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1. Introduction
In urban areas facing rising demand due to
population growth, water is a crucial resource.
While expanding water distribution systems is
necessary, the challenge of high-power consump-
tion and energy waste in water pump stations
must be addressed. Research highlights that a
substantial portion of industrial electricity usage
is due to electric motors [1], with water pumps
accounting for a significant fraction [2]. Effi-
cient water pump scheduling is vital for optimiz-
ing distribution systems. Traditionally, manual
methods for pump activation often result in sub-
optimal scheduling, leading to increased costs
and negative impacts on resource management
and water quality. Researchers aim to find op-
timal operating conditions for pumps, focusing
on minimizing power consumption and maximiz-
ing system efficiency. However, achieving con-
sistently optimal solutions in complex scenarios
remains a challenge for existing methodologies.
In the context of water pump scheduling, the
Cross-Entropy (CE) method is a niche approach.
Introduced by Rubinstein in 1997 [3], the CE
method iteratively refines the probability distri-
bution of solutions, ultimately leading to opti-

mal or near-optimal solutions. A key strength
of the CE method is its capacity to analyze so-
lutions without relying on derivative functions,
distinguishing it from traditional optimization
methods. However, since the classic version of
the CE method is better suited for system mod-
els with relatively simple constraints, an im-
proved version of the CE method proves more
suitable for addressing the problem of water
pump station optimization.
This work makes three primary contributions.
First, it expands the research on the CE method
applied to the optimization of water pump
scheduling. Second, it introduces the use of an
asymmetric smoothed updating step to enhance
the algorithm’s performance, with the ultimate
aim of finding the most efficient operating point
for the pumps and thus minimizing pump sta-
tion costs. Third, it empirically demonstrates
the practical effectiveness of the improved opti-
mization method in reducing costs for a real-life
water pump station, achieved through the im-
plementation of an adaptive cost function.
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2. The pump station model
The model considers the simultaneous operation
of multiple pump types to meet system require-
ments while minimizing operational costs. It
considers the total power consumption for each
pump, hourly electricity price variations, and
introduces penalty functions to address com-
plex constraints. Ultimately, by solving the
model, we can determine the optimal states of
the pumps, including their head, flow, power,
and speed.

2.1. The affinity laws
The affinity laws govern the behavior of water
pumps. They describe the fundamental relation-
ships between the pump’s head, flow, power, and
speed.
Considering the following measures:

• Flow, Q (m3/h): liquid volume.
• Head, H (m): liquid force measured.
• Speed, S (rpm): shaft speed.
• Power, P (kW ): energy needed to pump a

liquid.
the affinity laws state that:

Q1

Q2
=

S1

S2
;

H1

H2
= (

S1

S2
)2;

P1

P2
= (

S1

S2
)3 (1)

Eqs. (1) show how a 3% increase in speed re-
sults in a significant 9% surge in power consump-
tion. In the industrial sector, this translates to
a substantial rise in costs, highlighting the im-
portance of optimal solutions.

2.2. The system and pumps curve
In water distribution systems, water pumps re-
spond to the system’s operational requirements
to meet the supply demands. Changes in the
system’s characteristics, such as an increased
flow demand affect the total dynamic head
(THD). The THD is a parameter associated with
the system’s requirements and is composed by
the static head (Hs), friction head (Hf), velocity
head (Hv), and pressure head (Hp).

TDH = Hs+Hp+Hf +Hv (2)

Eq. (2) characterizes the dynamics of the sys-
tem and plays a fundamental role in establishing
the best efficiency point (BEP) of water pumps,
which is located by intersecting the system curve
with the pump family curve.

Fixed-frequency pumps maintain a constant
speed ratio. Their performance curves for head
and flow, as well as power and flow, can be de-
fined with:

H = h1 + h2Q+ h3Q
2

P = p1 + p2Q+ p3Q
2

(3)

Where h1, h2, h3, p1, p2, p3 are fitting parame-
ters. Combining the pump affinity laws and the
equations (3), the expressions for the variable
frequency pumps are found.

