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Abstract

The need for a fast and accurate solution of parameterized Partial Differential Equations
(PDEs) traditionally translates into the development of linear Reduced Order Models
(ROMs). These data-driven approaches, such as the Proper Orthogonal Decomposition
(POD), are nowadays widespread and embedded in the most famous linear-algebra li-
braries of any scientific programming language. While their accuracy is in general satis-
factory when dealing with linear and steady parameterized PDEs, both their performances
and dimensionality reduction capabilities decay in the case of time-dependent and possibly
non-linear problems.

To mitigate this issue, novel approaches have been devised in the Deep Learning context.
In this work, two completely different strategies are presented. The first one consists of
the computation of the parameterized solution in one step by means of Physics Informed
Neural Networks (PINNs), which are trained to minimize the PDE residual while sat-
isfying the boundary and initial conditions, for any instance of the parameter inside its
domain. The main advantage of this strategy, named PINNs-FOM, compared with tradi-
tional PDE solvers lies in the fact that they are completely mesh-free algorithms. On the
other hand, compared to classical ROMs, PINNs are of particular interest because they do
not require the generation of high-fidelity solutions, called snapshots, via computationally
expensive Full Order Models (FOMs) solvers.

The second idea consists of the development of a convolutional-autoencoder based non-
linear ROM. Despite this approach, named PDNNs-Autoencoder (Projection Driven Neu-
ral Network-Autoencoder) still relies on the projection of costly snapshots on a lower
dimensional manifold, the feature extractor capabilities of the autoencoder are superior
to the linear ROM ones, leading to an improvement in accuracy, especially in the above
mentioned cases in which linear ROMs are less effective.

The accuracy and efficiency of these two strategies will be assessed on 4 different pa-
rameterized PDEs test problems. The results will be compared with linear ROM based
approaches, which in turn rely on Artificial Neural Networks too for the fast online pre-
diction of the solution.
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Abstract in lingua italiana

La necessità di calcolare in maniera rapida e accurata la soluzione di equazioni alle derivate
parziali (PDEs) parametrizzate si traduce tradizionalmente nello sviluppo di modelli di
ordine ridotto di natura lineare. Questi approcci data-driven, come la Proper Orthogonal
Decomposition (POD), sono oggigiorno diffusi e già implementati all’interno delle più
famose librerie di algebra lineare per qualsiasi linguaggio di programmazione scientifico.
Mentre il grado di accuratezza che in genere essi raggiungono quando applicati a PDEs
di tipo lineare e stazionario è soddisfacente, sia le loro prestazioni che la loro capacità di
ridurre la dimensionalità del problema calano una volta che lo stesso sia instazionario o
eventualmente non lineare.

Per rispondere all’insorgere di questa problematica, nel campo del Deep Learning sono
stati recentemente sviluppati nuovi approcci. Nel presente lavoro vengono presentate
due strategie completamente differenti. La prima consiste nel calcolo della soluzione
parametrizzata in un unico step mediante l’impiego di Physics Informed Neural Networks
(PINNs), le quali vengono allenate allo scopo di minimizzare il residuo della PDE soddis-
facendo allo stesso tempo le condizioni al contorno (ed eventualmente iniziali) prescritte,
per ogni valore del parametro all’interno del suo dominio. Il principale vantaggio di questa
strategia, chiamata PINNs-FOM, rispetto ai solutori di PDEs tradizionali risiede nel fatto
che le PINNs sono degli algoritmi completamente mesh-free. Dall’altro lato, comparate
con i classici ROMs, le PINNs sono di particolare interesse in quanto non richiedono
la generazione di soluzioni high-fidelity, chiamate snapshots, particolarmente costose dal
punto di vista computazionale.

La seconda idea consiste nello sviluppo di un ROM non lineare basato sull’implementazione
di un convolutional autoencoder. Sebbene questo approccio, di seguito chiamato PDNNs-
Autoencoder (Projection Driven Neural Network-Autoencoder), si basi ancora sulla proiezione
di costosi snapshots sullo spazio in cui cercare le soluzioni candidate, la capacità di questo
metodo di estrarre le informazioni più importanti dai dati è superiore rispetto ai ROM di
tipo lineare. Per questo motivo i PDNNs-Autoencoder offrono un’accuratezza superiore,
nei casi sopracitati in cui i ROM lineari perdono efficacia.



L’accuratezza e l’efficienza di queste due strategie verranno valutate su 4 differenti casi
test. I risultati ottenuti saranno confrontati con quelli derivanti da ROM di tipo lineare,
ma che impiegano anch’essi reti neurali artificiali per la predizione rapida della soluzione
in tempo reale.

Parole chiave: ROM, PINN, Surrogate models, Autoencoder
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1

Introduction

Physical phenomena can be generally modelled through PDEs derived from natural laws.
These PDEs admit a solution in the closed form only in very simple cases. For this reason,
a wide number of numerical schemes has been developed starting from the beginning of
the last century, such as the Finite Differences Method (FDM) [28], the Finite Elements
Method (FEM) [35] and the Finite Volume Method (FVM) [39]. Each of these methods
is characterized by its own strengths and weaknesses. To date there is not a numerical
method superior to all the others, in fact the choice is driven by their specific peculiarities
and how they interact with the problem at hand.

The discretization in time and space leads to the so called Full Order Models (FOMs),
which, regardless of the selected numerical method, are in general high-dimensional sys-
tems. While these methods are able to achieve high accuracy on a vast set of problems
and there is a rigorous mathematical literature supporting them, the high-dimensionality
of the FOMs becomes soon an issue as the PDEs are parameterized by one or more co-
efficients. This is even more evident in the real-time applications context (e.g. real time
control), where the solution is required in a short amount of time, or in the multi-query
scenarios (e.g. uncertainty quantification, experimental design), where the FOM is solved
for many parameters instances.

To alleviate this, some dimensionality reduction techniques have been traditionally de-
vised which fall under the category of the Reduced Order Models (ROMs): they offer
an approximation of the high-fidelity solutions at any desired time-parameter instance.
Their success relies on the fact that the high-dimensionality of the FOMs is actually ar-
tificial, being just a consequence of the underlying numerical scheme chosen. The major
hypothesis at the base of the ROMs is given in fact by the observation that even the
behaviour of a complex system can be often described by a combination of few dominant
modes. If this is the case, the approximation of the solution submanifold leads to a huge
computational cost saving, while possibly keeping high levels of accuracy.

To actually achieve a speedup, the ROMs are decoupled into an offline and online stages:

• During the offline stage, a set of high fidelity solutions is collected and the most
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computational expensive operations are performed.

• During the online stage the solution is rapidly predicted, in general by fast function
evaluation or by solving a low-dimensional linear system. To allow a continuous map
between the time-parameters instances and the solution, interpolation methods or
Artificial Neural Networks (ANNs) can be exploited. In the present work, all the
ROMs considered made use of the latter.

The most widespread dimensionality reduction technique is the Proper Orthogonal De-
composition (POD) [3], [21], also known as Principal Component Analysis (PCA) in other
engineering fields. This method exploits the Singular Value Decomposition (SVD), as it
will be discussed in section (1.2), to extract a set of reduced basis, which represent the
dominant dynamics of the underlying problem.

The main drawback of SVD-based ROMs is the fact that this matrix factorization is
essentially a linear technique, therefore the method may suffer especially if the problem
at hand is unsteady or advection dominated.

In the present work two new approaches will be investigated, both developed in the deep
learning context, with the aim to improve the accuracy of existing linear ROMs. The first
one to be introduced is the Projection Driven Neural Networks - Autoencoder (PDNNs-
Autoencoder), in which a deep convolutional autoencoder is used as a dimensionality
reduction tool in place of the SVD. An autoencoder, being an Artificial Neural Network,
allows to map the high-dimensional solution space in a low-rank non-linear manifold,
which is expected to perform better than its linear counterpart.

The second approach, namely the Physics Informed Neural Networks - FOM (PINNs-
FOM), is completely different from a conceptual point of view. This method consists
of an artificial neural network in which the governing equations of the problem at hand
are embedded in the network training algorithm. The main interesting aspects of this
approach are:

• it does not require the generation of expensive high-fidelity solution snapshots;

• it is a completely mesh-free method;

• it is easy to implement through high-level python libraries.

Both these methods will be assessed on 4 different test problems and their performances
compared against SVD-based ROMs.

The thesis is organized as follows:
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Chapter 1

In Chapter 1 the ROMs framework is discussed in detail. The SVD factorization, which
is at the core of the POD method, will be described and its main drawbacks presented.
Finally, an example of SVD-based approach, namely the POD-Galerkin, will be provided.

Chapter 2

Chapter 2 offers all the theoretical backgrounds concerning the world of Artificial Neural
Networks. After a brief introduction, the main ingredients of a ANN are introduced: the
activation functions, the loss function, the training algorithm and the available optimizers.
Moreover, besides the vanilla Feed Forward Neural Network (FFNN) architecture, a whole
section is dedicated to the Convolutional Neural Networks (CNNs), which are employed
in the developed autoencoder. Finally, the autoencoder architecture itself is introduced.

Chapter 3

In Chapter 3 the focus is on the Physics Informed Neural Networks. The chapter has
been designed to answer how the PDEs are embedded in the network training algorithm,
explaining the advantages and the drawbacks of this deep learning branch. To support
the discussion, a practical demonstration is offered on a problem governed by a non-
parameterized PDE. Finally, few advanced techniques are described.

Chapter 4

Chapter 4 comes with the description of the approaches used in this thesis to deal with
the fast solution of problems governed by parameterized PDEs.

Chapter 5

In Chapter 5, 4 test problems are presented. For each case, the application of the various
strategies is described and the accuracy achieved is reported for comparison. Besides
the quantitative analysis of the error, the chapter is enriched with plots concerning the
comparison of the approximated solutions with the high-fidelity reference ones.
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Chapter 6

Chapter 6 contains an analysis on the results obtained in Chapter 5, highlighting the
strengths and the weaknesses of the proposed approaches, in comparison with the SVD-
based methods. Some final remarks on possible future developments to enhance the
approaches accuracy are reported.
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1| Reduced Order Models

In the present chapter, the basics behind the model order reduction strategies will be
introduced. Together with the application of Physics Informed Neural Networks (PINNs)
directly on the governing equations, these strategies represent the core of this work. After
a short overview on the various techniques and their motivations, the attention will be
devoted to the most widespread one, the Proper Orthogonal Decomposition (POD) and
its applications for devising a reduced order model system of equations.

1.1. Full Order Models vs Reduced Order Models

In the broad context of engineering applications, many problems require to be modelled
through PDEs and systems of PDEs. In general, a large amount of them do not have,
to date, any analytical solution. For this reason, numerical methods are widely exploited
since the beginning of the previous century. The available approaches to numerically
retrieve the PDEs solution can be classified into two main categories:

• numerical computation;

• model reduction.

The numerical computation strategy leads to the so called Full Order Models. These
models are characterized by the highest level of accuracy. The solution is derived by
discretizing the spatio-temporal domain with a fine mesh, obtaining an artificially high-
dimensional system of equations which can be later solved. Common examples are Finite
Difference Method (FDM) [28], Finite Elements Method (FEM) [35] and Finite Volume
Method (FVM) [39].

The high dimension n of the system, which typically demands both high computational
resources and time, is the main drawback of this approach. The problem becomes even
more evident once the PDEs are parameterized and the solution is required over a wide
range of values in the parameter space: a list of relevant examples includes topology
optimization, uncertainty quantification and parameter estimation.
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Moreover, while during the final stages of a project a high fidelity solution is desired and
thus a FOM represents the best choice, during the preliminary analysis phase a much
faster approach is preferable.

To answer this requirement, a number of strategies have been developed which belong
to the model order reduction philosophy. In particular, these methods lead to the so
called Reduced Order Models (ROMs) and they seek to replace the complex system by
a simpler set of equations to improve the computational speed. The idea behind them is
based on the observation that even the behaviour of a complex system can be described
by a combination of few dominant modes. Thus, a great dimensionality reduction is in
general possible. However, by relieving the high resources demand issue, the trade-off of
achieving less accurate results is accepted.

Another great advantage of ROMs against FOMs is that their evaluation is fast and
therefore they are available for real-time application contexts for which the latter, being
computationally expensive, are not suited.

The most widespread category of ROM are Reduced Basis (RB) methods [33]. In general,
they are implemented in an offline - online paradigm:

• during the offline stage, a set of high fidelity solutions is collected (snapshots). These
may derive from experimental data as well as from FOM samples and are used to
extract the Reduced Basis, which represent the dominant dynamics of the under-
lying problem. The most famous extraction technique is the Proper Orthogonal
Decomposition (POD), which exploits the Singular Value Decomposition algorithm
(SVD) [4];

• during the online stage the reduced coefficients are computed. The solution is then
recovered as a linear combination of the RB functions weighted by the reduced
coefficients.

In turn, there are two different approaches to perform the online stage:

• intrusive approach: the FOM is projected onto the reduced space spanned by the
RB functions. The most used projection, the Galerkin projection, leverages the RB
functions as the test ones (POD-G method);

• non-intrusive approach: the reduced coefficients are determined via interpolation or
regression. To this aim, as we will see in the present work, neural networks may be
exploited to perform the task.

The main drawback of the traditional intrusive approaches, such as the POD-G, is the
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lack of a priori guarantees of stability, accuracy and convergence. Moreover, the eventual
presence of a non-linear term may cancel any time gaining since it scales with the FOM,
representing a computational bottleneck.

1.2. Proper Orthogonal Decomposition: an overview

The proper orthogonal decomposition (POD) is one of the most used procedures to extract
a set of reduced basis. In particular, it exploits the Singular Value Decomposition (SVD)
of a matrix representative of the problem dynamics to retrieve a low rank approximation
of it. The SVD is attractive for two main reasons:

• its existence is guaranteed for any matrix (unlike the eigendecomposition);

• it is numerically stable.

Before going through the POD procedure used to derive a ROM, in the following subsec-
tion an introduction to the SVD algorithm will be presented.

1.2.1. Singular Value Decomposition

Let us consider a matrix AAA ∈ Cn×m. This matrix, in the context we are dealing with,
consists of a series of experimental data or high fidelity solutions which are sampled
uniformly or randomly over the domain and then appropriately reshaped into column
vectors aaak.

AAA =

 | | | |
aaa1 aaa2 ... aaak ... aaam

| | | |

 (1.1)

The columns of the matrix may represent therefore the evolution in time of a physical
variable or the parameterized solution for a given value assumed by the parameter. For
this reason, the columns of AAA are called snapshots.

In general, n >> m, since the mesh used for the computation of the FOM solution - or
the measurement grid - is usually fine, and the number of snapshots collected cannot be
too high (otherwise the use of a ROM is no more time convenient).

The SVD is a unique matrix decomposition which ensures the existence of two unitary
matrices UUU =

[
uuu1|...|uuun

]
∈ Cn×n and VVV =

[
vvv1|...|vvvm

]
∈ Cm×m with orthonormal columns

and a matrix ΣΣΣ = diag(σ1, ...σm) ∈ Rn×m characterized by non-negative real values on
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the diagonal and zero off it, such that:

AAA = UUUΣΣΣVVV ∗, (1.2)

with ∗ being the Hermitian transpose operator. Note that:

• uuui are called the Left Singular Vectors of AAA;

• vvvj are called the Right Singular Vectors of AAA;

• σk are called the Singular Values of AAA and they are ordered from the largest to the
smallest: σ1 ≥ σ2 ≥ ... ≥ σm.

Since n > m, ΣΣΣ has at most m nonzero entries on the diagonal, and thus can be rewritten
as:

ΣΣΣ =

[
Σ̂ΣΣ

000

]
. (1.3)

Therefore, the economy SVD can be defined:

AAA =
[
ÛUU ÛUU

⊥
] [Σ̂ΣΣ

000

]
VVV ∗ = ÛUUΣ̂ΣΣVVV ∗. (1.4)

The difference between the full and economy SVD can be graphically appreciated in Figure
(1.1).

