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1. Introduction 

The design of controllers based on data is of great 

importance in practical applications and many 

data-driven control methods have been recently 

developed. These methods can be classified into 

two groups: direct and indirect methods. The main 

difference is that, for the former group, an 

identification phase of the mathematical model of 

the plant is not required. 

Virtual reference feedback tuning (VRFT) is a well-

known non-iterative direct data-driven control 

design approach. VRFT is advantageous for 

several aspects. However, the resulting closed-

loop system is not guaranteed to be stable. In this 

work, we propose an approach based on VRFT and 

set membership (SM) identification which 

provides stability guarantees. An alternative direct 

approach based on controller unfalsification with 

stability guarantees is proposed in [2]. 

The work is organized as follows: firstly, the 

theoretical background is provided. Secondly, by 

combining the SM and VRFT methodologies, a 

novel data-based control design technique for 

linear systems with stability guarantees is 

proposed in three different configurations. Then, 

the proposed approach is tested in simulation and 

the results are compared with the direct control 

design based on controller unfalsification with 

stability guarantees that is proposed in [2]. Finally, 

conclusions and hints for future developments are 

provided. 

2. Theoretical background 

In this section we refer to [1] for a full description 

of the SM identification. The main steps are 

recalled. 

A linear time-invariant system of order 𝑛 described 

by the autoregressive exogenous (ARX) structure is 

considered: 

𝒮: {
𝑧(𝑘) = 휃𝑜𝑇𝜑(𝑘)

𝑦(𝑘) = 𝑧(𝑘) + 𝑑(𝑘)
 

(2.1a) 

(2.1b) 

where 𝑧(𝑘) ∈ ℝ is the output, 𝑦(𝑘) is the output 

measure, 𝑑(𝑘) is a bounded additive measurement 

noise,  휃𝑜 ∈  ℝ𝑛𝑎+𝑛𝑏 are the system parameters and 

𝜑(𝑘) ∈  ℝ𝑛𝑎+𝑛𝑏 is the regressor defined as 𝜑(𝑘) =
[𝑧(𝑘 − 1) … 𝑧(𝑘 − 𝑛𝑎) 𝑢(𝑘 − 1) … 𝑢(𝑘 − 𝑛𝑏)]

𝑇 . 
The goal of SM identification is to define the set of 

unknown parameters 휃̂ of the predictor 

�̂� ∶ �̂�(𝑘) = 휃̂𝑇�̂�(𝑘) (2.2) 

which are compliant with the data, where 휃̂ ∈

 ℝ𝑛𝑎+𝑛𝑏 and 𝜑(𝑘) =
[𝑦(𝑘 − 1) … 𝑦(𝑘 − 𝑛𝑎) 𝑢(𝑘 − 1) … 𝑢(𝑘 − 𝑛𝑏)]

𝑇 . 

The following set of assumptions are required for 

the consistency of the work: 
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Assumption 2.1. 

a. The system 𝒮 is asymptotically stable 

b. 𝑢(𝑘) 𝜖 𝕌 ⊂  ℝ, ∀𝑘 ∈ ℤ, where 𝕌 is compact 

c. |𝑑(𝑘)| < �̅� , ∀𝑘 ∈ ℤ, where �̅� > 0 is known 

The global error bound is defined in such a way to 

provide the maximum possible error with respect 

to all regressors and noise realizations. However, 

with a finite-length data set the latter can only be 

estimated with the following linear program 

𝜆 = min
𝜃∈Ω,𝜆∈𝑅+

𝜆             

 𝑠. 𝑡.     |𝑦 − 휃̂𝑇�̂�| ≤ �̅� + 𝜆     ∀ [
�̂�
𝑦
] ∈ �̃�𝑁 

(2.3) 

where �̃�𝑁 ∶= [�̂�(𝑘)𝑇 𝑦(𝑘)]𝑇 for 𝑘 = 1,… ,𝑁 and 

Ω ⊂ ℝ𝑛𝑎+𝑛𝑏 is a compact set where the set of all 

parameters lies. Moreover, according to [1] the 

uncertainty is compensated with the positive 

inflation parameter 𝛼 > 1 

휀̂ = 𝛼𝜆 (2.4) 