H = s2h1 + h2Q+ h3Q
2

P = s3p1 + s2p2Q+ s3p3Q
2

(4)

Where s is the speed ratio of the pump.

2.3. The objective function
The objective function used for optimizing the
water pump scheduling problem takes various
factors into account. The total power consump-
tion is calculated as the sum of contributions
from each operational pump.

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2Qi + sip3Q

2
i )

+
m+n∑

i=m+1

ωi(p1 + p2Qi + p3Q
2
i )

}
(5)

The status coefficients ωi represent the on-off
status of each pump and are pivotal in determin-
ing the optimal combination of pumps within
the scheduling solution.

2.4. The constraints
Constraints establish the boundaries and limita-
tions within which a solution must operate.

2.4.1 Speed ratio constraint

Variable speed pumps can be controlled to
change their speed ratio in the interval s ∈ [0, 1].
However, to increase efficiency and prevent is-
sues like cavitation and shortened life cycles, the
speed ratio of each pump has been constrained.

smin,i ≤ si ≤ 1, for i = 1, 2, ...,m+ n (6)

Where m,n are, respectively, the number of vari-
able speed pumps and fixed speed pumps.
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2.4.2 Flow balance equation

The balance equation for the water pump flow
states that the output flow of the system Qs

must be equal to the sum of the input flow gen-
erated by the pump station.

Qs =
m∑
i=1

Qi +
m+n∑

j=m+1

Qj (7)

2.4.3 Parallel operation of pumps

Pumps operated in parallel will increase the flow
but not the head. When this requirement is not
met, there is the risk of water flowing backward
toward the pump with lower head, potentially
causing significant damage. As a result, this
condition is imposed as a constraint.

Hs = H1 = H2 = ... = Hm+n (8)

2.4.4 High-efficiency area

It is crucial to operate the pumps such that the
control variables maximize the machine’s effi-
ciency. For fixed frequency pumps, this corre-
sponds to an interval defined by a maximum
value, Qmax,i, and a minimum value, Qmin,i, of
pump flow.

Qmin,i ≤ Qi ≤ Qmax,i, for i = 1, 2, ..., n (9)

In the case of variable frequency pumps, the
speed parameter extends the interval to encom-
pass a ’best efficiency area’ (BEA). The BEA is
delimited by flow and speed constraints, which
are indicated by the curves connecting the four
points A, B, E, and F.
This region determines the area where the pump
efficiency, η is equal to or greater than 85%.
The curves AB and EF are the head-flow curves
of the pump, respectively, at the maximum
speed ratio and the minimum speed ratio. The
parabolic curve EA corresponds to an efficiency
of η = 85%, while the FB curve to an efficiency
of η = 89.2%.
The two boundary curves OA and OB, where O
is the origin and which contain the curves EA
and FB, are described by the equations:

HOA = k1Q
2

HOB = k2Q
2

(10)

Figure 1: BEA delimited by A, B, E, F.

Where k1, k2 are fitting parameters.
Finally, the maximum and minimum flow values
are found using equations (1), (9) and (10).

Qmax,i =


√

h1−Hs
h3

QA Hs ≥ HB√
Hs
HB

QB Hs < HB

Qmin,i =


√

Hs
HA

QA Hs ≥ HE√
h1s2min−Hs

h3
Hs < HE

for i = 1, 2, ...,m+ n

(11)

where HS is the system’s operating head value.

2.5. Summary
The general model is characterized as a non-
linear, multi-objective, multi-variable combina-
torial problem, encompassing both equality and
inequality non-linear constraints.

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2Qi + sip3Q

2
i )

+

m+n∑
i=m+1

ωi(p1 + p2Qi + p3Q
2
i )

}

such that

Qs =
m∑
i=1

Qi +
m+n∑

j=m+1
Qj

Hs = H1 = H2 = ... = Hm+n

smin,i ≤ si ≤ 1, i = 1, ...,m+ n
Qmin,i ≤ Qi ≤ Qmax,i, i = 1, ...,m+ n

Therefore, in addressing such a problem, the CE
method proves to be suitable, whereas classical
methods frequently falter when faced with intri-
cate models.
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3. The improved cross-entropy
method

The Cross-Entropy (CE) method derives from
the Monte Carlo method and was introduced
by Rubinstein in 1997 [3]. Its central concept
involves iteratively refining the probability dis-
tribution of solutions, starting from an initial
parameter distribution. This refinement process
directs the focus toward the most promising re-
gions within the solution space, ultimately lead-
ing to convergence towards an optimal or near-
optimal solution.

