
Engineering microservice-based
Self-Adaptive Systems: the case of
RAMSES

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Authors: Giancarlo Sorrentino, Vincenzo Riccio

Student IDs: 968003, 967517
Advisor: Prof. Raffaela Mirandola
Co-advisor: Prof. Matteo Camilli
Academic Year: 2021-22

i

Abstract
The increasing complexity of modern software systems leads to the problem of finding an
effective approach to automate their management process. Self-Adaptive Systems (SASs)
solve this problem by autonomously adapting themselves in order to achieve high-level
user-defined goals. However, SASs are usually challenging and expensive to develop, both
in terms of time and resources. The goal of our work is to find a better trade-off between
development costs and effectiveness of a SAS, by providing a managing subsystem to be
reused with different service-based systems (SBSs). To address this problem, we developed
an extensible software framework called RAMSES, a Reusable Autonomic Manager for
microServicES. The goal of RAMSES is to enforce the satisfaction of user-defined QoS
specifications for the target SBS at runtime, while improving its overall performance. Our
work also includes a standalone microservice-based application – SEFA – that serves as
a managed subsystem, providing the scientific community with a fully-implemented SAS
exemplar, which comprises two reusable and independent subsystems.

Keywords: self-adaptive, systems, reusable, microservices, adaptation

Abstract in lingua italiana
La crescente complessità dei moderni sistemi software solleva il problema di trovare un
approccio efficace per automatizzare la gestione di tali sistemi. I sistemi Self-Adaptive
(SAS) risolvono questo problema adattandosi autonomamente per raggiungere obiettivi
di alto livello definiti dall’utente. Tuttavia, i SAS sono solitamente impegnativi e costosi
da sviluppare, sia in termini di tempo che di risorse. Il nostro lavoro mira a trovare
un miglior compromesso tra costi di sviluppo ed efficacia dei SAS, fornendo un manag-
ing system riutilizzabile con diversi sistemi service-based (SBS). Per affrontare il prob-
lema, abbiamo sviluppato RAMSES (Reusable Autonomic Manager for microServicES),
un framework software estendibile e riutilizzabile. Il suo obiettivo è garantire che il SBS
da adattare soddisfi le specifiche di Quality-of-Service (QoS) richieste dall’utente, e allo
stesso tempo migliorare le performance di tale sistema. Includiamo inoltre un’applicazione
a microservizi – SEFA – usata come managed subsystem, fornendo alla comunità scien-
tifica un exemplar di SAS completamente implementato, che include due sottosistemi
indipendenti e riutilizzabili per vari scopi.

Parole chiave: self-adaptive, sistemi, microservizi, riutilizzabile, adattamento

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 State Of The Art 3
2.1 An Introduction To Self-Adaptive Systems 3
2.2 Existing Exemplars . 7

3 Our Proposal 11
3.1 Problem statement and proposed Solution 11
3.2 The Managed System: SEFA . 13

3.2.1 Introduction to the application . 14
3.2.2 Relevant design choices and system architecture 15
3.2.3 API overview . 20
3.2.4 Probe and Actuator requirements and implementation 22

3.3 The Managing System: RAMSES . 25
3.3.1 Prerequisites and assumptions . 26
3.3.2 System Model . 27
3.3.3 Knowledge component . 34
3.3.4 Monitor . 35
3.3.5 Analyse . 38
3.3.6 Plan . 46
3.3.7 Execute . 53
3.3.8 Dashboard . 57

4 Evaluation 59

vi | Contents

4.1 Research questions . 59
4.2 Design of the evaluation . 60
4.3 Results . 64

4.3.1 Scenario S1 - QoS not satisfied . 64
4.3.2 Scenario S2 - Service unavailable 80
4.3.3 Scenario S3 - Better implementation available 85
4.3.4 Reusability of the Managing System 88

5 Conclusions And Future Work 93
5.1 Conclusions . 93
5.2 Future directions . 94

Bibliography 97

A Appendix A - Experimental results 103
A.1 Scenario S1 - QoS not satisfied . 104

A.1.1 E1 - Choice of the experiment duration 104
A.1.2 E2 - Benefits of the adaptation . 108
A.1.3 E3 - Impact of the Metrics Window Size 116
A.1.4 E4 - Impact of the Analysis Window Size 120
A.1.5 E5 - Impact of the number of users 124

A.2 Scenario S2 - Service unavailable . 128
A.2.1 E1 - Analysis of the self-healing capabilities 128
A.2.2 E2 - Analysis of the failure tendency detection 128
A.2.3 E3 - Impact of the Monitor Period 129

A.3 Scenario S3 - Better implementation available 130
A.3.1 E1 - Analysis of the self-optimization capabilities 130

A.4 Reusability of the Managing System . 134
A.4.1 E1 - Analysis of the Managing System reusability 134

B Appendix B - Components interfaces 137
B.1 Managed System . 137

B.1.1 Restaurant Service . 138
B.1.2 Ordering Service . 139
B.1.3 Payment Proxy Service . 139
B.1.4 Delivery Proxy Service . 140

B.2 Probe . 140
B.3 Actuator . 141
B.4 Managing System . 141

B.4.1 Monitor Component . 141
B.4.2 Analyse Component . 142
B.4.3 Plan Component . 142

C Appendix C - Structure of JSON configuration files 143
C.1 System Architecture . 143
C.2 System Benchmarks . 144
C.3 QoS Specification . 145

List of Figures 147

List of Tables 151

List of Algorithms 153

Acknowledgements 155

1

1| Introduction

Nowadays, as the size and complexity of software systems keep increasing, a microservice
architecture is often chosen as the architectural style for service-based systems (SBSs).
These systems integrate several (micro)services, which are commonly located in multiple
computing infrastructures, spread across the world. Moreover, by applying the microser-
vice architectural style it is possible to build dynamic systems where the set of involved
services and their instances may change at runtime. In this context, the problem of man-
aging such big and complex systems is noteworthy, since direct human intervention is
challenging, time-consuming and error-prone.
Autonomic managers [19] try to mitigate this problem by proposing an automatic mech-
anism to (re)configure, optimise and repair a managed subsystem, which implements
the business logic. As a whole, these systems are referred to as autonomic systems.
Among them, Self-Adaptive Systems (SASs) are able to autonomously adapt themselves,
to achieve user-defined goals in response to changes in the underlying environment or in
the system itself, without human intervention [41]. These systems are usually built using
a feedback control loop made of four stages – Monitor-Analyse-Plan-Execute – over a
Knowledge base (i.e., a MAPE-K loop).

In general, the engineering of Self-Adaptive Systems is a hard challenge to tackle, drawing
the attention of the scientific community. Indeed, their realisation is often demanding,
in terms of time, resources and costs. When trying to adapt an existing application,
or building an entire SAS from scratch, one of the common approaches is to realise a
managing system tailored on the managed one. However, when dealing with service-
based systems, different Self-Adaptive Systems usually share part of their adaptation
goals. More specifically, they usually address the problem of dynamically ensuring some
Quality-of-Service (QoS) specifications while improving the overall system’s performance.
The goal of this work is the development of RAMSES, a Reusable Autonomic Manager for
microServicES. RAMSES is a software framework made by configurable and extendable
components, whose behaviour does not depend on the specific Managed System to be
adapted, and is thus reusable with different service-based Managed Systems. Indeed,
RAMSES aims at finding a better trade-off between development costs – in terms of time,

2 1| Introduction

resources and design – and effectiveness of the self-adaptation process thanks to the reuse
of the managing subsystem.
To evaluate RAMSES and to build a system that could be easily reused and adapted for
research purposes, we also developed a Java-based microservice application to be managed
by RAMSES, SEFA: a SErvice-based eFood Application.
As a result, we provide the scientific community with a complete self-adaptive system,
made of two non-simulated and fully-implemented subsystems, which can be reused for
different goals.

The following chapters describe in detail the problem we faced and the proposed solution,
together with its experimental evaluation. In particular, Chapter 2 introduces the reader
to the Self-Adaptive Systems, providing an overview of their state of the art.
Chapter 3 provides the reader with an in-depth analysis of the problem and our solution,
describing in detail RAMSES and the managed system designed for experimentation pur-
poses, SEFA.
Chapter 4 focuses on the conducted experimental evaluation, which aims at answering 10
research questions.
Chapter 5 summarises the overall project, highlighting the most relevant conclusions and
proposing future improvements to RAMSES.
Finally, three appendices conclude this work, that include all the graphs generated dur-
ing the experiments (Appendix A), all the APIs offered by the implemented components
(Appendix B) and the structure of the configuration files used during the initialisation of
RAMSES (Appendix C).

The source code of the all the components implemented for this research are publicly
available on GitHub1.

1GitHub repository available at https://github.com/ramses-sas/ramses-sefa-SAS

https://github.com/ramses-sas/ramses-sefa-SAS

3

2| State Of The Art

This chapter aims to provide the reader with an overview of the state of the art concerning
the field of self-adaptive systems.
This chapter is structured as follows:

• Section 2.1 introduces the concept of Self-Adaptive Systems, and describes their
properties;

• Section 2.2 illustrates some relevant exemplars of Self-Adaptive Systems.

2.1. An Introduction To Self-Adaptive Systems

During the last years, the complexity of software systems started increasing fast. They
became no longer restricted to few components located in small and easily controllable
areas, but made of a huge number of interconnected and distributed devices, as in the
Internet of Things field. Hence, the need for automatic (re)configuration and optimization
mechanisms for those systems arose, aiming at satisfying the admin’s goals without human
intervention.

In 2001, the proposal of autonomic computing [19] by IBM’s senior vice president of
research, Paul Horn, put the attention of the scientific community on these computing
systems, that can manage themselves when provided with high-level goals from their
administrators. Hence, the main concern of these systems is self-management, which can
be specialised in four main aspects (or adaptation goals):

• Self-configuration. Configuring and integrating complex systems is challenging,
time-consuming, and error-prone. Given a set of declarative high-level policies (i.e.,
describing what is the desired state, not how to reach it), autonomic systems con-
figure themselves automatically;

• Self-optimization. From an engineering point of view, one of the main goals
is to maximize the performance and minimize the cost of a system. Autonomic
systems can improve their operation, identifying and seizing opportunities to make

4 2| State Of The Art

themselves more efficient in performance or cost;

• Self-healing. As stated by Werner Vogels, Amazon’s VP and CTO, “everything
fails, all the time”: any computing system is continuously exposed to failures. Au-
tonomic systems can detect, diagnose, and repair localized problems resulting from
bugs or failures in either software or hardware;

• Self-protection. One of the main concerns of system administrators and engineers
is how to protect the system from malicious attacks or harmful problems, resulting
in one of the goals of an autonomic system.

Between all the autonomic systems, we focus on Self-Adaptive Systems (SAS), systems
that are able to adjust their behaviour in response to their perception of the environment
and of the overall system [7].
Even if the publication of IBM’s vision was a game changer in the field of autonomic
computing, the first reference to self-adaptive systems in literature was in 1990. After
then, self-adaptive systems gained more and more interest, and self-adaptation is now
considered an effective approach to deal with the problems they address [41, 44].

In Software Engineering Processes for Self-Adaptive Systems [1], Andersson et al. propose
a conceptual architecture for self-adaptive systems (Figure 2.1), promoting separation of
concerns between a Managing (Sub)system and a Managed (Sub)system. The Manag-
ing Subsystem implements the adaptation logic that manages the Managed Subsystem,
which encloses the domain logic. The self-adaptive system operates in an observable en-
vironment, which might affect the adaptation logic. To fulfil its goals, the Managing
Subsystem monitors the environment and the Managed Subsystem and adapts the lat-
ter when necessary. For this reason, a self-adaptive system bases its operation on two
awareness properties: self-awareness and context-awareness [31]. The former describes
the ability of the system to be aware of itself and of its behaviours. The latter means that
the system is aware of the context in which it operates.

During the last 30 years, the scientific community deeply analysed different aspects of
self-adaptation, from multiple points of view. This increasing interest in the SASs field
led to the presentation of numerous works, and also to the birth of specialised conference
series, as SEAMS [18] and ACSOS [17].
To summarise these and other works, a valuable effort was made by Krupitzer et al. in [21],
where the authors proposed a comprehensive taxonomy for self-adaptation. It was the
result of an extensive literature review and of the integration of existing taxonomies and
works on self-adaptation. The taxonomy is structured to answer the 5W + 1H questions
for eliciting adaptation requirements already introduced by Salehie and Tahvildari in [31],

2| State Of The Art 5

Figure 2.1: A Conceptual Architecture for Self-Adaptive Software Systems [1]

summarised in Table 2.1.

Question Dimension of the taxonomy

When? Time (reactive vs. proactive)

Why? Reason (context, technical resources, user)

Where? Level (application, system software, communication, technical resources,
context)

What? Technique (parameter, structure, context)

Who? N/A (nature of a SAS leads to an automatic type of adaptation)

How? Adaptation control (approach, adaptation decision criteria, degree of de-
centralization)

Table 2.1: Relation of the taxonomy dimensions and the questions [21]

A first aspect to consider when designing self-adaptive systems is related to when the
system should be adapted. Even if proactive adaptation is preferable, since it anticipates
the need for adaptation, the prediction algorithms are complex to develop and faulty
results can cause suboptimal or malicious adaptations.

Concerning where the adaptation should be applied, it can happen to different levels of the
technology stack, from the underlying hardware to the application software. Even if we
analyse software systems, the first architectures proposed for self–management correspond
nearly exactly with the early sense-plan-act SPA architectures used in robots [20].

Between the reasons why a system should be subject to adaptation, the scientific commu-
nity put a lot of attention on achieving and maintaining well-defined Quality of Service
(QoS) properties in a changing environment, which is still a key challenge for self-adapting
systems [6].