Notably, with a sufficiently large dataset and 

sufficiently exciting signals, it is expected that 𝛼 ≈

1. Now, we can define the feasible parameter set 

(FPS) Θ̃ as follows 

Θ̃ = {휃̂ ∈ Ω ∶  |𝑦 − 휃̂𝑇�̂�| ≤ �̅� + 휀̂     ∀ [
�̂�
𝑦
] ∈ �̃�𝑁} 

 

(2.5) 

3. The proposed approach 

The problem we address is the tuning of the 

controller based on the available experimental 

input-output dataset 𝒟 obtained from the system 

(2.1). The objective is to provide stability 

guarantees and the desired closed-loop 

performance, simultaneously, even if the system 

parameters are unknown. 

3.1. Feasible state-space models 
The system 𝒮 in (2.1) can be rewritten in the 

following form 

𝑦(𝑘) = 휃𝑜𝑇�̂�(𝑘) + 𝑤(𝑘) (3.1) 

where 𝑤(𝑘) accounts both for the measurement 

noise 𝑑(𝑘) and for the prediction error 휀(𝑘). 

In the following, we assume that the real parameter 

휃𝑜 ∈ Θ̃. Notably, if Θ̃ is bounded, it can be 

represented as a convex hull with 𝑁𝑉 vertices 휃𝑖, 

𝑖 = 1,… , 𝑁𝑉. More specifically, we can write, for 

any 휃 ∈ Θ̃, that 

휃 = ∑𝜆𝑖휃
𝑖

𝑁𝑉

𝑖=1

 (3.2) 

where ∑ 𝜆𝑖 = 1
𝑁𝑉
𝑖=1  and 𝜆𝑖 > 0. (3.1) admits the 

following state-space representation: 

𝒮: {
𝑥(𝑘 + 1) = 𝐹𝑜𝑥(𝑘) + 𝐺𝑜𝑢(𝑘) + 𝐺𝑤𝑤(𝑘)

𝑦(𝑘) = 𝐻𝑥(𝑘)
 (3.3) 

with the state vector 𝑥(𝑘) =
[𝑦(𝑘) … 𝑦(𝑘 − 𝑛𝑎 + 1) 𝑢(𝑘 − 1) … 𝑢(𝑘 − 𝑛𝑏 + 1)]𝑇  
and the system, input and output matrices are 

𝐹𝑜 =

[
 
 
 
 
휃1

𝑜 ⋯ 휃𝑛𝑎
0

𝐼𝑛𝑎−1 0(𝑛𝑎−1)x1

휃𝑛𝑎+2
𝑜 ⋯ 휃𝑛𝑎+𝑛𝑏

𝑜

0(𝑛𝑎−1)x(𝑛𝑏−1)

01 x 𝑛𝑎

0(𝑛𝑏−2)x1

01x(𝑛𝑏−1)

𝐼(𝑛𝑏−2)x1 0(𝑛𝑏−1)x1 ]
 
 
 
 

 
(3.4) 

𝐺𝑜 = [휃𝑛𝑎+1
𝑜 01x(𝑛𝑎−1) 1 01x(𝑛𝑏−2)]𝑇 

𝐻𝑇 = 𝐺𝑤 = [1 01x(𝑛𝑎+𝑛𝑏−2)]𝑇 

Recalling that, in view of Equation (2.1a), we can 

write the unknown 휃𝑜 ∈ Θ̃ as  
휃𝑜 = ∑ 𝜆𝑖휃

𝑖𝑁𝑉
𝑖=1 , also the unknown matrices 𝐹𝑜 and 

𝐺𝑜 can be expressed as convex combinations of 

known matrices 𝐹𝑖,𝐺𝑖 with 𝑖 = 1,… , 𝑁𝑉. 

More specifically, we can write 

[𝐹𝑜 𝐺𝑜] = ∑ 𝜆𝑖  [𝐹𝑖 𝐺𝑖]

𝑁𝑉

𝑖=1

 (3.5) 

where 𝐹𝑖 and 𝐺𝑖 are constructed in the same way 

as (3.4) for all 𝑖 with the corresponding vectors 휃𝑖. 