As mentioned above, the SVD factorization is exploited in order to reduce the dimension-
ality of the problem by extracting a low rank basis matrix from AAA whose associated linear
space is still capable of describing the dynamics of the underlying problem in an accurate
way. The Eckart - Young theorem [10] guarantees that the low rank-r approximation
given by the SVD is the optimal one in the least squares sense:

argmin
ÃAA

∥∥∥AAA− ÃAA
∥∥∥
F
= ŨUUΣ̃ΣΣṼVV

∗
(1.5)

,

where ŨUU and ṼVV are respectively the first r leading columns of UUU and the first r leading
columns of VVV , and ∥ · ∥F denotes the Frobenius norm.

From a mathematical point of view, the computation of the SVD of the matrixAAA is related
to an eigenvalue problem involving the correlation matrices AAAAAA∗ and AAA∗AAA:
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(a) Full SVD

(b) Economy SVD

Figure 1.1: Comparison between the two SVDs.

AAAAAA∗ = UUU

[
Σ̂ΣΣ

000

]
VVV ∗VVV

[
Σ̂ΣΣ 000

]
UUU∗ = UUU

[
Σ̂ΣΣ

2
0

0 0

]
UUU∗,

AAA∗AAA = VVV
[
Σ̂ΣΣ 000

]
UUU∗UUU

[
Σ̂ΣΣ

000

]
VVV ∗ = VVV Σ̂ΣΣ

2
VVV ∗.

(1.6a)

(1.6b)

In fact, since UUU and VVV are unitary matrices, it is possible to conclude that UUU , VVV and ΣΣΣ

are solutions of the following eigenvalue problem:

AAAAAA∗UUU = UUU

[
Σ̂ΣΣ

2
0

0 0

]
,

AAA∗AAAVVV = VVV Σ̂ΣΣ
2
.

(1.7a)

(1.7b)

From Equations (1.7a) and (1.7b) it is straightforward to conclude that the columns of UUU
are the eigenvectors of the AAAAAA∗ matrix, the columns of VVV are the eigenvectors of the AAA∗AAA

matrix and σσσk are the square root of both AAAAAA∗ and AAA∗AAA eigenvalues.

1.2.2. SVD main drawback: data alignment

The most relevant drawback of the SVD is that it often requires a huge data preprocessing
- translations, rotations and scaling of the snapshots - before performing it. If the data
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are not aligned, in fact, the relevant singular values of the underlying problem increase,
meaning that the number of columns ofUUU which must be considered to accurately describe
the dynamics becomes high, thus lowering the dimensionality reduction capability of the
whole POD procedure.

To mitigate this issue, new non-linear techniques have been proposed in substitution of
the SVD: the convolutional autoencoders [11], [22], which will be later discussed in Section
(2.4).

1.3. Proper Orthogonal Decomposition - Galerkin pro-

jection (POD-G) method

Let us consider a generic parameterized time-dependent system of nonlinear PDEs in the
form:

uuut =NNN(uuu,uuux,uuuxx, ..., x, t,µµµ). (1.8)

The correspondent discrete FOM obtained after applying a traditional numerical scheme
such as the FEM or the FVM reads as:

duuuh(t,µµµ)

dt
= LLL(µµµ)uuuh(t,µµµ) +NNN(uuuh(t,µµµ)) +CCC(µµµ), (1.9)

where LLL and NNN are respectively a linear and a non-linear operator, CCC is a constant term
and uuuh is the discrete full order model solution.

It is possible then to approximate uuuh by a Galerkin expansion:

uuuh(t,µµµ) ≈ uuu+ ŨUUααα(t,µµµ), (1.10)

where:

• ŨUU is the truncated basis matrix which, in this case, is obtained via the SVD of the
snapshots matrix AAA;

• uuu is a constant term, usually taken as the mean of AAA to avoid the presence of
dominant basis;

• ααα(t,µµµ) is the vector of the reduced coefficients.
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Substituting the Equation (1.10) into System (1.9), a non-linear system for the unknown
ααα(t,µµµ) can be written. In compact notation it becomes:

ŨUU
dααα(t,µµµ)

dt
= LLL(µµµ)ŨUUααα(t,µµµ) +NNN(ŨUUααα(t,µµµ)) +CCC(µµµ). (1.11)

The dimensionality reduction is achieved by projecting System (1.11) onto a subspace
WWW ∈ Rn×r:

WWW TŨUU
dααα(t,µµµ)

dt
=WWW T

(
LLL(µµµ)ŨUUααα(t,µµµ) +NNN(ŨUUααα(t,µµµ)) +CCC(µµµ)

)
. (1.12)

In the context of a Galerkin projection, WWW = ŨUU and thus the truncated basis matrix is
used for the projection of the ROM into a low rank subspace:

ŨUU
T
ŨUU
dααα(t,µµµ)

dt
= ŨUU

T
(
LLL(µµµ)ŨUUααα(t,µµµ) +NNN(ŨUUααα(t,µµµ)) +CCC(µµµ)

)
, (1.13)

which, exploiting the orthogonality of ŨUU , becomes:

dααα(t,µµµ)

dt
= ŨUU

T
(
LLL(µµµ)ŨUUααα(t,µµµ) +NNN(ŨUUααα(t,µµµ)) +CCC(µµµ)

)
. (1.14)

The solution of the ROM is retrieved by solving System (1.14) and substituting the
resulting ααα(t,µµµ) into Equation (1.10).

If the parameter dependence of the FOM is non-affine, an interpolation technique is
required to obtain a continuous map between the time-parameters instances and the
corresponding reduced coefficients. In this work ANNs has been employed for this purpose,
due to both their fast online evaluation capability and accuracy.

As mentioned before, the computation of the nonlinear term may represent an issue: since
it scales with the dimension of the FOM n, it represents a real bottleneck and an obstacle
for a true time effective ROM. To deal with it, new techniques has been already widely
used such as the gappy POD [15], the discrete empirical interpolation method (DEIM,
[5]) and the missing point estimation (MPE, [2]). They allow for a trade-off between the
speed up of the whole process and the accuracy of the nonlinear term approximation.

A last issue which requires to be addressed is the need for finding a rule to determine the
rank r of the truncated basis matrix. Usually a threshold is defined: the number of modes
considered is such that their associated singular values captures are least, for example,
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99% or 99.99% of the energy of the original data. As discussed in subsection (1.2.2), in
presence of unsteady advection-dominated problems where the snapshots are necessarily
misaligned, the rank r required to capture such amount of energy has to be higher than
in the other problems.

The summary of the POD-G procedure can be appreciated below, divided respectively
into the offline stage (Algorithm (1.1)) and online stage (Algorithm (1.2)).

Algorithm 1.1 POD-G procedure - Offline Stage
1: Generate the set of parameters MMM = {µµµ1, ...,µµµm}
2: Solve the FOM for each parameter instance; assemble the snapshots matrix AAA =[

uuuh(µµµ1), ...,uuuh(µµµm)
]

3: Compute the SVD of AAA; analyze the singular values obtained
4: Truncate the basis matrix UUU keeping only the relevant modes
5: Introduce the Galerkin expansion of the FOM solution: uuuh = uuu+UUUααα(t,µµµ)

6: Assemble the ROM. For reference, see System (1.11).

Algorithm 1.2 POD-G procedure - Online Stage
1: Project the ROM equations into the basis subspace
2: Solve the ROM system for the desired parameter
3: Compute the ROM solution by inserting the reduced coefficients ααα(t,µµµ) just retrieved

into the Galerkin expansion formula (1.10)
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The concept of the Artificial Neural Networks (ANNs, from now on) is surprisingly not
new. In 1943, McCullong and Pitts proposed the first Threshold Logic Unit [32], whereas
few years later Rosenblatt developed the first Perceptron [36], the precursor of the modern
neurons. Both these early attempts to supplement existing algorithms with artificial
intelligence were based on the Brain Computational Model, which is characterized by two
main elements:

• the synapses, which connect each neuron and allow the exchange of electrical charges
between them;

• the neurons, which collect the charges from the synapses. Note that they can have
both positive and negative sign. Once a certain threshold is reached, the charges
are released to the other neighbor units.

As it will be shown in section (2.2), modern ANNs algorithms are based on the Brain
Computational Model too since they are an evolution of these early attempts.

Before introducing the main concepts which lie behind the ANNs success and describing
the architectures used in the present work, the following section will provide a short
introduction on the Deep Learning field and how this is related with the traditional
Machine Learning world.

2.1. Machine Learning vs Deep Learning

Machine Learning is a well established category of research and algorithms focused in
finding patterns in data, with the purpose of using those patterns to make predictions.

Given a set of collected data D = x1, x2, x3, ..., xN , Machine Learning algorithms can be
classified into three main paradigms:

• Supervised Learning: if a set of desired targets T = t1, t2, t3, ..., tN is provided
through human supervision, the algorithms learn to predict the correct targets given
a new set of inputs;
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• Unsupervised Learning: the algorithms exploit regularities in D to discover hidden
patterns among data without the need of human supervision. Those hidden patterns
are then used to make predictions;

• Reinforcement Learning: an agent performs a set of actions A = a1, a2, a3, ..., aN .
These actions affect the environment defined by the data and produce a set of
rewards R = r1, r2, r3, ..., rN . In this context the agent learns to act in order to
maximize the rewards in the long term.

Despite of the learning paradigm considered, Machine Learning algorithms consist of two
building blocks:

• an hand-crafted feature extractor, which manipulates the input data to keep only
the relevant information;

• the algorithm core, which, given the extracted features, delivers the prediction.

Deep Learning is a subclass of Machine Learning in which, regardless of the paradigm
considered, the first block, i.e, the feature extractor, is not hand-crafted. In fact it becomes
part of the algorithm core and thus trained in a data-driven way as well. In general, the
possibility to tune the feature extractor allows to achieve better performances with respect
to the Machine Learning counterpart.

Artificial Neural Networks (ANNs) represents the most famous and nowadays widespread
category of Deep Learning algorithms.

2.2. Artificial Neural Networks: an overview

Various obstacles and pitfalls mined the Deep Learning study field since the beginning,
leading to the so called AI winters multiple times during the last century. The back-
propagation algorithm [37], which is at the base of modern ANNs training process, was
proposed in 1986, but due to the limited computational resources available, the time was
not ripe yet for the spreading of this technology.

The interest on ANNs among the computer scientists, and more generally, among the
scientific community has seen a sudden and unprecedented growth at the beginning of the
previous decade, mainly for two reasons:

• the increase in the available computational resources, in particular the increase
of the GPUs performances, since the ANNs architecture and the backpropagation
algorithm make them suitable for parallel computation, easily performed on this
kind of hardware;
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• the large amount of data sets collected, especially in the field of computer vision, to
perform supervised learning tasks. One of the most relevant factors that have con-
tributed to this abundance is the spread of the use of smartphones and in particular
the social networks. Nowadays, Internet of Things is playing an important role in
autonomous data collection as well.

The architecture of a vanilla Feed Forward Neural Network (FFNN, see Figure (2.1)) is
fully described by the number of hidden layers, neurons per layer, activation functions
and weight values, and is such that each neuron output depends on all the neurons inside
the previous layer.

Figure 2.1: Vanilla FFNN. It is characterized by an input layer of 9 neurons (in orange),
2 hidden layers of 6 neurons each and an output layer of a single neuron. The biases are
in blue.

The Universal Approximation Theorem [17] states that, in principle, for a regression task,
a single hidden layer FFNN with S shaped activations can approximate any measurable
function to any desired degree of accuracy on a compact set. However, this does not
guarantee to find a suitable optimizer to compute the optimal weights, and the layer may
become unfeasibly large, thus in general adding more hidden layers is a common practice.

Given this premise, the choice of the FFNN hyperparameters is not straightforward and
there are no strictly rules to comply with. Moreover, the best architecture to use is often
problem dependent: for example, a more complex task may require more hidden layers or
neurons per layer, but it is not always the case.
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To better clarify all the main ingredients of a FFNN, the remaining part of this section
is devoted to offer an overview of them.

2.2.1. Activation Functions

The activation functions are the core of a neuron, mapping the sum of the weighted inputs
into the neuron output. They play an important role in the overall ANNs performance,
since they are the main source of non-linearity. The first activation functions employed
were the hyperbolic tangent (Figure (2.2a)) and the sigmoid (Figure (2.2b)), and it’s clear
why: they recall the threshold function of the perceptron. In fact, more precisely, they
are the differentiable counterpart respectively of the sign and Heaviside functions.

(a) Hyperbolic tangent activation function (b) Sigmoid activation function

(c) ReLU activation function (d) Swish activation function

Figure 2.2: Nowadays most widespread activation functions
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Today, especially in the computer vision field, the use of the Rectified Linear Unit acti-
vation (ReLU, see Figure (2.2c)), along with its variants, is common, since it addresses
some issues related to the backpropagation algorithm which will be later discussed in
subsection (2.2.4).

For the same reason, other activation functions are being continuously tested and are
gaining more and more attention such as the non-monotonic Swish activation function
(depicted in Figure (2.2d)). Eventually, all of these presented activation functions can be
parameterized by a trainable parameter which adaptively modifies their slope, with the
purpose of improving the network performances [19].

To conclude, the linear activation function is used as well. It is commonly employed for
example in the output layer of networks performing regression tasks, since in this case the
map output has to span the whole R set.

2.2.2. Loss function

Once the network makes a prediction, it is necessary to quantify the error and possibly
find an algorithm that iteratively tries to minimize it. In this subsection the optimal loss
function to be minimized for a regression task will be derived.

Let us consider the case of a supervised learning problem where it is required to ap-
proximate a target function t having N observations available. Given the output of the
neural network g (xxxn|www), let us suppose that for each observation the target is given by
the relationship:

tn = g (xxxn|www) + ϵn, (2.1)

where ϵn ∼ N (0, σ2) is a Gaussian zero mean noise with constant variance σ2.

It is possible to say then that the target approximately belongs to a Gaussian distribution
with mean value g (xxxn|www) and variance σ2:

tn ∼ N(g (xxxn|www) , σ2). (2.2)

The objective is to determine the set of weights www of the neural network which, for each
observation, maximize the probability of the target, i.e., its likelihood under the designed
model.

From Equation (2.2) it comes that the target probability given a generic observation reads:
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p
(
tn|g(xxxn,www), σ

2
)
=

1√
2πσ

e−
(tn−g(xxxn|www))2

2σ2 . (2.3)

Assuming that the target at each observation is independent and identically separated
from the others, the likelihood of the target under the given set of parameters reads as:

L(www) =
N∏

n=1

p
(
tn|g (xxxn,www) , σ

2
)

=
N∏

n=1

1√
2πσ

e−
(tn−g(xxxn|www))2

2σ2 .

(2.4)

Now, to convert the products into sums without loosing the point of the discussion, it is
possible to take the logarithm of the likelihood:

l(www) =
N∑

n=1

(
ln

(
1√
2πσ

)
− 1

2σ2
(tn − g (xxxn|www))2

)
. (2.5)

Finally, the weights that maximize the likelihood can be derived as:

argmaxwwwl(www) = argmaxwww

N∑
n=1

(
ln

(
1√
2πσ

)
− 1

2σ2
(tn − g (xxxn|www))2

)

= argminwww

N∑
n=1

(tn − g (xxxn|www))2 .

