

7.4. Third Evaluation Study 111

7.4.1. Participants 111

7.4.2. Procedure 114

7.4.3. Data collection and analysis 115

7.4.4. Results 115

7.4.5. Takeaways 119

7.5. About Designing UIs for Conversation Design 121

8. Conclusions 126
8.1. Summing Up 126

8.2. Limitations 127

8.3. Further Developments 127

8.4. Publication 128

9. Bibliography 130

List of Figures
1.1. A diagram of the basic architecture of a chatbot

(Janarthanam, 2017) 20

1.2. Watson taking part in an episode of Jeopardy 21

1.3. The	timeline	shows	some	of	the	most	significant	events	
in the history of conversational agents development.
We can see how together with the rise of smartphones
there was a proliferation of chatbots. 22

1.4. Industries	that	will	benefit	the	most	from	chatbots 24

1.5. Example of intent matching and entity extraction 25

1.6. An example of interaction with LUNAR. The second line
in the script is the user query; the middle sector shows
the parsing of the query and the interpretation made
by the system; while the answer is at the bottom of
the page. (Woods et al., 1972) 27

1.7. A window of NaLIR (Li & Jagadish, 2014). 28

1.8. Diagram	of	chatbot	classification.(Hussain	et	al.,	2019)	 35

1.9. The GUI of Scratch
(Resnick et al., 2009) 39

1.10. The GUI of Alice (Conway et al., 2000) 39

1.11. Dialogflow’s	Intent	window.		 45

1.12. The Entity window 45

1.13. Amazon Lex Editor tab. 47

1.14. The lambda function window. Lambda functions can be
coded in different programming languages 47

1.15. An overview of the main components of the IBM
Watson Assistant user interface 51

1.16. An overview of the main windows of FLow.ai. At the top,
Flow.ai	flow	builder.	Below,	a	snippet	of	the	intent	window		 53

1.17. Flow	XO	workspace.	Right	to	the	tree	diagram	of	the	flow,	
intents and responses of each module are arranged
following a text messaging platform layout 55

1.18. In FlowXO modal intents and responses are set in a modal
window. The content of the modal depends on the type
of trigger used for each intent. In the picture we can see
the Ask a question trigger. 56

1.19. The Basic editor 58

1.20. The	Flow	editor.	To	edit	the	flow,	users	must	click	on	one	
of the nodes to open an editor similar to the one seen in
the basic builder 59

1.21. Quadrant diagram showcasing the distribution
of the platforms analysed in table 2 63

1.22. An example of a relational database and the type of r
elationships between them 65

1.23. A diagram of the steps necessary to generate the chatbot
(Ferreri & Notari, 2020) 66

1.24. (Castaldo, 2019) 67

1.25. An example database schema. In the balloons on each
table	some	alias	have	been	specified	(Castaldo,	2019)	 70

1.26. In the rectangualar lables we can see an example of the
conversational	qualifier	annotation,	with	a	focus	on	
customer. (Castaldo, 2019) 71

1.27. Conversational relationship annotation, made with respect
to the customer (Castaldo, 2019) 72

1.28. Telegram UI 78

1.29. Whatsapp UI 79

1.30. In the pages before: two windows of CHATIDEA	GUI			 82

1.31. The layout of the conversation editor. The placing of the
text bubbles references instant messaging platforms 85

1.32. The colour palette for background, buttons and annotations 86

1.33. Icons Designed for the chatidea framework 87

1.34. Example of the relational diagram
employed in the interface Above, 88

1.35. Examples of the crow foot notation 88

1.36. 	 CHATIDEA	logo 89

1.37. Typeface speciment 89

1.38. Information architecture of the interface 93

1.39. 	 Homepage 94

1.40. Database Schema 95

1.41. Conversation Editor 96

1.42. Property Editor 97

1.43. First pattern drop-down menu 99

1.44. Second pattern drop-down menu 99

1.45. Text	field	to	generate	the	visualization	
legend 101

1.46. 	 The	first	instance	for	the	conversational	
attribute pattern is structured as so:
Find <keyword> <conversational value> 101

1.47. The second instance. This instance
is structured as so:
Find <conversational value> 101

1.48. Fourth pattern drop-down menu 106

1.49. The nodes’ handles were moved from the
table’s header to the primary and foreign keys 107

1.50. The starting state of the conversation editor
was changed from having a table already
selected, to having none.
Moreover, a new help tip was added to guide
the initial interaction 108

1.51. The schema of the database used for the
user evaluation 111

1.52. The Database Schema 112

1.53. The	Conversation	Editor 	 112

List of Tables
1.1.

In the table we can see some of the most common uses
of End-User Programming (Ko et al., 2011) 40

1.2.
In	the	table	we	can	see	a	systematization	of	the	classification	
here proposed 44

1.3. Table summarizing the average NASA-TLX score by group
and with respect to the total sample interviewed 117

1.4. Table summarizing the average SUS score by group and
with respect to the total sample interviewed 117

Listings
1.1. An	extract	from	the	Display	annotation	JSON	file.		 70

1.2. At	the	top,	an	extract	from	the	Database	Schema	file	.		 71

1.3. At	the	bottom,	an	extract	from	the	Concept	file 71

Sommario
I chatbot per l’esplorazione dei dati costituiscono una classe
di chatbot che, a partire dalle richieste formulate dall’utente
in	linguaggio	naturale,	permette	di	estrarre	specifici	dati	da	
una base di dati strutturata. Questa tesi si è concentrata su
CHATIDEA,	un	framework	software	che	permette	di	generare	
chatbot per l’esplorazione dei dati in maniera automatica,
ma richiede che il designer del chatbot conosca il formato di
scambio	dati	JSON.	Questo	formato,	infatti,	è	usato	per	definire	
alcune	annotazioni	alla	base	di	dati,	ossia	i	file	che	contengono	
le indicazioni necessarie per lo sviluppo delle conversazioni tra
utenti e chatbot.

Questa	tesi	si	presenta	come	un’espansione	di	CHATIDEA	e	ha	
come	intento	lo	sviluppo	di	un’interfaccia	grafica	che	permetta	
al designer del chatbot di svolgere la fase di annotazione dello
schema della base di dati, senza dover compilare direttamente i
file	JSON.	Per	permettere	agli	utenti	di	modificare	e	creare	nuove	
relazioni tra le tabelle di una base di dati, è stato disegnato un
editor	basato	su	una	notazione	a	grafo.	Invece,	la	stesura	dei	file	
di annotazioni avviene in un secondo editor che accetta input
testuali dall’utente e fornisce un’anteprima di come risulterebbe
la conversazione tra utente e chatbot. Le soluzioni presentate
in questa tesi sono volte a rendere la fase di annotazione della
base di dati accessibile anche a utenti che non conoscono il
formato JSON e non conoscono approfonditamente il framework.

Abstract
Chatbots for data exploration are a class of chatbots that
enables the end-user to explore a structured database and
extract data from it through natural language queries. This
thesis	focuses	on	CHATIDEA,	a	software	framework	that	allows	
to	develop	automatically	chatbot	for	data	exploration.	However,	
it requires a manual intervention from a chatbot designer who
has	to	know	the	JSON	format,	in	order	to	define	a	set	of	JSON	
files	called	Database	Schema	Annotation.	These	files	contain	the	
necessary information to match the content of the database and
the end-user requests made in natural language.

This	work	expands	the	CHATIDEA	framework	and	has	as	its	
goal the presentation of a graphical user interface that covers
the Database Schema Annotation procedure, which, right now,
requires that the designer writes manually the JSONs. With the
interface here presented, the designer will be able to generate
the	annotations	without	having	to	write	directly	the	JSON	files.		
The interface will allow the user to edit the relational database
schema that has to be annotated through a graph-based editor.
The actual annotation process is done through a form-like editor
that accepts text inputs from the user. The user will also be able
to see a preview of the conversation between chatbot and end-
user resulting from the annotations. This work wants to make the
annotation process easier and more accessible also to users that
are	not	proficient	with	the	framework	and	the	JSON	format.	

1. Introduction
1.1. What Is a Chatbot?

1.2. Conversational UIs and Data Exploration

1.3. Contribution

1.4. Thesis Structure

1.5. Glossary

Introduction - What Is a Chatbot? Introduction - What Is a Chatbot? 2322

1.1. What Is a Chatbot?
We call chatbot or conversational user interface a computer
program that operates as a user interface using primarily
written or spoken natural language to communicate with a user
(Janarthanam, 2017). The term chatbot comes from chatterbot a
name coined by Michael Mauldin in 1994 (Mauldin, 1994)
to describe this kind of program that is able to chat with a user
via a text input. The user interacts with the conversational agent
through a channel. It can be a voice channel, as in the case
of personal assistants like Siri or Alexa, or it can be a textual
channel, such as the various instant messaging app available
right now as Telegram, WhatsApp, WeChat, LINE, Slack and so
on. If the interaction is enabled by a voice channel, then the
system architecture will contain also a speech recognition and
synthetizer module to enable its transcription into text.

In	fig.	1	we	can	see	a	basic	architecture	of	a	conversational	
interface. The core of a conversational agent is the conversation
manager: it is the module that takes the user input and
controls how the system should respond. It also maintains the
conversational context in order to make the chatbot able to

carry out a conversation for several turns. In chatbot that can
understand natural language, the conversation manager interacts
also with a Natural Language Understanding module, NLU, that
is responsible of the translation of the user utterances into a
semantic representation, consisting of intents (what the user
wants) and entities (the relevant nouns in a sentence). Lastly
the Conversation Manager interacts also with backend modules
that could be a database or an online data source that can be
queried to answer a user question or carryout a task like making
a reservation.

The idea of a computer program that could behave like a human
dates back to the ‘50s, when Alan Turing proposed the Turing
test to determine if a machine can be mistaken for a human by
another human (Turing, 1950). The program ELIZA (Weizenbaum,
1966)	is	one	of	the	first	examples	of	such	a	program:	developed	
in 1966 by Weizenbaum, ELIZA was able to pick up keywords
in input text and use them in a vague question given back as
a response without a real understanding of what the user was
saying.	Eliza	was	also	the	first	program	to	win	the	Loebner	Prize,	
a	prize	founded	in	1991	by	Hugh	Loebner	to	award	AI	programs	
able to be human-like and beat the Turing test. After ELIZA
other notable programs developed to beat the Turing Test and
mimic humans were PARRY (1972), JabberWacky (1988), A.L.I.C.E
(1995), and Mitsuku (2005).

With	the	advances	in	artificial	intelligence,	natural	language	
processing and speech recognition, conversational agents have
become more “intelligent”, being able to complete tasks and
better understand conversations. In 2010 IBM developed Watson
(Ferrucci et al., 2010), a question answering AI built on data
from encyclopaedias, dictionaries, and other structured and
unstructured data sources like Wikipedia. Watson was designed
to participate in a game show called Jeopardy which it won.

(Carol Kaelson/Jeopardy Productions Inc., via Associated Press)

Natural Language
Understanding

Conversation
manager

Backend
integration

Backend data
service

Speech
recognition

Speech
synthesizer

Channel
User

fig. 1
A diagram of the basic architecture
of a chatbot
(Janarthanam, 2017)

fig. 2
Watson taking part in an
episode of Jeopardy

Introduction - What Is a Chatbot? 2524 Introduction - What Is a Chatbot?

At the same time, there was the rise of a new type of chatbot:
virtual assistants, bots that support speech recognition and
interact with the user through spoken natural language. These
assistants can do small talk, answer user’s questions, and interact
with other applications on the device or outside of it to, for
example,	set	appointments	or	tell	the	time.	The	first	to	be	
considered	the	first	voiced-enabled	virtual	assistant	was	Apple’s	
Siri in 2011. Siri was then followed by other popular assistants,
like Microsoft’s Cortana, Google Assistant by Google, and
Amazon’s Alexa.

As of late, the ever-growing popularity of instant messaging
applications has given text based chatbot a newfound
popularity, so much that in an article on the technology online
magazine Chatbot Magazine, it is reported that in China, some
brands create a chatbot on WeChat even before launching a
website (Jerry @Rocketbots.io, 2017).
In fact, starting from 2013, WeChat, then followed by Telegram,
Slack and Facebook Messenger in 2016 has started to support
bots and have also opened their APIs to third party developers,
leading to a proliferation of text-based chatbots (Klopfenstein et
al., 2017).

1991
Loebner Prize

Birth of the
World Wide Web

2009
Smartphone era

19
65

Eliza

19
72

PARRY

19
88

Jabberwacky

19
95

A.L.I.C.E

20
05

20
13

Mitsuku 20
15

Alexa

20
16

Telegram,
Facebook Messenger,
and Slack
introduce chatbots

20
11

Siri

20
12

Google Now

WeChat
introduces
chatbots

1950
Turing Test

fig. 3
The timeline shows some of the most significant events in
the history of conversational agents development.
We can see how together with the rise of smartphones
there was a proliferation of chatbots.

Introduction - What Is a Chatbot? Introduction - What Is a Chatbot? 2726

The bots, created by end-users and brands alike, are used for
a variety of ends, from entertainment to providing services like
telling the weather, booking rooms, or retrieving information.
Furthermore, conversational agents are now starting to be used
for automatization of customer care, CRM1, and marketing. On
retail websites, they are also used as a welcome mat, providing
a	fast	way	to	answer	simple	questions	from	first	time	user,	while	
collecting customer information at the same time. Some of the
other sectors where they are mostly employed include, banking,
legal and third sector, and the health sector (Janarthanam, 2017).

Together with the spread of chatbots, there has been also a
significant	growth	in	terms	of	tools	and	frameworks	available	
for the development of conversational interfaces. This new
ecosystem of tools targets both experienced developers and
non-programmers that want to build a chatbot for private or
business uses and is, therefore, very diverse regarding the user
interfaces. But, despite the diversity in terms of interface design,
most of the tools share the same chatbot building process: intent
matching and entity extraction.

At a high level, if we consider tools for non-programmers, the
way	that	the	chatbots	are	built	is	by	defining	a	set	of	intents
and entities. Intents are phrases that represent what the end-
user wants from the chatbot, their intention with the message
like buying a product or asking what the time is. To handle a
complete	conversation	the	chatbot	designer	defines	multiple	
intents	each	for	a	specific	end-user	need.	

Usually, the way that each intent	is	defined	is	by	listing	several	
example phrases, often referred as training phrases, that are
variation of the same sentence and thus intention of the user.

1 Customer Relationship Management

Together	with	this	listing,	the	designer	also	defines	the	response	
that the chatbot should give in return.

Entities, instead, are critical pieces of information that the
chatbot must be able to recognize in a sentence. Entities are
defined	like	variables:	they	have	a	name	and	a	list	of	possible	
values. An example of an entity could be the list of the colours
available for a shirt or the kind of clothing items available, such
as shirts, trousers, jumpers and so on. So, for example, if we are
building a chatbot to buy clothes, one user utterance could be
“Can I buy an orange shirt?”. In this utterance the intent is the
action “buy”, whereas the entities are “orange” and “shirt.”

Can I buy an orange shirt?

Check if there is an entity clothing item=
shirt with the entity colour= orange

User says:

Chatbot understands

90%

60%

30%

Industries that
will benefit
the most
from chatbots
According to a survey
conducted by
Mindbowser among more
than 300 individuals from
different industries

(Mindbowser, 2017)

E-c
om

merc
e

Ins
ura

nc
e

He
alt
hc
are

Re
tai

l

Ho
sp
ita
lity

Lo
gis

tic
s

Re
cru

itm
en

t

Te
ch

no
log

y
Othe

r

fig. 4

fig. 5
Example of intent matching
and entity extraction

Introduction - Conversational UIs and Data Exploration Introduction - Conversational UIs and Data Exploration 2928

1.2. Conversational UIs and Data
Exploration

What was here described is a process that leads to
the generation of a chatbot oriented towards absolving
specific	tasks,	like	telling	the	weather	or	managing	
ticket sales. With this process the developer acts like a
screenwriter, creating a sort of script of the conversation
with the end user where all the questions and answers
are written from scratch. But what if a developer wants
to	build	a	chatbot	not	to	assist	the	end-user	in	specific	
tasks, but to navigate a database? A chatbot that
guides the user through the database and can retrieve
information from it, without knowing how to write queries
in a technical language such as, for instance, SQL.
The developer would need a way to match the data
contained in the database to the end user utterances.
Not only that, but the chatbot would need to be able
to translate the end user requests into actual queries to
the database and then, answer with the correct data.

Even before chatbots, there was a great interest in the
development of conversational interfaces to access large
databases. Natural language, in fact, provides a simple
and accessible way to query database, enabling users that
do not have any formal query language knowledge to
perform queries and extract information from a structured
database (Androutsopoulos et al., 1995). Natural language
interfaces have been developed to query databases
since the 70s. An early example is LUNAR, which was
developed in 1972 (Woods et al., 1972). LUNAR was a
prototype of a natural language interface to a database
(NLIDB) containing chemical analyses of moon rocks.
The early applications, such as LUNAR, were tailored on
the database they were developed for, highlighting one
of the main issues with such applications: portability.
Developing an interface able to query any database is,
in fact, challenging, for whenever the interface has to
be	used	to	query	a	new	database,	a	reconfiguration	is	
needed in order to teach the system the new words and
concepts. Nonetheless, generic domain applications not
tailored	on	a	specific	database	have	been	developed.	

fig. 6
An example of interaction with LUNAR. The second line in
the script is the user query; the middle sector shows the
parsing of the query and the interpretation made by the
system; while the answer is at the bottom of the page.
(Woods et al., 1972)

Introduction - Conversational UIs and Data Exploration Introduction - Contribution 3130

The most recent example of such application being NaLIR (Li
& Jagadish, 2014). NaLIR is presented as a generic interactive
natural language interface for querying relational databases.
The tool accepts complex sentences from the user and builds
the	final	query	with	an	interactive	approach.	The	user	is	called	
to	confirm	if	the	query	was	understood	correctly	until	the	
correct	and	final	query	is	generated	and	a	response	is	given.	

Actual chatbots to assist in database exploration have been
developed in more recent times, like Intellibot, a dialogue-
based chatbot for the insurance industry (Nuruzzaman &
Hussain,	2020).	Intellibot	is	a	domain	specific	chatbot	created	
for customer service developed and trained on three different
databases: the Cornell movie database to get training material
for conversing using the English language; one custom database
about the most common words and expressions used in an
insurance company; lastly, it was trained on a credit-card
insurance company database. The extensive training makes
it able to respond precisely and engage in a well-structured
dialogue with the user. Based on what was asked, Intellibot can
choose a different strategy to form a response. If the question
is one of the pre-set ones, the chatbot will simply respond with
the	predefined	answer.	In	more	complex	scenarios,	the	chatbot	
is able to generate a response by searching the database or the
Internet.

However,	Intellibot	is	still	a	custom	made	chatbot,	developed	
for	a	domain-specific	conversation.	If	we	look	at	the	frameworks	
commercially available right now to develop chatbots,

it seems to still be missing a common and general approach
for the development of such data-driven chatbots. In fact, while
some tools available at the moment may support retrieval of
information from spreadsheets (Canh, 2018), or from the Internet
thanks to webhooks, they do not contemplate a way to develop
a chatbot directly starting from the content of a database and
using it as the source material for the generation of intents and
entities.