3.2. Condition for robust stability 
In this section we introduce the conditions 

required for robust asymptotic stability for a 

simple state-feedback regulator. 

We consider a state-feedback controller of the type 

𝑢(𝑘) = 𝐾𝑥(𝑘), 𝐾 ∈ ℝ1×(𝑛𝑎+𝑛𝑏−1). 

The closed-loop system dynamics is  

𝑥(𝑘 + 1) = (𝐹𝑜  + 𝐺𝑜𝐾)𝑥(𝑘) + 𝐺𝑤𝑤(𝑘) (3.6) 

where 𝐹𝑜 and 𝐺𝑜 are uncertain but, according to 

the SM identification, are convex combinations of 

matrices 𝐹𝑖,𝐺𝑖, known for all 𝑖 = 1,… , 𝑁𝑉 and 

defined according to Section 3.1. 

According to [4], the Schur stability of 𝐹𝑜 + 𝐺𝑜𝐾 is 

guaranteed if ∃𝑃 =  𝑃𝑇 > 0 and 𝐾 such that 

(𝐹𝑖 + 𝐺𝑖𝐾)𝑃(𝐹𝑖 + 𝐺𝑖𝐾)𝑇 − 𝑃 < 0 (3.7) 

For 𝐿 = 𝐾𝑃 and in view of the Schur complement, 

an equivalent linear matrix inequality (LMI) to 

equation (3.7) can be obtained as follows:  

[𝑃 − 𝐹𝑖𝑃𝐹𝑖𝑇 − 𝐹𝑖𝐿𝑇𝐺𝑖𝑇 − 𝐺𝑖𝐿𝐹𝑖𝑇 𝐺𝑖𝐿

𝐿𝑇𝐺𝑖𝑇 𝑃
] > 0 (3.8) 

∀𝑖 = 1,… , 𝑁𝑉. Therefore, if such 𝑃 and 𝐿 exist, then 

𝐾 = 𝐿𝑃−1 is guaranteed to provide asymptotic 

stability to the closed-loop system for all possible 

parametrizations of the model compatible with the 

available data.  

3.3. Control schemes for tracking 

reference signal 
In this section, we show the necessary steps to tune 

a controller for the system in (3.1) that, besides 

guaranteeing closed-loop stability, provides the 

desired control system performance with three 

alternative possible configurations. The general 
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form of such control system is displayed in Figure 

3.1. 

 
Figure 3.1: General form of tracking scheme 

3.3.1. Case I 

In this part, the controller is derived in the 

simplified case where the system gain 𝜇 is assumed 

to be known (or a-priori identified). 

3.3.1.1. Stability condition 

We consider the following control law  

𝑢(𝑘) = 𝜌𝑦𝑜(𝑘) + 𝐾(𝑥(𝑘) − 𝑥𝑜(𝑘))      (3.9) 

where 𝑥𝑜(𝑘) = 𝜇𝑟
𝑜𝑦𝑜(𝑘) = [11×𝑛𝑎

𝜌11x(𝑛𝑏−1)]𝑇𝑦𝑜(𝑘) 

corresponds to desired steady-state values for the 

input and the output, and 𝜌 = 𝜇−1. 

By means of simple computations, the closed-loop 

stability condition for Case I is obtained as (3.8) 

since the closed-loop state matrix is equal to (3.6) if 

we set 𝑦𝑜(𝑘) = 0. 

