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Abstract

THis thesis focuses on two particular aspects of integrity control: digital integrity
and physical integrity. In particular, we propose Signal Processing, Machine
Learning and Deep Learning techniques for solving relevant problems in these

two areas. Given the vastness of these fields, we select two applications we consider
the most relevant to investigate: Multimedia Forensics for the digital integrity world,
and Food Safety Hyperspectral X-ray analysis for the physical integrity world.

Digital integrity covers the crucial role of verifying and assessing trustworthiness
in digital media content. We spend more and more time on social networks and chats,
where we are constantly flooded with images and videos. Therefore, we strongly need
tools to ensure that those contents are not tampered with. The more we continue in this
vein, the more we are exposed to the risk of being fooled or manipulated by multimedia
content over the internet. To solve this issue, we investigate three specific areas of
interest: sensor integrity, coding integrity and semantic integrity. Sensor integrity deals
with the integrity of the traces left by camera sensors on digital images. We know
from the literature that it is possible to exploit sensor traces to bind a picture to the
device that shot it effectively. In this work, to study the robustness of sensor-based
integrity methods, we focus on image “anonymization”, i.e., the possibility of making
device attribution techniques fail. We first propose a method for accomplishing image
anonymization, and then a method for detecting it, both based on Convolutional Neural
Networks.

Coding integrity is about the integrity of the traces left by coding steps in the de-
facto image compression standard format JPEG. This integrity is essential, as tampering
with a JPEG image followed by another JPEG compression would likely compromise
the typical structure left by the first coding step. We deeply investigate this scenario,
proposing a method for detecting double JPEG compression, a method for detecting
multiple compressions up to four steps, and a method for detecting double compression
performed with different implementations of the codec.

Semantic integrity regards the integrity of the meaning of images and videos, i.e.,
what we semantically perceive by watching them. More and more techniques allow the
fully automatic generation of very realistic synthetic images and videos with minimal
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effort and no artistic nor graphic knowledge required. Consequently, we constantly face
dramatic problems, like impersonation or puppeteering of someone in a video for mali-
cious intent. We propose a method for detecting images generated through Generative
Adversarial Networks and a method for detecting videos generated by Deepfake neural
networks.

Physical integrity concerns the integrity of objects: a gigantic field spanning from
controlling buildings and infrastructures’ integrity to checking integrity in microscopic
manufacturing. Among all the possible applications in this broad field, we consider
the application of Hyperspectral X-ray analysis in the context of Food Safety, that is,
using this powerful method to find contaminants buried in food in different stages of
its industrial preparation. In this sense, we cover the integrity of the acquired signal,
which is likely to be compromised whether a foreign body alters its characteristics.
Compared to traditional X-ray analysis, the Hyperspectral allows finer scans of the
object at hand. The whole radiation energy is divided into multiple sub-bands that
we can analyze separately. This makes it possible to detect low-density contaminants
(e.g., plastic polymers) undetectable by single-energy or dual-energy X-ray analysis.
Unfortunately, this kind of X-ray acquisition suffers from noise due to the probabilistic
nature of photons that cross the material and are counted by the sensor.

For this reason, we start by investigating the task of denoising Hyperspectral X-ray
acquisitions as a required step for performing other kinds of processing in a second mo-
ment. We first propose a data-driven method based on a Convolutional AutoEncoder,
comparing it with a more traditional model-based Wiener filter approach. Continuing
in this vein, we explore the world of AutoEncoders for the denoising task. We propose
a comparison between different AutoEncoders variants to exploit physical modeling
of dimensionality reduction. Finally, we move to the more application-oriented task
of plastic polymers classification in industrial food preparation pipelines. We propose
a method based on a Convolutional AutoEncoder to estimate the physical parameters
related to plastic polymers and low-density metals. The proposed solution implements
the multitask-learning paradigm to jointly denoise the X-ray acquisition provided as
input while performing the parameter estimation.

The results achieved in this thesis show that a mix of Signal Processing and Machine
Learning is beneficial to solve a whole variety of integrity-related problems. Whenever
a purely model-based solution proves lacking in some respect (e.g., due to simplistic
assumptions), data-driven methods work as an alternative viable solution. Conversely,
when a model for the problem at hand is well defined (e.g., due to physical constraints),
signal processing may greatly help purely-data driven methods.

II
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CHAPTER1
Introduction

According to the Oxford Dictionary, the word “integrity” comes from the latin word
integer, composed by the negation particle in and the root of latin word tangere, “to
touch”1. Similarly, the word “intact” comes from in + tact, the past participle of tan-
gere2. The original meaning of the word “integrity” is, therefore “being untouched”,
“being intact”, “not being compromised or tampered with”.

We value integrity in everyday life. We constantly seek pristine conditions to as-
sess the trustworthiness of something. Industries perform all kinds of integrity checks
during the production process to ensure the best quality of their products. Thinking
about our daily life, we want the food we buy at the supermarket to be immaculate as
a warranty of no contamination in the supply chain. Similarly, when we see a photo-
graph posted on some online newspaper, we implicitly would like the picture to be real,
not tampered with to accomplish malicious intentions. This holds in many practical
aspects, even if we are not explicitly thinking about it.

Determining and measuring the amount of integrity of something is no easy task.
We need to define what we mean with integrity for a particular object. The answer
seems evident for tangible goods: an object is intact when we cannot perceive physical
damage. A vegetable is intact if it is not rotten. A piece of furniture is intact if it is not
broken, and so on. However, measuring this integrity can be more challenging than it
looks like. For example, the two objects we just mentioned could appear perfect and
intact from the outside but have troubles inside. The vegetable could be rotten from the
heart. The piece of furniture could have structural weaknesses we cannot detect from
an outer look. Things get even more complicated if we start thinking about intangible
assets, like digital multimedia content. All sorts of digital content surround us: social

1https://www.lexico.com/definition/integrity
2https://www.lexico.com/definition/intact

1
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Chapter 1. Introduction

media images, videos, vocal messages from chats, music from streaming platforms.
How can we assess the integrity of digital content? What do we care about? The per-
ceived quality? The semantic? Of course, there is not a unique answer to this question.
Generally speaking, we can call digital content intact if it has not been tampered with
to change its original meaning, the purpose it was created for. For example, a video
of politicians speaking can be doctored to make them say something completely out of
their thoughts, which can have a relevant impact on society, making the video not intact
anymore.

This thesis analyzes two particular integrity control applications out of the many
possibilities. The first one is digital Multimedia Forensics, which is a good example of
the digital integrity world. The second one is Hyperspectral X-ray analysis for Food
Safety, which belongs to the world of physical integrity of tangible goods.

While these two tasks might seem to come from two unrelated worlds, there are
many contact points between the two. Industries usually employ different kinds of
quality control on their product on the conveyor belt, from classic visual control through
pictures and videos to deep inspection with X-rays. Besides, having tools to determine
digital integrity can be crucial. For example, if a client files a complaint about damaged
goods providing pictures of them, these pictures could have been doctored to obtain a
refund or some sort of benefit maliciously.

By exploiting the common point and diversity of these two worlds, we aim to have
a better perspective on the integrity control problem. In our approach, we enforce clas-
sic signal processing techniques to define discriminative features to feed data-driven
models. This allows easing the training of models that would otherwise require mas-
sive data, making their applications possible even in data-scarcity or low-computational
scenarios.

In this chapter, we first summarize the solutions and advancements proposed in this
thesis. Then, we provide the outline of the thesis and finally we list the peer-reviewed
conference and journal papers we included in this thesis.

1.1 Digital Integrity - Multimedia Forensics

In the last decade, the massive adoption of the smartphone and the global popularization
of social networking websites have led to unprecedented rates of social digital media
sharing. In 2010 alone, Facebook reported storing more than 260 billion images, with
users uploading one billion new images each week [1]. In 2016, Instagram had more
than 400 million active monthly users who shared over 40 billion images, with an av-
erage of 3.5 billion daily “likes” for more than 80 million images shared daily on the
site [2].

In the fast-paced world we live in, technology is becoming more and more com-
plex and immersive, surrounding us even when we are not consciously aware of it.
The advent of social media has shifted the human communication paradigm in the last
decade. We are constantly flooded with newsfeeds, status updates, holiday pictures,
funny videos of strangers doing all the kinds of awesome stuff. We are so overwhelmed
by social media content that we cannot devote proper attention to all of them. The con-
stant exposition lowers our defence against multimedia counterfeits, which are created
with the precise and subtle purpose of changing our minds about a specific subject.

2
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1.2. Physical Integrity - Hyperspectral X-ray for Food Safety

As a matter of fact, in the last few years, the fake news plague has reached unseen
levels in human history. According to the 2019 global inventory of organised social
media manipulation [3], social media have been used for organised manipulation cam-
paigns in more than 40 countries in 2018 only. Computational propaganda, namely “the
use of algorithms, automation, and big data to shape public life” [3], is becoming main-
stream for influencing global audiences with social and political implications. Experts
are worried about future political elections, which are likely going to be highly influ-
enced by all the kinds of visual content circulating over the Internet, and the menace is
far from over [4, 5].

Fortunately, the increasing amount of data we keep producing every day also of-
fers the great opportunity to develop data-driven integrity control techniques. Machine
Learning and Deep Learning models can be successfully employed to find discrimina-
tive patterns and detect whether some tampering has occurred. Developing this kind of
techniques is the role of Multimedia Forensics researchers, and one of the goals of this
thesis.

Multimedia Forensics is the discipline that finds alterations in digital multimedia
content. We focus on three particular topics of Multimedia Forensics. The first one is
the problem of Source Device Anonymization and its detection. Every phone or digital
camera leaves traces on the acquired pictures, which bind the image to the device that
shot it. There are techniques to hide these traces and make the binding process impossi-
ble, thus anonymizing the image. By detecting image anonymization, we can assess if
someone tampered with the image. The second topic is about detecting multiple JPEG
compressions on an image, which can again be a hint for detecting alterations. The third
topic is detecting synthetically generated images and videos, which is a scorching topic
in the Multimedia Forensics community. Given the recent advances of generative Deep
Learning models, very realistic images and videos of persons, animals and objects can
be created without particular technical abilities. Detecting them is a crucial waypoint
to fight identity stealing, revenge porn and other widespread malicious practices over
the internet.

1.2 Physical Integrity - Hyperspectral X-ray for Food Safety

Food Safety is a discipline that oversees the preparation, handling and storage of food
in order to prevent food-borne illness. Food contamination can happen during different
stages of its preparation cycle: cooking, packaging, storing, and transportation. For
this reason, the European Commission has defined a series of food safety guidelines
inspired by Hazard Analysis and Critical Control Points (HACCP) standards [6]. These
impose standard food inspection rules and regulations on all producers.

There are many techniques for inspecting food during the various phases of prepa-
ration. Some of them are intrusive, requiring physical access to the food, and some are
non-intrusive.

In this thesis we focus on physical integrity by means of Hyperspectral X-ray imag-
ing [7], a non-intrusive technique that enables the analysis of the interior part of the
object at hand. The main advantage of this technique is its ability to detect low-density
contaminants in food, such as plastic polymers and materials with a similar density to
organic compounds. Unfortunately, the signal acquired from the sensor is very noisy,
and a specific denoising pipeline is required to perform real-time analysis on production

3
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Chapter 1. Introduction

sites. In this thesis, we propose a comparison between different denoising algorithms,
both model-based and data-driven. We show how Deep Learning techniques can be
effectively used to reduce the noise before further analysing the signal. We also pro-
pose a method for classifying plastic polymers and metals of different densities and
thicknesses while retaining a denoising pipeline that can be further used for synthesis
purposes.

1.3 Original contributions

This thesis proposes advances in various aspects of integrity control, ranging from Mul-
timedia Forensics to Food Safety.

The problem of source device anonymization has been considered both from the
forensics and the counterforensics viewpoint. We propose a solution to anonymize an
image while retaining its visual quality and a method for detecting the image anonymi-
zation as a hint of severe tampering with. Regarding the JPEG forensics, we propose a
method for detecting double compression both in the case of aligned and non-aligned
second coding step. We also consider the multiple compression case up to four steps,
and the case in which the second compression is performed with a different imple-
mentation with respect to the first. We also study the problem of detecting images
and videos generated by Deep Learning methods, a very hot topic in today forensics
literature, proposing one detection method apiece.

As far as Food Safety is concerned, we consider the application of contaminant de-
tection by means of Hyperspectral X-ray analysis. A common problem in treating this
kind of signals is dealing with the sensor noise, which greatly affects the acquisitions.
We first propose a comparative study between a statistical denoising method based on
Wiener filter and a Deep Learning method. We then consider the task of classifying
plastic polymers, which are typically found as contaminants in industrial food. By do-
ing so in a multitask fashion, we propose a solution that jointly performs a denoising
step and estimates the physical parameters associated with the polymer, by employ-
ing a Convolutional AutoEncoder (CAE). Intrigued by the possibilities offered by this
architecture, we finally propose a comparative study on different AutoEncoder (AE)
variants, for the pure task of acquisition denoising.

In this section we provide a concise description of every original contribution that we
developed and published (or submitted for publication) in peer-reviewed conferences
and journals.

1.3.1 A method for image anonymization

In the last few years, forensic researchers have developed a wide set of techniques to
blindly attribute an image to the device used to shoot it. Among these techniques,
those based on Photo Response Non Uniformity (PRNU) [8] have shown incredibly
accurate results, thus they are often considered as a reference baseline solution. The
rationale behind these techniques is that each camera sensor leaves on acquired images
a characteristic noise pattern. This pattern can be estimated and uniquely mapped to a
specific acquisition device through a cross-correlation test [9]. We study the possibility
of leveraging recent findings in the Deep Learning field to attack PRNU-based detec-
tors. Specifically, we focus on the possibility of editing an image through Convolutional

4
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Neural Networks (CNNs) in a visually imperceptible way, still hindering PRNU noise
estimation. Results show that performing such an attack is possible, even though an
informed forensic analyst can reduce its impact through a smart test.

1.3.2 Detection of image anonymization

It is of great importance to develop methods to detect image anonymization, to keep
the pace with the latest anonymization methods [10]. We present an approach to detect
whether an image has undergone a laundering process, i.e., it has been tampered with
so that its unique characterizing features have been changed to avoid detection. We
focus on PRNU noise unique to every imaging sensor, we consider that an image has
been “laundered” when we detect the absence of PRNU from an image.

We propose a per image preprocessing pipeline that generates information-rich fea-
tures later used as input of fine-tuned CNNs. We study the performance of the pro-
posed approach using various CNN architectures and blind anonymization techniques,
and show its effectiveness under several training and testing scenarios. Our results also
show that CNN models trained with the proposed feature are capable of generalizing
over unseen devices and are robust against non-geometric transformations.

1.3.3 Aligned and non-aligned double JPEG detection

Due to the wide diffusion of JPEG coding standard, the image forensic community has
devoted significant attention to the development of Double JPEG (DJPEG) compres-
sion detectors through the years [11–13]. The ability of detecting whether an image
has been compressed twice provides paramount information toward image authentic-
ity assessment. Given the trend recently gained by CNNs in many computer vision
tasks, we propose to use CNNs for aligned and non-aligned double JPEG compres-
sion detection. In particular, we explore the capability of CNNs to capture DJPEG
artifacts directly from images. Results show that the proposed CNN-based detectors
achieve good performance even with small size images (i.e., 64 × 64), outperforming
state-of-the-art solutions, especially in the non-aligned case. Besides, good results are
also achieved in the commonly-recognized challenging case in which the first Quality
Factor (QF) is larger than the second one.

1.3.4 Multiple JPEG compression detection by means of non-negative matrix
factorization

JPEG compression is typically operated first at image inception time directly on the
acquisition device. Then, it is customary re-applied every time an image is manipu-
lated or shared through social media [14]. For this reason, the more the applied JPEG
compressions, the higher the likelihood that an image underwent some editing. For this
reason, we propose an algorithm to detect multiple JPEG compressions, specifically up
to four coding cycles. This approach leverages the Task-driven Non-negative Matrix
Factorization (TNMF) model, fed with histograms of the Discrete Cosine Transform
(DCT) of the image under analysis. Experimental results show the effectiveness of
the method if compared with the state-of-the-art, confirming this strategy as a viable
solution for detecting multiple JPEG compressions.
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1.3.5 Different JPEG implementation detection based on eigen-algorithms

The JPEG standard does not define a unique rule regarding the quantization of the DCT
coefficients [15]. Every implementer is free to adopt his own quantization rule, thus
every implementation leave its own traces. We focus on the detection of traces left
on images by the use of different JPEG implementations (e.g., characteristic of propri-
etary software suites). Specifically, given a JPEG image under analysis, we propose a
compact descriptor that enables to distinguish which JPEG implementation has been
used. This is done considering the challenging scenario in which the same quantiza-
tion matrix is used. Results show that it is possible to distinguish between two popular
JPEG implementations, as well as to adapt the proposed methodology to additional
JPEG-based forensics problems.

1.3.6 Detection of images generated by Generative Adversarial Networks

The advent of Generative Adversarial Network (GAN) architectures has given anyone
the ability of generating incredibly realistic synthetic imagery [16]. The malicious dif-
fusion of GAN-generated images may lead to serious social and political consequences
(e.g., fake news spreading, opinion formation, etc.). It is therefore important to regulate
the widespread distribution of synthetic imagery by developing solutions able to detect
them. We study the possibility of using Benford’s law to discriminate GAN-generated
images from natural photographs. Benford’s law describes the distribution of the most
significant digit for quantized DCT coefficients. Extending and generalizing this prop-
erty, we show that it is possible to extract a compact feature vector from an image. This
feature vector can be fed to an extremely simple classifier for GAN-generated image
detection purpose.

1.3.7 Detection of generated Deepfake videos

In the last few years, several techniques for facial manipulation in videos have been
successfully developed and made available to the masses (i.e., FaceSwap [17], Deep-
fakes, etc.). These methods enable anyone to easily edit faces in video sequences with
incredibly realistic results and a very little effort. Despite the usefulness of these tools
in many fields, if used maliciously, they can have a disastrous impact on society (e.g.,
fake news spreading, cyberbullying through fake revenge porn). The ability of objec-
tively detecting whether a face has been manipulated in a video sequence is then a task
of utmost importance. We tackle the problem of face manipulation detection in video
sequences targeting modern facial manipulation techniques. In particular, we study the
ensembling of different trained CNN models. In the proposed solution, different mod-
els are obtained starting from a base network (i.e., EfficientNetB4 [18]) making use of
two different concepts: (i) attention layers; (ii) siamese training. We show that com-
bining these networks leads to promising face manipulation detection results on two
publicly available datasets with more than 119000 videos.

1.3.8 Denoising techniques for Hyperspectral X-ray acquisitions

Hyperspectral X-ray analysis is a powerful method for detecting low-density contam-
inants in food. Unfortunately, the acquired signal is greatly affected by noise, mak-
ing the detection of the contaminant more challenging. Therefore, a good denoising
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pipeline is paramount to perform real-time detection of foreign bodies. In particular,
we compare a classical model-based Wiener filter solution with a data-driven method-
ology based on a CAE. A challenging aspect is related to the specific kind of 2D signal
we are processing: it presents mixed dimensions information since on the vertical axis
there is the pixels position while, on the abscissa, there are the different energy bins
associated to the acquired X-ray spectrum. The goal is to approximate the denoising
function using a learning-from-data approach and to verify its capability to emulate the
Wiener filter using a much less demanding approach in terms of signal and noise sta-
tistical knowledge. We show that, after training, the CNN is able to properly restore
the 2D signal with results very close to the Wiener filter, honouring the proper signal
shape.

1.3.9 Comparing different AutoEncoder variants for Hyperspectral X-ray de-
noising

We continue studying the problem of hyperspectral X-ray image denoising. We propose
a comparison between three different AE variants: the Variational AutoEncoder (VAE),
the AE, and the Augmented AutoEncoder (AuAE) itself. All the networks are trained in
an unsupervised fashion to denoise a given noisy spectrum. We force the latent space of
the networks to have just two parameters, as suggested by Lambert-Beer physical law
[19, 20]. We validate our experiments on a synthetic dataset composed of roughly 15
million spectra. Results suggest that the Augmented Autoencoder is the best network in
this task, showing excellent performance without suffering from the non-deterministic
behaviour of the VAE.

1.3.10 A multitask approach for denoising and classification of Hyperspectral
X-ray acquisitions

X-ray acquisitions are beneficial in food contaminant analysis as they can detect both
metallic and non-metallic objects. We consider the scenario of single-pixel hyper-
spectral X-ray acquisitions applied to a series of materials with different characteris-
tics. We propose a method that jointly applies a denoising operation and detects the
analyzed material in terms of a physical parameterization. The proposed algorithm is
based on a CNN trained with a multi-task learning strategy using a custom loss function
tailored to the problem at hand. Experimental results on metals and polymers show that
the proposed method can also generalize to materials never seen at training time.

1.4 Outline

To ease the readability of this thesis, our contribution has been divided into two parts
and eight chapters.

Part I concerns the digital integrity world.
Chapter 2 introduces the sensor integrity problem, that is the integrity of the traces

left by the digital camera on images. Section 2.1 presents the state of the art of image
source attribution. Section 2.2 provides a background on the required concepts we
adopt in the chapter. Section 2.3 describes the proposed solution [21] to the image
anonymization problem. Section 2.4 describes the proposed solution [22] for exploiting
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the traces left by anonymization techniques to detect anonymization. Section 2.5 draws
some common conclusions on the proposed methods and concludes the chapter.

Chapter 3 treats the integrity of the traces left by the JPEG compression algorithm
on images. Section 3.1 provides the state of the art of JPEG forensics. Section 3.2 intro-
duces background concepts on the JPEG compression algorithm. Section 3.3 describes
the proposed method [23] for detecting double JPEG compression in the two possi-
ble scenarios of aligned and non-aligned second compression. Section 3.4 describes
the proposed method [24] for detecting up to four JPEG coding steps. Section 3.5 de-
scribes the proposed method [25] for detecting double compression with a different
implementation of the JPEG algorithm. Section 3.6 draws a common conclusion on the
three proposed methods, concluding the chapter.

Chapter 4 is about the semantic integrity of images and videos, i.e., the meaning we
perceive by watching them. Section 4.1 provides the state of the art for the detection of
synthetically generated images and videos. Section 4.2 introduces the main concepts
used in the proposed methods. Section 4.3 describes the proposed method [26] about
the detection of GAN generated images. Section 4.4 describes the proposed method
[27] about the detection of Deepfakes videos. Section 4.5 draws common conclusion
on the chapter.

Part II concerns the physical integrity world.
Chapter 5 introduces the Hyperspectral X-ray analysis in food safety applications.

This introductory chapter is organized as follows: Section 5.1 provides some state of
the art for the use of X-ray analysis in food safety. Section 5.2 describes the X-ray
acquisition system we consider to obtain the hyperspectral acquisitions used in the
coming chapters. Section 5.3 provides some background on the Lambert-Beer law,
a physical law we exploit in the next chapters. Section 5.4 concludes the chapter.

Chapter 6 treats the problem of denoising Hyperspectral X-ray acquisitions. Sec-
tion 6.1 gives important details on the concepts of Wiener filter and AE that we use
throughout the chapter. Section 6.2 describes the proposed method [28] on the com-
parison between a model-based and a data-driven technique for denoising. Section 6.3
describes the proposed method [] on the use of AE variants for the denoising task. Sec-
tion 6.4 draws common conclusions between the two proposed methods and concludes
the chapter.

Chapter 7 treats the problem of polymers classification with Hyperspectral X-ray.
Section 7.1 [29] describes the proposed method for plastic polymers classification. Sec-
tion 7.2 describes the experimental campaign we designed for validating our method.
Section 7.3 provides an overview on the experimental results. Section 7.4 draws con-
clusions on the chapter.

Finally, Chapter 8 draws final considerations on the work presented in this thesis and
proposes some future research lines on the considered topics.

1.5 List of included publications

In this section we provide the complete list of articles published (or submitted to) inter-
national conferences and journals during the Ph.D. period.
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CHAPTER2
Sensor Integrity

One of the most interesting problems of image digital integrity is assessing the device
which took a picture. This problem is important for many reasons, from legal aspects
that can be used as evidence in a court to privacy concerns in binding a particular pic-
ture to the photographer. There are many methods in the literature aimed to solve this
problem. They are usually based on the traces left by the camera sensor on the image.
Nevertheless, those methods’ reliability and robustness to different post-processing op-
erations are not always studied.

For this reason, in this chapter we investigate: (i) if the device attribution methods
can be fooled; (ii) if fooling the device attribution methods leave peculiar traces. In par-
ticular, we propose: (i) a method for image anonymization with respect to the camera
that shot it (i.e., erasing sensor’s traces); (ii) a method for detecting the anonymization
of an image.

The chapter is organized as follows: Section 2.1 presents the state of the art of
image source attribution. Section 2.2 provides a background on the required concepts
we adopt in the chapter. Section 2.3 describes the proposed solution to the image
anonymization problem. Section 2.4 describes the proposed solution for exploiting the
traces left by anonymization techniques to detect anonymization. Finally, Section 2.5
draws some common conclusions on the proposed methods and concludes the chapter.

2.1 State of the Art

Image source attribution techniques are widely studied in Multimedia Forensics un-
der two different but complementary aspects: camera model identification and camera
device identification [33].

Camera model identification aims at finding which camera brand/model shot a spe-
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cific picture [31]. Techniques that exploit different digital traces left on the captured
images have been developed for this task. These solutions can make use of the traces
left by Color Filter Array (CFA) interpolation [34, 35], histogram equalization [36],
statistical descriptors paired with machine-learning classifiers [37, 38], as well as Con-
volutional Neural Networks (CNNs) [30, 39–41].

Camera device identification has proved to be powerful enough to bind a picture to
the specific device that shot it. The forensic community [42] has developed a series of
multimedia source attribution techniques in the pixel domain that have enabled one to
detect which device has been used to acquire an image with precise results [43–45].
These tools do not use any Exchangeable Image File Format (EXIF) information which
can easily be modified or removed. This set of tools have been successfully used to
establish forensic evidence in major international legal proceedings and have recently
passed the United States Judiciary Daubert standard [46]. The Daubert standard is a
rule of evidence regarding the admissibility of expert witnesses’ testimony in United
States Federal Courts. The FBI Crime Laboratory has thoroughly vetted it and the US
National Institute of Justice (NIJ) [47].

The most promising approaches so far exploit the Photo Response Non Uniformity
(PRNU) noise [48, 49]. A multiplicative noise pattern characterises each imaging sen-
sor, which is inevitably injected into every acquired image. By estimating a noise
fingerprint from an image, it is possible to compare it with the PRNU of known camera
devices, thus determining which device “took the picture”. PRNU-based approaches
can also be used on scaled and cropped images [8].

Despite the undeniable need of source attribution methods, when privacy is a con-
cern, being able to link a picture to its owner is clearly undesirable. As an example,
photoreporters carrying out legit investigations may prefer to anonymize their shots in
order to avoid being threated. Moreover, studying the boundaries of image attribu-
tion can enable analysts to be aware of the robustness of camera attribution methods in
the presence of malicious attacks. For these reasons, device anonymization techniques
tailored to remove or hinder PRNU traces have been developed.

Forensic techniques that focus on removing traces of PRNU from images have been
well studied in the literature. We can distinguish two major approaches: the first group
requires knowledge of the PRNU pattern to be deleted, whereas the other major group
does not require access to the real PRNU to remove it from a given image. Sensor
fingerprint removal based on knowledge of the underlying PRNU was first suggested
in [43]. This approach assumes a known PRNU fingerprint estimate of a particular
imaging sensor is latent in any given image intensity acquired by the same sensor.
Hence, the removal of the PRNU fingerprint (the anonymization of the image source)
can be achieved by subtraction of the fingerprint estimate from the image intensity.
Typical anonymization methods work by blindly modifying pixel values and scram-
bling their positions in order to make the underlying PRNU unrecognizable. In [10],
authors propose to anonymize images by applying seam-carving to change pixel loca-
tions, and more recently, [50] compares patch-based methods to shuffle small image
blocks. In [9], authors investigate parallel and fast inpainting techniques as methods
for image anonymization.

As discussed in the Malicious AI report [51], one should always reflect on the dual-
use nature of their work, allowing misuse to influence research priorities and norms.
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It is not far-fetched to imagine malevolent agents using the above forensic tools to
anonymize images showing sensitive or illegal content. For example, an illegal content
producer could anonymize its images to avoid being linked to them in case that its
image acquisition equipment was to be seized while in his possession. Hence, it is of
paramount importance to know when an image has undergone any process to attempt
to remove its underlying PRNU.

2.2 Background

In this section, we report the formal definition of typical PRNU-based forensic prob-
lems in order to highlight the goal of our work.

2.2.1 Photo Response Non Uniformity

PRNU is a characterizing feature of the sensor present in digital image acquisition
devices that is manifested as a noise term in acquired images [49]. It is due to device-
level anomalies in the semiconductors used to manufacture the imaging sensor of digital
cameras. Due to the physical origin of these anomalies, PRNU is a unique feature of
each camera. It also makes it impractical for the image acquisition pipeline in cameras
to effectively compensate for PRNU. Hence, artefacts are present in the digital images
produced with the device. PRNU is also robust to lossy compression, which makes
it suitable as a robust feature for camera identification [49]. The classic pipeline to
estimate the PRNU assumes the availability of a certain number of images coming
from the same device to carry out a reliable PRNU estimation. In the basic procedure
proposed in the literature [49], PRNU is estimated from a set of N images In as:

K =

N∑
n=1

Wn ◦ In
N∑

n=1

I2n

(2.1)

Being such a powerful forensic footprint, PRNU has been significantly investigated
in the literature under various scenarios.

2.2.2 Device attribution

Given an image I and a generic denoising function D(·), we can compute the noise
residual W = I−D(I). Given the PRNU fingerprint K of a camera, we can bind an
image I to that camera if:

NCC(W,K ◦ I) > τ, (2.2)

where NCC is the normalized cross-correlation function, ◦ denotes the Hadamard
(element-wise) product and τ is a threshold set in order to bound false-detection prob-
ability below a confidence value α.

2.3 Image anonymization

In this section we describe our method for anonymizing an image to cheat a device
identification method. We explore the possibilities offered by CNNs in terms of camera
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device anonymization based on the knowledge of the reference PRNU. An image-wise
anonymization loop is built upon a CNN-based noise extractor. A Convolutional Au-
toEncoder (CAE) is trained as anonymization function via back-propagation, exploiting
the possibilities offered by a recently introduced CNN-based denoising method [52].

The proposed use of a CNN is different from the typical one. Instead of training a
CNN on many images to learn a generalizable method, we “overfit” the proposed CNN
on each single image to be anonymized. In other words, we consider the CNN as a
parametric operator. We build a loss function to be minimized in order to estimate the
CNN parameters. The CNN training is seen as an iterative way of minimizing the CNN
loss for each given image.

2.3.1 Source device anonymization

Given an image I, an image anonymization functionA(·) is a function that generates an
anonymized version of I, namely Î = A(I). The anonymization process ensures that:

NCC(Ŵ,K ◦ Î) < τ, (2.3)

where Ŵ = I−D(̂I).

2.3.2 Method

The proposed anonymization method is based on the idea of minimizing a cost function
made up of two components: i) a measure of the difference between the input image I
and its anonymized version Î; ii) the cross-correlation between the anonymized noise
residual Ŵ and the camera PRNU K.

Figure 2.1 shows the overall working scheme. An image I and the corresponding
camera PRNU K are fed as input to the anonymization function A (·). The output of
A (·) is an anonymized version of I, namely Î. The Mean Square Error (MSE) between
I and Î is computed and stored into Lq, the first component of the global cost function.
The anonymized image Î is fed as input to the noise extraction function N (·) and the
output Ŵ is correlated with the sample-wise product between K and Î to get Lc, the
second component of the global cost function. The global cost function L is then
defined as L = (1 − β) · Lq + β · Lc, where β is a weighting parameter tailored at
balancing the trade-off between image quality and anonymization performance.

In the depicted scheme, N (·) is a fixed noise extractor, whereas A (·) is a denoising
function learned independently on every pair (I,K) provided as input. We require both
N (·) and A (·) to support gradient computation so that it is possible to learn via back-
propagation the parameters of A (·) as a function of the overall cost function L .

To satisfy the gradient computation capability for N (·) we resort to DnCNN [52],
a fully-CNN that shows noise extraction capabilities comparable with the Wavelet-
based filtering approach commonly used for PRNU-based image source attribution.
DnCNN is composed by a set of 17 convolutional layers composed by 64 filters each
with kernel size equal to 3 and padding 1, each followed by ReLU non linearity and
batch normalization. The fully-convolutional nature of the network does not require as
input a fixed size image and produces as output a noise residual with the same size of
the input image.
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Ŵ
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Figure 2.1: Architecture of the proposed system. An anonymization function A (·) is fed with the input
image I and the relative camera PRNU K. The anonymized image Î is used to compute a quality
loss Lq based on the Mean Squared Error (MSE) between Î and I. The noise residual Ŵ, extracted
through a noise extraction function N (·) from Î, is used together with the camera PRNU K to
determine a correlation loss Lc.
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Figure 2.2: Structure of the proposed CNN-based anonymization function A (·). The input image I
is processed through a set of 17 convolutional layers (Conv2D) followed by ReLU non-linearity
and Batch Normalization (BN). The reference PRNU K is processed with two convolutional layers
separated by a ReLU non-linearity. The output anonymized image Î results from the sample-wise
algebraic sum of the input image I and the two fully-convolutional branches.

As for the choice of A (·), we exploit an AutoEncoder (AE) structure similar to
DnCNN, as depicted in Figure 2.2. The input image I is processed by a set of 17
convolutional layers (Conv2D), each followed by ReLU non-linearity and batch nor-
malization (BN). The reference PRNU K is fed to a convolutional layer, followed by a
ReLU and yet another convolutional layer. The final anonymized image Î results from
the sum of the two convolutional processing branches together with the input image it-
self. The weights of the convolutional layers and the parameters of batch normalization
for A (·) are learned for every single image via back-propagation, driven by the global
cost function L .