1.3. Contribution
Right now in the industry there seems to be no End-User
Development tool to generate chatbots starting from a structured
database.	This	works	aims	at	filling	this	gap	by	presenting	a	
graphical user interface for the end-End-User Development of
such	chatbots.	To	do	so	it	capitalises	on	CHATIDEA,	a	framework	
for the rapid prototyping of chatbots for data exploration,
that	was	developed	in	previous	works.	CHATIDEA	currently	
lacks a visual tool and, thus, the chatbot must be coded by a
programmer.	This	work	proposed	a	new	GUI	for	CHATIDEA	based	
on a conversational paradigm. The tool here proposed will allow
non-programmer users to develop a chatbot based on a database
by completing conversation patterns that mimic the interaction
between users and chatbot.

fig. 7
A window of NaLIR (Li & Jagadish, 2014).

Introduction - Thesis Structure Introduction - Glossary 3332

1.4. Thesis Structure
In	the	following	chapters	we	will	see,	firstly,	what	the	state	of	
the art is for chatbot development platforms, as in what are the
main development frameworks available, how they work and,
most importantly, what model of interaction with the user they
employ for their user interface. Together with that, the concepts
of End-User Development and a brief taxonomy of chatbots will
be given, describing the different types of chatbots that can be
developed as of now.

After	that,	the	third	chapter	will	present	the	CHATIDEA	
framework explaining its general architecture and the main
abstractions, the Database Schema Annotations, that are at the
basis of this work.

Then the fourth chapter will present the approach taken for the
development of the user interface, from the chosen interaction
paradigm to the main challenges that were encountered during
the design on the interface.

The	fifth	chapter,	instead,	will	describe	the	visual	identity	of	the	
UI, form the choice of colours, to typography, and layout of the
different sections and graphic elements.

The sixth chapter will describe the information architecture
of the interface, going into the details of how each window is
structured and how each task can be performed by the users.

The seventh chapter will cover the user studies undertaken to
test the usability of the tool and to validate the approach. The
last chapter of this thesis will cover what could be covered in
future work.

Lastly, the eighth chapter is the conclusion of this thesis
and contains a synthesis of the work and the possible future
improvements that can be made in following iterations of the
interface.

1.5. Glossary

1.5.1. Conversational Agents concepts
Conversational agent: also referred to as chatbot, it is a
computer program that operates as a User Interface using
primarily written or spoken natural language to communicate
with a user.

NLU: It stands for Natural-language understanding and is a
component of natural language processing, NLP, which enables
computers to understand and interpret text written in human
language.

Intent: it represents the purpose of the user’s interaction with
a chat-bot; for instance, from the phrase “What time is it?” the
intent,	if	defined,	could	be	to	know	the	current	time.

Entity: it is a word or a set of words that represent a concept in
a given utterance; for instance, in the phrase “I live in Milan” the
word “Milan” may be an entity related to the concept of location.

1.5.2. Relational Databases concepts
Query: a query is a request for data from a database.
The request can be made to retrieve data or manipulate it.

Relationship: in a relational database a relationship is an
association between two tables.

Attributes: in a relational database attributes are essentially
the columns of the table. They represent the characteristics or
properties of an object in the table.

Primary key: it is an attribute, a column, that can uniquely
identify a row in a table. Often, a primary key is a numerical id.

Foreign key: it is an attribute in a table that refers to the
primary key belonging to another table. With the primary keys
they are attributes that act as links between two different tables.

2. State of the Art
2.1. Summary

2.2. Chatbot Taxonomy

2.3. End-User Development

2.4. Chatbot Frameworks

2.5. The Gap in the State of the Art

State of the Art - Summary State of the Art - Chatbot Taxonomy 3736

2.1. Summary
In this chapter, we will start by giving a brief categorization
of the different types of chatbot existing right now, focusing
specifically	on	the	difference	between	task-oriented	chatbots	
and non-task-oriented ones. Then, to better frame the chatbot
development platform, a brief explanation of what is End-
User Development will be given. Lastly, we will analyse some
of the current available frameworks for the development of
conversational agents, with a particular focus on the graphical
user interfaces of their platforms for the building of the
conversation	architecture.	The	analysis	will	focus	on	finding	the	
most common and relevant practices and on highlighting the
possible interesting features for this research.

2.2. Chatbot Taxonomy
To understand better the chatbot development platforms,
first,	it	is	important	to	give	an	overview	of	the	different	types	
of conversational agents. Chatbots, in fact, are a very diverse
category	of	programs	and	can	be	classified	according	to	
different criteria: their interaction mode, their design approach,
knowledge	domain	or	goal	(Hussain	et	al.,	2019)	designed	to	
interact with users using natural language or text in a way that
the user thinks he is having dialogue with a human. Most of the
chatbots	utilise	the	algorithms	of	artificial	intelligence	(AI).

On	a	high	level,	generally,	chatbots	are	mainly	classified	based	
on goals. Thus, we talk about task-oriented chatbots and non-
task oriented or conversational chatbots (Chen et al., 2017).
The former are programs that mainly serve in helping users to
complete	a	specific	task	in	a	specific	domain.	They	use	rules	
and NLP, but generally the interaction with the users and are
highly	specific.	Task-oriented	chatbots	are	most	commonly	used	
in support and service functions, as they can handle common
questions and be used in reservation-making scenarios or as
interactive FAQs, although more complex examples exist, like

Apple’s Siri or Amazon’s Alexa. Non-task oriented or conversational
chatbots, instead, are more sophisticated and interactive. Often
referred to as digital assistants, they are designed for extended
conversation, not limited to practical purposes, but able to
also handle chit-chat and entertainment. These chatbots are
contextually aware can learn from the interactions with users
thanks to machine learning. Pandorabots’ Mitsuku2 and Replika3
are examples of such conversational agents.

Another important distinction to describe is the design
approach: chatbots can be rule-based, retrieval-based,
generative-based (Peng	&	Ma,	2019).	The	first	method	is	most	
used for task-oriented chatbots, while retrieval and generative
methods are used for non-task-oriented agents. Both retrieval
and generative-based chatbots are corpus-based, meaning that
they mine human-human conversations. In fact, they are data-
intensive systems, that are trained using extensive datasets from
various sources. These datasets include transcripts of telephone
conversations, movie dialogue (Danescu-Niculescu-Mizil & Lee,
2011), and, more recently, content from social media like Twitter
(Ritter et al., 2010), Reddit (Roller et al., 2020) or Weibo.

Rule-based chatbot, also referred to as decision-tree bots are
built on manually constructed rules. The rules can be based on
an “if-then” logic or involve pattern matching. The bot contains a
knowledge base with documents, where each document contains
an input-pattern and an output-template. When the user gives
an input, if that matches a pattern stored in the knowledge
base, the chatbot will send as a response the corresponding
output-template. The pattern could either be a phrase such as
“What’s your name?”. Usually, these pattern and template pairs
are hand-crafted (Cahn, 2017). Often, they leverage keywords
that,	when	recognized,	trigger	a	specific	response.	Chatbots	
developed	for	services,	such	as	booking	flights	or	making	

2 https://chat.kuki.ai/
3 https://replika.ai/

Interaction mode

Text-based

Voice-based

Open domain

Closed domain

Task-oriented

Non-task-oriented

Rule-based

Retrival-based

Generative based

Knowledge domain

Goals
Chatbot

Design approach

fig. 8
Diagram of chatbot classification.
(Hussain et al., 2019)

State of the Art - Chatbot Taxonomy State of the Art - End-User Development 3938

reservations are often rule-based. Platforms such as IBM Watson
and	Dialogueflow,	that	we	will	see	in	detail	later	in	the	chapter,	
offer the tools necessary to build such rule-based chatbots
(Peng & Ma, 2019). The complexity of the interaction can also
vary within the group. Some chatbots may offer exclusively a
multiple-choice style of interaction, where the user can only
choose between the available buttons to interact with the agent.
Other, may support a more conversational approach and accept
text input. Despite this, their understanding is still limited to the
task they were designed for, as they cannot go beyond the rules
they were designed by.

Retrieval-based chatbots rely on a conversational repository
to select the response that best matches the user query. This
means that the chatbot does not generate new text, but only
reuses	responses	from	a	fixed	corpus	of	information.	With	
respect to rule based chatbot, retrieval- based one need less
hand-crafted	features.	However,	even	though	they	are	usually	
able to provide correct and diverse responses, they are also
prone to give inappropriate responses if they fail to correctly
match the words in the user input. Nonetheless, retrieval
methods are the most reliable and most commonly used in
question-answering	chatbots	for	specific	domains,	like	travel	or	
healthcare.

To answer user requests, generative-based chatbots synthesize
a new sentence word by word from scratch. They are mainly
used for chit-chat or open-domain chatbots, meaning chatbots
with	which	the	conversation	is	not	constrained	to	a	specific	
knowledge	area	like	domain-specific	chatbots.	Generative-based	
chatbots are generated with data-driven methods that do not
contemplate an explicit model of dialogue structure. Instead, the
model learns to converse from the corpus of human-to-human
conversational data. Furthermore, thanks to the Deep Learning
techniques they are developed with, generative-based agents
can generate answers while also being context-aware, meaning
that they are able to remember and use information extracted
from past interactions to generate the answer. Despite their
human-like capabilities, they are still prone to give generic
responses if not properly trained. Their performance, in fact,
is highly dependent on data quality, quantity, and diversity of
topic in the data, especially if they are meant to be employed
for	domain	specific	conversations.	Nonetheless	they	are	at	the	
centre of contemporary research.

2.3. End-User Development
The platforms that will be described fall into the category of
End-User	Development	tools,	a	field	that	encompasses	different	
research	topics	from	Human-Computer	Interaction	(HCI),	software	
engineering,	and	artificial	intelligence	(AI).	It	aims	at	empowering	
people that usually are not skilled in programming, the end
users, to develop and adapt the system they use themselves.
As computers have progressively become more widespread,
in fact, the user base has also increased both in numbers and
diversity of case of use. Consequently, their software needs
have become more complex and varied, leading to the need for
software customization and, together with that, to the need of
new ways and paradigms designed for users not formally trained
in programming. Quoting Lieberman (Lieberman et al., 2006):

EUD can be defined as a set of methods, techniques,
and tools that allow users of software systems, who are
acting as non-professional software developers, at some
point to create, modify, or extend a software artifact.

The	entity	of	the	modification	can	vary.	On	one	side,	in	fact,	
End-User Development, also referred to as EUD, enable users
to do activities of parameterization or customization. These
activities do not modify the source code of the software,
but allow the users to choose alternative behaviours already
available within the application they are using. This way users
can tailor the interaction between them and the application to
their	needs.	However,	EUD	is	more	properly	referred	to	another	
set	of	activities	that	regard	program	creation	and	modification,	
meaning activities by which users can modify or create from
scratch a software. Visual programming4 environments, macros,
and scripting languages are examples of these approaches.

The EUD tool most widely used is the spreadsheet. In fact, while
one can be unaware of it, spreadsheets are a type of End-
User Development tool, as the formulas are indeed programs.
The formulas use as input “variables” cell names and the result
is	an	output	value.	More	specifically,	spreadsheets	are	an	
example of End-User Programming (EUP), a branch of End-User
Development. End-user programming is a term popularized by
Nardi (Nardi, 1993) to describe the activity of:

Programming to achieve the result of a program
primarily for personal, rather public use.
(Ko et al., 2011)

End-user programming tools are used by people with

4 Visual programming refers to a set of interaction techniques and visual notations for expressing programs. Visual
programming tools encode the semantics of the program in graphical properties like colour, size, position and so on.

State of the Art - End-User Development State of the Art - End-User Development 4140

expertise	in	other	fields,	such	as	education	or	graphic	design,	
working towards goals for which they need computational
support. For instance, a teacher might write a grading
spreadsheet to

speed up the grading process, or a motion designer might
write a script to automate parts of an animation. The programs
developed through EUP can be extension or completely new
applications running independently from the already existing
application. Other examples of End-User Programming tools
are visual programming environments. In visual programming,
the user, instead of a text editor, users a visual paradigm that
expresses through the layout and the graphical elements the
program’s semantics. Semantics can be encoded in various
attributes, such as colour, size, or position. Examples of such
applications are Peridot (Myers, 1990), Scratch, or Alice. Peridot
is an experimental tool for designers that allows users to create
user interface components starting from a drawing and without
conventional programming. Scratch (Resnick et al., 2009) is an
environment aimed mainly at children that uses a building block
visual metaphor to represent the programming syntax. Lastly,
Alice (Conway et al., 2000) is a prototyping environment for 3D
graphics programming. To be used, 3D programs at the time
required advanced mathematical and programming knowledge.
The tool. Alice instead, used Python to program behaviours
(animations), and did not require particular mathematical
knowledge to be used. The user could add to the workspace,
called opening scene, from a library the 3D objects, and move
them with the mouse. Then, they could program the behaviours
they wanted to add, by using the script tab at the top of the

Class of people Activities of programming and tools and languages used

System administrators Write scripts to glue systems together, using text editors and scripting languages

Interaction designer Prototype user interfaces with tools like Flash

Artists Create interactive art with languages like Processing

Teachers Teach science and math with spreadsheets

Accountants Tabulate and summarize financial data with spreadsheets

Actuaries Calculate and assess risks using financial simulation tools like MATLAB

Architects Model and design structures using FormX and other 3D modelers

Webmasters Manage databases and websites using Access, FrontPage, HTML, Javascript

Health	care	workers Write specifications to generate medical report forms

Videogame players Author “mods” for first person shooters, online multiplayer games, and The Sims

Scratch is designed to be highly interactive. Just on a stack of blocks and it starts to run

immediately. You can even make changes to a stack as it is running, so it is easy to

experiment with new ideas incrementally and iteratively. Want to create parallel threads?

Simply create multiple stacks of blocks. Our goal is to make parallel execution as

intuitive as sequential execution.

Figure 3: Scratch User Interface

The scripting area in the Scratch interface is intended to be used like a physical desktop.

You can leave extra blocks or stacks lying around, in case you need them later. The

underlying message: It’s OK to be a little messy and experimental. Most programming

languages (and computer-science courses) privilege top-down planning over bottom-up

tinkering. With Scratch, we want tinkerers to feel just as comfortable as planners.

The emphasis on iterative, incremental design is aligned with our own development style

in creating Scratch. We selected Squeak as an implementation language since it is well-

suited for rapid prototyping and iterative design. Before we launched Scratch, we

continually field-tested prototypes in real-world settings, revising over and over based on

feedback and suggestions from the field.
4

More Meaningful

We know that people learn best, and enjoy it most, when they are working on personally-

meaningful projects. So in developing Scratch, we put a high priority on:

Chapter 3 – Alice System Overview

DRAFT COPY - LAST MODIFIED 02/02/98 10:21 AM 26

Chapter 3
Alice System Overview

3.1 The Alice GUI

This extended

example is meant to show

what an average Alice

interaction is like to our

end user. Of course, a

static presentation of Alice

can’t capture everything

important about the Alice

experience, but it can help

make the explanations that

follow more concrete. The

following example shows

table 1
In the table we can see some of the most common
uses of End-User Programming (Ko et al., 2011)

fig. 9
The GUI of Scratch
(Resnick et al., 2009)

fig. 10
The GUI of Alice (Conway et al., 2000)

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 4342

GUI,	as	we	can	see	in	fig.

Many chatbot development platforms offer analogous visual
programming	environment	that	use	flow	charts	and	other	visual	
metaphors to support the user in the development process.

2.4. Chatbot Frameworks
Parallel with the rapid growth in popularity of conversational
agents, many digital companies and start-ups started developing
tools to program them. Right now, there are many platforms
on the market, and they are catered towards different user
segments and use cases. From business-oriented platforms,
offering	specific	marketing	and	CRM	features,	to	developers,	
to non-programmer individuals who want to build a chatbot
for private or business-related needs. Although a formal and
universally	accepted	classification	of	these	platforms	has	yet	
to be made, many websites offer every year comparisons and
rankings (Patil, 2020), (Brooks, 2018), (Rehan, 2018). From these
rankings some key dimensions can be extrapolated to propose
a	classification:	context, implementation, intelligence, channel
integration (Monsters Data, 2019), (Wouters, n.d.).

2.4.1. Context
Context indicates whether the platform is context-specific
or general-purpose.	Context-specific	platforms	only	offers	
templates for a selected range of business-related activities
as	conversational	marketing,	conversational	support,	financial	
services, e-commerce. Some examples of such platforms are
Intercom, WotNot, ManyChat, and Mobile Monkey. All three of
them offer marketing tools and can be integrated with other
CRM tools. General-purpose platforms, instead, offer a more
flexible	environment	that	enables	the	user	to	freely	create	a	
chatbot independently from its scope. Such platforms may still
offer templates for the most common use cases, like greetings,
and marketing activities. Examples of such platforms are Google
Dialogflow,	Botpress,	and	IBM	Watson	assistant.	

2.4.2. Implementation
Implementation is one of the main factors by which online
blogs classify chatbot platforms. It refers to the method that
the user uses to build the chatbot. The platforms exploit mainly
three different methods: code-based, no-code, or a hybrid
approach. Code-based platforms require the user to actually

code the chatbot. This also means that, while offering NLU and
integrations with messaging channels like Slack or Telegram,
they do not offer a GUI to design the conversation, like other
platforms do, and that every step of the development is
handled by writing code with a text editor. Platforms like RASA,
Pandorabots and Botkit are examples of code-based platforms.
No-code, on the contrary, is the approach typical of platforms
that offer a visual programming tool that enables the user
to develop the chatbot without the need to write any code.
Usually,	they	exploit	flowchart	and	tree	diagrams	to	model	the	
conversation structure. Some examples are FlowXO, Landbot,
Flow.ai. It’s important to note, that while these platforms may
be advertised as no-code, they may still support custom code,
although the chatbot can still be built without it. Lastly, some
platforms offer a hybrid approach that combines a GUI with the
flexibility	of	supporting	code,	which	grant	experienced	user	
the possibility to add more features and create more complex
agents. Examples of such platforms are the already mentioned
Dialogflow	and	IBM	Watson.

2.4.3. Intelligence
This dimension refers to the AI capabilities of the platform.
Platform can be rule-based, or AI powered. No-code platforms
tend to be rule-based. Although some do support NLP, like
Flow.ai, they often lack Natural Language Processing support
and offer the possibility to only create rule-based chatbots that
recognize	specific	keywords.	However,	some	platforms	that	do	
not support NLP, like FlowXO, can be integrated with external
NLP	services	like	Dialogflow.	On	the	contrary,	most	code-based	
platforms are AI powered and natively support NLP or can be
integrated with NLP services, like in the case of Botkit that can
be	integrated	with	RASA,	Dialogflow,	IBM	Watson	and	many	more.	
Lastly, also hybrid platforms are generally AI powered. Moreover,
as some of them are products of tech giants like Google and
IBM, they offer advanced NLP services.