6 2| State Of The Art

Figure 2.2: Structure of a SAS implementing a MAPE-K loop (based on [41])

Concerning the how aspect, the most common approach is the external approach [21],
as it splits the SAS into adaptation logic (i.e., the managing subsystem) and managed
resources (or managed subsystem), increasing the maintainability through modularization.
A common engineering approach of this type consists in using a feedback control loop
made of four stages – Monitor-Analyse-Plan-Execute – over a Knowledge base. This kind
of loop is referred to as MAPE-K loop [4, 19] and it is represented in Figure 2.2. The
Knowledge component is the source of truth for the other components of the MAPE loop.
It stores data concerning the Managed System, the environment, the adaptation logic,
and other relevant data for the adaptation. The Monitor component collects data from
the Managed System and the environment through probes (or sensors) and stores them
in the Knowledge. The Analyse component performs analysis on the data collected so far
in order to check whether the Managed System requires adaptation. When adaptation is
required, the Plan component chooses the adaptation actions needed to fulfil the system’s
goals. Finally, the Execute component is in charge of executing the actions identified by
the Plan through the effectors (or actuators) of the Managed System.

A further challenge in engineering self-adaptive systems is to decentralise the adapta-
tion logic by distributing the MAPE components. In a centralised adaptation logic, one
sub-system implements the adaptation logic. This solution is cost-effective and easy to
maintain, but is not suitable for large systems, due to the high amount of information
and the computational power. As a result, patterns on fully decentralised and hybrid
approaches (Figure 2.3) were proposed [43].

2| State Of The Art 7

Figure 2.3: Comparison of adaptation logic structures [21]

2.2. Existing Exemplars

Whereas some members of the scientific community propose analytical and methodolog-
ical approaches to QoS management and optimisation, others point their attention to
technological research, which is also the focus of the proposed work.
To analyse the technological works proposed so far, the systematic review of SASs pro-
posed in [44] by Wong et al. was used as a reference.
To restrict our study to our domain of interest, among all the works presented in the re-
view, we selected the ones concerning service-based systems and web services applications
and using a closed-loop approach. In addition, only the ones not relying on simulated
environments were selected.

Therefore, the most relevant works we focused on are the [23, 26, 40] and [39].
The first work, proposed in 2011 by Patikirikorala et al., focuses on multi-model feedback
control systems. In particular, it analyses the application of Multi-Model Switching and
Tuning (MMST) to QoS performance management of software systems [26].
The second work, proposed in 2011 by Lulli et al., presents a modular software framework
for resource management, based on the integration of dynamic allocation, trading, and
self-adaptation mechanisms [23].
The third work, proposed in 2013 by Tamura et al., provides an implementation of the
DYNAMICO (Dynamic Adaptation, Monitoring and Control Objectives) reference model
for self-adaptive systems, which provides guidelines for designing and implementing SASs
where both the adaptation goals and the context monitoring requirements may change at
runtime [40].
The last work, proposed in 2014 by Swanson et al., extended the well-known Rainbow
framework with new components and algorithms targeting failure avoidance, proposing
REFRACT [39]. The Rainbow framework uses software architectures and a reusable in-
frastructure to support the engineering of self-adaptive software systems [15]. The reusable
infrastructure comes together with mechanisms for specializing such infrastructure to the
user’s needs. It uses an abstract architectural model to monitor an executing system’s

8 2| State Of The Art

runtime properties, then evaluates the model for constraint violation and performs adap-
tations on the running system, if needed. At the time of writing, the Rainbow framework
is widely used as a test bed and extensible tool in self-adaptive systems research. However,
it requires some effort to fully understand how to set it up and combine it with a preex-
isting web or service-based application. It requires both a formal definition of the model
– using the ad-hoc Stitch self-adaptation language – and a translation infrastructure for
communications from and to the managed system, which implies both a high design and
development complexity.

In addition, some exemplars published on the website Software Engineering for Self-
Adaptive Systems1 were compared to the previous ones. After filtering on the domain of
interest (Web / Cloud / Service), we ended up with the following relevant exemplars:

• Hogna is a platform for deploying self-managing web applications on the cloud
and automating a set of operations, such as the booting of the instances and their
setup. Moreover, it enables the continuous monitoring of the health status of the
applications [3];

• TAS is a service-based system (SBS), whose objective is to provide researchers with
an exemplar of service-based application to be adapted [42];

• SEAByTE is an exemplar that proposes an experimental framework for testing novel
self-adaptation solutions to enhance the automation of continuous A/B testing of a
micro-service-based system [28].

Other exemplars (e.g., SWIM [25], RDMSim [32] and EWS [12]) implement specific
managed subsystems ready to be adapted, that can be reused by researchers to evaluate
and compare different adaptation logics. For instance, in the case of SWIM, an external
adaptation logic can interact with it through a TCP-based interface [25].

Among the previously mentioned exemplars, SEAByTE represents a ready-to-use frame-
work, implemented using a well-known technology stack (microservices, Spring, Docker,
REST/JSON). However, its application is limited to the specific domain of A/B testing.
Conversely, Hogna provides a modular Managing System, which is however specifically
focused on the deployment and configuration of cloud applications, especially on the Ama-
zon EC2 deployment platform.
Finally, the TAS exemplar provides a useful SBS to be used as the managed subsystem
of a SAS. Moreover, it provides the definition of a set of generic adaptation scenarios
applicable to SBS, to deal with uncertainties of the system itself and of the environment

1http://www.self-adaptive.org/exemplars

2| State Of The Art 9

it is set in, which inspired the one proposed in Chapter 3.

With respect to the presented exemplars, our solution is not limited to domain-specific
adaptations or to a specific technology stack, but aims at providing a flexible and reusable
Managing System, focused on QoS and performance-related adaptation scenarios, to sup-
port different SBSs.

11

3| Our Proposal

In this chapter we describe the problem we addressed and the proposed solution.
The chapter is structured as follows:

• Section 3.1 describes the problem statement, and introduces our solution;

• Section 3.2 describes SEFA, the Managed System to be adapted by our solution. In
particular, this section focuses on its functionalities, on its architecture, and on its
relevant design choices;

• Section 3.3 describes RAMSES, the Managing System proposed as a solution to
the presented problem. In particular, this section provides a deep overview of the
system, describing its components, their respective algorithms, and the overall in-
teractions between the system itself and the Managed System it aims to adapt.

3.1. Problem statement and proposed Solution

Nowadays, the majority of service-based systems have specific quality of service (QoS)
requirements and constraints to satisfy. However, ensuring their satisfaction is a hard
challenge, since the environment in which these systems are set is often subject to frequent
changes, that may impact the overall Quality of Service.
Self-Adaptive systems try to mitigate this problem, by proposing a paradigm that, when
applied, eases the management of a given system. Indeed, as highlighted in Chapter 2,
their goal is to help admins in ensuring that their system satisfies a set of user-defined
constraints.
This is done by providing a subsystem, called Managing System, in charge of managing
the base application, called Managed System, based on its admins’ needs.

When developing a Self-Adaptive System, designing both the Managing and the Managed
System together introduces many advantages: the Managing subsystem would be tailored
to the Managed one, that in turn would be designed to efficiently and effectively interact
with the former. Indeed, when designing a Self-Adaptive System, it is fundamental to pro-
vide the Managing Subsystem with the possibility to retrieve data from and apply changes

12 3| Our Proposal

to the Managed one: without an adequate monitoring process, the need for an adaptation
cannot be identified and, therefore, the adaptation process cannot be started [21]; also,
without the possibility to actually modify the Managed System behaviour, the identified
adaptation options would be useless.
However, this is not often the case: in general, a common situation is the one in which an
already existing application needs to be supported by a not yet implemented Managing
System. Again, in this case, a solution would be to design an ad-hoc Managing System,
that suits the specific domain and needs of the Managed one.

Despite their benefits, both these practices have downsides: indeed, designing a Managing
System tailored to a given application introduces tight coupling in the overall SAS. This
binding could lead to maintainability issues and increasing costs.
In fact, given the nowadays pervasiveness of software systems, companies holding different
applications would need to design several different ad-hoc Managing Systems, which may
be infeasible due to their high development time and cost. Moreover, since most of the
service-based applications share some high-level QoS requirements (e.g., availability, re-
sponse time), it is very likely that the different Managing Systems to be developed would
share their non-domain-specific logic.
Our solution to the problem of finding a better trade-off between costs – in terms of time,
resources, design and development – and effectiveness of the SAS is to design a mod-
ular MAPE-K-based Managing System, RAMSES. RAMSES is a Reusable Autonomic
Manager for microServicES, made by configurable and extendable components, whose
behaviour does not depend on the specific Managed System to be adapted, and is thus
reusable with different Managed Systems.

In order to design RAMSES, it was necessary to identify the adaptation scenarios common
to the majority of SBSs. When designing (micro)service-based systems, it is common
to include in their architecture load-balancing components and resiliency patterns (e.g.,
Circuit Breaker), described in Section 3.2.2. This, together with the common interest
of nowadays systems to satisfy specific QoS requirements, made us define the adaptation
scenarios summarized in Table 3.1, which guided the overall design process of the proposed
solution.

With respect to the current Self-Adaptive Systems taxonomy, mentioned in Section 2.1,
RAMSES offers reactive adaptation (when?) at the application level (where?). To reach
its goals, it follows an external approach, implementing a MAPE-K loop through separate
components (how?), easing the implementation of centralized, decentralized and hybrid
adaptation logic. Hence, parameter-level and structure-level adaptation (what?) is per-
formed in reaction to the changes that make the managed subsystem violate specific QoS

3| Our Proposal 13

Scenario Observable proper-
ties

Examples of adaptations

S1: Violation
of QoS specifi-
cations

Values of the QoS
indicators of the ser-
vice over time (e.g.,
availability, average
response time)

– Change the current service implementation
– Add (load balanced) instances in parallel
– Shutdown of an instance with low perfor-
mance
– Change configuration properties (e.g., load
balancer weights, circuit breaker parame-
ters)

S2: Service un-
available

Success or failure of
each service invoca-
tion

– Change the current service implementation
– Add (load balanced) instances in parallel

S3: Better ser-
vice implemen-
tation available

Properties of the ser-
vice implementations
(e.g., average response
time, preference)

– Change the current service implementation

Table 3.1: Adaptation scenarios

requirements and constraints (why?). Also, concerning the properties of autonomic sys-
tems, described in Section 2.1, RAMSES is meant to provide the Managed System with
Self-optimizing and Self-healing capabilities.

Finally, in order to provide a complete Self-Adaptive System, a managed subsystem,
SEFA, close to a real-world application is provided, in order to test the functionalities
and effectiveness of RAMSES in a non-simulated environment.
An in depth description of both SEFA and RAMSES is provided, respectively, in Sec-
tion 3.2 and Section 3.3.

3.2. The Managed System: SEFA

In order to test the proposed solution, described in Section 3.3, and to build a system that
could be easily reused and adapted for research purposes, our project includes a Java-
based microservice application that will be object of the adaptation, SEFA: a SErvice-
based eFood Application. Since it was not the aim of this work, its design is open to
future improvements and refinements. Despite this, the system is complete and close to
a real-world application, which satisfies our need of testing RAMSES in a non-simulated
environment.

14 3| Our Proposal

3.2.1. Introduction to the application

SEFA is an eFood application1 with a microservice-based architecture, implemented using
the Spring Boot [33] and Spring Cloud [35] frameworks.
The goal of this application is to allow customers to browse the list of restaurants handled
by SEFA and their respective menus, choose some dishes, and finally place orders, paying
them by credit card and getting them delivered to a specific address.

As the architecture is designed according to the microservice pattern [30], the server-side
logic is made up of multiple components – the core services. The services expose REST
APIs using the JSON format. The core services are the following:

• the Restaurant Service, in charge of managing the restaurants available on the
application and their respective menus;

• the Ordering Service, in charge of managing all the customers’ carts, and of
allowing them to place their orders; it interacts with the Restaurant Service and
with the two proxy services to reach its goal;

• the Payment Proxy Service, in charge of mediating with a third-party payment
service provider (i.e., who processes the payment) during the elaboration of the
order;

• the Delivery Proxy Service, in charge of mediating with a third-party delivery
service provider (i.e., who delivers the order to the customer) during the elaboration
of the order.

Since multiple third-party providers can be used for the payment and for the delivery of
the orders, the system is designed according to the adapter pattern [14]. This allows the
Ordering Service to interact with different third-party APIs, without the need of handling
separately the web interface of each third-party provider. Indeed, each of them is con-
tacted by the Ordering Service through its own proxy, which must offer to the Ordering
Service a predefined interface, common to all the proxies of the same service (i.e., Pay-
ment and Delivery).
Together with SEFA, three different third-party providers for the payment service – result-
ing in three different implementations of the Payment Proxy Service – and three possible
third-party providers for the delivery service – resulting in three implementations of the
Delivery Proxy Service – have been realised. However, the Managed System is assumed
to be using no more than one specific implementation per service at the same time, as

1Inspired by the educational projects proposed by professor Luca Cabibbo [5].

3| Our Proposal 15

Figure 3.1: Use case of a complete interaction with the application – Sequence diagram

described in Section 3.3.1. Hence, for both services, RAMSES might propose adaptation
on the third-party provider to choose.

The UML sequence diagram in Figure 3.1 illustrates the workflow originating from the
interaction of the user with the application.

3.2.2. Relevant design choices and system architecture

This section motivates the main choices concerning the design of the application and
illustrates the final system architecture.

To begin with, since SEFA highly depends on third-party services, the circuit breaker
pattern [8] is used, in order to improve the resiliency of the application and to mitigate
the impact that potential failures or abnormal response times of the third-party services
may have on the end-user.
The circuit breaker does not interfere with the normal operations when it is in the
CLOSED state, but its state evolves from CLOSED to OPEN when either the failure
rate or the slow-calls rate are greater than the respective thresholds. In this case, the cir-
cuit breaker temporarily disallows further calls to that third-party service, and performs

16 3| Our Proposal

user-defined fallback operations in place of the requested ones.
The failure rate and the slow call rate thresholds, as well as the other properties of the
circuit breaker, are configurable by the user and they might be subject to adaptation if
handled by the Managing System.
In our system, this resiliency pattern is applied to the Ordering Service, implemented
using the Spring Resilience4j circuit breaker [29]. In particular:

• for the delivery service, the fallback method provides the user with the possibility
to pick up the order at the restaurant;

• for the payment service, the fallback method allows the users to complete the order
by paying cash upon delivery or pick-up.