The image-wise anonymization process follows as from Algorithm 1. An input
image I, a reference PRNU K and a minimum desired Peak Signal-to-Noise Ratio
(PSNR) (PSNRmin) are provided as input. The loss weighting factor β is initialized at
0.1. At every iteration the anonymized image Î is first computed, together with the
MSE loss Lq and the PSNR P with respect to the original image. Then the noise
extraction function N (·) is used to extract a noise residual Ŵ from the anonymized
image and compute the cross-correlation loss Lc. The global loss L is computed
according to the weighting factor β. As all operations in A (·) are differentiable, it is
possible to back-propagate the error and modify A (·) parameters to minimize loss with
any iterative optimization algorithm (e.g., Stochastic Gradient Descent (SGD) [53] in
our implementation). It is not required for N (·) and A (·) to have a similar structure, as
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Algorithm 1 Image-wise anonymization process
Require: I, K, PSNRmin

β ← 0.1
for i in {1, . . . , 3000} do

Î← A(I, K)
Lq ← MSE(I, Î)
P ← PSNR(I, Î)
Ŵ← N (·)(Î)
Lc ← | NCC(Ŵ, K ◦ Î) |
L = (1− β) ·Lq + β ·Lc

A (·)← BACKPROPAGATE(A (·), L )
if MOD(i, 300) = 0 ∧ P < PSNRmin then

β ← β/4
end if
if P > PSNRmin ∧Lc < 10−4 then

return Î
end if

end for
return Î

i = 30

⇢ = 0.122

P = 27.3

i = 410

⇢ = 0.012

P = 34.3

i = 970

⇢ = 0.004

P = 42.2

NCC = 0.122
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Figure 2.3: Iterations of the proposed algorithm on a sample image. From left to right the evolution
of Î at i = {30, 310, 970} with cross-correlation NCC decreasing and PSNR P increasing. The
rightmost picture is the original image I.

long as both are differentiable operators. Once every 300 iterations if the PSNR value P
is smaller than the desired minimum value PSNRmin the weighting factor β is reduced
by a factor 4, to raise the importance of the MSE loss Lq over the cross-correlation loss
Lc.

If the current PSNR is greater than the desired minimum and the cross-correlation
loss is small enough (i.e., Lc < 10−4), the current anonymized image Î is returned
and the optimization stops. At most 3000 iterations of the algorithm are performed, in
order to bound the required anonymization time if the early stop condition is not met.
A sample of the evolution of Î, NCC and P over the iteration is provided in Figure 2.3.

2.3.3 Experimental Setup

To state the effectiveness of the proposed approach, we resort to the same dataset and
metrics used in [9, 50]. The dataset is composed of 600 raw natural images, demo-
saicked with Adobe Lightroom, randomly selected from 6 cameras (Nikon D70, Nikon
D70s, Nikon D200, two devices each) from the Dresden Image Database [54]. All
the images are cropped in their center to a fixed size of 512 × 512 pixels. We evalu-
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2.3. Image anonymization

ate the anonymization performance by using two different noise extraction functions:
i) the DnCNN function used as noise extractor within the anonymization scheme, de-
noted as Ndn (·); ii) the Wavelet-based noise exaction function [55] commonly used in
PRNU-based works, denoted as Nwl (·). As for the use of DnCNN as noise extractor,
we resort to the pre-trained model available from [52]. We resort to Pytorch [56] as
Deep Learning and CNN framework.

The reference PRNU K for each device is estimated from 25 raw flatfield images
from the same database, according to Nwl (·) as from [43]. All the 600 images are
anonymized by varying the PSNRmin parameter in the set of values {37, 38, 39, 40, 41}.
Each anonymized image is stored as an uncompressed PNG file, thus being quantized
to 8-bit as in real case scenario. For each value of PSNRmin we observe the distribution
of the obtained PSNR values. Noise residuals are extracted with Ndn (·) and Nwl (·)
for each anonymized image and than correlated with the 6 camera PRNUs. For each
PSNRmin we compute a Receiver Operating Characteristic (ROC) by varying the value
of τ , the threshold used in the cross-correlation test to detect an image as being shot
from a specific camera. From each ROC we extract both the True Positive Rate (TPR)
value at a False Positive Rate (FPR) α = 0.01 (TPR@0.01) and the Area Under the
Curve (AUC). Small AUC values indicate good anonymization performance. Small
TPR@0.01 values indicate that when accepting a small FPR it is not possible to bind
the picture to its camera device.

2.3.4 Results

In this section we report a set of results to test and validate the proposed pipeline. Be-
fore describing the anonymization results, we do some considerations on the denoising
operator and the PSNR.

Validation of Denoising Operator

First, we need to asses whether DnCNN (Ndn (·)) can be used as a reasonable approx-
imation for the widespread Wavelet (Nwl (·)) noise extractor tailored to PRNU match-
ing and camera device identification. Figure 2.4 shows the distribution of NCC when
Ndn (·) and Nwl (·) are used as noise extractors from pristine images. In both cases the
reference PRNU (K) is computed with the Wavelet filter. We can notice that for both
noise extractors the discriminability between matching (M) and non-matching (NM)
image-camera pairs is preserved, with a slight superimposition of the two distribu-
tion for DnCNN. Figure 2.5 shows the difference in terms of ROC between Ndn (·)
and Nwl (·) on pristine images. The values of AUC reported in the legend show how
DnCNN detection performance are slightly lower than the ones of Wavelet, but still
above 0.99. This test confirms that DnCNN is able to extract PRNU-based residual
information from images, thus justifying its use within our anonymization pipeline.

Minimum PSNR Requirement

As the proposed algorithm uses the PSNRmin as a driving criteria for the minimum
accepted image quality, we are interested in checking whether this criteria is actually
met in an experimental fashion. In facts, it might happen that the anonymization loop
reaches the maximum number of iterations but the PSNR between I and Î is still smaller
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Figure 2.4: Distribution of normalized cross-correlation values on pristine images using DnCNN (a) and
Wavelet (b) noise extractors, for matching image-PRNU pairs (M) and non-matching pairs (NM).
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Figure 2.5: Comparison between Nwl (·) and Ndn (·) as noise residual extractors in terms of ROC. The
AUC reported between squared brackets shows almost equivalent performance in terms of detection.

than PSNRmin. Figure 2.6 reports the histograms of PSNR values obtained for various
values of PSNRmin. It is possible to notice that for every choice of PSNRmin the actual
values of PSNR are always greater or equal to the minimum bound. This confirms that
the proposed iterative method is able to reach convergence in terms of the imposed
minimum PSNR requirement.

Image Anonymization

When it comes to verify the effectiveness of the proposed pipeline in reducing PRNU-
based device identification, we first compute the distribution of matching and non-
matching NCC values obtained from anonymized images with noise residuals extracted
with DnCNN (Ndn (·)) and Wavelet (Nwl (·)). Figure 2.7a shows how the distributions
of matching and non-matching NCC values, obtained when noise residuals are ex-
tracted from Î through Ndn (·), are superimposed. This makes practically impossible to
bind an anonymized images to the device it comes from. This means that the proposed
anonymization pipeline is working in the proper way, thus it has minimized the cross-
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Figure 2.6: Real PSNR distribution when varying PSNRmin in {37, 38}. The real PSNR values are
always greater or equal the the minimum value (vertical dashed gray line). The same behavior is
obtained for different PSNRmin values.

correlation between the reference PRNU K and the noise residual extracted through
Ndn (·). As we wish to evaluate the effect of the proposed method when the Wavelet-
based noise extractor is used on Î, Figure 2.7b shows the distribution of matching and
non-matching NCC values obtained when noise residuals are extracted with Nwl (·).
We can immediately spot two differences with respect to the Ndn (·) extractor: i) the
mean of the matching values is not anymore zero, but it is shifted toward negative val-
ues; ii) the variance of matching cross-correlations is way higher than the variance of
non-matching cross-correlations. A forensic investigator acting in a blind way, without
the knowledge of the proposed anonymization pipeline, might use the cross-correlation
test defined in Equation (2.2) to asses whether an image Î under investigation comes
from a camera whose PRNU is K. However, a smart investigator would also perform
another test, evaluating the absolute value of the normalized cross-correlation, thus
building a symmetric test |NCC (W,K ◦ I)| > τ . In the plots, we refer to the results
obtained with the standard Wavelet detector with Nwl (·), while the results obtained
with the Wavelet symmetric detector are denoted as N a

wl (·).
Figure 2.8 shows the ROC on anonymized images detection for PSNRmin = 40. If

Ndn (·) is used to extract the noise residual from Î we get almost perfect anonymization
performance. This confirms that the anonymization loop, based on the minimization
of the cross-correlation value between K ◦ Î and Ŵ extracted through Ndn (·), is ef-
fectively working as expected. When noise residuals are extracted from Î through the
Wavelet-based function and the unidirectional test in Equation (2.2) is used (Nwl (·)),
the detection performance are severely affected. However, resorting to the symmetric
detector (N a

wl (·)) shows that in fact the detection performances are affected, but are not
as bad as when the asymmetrical detector is used.

A final result is shown in Figure 2.9, where two standard metrics in anonymization
are presented. Figure 2.9a and Figure 2.9b respectively report the TPR at a fixed FPR
of 0.01 and the AUC for several median PSNR values. Each point is obtained by set-
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Figure 2.7: Distribution of normalized cross-correlation values on anonymized images using DnCNN
(a) and Wavelet (b) noise extractors, for matching image-PRNU pairs (M) and non-matching pairs
(NM).
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Figure 2.8: ROC for PSNRmin = 40.

ting PSNRmin to {37, 38, 39, 40, 41}. The almost zero TPR@0.01 value for Ndn (·) and
the almost constant 0.5 value for AUC are assessing that the anonymization cycle is
working properly if the noise extraction function used in the anonymization loop is the
same as the one used for analysis purposes. When a different noise extraction function
is used and a forensics investigator is aware of the attack (N a

wl (·)) the anonymization is
not guaranteed anymore.

2.4 Anonymization detection

In this section, we propose a method for detecting the anonymization of an image. The
method we propose is based on the use of a CNN. However, instead of feeding the
network with images in the pixel domain, we show that applying the proposed pre-
processing technique dramatically improves the performance of anonymization detec-
tion. The proposed solution can generalise to different kinds of anonymization methods
never seen during training, thus showing that using specific domain knowledge can help
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Figure 2.9: TPR at a fixed FPR α = 0.01 (a) and AUC (b) when varying PSNRmin.

pure data-driven techniques.

2.4.1 Problem statement

We define anonymization detection problem as a two-class classification problem,
where C0 is the class of original images and C1 is the class of the anonymized images.

Given an image I under investigation, an anonymization detector is an operatorM(·)
such that:

ŷ =M(I), (2.4)

where ŷ ∈ {0, 1} represents a label that assigns I to C0 or C1. Our goal is to design an
operator M(·).

2.4.2 Method

Given an image under analysis I, our goal is to detect whether its PRNU traces have
been removed or not. We propose the following method to determine this: (i) we
pre-process the image in order to extract a feature that exposes salient anonymization
information; (ii) we add the proposed feature to a CNN that identifies whether the
analyzed image has been anonymized or not.

Feature extraction

Despite the well-known capabilities of CNNs to work directly in the pixel domain, they
can yield better performance when coupled with domain specific knowledge of the
problem to be tackled. Using domain knowledge as indicated in [57, 58], we leverage
the efforts of the forensics community and propose a preprocessing approach to extract
the residual noise left in the input image and then shift it into the Fourier domain.
Due to the noisy nature of the PRNU pattern and the subtlety of the traces left by
the anonymization techniques, if pixel domain information were to be input into the
neural network, this would lead to poorly trained models incapable of generalization
or overfitted on image features instead of PRNU removal detection. However, our
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(a) (b) (c) (d)

Figure 2.10: (a) RGB image anonymized using [50]. (b) Wavelet noise extracted from the image. (c)
DFT2 of the signal. (d) Final feature after Wiener filtering.

proposed preprocessing leads to a boost in the detection accuracy of our trained neural
network model while generalizing to unseen camera models, as shown in the Results
section.

Our feature extraction method is defined as follows. Let us consider a grayscale
H ×W image I. By means of the Wavelet denoising function Dw(·) proposed in [55]
and often used for PRNU estimation, we compute the noise residual W from the image
as:

W = I−Dw(I). (2.5)

We then compute the magnitude of the 2D Discrete Fourier Transform (DFT2) as:

WF = |DFT2(W)|, (2.6)

and we then Wiener filter this signal, following the method described in [43]:

[F]ij = [WF]ij ·
σ2
s

[SW]ij + σ2
s

, (2.7)

with:
σ2
s = δ · σ2

W, (2.8)

where i = 1, . . . , H , j = 1, . . . ,W , σ2
W is the variance of WF and SW is the matrix

containing the variance of the energy of WF computed over a 3×3 moving window. The
parameter δ must be chosen depending on the input signals in order to drive the Wiener
filtering operation (we set δ = 0.77 in our experiments). Without loss of generality, we
iterate this procedure over each of the three channels of a RGB image. The result is a
H ×W × 3 feature F = F (I) we use as network input. Figure 2.10 visually displays
all the feature extraction steps.

Model

Due to the formulation of our problem, we can make use of transfer learning, which
is known to increase the performance of detection models in limited data settings [59].
This means that we can use CNN models pretrained on large image datasets and lever-
age their learnt filters. After selecting a suitable architecture, we use transfer learning
on a model trained on ImageNet by replacing its last fully-connected layer with a (nl, 1)
fully-connected layer, where nl is the number of input features of the original last layer.
Additionally, we perform a sigmoid over the network output to bind it to [0, 1]. Thus,
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2.4. Anonymization detection

giving as input a batch of B samples X of size B ×H ×W × 3 and its label tensor y
of size B× 1 ∈ {0, 1}, the network output ŷ of size B× 1 ∈ [0, 1] is a tensor of scalars
representing the likelihood of each sample to be anonymized. We choose Binary Cross
Entropy as a loss function between the target and the output:

Lb = − [yb · log ŷb + (1− yb) · log (1− ŷb)] , (2.9)

where b ∈ {1, ..., B} is the sample in-batch index. We train each model using Adam
optimizer [60] until reaching a validation plateau.

In our experiment, we consider ResNet [61] as CNN model. AlexNet [62] and VGG
[63] were also considered, but underperformed ResNet, probably due to the consistently
higher number of parameters.

2.4.3 Experiments

In this section we describe the dataset, the training strategy, and the different kinds of
analysis we performed to highlight different aspects of the proposed solution.

Dataset

Starting from the 600 original images from the Dresden database [54] used in [9], we
applied to each image the two anonymization procedures described in [9] and [64],
thus obtaining a corpus of 600 × 3 = 1800 images (i.e., the original images, and the
two sets of anonymzed ones). To the best of our knowledge, these are the most recent
methods for blind device anonymization known in literature. In order to validate the
proposed approach on various kinds of anonymized images, as well as to test cross-
dataset generalization, starting from the above images we define different sets of data.
Specifically, we define three training dataset:

• D1 composed by 300 original images and 300 images anonymized following [9],

• D2 composed by the same 300 original images and 300 images anonymized fol-
lowing [64],

• D3 composed by the same 300 original images, the first 150 images anonymized
by [9] and the last 150 images anonymized by [64].

Following the same strategy, we construct two testing sets with the remaining images:

• T1 composed by 300 original images and 300 images anonymized following [9],

• T2 composed by the same 300 original images and 300 images anonymized fol-
lowing [64].

All the images are RGB images and have been central-cropped to size 512 × 512
pixels. To increase the number of available samples, we split each image in 224× 224
blocks with an overlapping stride of 32 × 32. During training, we use 70% of each
training set for training, and the remaining 30% for validation. In total, we have 42000
samples in each training set, 18000 in each validation set and 60000 in each test set.
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Figure 2.11: ROC curves for two different testing dataset. Left: Test on T1; right: Test on T2.

2.4.4 Results

In this section we provide the results of the conducted experiments. We evaluate the
cross dataset scenario, the Leave One Out scenario, and we perform some additional
experiments on the robustness to transformations.

Cross dataset results

During the test phase we examined the models trained on D1, D2, D3 and we test them
against T1 and T2.

We perform our test in very challenging scenarios, including training on a specific
anonymization method and testing on the other one. The test procedure consists in
freezing the network weights and predicting ŷ given as input the feature F. By thresh-
olding ŷ with different thresholds, we compute TPR and FPR w.r.t. the true label y and
plot them as a ROC curve. We show in Figure 2.11 the ROC curves for the most chal-
lenging training and testing conditions. The AUC on same-type dataset are very high
and we are able to reach comparable AUC even in the worst case scenario in which we
train on D1 and test on T2 and viceversa. This shows that the proposed method gener-
alizes over different anonymization methods, and does not simply overfit to recognize
one.

Figure 2.12 shows the network performances with different input preprocessing (im-
age I or the noise residual W or the feature F). The designed feature F is the one that
shows the best results regardless the arduous testing scenarios.

Leave One Out

One might be concerned the proposed CNN model learns to recognize just the PRNU
of the devices used during training.

To verify the model performance with unseen camera devices, we design a Leave
One Out testing procedure. We modify our training dataset D3 by removing all the
images acquired with device Nikon_D200_0, creating D̃3. Similarly, we remove all
the images from all the devices except Nikon_D200_0 from T1 and T2 and we add
to them the images removed from D3. These two new mono-device datasets are known
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Figure 2.12: ROC curves with various preprocessing approaches. Left: Train on D2, test on T1; right:
Train on D1, test on T2.
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Figure 2.13: ROC for Leave One Out strategy. Train on D̃3 test on T̃1and T̃2.

as T̃1 and T̃2. Figure 2.13 shows the ROC for training on D̃3 and testing on T̃1 and
T̃2. We can assess that our model is capable of discriminating between original and
anonymized images even when it is tested against a device which was not present in the
training set.

Robustness to transformations

As it is clear from the literature [65], PRNU can be somehow corrupted by other editing
operations. We are therefore interested in studying whether our method recognizes
these situations or not, and we design a proper testing strategy. In the test phase,
before extracting the feature matrix F from the image I, we compute:

NCCpre = NCC(W, IK), (2.10)

where W is the noise residual obtained from I and K is the reference PRNU. NCCpre

gives us a baseline metric of correlation between an image and its noise fingerprint.
Then we modify the image with one of the available transformations in Table 2.1,
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Figure 2.14: Distribution of NCCpost values.

Table 2.1: Transformation table with their parameters set. Parameter for JPEG is the Quality Factor,
for Gamma is the exponent, for Brightness ranges from 0 (black image) to 1 (original image), for
Contrast ranges from 0 (solid gray image) to 1 (original image).

Transformation Parameters set

JPEG compression 70, 75, 80, 85, 90
Gamma correction 0.5, 0.6, 0.7, 0.8, 0.9

Brightness correction 0.5, 0.6, 0.7, 0.8, 0.9
Contrast correction 0.5, 0.6, 0.7, 0.8, 0.9

randomly selecting it and a parameter from its set, and we compute:

NCCpost = NCC(Wt, ItK), (2.11)

where It and Wt denote the transformed image and the noise residual obtained from
it, respectively. NCCpost gives us a measure of the degradation of the fingerprint intro-
duced by the transformation. It is worth noting that all the transformations in Table 2.1
are non-geometric transformations, hence we do not need to transform the reference
PRNU K too. After computing these two metrics, we compute the network output ŷ
from F. Figure 2.14 shows the distribution of NCCpost values. For the sake of visual-
ization, we show only the samples with NCCpre > 0.05, i.e., we select only the images
that matches with the PRNU before the transformation. By observing the distribution
of NCCpost we notice that some images have values < 0.05, meaning that some trans-
formations degrade the PRNU traces to the point that the correlation test fails. After
computing the network scores ŷ, we can clearly distinguish two value distributions in
the plot, the left one with [ŷ]i > 0.5 and the right one with [ŷ]i ≤ 0.5. This shows
that our method is robust to transformations: when the NCC value is low the network
classifies the sample as anonymized, whereas when the NCC value is high, the net-
work classifies the sample as original. More in general this result highlights the fact
that we are not simply learning to detect the artefacts left by the two considered anony-
mization methods, but we are able to effectively discriminate between correlating and
non-correlating images.
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2.5 Conclusions

In this chapter we considered the problem of image anonymization and its detection.
We proposed a method to anonymize images by removing PRNU traces in a scenario
in which the specific PRNU to be removed is assumed to be known. We believe our
work shows a different perspective on the topic, as the proposed solution makes use of
a CNN in an uncommon fashion. Indeed, the CNN is seen as a parametric operator.

CNN training is used to estimate CNN parameters by minimizing a loss function on
a single image. From a different perspective, the proposed method works by overfitting
a specific CNN to each input image. From the adversarial forensic point-of-view, re-
sults show an interesting aspect. If the denoising operators used for PRNU testing and
within the anonymization network match (i.e., DnCNN is used), images are strongly
anonymized. If the analyst makes use of a different denoising operator for PRNU test-
ing (i.e., the Wavelet-based one), anonymization may or may not be effective depending
on the used correlation test. In reality, denoising operator matching is not needed by
an attacker, given that the analyst is not informed about the possibility of an attack. If
analysts know about possible attacks, they can use the symmetric test to avoid being
completely fooled. Regarding the detection, we proposed a new kind of feature start-
ing from RGB images, and use this feature as input to a CNN. We select two different
blind anonymization techniques and perform network finetuning on images processed
with these techniques. Results show the effectiveness of our method comparing to
several different preprocessing pipelines. Our model is capable of generalizing over
unseen devices and it is robust against non-geometric transformations. Despite the un-
doubted capability of CNNs, pure data-driven approach was not sufficient for solving
the problem well enough. Forensics domain knowledge allowed us to carefully design
a preprocessing pipeline for feature extraction to ease network training, thus showing
that model-based and data-driven methods can benefit from one another.

29



i
i

“output” — 2022/5/10 — 21:04 — page 30 — #40 i
i

i
i

i
i



i
i

“output” — 2022/5/10 — 21:04 — page 31 — #41 i
i

i
i

i
i

CHAPTER3
Coding Integrity

The vast majority of digital images are stored in a compressed format. Compression is
often done directly by the device that acquires the image, and almost every online plat-
form (e.g., social media, chat applications) applies some compression to the uploaded
images. For this reason, a possible way to verify the digital integrity of pictures is to
study the traces left by the codec algorithms. The JPEG format is the most used com-
pression format over the internet, as it dramatically reduces the file size while retaining
visual quality.

For this reason, in this chapter, we treat the digital integrity of images that have un-
dergone JPEG compression. Indeed, it is of great interest to look for inconsistencies
or multiple coding steps that could reveal tampering with the image. We first propose
a data-driven method for detecting double JPEG compression. Then, we extend the
analysis to multiple JPEG compression, up to four coding steps. Finally, we propose
a method to spot inconsistencies into multiple compressions, in the case they are per-
formed with different implementations of the JPEG algorithm.

Section 3.1 provides the state of the art of JPEG forensics. Section 3.2 introduces
background concepts on the JPEG compression algorithm. Section 3.3 describes the
proposed method for detecting double JPEG compression in the two possible scenarios
of aligned and non-aligned second compression. Section 3.4 describes the proposed
method for detecting up to four JPEG coding steps. Section 3.5 describes the proposed
method for detecting double compression with a different implementation of the JPEG
algorithm. Finally, Section 3.6 draws a common conclusion on the three proposed
methods, ending the chapter.
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3.1 State of the Art

Due to the wide availability of easy-to-use imaging software in the last decades, the dif-
fusion of tampered content has become a widespread phenomenon. Among the tech-
niques developed by the image forensic community to fight this trend [66, 67], great
attention has been devoted to methods analyzing JPEG traces [11, 68]. Indeed, every
time an image is stored (e.g., at shooting time directly on the acquisition device or after
editing with processing tools), it is usually saved in JPEG format. Therefore, manip-
ulated content often undergoes JPEG re-compression. Because of this fact, detection
of double JPEG compression has received significant attention in image forensics, and
the presence of tampering is often revealed by looking for the artefacts left by JPEG
re-compression. However, different artefacts are introduced depending on whether the
second JPEG compression grid is aligned or not with the one adopted by the first com-
pression. For this reason, these two scenarios are often analyzed separately. They are
commonly referred to Aligned Double JPEG (A-DJPEG) compression detection and
Non Aligned Double JPEG (NA-DJPEG) compression detection.

In many cases, manipulation takes place only on limited parts of the image. There-
fore Double JPEG (DJPEG) traces are only left on a limited number of pixels. For
this reason, being able to detect DJPEG on small image patches proves paramount for
the localization of manipulated regions in image forgery detection problems. However,
most of the techniques performing double JPEG detection in the literature focus on es-
timating the compression history of an image as a whole, whereas the localization of
double compressed regions of relatively small size (i.e., possibly tampered regions) has
been often overlooked and only addressed in some works.

It is well known that double JPEG compression leaves peculiar artefacts in the Dis-
crete Cosine Transform (DCT) domain, in particular, on histograms of block-DCT co-
efficients [68]. Accordingly, many proposed detection algorithms focus on analysing
first-order statistics of DCT coefficients. This is the case with the data-driven approach
in [69], based on analysis of low-frequency block-DCT coefficients histograms, and
many model-based approaches, e.g., the ones in [70–72] that rely on the distribution
of First Digits (FDs) in block-DCT coefficients and methods based on Benford-Fourier
analysis [14, 73]. Data-driven detectors based on features derived from second-order
statistics have also been proposed, e.g., [11]. A major drawback of many of these ap-
proaches is that they are designed to work on the whole image, i.e., to detect if an
image has entirely undergone single or double JPEG compression. Moreover, they fail
to correctly classify small blocks or image patches due to the difficulty of estimating
the statistics in these cases. Therefore, they are not applicable in a tampering detection
scenario when only part of the image has been manipulated.

Among the algorithms performing localization, [74] exploits the double quantization
effect on DCT coefficients’ histograms to produce a likelihood map reporting tamper-
ing probabilities for each 8 × 8 block of the image. This method has been refined
in [75] through the use of an improved probability model. However, spatial resolution
considered by the authors for good detection accuracy with these methods is 256×256,
and performances drop significantly when smaller regions are considered. Besides, this
method performs poorly when the Quality Factor (QF) used for the first compression
(i.e., QF1) is significantly larger than the second one (i.e., QF2). In [76], localization
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of spliced regions is achieved by using FSD features of block-DCT coefficients and
employing a Support Vector Machine (SVM) classifier. More recently, in [13], authors
proposed a novel method that relies on a one-dimensional Convolutional Neural Net-
work (CNN), designed to learn discriminant features from DCT coefficients histograms
automatically. This approach outperforms both methods in [75] and [76], achieving
good detection performances with small sized images up to 64×64 pixel. However, all
the above approaches exploit the peculiar traces left by A-DJPEG compression and fail
to detect double compression in the non-aligned case.

In the NA-DJPEG scenario, several other methods for detecting double compres-
sion have been proposed, relying on ad-hoc features extracted from both pixel do-
mains [77, 78] and DCT domain [12, 79]. Specifically, in [78] authors proposed a
method able to detect both aligned and non-aligned re-compression. The scheme works
by combining periodic artefacts in spatial and frequency domains. Specifically, a set of
features is computed to measure the periodicity of blocking artefacts, which is altered
when an NA-DJPEG compression occurs. Another set of features is used to measure
the periodicity of DCT coefficients, which is perturbed in presence of A-DJPEG. This
approach for non-aligned re-compression detection is outperformed by [12]. Further-
more, in [80], authors propose a forensic algorithm for tampering localization when
DJPEG compression occurs, either aligned or not. The proposed scheme is as an exten-
sion of their analysis carried out in [75], where a unified statistical model characterizing
JPEG artefacts in the DCT domain is considered. However, similarly to [75] (and [12]),
this scheme works well as long as QF2 > QF1; moreover, in order to achieve accurate
detection, spatial resolutions lower than 256× 256 pixel are not considered.

Recently, research on image forensics has started also to analyze chains of process-
ing operations in order to model more realistic scenarios [81]. Nevertheless, the issue
of identifying multiple JPEG compressions is, by far, a less investigated problem. In-
deed, in many practical situations, pictures under analysis might be compressed several
times. Think for example to the increasingly widespread habit of sharing visual con-
tent on social media: the average user typically shot a picture with a smartphone (first
compression), share it through a messaging app (second compression), and the receiver
may re-share it or post it on a social platform (third compression). As a consequence,
this operation necessarily results in an “at-least-three-compression” chain for the image
under analysis.

Given the strong likelihood of digital images to undergo more than two compression
stages, finding a method able to estimate the number of endured JPEG compressions is
of paramount importance for the reconstruction of processing history of the investigated
content. In this vein, the method proposed in [82] aims at identifying up to three JPEG
compressions through a testing scheme based on the statistical analysis of Benford-
Fourier coefficients [83]. The problem of detecting up to four JPEG compressions is
addressed in [84] by exploiting the FD of DCT coefficients in absolute values. The
algorithm is based on SVMs and allows to estimate up to four compression cycles.

Another interesting scenario to consider is the detection of multiple compressions
in case they are done by means of different software. The authors of [85] have recently
shown that it is possible to detect whether an image has been compressed with different
JPEG implementations according to the used quantization rule (i.e., flooring, ceiling or
rounding).
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3.2 Background

In this section we provide a fast overview on JPEG compression algorithm to highlight
some of the founding concepts needed to understand the rest of the work.

3.2.1 JPEG compression

JPEG is a lossy image transform coding technique based on block-wise DCT. In a
nutshell, an image is split into 8× 8 non-overlapping blocks, each block is DCT trans-
formed and quantized, then entropy coded and packed into the bitstream. Quantization
is the operation causing information loss. Specifically, quantization is driven by pre-
defined quantization tables scaled by a QF. A lower QF indicates a stronger quantiza-
tion, thus a lower quality of the final decompressed image.

Double compression occurs when an image compressed with a QF = QF1 is first
decompressed and then compressed again with QF = QF2. If no operations are applied
between the two compression steps, the 8 × 8 pixel blocks left by the first and second
JPEG compressions are perfectly aligned, thus we speak of A-DJPEG compression.
Conversely, when the second compression 8×8 grid is shifted with respect the previous
one (e.g., due to cropping between first and second compression or to a cut and paste
operation), we have a NA-DJPEG compression. Depending on the particular scenario,
both A-DJPEG and NA-DJPEG may occur.

In decoding phase, binary stream is decompressed, coded blocks are reconstructed
by applying inverse DCT on rescaled coefficients and the image is re-built in the pixel
domain [86].

Due to quantization, it is well-known in the literature that histograms of DCT co-
efficients show a typical comb-like shape, and spacing between consecutive peaks
is related to the adopted quantization step size. Moreover, if an image is encoded
many times with different QFs, the resulting quantization levels are modified accord-
ingly [68].

3.3 Double JPEG Compression Detection based on Convolutional Neu-
ral Networks

In this section we detail the proposed CNN-based solutions for aligned and non-aligned
double JPEG compression detection.

3.3.1 Problem Formulation

Our goal is to build a detector which is able to classify between single compressed and
double compressed images. In other words, let H0 correspond to the hypothesis of sin-
gle compressed image, and H1 to the hypothesis of image compressed twice. Given a
L × B pixel image I, we want to detect whether H0 or H1 is verified, considering: i)
only A-DJPEG case; ii) only NA-DJPEG; iii) both A-DJPEG and NA-DJPEG cases.
To solve this classification problem, we propose to use data-driven techniques based on
CNNs. Specifically, starting from a standard supervised-learning pipeline, we propose
three different architectures. As it will be further explained in Section 3.3.4, the inves-
tigation of different approaches is motivated by the fact that aligned and non-aligned
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Pre-processing CNN

Pre-processing CNN

Training
Set

{In, ln}

I Ĩ

{Ĩn, ln}

l̂

M

Figure 3.1: Pipeline common to the proposed solutions. CNN training (top) is performed using images
In labeled with yn. The CNN model M (·) is then used for testing (bottom) a new image I and obtain
the candidate label ŷ. Optional pre-processing might be applied to the images.

DJPEG compressions leave different footprints and then in principle cannot be detected
in the same way.

3.3.2 Proposed Solutions

The proposed methodologies follow a common pipeline depicted in Figure 3.1 com-
posed by two steps: training and test. During training, a database of labeled images
is used to learn CNN parameters for the selected architecture. Accordingly, the CNN
is fed with N pairs {In, yn}, n ∈ [1, N ], where yn = 0 if image yn verifies H0 (sin-
gle compressed), yn = 1 if it verifies H1 (double compressed). After training, the
CNN becomes the learned model M (·) containing all CNN parameters (e.g., filters,
fully connected weights, etc.). Optionally, a pre-processing step (e.g., denoising) can
be applied to the images, in order to turn images In into Ĩn. When an image I is under
analysis, it is fed to the trained CNN. The network outputs the probability of the image
to verify whether H0 is true or not. This probability (soft output) is converted to the
estimated label ŷ by thresholding (hard output). Clearly, if pre-processing is applied
during training, it must be applied also during testing.

In the following we report the three investigated solutions, based on the above
pipeline.

CNN in the Pixel Domain

The first investigated approach is based on the idea that properly designed CNNs should
be able to automatically learn to distinguish between single and double compression by
working directly on the image in the pixel domain. Encouraging results in this direction
have been recently obtained in steganalysis field for classification of stego and cover
images [87, 88].

In this case, In corresponds to the JPEG images in the pixel domain (decompressed
image) and1:

Ĩn = In −
1

N

N∑

n=1

In. (3.1)

The image mean subtraction is customary done before CNN training to let the network
work with almost-zero-average signals.

1The operation is performed pixel-wise.
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Table 3.1: Reference CNN architecture parameters. Input-output relations for each layer are reported
as function of the input image size L× L× 1.

Layer Kernel size Stride Num. filters Input Size Output Size

Conv-1 5× 5 1 30 L× L× 1 L− 4× L− 4× 30
Pool-1 2× 2 2 − L− 4× L− 4× 30 L/2− 2× L/2− 2× 30
Conv-2 5× 5 1 30 L/2− 2× L/2− 2× 30 L/2− 6× L/2− 6× 30
Pool-2 2× 2 2 − L/2− 6× L/2− 6× 30 L/4− 3× L/4− 3× 30
Conv-3 5× 5 1 30 L/4− 3× L/4− 3× 30 L/4− 7× L/4− 7× 30
Pool-3 2× 2 2 − L/4− 7× L/4− 7× 30 L/8− 3× L/8− 3× 30
IP-1 − − 500 L/8− 3× L/8− 3× 30 500

ReLU-1 − − − 500 500
IP-2 − − 2 500 2

SoftMax − − − 2 2

Regarding the CNN architecture, we resort to a slightly deeper variation of the well-
known LeNet [89] developed for digits recognition, which has already been success-
fully exploited for forensic analysis [40, 90, 91]. This network architecture is depicted
in Figure 3.2 (bottom part) and input-output size of each layer are reported in Table 3.1.
L×L is the size of input grayscale image. Then, three convolutional layers (i.e., Conv-
1, Conv-2 and Conv-3) apply stride 1 valid convolution with 30 filters 5 × 5 shaped.
All of them are followed by a max-pooling layers (i.e., Pool-1, Pool-2 and Pool-3) with
kernel 2 × 2. The first inner product layer (i.e., IP-1) reduces its input to 500 neurons
and it is followed by a ReLU non-linearity. Finally, the last fully connected layer (i.e.,
IP-2) reduces its input to 2 elements, i.e., one per class. SoftMax is used at the end to
normalize IP-2 output to probability values.