(2.6)

It is possible to conclude then that the most suitable loss function to be minimized when
dealing with a regression task is the sum of squared errors (or better, to avoid numerical
instabilities, the mean squared error MSE):

MSE =
1

N

N∑
n=1

(tn − g(xxxn|www))2 . (2.7)

Variants of Equation (2.7) are also available, such as the root mean squared error RMSE
(see Equation (2.8)) and the mean absolute error MAE (see Equation (2.9)):

RMSE =
√
MSE =

√√√√ 1

N

N∑
n=1

(tn − g(xxxn|www))2, (2.8)
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MAE =
1

N

N∑
n=1

|tn − g(xxxn|www)| . (2.9)

The MAE is less sensitive to the presence of outliers, since the difference between labeled
data and predictions is not squared.

Following the same reasoning, but making a different hypothesis on the target distribution,
it is possible to determine that for a classification task the best choice for a loss function
to be minimized is the Crossentropy CE:

CE = −
N∑

n=1

tn · log (g (xxxn|www)) . (2.10)

2.2.3. Backpropagation algorithm

Once a suitable loss function has been derived, the objective is to determine the set of
network weights which minimizes it. This is exactly what happens during the training of
the neural network.

To find the minimum of a generic function, it is necessary to compute its partial derivatives
and set them to zero:

∂E(www)

∂www
= 0. (2.11)

Since analytical solutions of Equation (2.11) are practically never available, the optimal
weights are computed through an iterative process:

wwwk+1 = wwwk − η
∂E(www)

∂www

∣∣∣∣
wwwk

, (2.12)

where k is the generic iteration and η is the learning rate, which is a tunable hyperpa-
rameter.

To avoid being trapped in local minima, some optimizers include also the momentum,
i.e., the gradient of the loss function at the k − 1 iteration, in the formula:

wwwk+1 = wwwk − η
∂E(www)

∂www

∣∣∣∣
wwwk

− α
∂E(www)

∂www

∣∣∣∣
wwwk−1

, (2.13)
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where α is a tunable parameter as well, in general lower than η.

The backpropagation is the algorithm through which the gradient of the loss function
with respect to all the weights is computed. To understand how it works, let’s consider
the one hidden layer neural network sketched in Figure (2.3).

Figure 2.3: Generic one hidden layer neural network

For each layer l, the weights can be stored in a matrix WWW l, such that the generic entry
w

(l)
ji refers to the weight connecting the i− th node of the layer l to the j− th node of the

layer l + 1.

Since the gradient of E with respect to the weights is a composite function, it can be
expressed through the chain rule. For example, the gradient of E with respect to the
weights of the hidden layer in Figure (2.3), at each k iteration and considering all the n

observations, is:

∂E(www)

∂w
(1)
ji

= −2
N∑

n=1

(tn − g1 (xxxn|www)) · g
′

1 (xxxn|www) · w(2)
1j · h′

j (xxxn,www) · xi,n, (2.14)

where each term is the result of the application of the chain rule:

∂E(www)

∂w
(1)
ji

=
∂E(www)

∂g1 (xxxn|www)
· ∂g1 (xxxn|www)

∂
(
w

(2)
1j hj (xxxn|www)

) ·
∂
(
w

(2)
1j hj (xxxn|www)

)
∂hj (xxxn|www)

· ∂hj (xxxn|www)

∂
(
w

(1)
ji xi,n

) ·
∂
(
w

(1)
ji xi,n

)
∂w

(1)
ji

.

(2.15)

The computation of these terms is really efficient, since:
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• ∂E(·)
∂g1(·) is directly available once the output of the network g1 (·) is computed;

• ∂g1(·)
∂w

(2)
1j hj(·)

and ∂hj(·)
∂w

(1)
ji xi,n

can be computed as soon as g1 (·) and hj (·) are obtained;

• ∂w
(2)
1j hj(·)
∂hj(·) and ∂w

(1)
ji xi,n

∂w
(1)
ji

are simply respectively the corresponding weights and inputs.

Moreover, the computation of the derivatives of the activations showed in Figure (2.2) are
straightforward and can be hard-coded without the need to calculate the gradient each
time:

tanh
′
(·) = 1− tanh(·)2,

sigmoid
′
(·) = sigmoid(·)(1− sigmoid(·)),

ReLU
′
(·) =

1, ifx > 0;

0, otherwise,

swish
′
(·) = swish(·) + sigmoid(·)(1− swish(·)),

(2.16)

(2.17)

(2.18)

(2.19)

and the same can be said for other activations.

Finally, considering the weights between two layers, it is possible to notice that their
updating formula require the repetition of the same operations derived from the chain
rule: this makes the backpropagation algorithm suitable for the parallel computation,
which on a good GPU allows to tremendously speed up the training process.

The backpropagation algorithm, also known as gradient descent, has three variants. To
describe them, firstly it is necessary to introduce the concept of epoch: an epoch is one
pass through all the data xn. Depending on how many iterations are performed along an
epoch, it is possible to distinguish in:

• batch gradient descent: ∂E(www)
∂www

= 1
N

N∑
n=1

∂E(xnxnxn|www)
∂www

;

• stochastic gradient descent: ∂E(www)
∂www

≈ ∂ESGD(www)
∂www

= ∂E(xnxnxn|www)
∂www

;

• mini-batch gradient descent: ∂E(www)
∂www

≈ ∂EMB(www)
∂www

= 1
M

M⊂N∑
n=1

∂E(xnxnxn|www)
∂www

.

In the batch gradient descent, the gradients are computed for each observation and then
the average over all the batches is taken to update the weights. Thus, one iteration of the
updating formula corresponds to a whole epoch: the computational cost for each iteration
is high.

In the stochastic gradient descent instead the weights are updated at each observation.
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In this way N iterations are performed for each epoch. This reduces dramatically the
computational cost at each iteration, but there may be too much variance on the gradients,
slowing down the convergence process.

The best compromise between the computational resources required and the variance of
the gradients is given by the mini-batch gradient descent. In this case each iteration is
performed after having computed the average of the gradients over M < N observations,
clustered together in M/N mini-batches.

2.2.4. Backpropagation Algorithm and Activation Functions is-

sues

Now that the Backpropagation Algorithm has been introduced it is possible to discuss
about the qualities and the issues concerning the activation functions previously exposed.

The first consideration concerns the chain rule involved in the backpropagation algorithm.
When computing the product of many factors, there’s the risk of obtaining a vanishing
or exploding result, depending on the factors values.

Looking at the sigmoid and hyperbolic tangent functions, the maximum of their derivative
is found in the origin and its value is respectively 0.25 and 1. While this guarantees to not
incur into an exploding gradient problem, it may become problematic from the vanishing
gradient problem point of view. Moreover, except a limited region across the origin, these
functions saturate rapidly, leading to extremely low gradients. The issue is more and
more relevant as the depth of the network increases.

The ReLU activation function is instead a piece wise linear activation function, and its
derivatives values are either 0 or 1, respectively for negative and positive inputs. This
characteristic solves the vanishing gradient problem but introduces another one: the dying
neuron issue.

If the learning algorithm bring the input of the neuron to be negative for all the data
samples, the neuron will always output zero and it will hardly recover from this situation:
the learning process will fail or the performances of the network will be limited.

Many variants of ReLU has been proposed to mitigate the dying neuron issue, such as
the Leaky ReLU and the ELU, in which the function and its gradient are not identically
zero in the negative input plane.
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2.2.5. Optimizers

A vanilla optimizer (the Gradient Descent optimizer) is a computational tool which em-
beds the backpropagation algorithm to update the network weights at each iteration
through the Equation (2.12). In subsection (2.2.3) it has already been mentioned an
upgraded version (Equation (2.13)) which makes use of the momentum to speed up the
convergence to avoid local minima (Momentum optimizer).

Nowadays there are many optimizers available. Starting from Equation (2.12), each of
them introduces some changes and eventually improvements in their algorithm. If this
wasn’t enough, combinations of different optimizers have been developed too. In the
following lines the most widespread and famous will be rapidly introduced.

NAG - Nesterov Accelerated Gradient

The Nesterov Accelerated Gradient optimizer is a momentum-based Stochastic Gradient
Descent algorithm in which the gradient of the loss function with respect to each weight
is computed after the momentum jump. For this reason, it can be split into two steps,
with the second being a correction one:

wwwk+ 1
2 = wwwk − α

∂E(www)

∂www

∣∣∣∣
wwwk−1

,

wwwk+1 = wwwk − η
∂E(www)

∂www

∣∣∣∣
wwwk+1

2

,

where α is usually set to 0.9 as in the classic momentum SGD optimizer.

In practice the NAG optimizer has proven to perform slightly better than the vanilla
momentum one.

AdaGrad - Adaptive Gradient

Neurons of each layer learn differently. In particular, due to the backpropagation algo-
rithm nature, the gradient magnitudes vary across the layers, with early layers suffering
from the vanishing gradient phenomena.

From this consideration it is clear that the use of separate adaptive learning rates for each
layer may improve the performances of the training process.

AdaGrad [9] modifies the learning rate η at each time step k and for each parameter wi
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by taking into account the history of the previous gradients with respect to the parameter
w:

ηk+1
i =

η√
Gk

ii + ϵ
,

where Gk
ii is the sum of the squared gradients of the loss function with respect to the

weight wi at the previous time steps. η is a constant value defined by the user, ϵ is a small
smoothing term.

In this way, smaller gradients are automatically associated with larger learning rates, bal-
ancing the weight update across the neurons and thus mitigating the vanishing gradients
problem in the early layers. Its main advantage is, at the same time, also its main weak-
ness: the continuous accumulation of the gradients at the denominator causes the latter
to grow with the number of the iteration. The learning rate may become too small for
the network neurons to keep learning.

RMSProp

RMSProp [38] is an extension of AdaGrad which aims to relieve the issue just mentioned.
In particular, with RMSProp the window of accumulation of the past gradients is re-
stricted to a fixed constant size. In such manner the fast and thus dangerous monotonic
decrease of the learning rate characterizing the AdaGrad optimizer is avoided. It is curious
it was not proposed in an official paper but simply as a part of a Coursera lecture.

AdaDelta

Adadelta [43] is another adaptive learning rate optimizer which can be classified as an
extension of AdaGrad and a variant of RMSProp.

The user is not required to define a constant η since the numerator is given by the moving
average of the weight updates at previous epochs.

Adam - Adaptive Moment Estimation

Adam [23] is an extension of the RMSProp one which considers both the moving average
of the first and second moments of the gradients. The weight updates are performed as:

wk
i = wk−1

i − η
m̂k

√
v̂k + ϵ

,
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with:

mk = β1m
k−1 + (1− β1)

∂E

∂wi

∣∣∣∣
wk−1

i

,

vk = β2v
k−1 + (1− β2)

(
∂E

∂wi

)2
∣∣∣∣∣
wk−1

i

,

m̂k =
mk

1− βk
1

,

v̂k =
vk

1− βk
2

.

In the original paper the optimal initial learning rate is said to be η = 1e− 3. ϵ is a small
number to avoid dealing with divisions by zero. β1 and β2 are forgetting parameters, with
typical values of 0.9 and 0.99 respectively.

L-BFGS - Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
algorithm

The L-BFGS algorithm [29] and its main variant L-BFGS-B, unlike the others mentioned
until now, are a second-order optimization algorithm, meaning that they make use of the
second-order derivative of the loss function (the Hessian) inside the weights updating rule.

The knowledge of the second order derivative of the loss function is useful to calibrate the
direction and the step size of the weight update.

Common second-order optimization algorithms belong to the group of Newton methods.
The L-BFGS optimizer, instead, is a Quasi-Newton Method, which means that it com-
putes an approximation of the Hessian matrix (more specifically, its inverse) to speed up
the updating process. The approximation is performed starting from the gradient values.

Moreover, the L-BFGS algorithm addresses the problem of having a large number of
parameters by computing and storing the approximated inverse Hessian matrix in a sim-
plified way.
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2.2.6. Training

When the performance of a neural network is not sufficiently accurate, the reasons behind
this behaviour could be essentially three:

• the raw input data are not enough or they are not in a optimal form to be fed to
the network;

• underfitting: the network is too shallow. It doesn’t have enough parameters to
capture the relationship between the input and output variables;

• overfitting: the model fits properly the training data, but it lacks in the capability
of generalise to the unseen ones.

If the data are not enough, the network in general will have worse performances. In
the computer vision field the data augmentation process has been developed to mitigate
this issue. In this context, the input picture at each epoch pass through a series of
transformations, such as translation, rotation, cropping, mirroring, noising etc. Each of
these transformations are governed by some parameters which vary in a random way
epoch after epoch. In this way, in addition of the the original images a second set of
pictures is generated, which spatially differs from the original ones, but they represent
the same subjects.

It is also always a good practice to preprocess the data. The preprocessing phase usu-
ally starts with a feature scaling, possibly after the removal of corrupt data or outliers.
Different methods are available, such as:

• min-max normalization. It is the simplest method and re-scales the data into the
range [0, 1] (see Equation (2.20)) or in the range [−1, 1] (see Equation (2.21)).

x
′

i =
xi −min(xxx)

max(xxx)−min(xxx)
, (2.20)

x
′

i = 2 · xi −min(xxx)

max(xxx)−min(xxx)
− 1. (2.21)

• standardization. Data are transformed such that they will be characterized by zero-
mean and unit-variance. Once mean xxx and the standard deviation σ are available,
the standardization formula is given by:

x
′

i =
xi − xxx

σ
. (2.22)
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Normalization and standardization are data transformations which can be performed also
inside the network, just before the non-linearities. They can be interpreted as a data-
preprocessing tool embedded in the network in each layer they are added. A typical
transformation of this kind is the Batch Normalization.

In practice, each neuron pre-activation is standardized. During training, the mean and
standard deviation are computed for each minibatch. At test time instead, the global
mean and standard deviation are used (they are estimated from the training running
averages).

Concerning the other two main performances issues, it is possible to say that while un-
derfitting can be easily mitigated by increasing the number of parameters of the network,
e.g, increasing the number of layers or neurons per layer, the overfitting problem is more
tricky to tackle.

In order to visualize it, it is first necessary to obtain a measure of generalization. To this
aim, the training data set is split in two sets: the training data and the test data. The
training set is used to learn the best model parameters in the model development phase,
whereas the test set is used to evaluate the model performances in the pre-production
one.

Moreover, the training set could be further split to consider also a small validation set.
During training, the observations used are the ones inside the training set, but then the
model is tested at each epoch on the validation set to verify its ability to generalise. The
overall picture of the various sets is available in Figure (2.4).

Figure 2.4: Data organization

Thanks to the validation set it is therefore possible to measure the generalisation error and
performing model selection: the lower the validation loss, the better the specific model is.
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2.2.7. Overfitting prevention

The validation set is a useful tool to check immediately during training if the model is
not able to generalise. If this is the case, there is the need for solutions aimed to prevent
and mitigate the issue. Let’s see some of them:

1. Early stopping. This is the most simple technique. Once the training loss continues
to decrease but the validation loss starts showing a plateau or even an increment, it
literally stops the network training. It is defined by two parameters: the patience,
that is, the delay measured in epochs after which two validation losses are compared,
and by a value that represents how much the validation loss should decrease to avoid
an early stop.

2. Weight decay. This technique aims at limiting overfitting by means of weight reg-
ularization. Regularization is about soft constraining the model weights freedom,
based on a-priori assumption. This assumption derives by common practice, and
reads as: when a network has small weights, its capability to generalize is increased.
This assumption results into the need to modify the loss function by adding a term
which takes into account the weights value. The best set of weights become:

ŵww = argminwww

N∑
n=1

(tn − g (xnxnxn|www))2 + γ

Q∑
q=1

w2
q , (2.23)

where γ is a tunable hyperparameter which involves the ratio between the variance
of the targets and the variance of the weights.

3. Dropout. This technique limits the overfitting by implementing a stochastic regu-
larization of the network. In detail, it randomly switches off a small percentage of
neurons at each epoch. In this way, the neurons inside the hidden layer learn to
extract the relevant features without relying too much on the others. Each unit is
set to zero with p

(l)
j probability. For each layer is defined a mask mmm(l) such that

m
(l)
j ∼ Be(plj), with Be being the Bernoulli distribution.