2.4.4. Channel integration
This last dimension refers to what communication channel
can the developed chatbot be deployed. The platforms can
be cross-channel or single-channel. The majority of chatbot

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 4544

platforms is cross-channel: the agents can be deployed on the
most common instant messaging services, such as Telegram,
WhatsApp, WeChat or Facebook Messenger. They can support
also proprietary website integration or Slack. Single-channel
platforms, on the contrary, support only one channel. Some
platforms, such as Chatfuel or Botsify, or ManyChat support only
Facebook Messenger, while Landbot is only for websites.

As this work is aimed at the design of a graphical user interface,
for this next part of the chapter, code-based frameworks, such
as RASA, Pandorabots, and Botkit, will not be further discussed,
as they do not provide a GUI for the chatbot development.
Hybrid	tools,	instead,	will	be	taken	into	account	despite	being	
targeted to a more experienced audience than the one of tool
prented in this work, because they are the most commonly used
AI powered tools in the industry and offer interaction paradigms
different from no-code platforms.

Chatbot platform Context Implementation Intelligence Channel
Integration

Amazon Lex General purpose Hybrid AI powered Cross-channel

Botkit General purpose Code-based AI powered Cross-channel

Botpress General purpose Hybrid AI powered Cross-channel

Botsify Context-specific No-code Rule-based Single-channel

Chatfuel Context-specific No-code Rule-based Single-channel

Dialogflow General purpose Hybrid AI powered Cross-channel

Flow.ai Context-specific No-code AI powered Cross-channel

FlowXO Context-specific No-code Rule-based Cross-channel

IBM Watson Assistant General purpose Hybrid AI powered Cross-channel

Landbot Context-specific No-code Rule-based Single-channel

ManyChat Context-specific No-code Rule-based Single-channel

Mobile Monkey Context-specific No-code Rule-based Cross-channel

Pandorabots General purpose Code-based AI powered Cross-channel

RASA General purpose Code-based AI powered Cross-channel

WotNot Context-specific No-code Rule-based Cross-channel

2.4.5. Dialogflow
Implementation: hybrid
Context: general purpose
Intelligence: AI powered
Channel integration: cross-channel

Dialogflow5 is an end-to-end tool powered by Natural Language
Understanding offered by Google to design conversational
interfaces, both text chatbots and voicebots. It offers NLU/NLP,
and it is supported by Google’s machine learning infrastructure.
Dialogflow’s	conversational	agents	can	be	connected	to	other	
apps or digital communication channels such as Slack, Telegram,
Facebook Messenger, Kik, LINE. The voicebots can be used
with Google Assistant, Amazon Alexa, and Microsoft Cortana.
Dialogflow	provides	template	for	small	talk	chatbot	and	some	
common scenarios. Chatbot built from scratch can be rule-based
or use Machine Learning for intent matching. Intents and entities
are the two fundamental concepts in the system.

Intents
An intent is set by giving it a name and then providing a set
of examples of what the user could say, that is called training
phrases. In addition to that, the designer must provide a set of
possible responses that the chatbot could give as an answer to
the user. Lastly, to make it so that the chatbot can recognize
some nouns or other elements of the training phrases as data,
said elements can be tagged as a parameter. When tagged as a
parameter the annotated element is matched to an entity.

Entities
An	entity	is	defined	by	an	entity type, that is what kind of
information the designer wants to extract from user input, and by
a list of entity entries, that are the actual values that the entity
can	assume.	Many	of	these	entities	are	already	defined	like	the	
ones	about	time,	colours,	locations	or	dates,	but	users	can	define	
their custom entities.

5 Dialogflow Console overview | Dialogflow ES | Google Cloud

table 2
In the table we can see a
systematization of the classification
here proposed

https://cloud.google.com/dialogflow/es/docs/console

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 4746

Overview of the interface and interaction
To	create	the	chatbot	Dialogue	flow	provides	a	web	user	
interface, called Dialogflow Console, where the user can build
the conversational agent and test it with what in the system is
referred to as Dialogflow simulator.

The interface is divided in three main areas: a sidebar menu
on the left, where are listed all the tool tabs: intents, entities,
integrations, training and so on. Next, in the middle there is
the main content. In this panel users can view the content of
each tab of the menu, and they can edit all elements and data
needed to create the chatbot. The elements in each tab are
organized with accordion sections. Each accordion contains one
or	more	text	input	fields	where	the	user	is	able	to	type	the	
needed	information.	In	the	main	content	the	user	defines	the	
elements that make up the chatbot structure.

Last element of the GUI is the Dialogflow simulator on the
right. It provides a fast way of testing the chatbot during the
development allowing to preview how the interaction will go
down and to check for any errors. It has a text input at the top,
where the user can type one of the training phrases to test
the interaction. When the user types a sentence, the simulator
will show the chatbot answer together with the information
extracted from it, like what is the intent, or the parameters
identified	in	it.	The	extracted	elements	function	as	links	that,	
when clicked, open the corresponding tab. This is useful for the
designer in order to rapidly access a tab and, eventually, make
the necessary edits.

Sidebar menu Dialogflow Simulator

Dialogflow Console

fig. 11 ,
In the previous page: Dialogflow’s Intent window. Above, the Entity window

fig. 12

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 4948

2.4.6. Amazon Lex
Implementation: hybrid
Context: general purpose
Intelligence: AI powered
Channel integration: cross-channel

Amazon Lex6 is a service for building conversational agents
that can support both voice and text inputs. It supports speech
recognition for converting speech to text and NLU. Chatbot built
with Amazon Lex can be used, for contact centre productivity
or	automation	of	simple	tasks.	Like	Dialogflow	it	is	cross-platform	
and supports integration with messaging platform such as
Facebook Messenger, Slack, Kik and Twilio. To build the agent,
the designer can choose to the Command Line Interface or use
the graphical interface, called console.	The	designer	must	define	
the following key elements:

Intents
They are the action that the user wants to perform, for example
ordering	food.	To	define	an	intent	the	designer	is	required	to	
provide an intent name that describes the meaning of the intent
and must be unique. Then they must provide a list of sample
utterances: various examples of how the user may convey the
intent.

Slot types
They	are	pieces	of	data	that	may	be	necessary	to	fulfil	an	intent.	
Similarly to entities in other frameworks, to set a slot type the
designer must give it a unique name and provide list of possible
values that the chatbot will listen to.

AWS Lambda functions
The	AWS	Lambda	functions	can	be	configured	to,	perform	
validation	of	the	data	received	from	the	user	or	fulfil	intents.	
Lambda functions are pieces of code the developer can code in
different programming languages, like Node.js Python Ruby Java
or C#. This is a highly technical step that makes Amazon Lex the
less suitable platform for non-programmer users.

Overview of the interface and interaction
The interface is structured in tabs. The editor tab, where the
designer	builds	the	chatbot,	is	structured	similarly	to	Dialogflow	
interface: a sidebar menu on the left allows the user to switch
form	the	definition	of	intents	to	that	of	slot	types,	at	the	centre	
there is the main content and, on the right, there is a Test Bot, a
section where the user can try out the chatbot as they build it.
Accordion sections are used to divide the main content of the tab
and	allow	the	designer	to	hide	the	input	fields	when	not	needed.	
Training phrases are here called sample utterances, but just like
in	Dialogflow,	slot types are highlighted with different colours.

6 https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html

Main content

fig. 13,
At the top, Amazon Lex Editor tab. Below, the lambda
function window. Lambda function can be coded by the
chatbot designer in different programming languages

fig. 14

Sidebar menu Test bot

Amazon Lex is organized in tabs visualized at the top of
the window. The editor menages bot building operations

https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 5150

2.4.7. IBM Watson Assistant
Implementation: hybrid
Context: general purpose
Intelligence: AI powered
Channel integration: cross-channel

In a survey by technology company Mindbowser (Mindbowser,
2017), IBM Watson Assistant7 resulted to be the most popular
platform to build chatbots, with 61% of the businesses in the
sample choosing it. Watson Assistant is a tool built on a neural
network by the same name, Watson. The service provides Natural
Language Understanding and Processing to build intelligent
chatbots either using one of the pretrained templates provided
for common use cases, or by training a new agent with a
custom database. The platform allows to create bot text based
chatbots and voicebots and is cross-channel; users can deploy
their chatbot on different social media platforms such as Slack,
Facebook Messenger, WhatsApp or Intercom. Agent can be also
used in call centres.

To build an agent, the designer is provided with a tool called
dialogue builder, where	users	define	the	conversation flow,
essentially the structure of the chatbot presented as a tree
diagram. The tree starts always with a possible user utterance,
while the following nodes in the diagram represent how the
chatbot will respond following an if-then logic.	The	flow	is	made	
of skills. Skills are of two three types: dialogue skills, action skills,
and search skills.

Dialogue skills
They contain the intents and entities needed in order to train
the	chatbot.	When	an	intent	is	defined,	like	we	have	already	
seen, the user has to provide also a set of training phrases that
could map to the intent. A content catalogue provides a set
of prebuilt intents, such as greetings. In addition to that, the
designer must provide also a dialogue, namely the response
to give back once the intent is recognized. Chatbots built with
Watson are context aware and can also ask more questions to
clarify intents that have not been detected correctly.

For	entities	Watson	Assistant	provides	predefined	system	
entities, but the user can add new entities. Similarly to
Dialogflow	or	Amazon	Lex,	to	define	an	entity,	users	have	to	
give it a name and list a set of possible values; Watson AI can
expand the list with further recommendations. Entities values can
be	also	defined	as	patterns,	instead	of	giving	a	list	of	synonyms.	
For example, for an email entity the designer can specify just an
expression that serves as an example of how an email address
is structured, such as text@text.com.	Like	in	Dialogflow	words	in	
intents can be tagged as entities so that they will be recognized.

7 https://www.ibm.com/cloud/watson-assistant

Action skills
They are the individual tasks that the chatbot is designed
to help customers with. They could be described as blocks
of interaction, that contain a series of steps that represent
individual exchanges with a customer. Together such steps
cover	a	task	from	start	to	finish.	For	example,	an	action	could	be	
telling a customer opening times of a business or greeting the
user. As actions are composed of many conversation turns and
can	be	reused	in	any	project,	once	defined,	they	provide	a	way	
to speed up the building process of the chatbot.

Search skills
They are a type of skill that enables the agent to extract
information	from	a	configured	data	collection.	To	work,	this	skill	
interacts with another service by IBM, the IBM Watson Discovery
service. The skill enables the agent to answer user queries
that it was not designed for. In the skill slot the user choses
form which collection perform the search and a set of possible
utterances that the chatbot can use in different scenarios, such
as when a search is successful or when no results are found.

Overview of the interface and interaction
The user interface presents a sidebar menu and a main area.
The main area is structured in four tabs: intents, entities, dialogue,
content catalogue. In the intent and entities tab are very similar:
they	have	on	top	the	text	field	for	the	name	of	the	intent	or	
entity, respectively. After having set the names, user can start
adding	values	and	training	phrases	in	the	text	fields	below.	The	
dialogue tab, instead, is where users can create the conversation
flow,	visually	represented	by	a	dialogue	tree.	Each	node	is	a	turn	
in the conversation and is designed as a card showing the name
of the node, the intent it has to recognize, and the number of
responses set. Clicking a node opens a pop-up window where
users can add the intents, and the response to give back. In the
header user can access through the try it button an interactive
preview of the bot where they can test the chatbot as they work.

2.4.8. Flow.ai
Implementation: no-code
Context: context-specific
Intelligence: AI powered
Channel integration: cross-platform

Flow.ai8 is an online no-code platform that offers many templates
for different use cases for marketing and customer service,

8 https://flow.ai/

mailto:text@text.com

State of the Art - Chatbot Frameworks 5352 State of the Art - Chatbot Frameworks

Dialogue window
Each node of the dialogue corresponds
to a skill.

When a node is selected users can access
the editor where they can specify the
intent, responses and conditions that have
to be met during the interactions.

In the entity
window, users can
use the dictionary
provided by
Watson or add
manally new
values

Users can modify the
intent associated to
the utterance as they
try the chatbot

fig. 15
An overview of the main components
of the Watson Assistant user interface

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 5554

although the user is not limited to use them. The platform has
a proprietary Machine Learning engine that provides NLP to
build AI chatbots. Chatbots built with Flow.ai are context aware
meaning that the NLP engine keeps track of the state of the
conversation allowing the chatbot to respond more appropriately
to the user and remember data. The creation of the chatbot can
be handled solely with the GUI, but for further customization the
chatbot capabilities can be expanded with JavaScript.

The	chatbot	is	built	by	creating	a	flow.	Flows	are	visually	
represented	in	the	GUI	with	a	flowchart.	A	flow	is	specific	for	
the	dialogue	the	user	wants	to	automate.	Each	flow	starts	with	
a trigger. A trigger is the user utterance. It can be a text or
another event, such as sharing a picture or an audio. When a
trigger is of the text kind, the user can classify it as an intent
and specify more training phrases to train of the NLP model.
In general, for each trigger corresponds a reply or an action.
Replies are the answer to the user utterances. Flow.ai offers a
rich variety of type of response: the agent can respond with just
text a text message or give back a more complex answer that
could include a location, carousels, video, audio or buttons. The
combination of a reply and a trigger is called a step. Actions,
instead, can trigger custom code or integrations. For example,
an action can be used to send and retrieve data to and from a
spreadsheet or connect with an email service.

Overview of the interface and interaction
The	interface	leverages	the	concept	of	flowcharts	to	visually	
represent the interaction between users and conversational
agent.	Each	node	in	the	flowchart	is	added	with	a	drag-and-drop	
interaction and represents a step in the dialogue between users
and agent, being it a trigger, a response or an action.
The interface is divided in three parts: On the left there is a
sidebar	menu	where	the	user	can	access	the	flows,	intents,	
entities and actions already created, and other functionalities.
In the main area at the centre the user can view and build the
flow	by	dragging	the	components	(i.e.,	triggers,	responses,	
and actions) from the right sidebar menu. Once a component
is dragged form the menu it is added at a free end in the
flowchart.	The	node	of	the	flowchart	shows	a	title	input	field	to	
name the card and can show pictures and other media. Despite
that, the editing of the content of each node is actually handled
in the right sidebar menu, the last section of the interface. Once
a	node	is	selected	the	sidebar	displays	all	the	input	fields	of	its	
editable properties. Lastly, at the top there is a header where
users	can	find	the	Try out button to start a demo of the chatbot
they are building.

2.4.9. Flow XO
Implementation: no-code
Context: context-specific

fig. 16,
An overview of the main windows of FLow.ai. At the top,
Flow.ai flow builder. Below, a snippet of the intent window

Replies and
triggers are
listed as
draggable
components
each identified
by a different
icon

On the left flow
elements are
organized in a list

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 5756

Intelligence:	rule-based,	integration	with	Dialogflow	NLU
Channel integration: cross-channel

Flow XO9 is an online platform for the creation and hosting of
chatbot aimed mainly at the creation of conversational agents for
customer services and e-commerce, thus, provides a series of
prebuilt templates for the most common use case like answering
questions, applying to a service or book a room. Similarly, to
the other platforms described, Flow XO is cross-platform. As
such, it supports the connection to other messaging channels,
like Facebook Messenger, Telegram, and Slack. Flow XO allows to
create rule-based chatbots, but it can be integrated with Google
Dialogflow	to	create	an	agent	that	uses	NLU/NLP.	In	general,	the	
platform relies heavily on third party integrations,

Flow XO provides a drag and drop interface where the user
works with a visual representation, called workflow (flow), of the
conversation that the agent will have with a user. In the system a
flow is essentially the script of the interaction between user and
conversational	agent.	This	script	is	represented	as	flow	chart-like	
chain of actions performed by the chatbot in response to the
utterances of the users that act as triggers.	More	specifically,	
flows	are	triggered	by	specific	keyword	in	the	user	utterance.

Usually, a bot is made of multiple flows That	answer	specific	
purpose	in	the	conversation	(i.e.,	booking	a	room).	Each	flow	
always starts with a trigger, that corresponds to any kind of
input into the system. Most commonly this is a message from the
user coming through one of the platforms that can be interfaced
with Flow XO (i.e., Facebook Messenger). If it is a message, the
designer must provide a list of possible words or phrases that
the conversational agent will recognize as triggers and respond
to, for example a list of greetings.

After a trigger is activated, an action is kicked off. Actions
define	the	way	the	agent	behaves	in	response	to	the	user	
utterances. The system provides different kind of actions, like
sending a message, asking a question or send an image.
From questions the chatbot can extract data like emails, names
or dates. The saved pieces of data are called attributes.
The agent is able to store the data and use it in the course of
the conversation, but also to add it to a spreadsheet.
The service, in fact, can be integrated with Google Spreadsheet
so to have the ability to store and extract data.

Analysis of the interface and interaction
The user interface consists of three main areas and a
sidebar menu where users can access the different tools and
functionalities. In the middle there is a workspace divided in two
parts:	on	the	left	it	is	shown	the	chatbot	workflow,	while	on	the	
right	there	is	a	live	preview	of	the	workflow	structured	like	a	

9 https://flowxo.com/

common chat interface. This way, they can keep track of all the
questions and text written into the action modules.
The	workflow	develops	vertically	down	the	left	side	of	the	page.	
Action and triggers are visually represented by a card that
contains	a	pictogram	specific	for	the	different	kind	of	system	
actions,	the	name	given	to	the	action,	an	edit	button	and	a	filter	
button. Through the edit button the designers access a pop-up
window where they can set the triggers and the outcome of the
action.

The whole building process is segmented in a string of modals
that guides the user through each operation.
To actually test the chatbot and see if the user input is parsed
correctly, Flow XO provides also a Test Console, a messaging
application emulator, that can be called from the header. In the
Test Console the designer can impersonate the end-user and try
the agent for themselves.

fig. 17
Flow XO workspace. Right to the tree diagram of the
flow, intents and responses of each module are arranged
following a text messaging platform layout

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 5958

2.4.10. ManyChat
Implementation: no-code
Context: context-specific
Intelligence: rule-based
Channel integration: single channel

ManyChat10 is a chatbot platform for the development of
conversational agents specialized in marketing and CRM
activities; different templates are available that cover the most
common activities from lead management to e-commerce
functionalities. ManyChat is a single channel platform where the
bots can be published only on Facebook Messenger, but
messages can be broadcasted also via SMS, although it is not a
channel where the end user can interact with the bot.
The platform does not support NLP and allows to build only rule-
based	chatbots.	To	build	the	chatbot,	the	user	defines	action
rules and keywords. ManyChat provides two different interfaces:
the Basic Builder and the Flow Builder. The Basic Builder is a
compact editor where the messages that make up the chatbot
dialogue are presented in a linear fashion. The Flow Builder,
instead,	adds	a	flowchart	diagram	representation	of	the	dialogue	
like we have seen in Flow.ai.

Every project is called flow and starts with a user input that
contains	a	keyword	that	triggers	the	flow.	Keywords	are	
associated to rules, like message is, message contains, or
message begins, that allow the user a certain degree of control
on	how	the	message	will	be	interpreted.	When	defining	a	
keyword,	users	define	also	the	chatbot	response.	The	response	
in general is a text paired with a set of buttons that list the
possible further interactions with the bot. Responses can be
enriched with media, though blocks, buttons that add images,
video and other media to a response. To understand user input
the response must contain a user input block, that can parse the
user answer and understand if there is a recognizable keyword
in it. Actions rules, instead, are used to perform an action, like
sending	a	confirmation	email	or	notifications,	when	certain	
triggers, or conditions, are met. To set up custom ones, users
have	to	define	a	trigger;	it	can	be	a	date,	or	a	more	complex	
condition such being a new customer.