CNN in Noise Domain

The second solution is based on the idea that additional pre-processing, aimed at re-
moving irrelevant information (e.g., image content), may help the CNN in its training
process.

In order to expose double JPEG compression traces, we decided to rely on a denois-
ing pre-processing operator. Then, the CNN input image Ĩn corresponds to the noise
residual

Ĩn = In − F (In) , (3.2)

where F (·) is the denoising operator described in [55], which relies on a spatially
adaptive statistical model for the Discrete Wavelet Transform. The denoised image
is predicted in the Wavelet domain by means of the minimum Mean Squared Error
(MSE) estimation. This algorithm is widely used in forensics for its good capability
of separating image content from noise [43]. With regard to the CNN architecture, we
rely again on the one described in Table 3.1.

CNN Embedding DCT Histograms

The above solutions implicitly assume that DJPEG artefacts are exposed in the pixel do-
main. This is the case with non-aligned re-compressed images, which are characterized
by a different behavior of blocking artefacts with respect to single JPEG compressed
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Figure 3.2: Pipeline of the CNN layers used by the third proposed method. On the top, the part devoted
to DCT histogram computation. On the bottom, the CNN described in Table 3.1.

one [77, 78]. Conversely, when aligned re-compression is concerned, it is well known
in the literature that peculiar traces are left in the DCT domain (specifically in the his-
togram DCT coefficient statistics), whereas traces left in the pixel domain are generally
weaker. Therefore, our third proposed detection method relies on a CNN which auto-
matically extract first order features from the DCT coefficients2.

Despite this approach is similar to the one proposed in [13], we would like to stress
that: i) we do not make use of DCT coefficients extracted from JPEG bitstream, rather
we compute DCT with a CNN layer enabling us to work with decompressed images
(i.e., our method still works if double JPEG images are stored in bitmap or PNG for-
mat); ii) we exploit a 2D-convolutional CNN, rather than a 1D one as done in [13],
thus capturing possible correlation among DCT coefficient histograms; iii) our solution
embeds histogram computation as part of the CNN, thus enabling fast and adaptive his-
togram computation using one of the many available GPU frameworks for CNN; iv) by
embedding histogram computation in the CNN, we are able to also optimize the choice
of quantization bins, rather than fixing it manually as in any hand-crafted approach.

Since this method does not make use of any pre-processing operation, Ĩn = In.
Then, the used CNN can be thought as split into two parts as show in Figure 3.2: i) the
former computes DCT coefficients histograms; ii) the latter, fed with these histogram,
is the CNN described in Table 3.1, whose filters in convolutional layers are 3× 3 rather
than 5× 5.

For the first part, the first step consists in obtaining the 2D-DCT representation of
each 8 × 8 image block. To this purpose, let us define Dc1,c2 as the L

8
× L

8
matrix

containing the DCT coefficients at frequency (c1, c2) for each 8× 8 image block. This
can be easily computed with a convolutional layer as:

Dc1,c2 = conv8(I, hc1,c2), (3.3)

where conv8(·, ·) computes the valid part of the 2D linear convolution using stride 8,
and hc1,c2 is the DCT base at (c1, c2) frequency. An example of Dc1,c2 is reported in
Figure 3.3.

2We do not consider the case in which the image in the DCT domain is directly fed to the CNN, because, based on some
preliminary experiments, we did not obtain very good performances on small images (L = 64).
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(a) Dc1,c2

(b) D0,1 − b

(c) sigmoid(γ · (D0,1(i, j)− b))

Figure 3.3: Outputs of CNN layers devoted to histogram computation: (a) output of the DCT layer
Dc1,c2 for nine different pairs (c1, c2); (b) output of the bias layer Dc1,c2 − b for (c1, c2) = (0, 1)
and different b values; (c) output of sigmoid layer sigmoid(γ · (Dc1,c2(i, j)− b)) for (c1, c2) = (0, 1)
and different b values.

At this point, for each frequency (c1, c2), we want to compute the histogram. To
do so using common CNN layers, we first compute the cumulative histogram and then
differentiate it. Specifically, to count the average number Bc1,c2(b) of values in Dc1,c2

that are greater than a constant b, we resort to a series of bias, sigmoid and average-
pooling layers obtaining:

Bc1,c2(b) =
L2

64

∑

i,j∈[0,7]

sigmoid [γ · (Dc1,c2(i, j)− b)] , (3.4)

where the bias b is a constant value identifying a histogram bin boundary, γ is a gain
(i.e., 106 in our experiments) used to expand the dynamic of Dc1,c2(i, j) − b (i.e., to
obtain very high values for Dc1,c2(i, j) > b and very low values for Dc1,c2(i, j) < b),
sigmoid(·) turns very high and very low input values into 0 or 1, and the average-
pooling layer performs the sum and normalization for L2

64
. In other words, Bc1,c2(b)

is the b-th cumulative histogram bin for DCT coefficient (c1, c2). Examples of these
signals are depicted in Figure 3.3.

The histogram for each (c1, c2) coefficient can be obtained using a convolutional
layer that computes

Zc1,c2(b) = conv1(Bc1,c2 , [1,−1]), (3.5)

where conv1 (·, ·) computes 1D convolution, and the filter [1,−1] acts as differentiator
in the b-th direction. Differently from [13], we do not assume to already have access to
quantized DCT coefficients. Therefore, the set of b values use to construct histograms
is not known and must be sought.

Once all histograms Zc1,c2 for all considered DCT frequency pairs (c1, c2) have been
computed in parallel by the CNN, they are concatenated into a 2D matrix, where each
row represents a histogram bin b, and each column represents a frequency pair (c1, c2).
This matrix (i.e., the output of ConvDiff layer of Figure 3.2) can be considered as an
image, fed as input to the CNN pipeline defined in Table 3.1.
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3.3.3 Experimental Setup

In this section we report all the details about experimental setup used to evaluate the
proposed techniques.

Dataset Construction

To thoroughly validate the proposed solutions, we generated a set of training and test
datasets of single and double compressed images at different resolutions and with dif-
ferent QFs, for a total amount of more than 3 million images. All datasets are built
starting from images of RAISE database [92]. This is a collection of more than 8 000
uncompressed real-world images of high resolution taken from different cameras. Im-
ages have been first converted to grayscale, then randomly cropped in order to obtain
smaller resolution images used in our tests. Attention is paid to split into only one set
(training or validation) all cropped portions coming from the same original image. All
sets are balanced, i.e., they contain the same number of single and double JPEG images.

Training sets have been created in the following cases: i) L = 64, 256; ii) aligned
and non-aligned DJPEG. Each set contains between 280k and 300k image patches. For
each scenario, the image set is built as it follows: for the first class (H0), images of size
L×L are single compressed with QF QF; for the second class (H1), double compressed
images are built by coding L×L images first with various QF1 and then with QF2. For
a meaningful analysis, we take QF = QF2 as done in [13].

To build double compressed images for the non-aligned case, we start from images
of size L′×L′ with L′ ≥ L+7. Then, after the first compression withQF1, images are
shifted by a random quantity (r, c), 0 < r, c < 7, and cropped to the size L×L, before
being compressed again with QF2, thus simulating grid misalignement. In all our
experiments, we consider three possible values for QF2, that is 75, 85 and 95, whereas
QF1 ∈ {50, 60, 70, 80, 90} for the first two QF2 values and QF1 ∈ {60, 70, 80, 90, 98}
for the last one. Table 3.2 reports the breakdown of all these training datasets. We
denote with D̄ datasets for the A-DJPEG case and with D̂ datasets for NA-DJPEG
scenario. Superscripts indicate the adopted QF2 (i.e., 75, 85 or 95), whereas subscripts
indicate image size (i.e., L = 64 or L = 256).

Validation datasets have been created to evaluate: i) detection accuracy under nor-
mal working conditions, i.e., the ability of classifying test images built under the same
conditions of training, and also; ii) generalization capability, that is, the ability of clas-
sifying images even when they are not perfectly compliant with the used training set.
To this purpose, we generated different sets of double JPEG images with many different
(QF1,QF2) pairs and single JPEG images with the corresponding QF2. Specifically,
in addition to the same pairs used for training, we consider some new pairs where QF1
or QF2 deviates from the values used for training. Each set contains 3 000 single com-
pressed images and 3 000 double compressed ones. As for training, validation sets are
built for the case L = 64 and L = 256, with either aligned or non-aligned DJPEG.

As commonly done to evaluate the performance with data-driven approaches, detec-
tion accuracy is measured over the same (QF1,QF2) pairs used for training. Then, to
test their generalization capability, we also measure the performance of the detectors
with respect to (QF1,QF2) pairs never used for training.
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Table 3.2: Datasets used for training. All datasets are balanced in both classes and QF pairs.

Datasets I Size QF1 QF2 Alignement # Train # Val.

D̄(75)
256 /D̄(85)

256 256× 256 50, 60, 70, 80, 90 75/85 A 280k 30k

D̂(75)
256 /D̂(85)

256 - - - NA - -

D̄(95)
256 - 60, 70, 80, 90, 98 95 A - -

D̂(95)
256 - - - NA - -

D̄(75)
64 /D̄(85)

64 64× 64 50, 60, 70, 80, 90 75/85 A 300k 30k

D̂(75)
64 /D̂(85)

64 - - - NA - -

D̄(95)
64 - 60, 70, 80, 90, 98 95 A - -

D̂(95)
64 - - - NA - -

Tot Images 3 480k 360k

Evaluation Methodology

In order to fairly evaluate all CNN-based considered approaches, we devised a common
training-validation strategy. All CNNs have been trained using Stochastic Gradient
Descent (SGD) algorithm [53] with batch size (i.e., number of images used for each
SGD iteration) set to 128. Momentum was set to 0.9. Learning rate was set to 0.01
for 64 × 64 images and 0.001 for 256 × 256 images, and was progressively decreased
with exponential decay at each iteration. The maximum amount of epochs (i.e., number
of times the CNN sees all training data) was set to 30 to ensure network convergence.
As best CNN trained model, we always selected the one at the epoch with minimum
validation loss, to avoid overfitting.

The results are provided in terms of accuracy, namely the percentage of correctly
classified single and double JPEG images in the validation dataset. We use notation
Cpix to refer to the CNN-based detector in the pixel domain, Cnoise for the one in the
noise domain, and Chist for the case of CNN embedding DCT histogram computa-
tion. Concerning parameters of the latter, we made use of all the AC DCT frequencies.
Histograms have been computed using 101 integer bins initialized with b ∈ [−50, 50].

3.3.4 Results and Discussion

In this section we evaluate the performance of the proposed detectors relying on Cpix,
Cnoise and Chist, and we compare them with the state-of-the-art methods. We first focus
on the classification in the aligned double JPEG compression scenario, then we move
to the case of non-aligned double JPEG compression. Finally, we provide some results
in the mixed scenario of aligned and non-aligned double compression.

Aligned Double JPEG

It is well known that the performance of supervised Machine Learning techniques
strongly depends on the amount of data used for training. In order to assess the de-
pendency between number of images used for training and detection accuracy in our
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Figure 3.4: Impact of training set size on A-DJPEG detection accuracy using Cpix.

Figure 3.5: Impact of CNN depth on A-DJPEG detection accuracy using Cpix and Cnoise.

case, Figure 3.4 shows the results achieved with Cpix in the most difficult scenario with
small patches (L = 64) and strong second quantization (QF = 75). To get the plot, the
network is trained on different percentages of training images from D̄(75)

64 . We see that,
when 10% of the dataset is used for training, accuracy is below 0.75. However, when
more than 70% of training data is used, accuracy saturates around 0.82. Therefore, us-
ing the whole training dataset, we are sure that we are not experiencing losses due to
insufficient amount of training data.3 In order to assess the effect of CNN architecture
deepness, we trained five CNNs with increasing number of Conv-Pool layer pairs on
a subset of the whole dataset. Results reported in Figure 3.5 shows how the selected
architecture almost saturates the achievable performance in terms of accuracy.

To assess the performance of the proposed approaches for aligned double JPEG
detection, we compare them to the state-of-the-art techniques in [13], [71] and [72],
denoted respectively as WZ, KH and TR in plot legends. We select [13] as one of the
baseline for two reasons: i) it is shown to outperform previously existing state-of-the-
art detectors, e.g., [69,70,75,76]; ii) to the best of our knowledge, it is the only method
based on CNNs, thus being a natural yardstick for our methods.

Figure 3.6 reports results obtained training all proposed CNNs in the various cases,
i.e., on the datasets D̄(75)

256 , D̄(85)
256 , D̄(95)

256 , D̄(75)
64 , D̄(85)

64 and D̄(95)
64 . Results for L = 256

show that the proposed Chist architecture achieves equal or better performance with re-
spect to all baseline methods. This is due to the fact that hand-crafted features exploited
in [13] are very distinctive, especially when large images are concerned.

3It is worth pointing that the other proposed solutions, i.e., Cnoise and Chist, usually need less training images to converge.
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Figure 3.6: A-DJPEG compression detection accuracy against baselines WZ [13], KH [71], and TR
[72]. Dashed black line indicates the considered QF2. On top of each figure we denote the training
dataset.

Figure 3.7: Sensitivity analysis for A-DJPEG compression detection when QF2 = 75. Image size is
64× 64.

With small patches (L = 64) all algorithms suffer when QF2 ∼= QF1 (this case
is addressed in the literature by specific methods tailored for the purpose, e.g., [93])
and QF2 < QF1, as a stronger second compression tends to mask artefacts left by the
first one. However, on 64 × 64 patches, Chist is the one with the best performance
and always outperforms state-of-the-art methods on average. Concerning the proposed
methods, Chist always outperforms Cpix and Cnoise. This is also expected, as A-DJPEG
traces are better exposed in the DCT domain, rather than the pixel domain. Nonetheless,
a part when QF1 and QF2 are very close, also Cpix and Cnoise allow to achieve accuracy
greater than 0.70 on small images.

Regarding generalization capability, Figure 3.7 shows the accuracy achieved by all
CNNs trained on the most difficult scenario with QF = 75 and small images (L = 64).
The methods based on DCT histograms or Benford law (i.e., Chist and baselines WZ,
KH, TR) suffer to recognize A-DJPEG for values of QF1 different from those used dur-
ing training when they are close to QF2, and completely fail when these QF1s are larger
than QF2. Contrarily, the methods relying on pixel analysis (i.e., Cpix and Cnoise) show
greater robustness to changes in (QF1,QF2). To further explore this fact, Table 3.3a
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3.3. Double JPEG Compression Detection based on Convolutional Neural Networks

Table 3.3: Sensitivity of Cnoise to variations of QF1 and QF2 for A-DJPEG detection. For any pair,
only one between QF1 and QF2 is common to images used in the training set (reported in bold).

(a) Train on D̄(75)
L , L ∈ {64, 256}.

Testing (QF1,QF2) L = 64 L = 256

(55,75) 0.925 0.982
(65,75) 0.880 0.981
(85,75) 0.820 0.952

(60, 78) 0.900 0.917
(70, 78) 0.810 0.907
(60, 80) 0.860 0.810
(70, 80) 0.790 0.800

(b) Train on D̄(85)
L , L ∈ {64, 256}.

Testing (QF1,QF2) L = 64 L = 256

(55,85) 0.963 0.994
(65,85) 0.960 0.993
(75,85) 0.923 0.978

(70, 88) 0.860 0.914
(80, 88) 0.640 0.656
(70, 90) 0.718 0.687
(80, 90) 0.500 0.510

shows the behavior of Cnoise trained on D̄(75)
64 and D̄(75)

256 and tested on images with sev-
eral different (QF1,QF2) pairs (similar results hold for Cpix). Similarly, Table 3.3b
reports the accuracy results with Cnoise trained on D̄(85)

64 and D̄(85)
256 . We notice that, by

varying QF1, results are perfectly in line with those achieved with matched QF pairs.
Good results are also obtained with different QF2s, a part for the case of much higher
QF2. This behavior is not surprising, since compression with high QF2 leaves few
traces on images compressed at lower quality, hence detecting a DJPEG compression
in these cases is hard when such examples are not included in the training set.

To conclude the analysis of this section, although on one side CNNs based on a
strong hand-crafted modeling assumption (as baseline [13] and Chist) allow to achieve
the best accuracies, the ones based on the analysis of the pixel image (i.e., Cpix and
Cnoise) prove to be more robust to perturbations of QF1 and QF2 with respect to the
values used for training, which is paramount every time the algorithm works in the
wild.

Non Aligned Double JPEG

When DJPEG compression occurs with misalignment between the grids, detectors in
the previous section trained on aligned data do not work anymore, getting an accuracy
which is around 0.5. To evaluate the performance of our method for NA-DJPEG detec-
tion, we re-train the detectors in the non-aligned case. In this case, not surprisingly, the
algorithm in [13] (WZ) does not work. Indeed, the features extracted by this method,
i.e., the DCT histograms, are particularly distinctive only when the second compression
is aligned with the first one (the typical peak and gap artefacts shows up in the DCT
histograms). Therefore, we select the well-known algorithm for NA-DJPEG detection
proposed in [12], denoted as BP, as additional baseline in this case.

Figure 3.8 shows the performance of all proposed techniques and baselines for
QF2 = 75, 85 and 95 with image size 64 × 64 and 256 × 256. It is known that BP
does not work when QF1 > QF2. Besides, the accuracy significantly drops for small
images, especially in the case QF1 ≃ QF2. Concerning our methods, not surprisingly,
our solution Chist shows poor performance with respect to Cpix and Cnoise. Indeed,
similarly to [13], the traces in the DCT domain that Chist looks at are weak in the non-
aligned case. On the other hand, CNNs designed to work in the pixel domain show
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Figure 3.8: NA-DJPEG compression detection accuracy against baselines BP [12], KH [71], and TR
[72]. Dashed black line indicates the considered QF2. On top of each figure we denote the training
dataset.

good detection performance even for small images (i.e., 64 × 64). From these results,
we see that the detector based on Cnoise always outperforms state-of-the-art.

Concerning network sensitivity to QF pairs different from those in the training set,
Table 3.4 shows the results obtained with our best method Cnoise for both QF1 = 75
and 85, and image sizes. As for the aligned scenario, Cnoise enables good detection
accuracy, the only critical cases being those with much higher QF2. It is interesting to
notice that Cnoise is able to detect NA-DJPEG compression with good accuracy also in
the very challenging scenario in which QF1 = QF2. When double compression occurs
with QF2 = 95 and QF1 > 95, the detector fails and the images are misclassified half
of the time. Experiments show that even if we train our methods to detect this specific
case, the accuracy does not go above 66%, thus confirming that the misalignment be-
tween the 8× 8 compression grid tends to remove completely the traces, which in this
case were already very weak in the aligned case, and then makes the detection very
challenging.

Aligned and non-aligned Double JPEG

Since it is usually not known a-priori whether double compression is aligned or not,
it is relevant to be able to detect both A-DJPEG and NA-DJPEG. To this purpose,
we trained the proposed architectures on a dataset obtained by the union of the one
used for A-DJPEG, namely D̄, and the one used for NA-DJPEG, namely D̂. For the
experiments of these section, we considered the most challenging scenario with small
images (L = 64). Figure 3.9 shows the performance of the CNN-based detectors in
terms of average accuracy computed separately on A-DJPEG and NA-DJPEG images.
The average is taken over all the QF pairs used for training. As expected from the
previous analysis, Chist tends to learn better characteristics of A-DJPEG and performs
poorly in non-aligned case. Conversely, Cpix and Cnoise are more stable solutions being
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3.3. Double JPEG Compression Detection based on Convolutional Neural Networks

Table 3.4: Sensitivity of Cnoise to variations of QF1 and QF2 for NA-DJPEG detection. Test and
training images have only QF1 or QF2 in common (reported in bold).

(a) Train on D̂(75)
L , L ∈ {64, 256}.

Testing (QF1,QF2) L = 64 L = 256

(55,75) 0.816 0.876
(65,75) 0.805 0.866
(75,75) 0.764 0.842
(85,75) 0.674 0.776

(60, 78) 0.777 0.845
(70, 78) 0.765 0.830
(60, 80) 0.723 0.794
(70, 80) 0.720 0.790

(b) Train on D̂(85)
L , L ∈ {64, 256}.

Testing (QF1,QF2) L = 64 L = 256

(55,85) 0.897 0.972
(65,85) 0.878 0.972
(75,85) 0.865 0.961
(85,85) 0.793 0.954

(70, 88) 0.751 0.786
(80, 88) 0.738 0.785
(70, 90) 0.650 0.610
(80, 90) 0.634 0.600

(a) Train on (D̄(75)
64 ∪ D̂(75)

64 )

(b) Train on (D̄(85)
64 ∪ D̂(85)

64 )

(c) Train on (D̄(95)
64 ∪ D̂(95)

64 )

Figure 3.9: DJPEG compression detection accuracy tested separately on aligned and non-aligned cases,
when training is performed on a mixed dataset. Image size is 64 and QF2 = {75, 85}.

able to detect with almost the same accuracy both A-DJPEG and NA-DJPEG images.
Driven by the accurate performance of Chist on A-DJPEG compression, we also

investigated an alternative solution according to which the detection for the mixed case
is obtained by fusing the outputs of our best CNN-based detectors for the aligned and
non-aligned case, through the use of a binary classifier. Specifically, we considered the
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(a) (b)

double

single

Figure 3.10: A-DJPEG (a) and NA-DJPEG (b) localization example of a compressed central region
with QF2 = 95 and QF1 = 80. Chist is used for the aligned case while Cnoise for the non-aligned
case. Actual forged region lies inside the yellow rectangle.

output provided by Chist trained on A-DJPEG images, and the output of Cnoise trained
in the NA-DJPEG case, as feature vector. By feeding this feature vector to a binary
classifier (i.e., a Random Forest in our case), it is possible to further increase the final
accuracy in the mixed case by up to 2%. However, other solutions and fusing strategies
might be investigated. We leave a thorough investigation of this case to future studies.

Localization

Given the good performance achieved on small patches, our method can be applied on
sliding windows to localize possible tampering regions in images. This can be done,
e.g., by dividing the image into overlapping blocks of size 64× 64 with stride 16× 16.
Each block is fed to the CNN (after a pre-processing step for the case of Cnoise) and
the softmax output is used as an estimation of the probability that the block is double
compressed. Figure 3.10 shows the results of double compression localization of a
central region, bounded in yellow, in A-DJPEG and NA-DJPEG scenarios withQF2 =
95 and QF1 = 80, when Chist is used for the former case and Cnoise for the latter case.
Both examples show that red-shaded blocks, i.e. those for which the probability of
being double compressed is higher, are mainly inside the expected central region.

3.4 Multiple JPEG compression detection

We propose a method for detecting multiple-JPEG compressions. This means, given an
image, detect how many times (up to four) it has been JPEG compressed. To do so, we
leverage perturbations of DCT histograms that capture traces of multiple compressions
and train a supervised classifier to discriminate between images compressed different
amounts of times.

More in details, multiple-JPEG detection is performed using Task-driven Non-
negative Matrix Factorization (TNMF) algorithm [94–96]. This method reduces feature
dimensionality, which helps avoid data redundancy, by jointly estimating a dictionary
for reduced data representation and a multinomial classifier for multiple-JPEG detec-
tion. The rationale behind this choice is that, by optimizing the feature dimensionality
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Figure 3.11: Schematic representation of proposed pipeline.

reduction method, we should be able to obtain better performance than methods that
exploit the FDs as DCT histogram reduction methods [84].

3.4.1 Proposed Method

The proposed pipeline for multiple-JPEG compression classification is depicted in Fig-
ure 3.11. During training: (i) a feature vector is extracted from training images; (ii)
TNMF algorithm is used in order to jointly learn a dictionary for feature reduction and
estimate parameters of a supervised classifier. When the system is trained, a new image
can be tested. To this purpose: (i) a feature vector is extracted from the image; (ii)
features are projected into a reduced dimensionality space using the learned dictionary;
(iii) classifier is used to detect the number of compressions. In the following, we pro-
vide a detailed analysis of each step of the algorithm and a simplified example of how
TNMF dimensionality reduction works.

Feature extraction

In order to start our analysis, we first extract a set of selected features from each image.
We opted for the feature extraction pipeline presented in [13], which exploits block-
wise DCT histograms of the image. Multiple compression stages are well known to
strongly condition the histograms of DCT coefficients, hence justifying our approach.
In particular, the set of investigated coefficients includes only the first 9 AC spatial
frequencies taken in zig-zag order. Our choice comes from the more regular trend of
lower frequencies coefficients and from the reduced statistics of higher components,
which are often quantized to zero [84]. For what concerns the histograms, we select
only the first 21 central bins for each DCT band, ending up with a feature vector x ∈ Rn

+

of n elements per image, with n = 189. Notice that x assumes non-negative values
only.

TNMF Training

Since we aim at classifying multiple compressed images, we propose to exploit multi-
nomial logistic regression, in a one-vs-rest implementation. This means that the multi-
class classifier is actually composed by four binary classifiers (e.g., one compression
vs. others, two compressions vs. others, etc.), and results of these are merged. For
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each class label, we train the classifier by minimizing the logistic loss function, defined
as Ls = Ls(A, yi), where A = {w, c} is the parameter configuration related to that
class [97] and yi is the image label.

In particular, we propose to exploit TNMF, which is capable of finding sparse data
representations by learning a dictionary suited to the specific task of classification [95].
TNMF model allows to learn the task-driven dictionary and the classifier parameters
in a joint iterative fashion. More specifically, we estimate a classifier which is opti-
mized with respect to standard logistic regressor, thanks to a particular representation
of input data: DCT features extracted from images are projected on a dictionary that is
actually tailored to our multinomial classification task. The algorithm works iteratively,
alternating the updating of classifier and dictionary, until a fixed number of iterations is
achieved. It follows an exhaustive illustration of the method.

Feature reduction. At each iteration t, TNMF starts with feature reduction.
First of all, we select as dictionary the one from the previous iteration, hence

Dt = Dt−1, with Dt ∈ Rn×p
+ . Given a training vector xi generated from image Ii,

TNMF model considers the optimal projections of data points on the dictionary, with
the constraints that all the elements of xi, Dt and the obtained projections are non-
negative. Notice that p corresponds to the desired size of reduced features, n is the
input feature size, thus p < n.
Typically, the problem is formulated as follows:

hi,t(Dt) = arg min
h∈Rp

+

∥xi −Dt h∥22 + ξ1||h||1 + ξ2||h||22 . (3.6)

hi,t(Dt) ∈ Rp
+ is the estimated projection, ξ1 and ξ2 are regularization penalty terms, in

order to impose sparsity (ℓ1 norm) and to obtain a strongly convex problem (ℓ2 norm)
hence guaranteeing a unique solution. Equation (3.6) can be solved with standard tech-
niques available in the literature as shall be cleared in the experimental results section.

Classifier updating. Once we have defined the optimal projections, we can use them
to update the classifier, associating each vector hi,t to its related class label yi. This
operation is performed by the minimization of the expected value of loss function Ls

over the entire training set:

wt, ct = argmin
w,c

Eyi,xi
[Ls(yi,w, c,hi,t(Dt))] + υ||w||22 , (3.7)

where υ is the penalty term of the regularizer, introduced to prevent overfitting in the
classifier.

In the proposed framework, minimization is solved by means of the L-BFGS itera-
tive algorithm [98]. In other words, this step consists in training the multi-class logistic
regressor exploiting projected training data samples hi,t and their labels.

Dictionary updating. At the end of each iteration t, the dictionary must be updated con-
sidering the trained logistic regressor, thus obtaining Dt to be used during next iter-
ation t + 1. This is done through the minimization of loss function Equation (3.7)
with respect to the dictionary Dt. In particular, we update the dictionary by means
of SGD [53], evaluating the function in each training sample xi and minimizing in an
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iterative manner. To perform this task, we have to re-evaluate the sparse representation
of each training data sample, hi,t(Dt), which depends on the dictionary Dt estimated
from already analyzed samples (xj, j < i). To be more specific, the minimization is
performed in two sequential steps:

1. We exploit SGD by calculating the gradient with respect to hi,t(Dt). Since we
work with sparse representations of data, we compute the active set S by selecting
only the indexes ∈ {1, ..., p} for which vector hi,t(Dt) ̸= 0. For the sake of
notation, we introduce the variable gi,t, defined as:

gi,t = ([D⊤
t ]S [Dt]S + ξ2I|S|)

−1[∇hi,t(Dt)
Ls(y,At,hi,t(Dt))]S , (3.8)

where symbol [·]S represents the projection on the active set, and |S| is the cardi-
nality of S.

2. It follows a projection of gi,t over the dictionary space, leading to this updating
formulation:

Dt = Dt − κt(−Dt gi,t h
⊤
i,t(Dt) + (xi −Dt hi,t(Dt))gi,t) . (3.9)

To impose the non-negativity of each dictionary element, we select ϵ = 10−7 as floor
value in case of negative entries of Dt. The learning rate κt is chosen with the same
heuristic criterion proposed in [95]: we select it as min(κ, κ · niter/(10t)), being κ a
parameter to set and niter the number of iterations.

Given the conspicuous theoretical baggage of TNMF, we skip all the formal deriva-
tions, addressing the interested reader to [95] for a thorough explanation. Following
the typical framework of dictionary learning problems, we adopt a validation strategy
for selecting the best dictionary and classifier. More specifically, we split our data in
training and validation set, evaluating the classification accuracy on validation set at
each iteration t, and electing as best dictionary the matrix Dt which returns the best
accuracy. We report the pseudo-code of TNMF method in Algorithm 2.

TNMF Testing

Once we estimate the best combination of dictionary and classifier, we are ready for test
phase. Given any new image Itest, we compute DCT histograms to obtain feature vector
xtest. By considering the best validation dictionary, Dbest, we apply Equation (3.6) to
project xtest and obtain the reduced feature vector htest. Finally, we feed htest to the
logistic regressor using the best validation configuration Abest in order to perform label
prediction, as in a typical classification problem.

TNMF Training: a simplified example

For the sake of simplicity and data visualization, let us consider a simplified problem
consisting of a small dataset of images compressed up to three times. From each image
we extract feature x only considering the 7-th DCT frequency, picking the first central
13 bins. Selecting as reduced feature size p = 3, we leverage TNMF training algorithm
to find a dictionary for representing our data. In particular, as we are working in a
simplified scenario aiming at a ternary classification (discriminating up to three JPEG
compressions), a good feature reduction method should enable ternary classification in
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Algorithm 2 TNMF Training

Require: y, Ĩ, p, niter , ξ1, ξ2, υ
Initialize dictionary D0

Split training and validation sets:
ytrain, yval, Ĩtrain, Ĩval ← y, Ĩ
for t = 1, ... , niter

Initialize dictionary: Dt = Dt−1

Feature reduction: ht(Dt) ← Dt, Ĩtrain
Classifier updating: At ← ht(Dt), ytrain

Validation accuracy: acc ← Dt, At, yval, Ĩval
Dbest, Abest ← accmax{Dt, At}
for i = 1, ... , N

Single feature extraction: hi,t(Dt) ← Dt, xtraini

Active set: S ← indexes ∈ {1, ..., p} : hi,t(Dt) ̸= 0
Update learning rate: κt ← min(κ, κ t0

t
)

Update dictionary:
Dt = Dt − κt(−Dt gi,t h

⊤
i,t(Dt) + ...

+(xi −Dt hi,t(Dt))gi,t)
Impose non-negativity: Dt(Dt < 0) = ϵ

end
end
return Dbest,Abest
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Figure 3.12: Simple TNMF example: Ĩ is the matrix of data, specifically N is the total amount of training
samples. We can exploit TNMF to approximate Ĩ as the product of the dictionary D and the matrix
H containing in its columns the optimal projections of Ĩ on D.

the reduced space. Figure 3.12 depicts the results of dictionary learning through TNMF:
we are actually able to estimate a dictionary, associating reduced features to original
input data (i.e., classification result is clear just by looking at projected features). Notice
that matrix Ĩ illustrates quite well the effects of multiple quantization steps: the more
the compression stages, the lower the density of the histogram bins.

3.4.2 Experimental results

Here we report results obtained on two different image databases.

Dataset generation

Following the procedure depicted in [84], we build three datasets starting from 1338
images from UCID [99] (384 × 512 pixels). Given a final QF = QFf ∈ {75, 80, 90},
we compress each grayscale image up to 4 times. The intermediate QF at com-
pression step i < f is randomly chosen in the interval [QFi+1 − 12, QFi+1 − 5] ∪
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[QFi+1 + 5, QFi+1 + 12] to ensure that QFi differs from QFi+1. We refer to these
datasets as DU

75, DU
80, DU

90, each of them with 4× 1338 = 5352 images. In order to test
our approach on a larger scale, we build three further datasets starting with 4000 gray-
scale images from RAISE database [92]. Due to the large dimensions of these images,
we previously center-crop them to 512× 512 pixels and then apply the aforementioned
compression pipeline. We obtain DR

75, DR
80, DR

90, each of them with 4× 4000 = 16000
images.

TNMF parameters

We follow a common train-validation-test approach, using 70% of each dataset images
for training and the remaining for testing. Training set is further divided in training and
validation, following a 90%-10% partition. In particular, as recommended in [95], we
initialize the dictionary D0 by the unsupervised formulation of the problem, leveraging
the SPAMS toolbox for computations [100]. The size of D0 has been chosen as trade
off between result quality and computational cost: we set p as the 30% of the DCT
length, hence drawing a dictionary ∈ R189×57

+ . Moreover, to improve the convergence
speed of the training phase, the proposed method works with a minibatch strategy for
the SGD. This basically takes into consideration nbatch > 1 training samples at each
iteration of the inner loop, instead of a single one [100].