3.1. The population
The initial step in the CE method is to define
the probability density function (pdf) that char-
acterizes the set of solutions and from which the
initial population is sampled. A multivariate
normal distribution is employed to sample the
initial population.

3.2. Multivariate normal distribution
We can define each population member with a k-
dimensional random vector X = (x1, x2)

T sam-
pled from the initial multivariate normal distri-
bution N.

X ∼ N (µ,Σ) (12)

µ =

[
s̄
h̄

]
, Σ =

 (
smax−s̄

3

)2
0

0
(
headmax−h̄

3

)2


s̄, h̄ are the mean values between the upper
and lower bounds of the speed and head limi-
tations given by the constraints. This ensures
the proper coverage of the search region.

3.3. Asymmetric smoothed update
In the CE method, the update step is responsible
for retaining a record of the best solutions found
and for the refinement of the pdf used in the
subsequent iteration.
In the classic version of the CE method this
step is straightforward. The parameter vector
v̂t, which comprises the mean and covariance
matrices, is updated at each iteration accord-
ing to v̂t−1 = ŵt, where t is the iteration and ŵt

is the new parameter vector that describes the
mean and standard deviation of the elite sam-
ples. This update method shows to be ineffi-

cient and renders the algorithm vulnerable to
local minima.
Decomposing the parameters vector into its its
mean and covariance components and introduc-
ing a second parameter β, the previous issue is
addressed by providing an asymmetric smoothed
update.

v̂µ,t = αŵµ,t + (1− α)v̂µ,t−1 0.4 ≤ α ≤ 0.9
v̂σ,t = βŵσ,t + (1− β)v̂σ,t−1 0.3 ≤ β ≤ 0.7

In optimization problems, the factor (1 − α) is
commonly employed in smoothed update steps.
In this context, our focus extends beyond the
introduction of a second parameter β, which en-
ables an asymmetric smoothed update. The CE
method samples from a Gaussian pdf, which, in
2 dimensions, forms a bell-shaped curve (Fig. 2).
When using a single parameter α, in each up-
date step, the bell-shaped curve ’moves towards
the best solution’ as the mean matrix updates
and ’reduces in size’ when the covariance ma-
trix updates. Unfortunately, this simultaneous
movement and scaling can lead the algorithm to
converge into local minima, compromising accu-
racy. By applying two parameters instead, we
enable the Gaussian pdf to ’move’ and ’scale’ in
an asymmetric manner, as shown in Fig. 2. This
results in faster convergence, reduced suscepti-
bility to local minima, and an improved ability
to explore better solutions, particularly when
specific directions offer a higher probability of
yielding superior results.

3.4. Adaptive objective function
To achieve a faster and more accurate optimiza-
tion a different parametrization has been applied
to the expression (5) by reformulating the flow
values Qi in terms of Hs and si.

Qi =

√
h1s2i −Hs

h3

The constraints and the choice of their math-
ematical representation can significantly impact
the feasibility and quality of the solution. There-
fore, two penalty functions Pe1 and Pe2 that
take into account the constraints expressed by
the equations (7) and (9) are introduced in the
model.
The penalty function Pe1 represents the BEA
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(a) Frontal representation. (b) Iteration 1.

(c) Iteration 5. (d) Iteration 15.

Figure 2: ’Moving’ and ’resizing’ in the update
step.

constraint.

Pe1 =
n+m∑
i=1

(∆Qi)
2

=



n+m∑
i=1

(Qi −Qmin,i)
2, Qi < Qmin,i

0, Qmin,i < Qi < Qmax,i
n+m∑
i=1

(Qi −Qmax,i)
2, Qi > Qmax,i

The penalty function Pe2 represents the flow
balance constraint.