Analysis of the interface and interaction
The Basic Builder and the Flow Builder offer two different
interaction paradigms that can be useful in different scenarios.
The	Basic	Builder	(fig.	19)	offers	a	linear	view	of	the	conversation	
flow	more	suited	for	simpler	bot.	The	user	interface	is	divided	
in two different areas. A sidebar menu on the left allows the
user to change window and access the other tools, like the
dashboard window or the templates window. The second area is
the main content that is structured in three sections. On the left
there is the list of the messages created, at the centre there is
the editing section, where the designers can edit the messages
they create by adding text and blocks. Lastly, on the right there
is a live preview of the chatbot.

The	Flow	Builder	(fig.	20)	has	a	similar	structure	despite	having	
a different interaction paradigm. The main area is now used as

fig. 18
In FlowXO modal intents and responses are set in a modal
window. The content of the modal depends on the type of
trigger used for each intent. In the picture we can see the
Ask a question trigger.

State of the Art - Chatbot Frameworks State of the Art - Chatbot Frameworks 6160

a	workspace	where	users	can	build	the	chatbot	as	a	flowchart.	
The	fist	node	is	added	from	the	sidebar	menu	by	clicking	the	
welcome message button, while the next nodes are added
automatically or by clicking the choose next step button at
the bottom of each node. The nodes show the content of the
response and some statistics about the node. By clicking on a
node, it is possible to edit it using the same editor present in
the Basic Builder. Lastly, to access the preview, they have to
click the preview button on the right of the header.

fig. 19
The Basic editor

On the left dialogue elements
are organized in a list

Each element can be edited here by
adding blocks. Blocks contain the chatbot
possible actions, such as giving an aswer
or show multimedia content

Each element can be edited here
by adding blocks. Blocks contain the
chatbot possible actions, such as giving
an aswer or show multimedia content

fig. 20
The Flow editor. To edit the flow, users
must click on one of the nodes to open
an editor similar to the one seen in the
basic builder

State of the Art - The Gap in the State of the Art State of the Art - The Gap in the State of the Art 6362

2.5. The Gap in the State of the Art
According to the current practices, chatbot development
requires a large body of training data obtained from collecting
examples of user dialogues. These data are expensive to gather
and	are	difficult	to	reuse	across	different	domains	(Yaghoub-
Zadeh-Fard et al., 2020). Additionally, these approaches currently
lack integration between the conversation system and the
database from which data are extracted. As we have seen, in
fact, the platforms currently available focus on manual intent and
entity	definition,	with	integrations	with	databases	being	absent	
or	limited	to	the	importing	of	data	for	entities	from	CSV	files,	as	
in	the	case	of	Watson	Assistant	or	Dialogflow.	This	implies	that	
several data characteristics, which are relevant – if not necessary
– to manage the conversation and to train the dialogue system,
must be provided manually, even if they are already implicitly
available in the database model. A critical challenge, therefore,
lies in understanding how to make the development of chatbots
for data exploration scalable and sustainable, especially in
terms of design models and methodologies (Akcora et al., 2018)
(Pereira & Díaz, 2018).

This	work	capitalizes	on	a	chatbot	design	framework,	CHATIDEA,	
which proposes a set of modelling abstractions to identify key
data elements in a relational data source, and maps them on user
utterances to make conversations for data exploration possibles.
Upon this framework is built an interface, that unlike those seen
until now, bases the design of the chatbot upon the structured
data of a relational database. The interface proposes a novel
interaction paradigm with respect to those seen in this chapter.
First, because it integrates database visual language to present
the data. Secondly, because it proposes a novel conversational
paradigm for the generation of intents. With this paradigm
the intents are presented in a chat-like fashion, simulating a semi
structured conversation with the end user.
This is possible because the relationships existing between the
different tables offer a sort of scaffolding of the conversation
that allows the user to have a sense of context when annotating
the intents, as they are not presented as just a list as in
platforms	like	Dialogflow	or	Amazon	Lex,	but	in	a	broader	
conversational context. Furthermore, again thanks to the nature
of relational databases, the conversational paradigm offers
a more compact and straightforward way to organize the
conversation branches as they are tied to the data. One of the
drawbacks	of	flow-chart	styled	interfaces,	as	Flow.ai	or	ManyChat,	
is,	in	fact,	the	difficulty	in	managing	complex	conversational	agents	
with	many	conversation	flows	branching	on	different	topics.

Heavy NLU trainingMinimal NLU training

Re
lia

nt
 o

n
sc

rip
tin

g
In

de
pe

nd
en

t
fr

om
 s

cr
ip

tin
g

Amazon Lex

Chatfuel

Landbot

Botkit

Botpress

Botsify

Mobile Monkey

Pandorabots
RASA

Wotnot

Dialogflow

IBM Watson
Assistant

Flow.ai
Flow XO

ManyChat
Hybrid	platforms

Code-based platforms

No-code platforms

CHATIDEA

fig. 21
Quadrant diagram showcasing the
distribution of the platforms analysed
in table 2

3. CHATIDEA

CI

3.1. Summary

3.2. Relational databases

3.3. Structure of CHATIDEA

CHATIDEA - Summary CHATIDEA - Relational databases 6766

3.1. Summary
This thesis capitalizes on a framework for the rapid prototyping
of chatbots for data exploration (Castaldo,	2019),	CHATIDEA,	
that allows the development of such chatbots and presents a
graphical user interface to aid developers in the generation of
a	set	of	files,	called	Database Schema Annotations, that are
needed for the mapping between data and end-user utterances.

3.2. Relational databases
The framework is developed on the basis of relational databases.
A database is collection of structured data. A relational
database is a database where the data is organized in tables,
called relations, that are collections of data of the same type
(Whitehorn & Marklyn, 2007), for example a collection of
students or items on sale. The tables are made of rows and
columns. Columns are also called attributes. Each attribute is
different	and	stores	a	specific	kind	of	data,	such	as	first	names,	
surnames, age, and so on. Rows, also called records, must be
different from one another and each of them represents an
entry in the table. So, in a table about customers each row
represents a different customer.

Another characteristic of relational databases is that tables can
be logically connected by relationships (Whitehorn & Marklyn,
2007)	where	the	first	table	is	the	referencing table and the
second is the referenced table. The relationship exists when an
attribute in the referenced table is present in the referencing
one, thus “linking” them. Such attribute is called primary key in
the referenced table and takes the name of foreign key in
the referencing table. The primary key is an attribute that has the
characteristic of being able to uniquely identify every and each
row of the two tables. Furthermore, every table must have a
primary key, while foreign keys is present only when a relationship
exists between two tables. Let us now see an example.

Suppose that we have a database about students enrolled
at Politecnico di Milano and there is a table storing personal
information about the students called STUDENTS and another
with their contact information, called CONTACTS. As we have
said, a primary key is an attribute that can univocally identify

each row in a table. In the case of the table STUDENTS, the
attribute that can identify each student univocally is their
student ID, so that can be a primary key. If we want to create
a relationship between the table STUDENTS and CONTACTS in
order to know which student has which contact information, the
primary key of STUDENTS (i.e., the student ID) must be repeated
in CONTACTS, thus creating the link between their contact
information and the students themselves. When the primary key
is referenced in the table CONTACTS it is called foreign key, as it
essentially belongs to the other table, STUDENTS.

Lastly, it is important to note that relationships can be of three
types: one-to-one, one-to-many and many-to-many. Two tables
have	a	one-to-one	relationship	if	one	row	from	the	first	table	
corresponds only to a single other row in the second one.
Continuing with our example, one student can correspond to
only one contact record and vice versa. Instead, we have a
one-to-many	relationship,	when	to	one	row	from	the	first	table	
correspond many rows in the second one. That is, one professor
can teach many classes, but all the classes are held by the
same professor. Lastly, we have many-to-many relationships
when multiple rows in the referencing table are associated with
multiple rows in the referenced table. For example, students
follow many lectures, and each lecture is followed by many
students. Unlike the other two types of relationships, a many-
to-many relationship cannot be represented directly with only
the two tables. and needs to be broken down into two one-to-
many relationship. To do so, a third table is used acting as a
“middleman.” This table, called join table or bridge table, will
then contain both primary keys of STUDENTS and LECTURES
plus a third primary key used to create a univocal link between
lectures and students. In our example such table could be
called ENROLMENTS where we have three attributes: the two
foreign keys from STUDENTS and LECTURES plus an attribute

STUDENTS

Student ID

Name

Surname

PROFESSORS

Professor ID

Name

Surname

LECTURES

Lecture ID

Name

Subject

Professor ID

CONTACTS

Student ID

Telephone

ENROLMENTS

Lecture ID

Student ID

one-to-one

m
an

y-
to

-m
an

y

one-to-many

fig. 22
An example of a relational database
and the type of relationships between
them

CHATIDEA - Structure of CHATIDEA CHATIDEA - Structure of CHATIDEA 6968

with enrolments numbers. This way, each pair of students and
lectures	is	identified	by	one	unique	value.

3.3. Structure of CHATIDEA
CHATIDEA	is	presented	in	two	previous	works.	It	is	first	presented	
in the Thesis A Conceptual Modeling Approach for the Rapid
Development of Chatbots for Conversational Data Exploration
(Castaldo, 2019). Then, it is further expanded in the thesis
Designing and Validating Conversational Agents for Data
Exploration (Ferreri & Notari, 2020). The procedure for chatbot
development described in this works is semi-automatic. In
fact, while the majority of the steps necessary to generate the
chatbot are automatic, some are not and require the work of
what	is	defined	as	a Chatbot Designer (Castaldo, 2019). As we

Parsing
of the

database

Deploy
the
chatbot

Annotate
database
schema

Run
Translator

script

Create
training
and test

sets

Train the
model

Evaluate
the model

can	see	in	figure	23,	the	steps	for	the	generation	of	the	chatbot	
are	essentially	five,	with	two	additional	steps,	evaluation	and	
deployment, that end the pipeline but happen after the actual
generation.

The	first	step	is	the parsing of the database schema (fig.
23) and it is automatic. The framework focuses on relational
databases.	After	the	parsing,	a	simplified	version	of	the	database	
is obtained, called schema. In this version the structure in terms
of tables, attributes and relations among entities is highlighted.
This step is necessary for the following one: Database Schema
Annotation. It is the main abstraction and may also be regarded
as the core of the process as it is fundamental to the mapping
between the data and the query the end-user will express
while interacting with the chatbot. Moreover, this phase is the
main manual phase that the Chatbot Designer must perform.
The designer tags the database schema with keywords that will
be necessary to generate the conversation. Not only, but the
annotation step is also what makes the system able to convert
the natural language request into a query in SQL and to give
back the answer in natural language as well. Next the designer

runs a script called translator; this component is needed to
create	the	modelling	files	necessary	for	the	fourth	step	in	the	
process, the creation of training material. The training material
is obtained thanks to the model previously created. The model
is used to generate a set of phrases based on the database and
the annotations written at the start of this procedure. Lastly,
there is the training phase. It is done by running a script called
trainer and results in the extraction of the NLU model needed to
understand the user utterances (Ferreri & Notari, 2020). Below
(fig.	24)	an	example	of	interaction	between	chatbot	and	users	is	
reported.

What do you have to show me?

Hi there explorator!
Here is a few examples of what you can ask me:
Find orders that contained product Fiat Punto
Find customers that are located in Milan
Find payments done by American Souvenirs Co.

Find customer with contact John

Let me check...
Et voilà! I found 8 values:
Car Models - B. Goode John
JJ Store - Browns John
American Souvenirs Co. - Wayne John

Select the one you are interested in or click
the last button to see more.

* User clicks button *

Here is what I know about this customer:
- customerName: Car Models
- contactLastName: B. Goode
- contactFirstName: John
- ...
If you want more information, I can tell you
Products ordered
Payments made
Orders made

Show me the past selections, please

If you want, you can click on a button to go back
in the history of the conversation.

Car Models - B. Goode John
Currently you are focusing on:

...selected from:
A list of type "customer"
...found with attribute(s) "with contact John".

Chatbot

Chatbot

Chatbot

Chatbot

User

User

User

User

SHOW MORE

Figure 3.1: A Conversation example between a user and the chatbot.

16

fig. 23
A diagram of the steps necessary to
generate the chatbot
(Ferreri & Notari, 2020)

fig. 24
(Castaldo, 2019)

CHATIDEA - Structure of CHATIDEA CHATIDEA - Structure of CHATIDEA 7170

3.3.1. Annotation of the Database Schema
We will now see the technical details of the annotation step. In
the	current	version	of	the	CHATIDEA	framework,	to	generate	the	
mapping between the contents of the database and what can be
understood	by	the	chatbot,	three	JSON	files	have	to	be	written	
by the chatbot designer: a Schema, a Concept file and the
Display Annotation file (Ferreri & Notari, 2020). The three JSON
files	are	structured	as	follows.

The Schema file contains for each table of the database the
attributes, primary key and, if present, references to other
tables. The information contained in the Schema file does not
add meaning to the data in regards with the conversation, but
is fundamental for the description of the database. The Concept
file, instead, contains all the annotation concepts that enable
the chatbot to match the data with the natural language phrases
used during a conversation. Lastly, the Display Annotation file
specifies	what	data	will	be	shown	to	the	user	and	what	will	not.	
In a database, in fact, there can be data that should not be
disclosed to the user or that are useless in the conversation. To
solve this problem, in the Display Annotation file the chatbot
designers	will	select	and	filter	the	attributes	they	want	to	be	
shown to the user during conversation.

Together with that, they will also provide a name to introduce
the actual values of each attribute. For example, if a table
contains	an	attribute	for	peoples	first	names,	when	presented	
to	the	user,	the	attribute	about	first	names	could	be	introduced	
by the word “name”, so that the end user will see name: Mario.
These	are	all	the	annotations	that	must	be	defined	in	the	
Concept file for each table of the database:

“location_edifici”: {
 “column_list”: [
 {
 “attribute”: “id_edificio”,
 “display”: “Building ID”
 },
 {
 “attribute”: “nome_edificio”,
 “display”: “Name”
 }
]

listing 1
An extract from the
Display annotation
JSON file.

 “location_edifici”: {
 “column_list”: [
 “id_edificio”,
 “old_idsede”,
 “nome_edificio”,
 “codicepatrimonio_edificio”,
 “ordine_edificio”
],
 “column_alias_list”: {
 “id_edificio”: “building id”,
 “old_idsede”: “building old id”,
 “nome_edificio”: “building name”,
 “codicepatrimonio_edificio”: “codice patrimonio”,
 “ordine_edificio”: “order”
 },
 “primary_key_list”: [
 “id_edificio”
],

 “references”: []
 },

"element_name": "building",
 "aliases": ["buil ding", "buildings"],
 "type": "secondary",
 "table_name": "location_edifici",
 "show_columns": [
 {
 "keyword": "",
 "columns": ["nome_edificio"]
 }
],
 "category": [],
 "attributes": [],
 "relations": []
 },
 {
 "element_name": "room",
 "aliases": ["rooms"],
 "type": "secondary",
 "table_name": "location_locali",
 "show_columns": [
 {
 "keyword": "",
 "columns": ["descrizione"]
 }
],

listing 2,
At the top, an
extract from
the Database
Schema file . At
the bottom, an
extract from the
Concept file

listing 3

CHATIDEA - Structure of CHATIDEA CHATIDEA - Structure of CHATIDEA 7372

Conversational Object
It is a keyword, meaning a word or an expression, used to
identify univocally each table. To allow the user to refer to tables
in different ways and still be understood by the conversational
agent, a list of synonyms, called aliases, can be provided
for each table. So, if in the database there is a table storing
information	about	customers	(fig.	25),	as	a	conversational	object	
it could be used customer, while some aliases could be client,
person, and their plural counterpart.

Type
Defines	the	role	that	the	table	plays	in	the	exploration	of	data.	
Each table can be assigned one of these three types: primary
([P]	in	fig.	25)	if	the	information	therein	can	be	understood	and	
represented without a context, such as a table containing the
personal data regarding the clients of a shop. Another type is
secondary ([S]	in	fig.	25). It is used when the information stored
in the table is so strongly related to other entities that it requires
previous information to be understood. Continuing the example
from before, showing the purchases made by each client is
meaningful if the user has already searched for the client, as who
bought an item is what makes each purchase relevant. Lastly, a
table	can	be	classified	as	crossable ([X]	in	fig.	25)	if	it	is	a	bridge	
table. This kind of tables bears no relevance to the conversation,
but is used during join operations11.

Display Attributes
These are one or more attributes that are used to represent
each element when returned after a search. They are particularly
useful when dealing with lists, as the limited information to be
displayed makes it easier for the user to scan the answer.

11 A join is an operation that combines data from different tables in a relational
database. They are possible if a relationship exists between them.

For example, in the request “find customer with contact John” in Figure

3.1, the chatbot understands that customer is the placeholder for the table

customers. As represented in Figure 4.2, multiple words can be associated

to a table, acting as aliases for the same element; this will allow the users

to refer to them in multiple ways. As a result, the chatbot will be able to

understand customer, client and both their plural form as keywords for the

same, enabling the user to prefer different utterances, like “find client with

contact John”.

customers

payments

orderdetails

orders

products

[X]

[P] product

[P] order [P] customer

[S] payment

customers
client clients

orders

products

item

items payments

Figure 4.2: The Conversational Objects annotation.

4.2.2 Display Attributes

If we pay attention to Figure 3.1, we can see how the chatbot, after the

first interaction, displays a list of customers. What is remarkable is that the

values shown seems to be representative of the objects they refer to. In other

words, the chatbot does not show all the information related to each element

when displaying them in a list and it does not even limits the visualization

to their primary key, which is unique but maybe not informative; it rather

shows the name of the customer, as well as its contact.

This is possible because the Designer, when dealing with the Schema An-

notation, tagged the table attributes customerName and the pair (contact-

24

For example, when returning a list of customers, each of them
can be represented by name and surname only.

Conversational Qualifiers
A search like find customers would return all the instances
contained in the table customers. If the user wants to perform a
selection, such as “find customers located in Milan”, the chatbot
needs to be able to understand that in the answer it should
show only the customers that live in Milan, i.e., that located in is
a phrase used to select customers that have Milan as the value
of the attribute city.	This	is	achieved	by	defining	and	associating	
the Conversational Qualifiers, keywords or phrases like located
in, to the attributes on which the user would want to perform
a selection (in this case the attribute city). The attribute can
belong also to another table that has a relation with the one
searched by the user.
For the utterance to be correctly interpreted by the chatbot,
the designer must also specify the Conversational Type, which
defines	the	type	of	data	contained	in	the	attribute	tagged	with	a	
conversational	qualifier. There are four types of data:

WORD: any information that does not have a particular
 structure or syntax
NUM: numerical values
DATE: Dates and time values
Custom ENUM: entities that can assume enumerable
 values12

In the case of Milan, the Type will be WORD as it is just a
name. Lastly, the real value of an attribute tagged with a
conversational	qualifier	is	called	Conversational Value (i.e., Milan
is one of the values of the attribute city). So, going back to
the previous example, in the sentence find customers located

12 An enum is a special “class” that represents a group of constants. In general, it’s
used when you know all the possible values of a variable (McConnell, 2004)

customers

customerName

contactLastName

contactFirstName

city

state

country
payments

amount

orderdetails

orders

products

productName

[P] customer

with contact : WORD

_ : WORD

located in : WORD

that paid : NUM

that bought : WORD

Figure 4.4: The Conversational Qualifiers annotation, focus on customer.

businessName for the table customers and with enumerable values Public

Administration and Private Company.