Due to the large amount of parameters of TNMF algorithm, we select some spe-
cific values for tuning (i.e., iterations ∈ {50, 100, 200, 500}, batch size ∈ {200, 400},
κ ∈ {0.001, 0.005, 0.01}, ξ1 ∈ {0.01, 0.1, 0.5}) and perform a grid search to obtain
the best accuracy on the validation set. In particular, being TNMF an iterative algo-
rithm, number of iterations has a severe impact on validation accuracy, thus we explore
different values until convergence.

For what concerns the remaining parameters, we set ξ2 = 0 drawing the idea from
[95], even though ξ2 > 0 would be necessary for the differentiability of Equation (3.6).
This has proven to get satisfactory results in most experiments. The penalty weight
in Equation (3.7) is left untouched with respect to the standard formulation of logistic
regressor, hence υ = 1.

Comparison with state of the art

At first glance, we notice that the algorithm needs more iterations on RAISE-derived
datasets than on the UCID ones. This is probably due to the huge difference in terms
of dataset size.

In this vein, Figure 3.13 depicts the temporal evolution of TNMF accuracy, evaluated
for training and validation sets on DU

75 and DR
75 . Notice that, if on DU

75 we achieve
convergence in at most 100 iterations, DR

75 requires more than 200 iterations. For the
sake of brevity, we are showing results for the specific combination of parameters which
yields the best validation accuracy, and we will stick to this approach from now on.
Nonetheless, we performed a comprehensive investigation on test results for all the
parameter configurations, obtaining puny variations among them (standard deviation of
test accuracy < 0.01).

Table 3.5 and Table 3.6 show results of the test phase, in terms of mean accuracies
and confusion matrices. Specifically, we compare our strategy to [84] (i.e., the only
algorithm that deals with four JPEG compressions to the best of our knowledge) and to

51



i
i

“output” — 2022/5/10 — 21:04 — page 52 — #62 i
i

i
i

i
i

Chapter 3. Coding Integrity

(a) UCID

(b) RAISE

Figure 3.13: Classification accuracy of TNMF algorithm. (a) UCID Dataset. (b) RAISE Dataset.

standard logistic regression without the feature reduction step. This last experiment is
used to study the actual positive effect of dictionary projection.

Table 3.5: Mean test accuracies over 4 classes for proposed TNMF method, classifier in [84], and
logistic regressor (LR) without feature reduction. Best results in bold.

Dataset TNMF [84] LR

DU
75 0.78 0.73 0.64

DU
80 0.82 0.75 0.65

DU
90 0.87 0.80 0.75

DR
75 0.80 0.76 0.64

DR
80 0.81 0.75 0.64

DR
90 0.87 0.83 0.74

For what concerns the accuracy, our solution is able to go beyond the previously
proposed method, since the overall average accuracy (considering all the datasets) is
5.5 percentage points above the mean accuracy of [84].

Regarding the confusion matrices, our results are more accurate than [84] in detec-
tion of classes 3 and 4. Indeed, for datasets DR

75 and DR
80 the diagonal terms corre-

sponding to classes 3 and 4 present an average gap of +0.15 with respect to state-of-

52



i
i

“output” — 2022/5/10 — 21:04 — page 53 — #63 i
i

i
i

i
i

3.5. Different JPEG implementations detection

Table 3.6: Confusion matrices for DR
80,DR

90. Top: proposed method. Bottom: method in [84]. The
highest accuracy among the two methods for a given compression step and dataset is highlighted in
yellow.

DR
80 1 2 3 4

1 0.980 0.004 0.015 0.001

2 0.009 0.850 0.068 0.073

3 0.079 0.119 0.711 0.091

4 0.005 0.158 0.117 0.720

DR
90 1 2 3 4

1 0.997 0.002 0.001 0.000

2 0.005 0.952 0.022 0.021

3 0.022 0.048 0.833 0.097

4 0.000 0.126 0.175 0.699

DR
80 1 2 3 4

1 0.999 0.000 0.000 0.001

2 0.025 0.960 0.012 0.003

3 0.182 0.234 0.523 0.061

4 0.094 0.275 0.109 0.522

DR
90 1 2 3 4

1 1.000 0.000 0.000 0.000

2 0.130 0.863 0.004 0.003

3 0.029 0.088 0.828 0.055

4 0.020 0.179 0.165 0.636

the-art, which achieves acceptable multi-classification outcomes especially when QFf

increases up to 90. Concerning the other classes, our results are comparable to [84]
for single compressed images, while the detection of double compressed is slightly
overwhelmed, probably dictated by a better accuracy of further compressions.

Robustness

In order to preliminary test the method’s resilience to editing operations in between
JPEG compressions, we applied our detector trained on DR

90 to images that randomly
underwent either blurring or gamma correction in addition to compression. This cam-
paign shows that if a single transformation is performed, accuracy drops approximately
by 10%. The main effect of the transformations is to hide the previously applied JPEG
compression.

3.5 Different JPEG implementations detection

We exploit the rationale behind eigen-algorithms [101] to propose a compact descrip-
tor that captures JPEG implementation traces. Specifically, given a JPEG image under
analysis, we re-encode it using different controlled implementations of the JPEG com-
pression algorithm. We then compare the image under analysis with the re-compressed
versions to expose salient differences. These differences are collected into a descriptor
fed to a simple supervised classifier to detect the JPEG implementation used to encode
the image under analysis initially.

3.5.1 Motivations

This section discusses a series of use cases in which detecting traces specific to a JPEG
implementation can be helpful from a forensics viewpoint.
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Detection of Editing Software

In most situations, tampering with a digital image involves decoding a compressed
image in the pixel domain, editing it with one or more software tools, and finally saving
it in a compressed format. When the selected compression format is the widespread
JPEG standard, different software suites may leverage proprietary solutions to achieve
better JPEG compression in terms of bitrate and quality trade-off.

Being able to detect which software has been used (e.g., Photoshop, GIMP) to save
an image in JPEG format can be of paramount importance for two different reasons:
(i) if the image is recognized to come from an editing suite, then the image cannot
be considered pristine with high probability; (ii) if the specific used software can be
detected, the list of possible attackers can be narrowed down.

Detection of Device Manufacturer

As for different image editing suites, also different camera manufacturers make use of
different JPEG implementations [85]. Even though many robust state-of-the-art detec-
tors are already tailored to camera model attribution problem [33,37,40], capturing and
analyzing JPEG traces could be helpful to narrow down the camera model search. First,
it could be possible to use traces left by JPEG compression to attribute images to the
manufacturer of the camera used to shoot it and then apply a tailored camera model
solution to detect the specific model as a refinement step.

Detection of JPEG Anti-Forensics

Forging an image leaving absolutely no traces is not an easy task. Indeed, an expert
attacker has to cope with at least two different kinds of traces he might leave: (i) traces
left in the pixel domain by processing operations (e.g., multiple compressions, resizing,
noise addition, copy-move) that can be captured by one or more of the many passive
image forensic tools proposed in the literature [42,66,67]; (ii) traces left in headers and
metadata (e.g., missing fields with respect to original images coming from cameras,
name of the used image processing suite, incoherent geo-tagging information) that can
be easily detected by simple header inspection.

One of the most trivial mistakes an attacker might fall into is to edit a JPEG photo-
graph coming from a specific camera model, then save it using one of the default JPEG
quantization matrices provided by the used editing software. Different camera models
use different custom JPEG quantization matrices. The quantization matrix is stored in
each JPEG file as it is needed at the decoding step. If an analyst detects that the quan-
tization matrix stored in the JPEG header is not compatible with the ones used by the
camera manufacturer, then the forgery is easily spotted.

To overcome this issue, an expert attacker has two options: (i) save the edited pho-
tograph with any quantization matrix from the considered manufacturer; (ii) save the
edited photograph using the same quantization matrix as the original picture. However,
the first option may leave traces typical of double JPEG compression [12, 69]. There-
fore, the second option is the safest solution for the attacker. However, as the attacker
does not have access to the manufacturer JPEG implementation, the original JPEG pho-
tograph and the edited JPEG pictures will still show different JPEG traces despite using
the same quantization matrix.
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We show that the proposed descriptor captures traces of this specific anti-forensic
operation, hardly detectable otherwise. In other words, we can detect whether an image
has been compressed with one (e.g., camera) or another (e.g., editing software) JPEG
implementation, regardless of the used quantization matrix.

3.5.2 Proposed Method

In this section, we report how to extract the proposed JPEG-based descriptor f from a
JPEG image I and how to possibly use it for classification tasks based on JPEG image
history.

Descriptor Extraction

Let us consider an image in the pixel domain I. For notation simplicity and without
loss of generality, let us consider I a grayscale image. Let us denote as Ĩ the JPEG
encoded version of I in the DCT domain. In a nutshell, Ĩ is obtained by: (i) splitting
I into non-overlapping 8 × 8 pixel blocks; (ii) applying JPEG-defined DCT transform
to each block; (iii) quantizing each DCT coefficient according to a given quantization
matrix and a quantization rule (e.g., rounding, ceiling, etc.); (iv) tiling all quantized
DCT blocks back together to obtain a matrix Ĩ having the same size of I. Notice that,
from an implementational viewpoint, if an image is already available in compressed
JPEG format, its DCT representation Ĩ is already available in the bitstream. Thus there
is no need to re-compute Ĩ through DCT transform and quantization.

As JPEG implementations may differ (e.g., due to different quantization rules [85],
or even more trivially due to the use of different quantization matrices), we can ex-
ploit the eigen-algorithm [101] idea to capture JPEG-based traces. This means we
can re-compress image I using different JPEG implementations and check the differ-
ences introduced by each implementation with respect to the original image. Deviations
and perturbations introduced by different implementations can characterize the imple-
mentation itself. Indeed, it also works aiming at detecting double compression with
the same quantization matrix leverage DCT residual statistical changes after multiple
JPEG compressions [102]. In the following, we report how to capture these deviations
utilizing a compact feature vector using a single and then multiple eigen-algorithms.

Single Eigen-Algorithm. To extract a compact feature vector capturing traces left by
a single JPEG implementation, we proceed according to the pipeline shown in Fig-
ure 3.14. Let us consider that we have access to a specific JPEG implementation de-
noted as JPEGa. By applying JPEGa compression to I once, we obtain the decoded
image Ia

1, and the respective DCT representation Ĩa
1. By applying JPEGa compression

to I twice, we obtain the decoded image Ia
2, and the respective DCT representation Ĩa

2.
We first compare Ĩ and Ĩa

1 by computing the MSE for each of the 64 DCT coeffi-
cients, thus obtaining the 64-element feature vector f a

1 , whose i-th element is defined
as:

f a
1(i) =

1

K

K∑

k=1

∣∣∣Ĩ(i, k)− Ĩa
1(i, k)

∣∣∣
2

, i ∈ [1, 64], (3.10)

where i is the index of a DCT coefficient, K is the number of 8× 8 blocks the image is
split into during JPEG compression, and k is the index of an 8× 8 block.
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Figure 3.14: Feature extraction pipeline using a single JPEG implementation (i.e., JPEGa) as eigen-
algorithm.

Then, we compare Ĩa
1 and Ĩa

2 by computing the MSE for each of the 64 DCT coef-
ficients in the same way, thus obtaining the 64-element feature vector f a

2 . Finally, we
obtain the full descriptor by computing the element-wise squared error between f a

1 and
f a
2 , thus obtaining f a, whose i-th element is defined as

f a(i) = |f a
1(i)− f a

2(i)|2 , i ∈ [1, 64]. (3.11)

Also f a is a 64-element feature vector.

Multiple Eigen-Algorithms. When multiple JPEG implementations are available, we can
compute different feature vectors and concatenate them according to the pipeline re-
ported in Figure 3.15. We consider three different JPEG implementations: (i) JPEGa,
which uses rounding quantization rule and gives rise to feature vector f a; (ii) JPEGb,
which uses flooring quantization rule and gives rise to feature vector f b; (iii) JPEGc,
which uses ceiling quantization rule and gives rise to feature vector f c. The three fea-
ture vectors obtained with the different implementations are concatenated in a single
vector as:

f =
[
f a, f b, f c] . (3.12)

The overall feature vector f is composed by 64 × 3 = 192 elements, and can be used
for JPEG-based classification tasks.

Classification

In principle, as f is a feature vector containing information about JPEG-based image
deviations, it can be fed to any supervised or unsupervised learning algorithm. As
we are more interested in the amount of JPEG-based information that the proposed
feature can capture, rather than in developing a powerful classifier, we use a simple
classification technique, i.e., a Random Forest classifier.
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Figure 3.15: Feature extraction pipeline using multiple JPEG implementations as eigen-algorithms.

We train a Random Forest classifier without further optimization using feature vec-
tors extracted from a set of training images for all proposed tasks. When a new image
has to be classified, we extract the feature vector f from the image then feed f to the
trained Random Forest classifier. This predicts the likelihood that the image belongs
to any class. We select the class with the highest likelihood as the candidate solution.
Depending on the application, it is possible to set a custom threshold and only consider
images with an estimated likelihood higher than the threshold.

3.5.3 Experiments and Results

In this section we report all the performed experiments and results, separately consid-
ering each different use case. A reference implementation of the presented features
extractor is available online4. All the experiments are carried out on a workstation
equipped with Ubuntu 16.04, Python 3.6, PIL 5.2.0, and libjpeg 9.2.0. JPEG compres-
sion with Adobe Photoshop CC 2017 is performed on macOS Sierra. It is worth noting
that the forensics analyst does not need to know which JPEG implementations are used
to compress the images.

As all the experiments involve the use of a supervised classifier (i.e., a Random
Forest), we always proceed in the following way: (i) given a dataset, we randomly split
its samples into 50% training and 50% testing; (ii) the Random Forest is trained using
default parameters5 on the training set; (iii) results are reported on the test set. As no
hyper-parameters tuning is performed, there is no need for a validation set of data. This
is done on purpose in order to evaluate the proposed feature discrimination capability
with a simple classifier, rather than our ability of fully optimizing a machine-learning
technique.

Photoshop vs. PIL (Single Compression)

The first experiment we performed is a two-class classification problem: to detect
whether a single compressed JPEG image has been saved using Adobe Photoshop CC
2017 (hereinafter Photoshop) or the Python Imaging Library (PIL), considering that
the same quantization matrix has been used. To this purpose, we built a dataset starting

4https://github.com/polimi-ispl/jpeg-eigen
5According to scikit-learn implementation [103].
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(a) Original (b) Low quality (c) High quality

Figure 3.16: Example of different Photoshop QFs.

Figure 3.17: Accuracy for the case D1
PS vs. D1

PIL while increasing the amount of used DCT coefficients
in zig-zag order.

from the 1 338 uncompressed color images at 512 × 384 pixel resolution of the UCID
dataset [104]. Notice that considering low resolution images makes the problem more
challenging. Indeed, less pixels lead to less reliable statistics, thus feature vectors.

We first JPEG compressed each uncompressed image using Photoshop at different
JPEG quality levels, thus obtaining four distinct datasets: D1

PS, D3
PS, D5

PS and D7
PS con-

sisting of 1 338 single compressed images at quality 1, 3, 5 and 7, respectively6. Then,
we compressed each UCID uncompressed image with PIL, forcing the use of the re-
spective JPEG quantization matrix used by Photoshop, thus obtaining datasets D1

PIL,
D3

PIL, D5
PIL and D7

PIL. With this setup, we extracted the proposed feature vector from
the luminance component of every picture, and trained a different classifier for each
dataset pair (i.e., D1

PS vs. D1
PIL, D3

PS vs. D3
PIL, etc.). Notice that, for these experiments,

an image in D1
PS and the relative image in D1

PIL are single JPEG compressed with the
very same quantization matrix. Their differences are only due to the used software, i.e.,
JPEG implementation.

Figure 3.16 shows an example of original UCID image, the low quality Photoshop
version from D1

PS, and the higher quality Photoshop version from D7
PS. It is possible to

notice that images are not strongly visually degraded by JPEG artefacts.
Figure 3.17 shows the effect on accuracy of using a different amount of DCT coeffi-

cients to build the proposed feature vector, considering the scenario D1
PS vs. D1

PIL. It is
6Photoshop JPEG quality ranges from 0 (very low) to 12 (very high).
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3.5. Different JPEG implementations detection

Table 3.7: Photoshop vs. PIL detection in case of single and double compression. TPR and TNR are the
fraction of correctly detected Photoshop and PIL images, respectively.

(a) Single Compression

Task TPR TNR Accuracy

D1
PS vs. D1

PIL 0.89 0.82 0.86

D3
PS vs. D3

PIL 0.82 0.79 0.81

D5
PS vs. D5

PIL 0.80 0.74 0.77

D7
PS vs. D7

PIL 0.77 0.73 0.75

(b) Double Compression

Task TPR TNR Accuracy

D̈1
PS vs. D̈1

PIL 0.95 0.83 0.89

D̈3
PS vs. D̈3

PIL 0.83 0.70 0.77

D̈5
PS vs. D̈5

PIL 0.75 0.63 0.69

D̈7
PS vs. D̈7

PIL 0.72 0.57 0.65

possible to notice that, by increasingly selecting a greater amount of DCT coefficients
read in zig-zag mode, accuracy increases. This is expected, as the more the coefficients,
the better the captured JPEG deviations. This validates the idea of using all 64 JPEG
DCT coefficients.

Table 3.7a reports results in terms of True Positive Rate (TPR) (i.e., Photoshop im-
ages correctly detected), True Negative Rate (TNR) (PIL images correctly detected)
and accuracy for each dataset pair. It is possible to notice that, the lower the JPEG
quality, the better the results. Indeed, accuracy for JPEG low quality images is higher
than 86%, and it drops to 75% when high quality images are considered. This behavior
is not surprising, as it is reasonable to assume that low QFs lead to more pronounced
artefacts.

Finally, Figure 3.18 shows the receiver operating characteristic (ROC) curve for
each dataset pair obtained thresholding the soft output of each Random Forest classifier.
Indeed, for a two-class problem, the output of the classifier can be interpreted as the
likelihood of an image to belong to a single class. It is possible to notice that by properly
selecting this threshold, it is possible to enforce a specific working condition in terms
of TPR and False Positive Rate (FPR).

Photoshop vs. PIL (Double Compression)

The second experiment we performed is a more challenging version of the first one:
to detect whether an image has been originally JPEG compressed using Photoshop or
PIL, given that afterward it is re-compressed with the same quantization matrix using
PIL. For this experiment, we took all previously built datasets, and re-compressed each
image using PIL and the same quantization matrix used for the first compression. We
therefore generated datasets D̈1

PS, D̈3
PS, D̈5

PS, D̈7
PS (i.e., first compression with Photoshop

and second with PIL), and D̈1
PIL, D̈3

PIL, D̈5
PIL, D̈7

PIL (i.e., both compressions with PIL).
Notice that, each image in D̈1

PS has been double compressed with the same quantization
matrix, and the relative image in D̈1

PIL underwent the same processing. The only differ-
ence is the software used for the first compression step (i.e., Photoshop or PIL). Also
in this scenario, we analyzed each dataset pair separately according to their QFs.

Table 3.7b reports the TPR (i.e., Photoshop images correctly detected), TNR (PIL
images correctly detected) and accuracy for each dataset pair. It is possible to notice
also this time that the accuracy increases for low JPEG qualities. Indeed, accuracy
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Figure 3.18: ROC curves showing the different possible working points for each dataset pair according
to the used JPEG quality in case of single compression.

Figure 3.19: ROC curves showing the different possible working points for each dataset pair according
to the used JPEG quality in case of double compression.

ranges from 89% for low quality images, to 65% for higher quality pictures. However,
given the challenging task, we can conclude that the proposed feature vector is still a
viable solution toward capturing JPEG implementation traces.

Finally, Figure 3.19 reports the ROC curves obtained thresholding Random Forest
outputs for each dataset pair. It is possible to notice that, in case of double compression,
low JPEG QFs lead to better results compared to single JPEG compression scenario.
Conversely, if two JPEG compressions at high quality are applied, traces of the used
software are hindered.
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3.5. Different JPEG implementations detection

Figure 3.20: Camera manufacturer detection confusion matrix. Entries smaller than 1% are not re-
ported.

Device Manufacturer

The third experiment we performed can be considered a multi-class classification prob-
lem: to detect the manufacturer of the camera used to shot a JPEG image within a closed
set of possible known vendors. To this purpose, we selected all images from Dresden
Image Dataset [54]. This dataset is composed by more than 16 000 images belonging to
almost 30 camera models from 14 different camera manufacturers. Figure 3.20 shows
the confusion matrix reporting all misclassification errors for the 14 considered camera
brands. The overall accuracy in this case is slightly higher than 79%.

Considering this specific experiment, we believe it is important to make an ad-
ditional consideration. Many state-of-the-art solutions already exist to solve camera
attribution problems in all their shapes (e.g., detecting the camera brand, model, in-
stance, etc.) with high accuracy results. However, these methods do not simply rely
on JPEG information. Conversely they exploit many kinds of different camera-related
traces (e.g., sensor pattern noise, color filter array interpolations, lens aberrations, etc.).
Therefore, we still find interesting to show how it is possible to solve camera brand de-
tection problem, just relying on JPEG traces, even with reduced accuracy. Indeed, we
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Figure 3.21: ROC curve obtained on NC2017 dataset for the JPEG antiforensic detection task.

believe that the proposed feature could be used as additional input to help other camera
model detection algorithm in the literature.

JPEG Anti-Forensics

The last experiment we performed consists in solving the following two-class prob-
lem related to the JPEG anti-forensic scenario: to detect whether a JPEG image is a
pristine one coming directly from a camera, or if it has been edited and re-compressed
with the same JPEG quantization matrix. To this purpose, we utilized a state-of-the-art
dataset from NIST called Nimble Challenge 2017 (NC2017) for image manipulation
detection [105]. This dataset consists of 3 415 JPEG compressed images split into two
classes: 916 images are pristine, as generated by a camera firmware, and 2 499 images
are forged. The latter have been JPEG re-compressed with the aforementioned anti-
forensic technique, thus a forged image file has the same quantization matrix as the
pristine image file that serves as background.

Notice that, as camera models JPEG implementations are not available, two im-
portant differences can be observed comparing images belonging to the two classes: (i)
forged images are at least double JPEG compressed (if not multiple JPEG compressed);
(ii) the JPEG implementation used for the final anti-forensics JPEG compression is
most likely different than any JPEG implementation used for pristine images. Fig-
ure 3.21 shows the ROC curve obtained by comparing the Random Forest output with
different thresholds for the anti-forensic detection task. This shows that it is possible to
distinguish pristine images from those edited and re-saved with the JPEG anti-forensic
technique with a value of area under the curve of 0.82.

3.6 Conclusions

In this chapter we treated digital integrity problems regarding coding traces left on
images. We explored the use of CNNs for double JPEG compression detection prob-
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lem in the case of aligned and non-aligned recompression. Specifically, three different
solutions are investigated: in one of them, the CNN is based on hand-crafted features
extracted from the images; in the other two, the CNN is trained directly with the images
and the denoised versions, then features are self-learned by the CNN itself. The Results
show that CNN based on hand-crafted features allow to achieve better accuracies in the
case of A-DJPEG. For the NA-DJPEG instead, the CNN based on self-learned features
applied to the image noise residuals is shown to outperform the state-of-the-art in every
tested scenario. Good performance are achieved even in the difficult cases in which the
second QF is larger than the first one and over small images, thus paving the way to the
application of the techniques to tampering localization. Besides, CNN based on self-
learned features prove very robust to deviations between training and test conditions.
Additionally, some preliminary experiments show the proposed CNN-based methods
can also be successfully applied to simultaneously detect an aligned or non-aligned
DJPEG compression.

We designed our methods by assuming that no processing operation occurred in the
middle of the two compression stages. Though this is a common assumption to DJPEG
detection approaches in the literature, in real applications, some intermediate process-
ing might be applied. In view of this, we made some preliminary tests to check if and
at which extent the D-JPEG detector is robust to basic processing operations . The tests
show that good resilience is achieved on the average with respect to histogram enhance-
ment operations (accuracy around 85%) and cropping (80%), which just introduces a
8×8 grid desynchronization as a main effect. On the other side, the performances with
respect to filtering operation are poor (62% of accuracy in the case of a light blurring,
performed with a 3× 3 Gaussian smoothing kernel with variance σ2 = 1). The classifi-
cation fails in the case of geometric transformation, e.g., resizing (around 30%). Future
works will be devoted to study fusion techniques to make the most out of each network
in a mixed aligned and non-aligned DJPEG case. Moreover, it would be interesting
to extend the approach derived in [106] for SVM classifiers, exploiting the idea that
robustness to heterogeneous processing and anti-forensics attacks can be recovered by
training an adversary-aware version of the classifier.

We also proposed a novel method for detecting multiple JPEG compressions, con-
sidering up to four coding steps. Our approach takes advantage of TNMF model, both
for feature reduction and for classification, through a joint iterative estimation of dic-
tionary and classifier. We extensively test several setups, taking into account different
datasets and QFs. These experiments show that our method outperforms up to date
state-of-the-art [84] in terms of classification accuracy.

Finally, we presented a novel descriptor based on the eigen-algorithms idea to cap-
ture traces left by different JPEG implementations. The rationale behind the proposed
method is that it is possible to analyze a JPEG image under analysis by re-compressing
it multiple times with a set of available JPEG implementations. Deviations introduced
by eigen-algorithms enable to characterize unknown JPEG implementations, thus al-
lowing to detect the implementation used to compress an image under analysis. The
proposed method has been tested considering different challenging use cases. These
range from software detection (i.e., Photoshop vs. PIL), to detection of a JPEG anti-
forensic technique. Results show that the proposed solution achieves high accuracy on
several different tasks, and that it benefits from low quality JPEG compression factors.
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Moreover, the proposed feature vector can be interestingly used to cope with camera
brand attribution as well.

64



i
i

“output” — 2022/5/10 — 21:04 — page 65 — #75 i
i

i
i

i
i

CHAPTER4
Semantic Integrity

Fake news over social media are a modern plague we are constantly facing. One of
the most used techniques to create visual fake news is the generation of images or
videos depicting something not real. Modern tools like Generative Adversarial Network
(GAN) and Deepfakes allow malicious users to modify the semantic of what we see,
making very difficult to tell the real content and the forged one apart. Unfortunately,
in these situations it is not always possible to verify the digital integrity of a media
through sensor- or coding-based techniques. For this reason, in this chapter, we treat
the digital integrity of images and videos from a semantic viewpoint. We first propose
a method for detecting images generated by means of Deep Learning techniques, and
then we extend the analysis of the task to the detection of generated videos.

The chapter is organized as follows: Section 4.1 provides the state of the art for the
detection of synthetically generated images and videos. Section 4.2 introduces the main
concepts used in the proposed methods. Section 4.3 describes the proposed method
about the detection of GAN generated images. Section 4.4 describes the proposed
method about the detection of Deepfakes videos. Finally, Section 4.5 draws common
conclusion on the chapter.

4.1 State of the Art

With the advent of modern Deep Learning solutions such as GANs, a new series of
image and video editing tools has been made available to everyone (e.g., Recycle-
GAN [107], StyleGAN [108], StyleGAN2 [109]). These techniques allow the syn-
thesis of realistic and visually-pleasant artificial images, without resorting to complex
Computer-Generated Imagery (CGI) techniques required in the past. Unfortunately,
this significant step forward in technology comes at a price. Indeed, everyone can ma-
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liciously use GANs to generate very realistic image forgeries to manipulate people’s
opinion through fake news spreading [51]. To counter this threat, the forensic research
community has started to develop a series of techniques that detect fake GAN-generated
image [110–112].

All of the strategies mentioned above are among the latest solutions for GAN im-
age detection. However, the CGI detection problem has been extensively investigated
in the past multimedia forensic literature [113–115]. It is worth noting that previous
methods aimed at exposing some specific CGI inconsistencies and artefacts from some
characteristic statistical traces or according to a pre-defined model. These strategies
were suggested by the knowledge of the available CGI algorithms that could have been
applied to generate the fake image. However, GAN-generated images cannot be re-
lated to a well-defined model since each scheme presents its peculiarities depending
on the implemented architecture and training process. Indeed, as shown in [111], each
architecture may introduce different traces, thus making their generalization a complex
task. A detector that has been trained to detect images generated by a specific GAN
architecture could not be suitable for a different GAN scheme.

Over the past few years, giant steps forward in automatic video editing techniques
have also been made. In particular, great interest has been shown towards methods for
facial manipulation [116]. To name an example, it is nowadays possible to efficiently
perform facial reenactment, i.e., transferring the facial expressions from one video to
another one [117, 118]. These techniques enable to change the identity of a speaker
with minimal effort.

Systems and tools for facial manipulations are so advanced that even users without
previous experience in photo retouching and digital arts can use them. Indeed, code
and libraries that work in an almost automatic fashion are more and more often made
available to the public for free [17, 119]. This technological advancement opens the
door to new artistic possibilities (e.g., movie making, visual effects, visual arts). On the
other hand, unfortunately, it also eases the generation of video forgeries by malicious
users.

Fake news spreading and revenge porn are just a few possible malicious applications
of advanced facial manipulation technology in the wrong hands. As the distribution of
these kinds of manipulated videos indubitably leads to severe and dangerous conse-
quences (e.g., diminished trust in media, targeted opinion formation, cyberbullying),
the ability to detect whether a face has been manipulated in a video sequence is becom-
ing of paramount importance [120].

Detecting whether a video has been modified is not a novel issue per se. Multimedia
Forensics researchers have been working on this topic for many years, proposing differ-
ent kinds of solutions to different problems [42,66,121]. For instance, in [122,123] the
authors focus on studying the coding history of videos. The authors of [124,125] focus
on localizing copy-move forgeries with block-based or dense techniques. In [126,127],
different methods are proposed to detect frame duplication or deletion.

All the methods mentioned above work according to a common principle: each non-
reversible operation leaves a peculiar footprint that can be exposed to detect the specific
editing. However, forensics footprints are often very subtle and hard to detect. This is
the case of videos undergoing excessive compression, multiple editing operations at
once, or strong downsampling [121]. This is also the case of very realistic forgeries
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operated through methods that are hard to formally model. For this reason, modern
facial manipulation techniques are very challenging to detect from the forensic per-
spective [16]. Many face manipulation techniques exist (i.e., no unique model explains
these forgeries). They often operate on small video regions only (i.e., the face or part
of it, and not the full-frame). Finally, these kinds of manipulated videos are typically
shared through social platforms that apply resizing and coding steps, further hindering
classic forensic detectors performance.

4.2 Background

In this section we provide the theoretical background of a Benford’s law, which we fur-
ther employ in the proposed method for detecting generated images. We also highlight
how it has been successfully used in the past for a broad amount of forensics tasks.
Finally, we provide some background on the Deepfake generation methods.

4.2.1 Benford’s Law

Benford’s law, which is also known as First Digit (FD) law or significant-digit law,
concerns the statistical frequencies of the most significant digits for the elements of a
real-life numerical set. More precisely, the rule states that, given a set of measurements
for some natural quantities (e.g., population of cities, stock prices), the statistics of their
FD follows the distribution depicted in Figure 4.1 and described by the equation:

p(d) = log10

(
1 +

1

d

)
, (4.1)

where d is the FD in base 10 (the generalized version of this law is presented in Sec-
tion 4.2.1). This has been empirically-observed over a vast range of natural quanti-
ties [128], but it is also possible to prove it in closed form for many exponentially-
decreasing probability distributions [129]. It has also been observed that this rule is
not well-fitted by FD statistics from altered data: whenever numbers are changed ac-
cording to some selective strategies, FD frequencies deviate from their theoretical val-
ues [130]. As a consequence, this proof has been used as supporting evidence for
detecting falsified accounts, fake financial reports, and frauds [131]. This property has
been largely exploited in Multimedia Forensics to detect image tampering. In fact,
natural image Discrete Cosine Transform (DCT) coefficients can be typically modeled
by a Laplacian-like distribution [132], which naturally follow Benford’s law, and for
this reason, the mentioned rule can be successfully used in image forensic applica-
tions [133].

A well-known application of Benford’s law in forensics is the study of JPEG com-
pression traces [69]: the authors propose using such rule to verify if an image has been
JPEG compressed once or twice. [84] exploits FD’s features to detect multiple JPEG
compression, also showing robustness against rotation and scaling. [82] addresses the
multiple JPEG compression detection problem by means of Benford-Fourier analysis.
The same authors also investigate traces of previous hidden JPEG compression in un-
compressed images [134].

This rule has also been successfully applied to other forensic problems. In [135],
the authors show that it is possible to leverage FD distribution to roughly estimate the
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Figure 4.1: Benford’s law first digits Probability Mass Function considering base 10.

amount of processing that has been applied to a given image. The authors of [136]
apply Benford’s law to solve image contrast enhancement detection problem. In [137],
the authors make use of this law to deal with splicing forgery localization.

Another interesting application of Benford’s law in image forensics is detecting
computer graphics and computer generated images. To this purpose, [138] models
light intensity in natural and synthetic images, concluding that Benford’s law is not
followed by the latter. [139] shows how to efficiently detect morphed faces using the
fitting parameters of the Benford’s logarithmic curve as features.

Anyway, detecting synthetic images is nowadays a timely and crucial forensic need
due to the achievements of GAN technology in generating highly-realistic fake pho-
tographs. This possibility has been recently used to create false image and video con-
tents in deepfake political propaganda, revenge porn, fake news creation. For these
reasons, during the last years Multimedia Forensics researchers have been focusing on
designing reliable strategies to detect synthetic images.

To this purpose, [110] proposes a method to detect image-to-image translation over
social networks. Specifically, the authors compare different detectors fine-tuned for the
binary classification task of GAN-generated against natural image detection. The same
authors also show how a model-specific fingerprint can be retrieved by GAN generated
images in order to identify the specific network used for image generation [111]. In
[140], authors apply an incremental learning strategy to train a GAN-generated image
detector that can be progressively updated in time as new images from different kinds of
GANs are processed. In [141], the authors propose a method to detect GAN-generated
images by analyzing the disparities in color components between real scene images and
generated images. In [112], GAN images are detected by analyzing saturation artefacts
in pixel distributions. Moreover, if videos are analyzed, methods exploiting also the
temporal evolution of frames have been proposed [137, 142].

4.2.2 Deepfake videos

The first Deepfake appeared in 2017 on the internet as adult videos where the face
of the original subject, usually a female actress, was replaced with some celebrity’s
face. “Deepfake” is a generic name for the technique that does not refer to a specific
algorithm or software. There is no official version of the original code used for the
first Deepfake. However, several variants exist together with their implementations.
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Figure 4.2: Sample faces extracted from FaceForensics++ (FF++) [145] and DeepFake Detection
Challenge (DFDC) [146] datasets. For each pristine face, we show a corresponding fake sample
generated from it.