3.3.1.2. VRFT-based cost function 

The following VRFT cost function can be defined 

for any state-feedback controller parameter vector 
𝐾 

𝐽1(𝐾) = ∑ (𝑢(𝑘) − 𝜌𝑦𝑜(𝑘)

𝑁−𝑛𝑟

𝑘=1

− (𝑥(𝑘) − 𝜇𝑟
𝑜𝑦𝑜(𝑘))𝑇𝐾𝑇)2 

(3.10) 

where  𝑦𝑜(𝑘) is the virtual reference, according to 

the VRFT algorithm, obtained as 

𝑦𝑜(𝑘) = 𝑀−1(𝑧)𝑦(𝑘) (3.11) 

The alternative cost function to (3.10) in the 

variables 𝑃 and 𝐿 can be written in compact form 

as follows 

𝐽12 = ‖𝕩1
° +

𝕦1
° − 𝐾𝑇‖

𝑃

2

 (3.12) 

where 𝐾 = 𝐿𝑃−1, 𝕦1
° =

[𝑢(1) − 𝜌𝑦𝑜(1) ⋯ 𝑢(𝑁 − 𝑛𝑟) − 𝜌𝑦𝑜(𝑁 − 𝑛𝑟)]
𝑇 , 𝕩1

° +
 is 

the pseudo-inverse of 𝕩1
° =

[𝑥(1) − 𝜇𝑟
𝑜𝑦𝑜(1) ⋯ 𝑥(𝑁 − 𝑛𝑟) − 𝜇𝑟

𝑜𝑦𝑜(𝑁 − 𝑛𝑟)]
𝑇  and 

‖∙‖ denotes the Euclidean norm. The motivation of 

the alternative cost function is that it has the same 

optimal solution in unconstrained case of 𝐽1 and it 

allows to include stability constraints. Note that, 

minimizing 𝐽12 is equivalent to minimizing a scalar 

𝜎 such that  

𝜎 − 𝕦1
° 𝑇

(𝕩1
° +

)
𝑇

𝑃𝕩1
° +

𝕦1
° − 𝐿𝑃−1𝐿𝑇 + 2𝕦1

° 𝑇
(𝕩°+)𝑇𝐿𝑇 ≥

0 and the inequality can be rewritten, thanks to the 

Schur complement, as 

[𝜎 − 𝕦1
° 𝑇

(𝕩1
° +

)
𝑇
𝑃𝕩1

° +
𝕦1

° + 2𝕦1
° 𝑇

(𝕩°+)𝑇𝐿𝑇 𝐿

𝐿𝑇 𝑃
] ≥ 0 (3.13) 

3.3.1.3. Algorithm 

The steps of the algorithm for Case I are the 

following 

1. Given 𝒟, 𝑀 , �̅� and the inflation parameter 𝛼 

2. Compute 휀̂ according to (2.4). 

3. Find the 𝑁𝑉 vertices of FPS Θ̃ as in (2.5) and 

construct the corresponding (𝐹𝑖,𝐺𝑖 pairs) 

according to Section 3.1 for 𝑖 = 1,… , 𝑁𝑉 

4. Compute 𝑦𝑜(𝑘), construct 𝕦1
°  and 𝕩1

° , and 

compute 𝕩1
° +

 

5. Solve the optimization problem 
min
𝜎,𝑃,𝐿

𝜎 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
−𝐿𝑀𝐼 (3.13) 

−𝐿𝑀𝐼 (3.8) ∀𝑖 = 1,… , 𝑁𝑉 

6. Set 𝐾 = 𝐿𝑃−1 in case of a feasible solution. 

3.3.2. Case II 

The main objective in this part is coping with the 

unknown system gain. 

3.3.2.1. Stability condition 

The control law in (3.9) can be restated as 

𝑢(𝑘) = 𝛾𝑦𝑜(𝑘) + 𝐾𝑥(𝑘) (3.14) 

where 𝛾 is the necessary additional scalar 

unknown parameter to be tuned for compensate 

the unknown gain. With such control law, by 

setting 𝑦𝑜(𝑘) = 0, the stability condition (3.8) is 

obtained.  