2.3. Convolutional Neural Networks

An important ANN architecture, which is also employed in the present work, is the Con-
volutional Neural Network (CNN). The concept of modern CNNs was first presented in
[27]. Since 2012, with the success of AlexNet [24] in the ImageNet Large Scale Visual
Recognition Challenge, CNNs became the new standard for image recognition tasks, out-
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performing all the other existing architectures.

A typical CNN comprises the following layers:

• Convolutional layers

• Activation layers

• Pooling layers

• Dense layers

While the latter have already been described (they are the classical fully connected layers),
in the next three subsections some useful information will be provided for the former three.

2.3.1. Convolutional layers

The core of a convolutional layer are the filters (or kernels) whose parameters www need to
be learned during the training phase. Each filter is convolved with the input volume (the
dimensions can be more than two) to compute a linear combination of all the values in
a region. In other words, the filter is slid across the width and height of the input and
the dot products between the input and filter are computed at every spatial position (see
Figure (2.5)).

Figure 2.5: Visualization of a CNN filter working principle. Image from [13]
.

Let us consider a filter of size (2L+1)× (2L+1), centered at the entry (r, c) of a generic
two-dimensional input volume III. The map of the filter between the input and the output,
i.e., the convolution, reads as:
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(III ⊗www) = b+
L∑

u=−L

L∑
v=−L

www(u, v) · III(r − u, c− v), (2.24)

with the addition of a single bias b which is a just trainable threshold to be learned along
with the kernel weights.

A graphical visualization of Equation (2.24) can be appreciated in Figure (2.6).

Figure 2.6: Example of the convolution operation. Image from [13]
.

To better extract salient features from the input and thus improving the network perfor-
mances, the filters used in each convolutional layer can be more than one. The output
volume is then obtained by stacking the activation maps of each filter along the depth
dimension.

The idea behind the convolutional layers is that the input data shows in general a strong
spatial local correlation (for an image, a pixel is more correlated to the nearby pixels than
to the others). Given the fact that the discrete correlation formula (plus a constant bias)
reads as:

(III ⊗www) = b+
L∑

u=−L

L∑
v=−L

www(u, v) · III(r + u, c+ v), (2.25)

and that the weights www of the filters are trained, the discrete correlation and convolution
are equivalent in the neural network context. In fact, if the correlation formula was used
(Equation (2.25) instead of Equation (2.24)), the learned filters of the CNN would be
equal to the flipped learned filters of a CNN exploiting the convolution operation, leading
in the end to the same output.
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2.3.2. Activation Layers

The activation layers follow immediately the convolutional ones. They are the main source
of non-linearity of the salient features extraction process and they operate element-wise
over the input.

For these reasons, in some Deep Learning libraries such as Keras-Tensorflow they can be
directly specified inside the convolutional layer.

The most widespread activations in computer vision are the ReLU with its variants such as
LeakyReLU and elu. For a more general view over the activation functions, see subsection
(2.2.1).

2.3.3. Pooling Layers

The pooling layers reduce the spatial dimensions (height and width) of the volume on
which they are applied and they operate independently on each slice of the input.

The most common pooling layers are the MaxPooling and the AveragePooling ones.

MaxPooling is an operation that selects the maximum element from the region specified
by the user (see Figure (2.7)). Thus, the output after max-pooling layer is a feature map
containing the most prominent features of the previous layer.

Figure 2.7: Example of the MaxPooling operation.
.

AveragePooling instead computes the average of the entries present in the region covered
by the filter (see Figure (2.8)). Therefore, while max pooling returns the most prominent
feature in the given area of the feature map, average pooling outputs their average.
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Figure 2.8: Example of the AveragePooling operation.
.

Finally, there exist another pooling operation, the GlobalAveragePooling, which reduces
each channel of the volume to a single value, taken as the average of all the feature map
entries.

The GlobalAveragePooling operation is usually used at the end of the network for image
classification tasks since it has the beneficial property of increasing its robustness to spatial
transformation of the input data. In fact, since it takes the average of the feature map
entries, the location of the pixels which generated them loose its importance.

2.3.4. Additional technical details

The convolutional layers are characterized by a number of hyperparameters which can be
specified by the programmer. The most common ones are:

• filters : this parameter specifies the number of filters used in the convolution, and
thus the depth of the output. It is a common practice to increase the number of
filters used with the depth of the layer to which the operation is applied;

• kernel size: it sets the height and width of the 2D convolution window. The most
common kernel sizes are 3× 3 and 5× 5. Greater sizes can be used too, especially
in the first shallow layers;

• strides : defines the strides of the convolution along the height and width;

• padding : to clarify what this hyperparameter does, let us consider a 2D input data
of dimension n× n and a filter of dimension f × f . The output of the convolution
will have a shape of (n− f + 1)× (n− f + 1). Thus, the data shrinks every time a
convolution operation is performed. To avoid this, the padding operation consists
of simply adding layers of zeros to the edges of the input data.
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2.3.5. Relationship between CNNs and FFNNs

Convolution is a linear operation. Therefore, if the input matrix (or image) is unrolled to
a vector, the weights of the filters can be seen as the weights of a FFNN with the following
characteristics:

• sparse connectivity. The network is not fully connected since the convolution is
performed locally;

• weight sharing. The weights are not independent since they come from the same
filter.

These two characteristics lead a CNN to be very light from a computational point of view
with respect to the fully connected traditional one, allowing a fast training while reducing
the risk of overfitting.

Moreover, parameter sharing results in the property of translation equivariance of the
convolutional layers: if the input varies, for example after a rigid translation, the output
changes accordingly [14].

2.4. Autoencoders

Autoencoders are a class of neural networks used in the field of data reconstruction and
dimensionality reduction. The network is trained to learn the identity matrix, i.e., to
reconstruct the input (after compressing it in a low-dimension space) and it is made up
of two portions: the encoder E(xxx) and the decoder D(xxx).

The structure of the encoder is typically symmetric with respect to the one of the decoder,
but in principle there are no constraints.

More powerful and non-linear representations can be learned by stacking multiple hidden
layers. These networks are called deep autoencoders, and they are the ones used in the
present work.

Deep autoencoders can be both FCNNs or CNNs, as it is possible to observe in Figure
(2.9). Due to the properties described in subsection (2.3.5), in the present work a CNN
deep autoencoder has been employed for the nonlinear dimensionality reduction task.

The reconstruction loss is given by:

LAE(www) =
1

N

∑
xxx∈SSS

∥D(E(xxx))− xxx)∥22 , (2.26)
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where SSS is the data set containing N generic input arrays xxx.

(a) FCNN autoencoder (b) CNN autoencoder

Figure 2.9: Examples of autoencoder architectures. In both cases, the encoder is in orange
and the decoder in red. The latent representation of the input data is highlighted in blue.

2.4.1. Relationship between autoencoders and SVD

Let us consider an autoencoder with an input dimension n and with a latent space di-
mension r, such that E(xxx) : Rn → Rr and D(xxx) : Rr → Rn.

If the architecture chosen for the autoencoder is a single hidden layer with linear activation
functions, the two map E(xxx) and D(xxx) can be defined as:

E(xxx) =WWWExxx

D(E(xxx)) =WWWDE(xxx)
(2.27)

Where WWWE ∈ Rr×n and WWWD ∈ Rn×r are respectively the encoder and the decoder weights
matrices, which are comprehensive of the biases. If the encoder and decoder architectures
are symmetric, then it is possible to write WWW = WWWE = WWW T

D. In this specific case, the
reconstruction loss is given by:

LAE(www) =
1

N

∑
xxx∈SSS

∥∥WWWWWW Txxx− xxx
∥∥2

2
(2.28)

From Equation (2.28) it is clear that in this case the autoencoder is trained to learn
the same subspace as the one spanned by the first r modes coming from the SVD. Note,
however, that there are no additional constraints, i.e,WWW is not required to be an orthogonal
matrix and its columns are not required to follow any hierarchical order.
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Networks

Physics Informed Neural Networks are a class of ANN central in the present work. In fact,
they are the core of the PINNs-FOM approach, allowing the computation of a surrogate
of the parameterized PDE solution and its fast real-time evaluation.

Given their importance in this thesis, a whole chapter is dedicated to introducing the
reader to the main fascinating concepts and ideas behind this kind of ANNs. After a brief
overview in section (3.1), the core of the PINN idea, i.e. its working algorithm, will be
presented in section (3.2). Finally, a few advanced techniques will be discussed in section
(3.4). In general their aim is to improve the prediction accuracy of the PINNs, but in
some cases they may cause a computational overhead which makes them unsuitable.

3.1. Introduction

As written in section (2.2), the success of the ANNs came only after an unprecedented
increase in the availability of data. It should be noted though that in many scientific
fields, the collection of high fidelity data to perform a supervised learning task might be
not feasible both for practical and economical reasons. In a low amount of data context,
traditional ANNs are likely to fail to learn or, in the best scenario, to generalize.

Luckily, the physical problems to be modelled usually come with a lot of prior knowledge
which could be exploited to drastically reduce the dimensionality of the space in which to
find the solutions. For example, this knowledge may take the form of the governing equa-
tions, such as Ordinary Differential Equations (ODEs) and Partial Differential Equations
(PDEs). Embedding such physical constraints in the network leads to a new category of
ANNs: the Physics Informed Neural Networks (PINNs).

PINNs are not a new concept. In fact they were first discussed by Lagaris et al. already
in 1998 [25] as a tool to solve physical problems governed by both ODEs and PDEs.
Unfortunately time was not yet ripe for them to find some sort of success in the scientific
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community, mainly due to the huge amount of resources they required for the available
technology.

Recently they were proposed again by Raissi et al. in [34], a paper that has been cited
more than 3200 times on which all the renewed interest on the topic is based. Inside their
work, Raissi et al. states:

This simple yet powerful construction allows us to tackle a wide range of
problems in computational science and introduces a potentially transforma-
tive technology leading to the development of new data-efficient and physics-
informed learning machines, new classes of numerical solvers for partial dif-
ferential equations, as well as new data-driven approaches for model inversion
and systems identification.

Let’s now analyze which are the major strengths of this new deep learning philosophy:

• no need for mesh generation. This is the first great advantage of the PINNs com-
pared with traditional numerical solvers. Nowadays, in fields such as Computational
Fluid Dynamics, the design of the mesh is often the most time consuming phase
of the project, since the level of refinement of the mesh as well as the shape of its
elements may affect the results in a relevant way;

• flexibility. PINNs can be both used for solve forward and inverse problems with few
changes in the code. In the first case the objective is to determine the solution of
the problem at hand, while the second case is about model identification, i.e., deter-
mine the parameters characterizing the governing equations starting from observed
data. Besides, the possibility to easily integrate high fidelity acquired data is also a
demonstration of flexibility, if compared with traditional numerical solvers.

As concern the drawbacks, instead:

• novelty. Since PINNs bloomed very recently, there’s still a lack of mathemati-
cal background supporting the topic. It’s still quite cumbersome to check for the
best network architecture, which as it will be discussed later it is highly problem-
dependent. Moreover, there is very few mathematical theory about convergence
estimation;

• less accuracy. In most of the forward problems PINNs performances are still lower
than the traditional solvers. However, in the presence of scattered data of the true
solution (coming from real time measurements, for example) their performances
improve;
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• speed. Despite of the great improvements in the recent years, traditional solvers are
still faster than PINNs on most of the forward problems. PINNs becomes compet-
itive only when dealing with parameterized PDEs or when the mesh generation is
complicated.

The idea behind the PINN algorithm is simple. All the details will be presented in the
following section.

3.2. Physics Informed Neural Networks working al-

gorithm

As it was discussed in subsection (2.2.3), traditional ANNs exploit the backpropagation
algorithm to compute the derivatives of the loss function with respect to the network
weights. In the same way, the backpropagation algorithm can be used to compute other
derivatives, i.e. the derivative of the output with respect to the network inputs.

Let us now consider a generic parameterized PDE for the solution u(xxx), with xxx =

(x1, x2, ..., xd) defined over a domain Ω ⊂ Rd:

f

(
xxx;u(xxx);

∂u

∂x1

, ...,
∂u

∂xd

;
∂2u

∂x1∂x1

, ...,
∂2u

∂x1∂xd

; ...;µµµ

)
= 0, (3.1)

where µµµ is the array of the parameters. Moreover, let us consider any generic boundary
condition (Dirichlet, Neumann, Robin, or any other kind of boundary condition operator):

B(u(xxx),xxx) = 0 on δΩ.

The Physics Informed Neural Networks are made up of a traditional neural network
architecture. The input layer is fed with the spatio-temporal coordinates array xxx. In the
case of a parameterized PDE, the parameters are treated as coordinates along additional
domain dimensions. The output layer delivers a surrogate of the solution û(xxx) and thus
it is an array with the same dimensionality of u(xxx).

In addition to a classical ANN, a PINN presents a backpropagation block in which the
derivatives of the output are computed with respect to the input layer variables. In such
manner it is possible to force the network to comply with the constraints imposed by both
the PDE and its initial & boundary conditions (ICs and BCs). Note that in PINNs the
initial boundary conditions for time-dependent problems are treated in the same way as
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the boundary conditions, since time is just another coordinate.

To measure the error of the network, the surrogate of the solution and its derivatives with
respect to the inputs are evaluated on a number of points, named collocation points. The
collocation points can be defined by the user as well as being uniformly or randomly sam-
pled. In general, various techniques can be chosen to perform the random sampling, such
as pseudo-random, latin hypercube sampling, Halton sequence, Hammersley sequence or
Sobol sequence.

The values obtained are then substituted inside the PDE and BC-IC definitions to retrieve
their residuals. The loss function to be minimized is usually constructed as the weighted
sum of the L2-norm of the residuals:

L(www; T ) = αfLf (www; Tf ) + αbLb(www; Tb), (3.2)

where www are the weights of the network and T is the set of collocation points, divided into
the ones inside the domain to test the PDE residual (Tf ) and the ones on the boundaries
to test the boundary conditions (Tb). Moreover:

Lf (www; Tf ) =
1

|Tf |
∑
xxx∈Tf

∥∥∥∥f (
xxx; û(xxx);

∂û

∂x1

, ...,
∂û

∂xd

;
∂2û

∂x1∂x1

, ...,
∂2û

∂x1∂xd

; ...;λλλ

)∥∥∥∥2

2

,

Lb(www; Tb) =
1

|Tb|
∑
xxx∈Tb

∥B(û(xxx),xxx)∥22 ,
(3.3)

and αf and αb are the respective weighting coefficients. As concern the latter, in general
they are chosen such that the two terms become of the same order of magnitude. Recently,
adaptive self-balancing weighting techniques such as the one described in [40] have been
developed.

The final step consists into minimize the Equation (3.2) via an optimizer (such the ones
mentioned in subsection (2.2.5)) in order to determine the optimal weights w∗w∗w∗ of the
network. The most widespread optimizers in the PINNs context are Adam and L-BFGS-
B. In many cases the training is initially performed via Adam to "warm-up" the weights
and then continued switching to the second-order optimizer L-BFGS, which in general is
more efficient. The number of epochs chosen for the training and the number of collocation
points are hyperparameters of the process and they are highly problem-dependent.

The complete architecture of a PINN can be visualized in Figure (3.1).



3| Physics Informed Neural Networks 39

Figure 3.1: Example of a Physics Informed Neural Network Architecture for solving the
1D diffusion PDE ∂u

∂t
= λ∂2u

∂x2 with mixed Dirichlet - Robin BC.

3.3. Practical example: 1D viscous Burgers equation

The viscous Burgers equation is a quasi-linear time-dependent hyperbolic PDE of great
importance in the fluid dynamics and gas dynamics context.