It is important to clarify how the Conversational Type format is used by

the Designer during the Schema Annotation phase and it will be recovered by

the framework during the Conversation Modeling phase, as we will describe

in Section 4.3. However, from now on when dealing with example phrases, we

will use the term Conversational Value to refer to the real value, always

remembering that its identity is strictly related to the concept of Conversa-

tional Type, as already described. Thus, according to this notation, in the

phrase “find customer Car Models” the bold words will be identified as the

Conversational Value.

The utterances received may include some more complexity, apart from

the examples analyzed so far. For instance, the user may type a phrase like

“find the customer that paid more than 42000 Euros”, and the system should

identify the correct references for what concerns the Conversational Object

“customer”, Conversational Qualifier “that paid” and Conversational Type

NUM, with Conversational Value “42000”. The problem here is that the

chatbot may not consider the expression “more than”, leading to a malformed

search with likely wrong results.

This issue can be solved by introducing the concepts of Conversational

Operators and enabling their usage with respect to the defined Conversa-

tional Types.

27

fig. 25
An example database schema. In the
balloons on each table some alias
have been specified (Castaldo, 2019)

fig. 26
In the rectangualar lables we can
see an example of the conversational
qualifier annotation, with a focus on
customer. (Castaldo, 2019)

CHATIDEA - Structure of CHATIDEA CHATIDEA - Structure of CHATIDEA 7574

[X]

[P] product

[P] order [P] customer

[S] payment

contained products

in orders

made by customer

orders made

payments made

made by

products bought

Figure 4.5: The Conversational Relationships annotation.

Designing a Natural Language Understanding model means to define the

intents and the entities that the chatbot will be able to match and extract,

respectively. However, we are in the situation in which the target database

of the system is not fixed, so it is not possible to define an end-to-end con-

nectivity between these NLU concepts and the query they refer to when they

appear in a utterance.

This limit becomes evident if we consider that the chatbot may be in-

terfaced with a very large database, with dozens of complex tables and even

more relations: defining, for example, an intent for each possible query struc-

ture and an entity related to each value of the tables could lead to a NLU

model exponentially bigger than the data system.

In order to avoid this situation, we came up with a solution that auto-

matically generates intents and entities starting from the database Schema

Annotation. However, we also needed a procedure to generate the example

phrases to train the chatbot, each with labelled entities and related to an

intent.

29

in Milan, located in is	the	conversational	qualifier,	Milan is the
conversational value of the attribute city and its conversational
type is WORD as it is a simple name.

Conversational Relationships
They are keywords that identify a relationship between two
tables.	With	this	annotation	the	designer	defines	the	name	to	be	
used to refer to a relationship during conversation. It could be
the name already present in the database schema, or it could be
a more meaningful one for the context of the conversation. In
the context of the conversation, conversational relationship act
as navigation suggestions to help the user in the exploration of
the database. For this reason, relationships between tables are
presented as buttons at the end of an answer.

Categories
This annotation is done only for tables tagged as Primary. If the
table contains one or more attributes whose values can be used
to categorize the rest of the data, then the attribute in question
can be used to display the data in a pie chart. The designer
will have to select the attribute that will be used for the data
visualization and provide an alias for the attribute that will act
as the legend helping the user interpret the chart. For instance,
if we want to visualize how the customers are geographically
distributed, we could choose to tag the attribute city as a
category and give it the alias “geographical distribution.”

References
By design, in a relational database, two tables reference each
other by a foreign key and a primary key. Since they may not

always have a meaningful value, references were added: with
this annotation, the chatbot designer is able to choose another
attribute more meaningful and representative from the table
to show the user instead of the primary key. For example, the
table customers references the table purchases. Technically, if
the user asked “show me customers’ purchases” the chatbot
would answer with the foreign key. Instead by adding a
reference the chatbot designer can choose to show another
attribute such as the type of product purchased.

fig. 27
Conversational relationship annotation,
made with respect to the customer
(Castaldo, 2019)

4. Methodology For
Dialogue Design
4.1. Summary

4.2. Design Requirements

4.3. The Conversational Paradigm

4.4. Uniqueness of the Methodology

 Methodology For Dialogue Design - Summary Methodology For Dialogue Design - The Conversational Paradigm 7978

4.1. Summary
Starting from an analysis of the technical and theoretical resources
regarding	CHATIDEA,	in	particular	the	JSON	files,	it	was	possible	
to extrapolate a series of requirements and issues that had to be
taken into account during the design, and that conditioned the
final	result.	This	chapter	will	explain	the	design	process	behind	
the	graphical	user	interface	here	proposed	for	the	CHATIDEA	
framework;	first,	by	explaining	which	where	said	requirements	and	
issues. Then, the reasons behind the choice of a conversational
paradigm as the preferred interaction paradigm will be addressed,
together with some background that introduces said paradigm.

4.2. Design Requirements
The design process started by identifying the fundamental
requirements	of	the	interface.	As	a	first	requirement,	the	interface	
had to support a visualization of the database, not only for
annotation purposes, but also in order to give the users a way to
have a quick overview of the entire database they are working
on. That way even users not perfectly familiar with the data could
always	rapidly	look	up	the	data	and	find	the	piece	of	information	
they were looking for. To visualize the database, a relationship
graph was chosen, for it is one of the most common way to
represent databases, and it allows to show the tables together with
the relationships that link them.

The second requirement was designing an interaction paradigm
that could support the annotation procedure without having an
in-depth knowledge of all the concepts of the database schema
annotation	files.	Such	a	paradigm	had	to	be	intuitive	enough	
to not depend on an explanation of each annotation concept
for	the	annotations	to	be	correctly	defined.	A	linear	listing	of	
intents	and	entities	as	seen	in	Dialogflow	and	Amazon	Lex,	was	
considered to be too confusing for this framework, especially
since the users work with large body of data. For this reason, it
was	important	to	find	a	paradigm	that	could	also	visualize	the	
intents into the context of a dialogue structure, as seen in Watson
Assistant	or	other	flow-chart-based	platforms	like	Flow.ai.	Since	a	
relationship graph was already in use to represent the database,
a	flowchart	as	seen	in	platforms	like	Flow.ai	and	ManyChat,	would	
have been confusing, as the visual representation of the data

and conversational elements would overlap. Thus, by applying
a recursive logic, the choice fell on a conversational paradigm
so to, that will be described later in the chapter, so to design a
conversation with a conversation.

Furthermore, the design also presented two particular
challenges:	first	and	foremost,	getting	around	the	repetitiveness	
of the annotation process so that there would be no ambiguities
while working on the annotations. During the process, in fact,
the chatbot designer is called multiple times to rename the
same attributes, each time for a different goal. Renaming of
the	attributes	happens,	for	the	first	time,	when	generating	the	
database schema to give the data more readable names. Then,
tables are renamed for the conversational object annotation,
while single attributes are renamed for the display annotation.
Lastly, attributes are renamed once again for the category
annotation to create the legend accompanying the data
visualization. This challenge was particularly important because
the repetitiveness of the renaming operation may lead the user
to be tempted to skip the renaming operation after doing it
the	first	time	it	is	asked,	thus	possibly	posing	a	problem	for	
the	generation	of	the	files.	For	this	reason,	in	order	for	the	user	
to fully understand the need for each naming operation, the
various renaming tasks have been differentiated both by visual
means and by carefully curating the message introducing each
task, as we will see later in the chapter.

The second challenge was differentiating between annotations
that help the chatbot interpret user utterances and those related
to conversational relationships, which are the annotations that
manage the generation of exploration suggestions by the
chatbot itself to the end user. The problem is directly linked to
the need to make the interface as independent as possible from
specific	knowledge	of	the	framework	and	is	one	of	the	reasons	
that lead to the conversational paradigm used to design of the
graphical user interface. The remaining of this section illustrates
the different concepts to be managed for annotation generation,
and	the	related	strategy	adopted	for	their	definition	by	the	end	
users.

4.3. The Conversational Paradigm
Conversational design is the practice of designing device
interactions so that they resemble conversations between two
people (Leong, 2004). Using the principles that make interactions
between users productive, conversational design aims at making
human-computer interactions more intuitive and familiar for
users. Conversational design focuses on two main objectives.
The	first	is	developing	conversational	interfaces	like	chatbots,	
that can interact with users using natural language and can

 Methodology For Dialogue Design - Uniqueness of the Methodology Methodology For Dialogue Design - Uniqueness of the Methodology 8180

exploit	specific	characteristics	of	conversations,	such	turn-taking,	
feedback and being able to respond to both non-verbal and
verbal interactions (Cassell et al., 2000). A second objective
regards the use of features extrapolated from human-human
interactions to develop more intuitive user interfaces (Nickerson,
1976). Such rules include giving feedback to users to give a
sense of presence when the system is busy performing tasks.

As of now, the rise in popularity of messaging platforms has
made conversational user interfaces one of the most common
kinds of user interface to interact with (McKitterick, 2016) leading
some to prospect that this type of interface will become the
future of User Interface design (Vanhemert, 2015). This also
means that conversational interfaces like messaging chats are
the most familiar for users. Due to this particular property,
to	present	the	annotation	concepts,	the	UI	for	the	CHATIDEA	
framework was designed to leverage the visual layout of chats,
like	those	of	instant	messaging	platforms	such	as	Telegram	(fig.	
28)	or	WhatsApp	(fig.	29).	This	way	the	interface	can	provide	a	
familiar environment to introduce new concepts to untrained
users. In fact, by simulating a conversation, users are able to
contextualize	the	various	annotation	steps	in	the	general	flow	of	
a possible conversation scenario and better understand both the
tasks at hand and the role of the data in the conversation.

4.4. Uniqueness of the Methodology
Similarly to other available frameworks for rapid prototyping of
conversation	agents,	CHATIDEA	is	still	based	on	intent	matching	
and	entity	definition.	Despite	that	it	does	not	rely	on	user	
input	for	the	intent	definition.	In	fact,	intents	are	mapped	onto	
specific	actions	that	can	be	performed	on	a	database	and	are	
of four types: start intents, history intents, find intents, and,
lastly, filter intents. For the scope of the annotation procedure,
only	the	last	two,	find	and	filter	intents,	are	of	interest.	Find	
intents are sentences that ask for certain information like “show
me Professor Mario Rossi”. Filter intents correspond to more
complex queries to the database that require some kind of
operations on the data. With this intent, the user queries for data
that	have	specific	characteristics.	An	example	could	be	“Show	
me professors who teach bioengineering” where “who teach
bioengineering” is the characteristic by which the results will be
filtered.	This	peculiarity	was	leveraged	in	the	design	of	the	
user interface for the annotation process and was what made
the user of a conversational paradigm possible. In fact, since
the type of intent is already known, partially written intents
could be created so that they would act as text prompts of an
hypothetical interaction between users and chatbot, leaving
users only the task of entity generation.

The entity generation essentially coincides with the database
schema annotation phase. As the data is the subject of
interaction	between	chatbot	and	end-user,	entity	definition	
resolves itself in the correct parametrization of the request in
terms of tables and attributes. So, if the chatbot designer has
an intent such as “are apples available?”, what would happen in
a	framework	like	Dialogflow	or	Amazon	Lex	would	be	that	the	
designer	must	define	an	entity	for	the	food	items	available.	This	
action essentially creates a table of food items. In the case of
the	CHATIDEA	framework,	the	table	with	the	food	items	already	
exists so the designer does not have to create it from scratch.
What is left to do, instead, is linking the table to a conversational
element, the word apple in the example, so that when the users
ask for apples the chatbot knows in which table to search for
the value apples. This linking operation is achieved through the
annotation process.

What	is	above	here	described	is	unique	to	CHATIDEA.	Currently,	
in fact, there is no tool that allows database to be parsed and
used directly to generate intents and entities. In addition to that,
the fact that intents are mapped upon SQL commands, granted
the unique opportunity to design conversational paradigm based
on a single dialogue template reusable for any database.

fig. 28
Telegram UI

fig. 29
Whatsapp UI

5. Design of the
interface
5.1. Summary

5.2. Concept

5.3. Target

5.4. Visual Identity

Design of the interface - Uniqueness of the Methodology 8584 Design of the interface - Uniqueness of the Methodology

CI CHATIDEA

fig. 30
In the pages before: two windows of
CHATIDEA GUI

Design of the interface - Summary Design of the interface - Target 8786

5.1. Summary
Designing an EUD tool was an all-round project that
encompassed both User Experience Design and User Interface
design. This chapter starts by stating concept and target at the
base of the design process. Then it presents the visual identity,
delving into the design of the logo, and the various visual
components, from the icon system, to the colour choices, to
data visualization.

5.2. Concept
The	CHATIDEA	graphical	interface	is	an	End-User	Development	
tool for the generation of the database schema annotation
files,	which	are	the	starting	point	of	the	framework	for	the	
development of chatbots for data exploration. The interface
exploits a conversational paradigm to guide the chatbot
designer through the process by the means of text prompts
modelled on a hypothetical conversation that the end-user may
have with the chatbot. The text prompts are skeletons of training
phrases that the designer completes with keywords and data
taken from the database. This way the designers are able to
create the mapping between data elements and conversational
elements, within the context of a sample conversation that helps
in understanding the possible patterns of navigation in the
database.

Furthermore, as the designers complete all the prompts, the
tool will automatically generate the database schema annotation
files	without	the	need	for	them	to	write	any	code	or	know	
in	detail	all	the	concepts	necessary	for	defining	dialogs	in	
conversational agents. Thanks to this, the designers are helped
in	two	fundamental	ways:	firstly,	they	are	provided	with	a	set	
of examples that suggest the possible interactions with the
data, making the database navigation easier. Secondly, to
use	the	framework	efficiently,	designers	do	not	have	to	know	
well the concepts that the framework uses for generating the
dialogue. Most of the annotation categories are hidden from the
designers, that simply complete the prompts given to them.

5.3. Target
As chatbots start to be employed in more and more sectors,
from retail, to healthcare, to customer care, the pool of users
also	diversifies.	In	fact,	not	only	programmer	users	can	be	
interested in the development of a chatbot, but also employees
belonging to the marketing department or CRM department. As
the output for this framework is a chatbot for data exploration,
it can be particularly useful as an intranet resource to help
employees	navigate	their	firm	databases.	The	interface	here	
presented aims at making the framework more accessible,
aiding the chatbot designer in completing the database schema
annotation procedures. Taking into account the diversity of
scenarios and user cases, it was designed both for programmer
users that are not expert with the framework, and for non-
programmers that are not familiar either with the JSON format
or the framework. One important consideration to make is that
to	be	proficient	with	it,	the	user	will	still	need	to	have	basic	
knowledge of relational databases visualization.

5.4. Visual Identity
The interface proposed in this work contains a lot of textual
information, due to the nature of the tasks that compose the
database schema annotation procedure. To ease the cognitive
load posed on the user, a system of colours and icons was
designed to encode concepts and actions that did not require
text input, while to visualize the annotations a conversational
paradigm was employed.

fig. 31
The layout of the conversation editor.
The placing of the text bubbles
references instant messaging platforms

Design of the interface - Visual Identity Design of the interface - Visual Identity 8988

As we have seen, the interaction paradigm chosen for this tool
is a conversational one. Thus, the visual identity of the interface
was modelled after that of instant messaging platforms, in
order to create for the user an environment that could feel as
familiar as possible. The main inspiration for the layout and visual
elements was drawn from instant messaging applications such
as Telegram and WhatsApp. Text bubbles-like graphic elements
were designed to showcase the editable intents. To differentiate
intents that regard user utterances from intents that refer to
chatbot messages, the position of the text bubbles mirrors the
one used in messaging platforms. In addition to that, the bubbles
are	preceded	by	an	icon	that	identifies	the	user	and	one	for	the	
chatbot.

5.4.1. Colour palette
The	interface	uses	colours	as	signifiers	to	visually	represent	
different abstract concepts. The annotation procedure is, in fact,
composed of many different steps that need to be graphically
conceptualized to make them more accessible to unexperienced
user base. One of the most important concepts is the type
annotation. As we have seen, three different types can be
assigned to tables, primary, secondary, and crossable. These three
values were encoded with colours to increase the readability of the
database and give a permanent visual cue that could help users in
recognizing at a glance the different types of tables.

For the background elements a neutral blue palette was chosen
to set off the colours of important elements like the tables and
annotations. For buttons a dark blue tint was chosen to make
them contrast with the background, while maintaining a cohesive
look. Lastly, for the annotations two colours were chosen: a light
blue shade already in use for the tables that do not have an
assigned type was used to highlight the annotations that have yet
to be made. Instead, the orange colour was chosen to mark the
completed annotations.

Secondary table

Buttons

Primary table Background colours

Crossable table Annotations
yet to

be made

Completed
annotations

Non-tagged table

5.4.2. Icon system
Icons provide pragmatic metaphors that help users in concretely
represent abstract components (Marcus, 1998). Using familiar
concepts in an unfamiliar environment can increase ease of
learning and memorization. On the other hand, they can be
dysfunctional if they cannot convey their function clearly. This
issue was very much relevant in the design of the icons used
for this interface. In fact, as the tasks and concepts are mostly
abstract, it was not always possible to identify a visual metaphor
to represent them. In some cases, colours where used, as we
have seen with the type annotation.	However,	a	set	of	icon	was	
designed for buttons functions and to identify the user and the
chatbot in the Conversation Editor and in the Chatbot Preview.

In particular, for better accessibility, for the type annotation the
colours were paired with a symbol made from the type initial.
This way, users could also have a symbolic representation of the
type to help them in identifying them.
For the conversational type annotation, a set of icons
representing each one possible data type was designed, to give
users a visual queue when setting this particular annotation.
A pair of eye icons were designed to implement an hiding
functions to give user control on how many tables they can
visualize at the same time. Then a link icon was designed
to highlight foreign keys. This icons makes such attributes
recognizable	and	grants	access	to	a	specific	action	that	we	will	
see in the following chapter. Lastly a save icon was designed to
validate user input.

users patterns

Date

Primary

Word

Secondary

Number (NUM)

Crossable

Visible Hidden

Enumerable (ENUM)

Foreign key

SaveChatbot patterns

fig. 32
The colour palette for background,
buttons and annotations

fig. 33
Icons Designed for the chatidea framework

Design of the interface - Visual Identity Design of the interface - Visual Identity 9190

5.4.3. Data visualization
Since the framework is based on relational databases, the
type of diagram used to visualize the data is based on entity
relationship diagrams, ERD; the type of diagram most commonly
used to represent such databases. Compared with ERDs, the
diagram used in this work has a less technical visual syntax to
make the visualization more understandable to an inexperienced
user base. In particular the syntax pertaining the nodes. Nodes
can	be	represented	using	different	kinds	of	notations.	In	figure	
35 we can see an example of crow’s foot notation, also known
as Martin notation (Everest, 1976). The crow-foot notation, where
the ends of the nodes differ based on the kind of relationship
they represent was relaxed avoiding to use the symbolism tied
to type of relationship existing between two tables in favour of
a single type of node with circular ends. In addition to that, the
tables	now	show	also	the	first	value	of	each	column,	to	aid	the	
user in understanding the content of the table, as the column’s
name may not be representative enough.