Pe2 = (

n+m∑
i=1

ωi

√
h1s2i −Hs

h3
−Qs)

2

Therefore, the problem’s mathematical formula-
tion to be solved with the CE method is sum-
marized in:
Where σ is a weight coefficient that decreases
with the iterations, giving less importance to the
penalty functions as the solutions converge to
the optima. It is characterized by an initial value
σ0 and a cooling parameter γ.

σ = σ0
1
γT , γ ∈ [0, 1]

4. Comparative analysis of per-
formance

The improved CE method has introduces en-
hancements that improve best existing solutions.

Figure 3: Comparison of the improved CE
method in a single pump case.

Table 1: Comparative analysis

CEM ICEM
Flow demand (m3/h) 6000 6000

Computed flow (m3/h) 6004.0 6000
Power (kW ) 526.77 472.43
Iterations 30 32

Its performance is thoroughly analyzed from var-
ious perspectives to highlight its contributions
and improvements. Fig. 3 shows the comparison
between the classic CE method (CEM) and im-
proved CE method(ICEM). Furthermore, Tab.
I shows the their operational parameters under
the condition of system flow demand equal to
6000m3/h.
The improved CE method performs better com-
pared to the classic CE method, as shown in
Tab. 1. The improved CE method is able to
converge to the global minima in power con-
sumption, achieving a remarkable reduction of
approximately 11%, in the 6000m3/h case. Fur-
thermore, it demonstrated superior effectiveness
in refining its search for the optimal working
point, resulting in a very accurate flow value.
The differences in convergence observed can be
directly attributed to the fundamental princi-
ples underlying the improved CE method. By
smoothing the update of the multivariate nor-
mal distribution, the algorithm doesn’t rapidly
converge toward the best-found solution but al-
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lows room for exploration in the proximity of the
current optimal point. This approach enhances
the algorithm’s capability to search for global
minima and improves its overall accuracy.

5. Practical implementations
The model has been adapted to optimize a real-
life-inspired scenario featuring the water pump
station of a megalopolis equipped with four
pumps, including two variable frequency pumps
(pump 1, 2) and two fixed frequency pumps
(pump A, B). Their real performance curves
have been incorporated, and the operation of
the water pump station over several months has
served as the foundation for the database in use.
With the application of the improved CE
method, effective working points for these set
of pumps have been defined, ensuring compli-
ance with all constraints, especially their opera-
tion within the BEA (Fig. 2). Additionally, the
method has provided insights into the pumps’
statuses (on-off), indicating the optimal com-
bination of pumps that should be operated to
minimize the costs of the pump station.
Since the system flow demand is constantly vary-
ing, a key flow demand value of 25000m3/h have
been chosen. The respective performance values
are detailed in Table II and the optimal operat-
ing condition for the variable-speed pumps are
indicated with a star symbol in Fig. 4. The
efficiency of the variable-speed pumps consis-
tently exceeds 85%, and the head constraint is
respected. The implementation of the resulting
scheduling system effectively reduces the opera-
tional and maintenance costs of the water pump
station.
In conclusion, the application of the improved
CE method results in the successful operation
of the pumps within their best efficiency area,
while satisfying the water system constraints
and requirements of head and flow.

6. Conclusions
The optimization of the water pump station
scheduling was explored using an improved CE
method. The algorithm was developed and sim-
ulated in MATLAB, and its performance was
tested in a real-life-inspired scenario, represent-
ing a megalopolis water pump station. The
results of this study were highly satisfactory,
with the system and its components operating

Figure 4: Working points when Qs =
25000m3/h.

Table 2: Pump station parameters when Qs =
25000m3/h.

Pump A B 1 2
Status On On On On

Output flow 24969.7 (m3/h)
Power 2394.05 (kW )
Head 32.33 (m)

Flow (m3/h) 4196 3902 8299 8570
Speed ratio 0.92 0.87 0.87 0.89

Efficiency (%) 75.83 75.83 90.95 90.51

at their most efficient points while adhering to
all specified constraints.
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