3.3.2.2. VRFT-based cost function 

The following VRFT cost function can be defined 

for any state-feedback controller parameter vector 

𝐾 and scalar parameter 𝛾 

𝐽2(𝐾,𝛾) = ∑ (𝑢(𝑘) − 𝛾𝑦𝑜(𝑘) − 𝐾𝑥(𝑘))2

𝑁−𝑛𝑟

𝑘=1

 (3.15) 

The alternative cost function to (3.15) in the 

variables 𝑃 and 𝐿 can be written in compact form 

𝐽22(𝛾, 𝑃, 𝐿) = ‖𝕩2
° +

𝕦2
° − [

𝛾

𝐾𝑇]‖
[
1 0
0 𝑃

]

2

 (3.16) 

where 𝐾 = 𝐿𝑃−1 , 𝕦2
° = [𝑢(1) ⋯ 𝑢(𝑁 − 𝑛𝑟)]

𝑇  

and 𝕩2
° +

 is the pseudo-inverse of 𝕩2
° =

[
𝑦𝑜(1) ⋯ 𝑦𝑜(𝑁 − 𝑛𝑟)

𝑥(1) ⋯ 𝑥(𝑁 − 𝑛𝑟)
]
𝑇

. We can introduce a scalar 

𝜎 to be minimized in order to write an equivalent 

minimization problem; where 
𝜎 − (𝕩2

° +
𝕦2

° )
𝑇
[
1 0
0 𝑃

]𝕩2
° +

𝕦2
° + [𝛾 𝐿𝑃−1] [

1 0
0 𝑃

]𝕩2
° +

𝕦2
° +

(𝕩2
° +

𝕦2
° )

𝑇
[
1 0
0 𝑃

] [
𝛾

𝑃−1𝐿𝑇] − [𝛾 𝐿] [
1 0
0 𝑃−1] [

𝛾
𝐿𝑇] ≥ 0. 

Thanks to the Schur complement: 
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[
𝜎 − (𝕩2

° +
𝕦2

° )
𝑇
[
1 0
0 𝑃

] 𝕩2
° +

𝕦2
° + 2(𝕩2

° +
𝕦2

° )
𝑇
[
𝛾

𝐿𝑇] [𝛾 𝐿]

[
𝛾

𝐿𝑇] [
1 0
0 𝑃

]
] ≥ 0 (3.17) 

3.3.2.3. Algorithm 

The steps of the algorithm for Case II are the 

following 

1. Given 𝒟, 𝑀 , �̅� and the inflation parameter 𝛼 

2. Compute 휀̂ according to (2.4). 

3. Find the 𝑁𝑉 vertices of FPS Θ̃ as in (2.5) and 

construct the corresponding (𝐹𝑖,𝐺𝑖 pairs) 

according to Section 3.1 for 𝑖 = 1,… , 𝑁𝑉 

4. Compute 𝑦𝑜(𝑘), construct 𝕦2
°  and 𝕩2

° , and 

compute 𝕩2
° +

 

5. Solve the optimization problem 
min

𝜎,𝛾,𝑃,𝐿
𝜎  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
−𝐿𝑀𝐼 (3.17) 

−𝐿𝑀𝐼 (3.8) ∀𝑖 = 1,… , 𝑁𝑉 

6. Set 𝐾 = 𝐿𝑃−1 in case of a feasible solution. 

7. Set 𝛾 = 𝛾∗ after performing  

𝛾∗ = argmin
�̃�

𝐽2
∗(�̃�) = ‖𝕩2

° +
𝕦2

° − [
�̃�
𝐾

]‖
2

 

3.3.3. Case III 

In this part, we investigate the case in which the 

controller is equipped with an explicit integrator. 

3.3.3.1. Stability condition 

The control law can be defined using the following 

state-space realization 

{
휂(𝑘 + 1) = 휂(𝑘)  + 𝑒(𝑘)

𝑢(𝑘) = 𝐾𝑥(𝑘)  + 𝑔(휂(𝑘) + 𝑒(𝑘)) 
 (3.18) 

where 𝑔 is the additional scalar parameter to be 

tuned together with the vector 𝐾 and 𝑒(𝑘) =

𝑦𝑜(𝑘) − 𝑦(𝑘) is the error term. After neglecting 

𝑦𝑜(𝑘) and  𝑤(𝑘) that do not affect the stability, the 

alternative closed-loop system dynamics can be 

written as the following state-space realization by 

defining the new state variable 휁(𝑘) =
[𝑥(𝑘)𝑇 휂(𝑘)]𝑇 

휁(𝑘 + 1) = 𝐷𝑜휁(𝑘) (3.19) 

where  

𝐷𝑜 = [
𝐹𝑜 + 𝐺𝑜𝐾 − 𝑔𝐺𝑜𝐻 𝑔𝐺𝑜

−𝐻 1
]