In order to reproduce a real-world application, and to take advantage of the microservices
architecture, multiple instances of each service can run in parallel, where the number of
instances and their location might change dynamically.
Hence, one of the problems to address when making a request is how to discover the
location of a service instance, and how to select one instance among all the available ones.
The solution to the problem is, in our application, to apply client-side service discovery
and load-balancing [9].
In order to make a request, the client of a service first asks the location of the available
instances by querying a service registry. In our case, the service registry is implemented
using Spring Cloud Netflix Eureka Server [11], and its location (i.e., its public address)
must be known to all the microservices. Finally, the instance is chosen by applying the
following load-balancing rule. A fitness is assigned to each instance, which is chosen using
fitness proportionate selection, also known as roulette wheel selection [24]. In this paper,
the fitness of an instance is also referred to as weight, and the load balancing rule as
Weighted Random.
In order to ease future works on the proposed solution, the load balancers are defined and
implemented in a separate project library, which at the time of writing includes:

• a Round-Robin algorithm;

• a Weighted Round-Robin algorithm;

• a pure Random selection rule;

• the already mentioned Weighted Random selection rule, which is the only one cur-
rently handled by RAMSES, as described in Section 3.3.

The introduction of client-side service discovery and load-balancing functionalities brings
the need of simplifying the interaction between the end users and the application. Indeed,

3| Our Proposal 17

in contrast with direct client-to-microservice communication, a single entry point in charge
of processing and routing the end users’ requests to the internal microservices eases the
communication.
This is achieved by applying the API gateway pattern [2], implemented using Spring
Cloud Gateway [37]. As a result, the gateway is a standalone microservice acting as a
front door to the core services: any REST client can interact with SEFA only by making
requests to the gateway.

Having multiple instances of the same service running in a distributed setting introduces
another challenge, which consists in how to let them share the same configuration. In
our case, we want all the instances of the same service to look the same to an external
client, from a behavioural point of view. As a result, the solution is to have a centralized
configuration server, which, for each service, holds the configuration properties to use at
run-time, and updates all the involved instances when a configuration change is needed.

Figure 3.2: Event Diagram of a property change

18 3| Our Proposal

This mechanism is implemented using Spring Cloud Config [36]. Indeed, a configuration
server runs as a standalone Spring Boot application, while the property sources are stored
on a remote git repository: in the case of our application, the repository is hosted on
GitHub2.
All the core services use the repository as a property source: during the boot process each
instance fetches the configuration from the repository to initialize its environment.
When a property is changed on the repository, the configuration server is notified via a
dedicated webhook [16]: when this happens, the configuration server analyses the new
configuration and notifies the instances involved by the changes. Hence, all the core
services implement a handler to react to such events.
The flow of the property change event is summarized by the event diagram shown in
Figure 3.2.

Due to the nature of the application, in order to offer their functionalities, the Restaurant
Service and the Ordering Service require some data to be persisted (e.g., the restaurants
and their menus, the orders made by the customers). As a consequence, the database-
per-service pattern is applied [10]. Indeed, these services persist their data in independent
MySQL databases through the use of Spring Data JPA [38].

(a) SEFA Dashboard – Restaurant

(b) SEFA Dashboard – Restaurant menu

Figure 3.3: SEFA Dashboard
2GitHub, Inc. – https://www.github.com

https://www.github.com

3| Our Proposal 19

Finally, in order to let a human interact with SEFA through a graphical user interface
(GUI), a web application is also provided. It serves as the front-end of the application,
acting as a REST client that communicates with the API gateway.
The web server is a Spring Boot application, that uses Thymeleaf3 as template engine.
An example of the GUI is shown in Figure 3.3.

As a result, the final software architecture is illustrated by the microservices architecture
diagram shown in Figure 3.4.

Figure 3.4: Software architecture - Microservices diagram

In particular:

• The Microservices in blue are the ones exposed to the end user: they represent the
front-end of the architecture.

• The Microservices in green constitute the back-end of the architecture. Obviously,
the components implementing the adapter pattern (namely the Payment Proxy
Service and the Delivery Proxy Service) interact with the respective third-party
service providers, which are not included in the diagram as they are not part of the
developed Managed System. However, we provide mocked third-party services for
testing.

• The Microservices in the dashed rectangle communicate with the Eureka Discov-
ery Service – for client-side service discovery – and with the Config Server – for
centralized configuration management. All of them, with the exception of the API

3The Thymeleaf Team – https://www.thymeleaf.org/

https://www.thymeleaf.org/

20 3| Our Proposal

Gateway, are the ones implementing the server-side logic and are subject to adap-
tation.

• A REST client simulating a complete and automated interaction with SEFA is also
provided for testing.

3.2.3. API overview

As shown in Figure 3.4, both the core services and the API Gateway offer different APIs,
in order to allow clients to perform their requests.

The Restaurant Service offers two different sets of REST APIs, one for the customers’
operations and one for the system admin’s operations.
The former API includes the following endpoints:

• GET /rest/customer/restaurants/, which provides the client with the list of
restaurants managed by SEFA;

• GET /rest/customer/restaurants/{restaurantId}, which provides the client
with the details of the specified restaurant;

• GET /rest/customer/restaurants/{restaurantId}/menu, which provides the
client with the menu of the specified restaurant;

• GET /rest/customer/restaurants/restaurantId/item/{itemId}, which pro-
vides the client with the details of the specified item present in the menu of the
specified restaurant;

• POST /rest/customer/restaurants/{restaurantId}/notify, which allows the
client to notify the specified restaurant when a new order for that restaurant is
confirmed.

Conversely, the latter API includes the following endpoints:

• GET /rest/admin/restaurants/, which provides the client with the list of restau-
rants managed by SEFA;

• POST /rest/admin/restaurants/, which provides the client with the possibility
of adding a new restaurant to the list of restaurants managed by SEFA;

• GET /rest/admin/restaurants/{restaurantId}, which provides the client with
the details of the specified restaurant;

• GET /rest/admin/restaurants/{restaurantId}/menu, which provides the client

3| Our Proposal 21

with the menu of the specified restaurant;

• PUT /rest/admin/restaurants/{restaurantId}/menu, which provides the client
with the possibility of creating or updating the menu of the specified restaurant.

A more specific representation of the described APIs, which includes details concerning
the requests and responses bodies, is provided in Appendix B.1.1.

The Ordering Service provides a REST API that allows the customers to create and
manage their cart, and to place orders. In particular, the API includes the following
endpoints:

• POST /rest/, which allows the client to create a new cart associated with the
restaurant specified in the request;

• GET /rest/{cartId}, which provides the client with details about the specified
cart;

• POST /rest/{cartId}/addItem, which allows the client to add the item specified
in the request to the selected cart;

• POST /rest/{cartId}/removeItem, which allows the client to remove the item
specified in the request from the selected cart;

• POST /rest/{cartId}/confirmOrder, which allows the client to place a new order
based on the selected cart;

• POST /rest/{cartId}/confirmCashPayment, which allows the client to confirm
the customer’s possibility to pay the order associated with the specified cart in cash,
upon delivery or takeaway, when online payment is not available;

• POST /rest/{cartId}/confirmTakeAway, which allows the client to confirm the
customer’s possibility to personally pick up the order associated with the specified
cart at the restaurant when delivery is not available;

• POST /rest/{cartId}/rejectTakeAway, which allows the client to cancel the or-
der associated with the specified cart at the restaurant when delivery is not available;

A more specific representation of the described API, which includes details concerning
the requests and responses bodies, is provided in Appendix B.1.2.

The Payment Proxy Service offers a REST API composed of a single endpoint, that allows
its clients to contact the third-party provider that its implementation is associated with.
In particular, the API is the following:

22 3| Our Proposal

• POST /rest/processPayment, which allows the client to provide all the required
pieces of information for making a payment.

A more specific representation of the described API, which includes details concerning its
request and response body, is provided in Appendix B.1.3.

Analogously to the Payment Proxy Service, the Delivery Proxy Service offers a REST API
composed of a single endpoint, that allows its clients to contact the third-party provider
that its implementation is associated with.
In particular, the API is the following:

• POST /rest/deliverOrder, which allows the client to provide all the required
pieces of information for requesting the delivery of an order.

A more specific representation of the described API, which includes details concerning its
request and response body, is provided in Appendix B.1.4.

To conclude, the API Gateway offers a set of APIs serving as a single entry point to the
application. Its APIs are a small variation of the ones offered by the Restaurant Service
and by the Ordering Service. In particular:

• the /rest prefix is removed from all the endpoints;

• the prefix /customer/cart is added to all the URLs of the Ordering Service API.

3.2.4. Probe and Actuator requirements and implementation

Prerequisites
In order to allow RAMSES to correctly monitor its Managed System and to effectively
perform operations on it, a Probe component and an Actuator component must be pro-
vided together with the Managed System itself. These two components are an abstraction
layer to enforce the reusability of RAMSES, decoupling it from the actual technology stack
used by the Managed System.

The Probe component is considered by RAMSES as the source of truth when determining
which are all the running managed instances at any moment. Thus, it must be able to
provide RAMSES with an always up-to-date representation of the Managed System run-
time architecture, which is the list of running instances for each service. Moreover, it is
assumed that, if the Probe includes an instance in the runtime architecture, that instance
is currently able to process requests.
As stated in Section 3.3.1, since a service might have multiple implementations but only

3| Our Proposal 23

one currently active, the information about the current implementation of a service must
be known by an external observer (in our case, RAMSES itself), and thus it must be
included in the run-time architecture representation returned by the Probe Component.
Finally, the Probe component must be able to provide RAMSES with the up-to-date
configuration of any managed service.
The interface that the Probe component must provide is defined in Appendix B.2.

The Actuator component is the one in charge of effectively applying the instructions
imposed by RAMSES. Indeed, it must be able to boot new instances of a specific service
implementation, shut down specific instances and change the configuration of a given
service. Moreover, it is assumed that all the requested actions are eventually performed
correctly. However, service configuration changes should be applied in a reasonably short
amount of time, which indicatively should be shorter than a threshold, defined by the
Equation 3.17 in Section 3.3.7.
The interface that the Actuator component must provide is defined in Appendix B.3.

Our implementation
Using Spring Boot as a framework to develop the microservices, it is easy to instrument
them, thanks to Spring Boot Actuator [34]. Spring Boot Actuator is a Web API made by
multiple endpoints, that can be used for monitoring and managing each application (i.e.,
in our case, each microservice).
The most relevant endpoints used in our solution include:

• GET /env, in order to retrieve the runtime environment of an instance;

• GET /health, in order to retrieve the status of an instance, of its circuit breakers
and of its database connections, if any;

• GET /info, in order to retrieve information about the application;

• GET /prometheus, in order to get data from the Prometheus monitoring tool, better
described later in this section;

• POST /refresh, in order to make the application reload the configuration properties
after a property change. In particular, this endpoint is used by the Config Server.

A noteworthy mention is needed for the Prometheus endpoint. The Prometheus tool eases
the retrieval of many metrics of an application, such as statistics on the HTTP requests
made to the exposed endpoints and on the resource usage (e.g., CPU usage, memory
usage). These metrics are collected by the Probe component of the Managed System,
which is required by RAMSES as described in Section 3.3.1.

24 3| Our Proposal

Figure 3.5: Workflow of the Probe main task – Sequence diagram

RAMSES – and in particular its Monitor component, described in 3.3.4 – interacts with a
Probe component to maintain an up-to-date runtime architectural model of the Managed
System, as proposed in [41]. The logic of the Probe of SEFA is based on the interaction
with the Eureka Server – to retrieve the runtime architecture of each service as seen from
the point of view of a client – and with the Prometheus endpoint exposed by the Spring
Boot Actuator framework – to retrieve the latest metrics of each instance. The result of
the interaction with Prometheus is then parsed using a data scraper, imported as external
library4.
The workflow of our implementation of the Probe is illustrated by the sequence diagram
shown in Figure 3.5.

Finally, RAMSES – and in particular its Execute component, described in 3.3.7 – interacts
with an Actuator component in order to make the adaptation options effective [41].
In our case, the Actuator component is actually made of two subcomponents:

• the Instances Manager, in charge of allocating and deallocating instances upon
request. More specifically, it starts or stops service instances allocated in Docker
containers, hosted on a machine exposing the Docker daemon;

• the Config Manager, in charge of updating the configuration repository when a
4An adapted version of the open-source Prometheus Metrics Scraper [27].

3| Our Proposal 25

property needs to be changed, added or removed. More specifically, it commits and
pushes the changes to the GitHub repository used by the configuration server.

The machine target of the Instances Manager and the repository target of the Config
Manager are properties configurable by the user through dedicated environmental vari-
ables.
The workflow of our implementation of the Actuator can be illustrated with the sequence
diagram in Figure 3.6.

Figure 3.6: Workflow of the Actuator main task – Sequence diagram

3.3. The Managing System: RAMSES

Our proposed solution to the problem is RAMSES, a Reusable Autonomic Manager for
microServicES. Indeed, RAMSES is a Managing System designed as a distributed MAPE-
K loop, implemented in Java using the Spring Boot framework [33]. In particular, each
component of the MAPE-K loop has been designed as a standalone microservice, to bring
new advantages to the classical monolithic implementation of the loop. In this way, we
allow the users to deploy and replace the components of the loop independently. Moreover,

26 3| Our Proposal

the design of RAMSES is agnostic with respect to the system it is in charge of adapting,
enforcing its reusability with different Managed Systems.

In the following section, a more detailed explanation of the different stages of the loop
and their respective components is provided, together with a complete description of the
System Model of our solution and how it is represented in the Managing System, and
all its prerequisites and assumptions. Figure 3.7 summarizes the workflow of a single
iteration of the MAPE-K loop.

Figure 3.7: Workflow of a MAPE-K loop iteration – Sequence diagram

3.3.1. Prerequisites and assumptions

Our Managing System is designed to interact with a SBS, called Managed System. There
are different prerequisites that the Managed System must satisfy in order to allow the

3| Our Proposal 27

Managing one to correctly perform its operations.

To begin with, in order to let RAMSES operate, the user must describe the Managed
System and its architecture in the dedicated configuration files. More details on their
content and structure are provided in Section 3.3.3.