Many

Zero or one

Zero or many

One or many

One

One (and only one)

5.4.4. Logo
The	name	CHATIDEA,	is	the	acronym	of	CHATbot	for	Interactive	
Data ExplorAtion. Starting from this we set out to create a
new logo for the framework that could convey the principal
characteristics of the framework: the conversational nature of
the interaction paradigm used in the tool and in the exploration
of	structured	databases.	Thus,	the	logo	(fig.	36)	of	CHATIDEA	
was designed to communicate visually the concept of chatting
and conversation. For this reason a text bubble was chosen to
represent this concept in light of its immediate recognizability
and memorability. In addition to that, since annotations are the
most important and characterizing concept of the framework,
the orange tint used for the annotations was reused in the logo.
Inside the text bubble are placed two letters from the name, CI,
so to maintain an hint of the original name even when the icon
is used alone.

The	typeface	used	(fig.	37)	is	the	same	as	the	one	used	for	the	
whole tool, Prompt by Cadson Demak. A sans serif font with airy
negative space that works well in small size and is suitable for to
be used on the web, but also in print.

Sphinx of black quartz,
judge my vow
Sphinx of black quartz,
judge my vow

Prompt

fig. 34,
On the left, an example of the
relational diagram employed in the
interface Above, examples of the crow
foot notation

fig. 35

fig. 36
CHATIDEA logo

fig. 37
Typeface speciment

6. Information
architecture
6.1. Summary

6.2. Home

6.3. Database Schema Screen

6.4. Concept File Annotations Screen

6.5. Concept File Generation

Information architecture - Visual Identity 9594 Information architecture - Summary

First pattern

Conversation editor

Property editor

Database schema

Homepage

Conversational
object

Conversational
object

Table type

Display
attributes

Display
attributes

Show
coloumns

Show
coloumns

Second pattern

Category
annotation

Category
annotation

Third pattern

Conversational
relationship

Conversational
relationship

Fourth pattern

Conversational
attributes

Conversational
attributes

Conversational
value

Conversational
value

Conversational
type

Conversational
type

6.1. Summary
This chapter will analyse the details of the information architecture,
first	by	outlining	a	description	of	the	main	windows,	then	by	
focusing	on	the	specific	interactions	that	generate	the	annotation.

6.1.

fig. 38
Information architecture
of the interface

Information architecture - Home Information architecture - Database Schema Screen 9796

6.2. Home
The	tool	opens	with	a	homepage	(fig.	39)	that	gives	the	chatbot	
designer the option of creating a new annotation project or
opening an already existing one. If the designer chooses to
create a new one, she or he has to give it a name and import
the relational database schema using the button next to the call
to action.

6.3. Database Schema Screen
After having imported the schema of the relational database
that needs to be annotated, the designer is presented with
the Database Schema Screen	shown	in	figure	40.	This	screen	is	
devoted	to	the	management	of	the	database	and	the	definition	
of the Schema file.	Here	the	chatbot	designer	is	presented	with	

Users can add the
database schema

from here

a node-graph representation of the database, that highlights
the relational structure of the data. On the right, there is a
sidebar containing all the editable elements and properties
of the database. Through the node-graph the designer can
skim the database, choosing what tables will be needed in the
conversation with the end-user and what will not. A database, in

fact, can contain tables that have no use in a conversation with
an end user, but that still have a reason to be in the database,
so the designer can omit them using the minus button. The table
will not be deleted from the database, but just omitted from the
annotation process. Next, the designer can edit the relations
between tables and draw new nodes by a dragging interaction.
This way the designer can add missing relationship meaningful
for the conversation with the end user.
Lastly, on the top left of the node-graph viewport, there
is a quick interactive legend that allows the user to toggle
the visibility of tables that have been assigned a type. With
this feature the designer can easily keep track of the Type
annotation, thus avoiding having too many tables of one type or
another. Moreover, it improves readability of the database as less
tables can be in view.

In the sidebar editor, instead, the designer can edit the tables
and attributes names and decide their role in the schema,
meaning their type: primary, secondary, or crossable. This last
annotation, actually, is part of the concept file, but was included

Sidebar editor

Node graph
area.

fig. 39
Homepage

fig. 40
Database Schema

Information architecture - Concept File Annotations Screen Information architecture - Concept File Annotations Screen 9998

in this editor because it is propaedeutic for following annotation
concepts, like the category annotation. Furthermore, it gives
important hierarchical information that can help the user in the
understanding how to structure the conversation with the end
user. Moreover, table marked as crossable, will be excluded
from the following annotation steps, so it was fundamental that
the table type annotation was done in the early stages of the
annotation process. Tables have to be marked as crossable
instead of simply being omitted with the minus button because
they are needed for the generation of following annotations like
conversational relationships and conversational attributes, as
they are links between tables in a many-to-many relation.

6.4. Concept File Annotations Screen
After having completed the database management tasks, the
designer	accesses	the	screen	shown	in	figure	38,	devoted	to	the	
creation of all the other annotation concepts contained both in
the Display file and Concept file.

The screen is divided in three parts. On the left it can be found
the Table Overview, which is a sidebar listing all the tables
tagged as primary and secondary. The user can expand them to
easily check the content of each of them. The Table Overview
can also be expanded to get a node-graph visualization, so that
also	the	various	relations	between	tables	are	on	display	(fig.	41).	
At the centre of the page, there is the main content, where the
designer	performs	the	different	annotation	tasks.	To	define	the	 The chat preview

Conversation editor. When a table is
selected, users can edit the annotations
patterns

In the Table
Overview the
designer can
select the
table to work
on and view
the content of
other tables

annotations, the designer can choose to use the conversation
editor or the property editor.
Like already said in the previous chapter, the conversation
editor exploits visual metaphors used in conversational user
interfaces to show the user the different editable concepts. The
annotations are presented to the designer as editable messages
sent by two different senders: the chatbot on the left and the
end	user	on	the	right	of	the	main	content.	Much	like	profiles	
pictures, the annotations are introduced by two icons, one for
the end user and another one representing the chatbot.

The property editor,	shown	in	figure	42,	is	an	alternative	editor	
that can be used to generate the annotations. It was designed
for more advanced users, that know very well the framework.
One of the principles of End-User Development, indeed, refers
to the provision of different abstraction levels (Green & Petre,
1996), to ensure a gentle slope of complexity (Lieberman et al.,
2006), thus accommodating different user skills and attitudes
and also varying usage contexts. In the editor, the concepts
are divided in accordion sections that can be expanded or
contracted as needed. With this editor the designer can readily
access	all	the	annotation	fields	either	to	perform	the	whole	
procedure or to make quick changes.

The same structure seen in the conversation editor is also kept for
the chat preview on the right. This area, simulating a messaging
platform, is used to get a real time preview of the result of the
annotations. Thanks to it the designer can have live feedback on
the process and a clearer understanding of the task at hand.

In the Property editor, the different
annotations concepts are organized in
accordion sections.

fig. 41
Conversation

Editor
fig. 42

Property Editor

Information architecture - Concept File Generation Information architecture - Concept File Generation 101100

6.5. Concept File Generation
To	begin	the	concept	file	annotations,	the	designer	must	first	
select one table from the sidebar on the left of the screen. By
doing so, a list of text prompts presented as messages will
appear. Each prompt has a highlighted part that can be clicked
to	open	a	dropdown	containing	all	the	editable	fields.	After	
having edited all the prompts, the user can select another table
and continue the annotation process. Each text prompt covers
a different concept of the annotation process. We will now see
how the user interacts with each of them and what concepts are
annotated by doing so.

6.5.1. First pattern: conversational object
annotation, display attributes, and order by

Clicking	on	the	first	pattern	highlighted	element	opens	the	
drop-down	menu	(fig.	43)	covering	the	conversational	object	
annotation, the display attributes, and the order-by annotation.
They have been grouped together because these three
annotations	are	part	of	the	same	intent:	finding	data.	First,	the	
designer writes aliases, i.e., alternative names by which the end
users may refer to the table they are looking for.
The	first	word	written	in	the	list	of	aliases	is,	by	default,	used	as	
the conversational object in the actual JSON, while the following
ones serves as aliases. After this step, the designer checks
what attributes she/he wants to use to answer the query. After
being checked, each attribute has to be renamed so that it is
more understandable for the end user. Attributes marked by
a link pictogram are foreign keys. When the designers select
them, they can access attributes from the referenced table to
show instead. Foreign keys in the origin table, indeed, are just
identifiers	that	could	not	make	sense	for	the	user,	while	the	data	
in the target table would be more meaningful.

Lastly the designer checks what attributes will be used to
summarize the answer when the chatbot returns a long list.
By design of the annotations, the attributes checked will also be
used to order the results in the list.

6.5.2. Second pattern: category annotation
The	category	annotation	(fig.	44)	is	done	in	the	second	pattern.	
Here	the	chatbot	designer	chooses	by	which	attribute	the	
content of a table must be visualized. The system can suggest
what	attribute	could	be	the	best	fit,	but	the	designer	is	free	to	
choose one or more attributes. The result will be a pie chart that

fig. 43
First pattern

Drop-down menu

fig. 44
 Second pattern

drop-down menu

Information architecture - Concept File Generation Information architecture - Concept File Generation 103102

quickly summarizes the data. After having picked one attribute,
the designer can type a new name for the attribute to generate
the	legend	that	will	accompany	the	visualization	(fig.	45).

6.5.3. Third pattern: conversational attributes
This	annotation	covers	the	filter	intent	and	is	more	complex	than	
the ones before. The designer is called to write a keyword in
the	text	field	on	the	left.	The	keyword	can	be	a	phrase	or	just	
a	word,	that	introduces	the	data	that	acts	as	a	filter,	as	in	the	
conversational value (i.e.,each value of a chosen attribute).
Then, the designer has to pick the attribute where the chatbot
will	look	into	to	find	the	conversational	value.	To	do	this,	first,	
the	designer	clicks	on	the	right	field.	After	that,	the	chatbot	
designer chooses from a drop-down menu the table where the
data is stored, then the designer checks the attribute from the
multiple choice.
To complete the annotation, the chatbot designer must specify
the conversational type by checking the icon corresponding
to	the	correct	data	type	situated	next	to	the	field	reserved	
for the conversational value. A second instance of this pattern
is	reserved	for	defining	queries	that	do	not	have	a	keyword	
introducing the conversational value.

6.5.4. Fourth pattern: conversational
relationships

Conversational	relationships,	as	we	have	seen,	in	the	final	
interaction between end user and chatbot are conveyed through
buttons that are used to give the end user suggestions on how
to continue navigating the database. For this annotation, the
designer	first	chooses	what	table	the	button	leads	to;	then,	she	
or he types a new and more descriptive name that acts as a
navigation tip.

Scegli la colonna di cui l’utente cercherà il valore

fig. 45
Text	field	to	generate	the	
visualization legend

fig. 46,
Above, the first pattern for
conversational attribute structured as
so:
 Find <keyword> <conversational
 value>

Below, the second pattern. This pattern
is structured as so:
 Find <conversational value>

fig. 47

fig. 48
Fourth pattern
Drop-down menu

7. User-based
Evaluation
7.1. Summary

7.2. Preliminary Evaluation

7.3. Second Evaluation Study

7.4. Third Evaluation Study

7.5. About Designing UIs for conversation
design

User-based Evaluation - Summary User-based Evaluation - Preliminary Evaluation 107106

7.1. Summary
This chapter will discuss the results of the three user evaluations
conducted during the development of the interface. For each
evaluation study the we will see how the test was conducted,
what where the insights gained and the main takeaways.

7.2. Preliminary Evaluation
To design and test the user interface a prototype was developed
by using the rapid prototyping software Figma. After having
completed	a	first	iteration	of	the	UI	prototype,	a	group	interview	
was	set	up	with	the	four	CHATIDEA	framework	developers.	The	
developers are four former students from Politecnico di Milano
and University of Bari that recently graduated in Computer
Science	and	Engineering.	One	of	them	developed	the	first	
version of the framework presented in (Castaldo, 2019), while the
other three worked on further extensions and improvements to
the framework presented in the thesis(Ferreri & Notari, 2020).

The interview revolved around a guided demonstration of the
prototype. It was intended to get feedback from a pool of
users that had already performed the annotation task without
the aid of a visual tool. This way we could assess the validity of
the design choices and interaction paradigm, and in particular
its correctness with respect to the origin methodology. Due to
the restriction imposed by COVID-19, the interview was held
through Skype and recorded with the participants approval.
The prototype was broadcasted from my computer so that the
participants could follow the demonstration of the interaction
with the prototype. The interview was structured in two parts.
During	the	first	part	of	the	interviews,	the	participants	were	
presented with the prototype. Due to the limited freedom of
interaction given by the prototype, I acted as a guide and gave
a demonstration of how to perform each annotation task. After
this initial phase, during which I went through the prototype
from start to end, there was a discussion session during
which the developers could make their comments regarding

the interface and we could gather insights. Starting from the
beginning of the demonstration, feedback was recorded for
each step of the interaction. All the participants considered the
conversational	paradigm	clear	and	effective,	while	specific	issues	
were found regarding some tasks and the introductory message
that explains them.

The most important problem highlighted was that the
participants did not understand that to get the text prompts
they	had	to	first	select	a	table.	In	that	iteration	of	the	interface,	
in	fact,	the	first	table	of	the	database	was	already	selected.	
So, the user was immediately presented with a set of prompts
for that table, but not for the rest of the database.
Another	significant	problem	was	encountered	with	the	table	
types: according to the presentation of the prototype given
at the beginning, any table could be tagged with the type
crossable, while, on the contrary, participants noted that only
tables with at least two keys can be tagged as such.
A further issue was found with the editing of relations. As initially
defined,	new	relations	could	be	drawn	by	dragging	a	handle	
situated on the table header towards another table header,
while, technically, the linking is between keys.

Lastly, in two different occasions the explanatory message
introducing each task was found too vague. In particular, the
message explaining the category annotation task was not
clear enough in explaining the outcome of the task. Another
significant	issue	was	found	in	the	show	columns	annotation	
explanatory text. The text explained only one of the two
functions of the annotation, explaining only that the annotation
served to order the results, but omitting that it also determined
which attributes would be shown when returning a list of results.

7.2.1. Takeaways
Improved copywriting
After the evaluation, the message introducing the category
annotation was changed to include the table name in the task
description. Other tooltips were reworded to were reworded
to better express the tasks and clear ambiguities, In particular
the	tooltip	that	welcomes	the	users	during	the	first	user	was	
modified	to	include	more	propaedeutic	information	to	start	
interacting with the tool.

Warning message for tables wrongly tagged as crossable
To prevent users from tagging tables with only one key as
crossable, a warning message was added. So when users
wrongly check the crossable type for tables with only one key,
the	warning	will	appear	(fig	49).	

User-based Evaluation - Preliminary Evaluation User-based Evaluation - Preliminary Evaluation 109108

Editing relations
Following the feedback of the framework developers, the relations
drawing	was	changed	(fig.	50)	from	table	header	to	table	header	
to table key to table key. This solution requires the user to have
some knowledge of relational databases, but is less ambiguous
when tables have multiple keys referring to as many tables.

Redesign the start of first-opening state of the conversation editor
Following the remarks made during the interview, the default
state	of	the	conversation	editor	was	redesigned	(fig.	51).	Instead	
of presenting the user with an already chosen table and the
respective	text	prompts,	the	user	finds	the	editor	empty	except	
for two system messages that explain what the editor is for and
how to start editing the annotations. This way the user is guided
in	choosing	the	first	table	and	can	learn	how	to	use	the	database	
overview sidebar.

fig. 49
Warning for wrogly tagged
crossable tables

fig. 50
In this figure we can see how the nodes’ handles were moved
from the table’s header to the primary and foreign keys

fig. 51
The starting state of the conversation
editor was changed from having a
table already selected, to having none.
Moreover, a new help tip was added to
guide the initial interaction

User-based Evaluation - Second Evaluation Study User-based Evaluation - Third Evaluation Study 111110

7.3. Second Evaluation Study
After	this	first	group	evaluation,	a	second	one	was	held	with	
Emanuele Pucci, CEO and cofounder of Awhy13, a company
specialized in the development of chatbots for customer care
and support. The interview was held the same way as the
previous one. I presented the prototype by broadcasting it
though Google Meet and explaining all the points of interactions.
After this initial phase, we moved onto the question session.
This	time,	the	participant	did	not	find	significant	issues	with	
the interface itself and regarded the prototype he was shown
as	being	clear	and	intuitive.	He	appreciated	a	lot	the	paradigm	
and	also	the	opportunity	it	gives	to	define	chatbots	on	top	of	
structured databases. According to his experience, the need for
this kind of chatbots is now emerging in companies. In particular,
he noted that it would be especially useful for intranet purposes,
to develop chatbots that could help employees in navigating
the	company	databases.	However,	the	participant	expressed	
doubts regarding the scalability of the interface with extensive
databases.	He	noted,	in	fact,	that	in	a	large	database	it	may	be	
difficult	to	keep	track	of	all	the	relations	between	tables.	This	
issue regarded both the graph visualization of the database
specifically,	and	the	whole	annotation	procedure.	

7.3.1. Takeaways
This evaluation session was focused especially on the
acceptability	of		CHATIDEA	and	its	visual	paradigm.	It	allowed	
us	to	find	out	whether	a	framework	to	define	chatbot	on	top	of	
a	structured	database,	like	CHATIDEA,	would	be	of	interest	in	
the	industry.	The	result	was	positive,	confirming	that	there	is	an	
interest in the industry, in particular for enhancing the access
to structured content such as the one generally available in
companies’ intranets.

The	most	significant	take-away	for	the	UI	design	regarded	
the scalability of the provided visualization of the database
schema	in	the	first	phase	of	design,	when	the	role	of	the	
different tables has to be marked up. The concerns that came
out	were	related	to	the	difficulties	of	:	1)	displaying	the	schema	
for large databases, which could have a high number of tables
(sometimes	more	than	fifty);	2)	configuring	all	the	queries	for	
each single table. Due to time constraints this issue could
not be addressed, but future work could focus on making the
interface more scalable. For example, a progressive visualization
of the database schema could be devised, which could start
from “central” tables, i.e., those tables with the higher number
of outgoing and ingoing relationships, and then progressively
explore the other tables. Also, to reduce the workload on users,

13 https://www.Awhy.it

some	tasks	required	for	the	configuration	of	the	user	queries,	
like type annotation and category annotation, could be partially
automated by analyzing a-priori the database schema and the
data stored within the tables.

7.4. Third Evaluation Study
A third evaluation study was carried out to further validate the
interaction paradigm and to understand how effectively users
could interact with the tool. For this study, a running web
front-end application was developed to provide the participants
with a realistic interaction. The front-end was not connected to
the engine of the framework in charge of generating the chatbot
code, but it was fully working and supported the users in the
different	steps	required	to	annotate	the	database	and	configure	
the conversation.