= 𝐴𝑜 + 𝐵𝑜𝐽 
(3.20) 

𝐴𝑜 = [
𝐹𝑜 0(𝑛𝑎+𝑛𝑏−1)x1

−𝐻 1
], 𝐵𝑜 = [

𝐺𝑜

0
] and 𝐽 =

[𝐾 − 𝑔𝐻 𝑔], respectively. Notably, (3.5) is also 

valid for the pair 𝐴𝑜 and 𝐵𝑜 and the following 

relation is verified for 𝑖 = 1,… ,𝑁𝑉 

[𝐴𝑜 𝐵𝑜] = ∑𝜆𝑖  [𝐴𝑖 𝐵𝑖]

𝑁𝑉

𝑖=1

 (3.21) 

Considering the closed-loop system given in (3.19), 

the Schur stability of 𝐷𝑜 is guaranteed if ∃𝑃 =

 𝑃𝑇 > 0 and 𝑡 > 0 such that 

𝐷𝑜𝑇𝑃−1𝐷𝑜 − 𝑃−1 + 𝑡𝐼(𝑛𝑎+𝑛𝑏) ≤ 0 (3.22) 

Consistently, (3.22) holds if and only if ∃𝑃 =  𝑃𝑇 >

0 such that 

𝑃(𝐷𝑜𝑇𝑃−1𝐷𝑜 − 𝑃−1 + 𝑡𝐼(𝑛𝑎+𝑛𝑏))𝑃 ≤ 0 (3.23) 

After substituting 𝐷𝑜 = 𝐴𝑜 + 𝐵𝑜𝐽, with basic 

computations, and using the Schur complement, 

we obtain 

[

𝑃 𝑃 (𝐴𝑖𝑃 + 𝐵𝑖𝐿)𝑇

𝑃 𝑡−1𝐼(𝑛𝑎+𝑛𝑏) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏)

(𝐴𝑖𝑃 + 𝐵𝑖𝐿) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏) 𝑃

] ≥ 0 (3.24) 

where 𝐿 = 𝐽𝑃 and 𝑖 = 𝑜. Considering (3.21), if ∃𝑃 =

 𝑃𝑇 > 0 and 𝐿 such that for 𝑖 = 1,… , 𝑁𝑉 and 𝑡 > 0 

(3.24) holds, then the closed-loop asymptotic 

stability for (3.19) is guaranteed for [𝐾 𝑔] =

𝐿𝑃−1𝐸−1 with 𝐸 = [
𝐼(𝑛𝑎+𝑛𝑏−1) 0(𝑛𝑎+𝑛𝑏−1)x1

−𝐻 1
]. 

3.3.3.2. VRFT-based cost function 

The following VRFT cost function can be defined 

for any state-feedback controller parameter vector 

𝐾 and scalar parameter 𝑔 

𝐽3(𝐾, 𝑔) = ∑ (𝑢(𝑘) − [𝐾 𝑔] [
𝑥(𝑘)
�̅�(𝑘)

])
2

𝑁−𝑛𝑟

𝑘=1

 (3.25) 

where �̅�(𝑘) the integrated virtual error. On the 

other hand, after obtaining 𝑦𝑜(𝑘) as in (3.11), the 

integrated error �̅�(𝑘) can be derived by computing 

recursively the equation set listed below 

�̅�(𝑘) = 𝑦𝑜(𝑘) − 𝑦(𝑘) (3.26a) 

�̅�(𝑘) = �̅�(𝑘 − 1) + 𝑒̅(𝑘) (3.26b) 