Secondly, even if each service may be implemented by different service implementations,
it is assumed that, at any moment, all the running instances of the same service are
instances of the same service implementation, also known as the current implementation
of that service.

Moreover, as anticipated in Section 3.2.4, a Probe component and an Actuator component
must be provided together with the Managed System itself, in order to allow RAMSES
to correctly monitor it and to effectively perform operations on it.

Concerning the operations performed via the Actuator, RAMSES also assumes that no
external actor is allowed to change the Managed System configuration elements which are
subject to adaptations (i.e., the addition and shutdown of instances, and the change of
load balancer weights).

Finally, when monitoring each service and proposing adaptation options, RAMSES always
assumes that all the instances of a given service that are present in the runtime architecture
provided by the Probe component actually contribute to elaborating and processing the
clients’ requests directed to their service. This should happen independently from the
load-balancing technique adopted by the Managed System.

3.3.2. System Model

In order to let RAMSES interact with its Managed System and propose adaptations, it
is fundamental to precisely define a System Model, shown in Figure 3.8, that represents
all the entities that the system needs to correctly model the environment and perform
adaptation.

The Service is the principal entity of the model. It is the model counterpart of each
service of the Managed System, and it includes all the relevant pieces of information
about a managed service. Each Service is identified by a unique ID, may be associated
with the other services it depends on (also called service dependencies), and holds a
Service Configuration.

A Service Configuration encapsulates information about the configuration of each man-
aged service, that include the type of load-balancer used by the service, and the weights

28 3| Our Proposal

Figure 3.8: UML class diagram describing the System Model

3| Our Proposal 29

of each service instance when the load-balancer type is WEIGHTED RANDOM. Also,
if the service presents one or more circuit breakers, their configuration is represented in
different Circuit Breaker Configurations, held by the Service Configuration itself.

Since a managed service may have different implementations, each Service keeps track of
what are all its possible Service Implementations. A Service Implementation models its
homonym counterpart of a given managed service. It is identified by its Service Implemen-
tation ID and holds different values: a penalty indicator, a trust parameter, a preference
parameter and an instance-load shutdown threshold parameter.
The first parameter – trust – indicates how much an implementation is trusted by the
user and represents a threshold for the penalty. Indeed, the penalty indicator represents
the tendency of a Service Implementation to require adaptation. It is a value initialized to
0 that is incremented whenever that implementation requires adaptation; when it exceeds
the threshold, the Managing System considers changing the current implementation for
that service.
The second parameter – preference – represents a preference of the user towards a specific
implementation of a service with respect to the others, and it is involved in the decision-
making process of determining if and how to change the current implementation of the
service.
Finally, if the service requests are distributed among its instances through a weighted
load-balancer, the instance-load shutdown threshold parameter, also referred to simply as
shutdown threshold, represents the minimum amount of requests that each instance should
process in order to not being shut down. It is expressed as a percentage of the number of
requests the instance would process if the request load was equally distributed between
all the instances of that service. This means that each running instance weight must be
greater or equal to the shutdown threshold divided by the number of instances of that
service. The explanation of this result follows.

Call s the shutdown threshold, i the considered instance, ri the number of requests to be
processed by i, Ir the set of instances to load balance, n its cardinality and R the total
number of requests (i.e., R =

P
i2Ir ri).

By definition, s is computed as

s =
ri

R/n
, (3.1)

where the denominator represents the number of requests that an instance would process
if the requests load was equally distributed between all the instances.

30 3| Our Proposal

Given s, we want the number of requests ri to assign to i to satisfy the following relation

ri � s · R/n, (3.2)

obtained from 3.1.
Since statistically the weight wi of the instance i can be expressed as

wi = ri/R, (3.3)

combining Equation 3.2 with Equation 3.3, it results that

wi �
s · R/n
R

, (3.4)

wi �
s

n
. (3.5)

As stated before, Equation 3.5 shows that the weight of an instance must be greater than
or equal to the shutdown threshold divided by the number of instances of that service.

This threshold provides the user with another instrument to customize the behaviour of
RAMSES, and add constraints to the Managed one.
Moreover, since the weights belong to the field of real numbers, this additional threshold
helps to prevent the case in which an instance is assigned with an infinitesimal weight due
to its poor performance, without being shut down.

The three parameters are specified by the user when defining the architecture of the
Managed System, as described in Section 3.3.3.

In addition to those values, we keep track of each implementation whether it is the cur-
rently active one or not: only one of the possible implementations of a service can be the
currently active one, as specified in Section 3.3.1. For this reason, from this moment on,
when we refer to properties of a service that actually belong to the Service Implementa-
tion entity (e.g., the service instances, the service QoS History, etc.), we actually refer to
the properties of its currently active implementation.

Together with each Service Implementation, it is fundamental to have in the System
Model an entity to model the running instances of such implementations. In our model,
an Instance of a given service is identified by its instance ID, provided by the Probe
component, and it is bound to its specific Service Implementation. Moreover, the model
keeps track of the current status of the instance, which can be:

• BOOTING, when the instance is started by the Actuator upon the request of the

3| Our Proposal 31

Managing System;

• ACTIVE, when the instance is running (i.e., in the run-time architecture provided
by the Probe) and responding to new requests;

• UNREACHABLE, when the instance is running but not responding to new requests;

• FAILED, when the instance is not running anymore without any shutdown request
performed by the Managing System;

• SHUTDOWN, when the instance is shut down by the Actuator upon the request of
the Managing System.

From this moment on, we identify as running instances all the instances whose status
is either BOOTING, ACTIVE or UNREACHABLE. Also, we say that a service is in
TRANSITION state if it has at least one instance with BOOTING or SHUTDOWN
status.

Every Instance can hold different Instance Metrics Snapshots. The Instance Metrics Snap-
shot is used to represent and store the different metrics collected by the Managing System
from the instance it refers to. It includes the date and time of creation of the snapshot, the
status of the instance when the metrics were collected (either ACTIVE or UNREACH-
ABLE) and hardware-related metrics of the instance as the CPU usage and the disk free
and total space. In addition, an Instance Metrics Snapshot also comprehends metrics
related to the HTTP requests elaborated by the instance and to the circuit breakers of
that instance, if any. The former are stored as HTTP Endpoint Metrics, while the latter
as Circuit Breaker Metrics.
The Circuit Breaker Metrics entity comprehends the name of the circuit breaker it refers
to, its status and all its statistics, which include the failure rate, the slow call rate and dif-
ferent counters relative to the number of requests and their duration, grouped by request
outcome, as shown in Figure 3.8.

Instead, the HTTP Endpoint Metrics entity models the different metrics related to the
HTTP request processed by the instance it refers to, divided by endpoint, HTTP method
and request outcome.

The different metrics collected by RAMSES are used to extrapolate values of different
Quality of Service Indicators. In our case, these indicators are the Availability, and the
Average Response Time per successful request.
Among the three ways availability can be empirically measured, proposed by the AWS
whitepaper on availability of distributed systems [22], our Managing System considers
server-side request success rate.

32 3| Our Proposal

In this case, the availability A of a service can be expressed as

A =
SuccessfullyProcessedUnitsOfWork

TotalValidUnitsOfWorkReceived
, (3.6)

where the unit of work is the HTTP request, as ours are request-based services. Nonethe-
less, the by-design modularity of RAMSES easily allows to define and handle additional
indicators.
These indicators can be computed at different granularity levels, going from the instance
to the service implementation. Thus, in our model, the Service Implementation and the
Instance hold a history of values of those indicators, the QoS History, one for each QoS
indicator (i.e. the availability and the average response time).
The values held by the QoS Histories can be either valid or not valid: this difference
determines whether or not a value is meaningful with respect to the current state of the
Managed System.
Additionally, each QoS History also stores what it is considered by RAMSES to be the
current value of the QoS indicator it refers to. More details on how the different QoS
values are derived are provided in Section 3.3.5.

For each service implementation of any service, the user is required to provide a value of
all the different QoS indicators, called QoS Benchmarks (i.e., reference values). These
represent a sort of Service Level Agreement between the Managing System and differ-
ent service implementations. These benchmarks are specified by the user at the startup
and are supposed to be updated when needed, in order to provide RAMSES with an
always reliable and up-to-date estimation of each QoS value. A crucial aspect of RAM-
SES decision-making process is the reliability of the Benchmarks’ values. For example,
when allocating new instances, or when a new instance still lacks of values in its QoS
histories, these Benchmarks’ values are the only metrics which RAMSES can rely on for
its estimations.

The primary goal of our Managing System is to allow the user to specify constraints for
each Quality of Service indicator, and then perform adaptation in order to satisfy those
constraints. Therefore, it is fundamental to represent those specifications in our model,
which is done through the QoS Specification entity.
Indeed, a QoS Specification is a requirement of a specific Service, is related to a specific
QoS and holds a threshold to satisfy (lower bound for the availability, upper bound for the
average response time). Moreover, for each service, the user can specify how much a QoS
Specification is relevant with respect to the others of the same service: this preference is
represented by a weight.

3| Our Proposal 33

To ensure that the different managed services are compliant with the different QoS Spec-
ifications, and also to provide recovery capabilities after detecting failures, the Managing
System must propose and then execute adaptation options. These are represented in our
model by the Adaptation Option entity. An Adaptation Option may have a specific goal
referred to a specific QoS Indicator, and always refers to a specific Service Implementation.
Adaptation options may have different priority levels. The current version of RAMSES
is able to handle two levels of priority: the forced and the non-forced ones. A forced
adaptation option is always applied after its proposal, without considering its potential
benefits. Conversely, the non-forced options related to the same service are compared to
select the one bringing the highest estimated benefit to their service. More details on this
behaviour are provided in Sections 3.3.5 and 3.3.6.
Our system includes four different types of adaptation options:

• the Add Instance option, which represents the action of adding a new instance of
the (current) service implementation it refers to. In case a Weighted Load Balancer
is used by the service, it includes the new weights of its instances, and may also
indicate some instances to shut down if their new weights are below the shutdown
threshold specified in their service implementation;

• the Shutdown Instance option, which represents the action of shutting down the
specific instance it refers to. In case a Weighted Load Balancer is used by the
service, it includes the new weights of the remaining instances;

• the Change Implementation option, which represents the action of shutting down
all the instances of the (current) service implementation, and then of starting the
same number of instances of the new selected service implementation specified by
the option;

• the Change Load Balancer Weights option, which, for a service balanced through a
Weighted Random load balancer, represents the action of redistributing the weights
associated with all the running instances of the (current) service implementation it
refers to. It may also indicate some instances to shut down if their new weights are
below the shutdown threshold specified in their service implementation.

As for the QoS indicators, this is the set of default adaptation options, which can be
expanded as long as the logic for handling the new ones is implemented.

Finally, an ordered history of the Adaptation Options required while being the current
implementation of a service is held by the Service Implementation. Additionally, the date
and time of the latest Adaptation Option applied on a given service are stored by the

34 3| Our Proposal

Service entity, in order to better appreciate the variation of the different QoS indicators
after each adaptation.

3.3.3. Knowledge component

The Knowledge component of the Managing System is the source of truth for the entire
MAPE-K loop. Indeed, the System Model is defined and managed by the Knowledge
itself, which mediates the interaction between the other managing components and the
system knowledge-base. For this reason, all the other components of the Managing System
require that the Knowledge component is active.
The Knowledge is also in charge of storing the relevant entities of our model in a dedicated
database: in particular, the knowledge stores all the collected Instance Metrics Snapshots,
all the QoS Histories of each managed instance, service implementation and service, all
the Adaptation Options performed on each service implementation and all the different
Service Configurations adopted by each managed service.
Finally, another task of the Knowledge component is keeping track of which stage of the
MAPE-K loop is running at any moment.

A fundamental step for the consistency of the System Model stored by the Knowledge
with respect to the reality it represents is its initialization process. Indeed, the user of
our system is required to fill three different configuration files, in JSON format:

• the System Architecture configuration file, that lists the services to manage, their
IDs, the managed services they depend on and their different implementations. For
each implementation, the configuration file lists its ID and the trust, penalty and
instance-load shutdown threshold parameters;

• the QoS Specification configuration file, that lists, for each service, what are its QoS
indicators to consider and what are its threshold and weight parameters;

• the System Benchmarks configuration files, that lists, for each service and service
implementation, their initial QoS Benchmarks.

More details about the configuration files’ structure are provided in Appendix C.

At the startup, after processing those configuration files, the Knowledge component con-
tacts the Probe component, whose IP address must be specified by an environmental
variable, and retrieves the list of all the instances already running for all the managed
services. This is done in order to build a complete representation of the Managed Sys-
tem’s current state, which will be the starting point for performing the first MAPE-K

3| Our Proposal 35

loop iteration5.

Finally, the configuration of each managed service is retrieved by the Probe and a Service
Configuration object is constructed for each of them.

3.3.4. Monitor

The first phase of the MAPE-K loop of our Managing System is the Monitor one. It
involves its homonym component and the Knowledge component. During this stage, the
Monitor is in charge of interacting with the Managed System to determine its overall
status and collect metrics from all its components. Those metrics are then sent to the
Knowledge component, which will store and process them to perform failure detection.
After that, the loop continues towards the Analyse phase.

Monitor component
The Monitor component represents the first building block of the MAPE-K loop, since
it is in charge of periodically collecting data from the Managed System. These data will
then be analysed by the Analyse component.
To collect data, at each iteration the Monitor component queries the Probe component
provided with the Managed System, asking to perform a snapshot of all the instances
of a specific service; this is done for all the services in the Managing System knowledge-
base. During a monitor iteration, the outcome of the entire interaction between the
Monitor and the Probe is a collection of Instance Metrics Snapshot objects, also named
Metrics Snapshot or simply snapshot for brevity. Each snapshot aggregates all the metrics
collected from a specific instance of a specific service.

In order to improve the performance and the failure detection capabilities of RAMSES, we
introduce the following optimization to the standard MAPE-K loop: the Monitor routine
runs asynchronously with respect to the rest of the loop, periodically. Indeed, while the
other components are busy in a specific adaptation loop iteration, the Monitor component
continues collecting the snapshots from the instances, accumulating them in a temporally
ordered buffer.
In this way, since it is not possible to know a priori how long a single MAPE-K loop
iteration will last, we do not stop the Monitor component from collecting metrics snapshots
of the instances, helping also in providing a more reliable failure detection mechanism.