The most common approach is the Deepfake AutoEncoder (DFAE). This architecture
consists of a modified convolutional AutoEncoder (AE) model: one shared encoder has
two separately-trained decoders. Each decoder is trained on one of the two identities to
swap. This structure makes the encoder learn to encode common features like lighting
and pose in the latent space. Conversely, the decoder learns identity-specific features,
e.g., eyes, nose shape. To perform the face swap, the original face image is given as
input to the shared encoder and then it is passed to the opposite decoder, keeping light
and pose information but changing identity features.

An attractive model is Neural Talking Head (NTH) [143]. It can generate talking
head models of people from very few or even one single image. This is possible with
two training phases: first, meta-learning is performed on a large dataset of videos. Af-
ter that, a fine-tuning stage uses the meta-parameters to generate realistic results after
seeing a couple of target images. Like the DFAE approach, landmarking positions can
be extracted from a source video and fed to the generator for another face to perform
the face swap Face Swapping GAN (FSGAN) [144] uses GANs to perform a face reen-
actment and a face swap between a source and a target subject. It comprises several
generators: reenactment, segmentation, inpainting and blending. Reenactment and in-
painting generators use adversarial loss, while segmentation and Poisson blending are
separately trained. Large pose face reenactment generation is handled by collecting
face landmarks of source and target and generating intermediate poses. Figure 4.2
shows some examples of Deepfake generated faces from two popular dataset we use in
our work.

4.3 Generated image detection exploiting Benford’s Law

In this section we present our method for detecting GAN generated image exploiting
the statistical trace of Benford’s Law.

4.3.1 Motivations

Natural images, as many other natural processes, can be roughly approximated as au-
toregressive signals [147]. This is the rationale behind different historical as well as
more recently proposed image compression [147,148] and generation [149,150] meth-
ods. From these assumptions, an image can be modeled as a complex autoregressive
signal with a generally low-pass characteristics.
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GAN generator’s structures are usually composed by a concatenation of limited-
support convolutional layers followed by non-linearities. Filters’ coefficients are op-
timized so that GAN’s response to a given input belongs to the desired output class.
However, in most GAN implementations, practical and complexity reasons have led
to the adoption of filters with a limited size. Therefore, if no recursive operations are
applied in the network architecture, the output of a GAN generator looks more like a
signal filtered through a Finite Impulse Response (FIR) filter than a complex autore-
gressive process.

The rationale behind the proposed method is that the information related to the filter
ideally used to generate the data under analysis can be used to discriminate natural im-
ages (with autoregressive and complex spectra) from GAN-generated ones (generated
through operations closer to FIR filtering). This can be done analyzing the statistics of
quantized DCT coefficients.

More precisely, let us assume that an input grayscale image is partitioned into K
distinct 8 × 8 blocks, which are then mapped into the 2D-DCT domain and further
quantized. This processing chain is used by the JPEG coding standards and proves to
be tailored to the spectral characteristics of images. Some of the past works highlight
that, in the frequency domain, the quantized DCT coefficient statistics of natural images
must follow Benford’s law [133].

Let us denote as cn,∆(k) the DCT coefficient at the n-th frequency in zig-zag mode
obtained from the k-th block and quantized with step ∆. It is possible to compute the
corresponding FD with base b as:

db,n,∆(k) =

⌊ |cn,∆(k)|
b⌊logb |cn,∆(k)|⌋

⌋
. (4.2)

As db,n,∆(k) can only assume b − 1 values (i.e., all possible digits defined in base
b apart from zero), its Probability Mass Function (pmf) p̂b,n,∆ computed over the K
blocks is composed by b − 1 elements. For the sake of notational compactness, let us
momentarily drop the indexes n, b, and ∆. We can formally define the pmf p̂(d) as:

p̂(d) =
1

K

K∑

k=1

1x(d(k)), d ∈ {1, 2, . . . , b− 1}, (4.3)

where:

1x(y) =

{
1 if y = x,

0 otherwise.
(4.4)

This pmf for a natural image must follow the generalized Benford’s law equation:

p(d) = η logb

(
1 +

1

υ + dω

)
, (4.5)

where η is a scale factor, υ and ω parameterize the logarithmic curve, and d ∈
{1, 2, ..., b − 1} is one possible value of the considered first digits in base b. The fit-
ness between p̂(d) and p(d) can be measured by some divergence functions such as the
Jensen-Shannon divergence DJS (p̂|p):

DJS (p̂|p) = DKL (p̂|p) +DKL (p|p̂) , (4.6)
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which is a symmetrized version of the well-known Kullback-Leibler divergence:

DKL (p̂|p) =
b−1∑

d=1

p̂(d) log
p̂(d)

p(d)
. (4.7)

Since DJS proves to be unstable for biased pmfs, it is possible to use the symmetrized
Renyi divergence:

DR
α (p̂|p) =

1

1− α
(logSα (p̂, p) + logSα (p, p̂)) , (4.8)

or the symmetrized Tsallis divergence:

DT
α (p̂|p) =

1

1− α
(2− Sα (p̂, p)− Sα (p, p̂)) , (4.9)

where:

Sα (q, p) =
b−1∑

d=1

q(d)α/p(d)α−1. (4.10)

It is possible to prove that, whenever an image is altered (e.g., it is compressed/quan-
tized a second time, etc.), Benford’s law is not verified anymore. In fact, many mod-
ifications redistribute image coefficients among the bins of the quantizer, thus the fi-
nal pmf associated to quantized DCT coefficients presents some oscillating probability
values that deviate from the ideal distribution. For these reasons, many solutions in
the past measured the divergence between the empirically-estimated p̂(d) and its ideal
fitted version p(d) in order to find whether the image has been altered or not. We show
that it is possible to adopt the same solution to detect GAN generated pictures.

4.3.2 Proposed method

We define the GAN-generated image detection problem as a two-class classification
problem. Given an image I, we want to understand whether it has been synthetically
generated through a GAN, or it is a natural photograph.

Formally, to solve this problem we consider a pipeline composed by two blocks: a
feature extractor and a supervised classifier. The feature extractor implements the func-
tion F (·), which turns the image into a more compact yet informative representation,
i.e., the feature vector f = F (I). The classifier implements the function M(·) such
that: M(f) = 0 if the image is a natural one; M(f) = 1 if the image comes from a
GAN. With this framework in mind, we focus on designing the function F (·) based on
Benford’s law, so that a simple classifier can be effectively used.

The feature extraction process is depicted in Figure 4.3. Given an image I, we
divide it in K non-overlapping blocks with resolution 8 × 8 pixel. From each block,
we compute its 2D-DCT representation. We then quantize it using a given quantization
step ∆ (chosen for each coefficient according to a JPEG quantization matrix).

Given a base b, we compute the first digit of the n-th quantized 2D-DCT frequency
sample from the k-th block according to Equation (4.2). We then compute the pmf
p̂b,n,∆ according to Equation (4.3). Examples of p̂ for different bases for both natural
and GAN-generated images are reported in Figure 4.4. Finally, we fit generalized Ben-
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Figure 4.3: Feature extraction pipeline considering a single divergence, quantization step ∆, base b and
DCT coefficient n. Extraction process is repeated for multiple parameters.
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Figure 4.4: Different pmf p̂ for natural (blue) and GAN-generated images (orange) are compared to the
ideal Benford curve (dashed green) for different bases b. Blue and orange curves deviates differently
from the green one.

ford’s law expressed in Equation (4.5) by solving a mean square error minimization
problem as:

pfit
b,n,∆ = argmin

p

b−1∑

d=1

(p̂b,n,∆(d)− p(d))2. (4.11)

Comparing the computed pmf p̂b,n,∆ and the Benford fit pfit
b,n,∆, we compute Jensen-

Shannon divergence DJS
b,n,∆, Renyi divergence DR

b,n,∆, and Tsallis divergence DT
b,n,∆ as

reported in Section 4.3.1. Notice that we removed the dependency of Tsallis and Renyi
divergence on α as we keep it constant in our experiments.

Finally, considering a set B of bases, a set N of DCT frequencies and a set J of
JPEG Quality Factors (QFs) driving the quantization parameter ∆, we obtain the final
feature vector by concatenating all divergences as:

fB,N ,J = [DJS
b,n,∆, D

R
b,n,∆D

T
b,n,∆]b∈B,n∈N ,∆∈J . (4.12)

Notice that the feature vector size depends on how many DCT coefficients, bases and
quantization steps are used during the analysis. For instance, if we choose a single
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4.3. Generated image detection exploiting Benford’s Law

Figure 4.5: Examples of original (top) and GAN-generated (bottom) images belonging to the dataset
proposed in [140].

compression step, a single DCT frequency and a single base, the feature vector will be
composed by the concatenation of just three divergences, thus having dimensionality
3. Conversely, if we use multiple bases, frequencies and compression steps, we end
up with a bigger vector. In our experiments, we consider vectors with dimensionality
ranging from 3 to 540, as shall be explained in Section 4.3.4.

After feature computation, the vector fB,N ,J is fed to a supervised classifier. To
study the effectiveness of Benford-based features, we do not adopt unnecessarily com-
plicated classifiers M(·). Specifically, we resort to a Random Forest classifier.

4.3.3 Experiments

In this section we describe the considered dataset and all the possible setups we adopt
for the experiments.

Dataset

To build our dataset, we started from the publicly available GAN-dataset released by
[140]. We considered a corpus composed by 15 different sub-datasets of images ob-
tained employing 2 different architectures: Cycle-Gan [151] and ProGAN [152]. The
first architecture is designed for image-to-image translation, i.e., mapping an image of
a given class (e.g., pictures of horses) to an image of another one (e.g., pictures of
zebras). The second architecture is a generator able of creating natural-looking pic-
tures of different scenes depending on the used training data (e.g., bedroom pictures,
bridges, etc.). Each dataset comprises both natural images and their GAN-generated
counterparts. All images are color images and have a resolution of 256 × 256 pixel.
The complete composition is reported in Table 4.1 and some examples of the more than
200 000 images are reported in Figure 4.5.

Setup

As shown in Section 4.3.2, each feature depends on a selected set of bases B, DCT
frequencies N , and analysis JPEG QF describing the set of quantization steps J . With
regards to bases, we test all combinations of sets of bases B ⊆ {10, 20, 40, 60} contain-
ing from one to four elements. This leads to 15 possible combinations of bases (i.e.,
from B = {10} to B = {10, 20, 40, 60}). Concerning the selected DCT frequencies, we
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Table 4.1: Dataset composition

Architecture Dataset Number of images

orange2apple 1280
photo2ukiyoe 4072

winter2summer 1484
zebra2horse 1670

Cycle-Gan photo2cezanne 3978
photo2vangogh 4099
photo2monet 4765

facades 259
cityscapes 1996

sats 684

lsun_bedroom 30770
lsun_bridge 28768

ProGAN lsun_churchoutdoor 29120
lsun_kitchen 42706
lsun_tower 29020

choose a limited amount of sets N ⊆ {1, 2, . . . , 9} (i.e., including the first 9 frequen-
cies in zig-zag order after DC) , similarly to other detectors available in literature [84]).
Specifically, we only consider 9 sets obtained by progressively-adding one frequency
at a time from the previous set (i.e., N = {1}, N = {1, 2}, . . ., N = {1, 2, . . . , 9}).
As for the quantization step values, the final feature set was created concatenating the
5 arrays of divergences obtained using JPEG QFs in the set J ⊆ {80, 85, 90, 95, 100}.
Considering all combinations of bases, frequencies and JPEG quantization steps, we
obtain a total amount of 675 different setups.

For each feature vector described in Section 4.3.2 (i.e., each setup), we trained a
different Random Forest classifier performing Leave-One-Group-Out cross-validation
over the various datasets as explained in [110]. The choice of Random Forest was
suggested by the low complexity requirements, the generalization capabilities, and the
resilience to small training datasets.

Namely, given a dataset Di out of the complete set of dataset D, we trained our
model over the remaining Dj , ∀j ̸= i and we test over Di. Results are always shown
on the leave-out dataset, and we report the maximum accuracy value among all the
different setups. To provide a practical example, let us consider the situation in which
we test on dataset Di = orange2apple. This consists of original images (i.e., ap-
ples and oranges) and GAN images (apples turned into oranges and vice versa). The
classifier was trained on all the other images (excluding those in orange2apple) in
order to avoid biasing the results with overfitting. We adopted the Random Forest im-
plementation provided with the open-source Scikit Learn Python library. After a grid
search over several candidates, we fixed the number of Decision Trees to 100, with
bootstrap sampling enabled. We selected Gini index as splitting policy, leaving all the
other parameters as their default values.

To select the baselines, we focused on the work proposed by [110] since, to the
best of our knowledge, it is the only work to perform an extensive GAN detection test
over a large dataset of images. Specifically, we selected two baselines: a completely
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Figure 4.6: Accuracy obtained with different feature vectors by changing the considered sets B, N and
J . Each vector has a different length and provides a different accuracy result.

data-driven one based on Deep Learning; a solution based on hand-crafted features
commonly used in the forensics literature.

Similarly to the solution in [110], we compared our approach with the Xception
Convolutional Neural Network (CNN), as the first baseline method. According to the
results in [110], this set of features seems to provide the best results over most of the
considered datasets. Starting from the pre-trained model, we finetuned it on our dataset,
following the same Leave-One-Group-Out strategy we adopted for the Random Forest
training. We used 70% of the training data for the actual training, and the remaining
30% for validation, testing on the Leave-Out dataset. We resorted to Adam optimization
algorithm, with an initial learning rate of 0.0001, training until reaching convergence on
a validation plateau. We adopted the Keras implementation of Xception, performing the
training in several hours on a workstation equipped with an NVIDIA Titan V Graphics
Processing Unit (GPU), an Intel Xeon E5-2687W, and 256 GB of RAM.

The second baseline method operates a linear Support Vector Machine (SVM) on
a set of handcrafted steganalysis rich-features (as suggested in [110]). These features
have been successfully used in image forgery detection tasks as well [153]. The model
has been trained following the same train/test strategy used for Xception, using the
Scikit Learn implementation of SVM.

Feature length and parameters

In the design of the proposed solution we considered different combinations of fea-
tures obtained varying the parameters in the set B, N , I and changing feature vectors’
lengths. As a matter of fact, it is necessary to evaluate how the vector length could im-
pact on the classifier performance. Figure 4.6 shows the average test accuracy obtained
on all datasets considering all possible 675 feature vectors. It is possible to notice that
even the smallest feature vectors of just 3 elements enable achieving accuracy greater
than 0.75. It is sufficient to use 50 features to have accuracy higher than 0.97.
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Figure 4.7: Accuracy varying different parameters: (a) fix 1 JPEG compressions; (b) fix 5 JPEG com-
pressions; (c) fix 1 base; (d) fix 4 bases; (e) fix 1 DCT coefficient; (f) fix 9 DCT coefficients. When
we fix a single parameter, we average all results obtained by fixing that parameter to each possible
value it can span.

To gain a better insight on the effect of using different bases, DCT coefficients and
quantization steps, we performed an analysis by keeping some parameters fixed, and
just changing the others. Figure 4.7a and Figure 4.7b show the results with a single fixed
quantization step value, and considering all the values, respectively. In both scenarios it
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is possible to notice that the greatest improvement is obtained when more than a single
DCT coefficient is used. Moreover, the more the coefficients, the better the results.
Figure 4.7c and Figure 4.7d report the results with features from a single fixed FD
base and from all the considered bases, respectively. It seems that using more than one
base only marginally improve the results. As a matter of fact, both figures are very
similar. Finally, Figure 4.7e and Figure 4.7f display the accuracy values obtained from
the features of a single DCT frequency and of the whole set of frequencies, respectively.

From these figures it is possible to note that, the more the considered quantization
steps, the higher the accuracy for any other parameters set. This is not particularly
surprising, as Benford’s law is naturally linked to the used JPEG quantization.

4.3.4 Results

In this section we report all experimental results achieved to evaluate the proposed
technique, including a comparison against baseline solutions. Finally, we provide some
additional insights in terms of resilience to JPEG compression.

Comparison against baseline

In order to compare against the selected baselines solution, we finetuned Xception net-
work and trained a linear SVM on the steganalysis features for each dataset according
to the same procedure used for our Random Forest as suggested in [110].

Table 4.2 reports the breakdown of test accuracy scores for all datasets. The highest
average accuracy among the considered methods is obtained by the proposed method,
and it is higher than 0.99. It is also interesting to notice that the proposed solu-
tion is considerably better than the baseline CNN on winter2summer, sats and
lsun_bedroom, which seem to be particularly though for the latter. These results
highlight that, in order to properly train a very deep network like Xception, a much
larger dataset probably is needed. However, this might be difficult to obtain in a re-
duced amount of time in a forensic scenario. On the contrary, the proposed feature
vector is very compact, thus Random Forest does not suffer from a smaller training set.
The baseline handcrafted method performs reasonably well, but the obtained accuracy
is lower than that of the proposed method of almost 9% on average.

Resilience to JPEG compression

When images are shared online, JPEG compression is almost always applied in order
to reduce network and storage requirements. Therefore, we measured the performance
of the proposed method whenever a further JPEG compression is applied with different
coding parameter configurations.

In a first scenario, GAN-generated and real images have been randomly JPEG com-
pressed considering QFs distributed in {85, . . . , 100}. The originally-trained detector
(on non-compressed images) was then tested on this newly compressed dataset. In this
situation, the proposed solution approaches a random guess accuracy. However, this
situation is not completely unexpected. As a matter of fact, Benford’s law is strictly
tailored to JPEG compression. Therefore, scrambling with JPEG coefficients statistics
through recompression has a high impact on Benford’s features.
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Table 4.2: Accuracy results compared to baseline solutions for each dataset. Average accuracy (avg) is
also reported. Best result per dataset in bold.

Dataset Proposed Xception Steganalysis

orange2apple 98.13 97.64 88.80
photo2ukiyoe 100.00 97.41 86.78

winter2summer 100.00 68.33 77.96
zebra2horse 99.69 89.58 91.01

photo2cezanne 99.97 95.91 95.88
photo2vangogh 100.00 93.75 94.68
photo2monet 99.84 94.08 94.80

facades 100.00 99.84 73.93
cityscapes 100.00 100.00 100.00

sats 99.69 73.00 90.92
lsun_bedroom 100.00 76.22 98.92

lsun_bridge 99.89 82.49 95.90
lsun_churchoutdoor 99.99 99.79 98.81

lsun_kitchen 99.99 87.26 99.49
lsun_tower 99.98 95.45 98.87

avg 99.83 89.64 91.03

We therefore considered a second scenario, which is more realistic as shown in
[110]. If we know that images might be JPEG recompressed, we can also train our sys-
tem on JPEG compressed images. We therefore re-trained our method and the baseline
on compressed images, and tested them on compressed images. In this situation, results
improve as expected. As a matter of fact, the proposed solution accuracy decreases, but
still remains higher than 0.80. In particular, results depend on the specific datasets and
GAN architecture. Indeed, all results related to ProGAN (i.e., last five datasets) show
an almost optimal accuracy always higher than 0.99. Conversely, on Cycle-Gan im-
ages, only a couple of datasets exhibit accuracy grater than 0.70. In this situation, if
computational cost is feasible for the adopted architecture, the baseline network might
be preferable.

We then tested a third scenario, assuming that the analyst knows which is the QF
adopted by the final JPEG compression stage (since it can be read from the bit stream).
It is possible to train a different Random Forest classifier or Xception network for each
QF. We therefore generated three versions of the dataset by recompressing it with QF
100, 95, and 90, respectively. For each QF, we trained the proposed method and Xcep-
tion baseline using the aforementioned leave-one-group-out strategy. We did not con-
sider steganalysis features anymore, as in [110] the authors already showed that they
greatly suffer JPEG compression. Results are reported in Table 4.3. It is possible to
notice that for high QFs, the proposed Benford-based method outperforms the baseline.
Xception network shows better results starting from QF 90.

In the final testing scenario, we assume that the analyst wants to train a different
classifier for each JPEG QF, and for each kind of image content. As an example, if
the analyst is interested in detecting fake oranges with a given QFs, they might train
only on the orange2apple dataset, rather than the others. In this situation (i.e., known
QF and kind of GAN training dataset), both the proposed method and the Xception
baseline achieve an almost perfect result for each QF (i.e., 100, 95 and 90).
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4.3. Generated image detection exploiting Benford’s Law

Table 4.3: Accuracy obtained using different JPEG QFs.

QF Dataset Proposed Xception

100

orange2apple 94.50 92.56
photo2ukiyoe 100.00 98.50

cityscapes 100.00 100.00
lsun_tower 100.00 94.64

95

orange2apple 82.01 90.66
photo2ukiyoe 97.00 98.42

cityscapes 99.99 99.32
lsun_tower 99.80 99.48

90

orange2apple 65.93 85.61
photo2ukiyoe 92.01 98.17

cityscapes 100.00 99.66
lsun_tower 99.60 98.86

Analysis on faces

All results shown so far are obtained not considering GANs generating face images.
This is due to two main reasons. First, GANs that were trained to generate face images
produce particularly realistic results lately. This make face images harder to detect as
GAN-generated compared to other kind of imagery. Indeed, shadows and lightning
very often respect physics law, thus making Benford’s law almost verified [138]. Sec-
ond, face-generating GANs are often trained on common pristine face datasets [154],
which makes the Leave-One-Group-Out testing strategy applied to now impracticable.

In the light of these considerations, we decided to create a specific dataset, com-
posed by all the faces dataset in the original corpus, generated by ProGAN [152]
(19 870 images), StarGAN [155] (50 000 images) and GlowGAN [156] (49 900 im-
ages), plus some additional images generated by the more recently proposed Style-
GAN2 [109] (2000 images). As pristine faces, we always consider images from the
Celeb-A dataset [154].

ProGAN is trained to generate realistic faces similar to those from Celeb-A
dataset [154]. StarGAN and GlowGAN are trained to obtain faces with different char-
acteristics (e.g., hair colors, smiles, etc.). Finally, StyleGAN2 produces images at dif-
ferent qualities depending on its configuration parameter ψ = 0.5 or ψ = 1 as suggested
by the authors [109], starting from the Flickr-Faces-HQ Dataset [152]. Some random
images from those generated by StyleGAN2 are shown in Figure 4.8. For each dataset,
we train a Random Forest classifier considering 70% of the images as training set and
30% as test.

Table 4.4 shows the achieved results on each test set. It is possible to notice that
StarGAN and GlowGAN seems to be easier to detect. On the contrary, ProGAN and
StyleGAN2 looks more challenging. These promising preliminary results motivate
some future work with more extended face image datasets, also comparing against
other baselines and in presence of editing operations.
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Chapter 4. Semantic Integrity

Figure 4.8: Examples of faces generated with StyleGAN2 [109].

Table 4.4: Accuracy results for each face test dataset. Average accuracy (avg) is also reported. Accuracy
higher than 85% are reported in bold.

Dataset Proposed

progan_celeba 79.75
stargan_black_hair 97.26
stargan_blond_hair 96.56
stargan_brown_hair 96.76

stargan_male 96.24
stargan_smiling 96.06
glow_black_hair 86.56
glow_blond_hair 88.26
glow_brown_hair 86.18

glow_male 87.11
glow_smiling 83.04
stylegan2-0.5 77.18
stylegan2-1 72.63

avg 87.96

4.4 Detecting Deepfake videos by model ensembling

In this section we propose a method for detecting Deepfake videos. We start from a
well known state of the art network in the field of computer vision and we slightly
modify it to add an attention mechanism. Then we put together different versions of
the same network composing an ensemble that we use for the detection task.

4.4.1 Proposed method

We define the Deepfake video detection as a two-class classification problem. We work
at frame level, instead of exploiting the temporal dimension of the video. Formally,
given a frame image I, we would like to build a model M (·) such that:

ŷ =M(I), (4.13)

where ŷ represents the score provided by the model to classify the frame. Once obtained
the scores for each frame in the video, we can proceed with a proper aggregation policy
to obtain a score for the video. Our goal is to build the model M (·).

The proposed method is based on the concept of ensembling. Indeed, it is well-
known that model ensembling may lead to better prediction performance with respect
to a single model. We, therefore, focus on investigating whether and how it is possible
to train different CNN-based classifiers to capture different high-level semantic infor-
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4.4. Detecting Deepfake videos by model ensembling

mation that complements one another, thus positively contributing to the ensemble for
this specific problem.

To do so, we consider as starting point the EfficientNet family of models, proposed
in [18] as a novel approach for the automatic scaling of CNNs. This set of architectures
achieves better accuracy and efficiency with respect to other state-of-the-art CNNs and
might be very useful to fulfil potential hardware and time constraints. Given an Ef-
ficientNet architecture, we propose to follow two paths to make the model beneficial
for the ensembling. On the one hand, we propose to include an attention mechanism,
which also provides the analyst with a method to infer which portion of the investi-
gated video is more informative for the classification process. On the other hand, we
investigate how siamese training strategies can be included in the learning process for
extrapolating additional information about the data.

We provide more details about EfficientNet architecture with the proposed attention
mechanism and the network training strategies in the following.

EfficientNet and attention mechanism

Among the family of EfficientNet models, we choose the EfficientNetB4 as the base-
line for our work, motivated by the good trade-off offered by this architecture in terms
of dimensions (i.e., number of parameters), run time (i.e., FLOPS cost) and classifica-
tion performance. As reported in [18], with 19 millions of parameters and 4.2 billions
of FLOPS, EfficientNetB4 reaches the 83.8% top-1 accuracy on the ImageNet [157]
dataset. On the same dataset, XceptionNet, used as face manipulation detection base-
line method by the authors of [145], reaches the 79% top-1 accuracy at the expense of
23 millions parameters and 8.4 billions FLOPS.

EfficientNetB4 architecture is represented within the blue block in Figure 4.9, where
all layers are defined using the same nomenclature introduced in [18]. The input to the
network is a squared color image I, i.e., in our experiments, the face extracted from a
video frame. As a matter of fact, authors of [145] recommend to track face information
instead of using the full frame as input to the network for increasing the classification
accuracy. Moreover, faces can be easily extracted from frames using any of the widely
available face detectors proposed in the literature [158, 159]. The network output is a
feature vector g of 1792 elements, defined as g = G(I). The final score related to the
face is the result of a classification layer.

The proposed variant of the standard EfficientNetB4 architecture is inspired by the
several contributions in the natural language processing and computer vision fields that
make use of attention mechanisms. Works such as the transformer [160] and residual
attention networks [161] show how it is possible for a neural network to learn which
part of its input (being an image or a sequence of words) is more relevant for accom-
plishing the task at hand. In the context of video deepfake detection, it would be of great
benefit to discover which portion of the input gave the network more information for its
decision making process. We thus explicitly implement an attention mechanism similar
to the one already exploited by the EfficientNet itself, as well as to the self-attention
mechanisms presented in [162, 163]:

1. we select the feature maps extracted by the EfficientNetB4 up to a certain layer,
chosen such that these features provide sufficient information on the input frame
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Figure 4.9: Blue block: EfficientNetB4 model. If the red block is embedded into the network, an attention
mechanism is included in the model, defining the proposed EfficientNetB4Att architecture.

without being too detailed or, on the contrary, too unrefined. To this purpose, we
select the output features at the third MBConv block which have size 28×28×56;

2. we process the feature maps with a single convolutional layer with kernel size 1
followed by a Sigmoid activation function to obtain a single attention map;

3. we multiply the attention map for each of the feature maps at the selected layer.

For clarity’s sake, the attention-based module is depicted in the red block of Figure 4.9.
On one hand, this simple mechanism enables the network to focus only on the most

relevant portions of the feature maps, on the other hand it provides us with a deeper
insight on which parts of the input the network assumes as the most informative. In-
deed, the obtained attention map can be easily mapped to the input sample, highlighting
which elements of it have been given more importance by the network. The result of
the attention block is finally processed by the remaining layers of EfficientNetB4. The
whole training procedure can be executed end-to-end, and we call the resulting network
EfficientNetB4Att.

Network training

We train each model according to two different training paradigms: (i) end-to-end,
and; (ii) siamese. The former represents a more classical training strategy. The latter
aims at exploiting the generalization capabilities offered by the networks in order to
obtain a feature descriptor that privileges the similarity between samples belonging to
the same class. The ultimate goal is to learn a representation in the encoding space of
the network’s layers that well separates samples (i.e., faces) of the real and fake class.

End-to-end training. We feed the network with a sample face, and the network returns a
face-related score ŷ. Notice that this score is not passed through a Sigmoid activation
function yet. The weights update is led by the commonly used LogLoss function:

LL = − 1

N

N∑

i=1

[yi log (S(ŷi)) + (1− yi) log (1− S(ŷi))] , (4.14)
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4.4. Detecting Deepfake videos by model ensembling

where ŷi represents the i-th face score, yi ∈ {0, 1} the related face label. Specifically,
label 0 is associated with faces coming from real pristine videos and label 1 with fake
videos. N is the total number of faces used for training and S (·) is the Sigmoid func-
tion.

Siamese training. Inspired by computer vision works that generate local feature descrip-
tors using CNNs, we adopt the triplet margin loss, first proposed in [164].

Recalling that G(I) is the non-linear encoding obtained by the network for an input
face I (see Figure 4.9), being ∥·∥2 the L2 norm, the triplet margin loss is defined as

LT = max(0, µ+ δ+ − δ−), (4.15)

with δ+ = ∥G(Ia) − G(Ip)∥2, δ− = ∥G(Ia) − G(In)∥2 and µ is a strictly positive
margin. In this case Ia, Ip and In are, respectively:

• Ia the anchor sample (i.e., a real face);

• Ip a positive sample, belonging to the same class as Ia (i.e., another real face);

• In a negative sample, belonging to a different class than Ia (i.e., a fake face).

We then finalize the training by finetuning a simple classification layer on top of the
network, following the end-to-end approach described before.

4.4.2 Experiments

In this section we present the experimental setup we adopted to validate the proposed
method. First we describe the considered datasets, then we describe the network archi-
tectures and the training procedure we designed for them.

Dataset

We test the proposed method on two different datasets: FF++ [145]; DFDC [146].
FF++ is a large-scale facial manipulation dataset generated using automated state-

of-the-art video editing methods. In detail, two classical computer graphics approaches
are used, i.e., Face2Face [117] and FaceSwap [17], together with two learning-based
strategies, i.e., DeepFakes [119] and NeuralTextures [118]. Every method is applied
to 1000 high quality pristine videos downloaded from YouTube, manually selected to
present nearly front-facing subjects without occlusions. All the sequences contain at
least 280 frames. Eventually, a database of more than 1.8 million images from 4000
manipulated videos is built. In order to simulate a realistic setting, videos are com-
pressed using the H.264 codec. High quality as well as low quality videos are generated
using a constant rate quantization parameter equal to 23 and 40, respectively.

DFDC is the training dataset released for the homologous Kaggle challenge [146].
It is composed by more than 119 000 video sequences, created specifically for this chal-
lenge, representing both real and fake videos. The real videos are sequences of actors
taking into account diversity in several axes (gender, skin-tone, age, etc.) recorded with
arbitrary backgrounds to bring visual variability. The fake videos are created starting
from the real ones and applying different DeepFake techniques, e.g., different face swap
algorithms. Notice that we do not know the precise algorithms used to generate fake
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videos, since for the time being the complete dataset (i.e., with the public and private
testing sequences and possibly an explanation of the creation procedure) has not been
released yet. The sequence length for each video is approximately around 300 frames,
and the classes are strongly unbalanced towards the fake one, counting roughly 100 000
fakes and 19 000 reals.

Networks

In our experiments, we consider the following networks:

• XceptionNet, since it is the best performing model used in [145], thus being the
natural yardstick for our experimental campaign;

• EfficentNetB4, as it achieves better accuracy and efficiency than other existing
methods [18];

• EfficentNetB4Att, which should discriminate relevant parts of the face sample
from irrelevant ones.

Each model is trained and tested separately over both the considered datasets. Specifi-
cally, regarding FF++, we consider only videos generated with constant rate quantiza-
tion equal to 23.

XceptionNet is trained using the same approach of [145], whereas the two Effi-
cientNet models are trained following the end-to-end as well as the siamese fashion
described in Section 4.4.1. In doing so, we end up with 4 trained models: Efficient-
NetB4 and EfficientNetB4Att which are trained with the classical end-to-end approach,
together with EfficientNetB4ST and EfficientNetB4AttST, trained using the siamese
strategy. All these EfficientNetB4-derived models can contribute to the final ensem-
bling.

Setup

We adopt a different split policy for each dataset. We split DFDC according to its folder
structure, using the first 35 folders for training, folders from 36 to 40 for validation and
the last 10 folders for testing. Regarding FF++, we use a similar split as in [145]
selecting 720 videos for training, 140 for validation and 140 for test from the pool of
original sequences taken from YouTube. The corresponding fake videos are assigned
to the same split. All the results are shown on the test sets.

In our experiments, we only consider a limited number of frames for each video.
In training phase, this choice is motivated by two main considerations: (i) when using
a really small amount of frames per video, there is a strong tendency to overfit; (ii)
increasing the number of frames does not improve performances in a justifiable manner.
This phenomenon can be noticed in Figure 4.10, which reports training and validation
losses as a function of training iterations, selecting a variable amount of frames per
video. It is worth noting that the minimum validation loss does not improve selecting
15 frames per video instead of 32, however choosing 32 frames per video helps to
prevent overfitting. Figure 4.10, there is a strong tendency to overfit when using a
small number of frames. With this in mind, we limit the number of analyzed frames
from each sequence to 32 for both training and testing phases. Even in this setting, the
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Figure 4.10: Training and validation loss curves for XceptionNet on FF++, while varying the number
of frames per video (FPV).

dimensions of the datasets remain remarkable: for the FF++, we end up with roughly
1.6 million images, while for the DFDC with 3.4 million frames.

In this perspective, we can further reduce the amount of data processed by the net-
works by recalling that not all the frame information is useful for the deepfake detec-
tion process [145]. Indeed, we can mainly focus our analysis on the region where the
face of the subject is located. Consequently, as a pre-processing step, we extract from
each frame the faces of the scene subjects using the BlazeFace extractor [159], that,
in our experiments, proved to be faster than the MTCNN detector [158] used by the
authors of [145]. In case more than one face is detected, we keep the face with the
best confidence score. The resulting input for the networks is the squared color image
I introduced in Section 4.4.1, of size 224× 224 pixel.