The	front	end	was	configured	to	support	the	definition	of	a	
chatbot on top of a sample database derived from the one
serving the DEIB web site14. As reported in Figure 52, the
adopted database includes 8 tables, a number that was not
critical for the visualization of the database schema and that
at the same time was reasonable to let the users make a
selection of tables and their roles. The tables including central
contents were considered (e.g., among the others, the ones
related to the DEIB faculty, the awards, the published books,
the research projects), which could provide the users with the
opportunity	to	define	multiple	threads	of	conversation.	This	
study was sustained by three groups of users, one group of
programmers with experience in chatbot development and
that have a thorough knowledge of relational databases. The
second group was composed of users that match the target of
this tool, namely non-programmers and people that do not have
a solid knowledge of relational databases. The reason for the
involvement	of	the	first	group	was	to	gain	insights	from	a	pool	
of users with experience in chatbot development and thus know
the current practices and can better identify possible missing
functionalities.

7.4.1. Participants
The involved users were 12, ten males and two females. Their
mean	age	was	24.5	years.	The	participants	have	been	classified	
by their skill level in three skill level groups: programmers
expert in chatbot development, programmers not expert
in	chatbot	development	and	lay	users.	The	first	group	was	
composed	by	five	programmers	from	the	technology	company	
Awhy specialized in chatbot development. The second group

14 http://deib.polimi.it

User-based Evaluation - Third Evaluation Study User-based Evaluation - Third Evaluation Study 113112

fig. 52
The schema of the database used for
the user evaluation

fig. 53,
Windows from the front-end developed
for the user test. Above the database
schema, below the conversation editor.

fig. 54

User-based Evaluation - Third Evaluation Study User-based Evaluation - Third Evaluation Study 115114

was composed of students of Computer Science and Digital
Communication from the University of Bari Aldo Moro.
The third group, instead, was composed of one game designer
and three university students from different backgrounds: one
bioinformatics, and two communication design students.

7.4.2. Procedure
We asked the users to participate in individual interviews
during which we instructed asked them to perform 7 tasks for
configuring	a	conversation	on	top	of	the	sample	database.	
Due to the COVID-19 restrictions, the interviews were held
online. Each participant was asked to connect to the online front
end and perform the study tasks while sharing her/his screen.
Each session was video-recorded. At the end, participants were
asked	to	fill	out	a	questionnaire.	To	prepare	for	the	interviews,	
users were asked to read a document that provided a brief
theoretical	explanation	of	CHATIDEA	together	with	a	description	
of the scenario they would recreate during the interview.
The scenario gave some background to frame the objective of
the activities they were going to perform. If the users did not
have read the document, we gave an introductory speech that
summarized the content of the document. During the study
the users were invited to perform the task autonomously, but
could	ask	for	clarification	if	they	needed.	Each	session	was	
video-recorded with their consent. At the end of the interview
session,	each	participant	was	asked	to	fill	out	a	questionnaire.	
The	first	two	tasks	they	performed,	regarded	the	definition	of	
the	type	annotation,	while	the	remaining	five	tasks	covered	
each of the other annotation concepts: conversational object,
category,	qualifier	and	relationship.	The	tasks	were	as	follows:

Task 1
Define all the primary, secondary and crossable tables,
depending on the dialogue you want to design. As
primary table, you should select at least the table
persone.

Task 2
If necessary, for the primary and secondary tables
selected at the previous step and for their attributes
you can change the names, to make them more
understandable and adequate for the conversation in
the final chatbot. When ready, you can click on the OK
button to proceed to the next step of configuration.

Task 3
Select the table persone. Complete the structure of the
utterance “Mostrami ___” (“Show me___”).

Task 4
Complete the structure of the utterance “Categorizza i
risultati di persone in base a ___” (Classify the results for
persone on the basis of the attribute ___).

Task 5
Complete the structure of the utterance “Trova persone
che___” (Find persone that____) ,by expressing a selection
condition.

Task 6
Complete the structure of the utterance “Trova persone
___” (Find persone ____), by selecting one or more
attributes for which the user can select some search
keys to filter out some table instances.

Task 7
Complete the structure of the utterance “Riguardo a
persone, posso mostrarti anche:___” (Regarding persone, I
can show you also:___).

7.4.3. Data collection and analysis
Quantitative and qualitative data were collected for each
participant. As quantitative data, the SUS score and NASA-
TLX score were collected. SUS is a psychometric tool, used to
assess perceived system usability (Brooke, 1995)(Lewis & Sauro,
2009). NASA-TLX was used, instead, to measure the perceived
workload	on	the	participants	when	using	the	system.(Hart	&	
Staveland, 1988).

For the qualitative data, instead, comments made during the
interviews by each participant were annotated and analysed,
and systematised using inductive thematic analysis (Braun
& Clarke, 2006). The data was organized into three groups
corresponding to the skill levels groups used to classify the
participants.	The	collected	data	were	analysed,	first,	with	
an inductive approach to extrapolate relevant insights and
generate	codes,	i.e.,	a	system	of	labels	that	classifies	the	relevant	
features found in the data. The codes were, then, grouped into
overarching themes.

7.4.4. Results
From the SUS questionnaire we recorded that the tool scored
above the average (i.e.,a score of 68) (Sauro, 2011). The measured
average SUS score was of x = 74.2, SD = 15.0; the score of the

User-based Evaluation - Third Evaluation Study User-based Evaluation - Third Evaluation Study 117116

System Usability was of x = 76.3, SD = 14.8; while the score
for System Learnability was x = 68.8, SD = 17.3. The SUS score
for the chatbot developers group was x = 74.4, SD = 15.2; for
programmers x = 73.8, SD = 14.5; lastly for lay users
x = 74.4, SD = 19.5. Regarding the workload measured through
NASA-TLX, the value is measured on a scale from 0 to 100, where
0 equals to low effort, while 100 equals to excessive effort from
the user. The average score recorded after this analysis was x =
38.1,	SD	=	13.3.	The	first	group	composed	of	chatbot	developers	
scored x = 39.6, SD = 13.3; the second group of programmers not
expert in chatbot development scored x = 39.6, SD = 6.0; while
the third group of non-programmers scored x = 35.6, SD = 19.1.
On average, the highest score, and therefore poorer performance,
was recorded for the Mental Demand dimension
(x = 54.2, ST= 17.3), followed by Effort (x = 44.2, ST= 20.7),
Performance (x = 37.5, ST= 16.6), Temporal Demand
(x = 31.7, ST= 24.8), and Physical Demand (x = 23.3, ST= 19.7).

Average by
group

Mental
Demand

Physical
Demand

Temporal
Demand Performance Effort Frustration Workload

Chatbot
developers 52.5 32.5 27.5 40 40 45 39.6

Developers 57.5 17.5 40 40 45 37.5 39.6

Lay users 52.5 20 27.5 32.5 47.5 30 35

Total sample 54.2 23.3 31.7 37.5 44.2 37.5 38.1

Average by
group

SUS
Usability

Sus
Learnability SUS Score

Chatbot
developers 77.3 71.9 74.4

Developers 75.0 68.8 73.8

Lay users 76.6 65.6 74.4

Total sample 76.3 68.8 74.2

The results of the thematic analysis highlighted common themes
across the three skill level groups. The quotes here reported are
a translation of the observation made by the participants in their
native tongue during the interviews.

First theme: Conflict between system architecture and users’
assumptions.
We observed that users assumptions about some tasks were in
conflict	with	the	system	architecture.	The	majority	of	the	users	
encountered	difficulties	completing	the	pattern	“Show	me	<table	
name>.	In	this	pattern	users	can	choose	first	the	attributes	to	
give back in response about each record of the table; secondly,
they can choose which attribute to use to generate a preview
of the results and decide the order in which they are shown
when many results are returned as a list. By design this second
step	is	the	same	annotation	in	the	JSON	file.	However,	most	of	
the participants did not understand the difference between
selecting the attributes that would be used to answer the query,
selecting those that would generate a preview of the results
and decide the order in which they are shown when they are
returned as a list. The tooltips of the operations were not clear
to them and they mostly failed to perform this part of the task
correctly.

“Am I choosing how to order the attributes shown in
a single response, or am I choosing the columns to
generate and order the preview?”

Another assumption was that the attributes had to be renamed
for conversational use in the database schema window.
So they were confused when they were asked to rename them
when	completing	the	first	pattern,	where	they	had	to	choose	the	
attributes to show in response to a query.

“Will these names be used by the user while chatting?”

Second theme: Knowledge of the domain of the database and
of basic concepts of relational databases is a must
Users across all groups stated that knowing beforehand the
database domain would have helped them in understanding
better how to complete the patterns and how to choose
attributes and relationships.

“It’s difficult to use the interface without knowing the
database”

“I do not know what this attributes mean so it is more

table 3
Table summarizing the average
NASA-TLX score by group and with
respect to the total sample interviewed

table 4
Table summarizing the average SUS score
by group and with respect to the total
sample interviewed

User-based Evaluation - Third Evaluation Study User-based Evaluation - Third Evaluation Study 119118

difficult to decide which should be chosen”

Lastly, the group of non-programmers stated that the tool
would be more suited for people that have at least a basic
understanding of relational databases, as they encountered
some	difficulties	tasks	that	required	basis	knowledge	of	
relational databases concepts: the help tip about crossable
tables provided by the system was not enough to avoid that
tables would be wrongly tagged as crossable.

“The interaction is for sure aided by the system, but
requires knowledge of the subject [database domain]
and a bit of technical knowledge [relational databases’
concepts]”

Furthermore, despite understanding the relationship graph,
some of them were initially confused by why they could
choose attributes from more than one table (i.e.,the tables in
relationship with the one they were working on) while setting
the	conversational	qualifiers.

Third theme: The current tooltips do not provide satisfactory or
clear enough explanation of some tasks
Many users expressed confusions in different points of the
tests. The tooltips were often regarded as not clear enough. In
some instances users highlighted the need for further technical
clarifications,	such	as	whether	they	had	to	separate	the	aliases	
in	the	first	pattern	with	commas	or	not.	Or	whether	in	multiple	
choices the attributes were added in the pattern with an AND or
OR logic.

“The workflow is good, but what should be written is not
explained well enough the first time you interact with the
tool”

“Some tooltips should be rephrased to make everything
more usable and immediate”

Another	difficulty	was	encountered	while	completing	task	5	
and	filling	the	pattern	“Find	<table	name>	that	[...].	Users	had	
troubles understanding how to structure the pattern (i.e.,writing
a keyword followed by a column they selected).

“Can I write ‘find foreign professors’?”

This issue was partially resolved by changing the explanation
and	adding	labels	to	the	text	fields,	but	non-programmers	found	
the task a bit challenging still. For them, an additional layer of
complexity was understanding that they could select attributes

from tables in a relationship with the one they were working on.

Fourth theme: Perceived user friendliness despite issues with
some tasks
During the interviews the majority of the users encountered
difficulties	with	some	tasks;	despite	that,	many	of	them	regard	
the tool as user friendly, noting that the workload is not
overwhelming.

“If you can resolve all the bugs it would be user friendly”

“It is simple and linear. I do not have too many things to
do at once”

“Very usable, [the tasks] flow well”

Fifth theme: The possibility of generating chatbots from
databases is interesting
Users	from	the	first	two	groups	found	the	possibility	of	
generating a chatbot starting from a relational database
interesting. They expressed a positive opinion about the
framework,	as	it	enables	them	to	choose	flexibly	what	tables	to	
choose.

“It is particularly powerful that the user has control on
what tables to include and what relationships to use”

“It is nice to be able to define database queries through
natural language”

7.4.5. Takeaways
This evaluation session was focused on assessing the usability
and the effectiveness of the interaction paradigm. The results
were mostly positive as the majority of the participants found
the interface quite intuitive despite having encountered some
difficulties,	confirming	that	the	possibility	of	building	a	chatbot	
upon a database is of interest. Furthermore, users from both skill-
level groups agreed that to be able to use the tool one must
have a clear understanding of the database domain, otherwise
it is hard to formulate possible query patterns and complete the
annotations. In addition to that, the group of non-programmers,
while thinking that the overall interaction is suited for their skill
level, expressed dissatisfaction with how the crossable role
was explained. In general for this group of users, the concepts

User-based Evaluation - Third Evaluation Study User-based Evaluation - About Designing UIs for Conversation Design 121120

pertaining relational databases proved to be the main obstacle in
the interaction with the tool. Most of the participants appreciated
the front end, expressing a general positive opinion regarding
the interaction paradigm; to most of them, the visual metaphor
was clear and easy to understand. The database schema was
regarded as the most intuitive window by both programmers
and non-programmers. The conversation editor, instead, received
mixed feedback, as users from both groups encountered almost
the	same	issues	while	interacting	with	it.	However	the	problems	
highlighted by the participants did not pertain to the interaction
paradigm	itself,	but	some	specific	tasks.	Regarding	the	tasks	the	
main takeaways were:

Multiple renaming operations are hard to understand
Especially non-programmers, that are not familiar with chatbot
development, found the reason behind the fact that one can
rename the attributes and the tables both in the database schema
and in the conversation editor hard to understand. The two
renaming operations affect the generation of two different JSON
files,	the	schema	and	the	concept	file	respectively,	but	at	UI	level	
this distinction is not explicitly declared by choice, as it would
add another layer of complexity for a non-programmer. In future
work this problem should be addressed either by perfecting
the text that explains the two activities, or by unifying the two
activities into one so that users will be asked to rename the
attributes only once.

Order by and Display annotation needs to be redesigned
The	first	pattern,	“Show	me	<table	name>”	was	the	most	critical	
for the participants. Most of them did not understand the
difference between selecting the attributes that have to appear
in the answers (display attributes annotation) and selecting those
that will be used when results are returned as a list (order by
and show columns annotation). In future work this issue could
be resolved by separating the operations; leaving the display
attributes	annotation	in	the	“Mostrami	<table	name>”	pattern,	
while moving the selection of the attributes that will be shown in
a list to another pattern.

Usability refinements
As	the	web	front-end	is	still	in	development,	usability	refinements	
and additions are needed for a better user experience. Many
users expressed dissatisfaction with the explanations of some
tasks, in particular with the explanation of the two patterns
dedicated	to	the	conversational	qualifier	annotation	in	task	5	and	
6, which were found too similar. In future work the two patterns
need	to	be	modified	in	order	to	be	more	distinct	from	one	
another by changing both the pattern and the explanation in
pattern	6	(instead	of	“find	<table	name>	[…]”	the	pattern	should	be	
“find	[...]”).	Furthermore,	users	noted	that	the	system	should	alert	

them when they are about to do an action that could delete their
work. In addition to that, the participants noted that there should
be a way to unset the role of a table. Moreover, it needs to be
made	more	clear	that	the	tables	listed	in	the	conversational	qualifier	
pattern are tables in relationship with the one the user
is working on, because users from all skill levels expressed doubts
about this.

Chat preview improvements
While it was generally well received, some users expressed
dissatisfaction with the chat preview panel, as its usage was limited.
To improve the preview, some users suggested adding the possibility
of typing queries to try directly the annotations made. Furthermore,
as of now the chat preview shows only the pattern the user is
working on. Instead, some participants suggested keeping the whole
history of annotations in the preview and, lastly, making its graphical
elements more similar to the actual chatbot. In future work all these
suggestions could be addressed, in particular the one about keeping
the history as it can be used as context.

User friendly but not yet beginner friendly
Many users across all groups expressed a positive judgement
regarding	the	usability	of	the	tool.	However,	they	also	agreed	that	
the tool still requires basic knowledge of relational databases. Users
from the non-programmers group, in fact, observed that they
could use the tool better if they were more knowledgeable about
databases and that as of now, while the interaction paradigm is
intuitive enough, the tool seems more suitable for more experienced
users. Nonetheless, although not statistically comparable with the
scores recorded for the other two groups, their score for the SUS
questionnaire was still above average
(x = 74.4, SD = 19.5). Furthermore the NASA-TLX analysis recorded a
workload score of (x = 35.6, SD = 19.1.).

7.5. About Designing UIs for
Conversation Design

The insights gained during the user test brought to light more
general key-points about designing EUD environments and related
interaction paradigms for conversation design, which can also be
interpreted in the light of notable EUD requirements studied and
validated in different user-centric studies (Green & Petre, 1996);
(Burnett et al., 2004); (Lieberman et al, 2004); (Cappiello et al., 2015).

Closeness of mapping (Lieberman et al, 2004); (Cappiello et al., 2015)
In order to help designers understand the conversation patterns
that the system can manage, and the effect that each pattern may
have	within	the	conversation	flow,	it	is	important	to	come	up	with	

representations that abstract from technical details and, instead,
increase the expressiveness of the roles that each conversation
element	might	play	into	the	final	conversation.	In	other	words,	the	
possible types of user queries as well as the related responses that
the system can generate needs to be represented in a way that
the designers can easily understand. Our choice to “recursively”
use a conversational paradigm to design conversations enforces
this aspect. The designers express how typical user utterances can
be	structured,	in	a	format	that	is	exactly	the	one	the	final	users	will	
adopt for querying the chatbot at execution time. In addition, the
preview panel also provides examples of possible responses, thus
it immediately reproduces the effects of the designer’s choices
on	the	conversation.	Designers	can	thus	operate	on	defining	the	
structure	of	sentences	rather	than	configuring	intents	and	entities.

Context is king
A UI for conversation design must give users the whole picture of
the conversation almost at all times. Knowing how the sentences
will appear during conversation, how they relate to one another,
and being able to always see previous annotations were, in fact,
key concerns for the users. At any step of the conversation design,
the designers can take advantage from having an overview on
how the conversation would be at run time. In other words, as also
demonstrated in other domains where EUD practices are employed
(Cappiello et al. 2015), a WYSIWYG (What You See is What You
Get) approach, in which the designers can immediately see what
the	effects	of	their	design	decisions	are,	is	beneficial.	Previous	
research on EUD systems (see for example Namoun et al. 2010a,
Cappiello et al. 2014), assessed that approaches providing some
forms of immediate representation of the design choices increases
the user-perceived usefulness and ease of use. For our paradigm, a
preliminary	confirmation	of	this	benefit	is	highlighted	by	the	scores	
of the NASA-TLX and SUS questionnaires for the three categories
of	users	involved	in	our	final	study.

Progressive evaluation (Lieberman et al. 2006); (Cappiello et al. 2015)
To enhance the designers’ perception of and the control
on	the	effects	that	the	pattern	configurations	have	on	the	final	
conversation, it is important to provide feedback on “how the
designer	is	doing”.	Since	the	very	first	configuration	action,	
the designer must be enabled to see a running application and
to observe incrementally the effect of any other subsequent
configuration	action.	Immediate	execution	paradigms,	based	
on	WYSIWYG	representations,	where	each	single	configuration	
action is observable through the immediate execution of the
configured	patterns,	are	therefore	good	candidates	to	support	
progressive evaluation. These mechanisms also avoid the so-called
premature commitment, because the user is not forced to make
decisions without being able to observe and evaluate the effect
of such decisions.