When the Monitor routine ends, the different snapshots collected in the just finished
5In order to let the Knowledge component initialize properly, it is assumed that there is at least an

instance already running for each managed service.

36 3| Our Proposal

iteration are aggregated in a collection of snapshots and then added to the buffer. This
operation allows distinguishing between snapshots of the same instance collected during
different iterations. Then, if there is no MAPE-K loop iteration in progress, the snapshot
buffer is sent to the Knowledge component and emptied, and the Analyse component is
notified to let it start its analysis. Otherwise, if a MAPE-K loop iteration is in progress,
the Monitor routine simply restarts.

The scheduling period of the Monitor routine – also known as Monitor Period or MP –
can be tuned according to the users’ needs: the component offers a REST API to change
the scheduling period through an HTTP PUT request, defined in Appendix B.4.1. While
there is no upper bound to its value, the lower bound comes from the Spring scheduling
mechanism and it’s equal to 1 ms.

Being in a distributed setting, communication failures may happen during the interactions
between different hosts. When this happens between the Probe component and one of the
managed instances due to some Probe connection issues, or when this happens between
the Probe and the Monitor component itself, the currently running Monitor iteration
is invalidated and interrupted. Thus, all the metrics snapshots collected during that
iteration are discarded and not added to the buffer. This is done to avoid collecting a
partial snapshot of the Managed System.

The entire Monitor logic is summarized by Algorithm 1.

Interaction with the Knowledge component
The Monitor component interacts with the Knowledge component in order to determine
which are the managed services, and to store the different Metrics Snapshots in the
knowledge-base.

However, differently from the interactions between the other managing components and
the Knowledge, when the Knowledge itself is about to store the snapshots received by the
Monitor, some additional processing is performed.
In fact, the Instance Metrics Snapshots are used to detect potential failures among the
Managed System components. When a new buffer is sent from the Monitor to the Knowl-
edge, it is inspected to determine how the status of all the instances of each service evolved
while monitoring them. As a reminder, the buffer is a set of collections of Instance Met-
rics Snapshots, where each collection aggregates all the snapshots collected during a single
iteration of the Monitor routine.
For each collection C of Instance Metrics Snapshots in the Monitor buffer, before saving
the snapshots in the knowledge-base, it is fundamental to determine what was the set of

3| Our Proposal 37

Algorithm 1 Monitor
Input:

MP : scheduling period of the Monitor routine.
Probe: the interface of the Probe component.
Knowledge: the interface of the Knowledge component.
Output:

B : buffer containing collections of Instance Metrics Snapshots, stored in the Knowledge.
1: S Knowledge.getManagedServices() // Set of managed services
2: B {} // Buffer of collections of Instance Metrics Snapshots
3: loop // Every MP milliseconds
4: C {}
5: iv true

6: for s 2 S do

7: IMS s Probe.takeSnapshot(s)
8: if IMS s is NULL then // Invalidate iteration
9: iv false

10: break

11: C C [{IMS s}
12: if iv = true then // If iteration is valid
13: B B [{C}
14: if no loop iteration in progress then

15: Knowledge.processIMSBu↵er(B)
16: B {}

active instances when C was originally created.
Hence, for each Metrics Snapshot ms in the collection C, different processing operations
must be performed. First of all, if the service implementation has changed from when ms

was computed, ms is discarded, because the collected metrics refer to a past configuration
of the system.
Otherwise, let us define i as the instance which ms refers to. If the status of i in the
Knowledge is SHUTDOWN, it means that the Monitor component has collected a snap-
shot of an instance whose shutdown has been requested by the Managing System. Being
in this particular (distributed) setting, this scenario can arise due to a shutdown process
not yet completed. When this happens, ms is simply ignored.
Otherwise, if the status of i is not SHUTDOWN and ms contains new pieces of informa-
tion with respect to the latest Metrics Snapshot of i saved in the Knowledge, we save the
new ms and set the status of i to the status of ms (either ACTIVE or UNREACHABLE,
as described in Section 3.3.2).

Once all the snapshots in the single snapshot collection C have been correctly processed,
the failure detection logic identifies which were the failed instances during the Monitor
iteration that generated C, if any. These are the instances still present in the knowledge-
base with status either ACTIVE or UNREACHABLE, that however were not present

38 3| Our Proposal

anymore in the Probe run-time architecture during the Monitor iteration that generated
C (thus, there is no Metrics Snapshots for those instances in C).
Then, for each of those Failed Instances, the Knowledge component sets their status to
FAILED and creates a new empty Metrics Snapshot reporting that status.

Finally, the Knowledge deletes from its knowledge-base all the instances that have been
previously shut down by the Managing System (i.e. with status SHUTDOWN) for which
no new Metrics Snapshots were received in any collection, which means that they have
been correctly removed from the Managed System.

The logic explained so far is summarized by Algorithm 2.

Algorithm 2 Knowledge – Add Metrics
Input:

PAI : set of ACTIVE or UNREACHABLE instances during the previous loop iteration.
S : set of managed services.
B : buffer of collections of Instance Metrics Snapshots.
Output:

The modified system runtime architecture and the latest collected Metrics Snapshots.
1: SISM {} // Set of shut down instances with metrics in B

2: for C 2 B do // C is a collection of snapshots belonging to the same Monitor iteration
3: // Set of currently ACTIVE or UNREACHABLE instances
4: CAI {ms.instance | ms 2 C ^ (ms.status = ACTIVE _ ms.status = UNREACHABLE)}
5: for ms 2 C do

6: i ms.instance
7: s {s 2 S | s = i .service}
8: if i .serviceImplementation = s.currentImplementation then

9: if i .status 6= SHUTDOWN then

10: i.status ms.status
11: i .latestMS ms
12: else

13: SISM SISM [{i}
14: FI {i | i 2 (PAI \ CAI) ^ i .status 6= SHUTDOWN } // Set of FAILED instances
15: for i 2 FI do

16: i .status FAILED
17: i .latestMS createFailedMS (i)
18: for s 2 S do

19: CSI {s.instance | s.instance.status = SHUTDOWN ^ s.instance /2 SISM }
20: s.instances s.instances \ CSI

3.3.5. Analyse

The Analyse phase is the second stage of the MAPE-K loop implemented by our Managing
System. During this stage, both the Analyse component and the Knowledge component
are involved.

3| Our Proposal 39

The former is in charge of retrieving the latest metrics of all the managed instances from
the Knowledge, of processing them and of computing the latest and current values for
each QoS indicator in our model, for both the instances and the services. Furthermore, it
is in charge of determining the adaptation options to force and/or to propose for all the
managed services.
The latter, instead, is in charge of providing the Analyse component with the represen-
tation of the current Managed System’s architecture and with the latest metrics not yet
analysed for a given instance, and also of storing in the knowledge-base the new QoS
indicators values and the new adaptation options computed by the Analyse component.

Analyse component
The Analyse component is where all the logic to extract relevant information from the
Metrics Snapshots, and to propose Adaptation Options, lies.
The analysis starts as soon as this component is notified by the Monitor. To begin with,
the Analyse retrieves the up-to-date representation of the entire Managed System from
the Knowledge. Then, the actual analysis process can begin.
The entire analysis is divided into two subphases, the QoS values computation phase and
the adaptation proposal phase.

In the first subphase, each managed service s and each one of its instances i that are in
the knowledge-base are considered. While analysing i, different scenarios can arise.
The first distinction is made based on the current status of i. Indeed, in the following
cases no further analysis is performed on i in this subphase:

• if the status is SHUTDOWN ;

• if the status is BOOTING. Moreover, if the boot time exceeds a given threshold, a
forced Shutdown Instance adaptation option is created to shutdown i. This thresh-
old is specified via an environmental variable. This is done in order to avoid services
being stuck in TRANSITION state;

• if the status is FAILED. In this case, a forced Shutdown Instance adaptation option
is created to shutdown i. Also, from this moment on, s will be considered in TRAN-
SITION state in this and the next analysis subphase, since one of its instances will
soon have status SHUTDOWN.

Otherwise, if the status of i is either ACTIVE or UNREACHABLE, its analysis in this
subphase proceeds as follows.
The first step to analyse i is to retrieve its latest Metrics Window. Given an instance, its

40 3| Our Proposal

latest Metrics Window is a collection of the latest n subsequent Metrics Snapshots of that
instance not yet analysed by the Analyse component, if any; n is the Metrics Window
Size, a parameter specified by the user via an environmental variable. If the size of latest
Metrics Window of i is less than n (i.e., not enough Metrics Snapshots were collected by
the Monitor component between the current and the previous loop iterations), no further
analysis is performed on i in this subphase. Otherwise, three different rates are computed
for i:

• the unreachable rate, which is the rate of snapshots with status UNREACHABLE
over the latest Metrics Window of i. Its maximum admissible value, called Unreach-
able Rate Threshold, is specified by the user via an environmental variable;

• the failure rate, which is the rate of snapshots with status FAILED over the latest
Metrics Window of i. Its maximum admissible value, called Failure Rate Threshold,
is specified by the user via an environmental variable;

• the inactive rate, which is the sum of the unreachable and failure rates. Its maximum
admissible value is 1.

If one of those rates exceeds its maximum admissible value, no further analysis is per-
formed on i in this subphase; then, a forced Shutdown Instance adaptation option is
created to shutdown i. Also, as before, from this moment on s will be considered as in
TRANSITION state in this and the next analysis subphase, since one of its instances will
soon have status SHUTDOWN. Otherwise, the new latest QoS indicators values of i are
computed.
The latest Availability value of i is determined by considering all the requests processed by
i, whose data is stored in each Metrics Snapshot. In fact, the following ratio is computed:

P
e2El

successfulRequestsCounte �
P
e2Eo

successfulRequestsCounte

P
e2El

requestsCounte �
P
e2Eo

requestsCounte
, (3.7)

where El and Eo are the sets of HTTP Endpoint Metrics for each of the instance’s end-
points contained respectively in the latest and oldest snapshot of the Metrics Window.
If the total number of new requests (i.e., the denominator of the ratio) is equal to 0, the
latest value is set to the instance’s current availability value.
A similar approach is used to compute the latest value of the Average Response Time of

3| Our Proposal 41

i. Indeed, it is computed as
P
e2El

successfulRequestsDuratione �
P
e2Eo

successfulRequestsDuratione

P
e2El

successfulRequestsCounte �
P
e2Eo

successfulRequestsCounte
, (3.8)

where El and Eo are defined as before.
Again, if the total number of new successful requests is equal to 0, the latest value is set
to the instance’s current average response time value.

Once all the instances of s have been analysed, three different scenarios can arise:

• all of its instances are either in SHUTDOWN status or will be shut down at the
end of this MAPE-K iteration upon the execution of forced Shutdown Instance
adaptation options. In this case, a new forced Add Instance adaptation option is
created, since otherwise s would have no running instances;

• none of its instances have a new QoS latest value for any of its QoS indicators. In
this case, no further analysis is performed on s in this subphase;

• none of the previous apply. In this case, for each instance i of the service s, their
new QoS latest values are added to their respective QoS History.

Two additional steps are then performed when in the third scenario if s is not in TRAN-
SITION state.

To begin with, a new latest value is computed for each QoS indicator of s. In particular,
both the new Availability and Average Response Time values are computed by averaging
the respective latest values of all the instances of s. Moreover, if s uses Weighted Random
Load Balancer, each value is weighted with the load balancer weight of the instance it
refers to; otherwise, a simple arithmetic mean is performed.
The process of computing the latest value of a QoS indicator for the services and their
instances, when this is possible, is summarized in Figure 3.9.

The second step is to consider a new collection of values, called Analysis Window. Given
a service or an instance and a QoS Indicator, the Analysis Window of that service or
instance is a collection of the latest n valid values in the service or instance QoS History
for the specified indicator. n is the Analysis Window Size, a parameter specified by the
user via an environmental variable.
Indeed, for each service s, if a full Analysis Window exists for all the QoS Indicators of s,
we determine the new current value of its QoS Indicators, to be stored in the respective
QoS Histories. These current values are computed as the arithmetic mean of all the values

42 3| Our Proposal

Figure 3.9: Computation process of a QoS latest value

in their respective Analysis Window, since, for each QoS indicator, they aim to represent
an estimation that is more reliable than one that considers only its latest value.
After correctly computing the new current values for s, we perform the same operations
on all its instances. However, it can happen that a specific instance i does not have a
full Analysis Window. In this case, we fill the Analysis Window of i with replicas of its
current value for the QoS indicator which the window refers to. This is done because we
want an up-to-date current value for i, but at the same time, since in a not full Analysis
Window there could be potential outliers, we try to mitigate their impact on the new
current value to be computed.
The process of computing the current value of a QoS indicator for the services and their
instances, when this is possible, is summarized in Figure 3.10.

Finally, all the modified QoS Histories of each service and instance are sent to the Knowl-
edge component in order to correctly store them in the knowledge-base.
The first analysis subphase logic is summarised by Algorithm 3.

3| Our Proposal 43

Figure 3.10: Computation process of a QoS current value

The second subphase of the Analyse component is the one in which, for each service, one
or more adaptation options are proposed, if needed.
For each service s, if s is in TRANSITION state or does not have an Analysis Window
for each QoS Indicator, it is simply skipped, and no adaptation option is proposed for it.
Otherwise, we can proceed with the following steps.

To begin with, if s has more than one possible implementation, and if the penalty value
of the current one is greater than or equal to its trust parameter, multiple Change Imple-
mentation options are created, one for each QoS Indicator, that becomes the goal of their
respective adaptation option.

Then, for each QoS Indicator q (i.e., availability and average response time) we check if
the rate of values satisfying the specification of q in the Analysis Window of s is lower
than the QoS Satisfaction Rate, a parameter that must be specified by the user via an
environmental variable. When this happens, the Analyse component creates a new Add
Instance adaptation option for s having q as its goal.
Furthermore, if s uses a Weighted Random load balancer, and at least one of its instances’
current value for q satisfies its specification, the Analyse component creates a new Change
Load Balancer Weights adaptation option for s, having q as its goal.