During training and validation, to make our models more robust, we perform data
augmentation operations on the input faces. In particular, we randomly apply down-
scaling, horizontal flipping, random brightness contrast, hue saturation, noise addi-
tion and finally JPEG compression. Specifically, we resort to Albumentation [165] as
our data-augmentation library, while we use Pytorch [166] as Deep Learning frame-
work. We train the models using Adam [167] optimizer with hyperparameters equal to
β1 = 0.9, β2 = 0.999, ϵ = 10−8, and initial learning rate equal to 10−5.

Independently from the training strategy used, given the size of the datasets, we
never train our networks for a complete epoch. Specifically:

• for the end-to-end training, we either train for a maximum of 20k iterations, in-
dicating as iteration the processing of a batch of 32 faces (16 real, 16 fake) taken
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Figure 4.11: Effect of the attention on faces under analysis. Given some faces to analyze (top row), the
attention network tends to select regions like eyes, mouth and nose (bottom row). Faces have been
extracted from FF++ dataset.

randomly and evenly across all the videos of the train split, or until reaching a
plateau on the validation loss. Validation of the model in this context is performed
every 500 training iterations, on 6000 samples taken again evenly and randomly
across all videos of the validation set. The initial learning rate is reduced of a 0.1
factor if the validation loss does not decrease after 10 validation routines (5000
training iterations), and the training is stopped when we reach a minimum learn-
ing rate of 1× 10−10;

• for the siamese training, the feature extractor is trained using the same number
of iterations, validation routine and learning rate scheduling of the end-to-end
training. The main difference lies in the different loss function used (as explained
in Section 4.4.1), and in the composition of the batch, which in this case is made by
12 triplets of samples (6 real-fake-fake, 6 fake-fake-real) selected across all videos
of the set considered. Regarding the parameter µ in Equation (4.15), we set it to
1 after some preliminary experiments. The fine-tuning of the classification layer
is then executed in a successive step following the end-to-end training paradigm
with the hyperparameters specified above.

We finally run our experiments on a machine equipped with an Intel Xeon E5-2687W-
v4 and a NVIDIA Titan V. The code to replicate our tests is freely available 1.

4.4.3 Results

EfficientNetB4Att explainability

In order to show the effectiveness of the attention mechanism in extracting the most
informative content of faces, we evaluate the attention map computed on a few faces of
FF++. Referring to Figure 4.9, we select the output of the Sigmoid layer in the attention
block, which is a 2D map with size 28× 28. Then, we up-scale it to the input face size
(224×224), and superimpose this to the input face. Results are reported in Figure 4.11.

It is worth noting that this simple attention mechanism enables to highlight the most
detailed portion of faces, e.g., eyes, mouth, nose and ears. On the contrary, flat regions
(where gradients are small) are not informative for the network. As a matter of fact, it
has been shown several times that artefacts of deepfake generation methods are mostly
localized around facial features [16]. For instance, roughly modeled eyes and teeth,
showing excessively white regions, are still the main trademarks of these methods.

1https://github.com/polimi-ispl/icpr2020dfdc
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Figure 4.12: t-SNE visualization of features obtained by EfficientNetB4AttST with siamese training.
Faces have been extracted from FF++ dataset.

Siamese features

In order to understand whether the features produced by the encoding of the network
when trained in siamese fashion are discriminatory for the task, we computed a projec-
tion over a reduced space using the well known algorithm t-SNE [168]. In Figure 4.12
we show the projection obtained by means of EfficientNetB4AttST starting from 20
FF++ videos.

We can clearly see how frames of the same videos clusters into small sub-regions.
More importantly, all the real samples cluster into the top region of the chart, whereas
the fake samples are in the bottom region. Frames of the same videos clusters into
smaller sub-regions. This justifies the choice to adopt this particular training paradigm
in addition to the classical end-to-end approach.

Architecture independence

As we want to understand whether the different networks can be used in an ensemble,
we explore whether the scores extracted by each model are independent to some extent.
In Figure 4.13, all plots outside of the main diagonal show that different networks pro-
vide slightly different scores for each frame. Indeed, the point clouds do not perfectly
align on a shape that can be easily described by a simple relation. This motivates us in
using the different trained models in an ensemble way. If all networks were perfectly
correlated, this would not be reasonable.
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(a) FF++

(b) DFDC

Figure 4.13: Pair-plot showing the score distribution for real (orange •) and fake (blue •) samples for
each pair of networks on FF++ (a) and DFDC (b) datasets.
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Table 4.5: Area Under the Curve (AUC) and LogLoss obtained with different network combinations over
all the datasets. Top-3 results per column in bold, baseline in italics.

Xception EfficientNet AUC LogLoss
Net B4 B4ST B4Att B4AttST FF++ DFDC FF++ DFDC

✓ 0.9273 0.8784 0.3844 0.4897

✓ 0.9382 0.8766 0.3777 0.4819
✓ 0.9337 0.8658 0.3439 0.5075

✓ 0.9360 0.8642 0.3873 0.5133
✓ 0.9293 0.8360 0.3597 0.5507

✓ ✓ 0.9413 0.8800 0.3411 0.4687
✓ ✓ 0.9428 0.8785 0.3566 0.4731
✓ ✓ 0.9421 0.8729 0.3370 0.4739

✓ ✓ 0.9423 0.8760 0.3371 0.4770
✓ ✓ 0.9393 0.8642 0.3289 0.4977

✓ ✓ 0.9390 0.8625 0.3515 0.4997

✓ ✓ ✓ 0.9441 0.8813 0.3371 0.4640
✓ ✓ ✓ 0.9432 0.8769 0.3269 0.4684
✓ ✓ ✓ 0.9433 0.8751 0.3399 0.4717

✓ ✓ ✓ 0.9426 0.8719 0.3304 0.4800

✓ ✓ ✓ ✓ 0.9444 0.8782 0.3294 0.4658

Face manipulation detection capability

In this section, we report the average results achieved by the baseline network (i.e.,
XceptionNet) and the 4 proposed models (i.e., EfficientNetB4, EfficientNetB4Att, Ef-
ficientNetB4ST and EfficientNetB4AttST). We also verify our guess behind the use of
an ensemble, specifically combining two, three or even all the proposed models. In this
case, the final score associated with a face is simply computed as the average between
the scores returned by the single models.

In Table 4.5 we report the AUC (computed binarizing the network output with dif-
ferent thresholds) and LogLoss obtained in our experiments. Results are provided in a
per-frame fashion. Analyzing these results, it is worth noting that the strategy of model
ensembling generally awards in terms of performances. As somehow expected, best
top-3 results are always reached by a combination of 2 or more networks, meaning that
network fusion helps both the accuracy of the deepfake detection (estimated by means
of AUC) and the quality of the detection (estimated by means of LogLoss measure).
Indeed, on both datasets, LogLoss and AUC are always better than the baseline.

Kaggle results

To gain a deeper insight on the proposed solution performance, we also participated to
the DFDC challenge on Kaggle [146] as ISPL team. The ultimate goal of the competi-
tion was to build a system able to tell whether a video is real or fake. The DFDC dataset
used here represents the training dataset released by the competition host, while the
evaluation is performed over two different testing datasets: (i) the public test dataset;
(ii) the private test dataset. Participants were not aware of the composition of those
datasets (e.g., the provenance of the sequences, the techniques used for generating
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Chapter 4. Semantic Integrity

fakes, etc.), apart from the number of videos in public test set, which is roughly 4000.
The final solution proposed by our team was an ensemble of the 4 proposed models,
which led us to top 2% on the leaderboard computed against the private test set.

4.5 Conclusions

In this chapter we studied in deep the problem of generated images and videos, con-
sidering both the model based statistical properties of the generation process and the
data driven model ensembling. In the first case, we proposed a study on the use of the
well-known Benford’s law for the task of GAN-generated image detection, by defining
a strategy to extract Benford-related features from an image relying on different diver-
gence definitions. We also showed how to combine these features in order to better
exploit different bases as well as DCT frequencies. Using these features, we performed
a series of experiment based on a simple Random Forest classifier in order to study the
amount of information captured by the features, rather than focusing on specializing a
complex classifier. Results show that GAN-generated images often fail in respecting
Benford’s law, thus can be discriminated from natural pictures. However, some kind of
CNN architectures seem to produce images that are harder to detect than others.

In addition to face image manipulation, we tackled the detection of facial manipula-
tion in video sequences, targeting classical computer graphics as well as Deep Learn-
ing generated fake videos. The proposed method takes inspiration from the family of
EfficientNet models and improves upon a recently proposed solution, investigating an
ensemble of models trained using two main concepts: (i) an attention mechanism which
generates a human comprehensible inference of the model, increasing the learning ca-
pability of the network at the same time; (ii) a triplet siamese training strategy which
extracts deep features from data to achieve better classification performances. Results
evaluated over two publicly available datasets containing almost 120 000 videos reveal
the proposed ensemble strategy as a valid solution for the goal of facial manipulation
detection.
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CHAPTER5
Physical integrity with X-ray imaging

Assessing physical integrity of products is a fundamental part of quality control in in-
dustry. This can be done with several different techniques. The most interesting ones
are surely non-destructive methods, i.e., solutions that enable to inspect the object un-
der analysis not altering its status. For instance, if we think about food safety, the goal
of physical integrity checks is to ensure that food has not been contaminated, avoid-
ing opening all food containers under analysis with the risk of introducing additional
contamination. Among these methods, Hyperspectral X-ray analysis is a very power-
ful and flexible technique to inspect the inside of the products to find imperfections or
contaminants.

In this chapter we introduce the topic of Hyperspectral X-ray analysis aimed at food
safety. This is just one of the possible application of this kind of analysis, yet we
consider it as one of the most interesting to investigate due to its diffusion and effec-
tiveness in industrial pipelines [169]. This chapter serves as the foundation for the next
two chapters, as it provides the reader with a few elemental concepts that will be used
later on, i.e., the considered X-ray acquisition system, and a physical law that links X-
ray acquisitions to the physical object under analysis. In the next two chapters we will
investigate more in detail two aspects of Hyperspectral X-rays analysis: the denoising
of X-ray acquisitions, and the classification of plastic polymers from the acquired data.

This introductory chapter is organized as follows: Section 5.1 provides some state
of the art for the use of X-ray analysis in food safety. Section 5.2 describes the X-
ray acquisition system we consider to obtain the hyperspectral acquisitions used in the
coming chapters. Section 5.3 provides some background on the Lambert-Beer law, a
physical law we exploit in the next chapters. Finally, Section 5.4 concludes the chapter.
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5.1 Physical integrity in the food industry

Industrial food is a broad presence in alimentation nowadays. More and more gro-
ceries are prepared, cooked and packed in industrial pipelines, with a possible risk of
contamination from foreign bodies, which can be harmful if ingested. For this reason,
authorities like the European Commission have developed a series of safety guidelines
inspired by the Hazard Analysis and Critical Control Points (HACCP) [6]. Producers
are forced to respect these standard rules to lower the risk of contamination at any point
in the production chain. Unfortunately, this does not ensure complete safety by itself:
the food still needs to be inspected.

Among the possible ways of analysing the food, we can find intrusive tests which
require access to the inspected food. Biological, physical and chemical analysis are
often part of this category [170]. Non-intrusive tests are also very common [171], and
they have the advantage of not requiring physical access to the food, proving particu-
larly suited for post-packaging analysis. This category includes all the various types
of scans performed on the package while transporting it on a conveyor belt. X-ray
scans are commonly adopted in industry for finding contaminants with a high density
with respect to the food (typically metals), which appear as darker areas in the acquisi-
tion [7, 172–174]. One of the shortcomings of the traditional X-ray approaches is that
they are not suited for spotting low-density contaminants (i.e., certain plastic polymers,
organic material, wood), which typically do not block enough radiation to be visible
in the output image [175–179]. With hyperspectral X-rays, we can divide the radiation
energy into sub-bands to be analyzed separately. This brings more information in the
output image and allows for detecting even low-density contaminants [28, 29].

X-ray penetration depends on a series of factors: the atomic number, density and
thickness of the elements composing the object under analysis [180], [181]. Therefore,
X-ray hyperspectral images can be used as signatures of different materials. Addition-
ally, if an object is a composite of different elements, it is possible to linearly combine
the absorption effect of the different components [182]. If we know the kind of food
we are analysing and we want to detect physical contaminants within it, it is possible to
subtract the specific food absorption signature from the performed X-ray acquisition,
thus leaving only the possible contaminant absorption signature within the measure-
ments [183]. This enables developing classification techniques that are agnostic to the
kind of food a contaminant may be corrupting. In other words, recognizing a contami-
nant alone helps us recognizing the contaminant buried in food.

5.2 Acquisition system

With reference to Figure 5.1, the hyperspectral image acquisition system considered in
this work is composed by a X-ray generator, a conveyor transporting the objects under
analysis (e.g., food containers) and a hyperspectral X-ray detector. This is a very com-
mon system architecture for industrial inspection. The source of the X radiation is an
X-ray tube, i.e., a vacuum tube containing a cathode and an anode. X-rays are gener-
ated by directing a stream of high speed electrons from the cathode to the anode. The
detector is a linear sensor that measures the intensities (at different spectral frequencies,
commonly named X-ray energies due to the Planck-Einsten Relation [184]) of photons
that have not been absorbed by objects in front of it, i.e., the photons that pass through
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Food container

X-ray generator

Hyperspectral

detector

Conveyor belt

X-ray beam

Figure 5.1: Representation of the X-ray acquisition system for food contaminant classification.

the object reaching the sensor.
The acquired spectrum is divided intoB photons energy intervals, also called energy

bins. Therefore, each pixel of the acquired image is a vector of size 1 × B containing
the intensities at all the energy bins. Since the detector is a push broom sensor of
H vertically aligned pixels, the acquired 2D signal is a linear hyperspectral image I
(called image in the rest of the chapter) with the size of H×B samples, and each value
[I]ij, i = {1, . . . , H}, j = {1, . . . , B} represents the intensity of received photons for
a given spatial position and a given energy bin. Figure 5.2 shows an example of the
sensor’s output, while Figure 5.3 shows an example of the 1D signal we can obtain by
selecting a particular pixel from the 2D acquisition. We will use both kinds of signal in
the next chapters.

It is important to point out that, in normal operating condition of the system, the
scanned object is moving on the conveyor belt. It is therefore paramount to develop
timely and efficient solutions for data denoising and processing in order to work in
real-time environments.

5.3 Lambert-Beer law

Lambert-Beer law relates the absorption of light to the material through which the light
passes. Similarly, the absorption of X-rays at each energy E is related to the material
through which the beam passes by the following equation:

λOUT(E) = e−µ(E)∆xλIN(E), (5.1)

where λIN(E) is the average number of incident X-ray photons with energyE, λOUT(E)
is the average number of transmitted ones, µ(E) is the linear attenuation coefficient of
the material and ∆x is the thickness of material through which X-rays have travelled.
When a X-ray beam is acquired and digitalised by a sensor, energies E are discretised
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Chapter 5. Physical integrity with X-ray imaging

Figure 5.2: Example of acquired 2D Hyperspectral X-ray signals. The energy range has been divided
into B = 128 energy bins.

Figure 5.3: Examples of 1D signals obtained by selecting a particular pixel from 2D acquisitions. The
energy range has been divided into B = 128 energy bins.

into B energy bins. As Lambert-Beer law holds for every energy bin, we can rewrite it
in vectorial form as:

λOUT = diag[e−µb∆x]λIN, (5.2)

where µb is the linear attenuation coefficient for the b-th energy bin, diag [·] is a B ×B
diagonal matrix, and both λOUT and λIN are B-element vectors. With this notation at
hand, the sensor reading y is a measure of λOUT.

In principle, we could exploit this relation to bind the absorption of X-rays at each
energy bin with two physical parameters: (i) the effective atomic number Zeff of the
material and (ii) the density-width ρ∆x [19,20,182,185]. In practice, we experimented
that we cannot use the Lambert-Beer law directly on the measured mean acquisition,
due to a series of distortions which invalidate the law. Still, we would like to exploit
the fact that once we fix the X-ray tube and sensor’s parameters, we can completely
determine the shape of the acquired spectrum by only two parameters: Zeff and ρ∆x.
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5.4 Conclusions

This chapter introduced the reader to the problem of physical integrity in the food in-
dustry. We have seen why non-intrusive techniques may be useful to inspect the inside
of objects under analysis in a non-destructive way, and how X-ray acquisition are con-
sidered a possible solution in this field.

Given the impact of X-ray-based methods in the physical integrity world, we de-
scribed the specific acquisition system we have decided to use in our work. This system
involves a conveyor belt that moves objects in between an X-ray source and a receiver,
as it is typically done in common X-ray analysis. Finally, we quickly introduce the
principle behind Lambert-Beer law, which will be exploited in the coming chapters.

The next chapter builds upon this one, by reporting our work on denoising of the
acquired X-ray data.
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CHAPTER6
Hyperspectral X-ray Denoising Techniques

Due to their nature, Hyperspectral X-ray acquisitions are subject to a significant amount
of noise. The main reason for this noise is the stochasticity of the photon emission
process [186]. Therefore, Hyperspectral X-ray data need to be adequately preprocessed
before their usage to ensure good quality physical integrity analysis results.

Referencing the system depicted in Figure 5.1, we know that the system’s noise
follows a Poissonian distribution independent in each energy sub-band of the spectrum
[187]. The simplest way to obtain a noise-free acquisition is to average together a
certain number of noisy acquisitions. Unfortunately, this averaging operation is often
too slow for the typical applications of food safety, which often require processing
to happen in real-time. This forces us to find alternative denoising procedures. As
explained in Section 5.3, given a particular material, the shape of its ideal acquired
signal is, in principle, determined by a couple of physical parameters. We want to
exploit this information while developing an effective denoising algorithm.

This chapter treats the aspect of denoising Hyperspectral X-ray acquisitions, com-
paring model-based and data-driven solutions for this task. We first propose a compar-
ison between Wiener filter [188] and the popular AutoEncoder (AE) neural network to
assess if the denoising could be effectively done in a data-driven fashion. The rationale
is that, if proven possible, a better denoising neural network could be developed, ex-
ploiting the abundance of data we can collect with the acquisition system. As a second
contribution, we take into account different versions of AEs, and we compare them for
the denoising task under strict conditions. We find particularly suited the AEs neural
network family for their ability to find an encoding of the input signal of arbitrary di-
mensions. By forcing the input to be reconstructed with just a few parameters (e.g.,
the network latent space), the network should learn to keep only the relevant infor-
mation and remove the noise. Driven by the Lambert-Beer law (Section 5.3), which
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Chapter 6. Hyperspectral X-ray Denoising Techniques

describes a parameterization of each material using just two parameters, we focus on a
2-dimensional latent space for the AEs.

The chapter is organized as follows: Section 6.1 gives important details on the con-
cepts of Wiener filter and AE that we use throughout the chapter. Section 6.2 describes
the proposed method on the comparison between a model-based and a data-driven tech-
nique for denoising. Section 6.3 describes the proposed method on the use of AE vari-
ants for the denoising task. Finally, Section 6.4 draws common conclusions between
the two proposed methods and concludes the chapter.

6.1 Background

In this section we introduce some background on Wiener filtering and AutoEncoders
(AEs), as these are the main tools used in the rest of the chapter.

6.1.1 Wiener filter for image restoration

Wiener filtering is commonly adopted in image restoration problems [189–192], since it
performs a statistical estimation of an unknown signal while taking noise into account.
Considering a noise model as the following:

I = I0 +N, (6.1)

in which I0 is the clean image and N an additive noise, Wiener filter approach estimates
Î such that the Mean Squared Error (MSE) between I0 and Î is minimized. Î is defined
as it follows:

[Î]ij = F2
−1

(
[F2(I)]ij

[SI ]ij
[SI0 ]ij + [SN ]ij

)
, (6.2)

where F2(·) is the 2D Fourier transform, SN = |F2(N)|2 represents the power spectrum
of the noise, and SI = |F2(I)|2 is the power spectrum of the clean image. This method
is very effective provided that SN and SI are estimated in a quite accurate way and
model’s assumptions hold [188].

6.1.2 AutoEncoders

An AutoEncoder (AE) is a specific kind of neural network. The purpose of such a
network architecture is to learn a low dimensionality representation of an image (latent
representation), and then reconstruct the input from it [193]. The rationale behind this
technique is to build a representation of the input such that the reconstructed output
is derived from its most robust features. A particular kind of AE is the Convolutional
AutoEncoder (CAE) (Figure 6.1). It is composed by an encoding part, in which Con-
volution and Pooling layers are employed to reduce the input dimensionality, and a
decoding part, in which Deconvolution (i.e. Transposed Convolution) and Upsampling
layers are employed to expand the latent representation dimensionality up to the input
shape. We can define the CAE as a function C (θ, ·) such that:

Î = C (θ, I) , (6.3)

where I is the input image, Î is the output image, matching the shape of I and θ is the
AE weights’ vector that must be learned with a suitable training procedure.
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6.2. Data driven and model based denoising solutions

Figure 6.1: Typical Convolutional AutoEncoder structure. An input image is mapped to its latent rep-
resentation by the encoder. The decoder turns the latent representation into an estimate of the input
data.

AEs are one of the most used neural networks in literature when it comes to de-
noising. A method for denoising medical images with an eye on training sample’s size
is proposed in [194]. Also 1D signals are commonly processed with AE. An exam-
ple is [195] where ECG signals are processed to remove various acquisition artefacts.
In the last years, Variational AutoEncoder (VAE) was introduced as a generic infer-
ence framework for probabilistic models [196] but has been more recently adopted as
a denoising network. Radar signals are cleaned from disturbs with a VAE in [197],
while radio tomographic imagery is tackled in [198]. When using VAEs as a predictive
model, we must take into account its probabilistic nature, which can lead to undesired
stochasticity in the output. One recent work [199] shows how we can slightly change
the perspective of seeing a VAE to keeping most of its advantages while keeping it
deterministic. We can consider the random process of sampling the latent space (as
proposed by the original VAE paper) as a random noise injection in the latent space of
a deterministic AE. In this way, the injected noise augments the input data. The decoder
has to keep this into account in learning the most appropriate input reconstruction, with
the practical effect of making the network more robust. We call this particular network
paradigm Augmented AutoEncoder (AuAE), and we refer to further sections for a more
detailed explanation of this phenomenon.

6.2 Data driven and model based denoising solutions

Wiener filter [188] is one of the milestones in signal and image denoising and still
nowadays is a crucial stage in state-of-the-art image denoising [191] and image pro-
cessing [192] techniques. However, the introduction of Deep Learning dramatically
outperformed most of the previous approaches making Convolutional Neural Networks
(CNNs) a crucial step in many denoising algorithms [200–202]. Here, we tackle the
denoising of mixed 2D signals, where, as detailed in Section 6.2.1, we have different
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Figure 6.2: (a) Single acquisition of background image. (b) Mean of 10000 acquisitions of background
image.

physical characteristics on the two axes (space and X-ray energy bin in our case). In
particular, we compare the capabilities of the 2D Wiener filter to a CNN approach with
the significant advantage that, for the latter, we do not need a detailed knowledge of
noise and signal statistical behaviour. We follow an approach based on a CAE due
to its proven effectiveness in many denoising applications [194, 201, 203–205] and the
results provide an excellent agreement with the Wiener filter.

6.2.1 Problem formulation

Images acquired through digital acquisition systems are subject to different kinds of
degradation. For the system under analysis, we can approximate noise as additive zero-
mean noise due to thermal, shot and 1/f noise [206]. Formally we can define the
acquired image I as:

I = I0 +N, (6.4)

where I0 is the true (i.e., unaffected by noise) image signal and N is the additive noise
term. With this model at hand, our goal is to estimate a denoised version of I, namely
Î, as close as possible to I0, thus compensating for the detrimental effect of N.

Under the assumption of additive zero-mean independent noise realizations affecting
the acquisition, we can consider the sample mean Ī of an adequate number of repeated
acquisition (i.e., 10 000) of an image I as a good and not distorted estimate of the clean
image I0. Therefore we consider Ī as the ground truth for our algorithm’s output (see
Figure 6.2). However, note that the sample mean can only be applied in a controlled
offline procedure, as it would not be feasible in a real-time system due to the necessity
of multiple repeated acquisitions.

6.2.2 Preprocessing

Images directly obtained from the sensor are not suitable for denoising due to their
dynamic range and the presence of banding artefacts. For this reason, we first apply
two preprocessing operations before performing the denoising step.
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Figure 6.3: Mean of background image. (a) Before row normalization. (b) After row normalization.

Row Normalization

Figure 6.3a shows the average background image M obtained averaging 10 000 ‘back-
ground’ images (e.g., no objects were placed in front of the sensor). It is possible to
notice that the average acquired signal shows three horizontal lines in which the values
are significantly lower than the rest of the signal’s rows. This effect is due to the form
factor of the detector which is physically divided in four sub-sensors, each one con-
tributing to 32 rows. To contrast this, we perform row normalization on each H ×W
input image I, starting from the mean background signal M. The ‘background’ signal is
chosen as all the other acquired images have lower values (in the background image no
objects intersect the X-ray path so the intensity of the detected photons is maximum).

The normalized version Ĩ of the input image I is obtained element-wise by:

[Ĩ]ij =
[I]ij [m]j
[M]ij

, (6.5)

where:

[m]j =
1

H

H∑

i=1

[M]ij (6.6)

is the spatial average of M for frequency bin j. Figure 6.3b reports the normalized
image Ĩ. It is possible to notice that the periodic artefacts have been strongly attenuated.

Histogram Normalization

Another important preprocessing step consist in stretching the image dynamic in the
range [0, 1] in order to obtain an adequate input for the CNN. Since we are dealing
with hyperspectral data, different images have different value distributions with their
own maxima. We perform histogram normalization in order to obtain a more uniform
distribution of data over the range [0, 1] as shown in Figure 6.4. This is convenient
for numerical stability in optimization algorithms, since it is more difficult reaching
convergence with very skewed and imbalanced sample distributions.
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Figure 6.4: Values distribution for an image pre and post histogram normalization.

6.2.3 Denoising

After preprocessing, images are ready for the denoising step. We compare two different
denoising strategies: a model-based solution based on Wiener filtering; a data-driven
method based on the AE.

Wiener Filter

According to Equation (2.7), to apply a Wiener filter to an image, we need to estimate
the power spectrum of the clean image SI and the power spectrum of the noise SN . The
power spectrum of the clean image SI is computed as:

SI = |F2(Ī)|2, (6.7)

since the normalized mean image Ī is considered representative of the clean image,
where:

[̄
I
]
ij
=

1

10000

10000∑

n=1

[Ĩn]ij, (6.8)

Following the same procedure, the power spectrum of the noise SN is computed as:

SN =
1

10000

10000∑

n=1

|F2(In − Ī)|2. (6.9)

Convolutional AutoEncoder

The detailed architecture of the adopted CAE is depicted in Table 6.1. Given as input
a noisy image I, the CAE C(θ, I) outputs directly the denoised version of the image
Î. The goal of the AE is to first reduce the dimensions of the image and then try to
reconstruct it from this low-dimension representation, hopefully neglecting the noise
affecting the original signal. The proposed architecture takes as input an image of
shape 128× 128× 1 and reduces it to 6× 6× 256, applying a downsampling factor of
almost 2.

SoftMax as the last layer’s activation function ensures that the output lies in the [0, 1]
range.

104



i
i

“output” — 2022/5/10 — 21:04 — page 105 — #115 i
i

i
i

i
i

6.2. Data driven and model based denoising solutions

Table 6.1: Full list of CAE layers.

Type Filters Activation Output shape

Input - - (128× 128× 1)
Convolution 2D 32× (5× 5) ReLU (124× 124× 32)

Max Pooling (2× 2) - (62× 62× 32)
Convolution 2D 64× (3× 3) ReLU (60× 60× 64)

Max Pooling (2× 2) - (30× 30× 64)
Convolution 2D 128× (3× 3) ReLU (28× 28× 128)

Max Pooling (2× 2) - (14× 14× 128)
Convolution 2D 256× (3× 3) ReLU (12× 12× 256)

Max Pooling (2× 2) - (6× 6× 256)
Upsampling (2× 2) - (12× 12× 256)

Deconvolution 2D 128× (3× 3) ReLU (14× 14× 128)
Upsampling (2× 2) - (28× 28× 128)

Deconvolution 2D 64× (3× 3) ReLU (30× 30× 64)
Upsampling (2× 2) - (60× 60× 64)

Deconvolution 2D 32× (3× 3) ReLU (62× 62× 32)
Upsampling (2× 2) - (124× 124× 32)

Deconvolution 2D 1× (5× 5) SoftMax (128× 128× 1)

6.2.4 Experimental Setup

In this section we report all details concerning the considered experimental setup. We
first describe the considered dataset. We then report implementation details about the
AE training procedure.

Dataset

The dataset is composed by acquisitions taken with MultiX ME1001, which is a lin-
ear sensor of length 128 pixel. The operating point is 90keV and 0.2mA. For each
acquisition, we place an object in front of the sensor, we irradiate it with a X-ray
beam, and record the linear sensor output. For each object we acquire 10 000 static
images (i.e., the item is steady in front of the sensor) changing the acquisition time
τ = {1ms, 1.5ms, 2ms} (i.e., the active recording time of the sensor, similar to a cam-
era shutter time).

We divide the energy spectrum of the acquisition in 128 bins. The final shape of
each measure is therefore 128× 128, where the first dimension is the number of pixels
in a single column, so acquired in the vertical direction, and the second is the number
of energy bins used to represent the spectrum. Different plastic polymers of different
thickness are considered as objects, as listed in Table 6.2. These polymers have a
chemical composition which represents the most common contaminants that can be
found during food inspections. For each material width δ and for each acquisition time
τ three measures have been done, totalling 138 measures. The whole corpus of images
is therefore composed of 1 380 000 hyperspectral images of shape 128× 128.

As both Wiener filtering and the AE rely on the offline estimation of a set of pa-
rameters (i.e., power spectrums and network weights), we applied a commonly adopted
training-validation-testing split policy to avoid biasing the achieved results. We paid at-

1https://www.qualityassurancemag.com/article/multix-me100-x-ray/
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Table 6.2: Considered materials for the acquisitions.

Material Label Width δ [mm]

Background BKG -
Polyethylene PE 2, 8, 16
Polyamide PA66 2, 8, 16

Polyoxymethylene POM 2, 8, 16
Polytetrafluoroethylene PTFE 2, 8, 16

Polyvinyl chloride PVC 2, 8, 16

tention to keep in the same set measurements of the same material (including width δ)
with the same acquisition time τ . Hence, we randomly use 70% of the data for training
(of which 21.4% for validation) and 30% for testing.

Training and testing pipeline

We develop our AE model using Keras with TensorFlow as backend [207]. The network
is trained to minimize the loss function L computed on batches of K = 50 noisy
images and their denoised version Î:

L =
1

K

K∑

k=1

∥Ik − Îk∥2F =
1

K

K∑

k=1

∥Ik − A(θ, Ik)∥2F , (6.10)

where ∥ · ∥F denotes the Frobenius norm. We use Stochastic Gradient Descent (SGD)
with Nesterov momentum [53] as optimizer, setting initial learning rate to 0.01, learning
rate decay to 10−6 each epoch and momentum to 0.9, until reaching convergence on a
validation plateau. At testing time, we freeze the network weights and we compute the
output from each image in the testing dataset.

6.2.5 Results

Table 6.3 shows the results for the two considered denoising algorithms in term of Peak
Signal-to-Noise Ratio (PSNR) , which is defined as:

PSNR = 20 · log10

(
HW

∥I− Î∥2F

)
, (6.11)

where I and Î are the compared images of size H ×W whose range is [0, 1], and the
numerator term HW is needed to compensate for the signals’ size.

Even though both algorithms yield good results, it is worth noting that the imple-
mentation of Wiener filter is heavily tailored to the considered acquisition system data
model. Nevertheless, PSNR between the two methods is comparable, showing that it is
possible to work in a CNN fashion for hyperspectral X-ray denoising.

In particular, the advantage of using the AE is that we do not need to have any kind of
prior knowledge on the input data model, and we only need some training images. This
leads to better generalization capability with respect to Wiener filter method, which
requires a carefully characterization of the Noise-to-Signal ratio SN/SI .
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6.2. Data driven and model based denoising solutions

Table 6.3: PSNR for the considered methods. Best results in bold.

Material
(δ, τ )

Wiener filter
PSNR [dB]

AE
PSNR [dB]

BKG 2ms 41.192 38.729
PA66 16mm 1.5ms 40.827 40.827
PA66 2mm 1.5ms 39.720 39.406

PE 2mm 1.5ms 39.259 38.852
PE 8mm 1.5ms 39.830 39.721

POM 16mm 2ms 41.329 40.880
POM 2mm 2ms 40.479 39.371

POM 8mm 1.5ms 40.362 40.163
PTFE 16mm 1ms 41.696 40.300
PTFE 2mm 1.5ms 39.900 39.626
PTFE 8mm 2ms 40.605 40.015
PVC 16mm 1ms 40.897 37.289
PVC 16mm 2ms 42.649 40.605
PVC 2mm 2ms 40.589 39.521
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(d) CAE

Figure 6.5: Output images from the considered denoising methods.

Moreover, the good denoising results achieved by the CAE could be further ex-
ploited in case supervised problems (e.g., contaminant detection, segmentation, classi-
fication) should be faced after denoising. As a matter of fact, a transfer learning ap-
proach [208] could be adopted in order to develop and train different CNNs that share
many layers with the one proposed here, dramatically reducing the number of parame-
ters to be trained. A visual example of the goodness of output images with respect to
the ground truth is shown in Figure 6.5 and a per-pixel plot is depicted in Figure 6.6.

An interesting aspect to analyze is the output of the hidden layers of the trained net-
work. In fact, output from hidden encoding layers displays the automatically extracted
features from the input image, giving us a clue on what the network is highlighting dur-
ing the encoding procedure. Figure 6.7 displays some of the output from the innermost
hidden layer, generated by using as input a sample from the measure “PVC 8mm at
2ms”. We can clearly notice different neurons activating at different energy bins, each
one capturing different shapes and intensities that will be used in the decoder to recon-
struct the final output. This enables us to consider the CAE as a methodology learning
a set of meaningful basis for data projection.
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energy bin

Figure 6.6: Comparison of different methods on row 50 of a specific image. The trend on other images
is the same.

Figure 6.7: Hidden layers representation.