The alternative cost function to (3.25) in variables 

𝑃 and 𝐿 can be written in compact form 

𝐽32(𝐿, 𝑃) = ‖𝐸𝑇𝕩3
° +

𝕦3
° − 𝐽𝑇‖

𝑃

2

 (3.27) 

where 𝐽 = 𝐿𝑃−1, 𝕦3
° = [𝑢(1) ⋯ 𝑢(𝑁 − 𝑛𝑟)]

𝑇  and 

𝕩3
° +

 is the pseudo-inverse of 𝕩3
° =

[
𝑥(1) ⋯ 𝑥(𝑁 − 𝑛𝑟)

�̅�(1) ⋯ �̅�(𝑁 − 𝑛𝑟)
]
𝑇

. A scalar 𝜎 is introduced 

and minimized in order to write an equivalent 

minimization problem to 𝐽32, where 𝜎 −

𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)
𝑇

𝑃𝐸𝑇𝕩3
° +

𝕦3
° − 𝐿𝑃−1𝐿𝑇 +

2𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)
𝑇

𝐿𝑇 ≥ 0. Such inequality can be 

rewritten, thanks to the Schur complement, as 

[𝜎 − 𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)
𝑇
𝑃𝐸𝑇𝕩3

° +
𝕦3

° + 2𝐿𝐸𝑇𝕩3
° +

𝕦3
° 𝐿

𝐿𝑇 𝑃
] ≥ 0 (3.28) 

3.3.3.3. Algorithm 

The steps of the algorithm for Case III are the 

following 

1. Given 𝒟, 𝑀 , �̅�, 𝑡 and inflation the parameter 𝛼 

2. Compute 휀̂ according to (2.4). 

3. Find the 𝑁𝑉 vertices of FPS Θ̃ as in (2.5) and 

construct the corresponding (𝐴𝑖,𝐵𝑖  pairs) for 

𝑖 = 1,… , 𝑁𝑉 according to (3.20) and Section 3.1 
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4. Compute 𝑦𝑜(𝑘) and �̅�(𝑘), construct 𝐸, 𝕦3
°  and 

𝕩3
° , and compute 𝕩3

° +
 

5. Solve the optimization problem 
min
𝜎,𝑃,𝐿

𝜎  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
−𝐿𝑀𝐼 (3.28) 

−𝐿𝑀𝐼 (3.24) ∀𝑖 = 1,… , 𝑁𝑉 

6. Set [𝐾 𝑔] = 𝐿𝑃−1𝐸−1 in case of a feasible 

solution. 

4. Simulation Example 

In this part, the proposed approaches are validated 

in MATLAB/Simulink and the results are 

compared with the results of the algorithm 

proposed in [2].  

We consider a system with transfer function 

𝐺(𝑠) =
𝑍(𝑠)

𝑈(𝑠)
=

1

𝑠3 + 3𝑠2 + 3𝑠 + 1
 (4.1) 

The system is discretized with a sampling time 𝑇𝑠 

of 0.5 s with the zero-order hold method and the 

corresponding real parameter vector 휃𝑜 =

[1.82 −1.104 0.2231 0.01439 0.03973 0.006794]𝑇 
is obtained. 

The batch of data consists of 10000 input-output 

pairs collected with an open-loop experiment on 

the simulated system. The system is fed by an input 

signal that is a multilevel pseudo-random signal 

(MPRS) uniformly selected in the range [−1,1]. 

Furthermore, the first half of the dataset has 

switching period of 𝑇𝑠, i.e., 0.5 s and the other half 

has switching period of 50𝑇𝑠, i.e., 25 s. The output 

measurement is affected by a measurement noise 

which varies uniformly at each time step in the 

range [-0.005,0.005]. The corresponding signal to 

noise ratio (SNR) is 42.616 dB. 

Thanks to the lcon2vert function [3] in MATLAB, 

the feasible parameter set Θ̃ is obtained with 3469 

vertices. The projection of the FPS in three-

dimensional spaces is represented in Figure 4.1. 

Note that the real parameters are included in the 

FPS. 

The desired complementary sensitivity function 

(i.e., the reference model 𝑀(𝑧)) is expressed with a 

first order transfer function. The desired input 

sensitivity function 𝑄(𝑧) is chosen under the 

assumption that the system gain equals to 1 is 

known. 