Once all the QoS Indicators have been considered, if no adaptation options were proposed
for s in this subphase, its analysis terminates. Otherwise, we consider the dependencies of
s. If s has one or more service dependencies, the same analysis described so far (including
this dependency analysis) is recursively performed on each of its dependencies. Then, if
at least one dependency is either in TRANSITION state or has new proposed adaptation
options, all the non-forced adaptation options proposed for s during the current loop

44 3| Our Proposal

Algorithm 3 Analysis – First Subphase
Input:

Knowledge: the interface of the Knowledge component.
mws: Metrics Window size.
aws: Analysis Window size.
maxBootTime: maximum allowed time for an instance to correctly boot.
failureRateThreshold : maximum admissible value for the failure rate of an instance.
unreachableRateThreshold : maximum admissible value for the unreachable rate of an instance.
Output:

O : set of (forced) proposed Adaptation Options.
1: S Knowledge.getManagedServices() // Set of managed services
2: O {}
3: for s 2 S do

4: Is s.instancesSet
5: Qs s.QoSSpecificationSet
6: for i 2 Is do

7: sti i.status

8: if sti = ACTIVE or sti = UNREACHABLE then

9: mw i Knowledge.getLatestMetricsWindow(instance : i , maxSize : mws)
10: if mw i.size = mws then

11: fri rate of snapshots with status = FAILED in mwi

12: uri rate of snapshots with status = UNREACHABLE in mwi

13: if fri � failureRateThreshold or uri � unreachableRateThreshold or fri + uri � 1 then

14: O O
S

{createForcedShutdownInstanceOption(i)}
15: s.status TRANSITION
16: else

17: for qs 2 Qs do

18: i.computeLatestValue(qs.qosIndicator, mwi) // see Eq. 3.7 and Eq. 3.8
19: else if sti = FAILED or sti = BOOTING and bootingTimei � maxBootTime then

20: O O
S

{createForcedShutdownInstanceOption(i)}
21: s.status TRANSITION
22: SIs {i | i 2 I ^ (i .status = SHUTDOWN _O .containsShutdownOptionFor(i))}
23: if |SIs| = |I| then

24: O O
S

{createForcedAddInstanceOption(s)}
25: s.status TRANSITION
26: INLVs {i|i 2 I ^ i has new latest QoS values} // set of Instances with a new Latest Value
27: if |INLVs | > 0 then

28: if s.status 6= TRANSITION then

29: for qs 2 Qs do

30: awqs Knowledge.getAnalysisWindow(service : s, qos : qs .qosIndicator)
31: s.computeCurrentValue(awqs)
32: for i 2 I do

33: awqi Knowledge.getAnalysisWindow(instance : i , qos : qs .qosIndicator)
34: i .computeCurrentValue(awqi)
35: Knowledge.updateInstances(I)
36: Knowledge.updateService(s)

iteration are discarded, s itself as marked as in TRANSITION state and no further
analysis is performed on it. In fact, even if one or more adaptation options were proposed

3| Our Proposal 45

for s in this subphase, the causes behind the dissatisfaction of a QoS Specification may
not lay in s itself, but in one of the its dependencies that require adaptation or that
are in a TRANSITION state, awaiting for previous adaptations to be over. Indeed, the
guilty dependency may be propagating its issues to s itself, and it would be incorrect to
assume a priori that also s has some issues. Thus, the idea is to perform adaptation on
the dependencies at first and to wait for them to be over, in order to correctly determine
if s actually needs adaptation or not. Otherwise, if none of its dependencies neither need
adaptation nor are in TRANSITION state, we simply end the analysis of s, keeping its
proposed adaptation options.

Once all the managed services have been correctly analysed, all the proposed adaptation
options of all the services, including the forced ones proposed during the first analysis
subphase, are sent to the Knowledge component to be stored in the knowledge-base,
where they can be retrieved by the Plan component.

Finally, the Plan component is notified to start its iteration, while the current Analyse
iteration terminates.
The second analysis subphase logic is summarised by Algorithm 4.

As a final note, the Metrics Window Size, the Analysis Window Size, the Failure Rate
Threshold, the Unreachable Rate Threshold and the QoS Satisfaction Rate can be modi-
fied by the user at runtime6 via a dedicated REST API, defined in Appendix B.4.2.

Interaction with the Knowledge component
The Analyse component interacts with the Knowledge component to retrieve all the ele-
ments of the System Model needed to perform the analysis, such as the system architec-
ture, the Metrics and Analysis Windows and the QoS Histories of the desired service or
instance.
In particular, the logic behind the construction of a Metrics Window for a given instance
i not yet analysed is entrusted to the Knowledge component. Indeed, the snapshots of
i are filtered by considering only the ones collected after the computation of the latest
values of i for each QoS Indicator.

During each loop, the Analyse component also interacts with the Knowledge to store
the results of its execution in the knowledge-base. In particular, whenever a new adap-
tation option is proposed, the Knowledge component increments the penalty indicator
of the Service Implementation to be adapted, since it represents the tendency of that
implementation to require adaptation, as stated in Section 3.3.2.

6If the Analyse iteration is in progress, all the changes are applied at the next iteration.

46 3| Our Proposal

Algorithm 4 Analysis – Second Subphase
Input:

Knowledge: the interface of the Knowledge component.
aws: Analysis Window size.
QoSSatisfactionRate: the minimum rate of values in the analysis window of a QoS indicator that must
satisfy its specification.
O : set of already proposed Adaptation Options.
Output:

O : set of proposed Adaptation Options.
1: S Knowledge.getManagedServices() // Set of managed services
2: AS {} // Set of already analysed services
3: for s 2 S do

4: O O [computeOptions(s,AS ,O)

1: function computeOptions(service : s, analysedservices : AS , proposedOptions : O)
2: if s 2 AS then

3: return {o | o 2 O ^ o.service = s}
4: Os {}
5: Qs s.QoSSpecificationSet
6: s.isAdaptable s.status 6= TRANSITION
7: for qs 2 Qs do

8: awqs Knowledge.getAnalysisWindow(service : s, qos : qs .qosIndicator)
9: if not (s.isAdaptable and awqs

.size = aws) then

10: s.isAdaptable = false
11: break

12: if s.isAdaptable then

13: for qs 2 Qs do

14: if |s.possibleImplementations| > 1 and

s.currentImplementation.penalty > s.currentImplementation.trust then

15: Os Os[{createChangeImplementationOption(service : s, goal : qs.qosIndicator)}
16: srqs

|{v |v2awq ^ q.isSatisfied(v)}|
aws

// Rate of values in awq satisfying their specification
17: if srqs < QoSSatisfactionRate then

18: Os Os [{createAddInstanceOption(service : s, goal : qs .qosIndicator)}
19: if s.loadbalancer is Weighted Random then

20: Os Os [{createChangeLoadBalancerWeights(service : s, goal : qs .qosIndicator)}
21: if |Os| > 0 then

22: for ds 2 s.dependencies do

23: Od computeOptions(s,AS ,O)
24: if ds.status = TRANSITION or |Od| > 0 then

25: s.status TRANSITION
26: AS AS [{s}
27: return Od

28: AS AS [{s}
29: return Os

3.3.6. Plan

The Plan is the third stage of the MAPE-K loop implemented by our Managing System.
During this phase, the Plan component is in charge of analysing all the adaptation options

3| Our Proposal 47

proposed by the Analyse component, and of determining which of them should be actually
applied or not.

Plan component
The goal of the Plan component is to determine which are the best adaptation options
among all the ones proposed during the current loop iteration. The chosen adaptation
options will then be stored in the system knowledge-base, in order to allow the Execute
component to apply them.

To begin with, for each managed service s, the Plan retrieves from the Knowledge all the
adaptation options proposed by the Analyse component during the current loop iteration.
Subsequently, if there is at least one forced option among the ones proposed for s, the
non-forced ones are discarded, while all the forced ones are processed, and finally directly
chosen. Conversely, if no forced adaptation option was proposed for s, all the options
are processed, and then compared to extract the one which is estimated to bring more
benefits to the service it refers to. The extracted one, which is said to be chosen, is the
one that the Managing System should apply at the end of the current loop iteration.
The logic behind the processing of the options follows.

The Add Instance options are processed by considering the type of load balancer used by
the services they refer to. In fact, if the service does not use a Weighted Random load
balancer, no processing is needed. On the contrary, it is fundamental to determine which
will be the weight of the new instance that will be added to the service when a Weighted
Random load balancer is involved: as a design choice, we decided to grant to the new
instance a weight equal to 1

NumberOfRunningInstances+1 . However, since we must guarantee
that, for each service, the sum of all instances’ weights is equal to 1, it is necessary to
reduce the weights of the already running instances such that the sum of their weights
will be equal to 1 � 1

NumberOfRunningInstances+1 . As a design choice, we decided to evenly
reduce all the weights, multiplying them by a factor of (1� 1

NumberOfRunningInstances+1).
After reducing the weights, it may happen that some of those weights become smaller than
the ratio shutdownThreshold

NumberOfRunningInstances+1 (described in Section 3.3.2). Hence, those instances are
selected to be shut down, and their residual weights are evenly split among the remaining
ones, including the new instances. Once the weights are updated, this same process is
repeated after correctly reducing the NumberOfRunningInstances value (i.e., subtracting
from the original one the number of instances that will be shut down), until no instance
weight is below the ratio.

The Shutdown Instance options are processed once again considering the type of load

48 3| Our Proposal

balancer used by the services they refer to. In fact, if the service uses a Weighted Random
load balancer, it is fundamental to redistribute the weight of the instance to shutdown to
the remaining instances, in order to guarantee that the sum of their weights is equal to 1.
This is done by evenly splitting and redistributing the weight of the instance to shutdown
among the remaining ones.

The Change Implementation options are processed by considering the QoS Indicator q

specified as the goal of the option, the Benchmark value of each possible implementation
of the service to be adapted, and the preference of the user towards a specific implemen-
tation. As a reminder, the benchmark represents an estimation of the value that q will
have after changing implementation.
When q is the Availability, to determine the new implementation we multiply the avail-
ability benchmark value of a possible implementation with its preference, and then select
the implementation that maximizes this product.
Conversely, if q is the Average Response Time, we divide the average response time bench-
mark value of a possible implementation with its preference, and select as the new imple-
mentation the one that minimizes this quantity.
As mentioned in Section 3.3.2, the number of instances of the new implementation to al-
locate is equal to the number of running instances for the current implementation. This is
done in order to allow the new instances to correctly handle a request load which required
a specific number of instances (i.e., the number of currently active ones) to be correctly
handled.

Differently from the previous ones, the Change Load Balancer Weights options require
more complex processing. Indeed, a Mixed-Integer Linear Programming (M-ILP) prob-
lem [13] is solved to obtain the new weights of the existing instances and to determine
the ones that should be shut down, if any.
The parameters of the problem are the following:

• Is, the set of running instances of the current service s;

• n, the cardinality of Is;

• lts, the instance-load shutdown threshold of the current implementation of s;

• ks, the performance indicator of service s, defined by the ratio
AvailabilityCurrentValues/AverageResponseTimeCurrentValues;

• ki, the performance indicator of the instance i 2 Is, defined by the ratio
AvailabilityCurrentValuei/AverageResponseTimeCurrentValuei ;

• zi, the performance ratio of the instance i 2 Is, defined by the ratio ki/ks;

3| Our Proposal 49

• pi, the current weight of the instance i 2 Is.

Among these parameters, the most important are the performance-related ones, which
require a more detailed elaboration.
To begin with, it is crucial to underline the fact that, in a real-world scenario, the per-
formance of a given instance i depends on multiple factors (e.g., available resources and
their usage, response time, network bandwidth, availability, etc.). However, since the aim
of RAMSES is not to provide an in-depth and accurate computation of the performances
of the instances, the decision we took is to define the performance indicators ki and ks as
reported before. Indeed, the problem of finding a better mathematical model representing
the instance’s performance could be addressed by further works on RAMSES, as proposed
in Chapter 5.
In addition to ki and ks, given an instance and its performance indicator, we measure
how good its performance is with respect to the average performance of the service, which
takes into account the performances of all its instances. This indicator, computed as the
previously described ratio zi, contributes to determining whether to increase or decrease
the weight of an instance.

The variables of the problem are the following:

• wi 2 [0, 1], a continuous variable representing the new weight of the instance i 2 Is;

• ai, an integer binary variable representing whether the instance i 2 Is should keep
running (ai = 1) after changing the weights, or whether it should be shut down
(ai = 0).

The objective function to minimize is the following:

obj :
X

i2Is

(
1

zi
wi � ziai) (3.9)

The first term in the summation aims to make the solver reduce the weights of the
instances with a low performance ratio (i.e., instances that, on average, have worse per-
formances with respect to the average of the entire service). On the contrary, the weights
of the instances with a high (i.e. > 1) performance ratio are enforced to grow.
The second term aims to induce the solver to shut down the instances with poor perfor-
mances, while rewarding the decision to keep active the good ones.

Finally, the constraints of the problem are the following:

wi ai 8i 2 Is (3.10)

50 3| Our Proposal

wi �
lts

n
ai 8i 2 Is (3.11)

X

i2Is

wi = 1 8i 2 Is (3.12)

wi
ki

kj
wj + (1� aj) 8i, j 2 Is|ki � kj (3.13)

wi zipi + zi

X

j2Is,
i 6=j

pj(1� aj) 8i 2 Is (3.14)

Equation. 3.10 is an activation constraint: indeed, it links the activation variable ai with
wi, imposing that, for the instances to shut down, wi = 0.
Equation 3.11 determines the lower bound of the weight of a given instance. In fact, if
the instance i is active (i.e., ai is equal to 1), then its weight must be greater or equal to
the ratio described in Section 3.3.2.
Equation 3.12 is the one in charge of guaranteeing that the sum of the weights of all
instances of a given service is equal to 1.
Equation 3.13 introduces a relationship between the weights of different instances. Indeed,
this constraint sets an upper bound to the growth of wi, which is proportional to the
performance ratio between instance i and every other worst-performing instance j. In
this way, instances with similar performances are enforced to have similar weights. It
must be noted that when wj is zero also aj is zero, and vice versa, making this constraint
to be always satisfied, since it becomes wi 1.
Equation 3.14 introduces a new upper bound to wi, which takes into consideration the
performance ratio of instance i. Based on the value of zi we can interpret this constraint
in two different ways: if zi > 1, we are interested in having wi > pi. Furthermore, it is also
important to prevent an uncontrolled growth of wi with respect to pi (and consequently,
an uncontrolled decrease of the other weights), which could lead to unwanted oscillatory
behaviours. Thus, we multiply pi by zi, which is reasonable since zi indicates how better
the instance i is with respect to the service average. At the same time, the second term in
the sum is introduced in order to redistribute the weights of the instances to be shut down
among the active ones. This quantity is once again scaled by i’s performance ratio, for the
same reasoning explained before. The fifth constraint should be interpreted differently
when zi 1. In this case, we are interested in a decrease of wi with respect to its previous
value, to allow better-performing instances to handle more requests. Thus, this constraint
poses a lower bound on the minimum decrease of wi with respect to pi.