6.3 Comparison between different AutoEncoder architectures

In this section we propose a comparison between AEs and VAE for the tasks of hy-
perspectral acquisition denoising. We train the networks to reconstruct the noise-free
version of a given noisy acquisition in an unsupervised fashion, without using the aver-
age signal as a groundtruth. We show how the networks can denoise the input even in
this challenging scenario.

6.3.1 Problem Statement

The acquisition system we consider is depicted in Figure 5.1. The whole system is
mounted around a conveyor belt directly on the production’s site, and it performs real-
time acquisitions of food containers. It is composed by an X-ray generator emitting
the X radiation registered by the hyperspectral detector after travelling through the
food container. The detector counts the photons which have not been absorbed by
the scanned object at different spectral frequencies. In this framework, frequencies
are commonly named X-ray energies due to the Planck-Einstein Relation [184]. The
detector is a linear sensor array composed by P pixels which samples the space in
different positions. The acquired spectrum is divided into B photon energy intervals,
named “energy bins” from now on. The complete output of the sensors is therefore a
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Figure 6.8: 20 noisy acquisitions with their mean.

P × B matrix of photon counts for each time instant. We call y the B-dimensional
vector containing the photons count for each energy bin of a single pixel in a certain
time instant. Notice that, differently from the previously proposed method, we are now
considering 1D signals (i.e., the output of the sensor for a single pixel). We made this
choice for the sake of simplicity, without undermining the generality of the method,
which can be simply extended by considering more than one pixel at a time in a 2D
signal.

Due to the stochastic nature of photon’s emission, the acquisition y is highly af-
fected by noise. We could approximate the clean acquisition, named λ from now on,
by averaging together an adequate number of noisy acquisitions of the same object, as
depicted in Figure 6.8. This is not feasible in the system’s scenario, with the conveyor
belt moving in the range of 1m/s and the object intersecting the X-ray beam for just a
split second (a typical acquisition time is 0,2ms). Due to this time constraint, we cannot
always measure λ in our analysis and we are forced to develop a time-efficient solution
which does not rely on it. Our ultimate goal is to reduce the acquisition time with the
minimum possible impact on a subsequent contaminant detector. In our experiments,
we consider a single pixel and 128 energy bins, therefore the output of the acquisition
system will have a shape of 1 × 128. It is worth noting that selecting a single pixel
reduces the computational cost without affecting the generalization of the method, as
every pixel has to be considered separately due to constructive characteristics. More-
over, a single pixel is the smallest possible detectable dimension for a contaminant,
giving us insights on the most difficult scenario we can encounter.

We consider the problem of estimating the clean version of a noisy acquisition y,
namely λ. More formally:

λ̂ = Nd (y) , (6.12)

where λ̂ is the estimation of λ produced by the operator Nd. Our goal is to design the
operator Nd. Notice that we do not make use of the actual λ in the equation, as we want
to develop an unsupervised method.
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<latexit sha1_base64="znrSfNFA2OBqc3obdn9KD+OXcwU=">AAACA3icbVBNS8NAEJ3Ur1q/ot70EiyCp5KIoseiF48VbC00oWw2m3bpZjfsboQSCl78K148KOLVP+HNf+OmzUFbB5Z9vDePmXlhyqjSrvttVZaWV1bXquu1jc2t7R17d6+jRCYxaWPBhOyGSBFGOWlrqhnpppKgJGTkPhxdF/r9A5GKCn6nxykJEjTgNKYYaUP17QM/FCxS48R8uT9EOveZcUdoMunbdbfhTstZBF4J6lBWq29/+ZHAWUK4xgwp1fPcVAc5kppiRiY1P1MkRXiEBqRnIEcJUUE+vWHiHBsmcmIhzePambK/HTlKVLGm6UyQHqp5rSD/03qZji+DnPI004Tj2aA4Y44WThGIE1FJsGZjAxCW1Ozq4CGSCGsTW82E4M2fvAg6pw3vvOHentWbV2UcVTiEIzgBDy6gCTfQgjZgeIRneIU368l6sd6tj1lrxSo9+/CnrM8fP/KYjA==</latexit>

�̂

<latexit sha1_base64="/WUnKOxuCGD1dPOqRwU2jPSauCo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxCBSlJEXVZdOOygn1AE8pkOmmHTiZh5kaopfgrblwo4tb/cOffOGmz0OqBC4dz7uXee4JEcA2O82UVlpZXVteK66WNza3tHXt3r6XjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GF1nfvueKc1jeQfjhPkRGUgeckrASD37wBMshErinuKk5ik+GMJJqWeXnaozA/5L3JyUUY5Gz/70+jFNIyaBCqJ113US8CdEAaeCTUteqllC6IgMWNdQSSKm/cns+ik+Nkofh7EyJQHP1J8TExJpPY4C0xkRGOpFLxP/87ophJf+hMskBSbpfFGYCgwxzqLAfa4YBTE2hFDFza2YDokiFExgWQju4st/SatWdc+rzu1ZuX6Vx1FEh+gIVZCLLlAd3aAGaiKKHtATekGv1qP1bL1Z7/PWgpXP7KNfsD6+AWO/k+M=</latexit>

(p1, p2)

<latexit sha1_base64="76ahwYNU/0YtbQ45SsGj++uss98=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGRF0WFXHhooJ9QDsMmTRtQ5PMkGSEMgxu/BU3LhRx61e482/MTGehrQcCJ+fcy733BBGjSjvOt1VaWFxaXimvVtbWNza37O2dlgpjiUkThyyUnQApwqggTU01I51IEsQDRtrB+DLz2w9EKhqKez2JiMfRUNABxUgbybf3ehzpEUYsuU39JP9Inlxdp6lvV52akwPOE7cgVVCg4dtfvX6IY06Exgwp1XWdSHsJkppiRtJKL1YkQniMhqRrqECcKC/JT0jhoVH6cBBK84SGufq7I0FcqQkPTGW2o5r1MvE/rxvrwbmXUBHFmgg8HTSIGdQhzPKAfSoJ1mxiCMKSml0hHiGJsDapVUwI7uzJ86R1XHNPa87dSbV+UcRRBvvgABwBF5yBOrgBDdAEGDyCZ/AK3qwn68V6tz6mpSWr6NkFf2B9/gAacJfi</latexit>

LDF

<latexit sha1_base64="2bjshp6FcqW1tt2kWnFokDU82OU=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APasWQymTY0kwxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJEs60cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpugDXlTNCWYYbTbqIojgNOO8H4Jvc7j1RpJsW9mSTUj/FQsIgRbKz00A8kD/Uktlc2mQ6qNbfuzoCWiVeQGhRoDqpf/VCSNKbCEI617nluYvwMK8MIp9NKP9U0wWSMh7RnqcAx1X42Sz1FJ1YJUSSVPcKgmfp7I8OxzqPZyRibkV70cvE/r5ea6MrPmEhSQwWZPxSlHBmJ8gpQyBQlhk8swUQxmxWREVaYGFtUxZbgLX55mbTP6t5F3b07rzWuizrKcATHcAoeXEIDbqEJLSCg4Ble4c15cl6cd+djPlpyip1D+APn8wdWI5MO</latexit>y
<latexit sha1_base64="IrhBeZN1EVKmRM1bKZU3LsEWuWw=">AAAB+XicbVBNS8NAEN34WetX1KOXYBE8lUQUPRZF8FjBfkAbymYzaZduNmF3Uiyh/8SLB0W8+k+8+W/ctjlo64OBx3szzMwLUsE1uu63tbK6tr6xWdoqb+/s7u3bB4dNnWSKQYMlIlHtgGoQXEIDOQpopwpoHAhoBcPbqd8agdI8kY84TsGPaV/yiDOKRurZdhfhCVWc30mWhKAmPbviVt0ZnGXiFaRCCtR79lc3TFgWg0QmqNYdz03Rz6lCzgRMyt1MQ0rZkPahY6ikMWg/n10+cU6NEjpRokxJdGbq74mcxlqP48B0xhQHetGbiv95nQyjaz/nMs0QJJsvijLhYOJMY3BCroChGBtCmeLmVocNqKIMTVhlE4K3+PIyaZ5Xvcuq+3BRqd0UcZTIMTkhZ8QjV6RG7kmdNAgjI/JMXsmblVsv1rv1MW9dsYqZI/IH1ucPNXSUBw==</latexit>

Encoder

<latexit sha1_base64="2bjshp6FcqW1tt2kWnFokDU82OU=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APasWQymTY0kwxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJEs60cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpugDXlTNCWYYbTbqIojgNOO8H4Jvc7j1RpJsW9mSTUj/FQsIgRbKz00A8kD/Uktlc2mQ6qNbfuzoCWiVeQGhRoDqpf/VCSNKbCEI617nluYvwMK8MIp9NKP9U0wWSMh7RnqcAx1X42Sz1FJ1YJUSSVPcKgmfp7I8OxzqPZyRibkV70cvE/r5ea6MrPmEhSQwWZPxSlHBmJ8gpQyBQlhk8swUQxmxWREVaYGFtUxZbgLX55mbTP6t5F3b07rzWuizrKcATHcAoeXEIDbqEJLSCg4Ble4c15cl6cd+djPlpyip1D+APn8wdWI5MO</latexit>y

<latexit sha1_base64="znrSfNFA2OBqc3obdn9KD+OXcwU=">AAACA3icbVBNS8NAEJ3Ur1q/ot70EiyCp5KIoseiF48VbC00oWw2m3bpZjfsboQSCl78K148KOLVP+HNf+OmzUFbB5Z9vDePmXlhyqjSrvttVZaWV1bXquu1jc2t7R17d6+jRCYxaWPBhOyGSBFGOWlrqhnpppKgJGTkPhxdF/r9A5GKCn6nxykJEjTgNKYYaUP17QM/FCxS48R8uT9EOveZcUdoMunbdbfhTstZBF4J6lBWq29/+ZHAWUK4xgwp1fPcVAc5kppiRiY1P1MkRXiEBqRnIEcJUUE+vWHiHBsmcmIhzePambK/HTlKVLGm6UyQHqp5rSD/03qZji+DnPI004Tj2aA4Y44WThGIE1FJsGZjAxCW1Ozq4CGSCGsTW82E4M2fvAg6pw3vvOHentWbV2UcVTiEIzgBDy6gCTfQgjZgeIRneIU368l6sd6tj1lrxSo9+/CnrM8fP/KYjA==</latexit>

�̂<latexit sha1_base64="0YSJLjfpJf8IpVxref/sUagDphY=">AAAB+XicbVBNS8NAEN34WetX1KOXYBE8lUQUPRb14LGC/YA2lM1m0i7dTcLupFhC/4kXD4p49Z9489+4bXPQ1gcDj/dmmJkXpIJrdN1va2V1bX1js7RV3t7Z3du3Dw6bOskUgwZLRKLaAdUgeAwN5CignSqgMhDQCoa3U781AqV5Ej/iOAVf0n7MI84oGqln212EJ1QyvwOWhKAmPbviVt0ZnGXiFaRCCtR79lc3TFgmIUYmqNYdz03Rz6lCzgRMyt1MQ0rZkPahY2hMJWg/n10+cU6NEjpRokzF6MzU3xM5lVqPZWA6JcWBXvSm4n9eJ8Po2s95nGYIMZsvijLhYOJMY3BCroChGBtCmeLmVocNqKIMTVhlE4K3+PIyaZ5Xvcuq+3BRqd0UcZTIMTkhZ8QjV6RG7kmdNAgjI/JMXsmblVsv1rv1MW9dsYqZI/IH1ucPJg+T/Q==</latexit>

Decoder

<latexit sha1_base64="znrSfNFA2OBqc3obdn9KD+OXcwU=">AAACA3icbVBNS8NAEJ3Ur1q/ot70EiyCp5KIoseiF48VbC00oWw2m3bpZjfsboQSCl78K148KOLVP+HNf+OmzUFbB5Z9vDePmXlhyqjSrvttVZaWV1bXquu1jc2t7R17d6+jRCYxaWPBhOyGSBFGOWlrqhnpppKgJGTkPhxdF/r9A5GKCn6nxykJEjTgNKYYaUP17QM/FCxS48R8uT9EOveZcUdoMunbdbfhTstZBF4J6lBWq29/+ZHAWUK4xgwp1fPcVAc5kppiRiY1P1MkRXiEBqRnIEcJUUE+vWHiHBsmcmIhzePambK/HTlKVLGm6UyQHqp5rSD/03qZji+DnPI004Tj2aA4Y44WThGIE1FJsGZjAxCW1Ozq4CGSCGsTW82E4M2fvAg6pw3vvOHentWbV2UcVTiEIzgBDy6gCTfQgjZgeIRneIU368l6sd6tj1lrxSo9+/CnrM8fP/KYjA==</latexit>

�̂

<latexit sha1_base64="/WUnKOxuCGD1dPOqRwU2jPSauCo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxCBSlJEXVZdOOygn1AE8pkOmmHTiZh5kaopfgrblwo4tb/cOffOGmz0OqBC4dz7uXee4JEcA2O82UVlpZXVteK66WNza3tHXt3r6XjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GF1nfvueKc1jeQfjhPkRGUgeckrASD37wBMshErinuKk5ik+GMJJqWeXnaozA/5L3JyUUY5Gz/70+jFNIyaBCqJ113US8CdEAaeCTUteqllC6IgMWNdQSSKm/cns+ik+Nkofh7EyJQHP1J8TExJpPY4C0xkRGOpFLxP/87ophJf+hMskBSbpfFGYCgwxzqLAfa4YBTE2hFDFza2YDokiFExgWQju4st/SatWdc+rzu1ZuX6Vx1FEh+gIVZCLLlAd3aAGaiKKHtATekGv1qP1bL1Z7/PWgpXP7KNfsD6+AWO/k+M=</latexit>

(p1, p2)

<latexit sha1_base64="76ahwYNU/0YtbQ45SsGj++uss98=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGRF0WFXHhooJ9QDsMmTRtQ5PMkGSEMgxu/BU3LhRx61e482/MTGehrQcCJ+fcy733BBGjSjvOt1VaWFxaXimvVtbWNza37O2dlgpjiUkThyyUnQApwqggTU01I51IEsQDRtrB+DLz2w9EKhqKez2JiMfRUNABxUgbybf3ehzpEUYsuU39JP9Inlxdp6lvV52akwPOE7cgVVCg4dtfvX6IY06Exgwp1XWdSHsJkppiRtJKL1YkQniMhqRrqECcKC/JT0jhoVH6cBBK84SGufq7I0FcqQkPTGW2o5r1MvE/rxvrwbmXUBHFmgg8HTSIGdQhzPKAfSoJ1mxiCMKSml0hHiGJsDapVUwI7uzJ86R1XHNPa87dSbV+UcRRBvvgABwBF5yBOrgBDdAEGDyCZ/AK3qwn68V6tz6mpSWr6NkFf2B9/gAacJfi</latexit>

LDF

<latexit sha1_base64="01BPu0vwer2JPsO7kDATSrSPNDs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSIIQklE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+Oyura+sbm4Wt4vbO7t5+6eCwqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3dRvPaHSPJYPZpygH9GB5CFn1Fipft4rld2KOwNZJl5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bHTohp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRtCN7iy8ukeVHxripu/bJcvc3jKMAxnMAZeHANVbiHGjSAAcIzvMKb8+i8OO/Ox7x1xclnjuAPnM8fcyuMtA==</latexit>

+

<latexit sha1_base64="0pDaSiHX7nxEfz+YUf48fZBu9oc=">AAACJ3icbVBNixNBEO1Zd90Yd3XU416aDUKEJcyExfUkwb14kgibD8jE0NOpSZr0x9BdI4Qh/8aLf8XLgoq4R/+JPUkOa+KDph+vXlFVL82lcBhFd8HBg8Ojh8e1R/XHJ6dPnobPnvedKSyHHjfS2GHKHEihoYcCJQxzC0ylEgbp4rqqDz6DdcLoG1zmMFZspkUmOEMvTcK3CeROSKNp4oSiiWI450yWH1aJhAyb0QVNUiOnbqn8V3rTTLHVp3ZixWyOryZhI2pFa9B9Em9Jg2zRnYTfk6nhhQKNXDLnRnGU47hkFgWXsKonhYOc8QWbwchTzRS4cbm+c0VfemVKM2P900jX6v2OkilXLeqd1R1ut1aJ/6uNCszejEuh8wJB882grJAUDa1Co1NhgaNcesK4FX5XyufMMo4+2roPId49eZ/02634dSv6eNnovNvGUSNn5Jw0SUyuSIe8J13SI5x8Id/ID/Iz+BrcBr+C3xvrQbDteUH+QfDnLwq1pqk=</latexit>

✏ ⇠ N
�
0,�2

�

<latexit sha1_base64="2bjshp6FcqW1tt2kWnFokDU82OU=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APasWQymTY0kwxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJEs60cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpugDXlTNCWYYbTbqIojgNOO8H4Jvc7j1RpJsW9mSTUj/FQsIgRbKz00A8kD/Uktlc2mQ6qNbfuzoCWiVeQGhRoDqpf/VCSNKbCEI617nluYvwMK8MIp9NKP9U0wWSMh7RnqcAx1X42Sz1FJ1YJUSSVPcKgmfp7I8OxzqPZyRibkV70cvE/r5ea6MrPmEhSQwWZPxSlHBmJ8gpQyBQlhk8swUQxmxWREVaYGFtUxZbgLX55mbTP6t5F3b07rzWuizrKcATHcAoeXEIDbqEJLSCg4Ble4c15cl6cd+djPlpyip1D+APn8wdWI5MO</latexit>y
<latexit sha1_base64="IrhBeZN1EVKmRM1bKZU3LsEWuWw=">AAAB+XicbVBNS8NAEN34WetX1KOXYBE8lUQUPRZF8FjBfkAbymYzaZduNmF3Uiyh/8SLB0W8+k+8+W/ctjlo64OBx3szzMwLUsE1uu63tbK6tr6xWdoqb+/s7u3bB4dNnWSKQYMlIlHtgGoQXEIDOQpopwpoHAhoBcPbqd8agdI8kY84TsGPaV/yiDOKRurZdhfhCVWc30mWhKAmPbviVt0ZnGXiFaRCCtR79lc3TFgWg0QmqNYdz03Rz6lCzgRMyt1MQ0rZkPahY6ikMWg/n10+cU6NEjpRokxJdGbq74mcxlqP48B0xhQHetGbiv95nQyjaz/nMs0QJJsvijLhYOJMY3BCroChGBtCmeLmVocNqKIMTVhlE4K3+PIyaZ5Xvcuq+3BRqd0UcZTIMTkhZ8QjV6RG7kmdNAgjI/JMXsmblVsv1rv1MW9dsYqZI/IH1ucPNXSUBw==</latexit>

Encoder

<latexit sha1_base64="2bjshp6FcqW1tt2kWnFokDU82OU=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APasWQymTY0kwxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJEs60cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpugDXlTNCWYYbTbqIojgNOO8H4Jvc7j1RpJsW9mSTUj/FQsIgRbKz00A8kD/Uktlc2mQ6qNbfuzoCWiVeQGhRoDqpf/VCSNKbCEI617nluYvwMK8MIp9NKP9U0wWSMh7RnqcAx1X42Sz1FJ1YJUSSVPcKgmfp7I8OxzqPZyRibkV70cvE/r5ea6MrPmEhSQwWZPxSlHBmJ8gpQyBQlhk8swUQxmxWREVaYGFtUxZbgLX55mbTP6t5F3b07rzWuizrKcATHcAoeXEIDbqEJLSCg4Ble4c15cl6cd+djPlpyip1D+APn8wdWI5MO</latexit>y

<latexit sha1_base64="znrSfNFA2OBqc3obdn9KD+OXcwU=">AAACA3icbVBNS8NAEJ3Ur1q/ot70EiyCp5KIoseiF48VbC00oWw2m3bpZjfsboQSCl78K148KOLVP+HNf+OmzUFbB5Z9vDePmXlhyqjSrvttVZaWV1bXquu1jc2t7R17d6+jRCYxaWPBhOyGSBFGOWlrqhnpppKgJGTkPhxdF/r9A5GKCn6nxykJEjTgNKYYaUP17QM/FCxS48R8uT9EOveZcUdoMunbdbfhTstZBF4J6lBWq29/+ZHAWUK4xgwp1fPcVAc5kppiRiY1P1MkRXiEBqRnIEcJUUE+vWHiHBsmcmIhzePambK/HTlKVLGm6UyQHqp5rSD/03qZji+DnPI004Tj2aA4Y44WThGIE1FJsGZjAxCW1Ozq4CGSCGsTW82E4M2fvAg6pw3vvOHentWbV2UcVTiEIzgBDy6gCTfQgjZgeIRneIU368l6sd6tj1lrxSo9+/CnrM8fP/KYjA==</latexit>

�̂<latexit sha1_base64="0YSJLjfpJf8IpVxref/sUagDphY=">AAAB+XicbVBNS8NAEN34WetX1KOXYBE8lUQUPRb14LGC/YA2lM1m0i7dTcLupFhC/4kXD4p49Z9489+4bXPQ1gcDj/dmmJkXpIJrdN1va2V1bX1js7RV3t7Z3du3Dw6bOskUgwZLRKLaAdUgeAwN5CignSqgMhDQCoa3U781AqV5Ej/iOAVf0n7MI84oGqln212EJ1QyvwOWhKAmPbviVt0ZnGXiFaRCCtR79lc3TFgmIUYmqNYdz03Rz6lCzgRMyt1MQ0rZkPahY2hMJWg/n10+cU6NEjpRokzF6MzU3xM5lVqPZWA6JcWBXvSm4n9eJ8Po2s95nGYIMZsvijLhYOJMY3BCroChGBtCmeLmVocNqKIMTVhlE4K3+PIyaZ5Xvcuq+3BRqd0UcZTIMTkhZ8QjV6RG7kmdNAgjI/JMXsmblVsv1rv1MW9dsYqZI/IH1ucPJg+T/Q==</latexit>

Decoder

<latexit sha1_base64="znrSfNFA2OBqc3obdn9KD+OXcwU=">AAACA3icbVBNS8NAEJ3Ur1q/ot70EiyCp5KIoseiF48VbC00oWw2m3bpZjfsboQSCl78K148KOLVP+HNf+OmzUFbB5Z9vDePmXlhyqjSrvttVZaWV1bXquu1jc2t7R17d6+jRCYxaWPBhOyGSBFGOWlrqhnpppKgJGTkPhxdF/r9A5GKCn6nxykJEjTgNKYYaUP17QM/FCxS48R8uT9EOveZcUdoMunbdbfhTstZBF4J6lBWq29/+ZHAWUK4xgwp1fPcVAc5kppiRiY1P1MkRXiEBqRnIEcJUUE+vWHiHBsmcmIhzePambK/HTlKVLGm6UyQHqp5rSD/03qZji+DnPI004Tj2aA4Y44WThGIE1FJsGZjAxCW1Ozq4CGSCGsTW82E4M2fvAg6pw3vvOHentWbV2UcVTiEIzgBDy6gCTfQgjZgeIRneIU368l6sd6tj1lrxSo9+/CnrM8fP/KYjA==</latexit>

�̂

<latexit sha1_base64="vlau4gb3DX15cddlepaSkLzJW3w=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuqy6MZlBfuAJpTJZNoOnUeYmQglZOOvuHGhiFs/w51/46TNQlsPDHM4517uvSdKGNXG876dysrq2vpGdbO2tb2zu+fuH3S0TBUmbSyZVL0IacKoIG1DDSO9RBHEI0a60eS28LuPRGkqxYOZJiTkaCTokGJkrDRwj4IxMlkQSRbrKbdfFvA0z2sDt+41vBngMvFLUgclWgP3K4glTjkRBjOkdd/3EhNmSBmKGclrQapJgvAEjUjfUoE40WE2OyCHp1aJ4VAq+4SBM/V3R4a4LtazlRyZsV70CvE/r5+a4XWYUZGkhgg8HzRMGTQSFmnAmCqCDZtagrCidleIx0ghbGxmRQj+4snLpHPe8C8b3v1FvXlTxlEFx+AEnAEfXIEmuAMt0AYY5OAZvII358l5cd6dj3lpxSl7DsEfOJ8/fZ6W+g==</latexit>

µ̂ <latexit sha1_base64="/WUnKOxuCGD1dPOqRwU2jPSauCo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxCBSlJEXVZdOOygn1AE8pkOmmHTiZh5kaopfgrblwo4tb/cOffOGmz0OqBC4dz7uXee4JEcA2O82UVlpZXVteK66WNza3tHXt3r6XjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GF1nfvueKc1jeQfjhPkRGUgeckrASD37wBMshErinuKk5ik+GMJJqWeXnaozA/5L3JyUUY5Gz/70+jFNIyaBCqJ113US8CdEAaeCTUteqllC6IgMWNdQSSKm/cns+ik+Nkofh7EyJQHP1J8TExJpPY4C0xkRGOpFLxP/87ophJf+hMskBSbpfFGYCgwxzqLAfa4YBTE2hFDFza2YDokiFExgWQju4st/SatWdc+rzu1ZuX6Vx1FEh+gIVZCLLlAd3aAGaiKKHtATekGv1qP1bL1Z7/PWgpXP7KNfsD6+AWO/k+M=</latexit>
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Figure 6.9: Schematic representation of the three considered architectures. Top left: AE, top right:
AuAE, bottom: VAE.

6.3.2 Proposed Method

We propose three different network architectures for implementing the system, depicted
in Figure 6.9. In this section we describe the network architectures and the loss func-
tions we use for training.

Network architectures

As stated before, we implement the system with three particular network architectures
(i) AE, (ii) AuAE, (iii) VAE.

We choose the AE given the good denoising results such a network provides in [28,
29], despite its simplicity. The AE is composed by an Encoder and a Decoder. During
the encoding, the input signal dimensionality of 128 is halved 6 times by a sequence of
Fully Connected (FC) layers until reaching the latent space dimensionality of 2. The
choice of setting the latent space’s dimension to 2 is motivated by the Lambert-Beer
law (Section 5.3). Exponential Linear Unit (ELU) activation function is employed after
each FC layer. The decoding phase is symmetrical to the encoding, with the latent space
being doubled 6 times up to the original dimensionality of 128. In addition to the ELU,
we perform a light Dropout right after each FC layer, to prevent overfitting [209]. The
last activation is a Leaky ReLU [210] as we want to penalise the output being negative.

The AuAE is an AE whose latent space is injected with Gaussian noise. It fol-
lows the very same structure of the AE. Once the latent space has been encoded, it is
perturbed by a Gaussian noise centered into the encoded value and with a learnable
standard deviation. This means that the network itself learns to set the most appropriate
noise to minimize the loss function. In other words, the network is asked to jointly
learn the best encoder/decoder weights to filter out the input noise, and the augmenta-
tion noise to cast on the latent space to provide more robustness to the whole procedure.

The VAE is chosen for its capability of constraining the distribution of the latent
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6.3. Comparison between different AutoEncoder architectures

space. Its structure is the same of the AE, except for the last FC layer of the encoder
which is replaced by two separate layers needed to estimate the parameters of the latent
space distribution. The actual latent space is retrieved by sampling from this distribu-
tion, following the reparameterization trick described in [196].

In the next sections we will refer to the latent space of a network as (p1, p2), being
the two parameters p1 and p2 learned by the network.

Loss functions

The adopted loss function depends on the architecture at hand. In this section we for-
mally define the loss function for the i-th data sample. The unsupervised AE and AuAE
are trained by minimising the MSE between the noisy input acquisition y and the output
λ̂:

LAE = LDF =
1

B

B∑

b=1

(
yb − λ̂b

)2
, (6.13)

where B is the number of considered energy bins. Notice that the network is forced to
output a clean version of the signal without seeing the actual reference mean spectrum.
This particular employment of MSE is motivated by recent works in image denoising
[211, 212], which already proved successfully in our previous work [29].

Regarding the VAE loss function, we need to take into account the prior distribution
we impose on the latent space. In our case we adopt a multivariate Gaussian prior
pθ = N (µ,Σ) with a diagonal covariance matrix Σ = diag (σ2

1, σ
2
2). Following the

usual formulation proposed by [196] we define LV AE as:

LV AE = LDF + LKL, (6.14)

where LDF is a data fidelity term represented by the MSE in the same way of Equa-
tion (6.13) and LKL is the Kullback-Leibler divergence between the distribution of
latent space parameters, qϕ, and the prior: DKL (qϕ||pθ). We can compute LKL ana-
lytically for the multivariate Gaussian case:

LKL =
1

2

J∑

j=1

[
log

(
σ2
θj

σ̂2
ϕj

)
+

(
µ̂ϕj

− µθj

)2

σ2
θj

+
σ̂2
ϕj

σ2
θj

]
− 1, (6.15)

where J is the dimensionality of the latent space. For the sake of brevity, we just
described the derivation of the framework we need to use the VAE for our purpose. We
point to the original VAE paper [196] and its appendixes for a detailed explanation of
the mathematical background.

6.3.3 Experiments

In this section we discuss the experimental setup we adopted to validate our method.
We describe the dataset and the results we collected after performing the experiments.
For what concerns the implementation, Pytorch framework is used for building and
training the whole pipeline. All the experiments are run on a workstation equipped
with an NVIDIA Titan V Graphics Processing Unit (GPU), an Intel Xeon E5-2687W
and 256 GiB RAM.
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Figure 6.10: Examples of acquisitions. Blue: noisy acquisition y; orange: mean acquisition λ; green:
‘background’ acquisition; red: ‘dark’ acquisition.

Dataset

The dataset is composed by acquisitions from the system, as mentioned above. The X-
ray tube operates at 100kV and 0.2mA. We place each object in front of the sensor and
irradiate it with an X-ray beam, recording its output. We divide the energy spectrum
of the acquisition into B = 128 energy bins. Each object is statically acquired 2555
times with an acquisition time of 2ms. Due to statistical noise in photons counts, each
acquisition of the same object differs from the other. By averaging together all the
acquisitions of the same object, we obtain a good approximation of the “real" spectrum
λ of that object.

The dataset is composed by 8 plastic polymers: ‘PA’, ‘PC’, ‘PE’, ‘PET’, ‘PMMA’,
‘PTFE’, ‘PVC’, ‘PVDF’, 2 metals: ‘Al’, ‘Cu’ and acquisitions of ‘background’ (i.e., the
source’s X-ray directly acquired by the sensor without objects in the middle) and ‘dark’
(i.e., the signal acquired by the sensor with the X-ray source switched off). Figure 6.10
shows an example of a noisy spectrum y, alongside its clean version λ. In the same
plot we also show for reference an example of ‘background’ spectrum and one example
of ‘dark’ spectrum.

Every material (associated with a specific parameter Zeff) is represented by tiles of
different thicknesses (associated with the parameter ρ∆x). The thicknesses range from
2mm to 96mm, for a total of 93 different combinations of Zeff and ρ∆x (i.e., the differ-
ent classes). Figure 6.11 shows a simplified representation of 10 random classes. We
divide the 128 energy bins into three macrobins, from energy bin 0 to 20, from 20 to 40
and from 40 to 128. The uneven spacing accounts for the generally decreasing photon
counts at the higher energies. We then sum the photons counts inside each macrobin to
obtain a 3D representation. We can notice that some classes have significant overlaps.

We experimentally verified that the sensor’s statistical noise follows a Poisson dis-
tribution, independent over each energy bin, with rate equal to the mean photons count
for that specific bin. We use this information to augment the quantity of data by gen-
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6.3. Comparison between different AutoEncoder architectures

Figure 6.11: Simplified representation of 10 random input materials. The 128 energy bins are divided
into three macrobins. In each macrobin, the total number of photons counts are summed, to obtain a
3D projection of the input spectra. Each color represents a different class.

erating synthetic acquisitions from the experimental mean spectra λ. It is worth noting
that this synthesis method does not introduce new materials to the list of the acquired
ones, it just expands the number of available samples for each material. For each class,
we generate 110 000 noisy acquisitions, except for background and dark, for which
we generate 2.5 million noisy acquisitions to balance their frequency with respect to
the rest of the classes. The dataset is therefore composed by roughly 15 million noisy
acquisitions. We split this amount into a train (70%) and a test set (30%), further re-
serving the 20% of the train set for validation. As a last additional step, we remove the
‘background’ and ‘dark’ acquisitions from the test set, as we would like to evaluate the
performances of the methods in the more realistic scenario in which we always have
some material passing through the system.

Metrics

Evaluating the denoising capability of the system is a matter of defining a “similarity”
metric between the true clean spectrum λ and the output of the network λ̂. As stated
above, we know that the photons’ counts noise on every energy bin follows an indepen-
dent Poisson distribution. We can therefore use a Weighted Log-Likelihood (WLL) as
a metric to evaluate the fidelity of the network output with respect to the input:

J = − 1

B

B∑

b=1

(λb(ln(λ̂b)− ln(λb))− (λ̂b − λb)). (6.16)

The quantity J gives us a scalar measure of the compatibility between the predicted
spectrum and the real one, and is the same metric we already used in [29]. For the sake
of clarity, we further define:

Ay = e−J , (6.17)

which bounds the compatibility between 0 (poor result) and 1 (perfect match), and can
be interpreted as the accuracy of the prediction.
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Table 6.4: Results in terms of different metrics for the synthetic dataset with no background and no dark
(best in bold).

Model Ay ASCNR MSE

AuAE 0.9924 0.9698 1.4253
VAEµ 0.9926 0.9710 0.7740
VAEavg 0.9925 0.9704 0.7876

AE 0.9586 0.7689 5.3618
PCA2 0.9502 0.8135 6.5185

Table 6.5: Results in terms of different metrics for the real dataset (best in bold).

Model Ay ASCNR MSE

AuAE 0.9927 0.9709 1.3829
VAEµ 0.9926 0.9715 0.7227
VAEavg 0.9801 0.9694 0.7371

AE 0.9588 0.7681 5.3618
PCA2 0.9318 0.7829 6.4500

We define another metric for assessing the denoising capability of a network, the
Spectral Contrast to Noise Ratio (SCNR):

SCNR =
1

B

B∑

b=1

(ln(λ̂b)− ln(λb))(λ̂b − λb), (6.18)

which measures how much the prediction can be distinguished from the groundtruth. A
SCNR equal to 0 means that the two signals are indistinguishable, while a higher value
indicates that the prediction differs more from the groundtruth. Similarly to Equa-
tion (6.17), we can further define:

ASCNR = e−SCNR, (6.19)

which is bounded between 0 (poor result) and 1 (perfect match).
As a third metric, we also evaluate the pure MSE between the networks output and

the groundtruth:

MSE =
1

B

B∑

b=1

(
λb − λ̂b

)2
, (6.20)

which is the same metric adopted as a loss function during training, with the excep-
tion that in Equation (6.13) we use the network input y as reference instead of the
groundtruth λ.