𝑀(𝑧) =
0.4𝑧−1

1 − 0.6𝑧−1
 (4.2a) 

𝑄(𝑧) =
1

�̂�(1)

(1 − 0.02𝑧−1)

1 − 0.6𝑧−1

0.4

0.98
 

 

(4.2b) 

𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4 𝐾5]
𝑇 is the parameter 

vector to be tuned for proposed approach. On the 

other hand, for the approach proposed in [2] the 

controller is parametrized as follows 

𝐶(𝑧, 휃) =
1

1 − 𝑧−1

𝑠0 + 𝑠1𝑧
−1 + 𝑠2𝑧

−2 + 𝑠3𝑧
−3

1 + 𝑟1𝑧
−1 + 𝑟2𝑧

−2 + 𝑟3𝑧
−3  (4.3) 

 
Figure 4.1: Feasible Parameter Set (blue spheres 

correspond to the real parameters) 

The algorithm in [2] and the proposed approach 

are both performed with the available data. For the 

“Unfalsification Method”, the optimal solution 

that guarantees closed-loop stability is obtained for 

𝛿 = 0.8. For the proposed approach, Yalmip and 

MOSEK solvers are used to perform the algorithms 

in Section 3.  

For the validation phase, the reference signal used 

is specified in Table 4.1. 

Reference Interval 

0 [0,20) 

1 [20,40) 

-1 [40,60) 

2 [60,80) 

1 [80,...] 

Table 4.1: Reference input values 

Moreover, to evaluate the closed-loop 

performances, the following performance index is 

used 

𝐹𝐼𝑇(%) = 100(1 −
‖𝑦 − �̂�‖

‖𝑦 − �̅�‖
) (4.4) 

where 𝑦 is the real system output vector, �̂� is the 

desired output vector and �̅� is the vector that has 

the same size of the real system output vector and 

all the elements equal to the mean value of the real 

output vector. 

Figure 4.2 and Figure 4.3 depict the resulting input 

and output trajectories, respectively. Moreover, 

Table 4.2 displays the validation results and the 

spectral radius of the closed-loop systems. Case I 

and Case II display almost the same input and 

output trajectories. They have better fitting with 

respect to the reference model; however, they 

require more reactive control actions.  On the other 
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hand, Case III and the unfalsification method have 

lower 𝐹𝐼𝑇(%), but the control effort required for 

these cases is smaller. 

 
Spectral Radius 

 𝝆(𝑭) 

Fit Percentage 

𝑭𝑰𝑻(%) 

Case I 0.8409 93.3384 

Case II 0.8417 93.3437 

Case III 0.6935 76.0497 

 ETFE of 

‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖
∞

 
𝝆(𝑭) 𝑭𝑰𝑻(%) 

𝜹 = 𝟎. 𝟖 0.9532 0.7616 78.5574 

Table 4.2: Performance indexes for validation 

 
Figure 4.2: Output trajectories of Reference Model, 

Case I, Case II, Case III and UF with 𝛿 = 0.8 

 
Figure 4.3: Input trajectories of Case I, Case II, 

Case III and UF with 𝛿 = 0.8 

5. Conclusions 

The purpose of the thesis was to develop a data-

based control method for single-input-single-

output systems with stability guarantees inspired 

by VRFT and SM. These two methodologies have 

been combined, allowing to enforce the closed-

loop stability under suitable conditions during the 

control design phase. 

Firstly, SM identification have been recalled with 

its main steps from a theoretical point of view. 

Secondly, a data-based control design technique 

for linear systems with stability guarantees has 

been proposed in three different configurations. 

Lastly, the proposed approach has been validated 

on the simulation environment and the results 

have been compared with the results of [2]. 

Future extensions will include the development of 

the algorithm on more challenging systems such as 

time-varying, nonlinear, or multi-input-multi-

output ones. The large control effort in Case I and 

Case II, and the high frequency components on the 

control variable even at steady-state in Case III will 

also be investigated. Also, the reference model 

optimization could be combined with the 

proposed approach. 
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