In particular, it combines the nonlinear behaviour of the wave motion with a linear diffu-
sion. The presence of the latter guarantees a smooth solution, avoiding the development
of discontinuities in the form of shock waves.

Let us consider the following problem setup:


∂u
∂t

+ u∂u
∂x

= ν ∂2u
∂x2 , x ∈ [−1, 1] , t ∈ [0, 1] ,

u (−1, t) = u (1, t) = 0,

u (x, 0) = −sin(πx),

(3.4)

where the viscous burgers equation is constrained by an homogeneous Dirichlet boundary
condition and by the initial condition.

The kinematic viscosity is assumed to be ν = 0.01. The reference solution is plotted in
Figure (3.2).
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Figure 3.2: Viscous Burgers equation reference solution respectively at times t = 0.0, 0.5
and 0.99 [s].

The PINN solution is obtained by using DeepXDE, a python library for scientific machine
learning and physics-informed learning. In the following section more details about it will
be presented.

3.3.1. DeepXDE: an overview on the PINN library

DeepXDE has been firstly developed and proposed by Lu et al. in [30]. It consists of a
very user-friendly library which allows the user to define the problem in a way it closely
resembles the mathematical formulation. It works on top of several of the most widespread
deep learning backends, such as:

• Tensorflow 1.x,

• Tensorflow 2.x,

• Pytorch,

• Paddle.

• JAX,

As concern PINNs, it can be used for solving the forward / inverse problems governed by:

• PDEs,

• ODEs,

• IDEs,

• Fractional PDEs,

• Stochastic PDES,

as well as performing function approximation.

The workflow of DeepXDE for solving a classic PDE problem is described in Algorithm
3.1
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Algorithm 3.1 DeepXDE workflow
1: Specify the computational domain.
2: Define a function which returns the residual of the PDE
3: Specify the boundary and initial conditions.
4: Combine all the above in a ’data.PDE’ or ’data.TimePDE’ object, depending on

weather the problem is time independent or not. Specify how the collocation points
are sampled.

5: Build a neural network.
6: Define a model by combining all the information specified with the neural network.

Set the optimization hyperparameters to be used such as the learning rate.
7: Train the model.
8: Make predictions and post-process the output to visualize the results.

3.3.2. Results

There are many hyperparameters that affect the network choice and training. Since
testing different combinations of all of them is practically impossible, some of them will
be considered fixed, whereas the others will vary at each iteration.

Specifically, in this example the hyperparameters that will be left fixed are:

• optimizers: Adam and LBFGS-B are used in sequence for 1.5e04 epochs each. This
choice is common among the PINN training techniques and the number of epochs
chosen is a good trade-off between loss function minimization and amount of time
required;

• learning rate: Adam requires to be initialized with a learning rate lr. In this example
a learning rate lr = 0.001 has been chosen.

The first hyperparameter to be tested is the number of collocation points on which the
PDE residual and boundary conditions are evaluated. For each case a certain number of
collocation points are sampled using a pseudo-random generator, as shown for example
in Figure (3.3).
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Figure 3.3: Pseudo-random sampled collocation points. In this specific case there are 200
points for the inner domain, 10 on the boundaries and 20 for the initial condition.

For this initial experiment a network of 3 hidden layers with 3 neurons each is employed.
All the neurons are characterized by an hyperbolic tangent activation function.

The accuracy of the predictions is evaluated by computing the relative L2 error between
the true solution and the predicted one:

el2 =
∥upred − utrue∥

∥utrue∥
. (3.5)

The results of this first analysis are reported in Table (3.1). It is possible to appreciate
that for the problem considered, sampling more than 2000 points in the inner domain
guarantees to achieve a relative error lower than 3%, even less than 1% with a number of
points greater than 2600, which are already very satisfying results.

Given the fact that 3000 samplings in the domain gave the best accuracy, the next analysis
has been carried out with that amount of collocation points. In particular, different
activation functions has been tested. The results obtained are reported in Table (3.2).
The highest relative error is achieved through the ReLU activation function which is
known to perform poorly on PINN tasks, due to its characteristics such as the piece-wise
constant first derivative and the null second derivative. The little accurate predictions of
the ReLU network configuration can be appreciated in Figure (3.4).
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Inner domain BC IC el2el2el2

200 10 20 1.18e-01

400 20 40 1.95e-01

600 30 60 1.30e-01

800 40 80 1.40e-01

1000 50 100 5.23e-02

1200 60 120 8.92e-02

1400 70 140 1.03e-01

1600 80 160 1.14e-01

1800 90 180 1.12e-02

2000 100 200 2.29e-02

2200 110 220 4.85e-03

2400 120 240 1.48e-02

2600 130 260 4.91e-03

2800 140 280 6.56e-03

3000 150 300 3.59e-03

Table 3.1: PINN accuracy vs amount of collocation points

Activation Function el2

tanh 3.59e-03

sigmoid 2.02e-03

relu 6.50e-01

swish 2.47e-01

sin 1.08e-02

LAAF-sigmoid 5.10e-03

Table 3.2: PINN accuracy vs activation functions
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Figure 3.4: Viscous Burgers Equation. Neural network predictions with relu activation
function vs reference solution.

Apart from the swish activation, which can be seen as the smooth non-monotonic coun-
terpart of the ReLU, all the other activations perform definitely better. The best result
is achieved by employing the sigmoid activation function, with a L2 relative error lower
than the one obtained before with the hyperbolic tangent. Keeping this in mind, the
last attempt to improve the accuracy of the predictions has been to implement the layer-
wise locally adaptive activation function technique proposed in [19] with a scaling factor
n = 10. As it can be appreciated in Table (3.2), in this specific case this technique did
not improve the accuracy of the results.

It is also interesting to have a look at the training process. In Figure (3.5) it is possible to
look at the minimization of the PINN loss function through the various epochs, for each
activation function. The ReLU case has been omitted because it was too poor.

Analyzing Figure (3.5) allows to derive several interesting conclusions. First of all, it is
clear the great benefit of the proposed training strategy. In fact, after the first 1.5e04

epochs with the Adam optimizer, switching to the L-BFGS-B increased immediately the
minimization capabilities of the training process. This is valid for each activation function
used, and even more evident for the ones which performed better (sigmoid, tanh and
LAAF-sigmoid).

Moreover, it is also clear that there is no a 1 : 1 correspondence between the final loss
function value and the L2 relative error, since it is necessary to take into account for the
generalisation error of the network to unseen collocation points. In general it is still a
good proxy though, since sigmoid, tanh and LAAF-sigmoid, which perform similarly very
well, have a final loss function clustered in the same order of magnitude, whereas swish
and sine activation functions lead to a much greater final loss, and a high L2 relative error
too.
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For this reason, it is also possible to say that, in the case of low amount of time available
for the training phase, tanh and especially LAAF-sigmoid are the most suitable activations
because their loss functions decay much faster compared with the others.

Figure 3.5: Neural network training with different activation functions

The last analysis conducted was about investigating the relationship between the number
of hidden layers and their width with the prediction accuracy, in order to check if a deeper
network leads to an improvement in the accuracy of the solution. The results have been
obtained using 3000 inner domain collocation points and a sigmoid activation function,
since those where the optimal choices from the previous tests.

Layers
Neurons

2 3 4 5 6

20 2.15e-01 5.47e-03 2.94e-03 7.80e-04 3.27e-03

30 5.89e-02 2.02e-03 3.89e-03 1.13e-03 4.93e-04

40 8.21e-02 5.49e-03 4.81e-04 3.86e-03 1.91e-02

50 8.37e-02 4.17e-02 1.37e-03 1.21e-02 6.64e-03

60 4.57e-02 9.75e-04 6.80e-03 7.05e-03 1.41e-01

Table 3.3: L2 relative error el2 for different network configutations.

As it can be observed in Table (3.3), a deeper and wider network architecture does not
necessarily lead to an increase in accuracy. It is possible to conclude that a network with
2 hidden layers is not enough deep to achieve the desired accuracy, but increasing the
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depth is not always a good strategy, as demonstrated by the 6 hidden layers, 60 neurons
per layer case which surprisingly lead to one of the most inaccurate result.

The best result has been obtained with the following hyperparameters:

• 3000 collocations points in the inner domain, 150 for the boundary conditions and
300 for the initial condition;

• sigmoid activation function;

• 4 hidden layers with 40 neurons per layer.

Since the number of collocation points was quite small, the network architecture was
quite shallow and the PDE didn’t require many derivatives to be computed, it took a
short time to train the network, just 157[s]. For more complex problems, such as in the
case of 2D parameterized PDEs, the time may become an important factor as well, and
thus the hyperparameters tuning may require to consider also the training time needed
for choosing the best combination.

The comparison between the reference solution and the most accurate result achieved is
plotted in 3.6. As it can be seen, the two solutions are perfectly overlapped, and the L2

relative error el2 = 4.80e− 04 confirms the high level of precision reached.

Figure 3.6: Viscous Burgers Equation. Comparison between the most accurate solution
and the reference one. Hyperparameters: 3000 inner domain collocation points, sigmoid

activation functions, 4 hidden layers of 40 neurons each.

3.4. An overview on the PINNs advanced techniques

After the first paper made by Raissi on the topic [34], the community of researchers
showed a growing interest in PINNs. Nowadays, tens of new peer-reviewed paper are
being published every week. While a part of them concerns the application of these
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networks to a specific branch of physics, some other come with new techniques to enhance
their performances. In the following subsections the most relevant ones (to the author’s
knowledge) will be presented. Some of them will be exploited in the present work.

3.4.1. Hard boundary conditions

As discussed in section (3.2), the compliance of the network output with the boundary
conditions of the problem is imposed in a soft way and the corresponding loss is added to
the PDE residual one.

This strategy may lead to a lack of accuracy in the network output, since it is practically
impossible to minimize the loss until it reaches a null value. The area of the domain close
to the boundaries, moreover, is of primary relevance for many physical problems (e.g.
CFD ones). To avoid any source of error which inevitably would affect the results in the
region, it is possible to impose the boundary conditions in the hard way.

In principle, this is valid for all the kind of boundary conditions, but is limited to the
Dirichlet and Periodic ones, when feasible.

Imposing the Dirichlet boundary conditions in the hard way is pretty straightforward if the
geometry is simple. Given the neural network output NN(xxx, t), the boundary condition
is imposed in a hard way as:

û(xxx, t) = l(xxx) · NN(xxx, t) + g(xxx), (3.6)

where û(xxx, t) is the modified output of the network compliant with the specified boundary
condition and l(xxx) can be chosen analytically if the geometry is simple, otherwise an
approximation through spline functions may be required.

Let’s consider an example, in which the solution u(xxx, t) is defined over the spatio-temporal
domain Ω = [0, 1]× [0, T ] and the boundary condition is given by:

u(0, t) = γ0,

u(1, t) = γ1.
(3.7)

The boundary condition prescribed in Equation 3.7 is imposed as:

û(xxx, t) = [xxx · (1− xxx)] · NN(xxx, t) + [γ0 + xxx · (γ1 − γ0)]. (3.8)
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Note that l(xxx) has been chosen as xxx · (1− xxx), but this is just a possibility. For example,
l(xxx) = (1− e−xxx)

(
1− e(1−xxx)

)
is another valid option.

In the same way it is possible to exploit the a-priori knowledge of the solution behaviour
enforcing some additional constraints. For example, it is possible to enforce the neural
network prediction to be strictly positive by taking the square of the output value.

3.4.2. Physical activation functions

In order to improve the prediction accuracy of a PINN without attempting to increase its
size, it is possible to consider a further physics induction method in the algorithm. More
specifically, in [1] the concept of physical activation functions (PAF) is presented. In the
mentioned work it is reported that using an activation function which can be derived by
the problem at hand may significantly speed up the convergence of the training process,
leading to loss values which are smaller than the ones obtained via traditional activation
functions described in subsection (2.2.1), even by 1 or 2 orders of magnitude.

The definition of the optimal PAF to be used is problem dependent and must be performed
after a careful analysis of the governing PDEs. For example, it can be done by considering
the analytical solution to similar PDEs in simple cases when it is available.

3.4.3. Expanding layer

Paper [7] introduces more improvements to the traditional PINNs architecture. The first
one to be discussed in this section is the inclusion of an expanding layer which enhance
the information given by the spatio-temporal coordinates by realizing the following map:

(xxx, t) 7→ [pow(xxx, t), cos(xxx, t), sin(xxx, t), (xxx, t)] (3.9)

This map can be stacked twice or even more times to enlarge the number of learnable
parameters in the first portion of the network. The transformation may allow to better
catch the nonlinear behaviours of the problem at hand.

3.4.4. Attention blocks

A further improvement suggested in [7] is to get rid of the traditional vanilla FFNN and
employ a more sophisticated architecture. In this context, the hidden layer of the network
are still fully connected, but the importance of each neuron is modulated by an excitation
block which implements the self-gating attention mechanism.
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Figure 3.7: Excitation block visualization

The idea behind an excitation block is inspired by the work in [18], where the so called
squeeze-and-excitation blocks are first introduced. The squeezing part of the algorithm
is ignored since it is was thought for dealing with computer vision tasks, whereas the
excitation block is placed between each hidden layer. As it can be observed in Figure
(3.7), the excitation block consists of two fully connected layers with nonlinear activation
functions (swish and tanh in this case) which get as input the output of the previous
hidden layer. The output of the block will be the multiplication between the previous
hidden layer values and the channel weights which come from the two fully connected
layers in between. The number of neurons per fully connected layer, as well as the type
of activation function employed, are an hyperparameter of the attention mechanism.
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4| Strategies and Neural Network

architectures adopted

In this chapter we will discuss the details of the strategies and neural networks archi-
tectures used to answer the need of a reliable, fast and accurate solution approximation
technique suitable for real time applications.

The adopted strategies can be divided into two main branches:

• the first one consists of employing a PINN directly on the governing PDEs, treating
the parameter(s) as additional coordinates of the computational domains;

• the second one tackles the problem by first reducing its dimensionality and eventu-
ally it makes use of a Neural Network for fast predictions.

The first approach is the simplest and more direct one, since the whole process of deriving
a ROM is skipped. Moreover, the usage of the DeepXDE library [30] significantly eases
the coding effort from the programmer side.

The construction of a ROM is instead a more complex procedure because its offline stage
involves multiple steps:

• coding and solving the FOM over a range of parameter(s) values, in order to obtain
the snapshots matrix;

• reducing the dimensionality of the FOM. This can be achieved by the use of both
linear (SVD, see subsection (1.2.1)) and non-linear (autoencoders, see section (2.4))
tools, as it will be discussed later in detail;

• retrieving the approximation of the high-fidelity solution, possibly through methods
that allow a fast online evaluation.

Given these premises, both of these two different approaches have been applied on different
test problems in order to evaluate their performances. The results will be later discussed
in chapter (5).
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4.1. PINNs - FOM

The main drawback of PINNs, to date, is the high amount of time they require for their
training phase. In fact, they need to be employed on physical problems governed by
parameterized ODEs or PDEs to become competitive against the traditional numerical
methods. In this way, the time spent is justified by the vast set of solutions which can be
instantly predicted by the network.

Setting up the parameterized problem is straightforward. With respect to a generic non-
parameterized case, the only task to be performed is to treat the parameter as an addi-
tional input coordinate, just as the spatio-temporal ones. The consequent changes in the
algorithm are:

• extension of the computational domain by taking into account the amount of param-
eters. For example, a time independent three-dimensional problem parameterized by
one parameter will demand a four-dimensional hypercube inside which the residual
points are going to be sampled;

• addition of as many input layer neurons as the number of parameters characterizing
the governing equation.

Moreover, in general, since the dimensionality of the problem is increased, it is likely
that the network width and depth, the number of residual points to be sampled and the
training epochs required will be higher than the non-parameterized counterpart.