6.3.4 Results

We report the results in terms of Ay, ASCNR and MSE in Table 6.4. To better take into
account the stochastic nature of the VAE, we decided to evaluate its performance in two
different testing scenarios:

1. VAEavg considers as network output λ̂ the average of 100 predictions for each
input y. This mitigates the uncertainty of the encoding, at the cost of increasing
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the prediction time. We experimentally choose 100 as the number of averaging
acquisitions as it offers a good trade-off between accuracy and time.

2. VAEµ considers the estimated mean as the latent space sample to be decoded. In
other words, we do not consider the uncertainty of the encoding, and the VAE
becomes a deterministic architecture.

Notice that this two scenarios are considered only when testing the network: the train-
ing procedure is exactly the same for the two of them and involves random sampling
from the encoded distribution. We also report in the table the accuracy obtained with
a PCA2, as a baseline. This involves finding the first 2 principal components from the
noisy train acquisitions, and projecting the test set onto them to obtain the reconstruc-
tion.

We also repeat every experiment of Table 6.4 on the dataset of real acquisitions we
used for the generation of the synthetic one. We report those results in Table 6.5. Apart
the Principal Component Analysis (PCA), which benefits from the reduced number
of background and dark acquisitions, the metrics do not change significantly in this
scenario, meaning that the proposed solution can be applied to real data without further
adaptation. A visual reference of the denoising capabilities of each method is reported
in Figure 6.12.

Latent Space

Figure 6.13 shows the distributions for 10 randomly selected materials over the (p1, p2)
latent space. We notice how the AE tends to map every acquisition to a straight line
which suggests a strong correlation between p1 and p2. AuAE and VAEµ are less prone
to squashing the latent space, and we can recognize the gaussian distributions in the
latter. PCA2 does not offer a latent space separation among the different materials.

Ablation tests

As a final set of experiments, we perform an ablation test on two hyperparameters of
the AE: (i) the dimension of the latent space, (ii) the adopted activation function. We
run this tests only on the AE as all the three considered networks share the very same
encoder and decoder structure, so we expect very similar results also for the other two
considered networks.

Regarding the latent space, we initially choose a dimension of 2 driven by the phys-
ical parameterization explained in Section 5.3. To understand how the final accuracy is
affected by this choice, we modify the AE structure to have several increasing dimen-
sions of latent space: 1, 2, 3, 4, 8. To do so in a fair way and keep the total number of
network parameters approximately constant, we also have to remove one intermediate
layer at a time in both the encoder and the decoder side, up to three. As a result, we
have 14 different combinations of number of intermediate layers and dimensionality, as
depicted in Table 6.6. Table 6.6. As a side effect, also the number of parameters in
the final layer of the encoder (and the first of the decoder, symmetrically) changes, as
reported in the first column.

We express this metric in dB with respect to the best result obtained with latent space
equal to 2, as comparison with the architecture shown in Table 6.4. We can notice how
all the configurations perform worse than the one with latent space equal to 2. It is
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Figure 6.12: Example of denoised output (blue) provided by different methods for the same input (or-
ange) compared with the groundtruth (green). From top to bottom: AE, AuAE, VAEµ, PCA2.

reasonable to think that the larger the latent space, the better the network’s capability
to find the best possible inner representation for a given input. What we show here
somehow go against that intuition and justifies our choice of defining a latent space
with just 2 parameters to force the network to learn a physically plausible reduction.
We do not increase the latent space beyond 8 to avoid losing the meaning of signal
compression and risking overfitting.

Regarding the non-linearity used as activation function in the intermediate layers
of the AE, in addition to the original ELU we try other two options: ReLu and Leaky
ReLU. We decided to keep the same Leaky ReLU function as the final activation, for
penalising negative output without run into stability problems. Table 6.7 reports the
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Figure 6.13: Latent space distribution of parameters p1, p2 for 10 random materials, first row, and all
the testing dataset, second row. Different classes are displayed with different colors. From left to
right: AE, AuAE, VAEµ, PCA2. The histograms show the marginal distributions of p1 and p2.

Figure 6.14: Results in terms of Ay varying the latent space dimensionality. The y-axis is expressed in
dB with respect to the Ay reached by the network with latent space equal to 2.

results in term of Ay for the three options. The combination of ELU and Leaky ReLU
we chose in first place reveals the best option among the three.
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Table 6.6: Network configurations for the ablation test on latent space dimensionality.

# final neurons latent dimension # params

16 1 21 889
8 1 22 145
4 1 22 209
16 2 21 922
8 2 22 162
4 2 22 218
16 3 21 955
8 3 22 179
4 3 22 227
8 4 22 196
16 4 21 988
4 4 22 236
16 8 22 120
8 8 22 264
16 16 22 384

Table 6.7: Results in terms of Ay for different activation functions in the intermediate layers of AE’s
encoder and decoder. Best in bold.

Activation Ay

ELU 0.9602
Leaky ReLU 0.9211

ReLU 0.8982

6.4 Conclusions

In this chapter we investigated different denoising strategies for X-ray hyperspectral
images. We considered both model based (i.e., Wiener filter, PCA) and data driven
(i.e., AE, CAE, VAE, AuAE) techniques.

We did a first comparison between the Wiener filter and the CAE. The considered
pipeline is composed of a preprocessing step necessary for normalizing input images,
followed by candidate denoising solutions. Results show that the solution based on
AE provides close results to the one based on Wiener filter. This is interesting as it is
a strong indicator that the proposed AE is capable of learning a meaningful reduced
dimensionality representation of the input data.

Starting from this result, we pushed the limit of the AEs family by reducing the
dimension of the latent space. We started from the assumption that a possible parame-
terisation of the spectra uses just two parameters, thanks to the Lambert-Beer law. We
validate our method on an extensive dataset of plastic polymers and metals, synthe-
sised starting from real acquisitions. Results show how all the networks can filter and
reconstruct the mean spectrum starting from the noisy acquisitions in an unsupervised
fashion without having access to the groundtruth. All of them reach excellent results
despite the simplicity of the structure and the reduced dimension of a latent space of
just two parameters.

Nonetheless, the AuAE proved the more flexible network, as it shows the best re-
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sults in terms of the designed denoising metrics, and it has a deterministic nature once
trained. Given these results, we can consider the AuAE as the best option for real time
denoising of Hyperspectral X-ray.

We considered single polymer acquisitions as a simplification of the general case of
X-rays crossing a section of composite material (e.g., the food and the contaminant).
The Lambert-Beer law ensures that we can make the assumption of a single homoge-
neous material without loosing generalization. In practice, we cannot directly apply the
Lambert-Beer law to the X-ray acquisition for classification purposes. In fact, the law
holds for mean spectra but we are measuring single acquisitions that suffer from statisti-
cal noise. Moreover, a direct use of the law would require a linear and invertible sensor
function, which is not the case due to non-linear effects (i.e., pile-up) and structural
imperfections of the sensor. This motivates the need of denoising in the acquisition
pipeline.

A possible limitation of the proposed method lies in the statistical modelling of the
noise affecting the acquisition. Should the Poisson statistic in photons counts not be
verified anymore, this method could suffer from the discrepancy between training and
testing data, possibly requiring a retraining on that specific data. In this regards, the
proposed method is fitted on the measurement setup.

A future work to target this problem will investigate the impact of training the net-
work with background acquisitions as an additional input. This would in principle help
the network to ‘normalize’ the input, learning setup-independent features and improv-
ing the generalization capability under discordant training/testing scenarios. Another
future work will be devoted to finding a suitable procedure to map the latent space of
the network to the actual physical parameters associated with the acquired material by
the Lambert-Beer law. Besides, we can further expand the methodologies presented in
this chapter and develop other applications built on top of the denoising algorithm (e.g.,
food contaminant detection, anomaly detection, material recognition, etc.). Indeed, it
could be possible to exploit the deep representation of the input data provided by the
AE as candidate denoised feature vector to be used for classification purpose.
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CHAPTER7
Hyperspectral X-ray polymer classification

An intriguing problem of physical integrity regarding food safety is detecting and clas-
sifying contaminants, that is, being able to determine what the contaminant is. As we
shall show in this chapter, Hyperspectral X-ray analysis is very suited to this task, due
to its capability to detect low density contaminants and discriminate them.

In this chapter we consider the problem of joint denoising and analysis of hyper-
spectral data acquired through a X-ray acquisition system. Given a single pixel of the
used linear sensor, we propose a Convolutional Neural Network (CNN) that returns an
estimate of a noise-free acquisition and detects the material scanned by the X-ray beam.
The actual detection is done by means of estimation of two physical quantities related
to the material, as explained in Section 5.3. First approaches to the use of CNNs for
hyperspectral X-ray image denoising were proposed in [28,213]. We now exploit what
we learned from Chapter 6 to ease the classification process. Unlike the previously
proposed approaches, our method works on single pixels, rather than complete linear
acquisitions, making the approach much more flexible and capable of detecting smaller
contaminants. Once the method is proved capable of identifying the presence of a
polymer even in a single pixel, it can be used to analyze food products passing over a
conveyor belt.

The chapter is organized as follows: Section 7.1 describes the proposed method for
plastic polymers classification. Section 7.2 describes the experimental campaign we
designed for validating our method. Section 7.3 provides an overview on the experi-
mental results. Finally, Section 7.4 draws conclusions on the chapter.
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Figure 7.1: Proposed network architecture and interaction between the CNN (yellow, top) and loss terms
(blue, bottom).

7.1 Proposed Method

The proposed technique is based on a CNN designed to achieve accurate performances
while satisfying two application constraints: (i) the analysis must run in real-time, thus
the CNN must be fast enough when compared to the system acquisition rate (i.e., overly
complicated architectures are not a choice); (ii) materials must be correctly recognized
independently from their size as even tiny objects might be harmful in food safety.
We test the proposed system over a dataset of 347 classes, obtained by combining 13
materials (polymers and metals) with different thicknesses. The experimental campaign
is conducted to test the system performance even when some polymers have never been
seen by the CNN during training. Results show that it is possible to estimate polymers’
parameters even by using a single pixel of the studied sensor. Moreover, results suggest
that the proposed CNN opens the doors to the possibility of synthetic data generation,
which might be useful whenever acquisitions should be simulated.

In this section, we provide the formal problem formulation and the details about the
used architecture and the proposed custom loss function.

7.1.1 Problem formulation

The problem we consider is twofold. Given one noisy spectral acquisition y we are
interested in: (i) estimate λ, the clean version of it; (ii) estimate the two parameters Zeff

and ρ∆x associated with the material. We consider the two estimations to be performed
jointly as in a multi-task learning problem. Therefore, our goal is to design an operator
M(·) such that:

λ̂, (Ẑeff , ρ∆̂x) =M(y), (7.1)

where λ̂, Ẑeff and ρ∆̂x represents the estimations of λ, Zeff and ρ∆x, respectively.

7.1.2 Network architecture

The proposed network architecture is depicted in Figure 7.1. Following the classical
Convolutional AutoEncoder (CAE) paradigm, it is composed of an Encoder and a De-
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7.1. Proposed Method

coder. The input is the spectral acquisition y, whose dimensionality of B is reduced
by the Encoder up to 2. The Encoder comprises 7 1D Convolutional Layers, each one
followed by an ELU non-linearity layer [214]. Each layer’s kernel size is used to re-
duce the signal’s dimensionality through valid convolution, starting from a kernel size
of 128 and halving it at each layer. The Decoder is designed with 7 1D Transposed
Convolutional layers followed by ELUs to be symmetric to the Encoder and recover
the original dimensionality B.

7.1.3 Loss function

The network is trained to minimise a compound loss function that takes into account
two different kinds of errors: (i) the loss term Ly introduces a data fidelity term between
the noisy input spectrum y and the reconstructed version of it λ̂; (ii) the loss term Lp

takes the error on Ẑeff and ρ∆̂x estimates into account. The generic form of the loss
function is, therefore:

L = γLy + Lp, (7.2)
where γ is a weighting factor balancing the effect of one loss term over another.

We experimentally verified that the photons’ count noise on each energy bin fol-
lows an independent Poissonian distribution. This allow us to employ a Weighted Log-
Likelihood (WLL) as a data fidelity term Ly:

Ly =
1

B

B∑

b=1

(ln(P (yb | λ̂b))− ln(P (yb | yb))), (7.3)

where P (yb | λ̂b) represents the Probability Mass Function (pmf) for a Poisson distri-
bution:

P (yb | λ̂b) =
λ̂ybb e

−λ̂b

yb!
. (7.4)

and P (yb | yb) is defined accordingly. By exploiting this prior, we do not need to know
the actual clean ideal spectrum λ during training.

We also investigate the use of Mean Squared Error (MSE) as a term Ly:

Ly =
1

B

B∑

b=1

(
yb − λ̂b

)2
. (7.5)

In this formulation, we are forcing the network to estimate the signal’s clean version
without explicitly inserting it in the equation. This is inspired by recent works on image
denoising [211, 212], where the clean version of the input is unknown at training time.

As far as the term Ly is concerned, we exploit the Mean Absolute Percentage Error
(MAPE) defined as

Lp =

∣∣∣∣∣
Ẑeff

Zeff

− 1

∣∣∣∣∣+
∣∣∣∣∣
ρ∆̂x

ρ∆x
− 1

∣∣∣∣∣ . (7.6)

Notice that previous loss equations are defined for the i-th sample of the dataset. The
global cost function on the whole dataset of N samples is defined as:

Ltot =
1

N

N∑

i

Li. (7.7)
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Chapter 7. Hyperspectral X-ray polymer classification

7.1.4 Deployment

Once the network is trained, we can feed it with a spectrum y and obtain the clean
version of the acquisition λ̂ alongside the estimation of the two parameters Ẑeff and
ρ∆̂x related to the material. We can also consider the Encoder and the Decoder part of
the CNN separately. Using only the Encoder will allow us to estimate the parameters
Ẑeff and ρ∆̂x for detection purposes, whereas the Decoder could be used as a synthetic
generator of spectra given two arbitrary parameters as input.

7.2 Experiments

This section describes the performed experimental campaign.

7.2.1 Setup

To identify which combination of loss terms works best in the multi-task learning con-
figuration and to study the impact of the different loss terms separately, we devised a
series of experiments with different network configurations.

To validate the multi-task pipeline, we consider two scenarios:

A) Multitask AutoEncoder (AE), with WLL as Ly and MAPE as Lp.

B) Multitask AE, with MSE as Ly and MAPE as Lp.

In these two methods, the network input is the noisy spectral acquisition y. The network
outputs are the estimated clean spectrum λ̂ and the estimated parameters Ẑeff and ρ∆̂x
from the latent space of the network.

To study the effect of the single loss terms, we consider three scenarios:

C) Only Encoder, with MAPE as Lp.

D) Full AE, with WLL as Ly.

E) Full AE, with MSE as Ly.

In scenario C, we consider only the encoding part of the network. The input is the
noisy spectral acquisition y, while the outputs are directly the latent space parameters
Ẑeff and ρ∆̂x. In methods D and E, we do not consider the multi-task learning part,
feeding the network y and obtaining λ̂ without extracting the latent space parameters.

We obtain λ by averaging 2 560 acquisition together. It is worth noting that exclud-
ing method C, we train all the other methods to reconstruct λ̂ (the mean version of the
spectrum). However, the loss function Ly takes as input the noisy acquisition y, and
we never use λ during training. This choice is strictly related to the exploitation of
the inherent prior introduced by Ly, which allows the network to estimate the mean
spectrum λ even without seeing one.

At test time, we are interested in measuring network performance. Therefore, we
derive two metrics based on the adopted loss functions. In case of single parameters
Zeff and ρ∆x, we simply use 1−MAPE to obtain a fidelity index Fp ∈ (−∞, 1], the
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Figure 7.2: Zeff and ρ∆x true distributions observed in the adopted dataset.

higher the better. In the case of spectrum, we derive a compatibility index Ay ∈ [0, 1]
by computing:

J = − 1

B

B∑

b=1

(ln(P (λb | λ̂b))− ln(P (λb | λb))), (7.8)

and:
Ay = e−J , (7.9)

that is computing Equation (7.3) using the clean version of the spectrum λ instead of the
noisy acquisition y and taking the negative exponential. When equal to 1, Ay indicates
a perfect match between the two spectra, when equal to 0 it indicates a miserable match.

Regarding the implementation, we resort to Pytorch framework for developing the
CNN. All the experiments are run on a workstation equipped with an NVIDIA Titan V
Graphics Processing Unit (GPU), an Intel Xeon E5-2687W and 256 GiB RAM.

In addition to the polymers, acquisition of Aluminium tiles are present in the dataset,
as it is a very common material in industrial machinery. Acquisitions are made both on
single materials and on couples of materials, leading to a total of 347 different combi-
nations of materials (e.g. tiling of different materials with different thicknesses). The
distributions of Zeff and ρ∆x in the dataset are roughly uniform, as shown in Figure 7.2.

7.2.2 Dataset

The dataset is composed of acquisitions taken with the system mentioned above. The
operating point of the X-ray tube is 60keV and 0.3 mA. We place each material object
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Figure 7.3: Sample acquisitions from three different classes of the considered dataset. Blue curves
show the actual noisy acquisition, whereas orange dashed curves show the clean ideal ground truth.
Energy bins higher than b = 64 has been hidden for the sake of readability.

in front of the sensor and irradiate it with an X-ray beam, recording the linear sensor
output. For each object, we acquire 2 560 static images, with acquisition time 2ms (i.e.,
the active recording time of the sensor). The frequency spectrum of the acquisition is
divided into B = 256 energy bins. We consider only the central pixel of the sensor.
Therefore, each acquisition’s final shape is (1 × 256) where the first dimension repre-
sents the pixel, and the second dimension is the number of energy bins used to represent
the spectrum. Figure 7.3 shows three sample acquisitions, each belonging to a different
class (i.e., combinations of material and thickness).

We consider 12 different polymers: ‘PE’, ‘PA’, ‘PC’, ‘PMMA’, ‘PET’, ‘POM’, ‘PO-
MADAF’, ‘PVDF’, ‘PTFE’, ‘PBT’, ‘PPS’, ‘PVC’ and the metal Aluminium. These
represent some of the most common contaminants that can be found during food in-
spection. Acquisitions are made both on single materials and on pairs of tiled mate-
rials. Considering all combinations of materials and thicknesses, we end up with 347
different classes, with a roughly uniform distribution of parameters Zeff and ρ∆x, as
shown in Figure 7.2.

The whole corpus of images is composed of more than 908 445 acquisitions of shape
(1× 256). We remove all the acquisitions of materials ‘PA’ and ‘POMADAF’ from the
whole corpus. We also remove all the acquisitions of all the other materials at thick-
ness 24mm and 36mm. From this reduced corpus, we use the 70% to create the train
set D, and the remaining 30% composes the first test set T . We use an additional 20%
of the train set as a validation set to evaluate the training procedure. The acquisitions
of materials ‘PA’ and ‘POMADAF’ compose the second test set Tm, while the acqui-

126



i
i

“output” — 2022/5/10 — 21:04 — page 127 — #137 i
i

i
i

i
i

7.3. Results

0.005 0.1 0.5 1 2 10 100
∞

0.7

0.8

0.9
ac

c y
/

fid
p

∏
ZeÆ

Ω¢x

Figure 7.4: Performances of λ̂, Ẑeff and ρ∆̂x varying γ.

sitions of all the materials with thickness 24mm and 36mm compose the third test set
Tt. The purpose of the last two test sets is to study the system behaviour with unknown
(i.e., previously unseen) classes (i.e., materials and thicknesses). Those class pairs are
randomly chosen.

7.3 Results

In this section we provide the result of the experimental campaign.

7.3.1 Parameter search

Since the loss function is a weighted average between two terms, we are interested in
finding the best weighting factor γ. Therefore, we run a preliminary set of experiments
on T varying γ. Results reported in Fig. Figure 7.4 shows how incrementing γ gives a
little benefit in estimating λ̂, while affecting the estimation of Ẑeff and ρ∆̂x. To obtain
a balance between the three estimations, we fixed γ = 0.1.

7.3.2 Results on known dataset

We report results for the known dataset T in Table 7.1. Regarding λ, the multitask
approach A offers a better performance than its single task counterpart E, while B is
comparable with D. The performance on Zeff and ρ∆x is pretty much the same when
comparing with method C. Probably, the estimation of the two parameters is a more
straightforward task for the network, and it does not need any help from the multitask
learning paradigm. Conversely, the clean signal estimation is a more challenging task
and benefits from the joint loss function.

7.3.3 Results on unknown datasets

Table 7.2 and Table 7.3 show the results when we test on unknown materials Tm and
thicknesses Tt. We can confirm the trend of Table 7.1: in both cases, the network
reaches the best accuracy on estimating λ when training in a multitask fashion. The
estimation of Zeff and ρ∆x seems to suffer less from the lack of multitasking.
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Chapter 7. Hyperspectral X-ray polymer classification

Table 7.1: Results on known dataset T .

Method Zeff [Fp] ρ∆x [Fp] λ [Ay]

MAPE + MSE (multitask) (A) 0.94227 0.90416 0.97946
MAPE + Poisson (multitask) (B) 0.93868 0.90469 0.96163

MAPE (ρ∆x, Zeff ) (C) 0.94140 0.90355 −
MSE (λ) (E) − − 0.93835

Poisson (λ) (D) − − 0.96395

Table 7.2: Results on unknown dataset Tm (unknown materials).

Method Zeff [Fp] ρ∆x [Fp] λ [Ay]

MAPE + MSE (multitask) 0.93758 0.90864 0.97864
MAPE + Poisson (multitask) 0.93462 0.90947 0.95950

MAPE (ρ∆x, Zeff ) 0.93659 0.90817 −
MSE (λ) − − 0.93613

Poisson (λ) − − 0.96267

Table 7.3: Results on unknown dataset Tt (unknown thicknesses).

Method Zeff [Fp] ρ∆x [Fp] λ [Ay]

MAPE + MSE (multitask) 0.94062 0.90428 0.97930
MAPE + Poisson (multitask) 0.93676 0.90276 0.96203

MAPE (ρ∆x, Zeff ) 0.93976 0.90394 −
MSE (λ) − − 0.93288

Poisson (λ) − − 0.96506

7.4 Conclusions

In this chapter we proposed a method for jointly denoising a hyperspectral X-ray ac-
quisition and estimating the two physical parameters related to the acquired object. We
tested our approach to a vast dataset of polymers and metal acquisitions, considering
the case in which the network has never seen the material under analysis. We compared
the multitask paradigm with the separate estimation of the two desired outputs (e.g.,
the parameters and the mean spectrum), showing benefits in adopting the former. The
results show that it is possible to employ multitask learning to develop a polymer clas-
sification pipeline tailored to industrial food supply chain. As a future work, we will
take advantage of the Encoding/Decoding nature of the considered CAE to use it as a
physical generator of synthetic data. We can in fact apply just the decoding part of the
network to retrieve plausible estimation of a real spectrum by feeding the network with
a given couple of Zeff and ρ∆x.
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CHAPTER8
Conclusions

This thesis investigates the integrity control problem focusing on two specific appli-
cations: Multimedia Forensics for the digital integrity part and Hyperspectral X-ray
analysis in food control for the physical integrity part.

Chapter 2 treats the sensor integrity, that is, the integrity of the traces left by the
camera sensor in the image. In particular, we focus on the well known Photo Response
Non Uniformity (PRNU), a unique noise pattern that allows binding an image to the
device that shot it. We propose a method for anonymizing an image, i.e., removing the
PRNU traces, being careful to retain the visual quality. The idea behind the method is
to treat a Convolutional Neural Network (CNN) as a parametric operator, to be trained
specifically on each image to anonymize. To this extent, instead of training the net-
work to minimize a loss function over a large dataset of images, we explicitly want the
network to overfit every single image.

We also consider the opposite problem, which is image anonymization detection.
We propose a method for detecting image anonymization based on a feature vector
extracted from the RGB domain and then fed to a CNN. This approach mixes model-
based feature extraction and data-driven learning approach, indicating that one world
can benefit from another. The results show that training the network on the extracted
feature vector performs better than training the network directly on the image (pure
data-driven approach) in the cross-dataset testing scenario. Moreover, the results in-
dicate that our method can generalize well in very arduous testing conditions. It is
the best performer (with respect to the other state-of-the-art method) over unseen de-
vices and is robust against a common set of non-geometric transformations (e.g., JPEG
compression, gamma correction, brightness correction, contrast correction). The inves-
tigation of the performance degradation after post-processing operations is one of the
added values of this proposed method. Such a test is rarely found in other state-state-
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of-the-art methods, while it is paramount to build effective methods that can be applied
in real-case scenarios.

Chapter 3 is about the integrity of the coding traces left by multiple JPEG com-
pressions, which can be a hint of tampering with the image. We investigate the double
JPEG compression detection problem, dealing with both the possibilities of an aligned
and a non-aligned second compression with respect to the first one’s 8 × 8 grid. We
propose a Deep Learning method based on a CNN, considering different domains as
input. To the best of our knowledge, this is the first method in the literature to con-
sider the problem of double JPEG detection in a data-driven fashion. Results show how
the proposed method can detect the double JPEG compression in both the considered
scenarios, outperforming the baselines even in the complex case in which the Quality
Factor (QF) of the second compression is greater than the first one.

Extending our research, we also investigate the multiple JPEG compression detec-
tion problem. Images are often uploaded and downloaded several times from various
social media. Therefore, detecting a higher number of consecutive compressions is
paramount for forensics analysts. We propose a method for detecting multiple JPEG
compressions up to four coding steps. This method employs the Task-driven Non-
negative Matrix Factorization (TNMF) model, which jointly allows learning a feature
from data and iteratively performing the actual classification. The results show that the
proposed solution is better than the state-of-the-art baseline for classification accuracy.

Finally, we consider the problem of detecting different JPEG implementations in
double compression. This is an essential part of the whole problem of multiple JPEG
compression detection since the JPEG standard does not define strict rules for the quan-
tization of the Discrete Cosine Transform (DCT) coefficients of the image. Everyone
can implement their lossy part of the compression algorithm, meaning that we can look
for traces left by every different implementation. We propose a novel method based
on the eigen-algorithms idea. This method takes advantage of recompressing the same
image multiple times with a set of different JPEG implementations and then exploiting
the deviations introduced by their diversity as a discriminative feature. We tested dif-
ferent use cases, including software detection and the detection of a JPEG anti-forensic
technique. The results show that we can achieve high accuracy in different scenarios.

Chapter 4 discusses the semantic integrity of images and videos. In particular, we
care about assessing the generation process of an image or a video. The ultimate goal
is to tell real content (i.e., acquired with a digital camera) and generated content (i.e.,
synthetically produced by neural networks) apart. The recent spreading of easy to use
generation methods can lead to an outbreak of malicious usages, to name a few, false
impersonation and puppeteering. Regarding images, we focus on detecting generation
by Generative Adversarial Networks (GANs), the most common and powerful tech-
nique for still image generation nowadays. Rather than proposing a purely data-driven
approach, we consider the statistical properties of image generation. The proposed
method exploits Benford’s law to extract feature vectors out of the DCT coefficients of
an image. We test multiple setups in which different combinations of the features are
combined and fed to a Random Forest classifier to discriminate the fake images from
the real ones. The results show how the proposed feature extraction method is powerful
enough to work even if paired with a simple classifier like the Random Forest. We
can conclude that GAN generated images struggle in respecting Benford’s law, even
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if some of the latest architectures are more difficult to detect. The simplicity of this
solution makes it suitable in cases in which the computational budget is a concern, e.g.,
mobile phones, embedded devices.

Regarding videos, we investigated the recent trend of Deepfakes, a generative
method born with the intent of substituting a person’s face with someone else’s face.
We propose a method that takes advantage of the concept of model ensembling. A set
of CNNs is used in the inference phase, instead of just one network, eventually aggre-
gating the scores to provide the final classification label. We modify and train different
versions of a backbone network to exploit two main concepts: (i) an attention mech-
anism focusing on certain facial regions; (ii) a triplet siamese training strategy aimed
to ease the training procedure in an extensive dataset of videos. We evaluate the pro-
cedure over two publicly available datasets containing almost 120 000 videos, showing
the effectiveness of our method. We also participated in a coding challenge tailored to
this problem and sponsored by Facebook. The proposed solution ranked in the top 2%
over more than 2000 participants.

Chapter 5 introduces the second part of the thesis, i.e., the part related to physical
integrity. In this chapter we introduce the reader to the problem of integrity estimation
in the food industry, explaining how non-destructive methods are preferable over in-
trusive ones. We then introduce the X-ray acquisition system used in our study. This
is a commonly used system for food control. It is composed by a X-ray generator, a
conveyor belt transporting the objects under analysis (e.g., food packages) and a Hy-
perspectral X-ray detector. The detector is a linear sensor where each cell is capable
of counting impinging photons separating different energy levels. The broad energy
range this system is able to capture allows to perform very fine analysis on the acquired
objects, detecting even low-density contaminants. Finally, we introduce Lambert-Beer
law, which is the physical law we exploit in the coming chapters to link a physical
material to be detected, with the X-ray acquired data.

Chapter 6 faces the problem of denoising Hyperspectral X-ray acquisitions, a cru-
cial step for developing further processing steps such as classification. In this vein, we
present two original contributions. In the first one, we compare a model-based method
for denoising, the Wiener filter, with a data-driven technique, a Convolutional AutoEn-
coder (CAE). Experiments on plastic polymers acquisitions show that both methods
can reach good denoising capabilities. However, the CAE has the advantage of not
depending on the tedious estimation of the Noise-to-Signal ratio. Moreover, being the
CAE a data-driven model, we can exploit transfer learning and domain adaptation to
use it as a starting point for other networks dedicated to other tasks. Once we assess
that the task of Hyperspectral X-ray denoising could be done through Deep Learning
techniques, we proceed with the second contribution, a comparison between different
AutoEncoder (AE) variants. In fact, AEs has proved a very efficient architecture for
denoising purposes in the literature. In our experiments, we compare the basic AE
with the Variational AutoEncoder (VAE) and a deterministic variant of the latter we
call Augmented AutoEncoder (AuAE). We force the latent space of those models to
be as little as two parameters, a stringent condition motivated by the physical law of
Lambert-Beer. Our experiments show how spectra acquired from plastic polymers and
“low-density” metals can be polished from noise in an unsupervised fashion, i.e., not
having access to the “clean” reference spectrum. We validate our method on extensive
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synthetic and real acquisition datasets. All the networks show excellent results despite
the reduced latent space. Nonetheless, we can conclude that the AuAE is the best op-
tion for real-time applications given the performances and its deterministic behaviour
at inference time.

Chapter 7 investigates the task of low-density polymer classification starting from
Hyperspectral X-ray acquisitions. This is a very interesting task in the considered food
safety framework, as knowing the composition of a detected contaminant is as impor-
tant as detecting it. To solve this problem, we propose a network for estimating two
physical parameters associated with a given material starting from its X-ray spectrum.
The reason behind this simplified choice is that, once we can determine the contaminant
from pure contaminant’s acquisition, we can learn a “signature” of the contaminant and
then adjust the estimation for the case the contaminant is buried in packaged food. We
exploit the multitask paradigm to train our network. We jointly perform the denoising
of the acquisition while estimating the parameters. In this way, we can correctly clas-
sify the inspected polymer while obtaining a clean version of the acquisition that we
can use for further processing. Results show how the multitask paradigm benefits the
method, outperforming two networks that execute the denoising and the classification
tasks separately. Besides, the trained network can also be used afterwards as a syn-
thetic generator of spectra. In fact, by using only the decoding part of the network, one
can easily retrieve a synthetic estimation of the spectrum associated with the pair of
physical input parameters associated with the Lambert-Beer law.

8.1 Future research

By investigating the problem of integrity assessment at digital and physical level, we
notice how some problems still have to be addressed. In this section we offer possible
future advancements for the proposed methods, considering the possibilities and the
innovations of the state of the art in the near future. At the same time, we would like to
outline future research trends in the respective fields.

Regarding sensor integrity, it would be fascinating to embed the state-of-the-art
Wavelet-based denoising function used in the PRNU testing directly into the network.
This is not feasible with the current Deep Learning frameworks, as the Wavelet func-
tion is not differentiable. This breaks the backpropagation paradigm used by neural
networks for the weights update. Recent Deep Learning library such Pytorch [166]
and TensorFlow [215] have made giant leaps in offering implementation possibilities
with respect to the limitations frameworks had just five years ago. We hope that this
enhancements will continue in the future, making the proposed improvement possible.
This would dramatically increase the impact of the proposed method, as even if analysts
knew about the possible attack, it would be practically impossible for them to discover
it through the correlation test.

Regarding coding integrity, we showed how a problem that has always been ad-
dressed by model-based solutions could benefit from the data-driven world of CNN.
However, we should not forget how the pre-processing and the careful implementa-
tion of handcrafted features can benefit the pure data-driven approach. For the future,
it would be exciting to investigate the mixed approach (model-based and data-driven)
adopted for the double JPEG problem also for the task of multiple JPEG compression
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detection.
Semantic integrity offers the most thrilling future scenario in the Multimedia Foren-

sics panorama. We showed how we can effectively detect generated content, but Pan-
dora’s box has just been opened. Soon, we will see more and more fake images and
videos, and as time passes, they will become even more indistinguishable to the hu-
man eye. Unfortunately, every pure data-driven approach for the detection will always
be a step behind the generators, as the typical pipeline for detecting generated content
requires a certain amount of data from the specific generative architecture. For this
reason, it is of vital importance to keep working on mixed approaches in which the sta-
tistical properties of images and videos are considered as a starting point to implement
better detection methods.

Regarding the study of denoising for physical integrity, it would be of great interest
to investigate the effect of reducing the latent space of the network even more. Prelimi-
nary results show a certain degree of correlation between the two learned parameters of
the latent space. This suggests that a possible parameterization of the materials made
with just one parameter could exist, which would significantly impact the number of
parameters of the network, its performances, and the inference time.

Regarding classification of polymers, the natural continuation would be to inves-
tigate the case in which we take the acquisitions from food packages containing the
contaminants. In this case, it would be interesting to assess if the network can learn
to exclude the “common” area of the acquisition representing the food, acting as an
anomaly detector when encountering a contaminant. More realistically, an extensive
training campaign providing acquisitions of both “virgin” and contaminated packages
is required for the network to learn an appropriate discriminative feature.
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