3| Our Proposal 51

The result obtained from the M-ILP problem, solved using the Google OR-Tools suite7, is
the set of new weights and the set of instances to shut down (i.e., the ones with wi = 0),
and are associated to the adaptation option itself.

Once all the options are processed, the Plan component needs to decide which proposed
options must be applied. As anticipated before, all the forced adaptation options are
automatically chosen. On the contrary, in their absence, for each service only one proposed
option is chosen, which is the one with the highest estimated benefit.
Indeed, for each service s and each one of its proposed options o, the plan determines the
benefit of option o based on its type and goal. The benefit is a quantity that represents
the relative estimated improvement (or the worsening) of the QoS Indicator selected as a
goal for o, compared to the current situation: indeed, when its value is greater than 1, o
is expected to have a positive impact on the service it refers to.
When the goal is the Availability, the following ratio is computed:

benefitO =
EstimatedValueA

CurrentValueA
, (3.15)

where CurrentValueA is the current availability value held by s, while EstimatedValueA is
an estimation of what the current availability value held by s will be, after applying the
option o.
The EstimatedValueA is computed differently based on O’s type:

• for the Shutdown Instance options, it is computed as the average of the remaining
instances’ current availability values, weighted by their new weights, if any;

• for the Add Instance options, it is computed as the average of the remaining in-
stances’ current availability values, weighted by their new weights (if any), and of
the new instance availability benchmark value, also weighted by the new instance
weight (if any);

• for the Change Implementation options, it is the value of the availability benchmark
provided for the implementation selected after processing the option;

• for the Change Load Balancer Weights options, it is computed as the average of the
remaining instances’ current availability values, weighted by their new weights.

On the contrary, when the goal is the Average Response Time, the following ratio is
computed:

benefitO =
CurrentValueT

EstimatedValueT
, (3.16)

7Google Inc., https://developers.google.com/optimization

https://developers.google.com/optimization

52 3| Our Proposal

where CurrentValueT is the current average response time value held by s, while
EstimatedValueT is an estimation of what the current average response time value held
by s will be, after applying the option o.
The EstimatedValueT is computed differently based on O’s type, analogously to how it is
computed for the Availability.

Once all the benefits of all the options proposed for s are computed, the chosen option is
determined by selecting the one with benefitO > 1 that maximizes the product benefitO ·
weightQ . This product represents, given the benefit of an option, how much it is preferable
over the others, since weightQ is the weight assigned to q (the goal of o) in its Specification
for s (i.e., how much options with q as their goal should be prioritized over the others).

Finally, the chosen options are sent to the Knowledge in order to let the Execute com-
ponent apply them. Additionally, before notifying the Execute to start its iteration, the
Plan requests to the Knowledge component to invalidate all the values in all the QoS
Histories of the services and their respective instances, when needed. Indeed, this is done
for all the services that are in TRANSITION state, that have a new chosen adaptation
option or that depend on a service that meets these three conditions, recursively. The
reason behind this operation is to prevent the Analysis component to consider QoS in-
dicator values that refer to an old configuration of the Managed System when analysing
the different services during the next loop iterations.
The logic implemented by the Plan component is summarized by Algorithm 5.

To conclude, it must be noted that the reasoning made when designing the decision-
making process of the Plan component (i.e., what is the option to choose among the
non-forced ones) comes from the assumption that all the QoS Indicators’ current values
(i.e., availability and average response time) of the various instances to be adapted will not
significantly change after applying the chosen adaptation options. Hence, it is assumed
that all the instances to be adapted will be able to handle a different request load without
a drastic reduction in their performance. Indeed, trying to model a relationship between
the instances parameters and indicators and their performances would require a more
in-depth analysis, which is not the aim of this project.

Interaction with the Knowledge component
The interaction between the Plan and the Knowledge components is finalized to retrieve
the Managed System architecture from the knowledge-base, to retrieve all the adaptation
options proposed by the Analyse component during the current loop iteration, to correctly
store the chosen adaptation options, and to invalidate the QoS Histories of the services

3| Our Proposal 53

Algorithm 5 Plan
Input:

Knowledge: the interface of the Knowledge component.
Output:

CAO : set of Chosen Adaptation Options, stored in the Knowledge.
1: S Knowledge.getManagedServices() // Set of Managed Services
2: PAO Knowledge.getProposedOptions() // Set of Proposed Adaptation Options
3: CAO {} // Set of Chosen Adaptation Options
4: for s 2 S do

5: PAOs {p | p 2 PAO ^ p.service = s} // Set of Proposed Adaptation Options for s

6: FPAOs {p | p 2 PAOs ^ p is forced} // Set of Forced Adaptation Options for s

7: NFPAOs PAOs \ FPAOs // Set of Non-Forced Adaptation Options for s

8: CAOs {} // Set of Chosen Adaptation Options for s

9: if FPAOs 6= ; then

10: for o 2 FPAOs do

11: o processOption(o)
12: CAOs CAOs [FPAOs

13: else

14: for o 2 NFPAOs do

15: o processOption(o)
16: o.benefit computeBenefit(o)
17: bo argmaxo 2NFPAOs

{o.benefit · o.goal .preference | o.benefit > 1} // Extract best option
18: CAOs CAOs [{bo}
19: if CAOs 6= ; or s.state = TRANSITION then

20: Knowledge.invalidateQoSHistory(s)
21: Ds {d | d 2 S ^ s 2 d .dependenciesSet} // Set of services depending on s

22: for d 2 Ds do

23: Knowledge.invalidateQoSHistory(d)
24: CAO CAO [CAOs

25: Knowledge.chooseOptions(CAO)

(and of all their instances) that require adaptation.

3.3.7. Execute

The Execute is the fourth and last stage of the MAPE-K loop implemented by our Man-
aging System. During this phase, the Execute component is in charge of retrieving from
the Knowledge the adaptation options chosen during the current loop iteration, and of
interacting with the Actuator component to effectively perform adaptation, if needed.

Execute component
The Execute component is the last building block of the proposed Managing System,
capable of interacting with the Managed System via the provided Actuator component.
During each loop iteration, its goal consists in retrieving from the Knowledge all the

54 3| Our Proposal

adaptation options chosen during the current iteration, if any, and in processing and
applying them, by contacting the Actuator component and by consequently updating the
knowledge-base.
The logic behind the processing of the chosen options follows.

When an Add Instance option for the service s is among the chosen ones, the Execute
component asks the Actuator to allocate a new instance for s via its dedicated API. The
Actuator boots the new instance and communicates to the Execute component its IP ad-
dress and port, used to construct the new instance ID. Moreover, if with the Add Instance
Option a new set of weights for the running instances of s is provided, the Actuator API
in charge of changing the service configuration is contacted to correctly update them. In
this case, the Execute component also checks if the Add Instance option includes instances
to shut down, and if so, it asks the Actuator to gracefully terminate their execution.
Finally, the Knowledge component is notified of all the changes to the service configura-
tion, by including the ID of the new allocated instance and, if s uses a Weighted Random
load balancer, the new instances’ weights and the list of the just shutdown instances, if
any.

Similarly to the case in which instances must be shut down when executing an Add
Instance option, when a Shutdown Instance option is among the chosen ones, the Exe-
cute component contacts the Actuator via its dedicated API to shut down the selected
instance. Moreover, if the service involved by the option is load balanced using the
Weighted Random algorithm, the Execute component asks the Actuator to update the
service configuration with the new instances weights specified by the option itself.
Finally, the Knowledge component is notified of the execution, including the ID of the
just shutdown instance and the new weights of the remaining ones.

The Change Implementation options are handled by initially contacting the Actuator to
allocate the instances of the new selected implementation, whose number is specified by
the option itself. Then, all the running instances of the old service implementation are
shut down via the dedicated Actuator API. After that, if the service under adaptation is
load balanced by a Weighted Random load balanced, the Execute component also asks
the Actuator to correctly update the service configuration by removing all the old weights
and by assigning to all the new instances the same weight, equal to 1/NumberOfInstances.
Finally, the Knowledge component is notified of the change of implementation, including
the IP addresses and ports of the new allocated instances, which are provided by the
Actuator as a response to its request and will be used to generate the new instances’ IDs.

Finally, the Change Load Balancer Weights options are processed by first asking the Actu-

3| Our Proposal 55

ator to shut down all the instances specified by the option, if any. Then, the configuration
of the service to adapt is updated via the dedicated Actuator API, assigning to all the
remaining instances their respective new weights, which are provided with the option.
Eventually, the Knowledge component is notified, including the IDs of the instances that
have been shut down, and the new configuration of the adapted service, holding the new
weights of the instances of the service under adaptation.

After processing all the chosen options, the Execute component terminates the current
MAPE-K loop iteration and contacts the Monitor component in order to let it start a
new iteration of the loop.
The logic implemented by the Execute component is summarized by Algorithm 6.

Algorithm 6 Execute
Input:

Actuator : the interface of the Actuator component.
Knowledge: the interface of the Knowledge component.
Output:

The modified system runtime architecture and configuration, stored in the Knowledge.
1: CAO Knowledge.getChosenOptions() // Set of Chosen Adaptation Options
2: for o 2 CAO do

3: if o is Add Instance then

4: Actuator .bootInstance()
5: if o.service.loadbalancer is Weighted Random then

6: Actuator .updateWeights(o.newWeights)
7: for i in o.instancesToShutdown do

8: Actuator .shutdownInstance(i)
9: else if o is Shutdown Instance then

10: if o.service.loadbalancer is Weighted Random then

11: Actuator .updateWeights(o.newWeights)
12: Actuator .shutdownInstance(o.instanceToShutdown)
13: else if o is Change Load Balancer Weights then

14: Actuator .updateWeights(o.newWeights)
15: for i in o.instancesToShutdown do

16: Actuator .shutdownInstance(i)
17: else if o is Change Implementation then

18: for k 1 to |o.service.instances| do

19: Actuator .bootInstance()
20: for i in o.service.instances do

21: Actuator .shutdownInstance(i)
22: Knowledge.update(o.service)

As anticipated in Section 3.2.4, the Execute component, and consequently RAMSES itself,
assumes that all the operations requested to the Actuator are eventually executed, and
that all the changes of service configurations (i.e., change of load balancer weights) are
performed within a reasonably short amount of time.

56 3| Our Proposal

This last assumption is made in order to avoid unexpected behaviours: indeed, if the
configuration changes are not applied promptly, the Managing System could propose
adaptation on a given service considering its new configuration, while the actual running
configuration could be (still) inconsistent with its counterpart stored in the knowledge-
base. Indeed, being in a distributed setting, this could happen because of a variety of
reasons.
To limit the consequences of this situation, we advise the user of RAMSES to try to
guarantee that these changes do not require more time than the following threshold:

MP ·MWS · AWS · 1�QoSSR

n
, (3.17)

where MP is the Monitor Period of the Managing System, MWS and AWS are respectively
the Metrics Window Size and the Analysis Windows Size of the Analyse component,
QoSSR is the QoS Satisfaction Rate, and n is a parameter chosen by the user.
Indeed in the worst case, if this constraint is satisfied, given a QoS indicator, at most n

of the values in the Analysis Window of a service that do not satisfy the respective QoS
Specification refer to a transient configuration of the considered service. This happens
since MP · MWS is the minimum amount of time needed to fill the Metrics Window of
a given instance, and thus compute one new QoS value in the Analysis Window of its
service.

Interaction with the Knowledge component
In addition to retrieving the adaptation option chosen during the current loop iteration,
the interaction between the Execute and the Knowledge components is fundamental to
correctly update the knowledge-base after performing the required operations.

The Knowledge performs specific operations when the Execute component notifies the
changes in the runtime architecture and configuration of a given service.
When one or more instances of a service are shut down, the Knowledge sets their status
to SHUTDOWN and creates a final empty metric for each of those instances, with the
same status.
When a new instance of a service is booted, the Knowledge is in charge of creating its
model counterpart, setting its status to BOOTING, and associating it to the current im-
plementation of its service.
When the Knowledge is notified about the change of current implementation of a given
service, the current implementation of the service is set to the new one and the penalty
indicator of the old one is initialized to 0. Then, the instances of the old service implemen-

3| Our Proposal 57

tation are treated as common shutdown instances, and the operations performed on them
are the same already described when there is an instance to shut down. Moreover, the
same operations for adding a new instance to the current implementation are performed,
for all the instances of the new service implementation started by the Execute component.
Finally, when a change in the configuration of a service is communicated (i.e., a change of
load balancer weights), the service configuration stored in the System Model is updated
accordingly.

3.3.8. Dashboard

In order to allow the user to better interact with the system, modifying parameters and
monitoring the status of the services, of their instances, and of the overall MAPE-K loop
itself, RAMSES is provided with an interactive dashboard. In particular, it is a web
application serving as the front-end to the knowledge-base, developed using Spring Boot,
with Thymeleaf as template engine. It is structured in three macro sections, one of which
is dedicated to the configuration of the Managing System components.

The first section of the dashboard, shown in Figure 3.11, focuses on the Managed System,
on its runtime architecture, and in particular on the data that RAMSES collected or
computed about it.
For both the service and its instances the current value and the history of values of each
QoS indicator are shown. Moreover, in the case of the instances, also the latest Metrics
Snapshot is displayed.
Finally, it also displays the configuration of each managed service.