Apart from these important considerations, the rest of the algorithm is the same as a
simple problem like the one described in section (3.3). The objective is still to seek a
surrogate of the solution inside the domain of interest, and the way to achieve this result
is to minimize the loss defined in Equation (3.2) by a gradient-based optimizer like the
ones discussed in subsection (2.2.5).

The neural network architecture employed for this task can be simply a traditional FFNN
with problem-dependent hyperparameters to be tuned. The DeepXDE library offers also
the ResNet [16] architecture as a built-in option. In any case the user can specify its own
custom architecture following the procedure required by the specific backend chosen.

4.2. Projection Driven Neural Networks

The Projection Driven Neural Networks (PDNNs, from now on) is the first algorithm to
be analysed which falls into the second category of strategies presented above.
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PDNNs were first proposed in [6] and they consists in a purely non-intrusive data-driven
ROM approach. In particular, PDNNs are built and trained in order to obtain a con-
tinuous map between samples of the parameter space and the corresponding projection
coefficients of the ROM.

The offline stage starts with the collection of the FOM problem snapshots uuuh(t,µµµ) sampled
at different values of the parameters µµµ and time t. In the present work the Finite Element
Method (FEM) has been implemented to compute the high-fidelity solution. To this aim,
the python library FEniCS [26] has been exploited.

The parameters such as the mesh size and the polynomial degree of the FEM basis are
function of the specific problem complexity and peculiarities.

From now on, two different strategies can be adopted in the PDNN context: the linear
classical one, which exploits the SVD, and the proposed nonlinear counterpart, which
makes use of a deep convolutional autoencoder neural network. Their characteristics and
algorithms are both going to be described in the following subsections.

4.2.1. PDNNs - SVD

First of all the collected snapshots are flattened and arranged to form the snapshots matrix
AAA ∈ Rn×m, where n is the number of collocation points of the high fidelity solution and
m is the number of available snapshots. In general, n >> m.

Subsequently, the SVD of AAA is performed to obtain the left singular vectors matrix UUU , the
singular values matrix ΣΣΣ and the right singular vectors matrix VVV .

The analysis of ΣΣΣ gives an indication on how many modes r should be kept to capture
enough energy of the problem at hand. The matrix UUU is finally truncated to the first r

dominant modes, to obtain ŨUU ∈ Rn×r.

Retrieving the projection coefficients to be used for the network training in the supervised
learning context is then straightforward. Recalling Equation (1.10), and given the fact
that ŨUU is orthogonal, i.e., ŨUU

T
ŨUU = III, for each value of µµµ and t the projection coefficients

ααα(t,µµµ) are given by:

ααα(t,µµµ) = ŨUU
T
(uuuh(t,µµµ)− uuu), (4.1)

with uuu being the average of AAA to avoid the presence of dominant basis.

Finally, the data preprocessing stage can be finalised by assembling the training data
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set D of dimension ND, associating to each parameter µµµ and time t its corresponding
projection coefficients array ααα(t,µµµ).

The idea of the PDNN is to feed an artificial neural network with the obtained data set,
in order to learn the map fff : RNp+k → Rr between each time-parameter instance and the
corresponding projection coefficients. Note that k is 1 if the problem at hand is time-
dependent, zero otherwise. An ANN tool is chosen for both its accuracy as interpolation
method as well as its fast real-time evaluation capability.

The loss function to be minimized is defined as the MSE between the PDNN prediction
and the actual projection coefficients:

LPDNN(www;D) =
1

ND

∑
(t,µµµ),ααα∈D

∥fff(t,µµµ)−ααα(t,µµµ)∥22 , (4.2)

where www are the network weights to be optimized.

In the present work the PDNN has been built using the DeepXDE library, exploiting its
function approximation package.

Once the training is finished, the approximated solution is immediately available for any
given time-parameter instance:

ûuuh(t,µµµ) = ŨUUfff(t,µµµ) + uuu (4.3)

,

where fff(t,µµµ) is the output of the PDNN.

4.2.2. PDNNs - Autoencoder

An autoencoder neural network, as discussed in subsection (2.4.1), can be seen as the
nonlinear counterpart of the SVD transformation. To briefly sum up the description of its
architecture, it is made up by two sub-networks: the encoder E(uuuh(t,µµµ)) and the decoder
D(E(uuuh(t,µµµ))). The encoder maps the high-dimensional input into a low-rank r latent
representation, whereas the decoder learns the inverse transformation to reconstruct the
original data. The training is performed in a semi-supervised paradigm, given the fact
that the input of the network coincide with the required output.

Since the dimensionality reduction is performed in a nonlinear context, this approach is
expected to perform better than the one relying on the SVD when:
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• the snapshots matrix AAA is characterized by misaligned data or the problem presents
non-linearities;

• the reduced trial manifold dimension r is close to 1.

In the present work, the autoencoder has been trained for each test problem with the
same amount of snapshots collected for the PDNN-SVD case. The snapshots go through
a preprocessing phase in which they are standardized. In this way the training process
gains a speed-up and the accuracy of the reconstructed snapshots increases.

The autoencoder architecture is a mixed convolutional - fully connected one. The first
layers are two-dimensional and of convolutional type, hence the snapshots are not flat-
tened but they are left as two-dimensional square arrays, if the problem at hand is two-
dimensional in space. If the problem is mono-dimensional in space, the snapshots are
conveniently reshaped. More details of the chosen autoencoder can be appreciated in
Figure (4.1) and in Table (A.1).

Figure 4.1: Autoencoder architecture details. The plot has been realized via the Visu-
alKeras python library [12]

The hyperparameter trial and error tuning process of the autoencoder required a lot of
effort and thus it must be noted that the development of a SVD-based dimensionality
reduction method can be certainly faster, especially for beginners in the deep learning
field.

The loss function to be minimized during the autoencoder training is given by:

LAE(www;AAA) =
1

m

∑
uuuh(t,µµµ)∈AAA

∥D(E(uuuh(t,µµµ)))− uuuh(t,µµµ)∥22 , (4.4)

where we recall that m corresponds to the amount of available snapshots.
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If the amount of snapshots is enough, the collection is split into a training data set
and a validation data set through which it is easy to monitor and possibly take actions
to mitigate the overfitting issue. In any case, the weight decay overfitting prevention
technique (see subsection (2.2.7)) is applied to each layer with an activation function.
The hyperparameter γ has been fixed to γ = 1e− 8.

Once the autoencoder is successfully trained, the encoder portion is fed with the snap-
shots corresponding to the sampled time-parameter instances and it outputs their latent
representations.

In this way it is possible to construct a dataset D of dimension ND for the training of
the associated PDNN, which consists of the time-parameters instances along with their
corresponding latent representation.

This dataset is finally used to train the PDNN in a supervised learning context in order
to learn the map ggg : RNp+k → Rr between the time-parameters space and the latent
representation one, where again k is 1 if the problem considered is time-dependent, zero
otherwise.

The loss to be minimized in order to optimize the PDNN weights is:

LPDNN(www;D) =
1

ND

∑
(t,µµµ),E(·)∈D

∥ggg(t,µµµ)− E(uuuh(t,µµµ))∥22 . (4.5)

In the present work the two processes have been performed sequentially, but it is possible
to train the two networks at the same time too by building a loss which takes into account
both the reconstruction error of the snapshots and the distance between the two latent
representations.

The online stage (see Figure (4.2)) is performed by evaluating the PDNN at the desired
time-parameter instance and feeding the corresponding latent representation to the de-
coder which in turns outputs the ROM solution:

ûuuh(t, µ) = D(ggg(t,µµµ)). (4.6)
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Figure 4.2: PDNN - Autoencoder online stage. Note that the encoder is not being used
in this process.

4.3. POD-G-NN

While the previous reduced order model approaches were entirely based on data, this
intrusive one relies on physics. In fact, in this strategy, a neural network is trained to
learn the continuous interpolation of the reduced coefficients obtained from the POD-G
system of equations.

The collection of the high fidelity solution snapshots follows the same procedure as seen
for PDNNs. Once the snapshots matrix AAA is obtained, its SVD is performed and thus the
left singular vectors matrix UUU is retrieved. During this phase, the matrices and arrays
coming from the FEM discretization are stored too.

The number r of dominant modes is decided by means of a singular values analysis.
Then, the UUU is truncated to obtain ŨUU , i.e., the matrix through which the FOM system is
projected onto the reduced order space. Recalling the approximation of the high-fidelity
solution through the Galerkin expansion (see Equation (1.10)), the POD-G system of
equations governing the ROM is assembled (Equation (1.14)) and solved to obtain the
reduced coefficients array ααα(t,µµµ).

Finally, a neural network is built to map the time-parameter space to the corresponding
reduced coefficients. In particular, the neural network map is defined as hhh : RNp+k → Rr,
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where k is 1 in the time-dependent case, 0 otherwise.

The number of input neurons equals the number of parameters characterizing the FOM
equation, plus possibly one neuron for the time coordinate in case of a time-dependent
problem. The number of output neurons equals the number of unknowns, i.e., the dimen-
sion of the reduced coefficients array ααα(t,µµµ), which in turn corresponds to the rank r of
the matrix ŨUU .

A data set of collocation points Tf of dimension NT is generated, containing the time-
parameters instances along with their correspondent reduced coefficients.

The training is performed through a gradient-based optimizer by minimizing the following
loss function:

LPOD-G-NN(www; T ) =
1

NT

∑
(t,µµµ),ααα∈D

∥hhh(t,µµµ)−ααα(t,µµµ)∥22 , (4.7)

In the present work the network has been built through the function approximation pack-
age of the DeepXDE library and it was just a simple FFNN, but as stated in section (4.1)
the library is flexible and the programmer could develop its own custom architecture.

Once the training is completed, the approximated solution ûuu(t,µµµ) is retrieved by plugging,
for each value of parameters array µµµ and time t, the output of the network, i.e., the
approximated reduced coefficients array, into the Galerkin expansion equation:

ûuuh(t, µ) = ŨUUh(t, µ) + uuu (4.8)

Note that in this thesis the POD-G-NN method has been developed only for time-
independent benchmark problems, but in principle it can be used also for the unsteady
ones.
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In the present section the reader will be provided with the results obtained by applying the
proposed strategies to four parameterized PDE problems, namely the Poisson Equation
(5.1), the Advection Diffusion Equation (5.2), the Pure Advection Equation (5.3) and the
Viscous Burgers Equation (5.4). To evaluate the performances of the different strategies
we rely on the L2 relative error indicator, defined as:

el2 =
1

Ntest

Ntest∑
i=1

∥uuuh(ti,µµµi)− ûuu(ti,µµµi)∥2
∥uuuh(ti,µµµi)∥2

(5.1)

over the test sets built for each case. To guarantee the repeatability of the results, a seed
has been fixed for all the operations involving a degree of randomness, such as parameter
sampling and neural network training. The code developed for the mentioned tests is
freely available at https://github.com/riccardotomada/Master-Thesis.

5.1. Test 1: Poisson Equation

Let us consider the parameterized two-dimensional variable coefficient linear Poisson equa-
tion:

{
−∇ · (k∇u) = f in Ω = (0, 1)2,

u = gD on ΓD = δΩ,
(5.2)

where:

k = 1.0 + e−10((x−0.5)2+(y−0.5)2),

f = 100 sin(2πx) sin(µπy),

gD = 0.

(5.3)

System (5.2) has been discretized in space by means of quadratic finite elements, with

https://github.com/riccardotomada/Master-Thesis
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(a) (b) (c)

Figure 5.1: Test 1: FEM solution at different instances of the parameter µ. (5.1a) uuuh for
µ = 0.175, (5.1b) uuuh for µ = 2.849, (5.1c) uuuh for µ = 8.916.

Nh = 50× 50 grid points. The parameter space, to which belongs the single µ parameter
affecting the source term, is given by MMM = [0, 10]. In Figure (5.1) it is possible to
appreciate the behaviour of the FEM solution at different µ samples.

To develop the PDNNs-SVD and the PDNNs-Autoencoder strategies, a number of 80
snapshots (uuuh(µµµtrain)) have been generated by randomly sampling the parameter with a
uniform probability inside MMM .

As concern the POD-G-NN approach, instead, 128 parameter instances have been gener-
ated in MMM again with uniform probability, and the corresponding ROM linear system of
equation has been built and solved through a traditional linear algebra solver.

Finally, 10 parameter values have been sampled to later build a test set of high-fidelity
benchmark solutions (uuuh(µµµtest)) used to evaluate and compare the different approaches
through Equation (5.1).

5.1.1. PINNs-FOM

The computational domain has been set up as D = (0, 0, 0)× (1, 1, 10). The PDE residual
collocation points data set Tf of dimension Nf and the boundary collocation points data
set Tb of dimension Nb have been generated by randomly sampling a number of points
respectively in the computational domain and on its boundaries.

The first test that has been performed is the evaluation of the solution accuracy with
respect to the number of collocation points used. To this aim, the solution for µ = 10,
i.e., the most oscillatory one, has been compared to the correspondent high-fidelity result
via Equation (5.1).
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The network architecture employed was characterized by the following hyperparameters:

• hidden layers: 5 with 30 neurons each;

• activation functions: hyperbolic tangent (see Figure (2.2a));

• optimizer: Adam (see subsection (2.2.5)) for 1e04 epochs with a learning rate lr =

5e− 04 and L-BFGS (see subsection (2.2.5)) for 2e04 epochs.

Moreover, the network presented a first expanding layer as described in subsection (3.4.3)
and the boundary conditions on each edge were enforced in the hard way (more details in
subsection (3.4.1)). Since the neural network output was forced to be identically zero on
the boundaries, the number of collocation points Nb became irrelevant for the purpose of
this analysis.

The results are reported in Table (5.1):

Tf el2 Time [s]

2500 2.32e-01 278

5000 1.64e-01 264

10000 1.34e-01 323

15000 1.71e-01 379

20000 1.05e-01 418

Table 5.1: Test 1: PINNs-FOM L2 relative error for different number of collocation points

As a trade off between the time needed and the accuracy of the results, the rest of the
tests have been performed by using 10000 residual collocation points. In fact, it can be
noticed that using 10000 collocation points guarantees the second best result, saving the
22% of the time needed for the 20000 points case.

The aim of the second test was to investigate the accuracy of the network while varying the
activation functions employed in each hidden layer neuron. The other hyperparameters
have been kept the same as the previous network ones. The accuracy of the model is
evaluated again with respect to the high fidelity solution for a value of µ = 10. The
results are presented in Table (5.2).

The sine activation function is the one that leads to the lowest L2 relative error. This
is not surprising, since it can be seen as a physical activation function for the specific
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Activation Function el2

tanh 1.34e-01

sigmoid 3.27e-01

relu 3.00e+00

swish 1.34e-01

sin 4.66e-02

LAAF − sin 5.04e-02

Table 5.2: Test 1: PINNs-FOM L2 relative error for different activation functions

problem, as per [1]. On the contrary, in this case, the network with ReLU activation
function fails the training phase, leading to a completely wrong solution.

The purpose of the third and last test was to investigate the relationship between the
number and width of the hidden layers with the accuracy of the network output. The
activation function chosen, following the previous analysis, was the sine function. The
results are presented in Table (5.3).

L

N
3 4 5 6

el2 Time [s] el2 Time [s] el2 Time [s] el2 Time [s]

20 1.31e-01 181 9.05e-02 213 7.85e-02 240 9.93e-02 265

30 5.45e-02 202 7.63e-02 238 4.66e-02 274 5.85e-02 304

40 2.90e-02 209 5.06e-02 248 4.02e-02 294 8.11e-02 328

50 4.48e-02 234 4.86e-02 279 2.39e-02 421 5.66e-02 582

60 4.79e-02 254 2.32e-02 406 3.81e-02 520 4.69e-02 564

70 4.22e-02 390 2.95e-02 511 3.62e-02 695 4.31e-02 789

80 2.56e-02 416 2.86e-02 533 2.09e-02 693 4.51e-02 795

Table 5.3: Test 1: PINNs-FOM L2 relative error and training time for different number
of hidden layers L and neurons per layer N .