Assistance on intent and entity identification.
To	further	smooth	design	barriers,	and	to	let	the	designers	define	
meaningful conversations, it is important to provide assistance
in	the	identification	of	intents	and	entities.	This	is	required	
especially	to	assist	those	designers	who	do	not	have	sufficient	
development knowledge in general (e.g., non-programmers),
or	in	the	specific	field	of	chatbots	(e.g.,	programmers	not	used	
to develop chatbots). In the approach presented in this thesis,
conversation	design	is	assisted	by	providing	pre-defined	patterns	
of queries that correspond to typical intents for data exploration.
The entities on which these patterns focus can then be easily
identified	starting	from	the	database	tables.	The	designers	can	
still	control	the	configuration	of	intents	and	entities:	they	can	
specify	entity	names	and	their	aliases,	and	can	define	typical	
expressions	that	the	final	users	could	use	during	a	conversation	
to	refer	to	specific	intents.	An	additional	aspect	that	can	improve	
system assistance, not covered in this thesis but already planned
among the future extensions, relates to the provision of default
configurations	(i.e.,	suggestions	on	possible	settings	for	some	
conversational patterns), which can be adopted as they are, or
adequately	modified.	These	suggestions,		for	example	the	one	
on	categorical	attributes,	can	be	identified	by	analysing	the	
properties of the database schema and of the database content;
this is indeed another advantage that the integration of the
dialogue system with the database can offer.

8. Conclusions
8.1. Summing Up

8.2. Limitations

8.3. Further Developments

8.4. Publication

Conclusions - Summing Up Conclusions - Limitations 127126

8.1. Summing Up
In this thesis, an end-user development tool was proposed for
the	CHATIDEA	framework	to	make	the	annotation	procedure	more	
accessible to non-programmers and, more in general, to users
that are not familiar with the framework. The research started
with analysing the state-of-the-art of chatbot development
platforms. What was found is that, as chatbots for data exploration
are still a new concept, the platforms available right now lack
in general a way to directly query databases. Moreover, even
though some of them can be integrated with a database, this
operation is still handled by code integrations that, thus, requires
programmers to be executed. On this premise, a graphical
user interface was designed to provide a novel tool to enrich
CHATIDEA,	the	already	existing	framework	for	the	development	
of conversational agents for data exploration. Then, before
presenting the proposed interface, the requirements of such
a tool were outlined, addressing also some of the challenges
posed by the annotation procedure characteristics. After that,
the conversational paradigm used to present the annotation
concepts to the user was discussed, highlighting how the familiar
environment provided by such a paradigm could be leveraged
to help users in understanding and contextualising the data and
tasks they are called to complete. Then, the project itself was
discussed, explaining its information architecture, layout and
visual identity. Finally, a user-based evaluation was conducted to
validate the design choices. These evaluation sessions allowed us
to	find	issues	in	the	design	that	led	to	significant	improvements,	
but also highlighted some critical issues that will be addressed
in future work. Nonetheless, the evaluation assessed a general
positive feedback regarding the interface, that, despite the
limitations, was regarded as fairly intuitive and accessible
even for a beginner audience provided that the user has a
basic understanding of the content of the database and of the
structure of relational databases.

8.2. Limitations
At the moment, the interface expects the user to make all the
annotations, further iteration of the system could allow users
to not make some annotations that are not fundamental to the
functioning of the chatbot, such as the category annotation.
Furthermore, the system does not cover one of the additions
presented	in	(Ferreri	&	Notari,	2020),	the	similar	JSON	file.	The	
file	contains	a	group	classification	of	similar	attributes	present	
in different tables, for example, one group could contain every
attribute that refers to people’s names. So, if we have two
tables, one for journalists and one for winners of the Pulitzer
prize, a query containing one of these two attributes would be
ambiguous, because the chatbot will not know which table to
look	into	first	to	get	the	name	the	user	searched	for.	The	similar	
annotation makes it so that the chatbot will ask the user for
clarification	before	returning	an	answer.	
In addition to that, as emerged during the second user
evaluation,	the	system	could	prove	to	be	difficult	to	use	with	
very	large	databases,	as	it	would	be	increasingly	difficult	to	
keep track of all the relationships and annotations. In the third
evaluation study, the participants from the non-programmers
group highlighted that as of now, the system still requires some
knowledge of relational databases, and, thus, is not perfectly
suited for their skill level. Furthermore, all the participants in
the	study	had	troubles	with	specific	tasks	that	will	need	to	be	
redesigned in future work.

8.3. Further Developments
The	interface	could	benefit	from	automation	of	certain	
procedures	to	simplify	the	workflow.	The	interface,	in	fact,	still	
requires a certain knowledge of relational databases, that makes
it still not completely suitable for totally inexperienced users.

Improvements regard in particular the drawing of new
relationships and the tagging of the type of tables. To help
users in drawing new relationships, after the user has selected
a primary key, the system could highlight automatically the
other tables containing the corresponding foreign key, so that
the user has a visual cue to where to draw the node. Regarding
the type tagging, instead, an algorithm could be developed to
automatically tag the crossable tables as crossable. This would
remove the knowledge obstacle posed by the crossable tables
and make the tool more accessible to users that lack a basic
knowledge of relational databases.

Another step that could be automated is the category
annotation,	by	defining	an	algorithm	that	could	automatically	

Conclusions - Publication128

understand from the data which attribute is the best candidate
to represent the data in a chart.

Lastly the interaction that generates the Show columns and
order by annotation needs to be redesigned. Possibly by
separating	it	from	the	pattern	“show	me	<table	name>”	and	by	
defining	a	new	pattern.

8.4. Publication
The interaction paradigm and GUI proposed in this thesis,
together with the methodology, i.e., the conceptual modelling of
conversational elements by annotation of the database schema,
will be published in the following article:

Ludovica Piro, Giuseppe Desolda, Maristella Matera, Sara
Mosca, 2020, A Converational Paradigm for the EUD of
Chatbots for Data Exploration.

The article will be submitted to the 18th International Conference
on	Human–Computer	Interaction	—	Interact	—	to	be	held	on	July	
2021.

9. Bibliography

Akcora, E., Belli, A., Berardi, M., Casola, S., Di Blas, N., Falletta,
S., Faraotti, A., Lodi, L., Diaz, D., Paolini, P., Renzi, F., &
Vannella, F. (2018). Conversational Support for Education
(pp. 14–19). https://doi.org/10.1007/978-3-319-93846-2_3

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural
Language	Interfaces	to	Databases—An	Introduction.	
ArXiv:Cmp-Lg/9503016. http://arxiv.org/abs/cmp-
lg/9503016

Braun, V., & Clarke, V. (2006). Using thematic analysis in
psychology. Qualitative Research in Psychology, 3, 77–101.
https://doi.org/10.1191/1478088706qp063oa

Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability
Eval. Ind., 189.

Brooks, A. (2018, November 1). 10 Best Chatbot Builders in 2021.
Venture Harbour. https://www.ventureharbour.com/best-
chatbot-builders/

Burnett, M., Cook, C., & Rothermel, G. (2004). End-user Software
Engineering. Commun. ACM, 47, 53–58. https://doi.
org/10.1145/1015864.1015889

Cahn, J. (2017). CHATBOT: Architecture, Design, & Development.
University of Pennsylvania.

Canh, N. T. (2018, May 4). Turn your database into a chatbot.
Medium. https://medium.com/botfuel/turn-your-database-
into-a-chatbot-10dae003b97d

Cassell,	J.,	Bickmore,	T.,	Campbell,	L.,	&	Vilhjlmsson,	H.	(2000).	

Conversation as a System Framework: Designing
Embodied Conversational Agents. Embodied
Conversational Agents.

Cappiello, C., Matera, M., & Picozzi, M. (2015). A UI-Centric
Approach for the End-User Development of Multidevice
Mashups. ACM Transactions on the Web, 9(3), 11:1-11:40.
https://doi.org/10.1145/2735632

Castaldo, N. (2019). A conceptual modeling approach for the
rapid development of chatbots for conversational data
exploration [Politecnico di Milano]. http://hdl.handle.
net/10589/147420

Chen,	H.,	Liu,	X.,	Yin,	D.,	&	Tang,	J.	(2017).	A	Survey	on	Dialogue	
Systems: Recent Advances and New Frontiers. ACM
SIGKDD Explorations Newsletter, 19(2), 25–35. https://doi.
org/10.1145/3166054.3166058

China, WeChat, and the Origins of Chatbots | by Jerry @
Rocketbots.io | Chatbots Magazine. (n.d.). Retrieved 13
March 2021, from https://chatbotsmagazine.com/china-
wechat-and-the-origins-of-chatbots-89c481f15a44

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen,
K., Deline, R., Durbin, J., Gossweiler, R., Koga, S., Long, C.,
Mallory, B., Miale, S., Monkaitis, K., Patten, J., Pierce, J.,
Shochet, J., Staack, D., Stearns, B., Stoakley, R., & Pausch,
R. (2000). Alice: Lessons Learned from Building a 3D
System For Novices.

Everest, G. (1976). Basic Data Structure Models Explained With A
Common Example. Computing Systems, 39–46.

Danescu-Niculescu-Mizil, C., & Lee, L. (2011). Chameleons
in imagined conversations: A new approach to
understanding coordination of linguistic style in dialogs.
ArXiv:1106.3077 [Physics]. http://arxiv.org/abs/1106.3077

Ferreri, E., & Notari, D. R. (2020). Designing and validating
conversational agents for data exploration. [Politecnico
di Milano]. http://hdl.handle.net/10589/165068

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D.,
Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E.,
Prager, J., Schlaefer, N., & Welty, C. (2010). Building
Watson: An Overview of the DeepQA Project. AI
Magazine, 31(3), 59–79. https://doi.org/10.1609/aimag.
v31i3.2303

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual

Programming Environments: A ‘Cognitive Dimensions’
Framework. Journal of Visual Languages & Computing,
7(2), 131–174. https://doi.org/10.1006/jvlc.1996.0009

Hart,	S.	G.,	&	Staveland,	L.	E.	(1988).	Development	of	NASA-TLX	
(Task Load Index): Results of Empirical and Theoretical
Research.	In	P.	A.	Hancock	&	N.	Meshkati	(Eds.),	Advances	
in	Psychology	(Vol.	52,	pp.	139–183).	North-Holland.	
https://doi.org/10.1016/S0166-4115(08)62386-9

Hussain,	S.,	Sianaki,	O.,	&	Ababneh,	N.	(2019).	A Survey
on Conversational Agents/Chatbots Classification
and Design Techniques (pp. 946–956). https://doi.
org/10.1007/978-3-030-15035-8_93

Janarthanam, S. (2017). Hands-On Chatbots and Conversational
UI Development: Build chatbots and voice user interfaces
with Chatfuel, Dialogflow, Microsoft Bot Framework, Twilio,
and Alexa Skills. Packt Publishing Ltd.

Khan, R., & Das, A. (2017). Build Better Chatbots: A Complete
Guide to Getting Started with Chatbots. Apress.

Klopfenstein, L., Delpriori, S., Malatini, S., & Bogliolo, A. (2017).
The Rise of Bots: A Survey of Conversational Interfaces,
Patterns, and Paradigms. 555–565. https://doi.
org/10.1145/3064663.3064672

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M.,
Erwig,	M.,	Scaffidi,	C.,	Lawrance,	J.,	Lieberman,	H.,	Myers,	
B., Rosson, M. B., Rothermel, G., Shaw, M., & Wiedenbeck,
S. (2011). The state of the art in end-user software
engineering. ACM Computing Surveys, 43(3), 21:1-21:44.
https://doi.org/10.1145/1922649.1922658

Leong, M.-K. (2004). Conversational Design as a Paradigm
for User Interaction on Mobile Devices. In F. Crestani,
M. Dunlop, & S. Mizzaro (Eds.), Mobile and Ubiquitous
Information Access (pp. 11–27). Springer. https://doi.
org/10.1007/978-3-540-24641-1_2

Lewis, J. R., & Sauro, J. (2009). The Factor Structure of the System
Usability	Scale.	In	M.	Kurosu	(Ed.),	Human	Centered	Design	
(pp. 94–103). Springer. https://doi.org/10.1007/978-3-642-
02806-9_12

Li,	F.,	&	Jagadish,	H.	V.	(2014).	NaLIR: An interactive natural
language interface for querying relational databases.
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, 709–712. https://doi.
org/10.1145/2588555.2594519

Lieberman,	H.,	Paternò,	F.,	&	Wulf,	V.	(Eds.).	(2006).	End-User
Development (1.ed., 2. printing). Springer.

Marcus, A. (1998). Metaphor design in user interfaces. ACM Sigdoc
Asterisk Journal of Computer Documentation, 22, 129–130.
https://doi.org/10.1145/286498.286577

Mauldin, M. L. (1994). ChatterBots, TinyMuds, and the Turing test:
Entering the Loebner Prize competition. Proceedings of
the Twelfth National Conference on Artificial Intelligence
(Vol. 1), 16–21.

McConnell, S. (2004). Code Complete. Pearson Education.

McKitterick, W. (2016, April 23). Messaging apps are now bigger
than social networks. Business Insider. https://www.
businessinsider.com/the-messaging-app-report-2016-4-23

Mindbowser. (2017). Chatbot Survey 2020. Mindbowser. https://
www.mindbowser.com/industry-report/chatboot-survey/

Monsters Data. (2019, November 29). 50 Chatbot Platforms: 2019
Edition. Medium. https://medium.com/@datamonsters/50-
chatbot-platforms-2019-edition-e6be022a7e0e

Myers, B. (1990). Creating User Interfaces Using Programming
by Example, Visual Programming, and Constraints. ACM
Trans. Program. Lang. Syst., 12, 143–177. https://doi.
org/10.1145/78942.78943

Namoun, A., Nestler, T., & De Angeli, A. (2010). Service
Composition for Non-programmers: Prospects, Problems,
and Design Recommendations. 123–130. https://doi.
org/10.1109/ECOWS.2010.17

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives
on End User Computing (1st ed.). MIT Press.

Nickerson, R. S. (1976). On conversational interaction with
computers. Proceedings of the ACM/SIGGRAPH Workshop
on User-Oriented Design of Interactive Graphics Systems,
101–113. https://doi.org/10.1145/1024273.1024286

Nuruzzaman,	M.,	&	Hussain,	O.	K.	(2020).	IntelliBot:	A	Dialogue-
based chatbot for the insurance industry. Knowledge-
Based Systems, 196, 105810. https://doi.org/10.1016/j.
knosys.2020.105810

Patil, P. (2020, July 17). Top 30 Powerful and Best Platforms To
Build Chatbots. Medium. https://chatbotsjournal.com/
top-30-powerful-and-best-platforms-to-build-chatbots-

bf413419d584

Peng, Z., & Ma, X. (2019). A survey on construction and
enhancement methods in service chatbots design. CCF
Transactions on Pervasive Computing and Interaction,
1(3), 204–223. https://doi.org/10.1007/s42486-019-00012-3

Pereira, J., & Díaz, O. (2018). Chatbot Dimensions that Matter:
Lessons from the Trenches (pp. 129–135). https://doi.
org/10.1007/978-3-319-91662-0_9

Rehan, A. (2018, October 3). 10 Best Chatbot Development
Frameworks to Build Powerful Bots.	Geekflare.	https://
geekflare.com/chatbot-development-frameworks/

Resnick,	M.,	Maloney,	J.,	Monroy-Hernández,	A.,	Rusk,	N.,	
Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:
Programming for all. Communications of the ACM, 52(11),
60–67. https://doi.org/10.1145/1592761.1592779

Ritter, A., Cherry, C., & Dolan, B. (2010). Unsupervised Modeling
of Twitter Conversations. Proceedings of HLT-NAACL.

Roller, S., Dinan, E., Goyal, N., Ju, D., Williamson, M., Liu, Y., Xu, J.,
Ott, M., Shuster, K., Smith, E. M., Boureau, Y.-L., & Weston,
J. (2020). Recipes for building an open-domain chatbot.
ArXiv:2004.13637 [Cs]. http://arxiv.org/abs/2004.13637

Sauro, J. (2011, February 11). MeasuringU: Measuring Usability with
the System Usability Scale (SUS). https://measuringu.com/
sus/

Turing,	A.	M.	(1950).	I.—COMPUTING	MACHINERY	AND	
INTELLIGENCE. Mind, LIX(236), 433–460. https://doi.
org/10.1093/mind/LIX.236.433

Vanhemert, K. (2015, June 26). The Future of UI Design? Old-
School Text Messages. Wired. https://www.wired.
com/2015/06/future-ui-design-old-school-text-messages/

Weizenbaum,	J.	(1966).	ELIZA—a	computer	program	for	the	
study of natural language communication between man
and machine. Communications of the ACM, 9(1), 36–45.
https://doi.org/10.1145/365153.365168

Whitehorn, M., & Marklyn, B. (Eds.). (2007). Tables. In Inside
Relational Databases with Examples in Access (pp. 17–35).
Springer. https://doi.org/10.1007/978-1-84628-687-2_3

Woods, W., Kaplan, R., & Webber, B. (1972). The Lunar Science

Natural Language Information System: Final Report.

Wouters, J. (n.d.). Chatbot Platform Comparison | Compare 39
chatbot builders. Chatimize. Retrieved 22 March 2021, from
https://chatimize.com/chatbot-platform-comparison/

Yaghoub-Zadeh-Fard, M., Benatallah, B., Casati, F., Barukh, M.
C., & Zamanirad, S. (2020). User Utterance Acquisition
for Training Task-Oriented Bots: A Review of Challenges,
Techniques and Opportunities. IEEE Internet Computing,
24(3), 30–38. https://doi.org/10.1109/MIC.2020.2978157

	Table of Contents
	List of Figures
	List of Tables
	Listings

	Sommario
	Abstract
	Introduction

	What Is a Chatbot?
	Conversational UIs and Data Exploration
	Contribution
	Thesis Structure
	Glossary
	Conversational Agents concepts
	Relational Databases concepts

	State of the Art
	Summary
	Chatbot Taxonomy
	End-User Development
	Chatbot Frameworks
	Context
	Implementation
	Intelligence
	Channel integration
	Dialogflow
	Amazon Lex
	IBM Watson Assistant
	Flow.ai
	Flow XO
	ManyChat

	The Gap in the State of the Art

	CHATIDEA
	Summary
	Relational databases
	Structure of CHATIDEA
	Annotation of the Database Schema

	 Methodology For Dialogue Design
	Summary
	Design Requirements
	The Conversational Paradigm
	Uniqueness of the Methodology

	Design of the interface
	Summary
	Concept
	Target
	Visual Identity
	Colour palette
	Icon system
	Data visualization
	Logo

	Information architecture
	Summary
	Home
	Database Schema Screen
	Concept File Annotations Screen
	Concept File Generation
	First pattern: conversational object annotation, display attributes, and order by
	Second pattern: category annotation
	Third pattern: conversational attributes
	Fourth pattern: conversational relationships

	User-based Evaluation
	Summary
	Preliminary Evaluation
	Takeaways

	Second Evaluation Study
	Takeaways

	Third Evaluation Study
	Participants
	Procedure
	Data collection and analysis
	Results
	Takeaways

	About designing UIs for conversation design

	Conclusions
	Summing Up
	Limitations
	Further Developments
	Publication

	Bibliography