From Table (5.3) it is possible to assess that increasing the number of hidden layers and
their width does not necessarily mean that the accuracy of the prediction will improve.

To sum up, after these 3 tests we could conclude that the most effective model was
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characterized by:

• 10000 residual collocation points;

• hidden layers: 4 with 60 neurons each;

• activation function: sine.

The reason behind this choice of the hidden layers parameters is the trade-off between
accuracy (second best accuracy score) and training time (36% lower than the time needed
for the best score case, the one with 5 hidden layers and 80 neurons per layer).

The solution for µ = 10 is available in Figure (5.2), together with the FEM solution and
the corresponding absolute error.

Finally, this network has been trained one more time and evaluated at 10 different test
values of the parameter. The training has been performed for 1e04 epochs with the Adam
optimizer and 3.5e04 epochs with the L-BFGS. The average of the L2 relative error has
been taken as a benchmark to compare this approach to the others.

The result obtained was el2 = 1.32e − 03. It was expected to be lower than the case for
µ = 10 due to both the increasing number of training epochs of the network and the
behaviour of the solutions for µ < 10, which necessarily present less oscillations as the
number of oscillations in the y direction is controlled by the value of µ.
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(a) (b)

(c)

Figure 5.2: Test 1: Comparison of the PINNs-FOM solution with the FEM solution.
(5.2a) the FEM solution uuuh, (5.2b) the PINNs-FOM solution ûuu, (5.2c) the absolute error
|uuuh − ûuu|.

5.1.2. PDNNs-SVD, POD-G-NN & PDNNs-Autoencoder

Problem (5.2) does not represent a remarkably challenging task for linear ROM ap-
proaches, such as the PDNNs-SVD and the POD-G-NN. Indeed, by performing the SVD
on the snapshot matrix it is found that a linear trial manifold of dimension r = 10 is
capable to capture more than the 99.99% of the energy of the system. The Singular Value
decay is showed in Figure (5.3).
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Figure 5.3: Test 1: Singular Value decay.

The configuration of the neural networks for the PDNNs-SVD and POD-G-NN approaches
was given by:

• an input layer made up of just a neuron (which feeds the µ instance to the hidden
layers);

• 4 hidden layers with 50 neurons each;

• hyperbolic tangent activation function;

• an output layer consisting in a number of neurons equal to the dimension of the
linear trial manifold r.

In both cases this architecture has been trained for 2e04 epochs with the Adam optimizer
(lr = 1e− 03) and subsequently for 2.5e04 epochs with the L-BFGS one.

The configuration of the autoencoder is showed in Table (A.1). The training has been
performed for 1e03 epochs exploiting the Adam optimizer, with an ad − hoc scheduler
which gradually reduces the learning rate value.

The corresponding autoencoder PDNN, which maps the parameters to the low rank rep-
resentation of the associated snapshots, is identical to the network configuration of the
other two approaches.

The average L2 relative error between the three different methods and the FEM solutions,
as a function of the dimension r of the corresponding reduced trial manifold is presented
in Table (5.4) and graphically in Figure (5.4).
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Approach r

2 4 6 8 10 15 30

PDNNs-SVD 8.50e-01 4.74e-01 3.28e-01 2.27e-01 2.57e-02 8.60e-03 1.93e-02

PDNNs-AE 1.79e-02 1.32e-02 1.24e-02 1.26e-02 1.16e-02 1.18e-02 1.45e-02

POD-G-NN 8.57e-01 4.77e-01 3.33e-01 2.39e-01 2.39e-02 7.02e-03 5.55e-03

Table 5.4: Test 1: L2 relative error el2 as a function of the reduced trial manifold dimension
r for the 3 different ROM approaches.

Figure 5.4: Test 1: L2 relative error el2 vs reduced trial manifold dimension r: comparison
between the ROM approaches.

We observe that for r < 10 the PDNNs-Autoencoder approach outperforms the two
linear-ROM strategies by one order of magnitude. As r increases, the PDNNs-SVD and
the PINNs-ROM methods gain in accuracy, and they achieve better performances than the
PDNNs-Autoencoder strategy for r > 10. This behaviour was expected because the error
of the latter, as r increases, is soon dominated by the Autoencoder reconstruction loss
which cannot be improved in any way other than repeating the hyperparameter tuning
process for each value of r, which clearly is unfeasible for a metter of time needed to
perform it.

The PDNNs-SVD and the POD-G-NN continue to improve as r increases, with the latter
giving the best result among all for r = 30.
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(a) (b) (c)

Figure 5.5: Test 1: Comparison of the ROM approaches absolute error with respect to the
FEM solution for µ = 10. (5.5a) PDNNs-SVD for r = 15, (5.5b) PDNNs-Autoencoder
for r = 10, (5.5c) POD-G-NN for r = 30.

Finally, in Figure (5.5) the lowest absolute errors for each approach considered are plotted
for comparison:

5.2. Test 2: Advection Diffusion Equation

Let us consider now the parameterized two-dimensional steady and linear Advection Dif-
fusion equation defined as:

{
− µ∆u+ bbb · ∇u = f in Ω = (0, 1)2,

u = gD on ΓD = δΩ,
(5.4)

where:

bbb =

[
cos

(
π
4

)
cos

(
π
4

)] ,

gD =

 0 for x = 1, y = 1 and x = 0 ∧ y > 0.2,

1 for y = 0 and x = 0 ∧ y < 0.2,

f = 0.

(5.5)

The parameter space, to which the single µ parameter belongs, is given by MMM = [1e −
03, 1e01]. This problem is of particular interest because it shows the development of a
thin boundary layer as the value of the viscosity µ decreases, as it can be seen in (5.6).
The streamline diffusion stabilization method [20] has been employed to avoid numerical
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(a) (b) (c)

Figure 5.6: Test 2: FEM solution at different instances of the parameter µ. (5.6a) uuuh for
µ = 3.681e00, (5.6b) uuuh for µ = 6.10e− 02, (5.6c) uuuh for µ = 1.17e− 03.

instabilities which occur for µ → 0: this method is in fact capable of damping possible
over– and undershootings of the discrete solution near the discontinuities while preserving
higher order of convergence in regions where the solution is smooth.

The fact that the boundary conditions are not consistent at point (1, 0) and discontin-
uous at point (0, 0.2) represents an additional challenge, especially for the PINNs-FOM
approach since a neural network is a continuous composite function.

To set up the PDNNs-SVD, PDNNs-Autoencoder and POD-G-NN approaches, the same
procedure as the one described in section (5.1.2) has been followed. It must be noticed that
the sampling of the parameter was not performed with a uniform probability distribution
to avoid the generation of mostly O(1) values, since we were more interested into small
numbers which allow the development of the boundary layer.

For this reason, when needed, an auxiliary parameter γ has been randomly sampled in
the domain Γ = [−3, 1], and then µ has been retrieved as:

µ = 10γ. (5.6)

As in the previous test problem, 10 parameter values have been finally sampled to build
a test set of high-fidelity benchmark solutions (uuuh(µµµtest)) used to evaluate and compare
the different approaches through Equation (5.1).

5.2.1. PINNs-FOM

The computational domain has been set up as D = (0, 0,−3) × (1, 1, 1). The third
dimension has been assigned to the auxiliary parameter γ to better capture the solution
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variations as µ approaches 0. The PDE residual has been then written keeping in mind
the relationship between them written in Equation (5.6).

An hyperparameter optimization has been conducted as described in subsection (5.1.1).
The PDE residual collocation points data set Tf of dimension Nf = 20000 and the bound-
ary collocation points data set Tb of dimension Nb = 5000 have been generated by ran-
domly sampling a number of points respectively in the computational domain and on its
boundaries.

The optimal network architecture was characterized by the following hyperparameters:

• hidden layers: 6 with 50 neurons each;

• activation functions: swish (see Figure (2.2d));

• optimizer: Adam (see subsection (2.2.5)) for 1e04 epochs with a learning rate lr =

1e− 03 and L-BFGS (see subsection (2.2.5)) for 3.5e04 epochs.

Moreover, the network presented a first expanding layer as described in subsection (3.4.3).

The imposition of the boundary conditions has been performed in a hybrid way. In fact,
due to the nature of the Dirichlet boundary conditions to be matched, imposing them in
a hard way would not have been straightforward. An attempt to imposing the u = 0 b.c.
on the right edge was carried out, but it led to a completely off prediction (values of u
close to zero in a great portion of the domain). On the contrary, imposing the u = 0 b.c.
on the top edge led to an improvement in the solution accuracy: the final L2 relative error
on the test set was el2 = 3.08e− 02, which is lower than the one obtained with only soft
boundary conditions (el2 = 4.17e− 02).

A comparison between the high-fidelity FEM solution and the PINNs-FOM one can be
appreciated in Figure (5.7). The chosen parameter value to perform the test is µ = 1e−03,
the one that leads to the thinnest boundary layer among the ones in the parameter range.

In Figure (5.8) it is possible to see a comparison between the two solution profiles taken
for y = 0.5. From this plot it is possible to conclude that while the main characteristics
of the flow are caught by the PINN, the result is anyway poor from a quantitatively point
of view.
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(a) (b)

(c)

Figure 5.7: Test 2: Comparison of the PINNs-FOM solution with the FEM solution.
(5.7a) the FEM solution uuuh, (5.7b) the PINNs-FOM solution ûuu, (5.7c) the absolute error
|uuuh − ûuu|.
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Figure 5.8: Test 2: Velocity profile of the PINNs-FOM solution at y = 0.5 compared to
the FEM one.

5.2.2. PDNNs-SVD, POD-G-NN & PDNNs-Autoencoder

Problem (5.4) does not represent a challenging task for linear ROMs, as was the case of
Problem (5.2). Indeed, by performing the SVD on the snapshot matrix it is found that
a linear trial manifold of dimension r = 6 is capable to capture more than the 99.99% of
the energy of the system, which is even less than what was required in Test 1.

For the sake of completeness, the Singular Values decay is shown in Figure (5.9). The
decay is slower compared to the Test 1, but the 6 dominant modes are enough to capture
most of the system energy.

The configurations of the networks employed were the same as the ones in Test 1.

The average L2 relative error between the three different approaches and the FEM so-
lutions, as a function of the dimension r of the corresponding reduced trial manifold is
presented in Table (5.5) and graphically in Figure (5.10).
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Figure 5.9: Test 2: Singular Values decay.

Approach r

2 4 6 8 10 15 30

PDNNs-SVD 7.34e-02 1.14e-02 2.34e-03 6.82e-04 9.83e-05 3.03e-05 4.86e-05

PDNNs-AE 2.35e-03 2.21e-03 2.41e-03 2.31e-03 2.18e-03 1.99e-03 2.53e-03

POD-G-NN 1.71e-01 2.71e-02 9.53e-03 1.82e-03 8.51e-04 2.14e-05 3.73e-05

Table 5.5: Test 2: L2 relative error el2 as a function of the reduced trial manifold dimension
r for the 3 different ROM approaches.
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(a) (b) (c)

Figure 5.11: Test 2: Comparison of the ROM approaches absolute error with respect to
the FEM solution for µ = 1e − 03. (5.11a) PDNNs-SVD for r = 15, (5.11b) PDNNs-
Autoencoder for r = 15, (5.11c) POD-G-NN for r = 15.

Figure 5.10: Test 2: L2 relative error el2 vs reduced trial manifold dimension r: comparison
between the ROM approaches.

As discussed in subsection (5.1.2), it is interesting to note that the PDNNs-Autoencoder
approach outperforms the others until the reduced trial manifold dimension r is lower
than the number of modes capable to capture the 99.99% of the system energy. However,
as r increases, the linear ROM methods improve and lead to better results by 2 orders of
magnitude. In particular, as r increases in the end the POD-G-NN approach become the
most accurate one, like in Test 1.

Finally, in Figure (5.11) the lowest absolute errors for each approach considered are plotted
for comparison.

It is possible to appreciate that the PDNNs-SVD and the POD-G-NN approaches led
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to a much smaller error than the PDNNs-Autoencoder, for their optimal value of r (the
difference is two orders of magnitude).

5.3. Test 3: Pure Advection Equation

Let us consider now the parameterized two-dimensional unsteady and linear Pure Advec-
tion equation, the circular transport of a Gaussian perturbation with period 1 [s]:


∂u

∂t
+∇ · (bbbu) = f in Ω× I = (0, 1)2 × (0, 1),

u = uex on ΓD = δΩ× I,

u|t=0 = uex(x, y, 0) in Ω,

(5.7)

where:

bbb(x, y) =

[
2π(y − 0.5)

2π(0.5− x)

]
,

uex(x, y, t) = 0.5e

(
− (x−xc)

2+(y−yc)
2

2σ2

)
,

xc(x, y, t) = 0.5 +
sin(2πt)

4
,

yc(x, y, t) = 0.5 +
cos(2πt)

4
,

f = 0.

(5.8)

System (5.7) has been discretized in space by means of cubic finite elements, with Nh =

100× 100 grid points. The time discretization has been characterized by 1001 time steps,
and the integration has been performed via the Crank-Nicholson method [8], which, as
opposed to the backward Euler, demonstrated to limit the development of an unwanted
artificial diffusion. The single σ2 parameter space is given by MMM = [5e− 04, 5e− 03].

In Figure (5.12) it is possible to appreciate the behaviour of the FEM solution at different
time instances, while in Figure (5.13) the comparison between the FEM solution for 2
different values of σ2 at t = 0[s].
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Figure 5.12: Test 3: FEM solution at various time steps for σ2 = 5e− 03.
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(a) (b)

Figure 5.13: Test 3: FEM solution at different instances of the parameter σ2 at time
t = 0[s]. (5.13a) uuuh for σ2 = 5e− 04, (5.13b) uuuh for σ2 = 5e− 03.

This problem is of particular interest because it shows a strong misalignment in the
snapshot matrix AAA, leading to a slow decay of its Singular Values. For this reason, as
mentioned in subsection (1.2.2), it was expected that the PDNNs-SVD approach could
meet some troubles to correctly reconstruct the solution, especially for low dimensions r of
the linear trial manifold. At the same time it was expected that the PDNNs-Autoencoder
approach, which is not based on the SVD, could mitigate this problem.

To set up the PDNNs-SVD and PDNNs-Autoencoder approaches, the same procedure as
the one described in section (5.1.2) has been followed.

Finally, 10 pairs of time-parameter values have been sampled to build a test set of high-
fidelity benchmark solutions (uuuh(ttttest,µµµtest)) used to evaluate and compare the different
approaches through Equation (5.1).

5.3.1. PINNs-FOM

The computational domain has been set up as D = (0, 0, 0.1, 0) × (1, 1, 1, 1). The third
dimension has been assigned to the auxiliary parameter δ to avoid dealing with small
numbers. The PDE residual has been then written keeping in mind the relationship
between them:

σ2 =
δ

200
(5.9)

An hyperparameter optimization has been conducted as described in subsection (5.1.1).
The PDE residual collocation points data set Tf of dimension Nf = 10000 and the bound-
ary collocation points data set Tb of dimension Nb = 5000 have been generated by ran-
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domly sampling a number of points respectively in the computational domain and on its
boundaries. As concern Tb, 2500 points has been allocated to the boundary condition,
while the remaining half to the initial condition.

The optimal network architecture was characterized by the following hyperparameters:

• hidden layers: 6 with 60 neurons each;

• activation functions: swish (see Figure (2.2d));

• optimizer: Adam (see subsection (2.2.5)) for 1.5e04 epochs with a learning rate
lr = 1e− 03 and L-BFGS (see subsection (2.2.5)) for 3.5e04 epochs.

• loss weights: after a trial-and-error optimization process, it has been found that
giving more importance to the initial and boundary conditions leads to better re-
sults. Actually, if the weights in Equation (3.2) are left to the default value of 1, the
network fails to learn at all. In our tests, a combination of αf = 1 and αααb = [5, 10]

led instead to a satisfactory result. Note that the first component of αααb is assigned
to the boundary condition, whereas the second one to the initial condition.

Moreover, the network has a first expanding layer as described in subsection (3.4.3). The
imposition of the boundary conditions have been performed in the soft way, otherwise,
given the fact that on the boundaries of the domain the function to satisfy is the exact
solution, we would have simply forced it in the whole domain, which is not the point of
the work.

A comparison between the high-fidelity FEM solution and the PINNs-FOM one can be
appreciated in Figure (5.14). The parameter value chosen to conduct the comparison is
σ2 = 5e−03, the one that leads to the largest gaussian, and the time chosen was the final
time, t = 1.0 [s].

The L2 relative error achieved was el2 = 1.20e− 02.

5.3.2. PDNNs-SVD & PDNNs-Autoencoder

Due to data misalignment, problem (5.7) becomes a challenging task for linear ROMs.
By performing the SVD on the snapshots matrix AAA it is found that 133 modes are needed
in order to capture the 99.99% of the system energy. In Figure (5.15) the corresponding
Singular Value decay plot is presented.
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(a) (b)

(c)

Figure 5.14: Test 3: Comparison of the PINNs-FOM solution with the FEM solution.
(5.14a) the FEM solution uuuh, (5.14b) the PINNs-FOM solution ûuu, (5.14c) the absolute
error |uuuh − ûuu|.
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Figure 5.15: Test 3: Singular Values decay.

The configurations of the PDNN networks employed were the same as the ones in Test 1,
but as the dimension r of the latent representation increased, the width and depth of the
network were increased too to enhance the approximation capabilities of the network.

The average L2 relative error between the two different approaches and the FEM solutions,
as a function of the dimension r of the corresponding reduced trial manifold is presented
in Table (5.6) and graphically in Figure (5.16).

Approach r

2 20 40 80 120 160 200

PDNNs-SVD 9.32e-01 3.59e-01 1.53e-01 5.96e-02 5.62e-02 5.93e-02 5.84e-02

PDNNs-AE 8.45e-02 2.22e-02 2.37e-02 1.60e-02 1.61e-02 1.70e-02 1.86e-02

Table 5.6: Test 3: L2 relative error el2 as a function of the reduced trial manifold dimension
r for the 2 different ROM approaches.
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Figure 5.16: Test 3: L2 relative error el2 vs reduced trial manifold dimension r: comparison
between the ROM approaches.

Not surprisingly, Figure (5.16) shows the superiority of the PDNNs-Autoencoder approach
over the PDNNs-SVD one in presence of data misalignment in the snapshot matrix AAA for
the whole range of the reduced trial manifold dimension r considered.

In Figure (5.17) the lowest absolute errors for each approach considered are plotted for
comparison:

(a) (b)

Figure 5.17: Test 3: Comparison of the ROM approaches absolute error with respect to
the FEM solution for σ2 = 5e− 03. (5.17a) PDNNs-SVD for r = 120, (5.17b) for r = 80
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5.4. Test 4: Burgers Equation

Finally, let us consider the parameterized mono-dimensional unsteady and non-linear
Burgers equation defined as:


∂u

∂t
+ u

∂u

∂x
− µ

∂2u

∂x2
= f in Ω× I = (0, 1)× (0, 2.0),

u = gD on ΓD = δΩ× I,

u|t=0 = u0 in Ω,

(5.10)

where:

gD = 0,

u0 =

0.5(1− cos(8πx)), for x < 0.25;

0, otherwise,

f = 0.

(5.11)

System (5.10) has been discretized in space by means of quadratic finite elements, with
Nh = 255 grid points. As concern the time discretization, the generic θ-method formula
has been coded and finally the method chosen was the Crank-Nicholson one, i.e., θ = 0.5.
The amount of time steps has been fixed to 2000. The single parameter µ space is given
by MMM = [1e− 03, 1e− 01].

In Figure (5.18) the evolution of the FEM solution is plotted for different µ samples.

(a) (b) (c)

Figure 5.18: Test 4: evolution of the FEM solution at different instances of the parameter
µ. (5.18a) uuuh for µ = 9.23e−02, (5.18b) uuuh for µ = 2.24e−02, (5.18c) uuuh for µ = 1.65e−03,

In agreement with what expected, it can be noticed that the wave front becomes sharper
as the viscosity µ decreases, while for high µ values the diffusion term plays a major role.
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Despite being a mono-dimensional test problem, we were interested into discovering how
the two new strategies proposed (PINNs-FOM and PDNNs-Autoencoder) behaved in an
unsteady non-linear parameterized context in comparison with the more traditional SVD
based approach (PDNNs-SVD).

As in the previous case, 10 pairs of time-parameter samples have been generated to build
a high-fidelity test set (uuuh(ttttest,µµµtest)), used to compare the various approaches.

5.4.1. PINNs-FOM

The computational domain has been set up as D = (0, 1, 0) × (1, 3, 2). The second
dimension has been assigned to the auxiliary parameter η to avoid dealing with small
numbers, given the relationship:

µ = 10−η. (5.12)

The hyperparameter-tuning process led to the definition of the following optimal config-
uration:

• dimension Nf of the residual collocation points data set: 5000;

• dimension Nb of the boundary collocation points data set: 200 (assigned to the
initial condition).

• hidden layers: 5 with 50 neurons each;

• activation functions: swish;

• optimizer: Adam for 1e04 epochs with a learning rate lr = 1e− 03 and L-BFGS for
3.5e04 epochs.

As in the previous tests, the network has been equipped with a first expanding layer (see
subsection (3.4.3) for reference). While the imposition of the boundary conditions in the
hard way has been straightforward to code, the initial conditions has been treated as a
soft constraint, given their piece-wise definition.

A comparison between the high-fidelity FEM solution and the PINNs-FOM one can be
appreciated in Figure (5.19). The parameter value chosen to conduct the comparison is
µ = 1e− 03, the one that gives the sharpest wave front, and the time chosen was t = 0.2
[s], when the wave peak is still high in magnitude.
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Figure 5.19: Test 4: Comparison between the PINNs-FOM and the FEM solution for
µ = 1e− 03 and t = 0.2.

As it can be seen by the figure above, the accuracy of the proposed method is very high.
The two solutions overlaps almost perfectly and there’s no evidence of unphysical artificial
artifacts. On the test set the method achieve an L2 relative error el2 = 1.57e− 2

5.4.2. PDNNs-SVD & PDNNs-Autoencoder

Due to the non-linear time-varying nature of the problem at hand, by performing the
SVD on the snapshots matrix AAA it has been found that 27 modes are required to capture
the 99.99% of the energy of this simple system. The slow Singular Value decay is showed
in Figure (5.20).
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Figure 5.20: Test 4: Singular Values decay.

In this case the autoencoder architecture has been a little modified in order to cope with
the reduced size of the input images, compared to the previous cases. In particular,
the first convolution (and the last transpose convolution) of the autoencoder has been
removed, the number of convolutional filters per layer has been halved and the kernel size
has been reduced to 3 × 3 for the two deepest couples of convolutional and transpose-
convolutional layers.

The average L2 relative error between the two different approaches and the FEM solutions,
as a function of the dimension r of the corresponding reduced trial manifold is presented
in Table (5.7) and graphically in Figure (5.21).

Approach r

2 4 6 10 15 30 60

PDNNs-SVD 2.81e-01 1.37e-01 7.77e-02 4.13e-02 1.99e-02 3.79e-03 3.97e-03

PDNNs-AE 1.64e-02 1.02e-02 8.84e-03 6.77e-03 6.87e-03 5.46e-03 5.74e-03

Table 5.7: Test 4: L2 relative error el2 as a function of the reduced trial manifold dimension
r for the 2 different ROM approaches.
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Figure 5.21: Test 4: L2 relative error el2 vs reduced trial manifold dimension r: comparison
between the ROM approaches.

The strong dimensionality reduction offered by the PDNNs-Autoencoder approach has
been confirmed also in this case: for r < 10 the performances are one order of magni-
tude better than the ones characterizing the PDNNs-SVD approach. As r increases, the
increase in accuracy of the autoencoder model rapidly saturates, until the output of the
linear ROM becomes the most accurate.

Let us now consider the same time-parameter instance of the PINNs-FOM example, i.e,
µ = 1e− 03 and t = 0.2[s]. The plot of the solutions obtained via the two approaches is
compared with the high fidelity one in Figure (5.22).
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Figure 5.22: Test 4: Comparison of the ROM approaches with the FEM solution for
µ = 1e− 03 and t = 0.2.

From the plot above is clearly visible, from a qualitative point of view, that the behaviour
of the PDNNs-Autoencoder approach is much more realistic than the one of the PDNNs-
SVD in presence of a sharp wave. In fact, the latter presents an unphysical overshoot in
the region of the wave crest, as well as notable oscillations in the downstream area.

On the countrary, the solution offered by the PDNNs-Autoencoder strategy is very accu-
rate, and the error is mainly made up of low-magnitude high-frequency noise, plus a small
damping of the wave crest and a single low-magnitude undershoot in the downstream area.

5.5. Results summary

An overall overview on the performances of the various approaches for each test is offered
in Table (5.8):
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Method
Test

PINNs-FOM PDNNs-Ae PDNNs-SVD POD-G-NN

1 1.32e-031.32e-031.32e-03 1.16e-02 8.60e-03 5.55e-03

2 3.08e-02 1.99e-03 3.03e-05 2.14e-052.14e-052.14e-05

3 1.20e-021.20e-021.20e-02 1.60e-02 5.62e-02 -

4 1.57e-02 5.46e-03 3.79e-033.79e-033.79e-03 -

Table 5.8: Overall comparison between the investigated methods. The ROMs techniques
values has been chosen case by case as the ones which led to achieve the best result. No
constraint on the reduced trial manifold maximum dimension has been considered.
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developments

In the present work two new promising strategies to solve parameterized PDEs while
allowing at the same time a fast online prediction have been investigated and compared
with more traditional SVD-based methods.

Concerning the PINNs-FOM method, the results it achieved are very satisfactory. In fact,
it turned out to be the most accurate method on 2 out of 4 tests (Test 1 (5.1) and Test
2 (5.3)), outperforming the other strategies, as well as being the easiest to implement. It
suffered more on the tests which involved the development of a thin boundary layer (5.2)
and of a moving wave front (5.4).

It must be noted that in Test 2 the particular nature of the boundary conditions may have
been the main reason for a less accurate result, since a PINN is a continuous composite
function and thus not much suitable to model discontinuities.

To improve the PINNs-FOM accuracy, various advanced techniques have been proposed
in literature which are worthy to be tested in further researches:

• the residual-based adaptive refinement [42] along with its variants. They are a class
of methods thought to increase the PINN accuracy by clustering at each epoch
additional collocation points in the areas of the computational domain in which the
PDE residual is higher;

• a first adaptive loss weights balancing algorithm [40], which aims to mitigate a series
of gradient pathologies afflicting the network;

• a second adaptive loss weights balancing algorithm [41], which aims to improve the
network training phase by respecting the causality of the problem, e.g., giving more
importance in the initial epochs to collocation points which are close to the time
origin.

Beside all the mentioned, another interesting way to improve the method is generating
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and adding some high-fidelity snapshots as additional boundary conditions to match. The
loss function will then present a term which takes into account the distance between the
network output and the snapshots values. While it is likely that this strategy will lead to
better performances, its drawback consists of an additional offline cost given by the need
of solving the FOM system via a traditional numerical solver at least for few instances of
the parameters.

Regarding instead the PDNNs-Autoencoder approach, it has been proved that its dimen-
sionality reduction capabilities are higher than a traditional SVD-based method, thanks
to its non-linear framework. Moreover, as depicted in Figure(5.22), in presence of sharp
wave fronts, the approximation delivered is much more realistic than the PDNNs-SVD
oscillatory one.

However, this strategy is not drawbacks-free too. First of all, it must be noticed that the
hyperparameter tuning process of the autoencoder architecture and its training procedure
is very time consuming. This may represent a bottleneck, especially if the programmer
deals with such a problem for the first time. Gaining experience will certainly mitigate
the issue.

Moreover, in all the test cases it can be noticed that as the latent space representation
dimension increases, the enhancements in the solution accuracy rapidly saturates, as
opposed to the SVD-based approaches. This behaviour can be explained by the fact that
the shape of the time-parameters to latent representation map ggg is in general harder to
learn than the relationship between the time-parameters space and the corresponding
reduced coefficients.

Therefore, the training process of the network in the PDNNs-Autoencoder case should be
improved. A possible solution is given by the L-BFGS-B optimizer, which in the PDEs
context demonstrated to be always the most effective. Due to python libraries conflicts,
in this specific approach its usage has not been possible. In the future it is expected to
find some workarounds to this limitation.

Finally, regarding the time-dependent problems, an improvement in the autoencoder re-
construction capability could be given by equipping its dense portion with recurrent or
LSTM units, as done in [31]. In this way, the autoencoder will be aware of the temporal
dependence which exists between two consecutive snapshots and could exploit it as an
additional information to increase its accuracy.

In conclusion it can be said that this two approaches, despite being totally different from
a conceptual point of view, represent both a great alternative to the traditional methods
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for fast online parameterized PDEs solution. They both have their drawbacks but, as
mentioned above, the ideas to achieve better performances are not lacking, and thus their
potential is high for possible future industrial applications.
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Table A.1: PINN accuracy vs amount of collocation points

Layer Number of filters Kernel size Stride Activation Output size
InputLayer 96× 96× 1

Conv2D 16 7× 7 1× 1 elu 96× 96× 16

BatchNormalization 96× 96× 16

MaxPooling2D 48× 48× 16

Conv2D 32 5× 5 1× 1 elu 48× 48× 32

BatchNormalization 48× 48× 32

MaxPooling2D 24 ×24× 32

Conv2D 64 5× 5 1× 1 elu 24× 24× 64

BatchNormalization 24× 24× 64

MaxPooling2D 12 ×12× 64

Conv2D 128 5× 5 1× 1 elu 12× 12× 128

BatchNormalization 12× 12× 128

MaxPooling2D 6 ×6× 128

Conv2D 256 5× 5 1× 1 elu 6× 6× 256

BatchNormalization 6× 6× 256

MaxPooling2D 3 ×3× 256

Flatten 2304

Dense elu 256

BatchNormalization 256

Dense elu 128

BatchNormalization 128

Dense elu 64

BatchNormalization 64

Dense elu 32
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BatchNormalization 32

Dense elu 16

BatchNormalization 16

Dense elu 32

BatchNormalization 32

Dense elu 64

BatchNormalization 64

Dense elu 128

BatchNormalization 128

Dense elu 256

BatchNormalization 256

Dense linear 2304

Reshape 3× 3× 256

Conv2DTranspose 256 5× 5 2× 2 elu 6× 6× 256

BatchNormalization 6× 6× 256

Conv2DTranspose 128 5× 5 2× 2 elu 12× 12× 128

BatchNormalization 12× 12× 128

Conv2DTranspose 64 5× 5 2× 2 elu 24× 24× 64

BatchNormalization 24× 24× 64

Conv2DTranspose 32 5× 5 2× 2 elu 48× 48× 32

BatchNormalization 48× 48× 32

Conv2DTranspose 16 7× 7 2× 2 elu 96× 96× 16

BatchNormalization 96× 96× 16

Conv2DTranspose 1 5× 5 1× 1 linear 96× 96× 1
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