The second section of the dashboard shows the latest three adaptation options applied
for each managed service, if any. Additionally, it shows the current phase of the loop.

The third section allows the admin of the system to change the configuration parameters
of the Monitor Component (i.e., the Monitor Scheduling Period) and of the Analyse Com-
ponent (i.e., the Metrics Window Size, the Analysis Window Size, the QoS Satisfaction
Rate, the failure rate and the unreachable rate). It also allows to stop the MAPE-K loop,
starting from the next iteration, or to simply stop RAMSES to perform adaptation, using
it to simply monitor the Managed System.

58 3| Our Proposal

(a) RAMSES Dashboard – Homepage

(b) RAMSES Dashboard – Service Detail

Figure 3.11: RAMSES Dashboard

59

4| Evaluation

In this chapter we describe the experimental campaign conducted to analyse the benefits
of the proposed solution.
The chapter is structured as follows:

• Section 4.1 introduces our research questions;

• Section 4.2 illustrates the setup of the environment in which the experiments were
run and the way the experimental campaign was designed and conducted.

• Section 4.3 describes all the experiments, grouped by adaptation scenario. In par-
ticular, we describe the analysis carried out for each experiment, answering the
proposed research questions.

4.1. Research questions

The conducted experimental campaign, described in Section 4.2, aims to answer 10 re-
search questions, to better understand how RAMSES behaves in specific scenarios that
synthetically reproduce relevant operating conditions.
The research questions are the following:

• RQ1: How long should we run an experiment to capture the phenomena of interest
during its execution?

• RQ2: Does the proposed Managing System eventually improve the performance of
the Managed System under degraded QoS?

• RQ3: What is the impact of the Metrics Window Size on the behaviour of the
Managing System?

• RQ4: What is the impact of the Analysis Window Size on the behaviour of the
Managing System?

• RQ5: How does the Managing System perform when the Managed System is under
heavy load?

60 4| Evaluation

• RQ6: Are the Managing System self-healing capabilities effective when a service is
unavailable?

• RQ7: Are the Managing System self-healing capabilities able to detect and replace
instances prone to be unreachable or to fail?

• RQ8: What is the impact of the Monitor Period on the behaviour of the Managing
System?

• RQ9: Are the Managing System self-optimizing capabilities effective?

• RQ10: Is the Managing System agnostic and reusable with respect to the managed
system?

4.2. Design of the evaluation

We executed all the experiments in the same environment, made of two physical machines
on the same Local-Area Network (LAN):

• a 2020 Apple MacBook Air running the Managed System and the Knowledge com-
ponent of the MAPE-K loop, and hosting the single instance of the MySQL DBMS
used by both the managed and the managing systems. The technical specifications
follow.

– SoC: Apple M1 - 8-core CPU, 7-core GPU

– RAM: 16GB LPDDR4

– Storage: 256GB on NVMe SSD

– OS: macOS Monterey 12.6

– Software: JRE v16.0.2, Docker v20.10.17 (allocating 6 CPUs, 10GB Memory,
1.5GB Swap), MySQL Server v8.0.25

• a 2020 Apple Mac Mini running all the components of the Managing System but
the Knowledge one, plus the Probe and the Actuator components and the Managing
System’s dashboard. The technical specifications follow.

– SoC: Apple M1 - 8-core CPU, 8-core GPU

– RAM: 16GB LPDDR4

– Storage: 512GB on NVMe SSD

– OS: macOS Monterey 12.4

4| Evaluation 61

– Software: JRE v16.0.2

The purpose of this setup is dual: on one hand it highlights the advantages of having a
microservice-based Managing System, since its architecture allows the different compo-
nents to be distributed over a network; on the other hand, it allows to lighten the resource
usage of a single machine, and to generate a higher load for the Managed System without
altering the functioning of the hosting machine due to lack of resources.

The pipeline adopted for each experiment involves the following steps:

• The Managed System was deployed from scratch before each experiment. Details
about the deployment of each service are provided in each experiment description;

• The database was cleared before each experiment;

• Some load (i.e., artificial requests) to the Managed System was generated during
the whole experiment;

• The Monitor component was allowed to start collecting metrics after 10 seconds
from the start of the load generation (ramp-up phase), and it was stopped at the
end of the experiment.

The load generation is delegated to an ad-hoc Java application, deployed as an indepen-
dent Java Archive (JAR) application. Every 10 milliseconds the Load Generator simulates
a new user starting a complete interaction with the Managed System. The maximum num-
ber of concurrently active users is a configurable property of this application. If an error
occurs during the interaction of a user, that user immediately terminates its interaction.

The components of the Managed System were deployed individually in Docker containers,
with all the instances of the same service have the same load balancer weight, resulting
in an equally-distributed load among the instances of the same service.
Concerning the Managing System, the MAPE-K components were deployed as indepen-
dent Java Archive (JAR) applications, with a configuration depending on the running
experiment.

In order to create an experimental environment in which services exhibited unwanted
behaviours (e.g., QoS constraints not satisfied, high failure rate, etc.), we synthetically
injected issues in the managed system by manipulating the services instances. The in-
stances of the managed services referred to as manipulated are instances whose perfor-
mances were altered, by artificially slowing their execution or causing failures. We used
the aspect-oriented paradigm to implement the issue injection mechanism. In particular,
we created an aspect capable of reacting to events such as the invocation of service meth-

62 4| Evaluation

ods. In particular, the computation time of each service method is artificially increased
by a value sampled from a Gaussian distribution, whose mean and variance are referred to
as lag mean and lag variance, respectively. Failures are injected by generating an artificial
exception, whose occurrence probability is referred to as failure rate.
Conversely, the instances which were not manipulated are defined as nominal.
The way the instances were manipulated depends on the specific experimental campaign,
and it is described in the corresponding section.

In order to understand the benefits of the proposed solution and to analyse how it behaves
in specific conditions, ten experiments were conducted, each of them answering a different
research question.
Our experimental campaign is composed of 10 experiments, that we analysed to answer
the research questions reported in Section 4.1.

The first nine experiments are grouped by adaptation scenario – as proposed in Table 3.1.
Moreover, a final experiment was conducted, which aims at showing the Managing System
reusability.

The experiments are grouped by scenarios, as follows:

• Scenario S1 - Some QoS indicators are not satisfied

– E1 - Choice of the experiment duration. Different experiments of dif-
ferent lengths were executed, to choose the duration of the following ones.
In particular, the first experiment lasted 1 hour, allowing us to motivate the
chosen duration, which was set to 20 minutes.

– E2 - Benefits of adaptation. The second experiment compares the per-
formance of the Managed System when no adaptation option is applied with
the performance obtained by performing adaptation under the same circum-
stances. This experiment is considered as the reference experiment for all the
others in this experimental evaluation.

– E3 - Impact of the Metrics Window Size. The third experiment aims at
illustrating the impact of the size of the Metrics Window on the behaviour of
the Managing System. In particular, we reduced the Metrics Window Size of
the reference experiment from 6 to 3, and then we compared their results.

– E4 - Impact of the Analysis Window Size. The fourth experiment aims
at illustrating the impact of the size of the Analysis Window on the behaviour
of the Managing System. In particular, as reported in its detailed descrip-
tion, with respect to the reference experiment, the Analysis Window Size was

4| Evaluation 63

decreased from 5 to 1.

– E5 - Impact of the number of users. The fifth experiment aims at illus-
trating the impact of the number of users that make requests to the Managed
System on the decisions of the Managing System. In particular, as reported in
its detailed description, with respect to the reference experiment, the number
of parallel users was increased from 50 to 500.

• Scenario S2 - Service unavailable

– E1 - Analysis of the self-healing capabilities. This experiment aims at
evaluating the self-healing properties of the system, showing its behaviour when
one of the managed services is not available at all.

– E2 - Analysis of the failure tendency detection. This experiment aims
at highlighting the self-healing capabilities of the Managing System, showing
its behaviour when one of the instances of the managed services exhibits the
tendency of being unreachable or failing too often.

– E3 - Impact of the Monitor Period. Compared to E1 and E2, we changed
the Monitor Period from 5 seconds to 15 seconds, to analyse its impact on the
failure detection capability of the Managing System.

• Scenario S3 - Better service implementation available

– E1 - Analysis of the self-optimization capabilities. This experiment
aims at evaluating the self-optimization properties of the system, showing its
behaviour when one of the managed services has a better implementation avail-
able with respect to its current one.

• Reusability of the Managing System

– E1 - Analysis of the Managing System reusability. This experiment
aims at showing the reusability of the proposed Managing System, which is
designed to be agnostic with respect to the Managed System.

Finally, as mentioned in Section 3.2, both the Payment Proxy Service and the Delivery
Proxy Service are provided with three different implementations, which are referred to
respectively as I1, I2 and I3 for each proxy service.
In all the experiments, each proxy is initially deployed with the respective I1 implemen-
tation.

64 4| Evaluation

4.3. Results

This section describes the results of the experiments. All the experiments are introduced
by a brief description, followed by comments on the applied adaptation options, and on
the final outcome of the experiments themselves.

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

t

Latest value
Current value

Threshold
Invalidation of QoS histories

Adaptation point

Figure 4.1: Example of graph used in the experiments

For each experiment, we report a summary of the results and we refer the reader to
Appendix A for the complete set of plots built out of the experiments, such as the plot
in Figure 4.1.
The graphs points are a discrete representation of the trend of the value, the current
value and the threshold of the QoS indicator they refer to. Each graph spans the whole
experiment duration, hence each point of the graph refers to a specific moment in the
experiment duration.
Furthermore, each graph shows the instants when the histories were invalidated or an
adaptation option was chosen.
Finally, each graph highlights the moments when the specification of the QoS it refers
to is not satisfied by filling the area between the QoS trend and its threshold. This
area also helps to quantify the results of each experiment and to compare the different
configurations proposed.

4.3.1. Scenario S1 - QoS not satisfied

The scenario S1 concerns how the Managing System behaves when a service does not
satisfy the specifications of one or more QoS indicators.

4| Evaluation 65

As a reminder, we say that a service does not satisfy its specification of a QoS indicator
when, in its latest Analysis Window, the rate of QoS values not satisfying the specifications
is at least 1�QoSSatisfactionRate.

Before each experiment, the Managed System is deployed into the execution environment
with the following initial configuration:

• Restaurant Service: 3 instances.
All the instances run with the following manipulation:

Instance Failure Rate Lag Mean [ms] Lag Variance [ms]
A 0.8 100 80
B 0.15 150 70
C 0.05 20 10

Table 4.1: Restaurant Service manipulation table

• Ordering Service: 3 instances.
The other two instances run on random ports with the following manipulation:

Instance Failure Rate Lag Mean [ms] Lag Variance [ms]
A 0.05 500 50
B 0.07 400 100

Table 4.2: Ordering Service manipulation table

• Payment Proxy Service: 1 instance.
The only instance runs with the following manipulation:

Instance Failure Rate Lag Mean [ms] Lag Variance [ms]
A 0.01 250 100

Table 4.3: Payment Proxy Service manipulation table

• Delivery Proxy Service: 1 instance.
The only instance is nominal.

During each experiment execution, some abnormal events are injected to trigger relevant
behaviours of the Managing System, whose occurrence is summarised in Figure 4.2.
In particular, for each experiment two types of issues are injected:

66 4| Evaluation

• Lag injection. The instances of the Ordering Service are slowed down twice during
the experiments. The first time after 11 minutes from the start of the experiment,
lasting 15 seconds. The second time after about 13 minutes from the start, lasting
approximately 2 minutes.

• Network failure. After 10 minutes from the start, two UNREACHABLE Metrics
Snapshots referring to one instance of the Restaurant Service are injected in the
Probe component, simulating a network failure (e.g., a packet loss or connection
timeout).

To analyse the results in a quantitative way, we adopt the so-called QoS Degradation Area
(QoSSDA) indicator. We define the QoSDA as the total area between the considered QoS
threshold and its corresponding Latest Value trend, in the portion of graph where the
QoS specification is not satisfied.

Figure 4.2: Timeline of injected issues

E1 - Choice of the experiments duration
The first experiment aims at identifying the amount of time required by all the exper-
iments. Therefore, we executed a long run (1 hour), and we monitored the system to
determine the relevant time window.

The configuration parameters chosen for this experiment are summarized in Table 4.4.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 60 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.4: S1 – Configuration parameters of experiment E1

The following legend holds for all the plots of this experiment.

4| Evaluation 67

Latest value
Current value

Threshold
Adaptation point

Invalidation of QoS histories

0 5 10 15 20 25 30 35 40 45 50 55 60

0.7

0.8

0.9

1

t[min]

Figure 4.3: S1E1 – Restaurant Service availability

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1,000

2,000

3,000

t[min]

Figure 4.4: S1E1 – Ordering Service average response time

As shown in Figure 4.3 and Figure 4.4, the state of the system becomes steady and
stable before the first third of the experiment duration, thanks to the adaptation options
applied while the system was not satisfying its QoS specifications. Thus, a duration on

68 4| Evaluation

20 minutes was decided for the following experiments, since it is enough time to observe
all the relevant events in the system.

RQ1 Summary: An experiment duration of 20 minutes is enough to observe all
the events that bring the managed services into a steady QoS state.

E2 - Adaptation benefit
This experiment aims at analysing the benefit of using the proposed Managing System,
compared to when no adaptation is performed. Moreover, it is used as the reference
experiment for the next ones of this experimental campaign: indeed, the configuration
parameters used in this experiment are used as a starting point for the following experi-
ments, modified accordingly to their needs.
Table 4.5 shows the configuration parameters adopted in E2. According to results of E1,
the duration is 20 minutes.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 20 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.5: S1 – Configuration parameters of experiment E2

The following legend holds for all the plots of this experiment.

Latest value when no adaptation applied
Latest value

Current value
Threshold

Adaptation point
Invalidation of QoS histories

4| Evaluation 69

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t

Figure 4.5: S1E2 – Restaurant Service availability

Concerning the Restaurant Service, as shown in Figure 4.5, at the beginning of the ex-
periment (i.e., when t < 2) its availability is very low, far from the threshold. Hence, the
Managing System changes the load balancer weights of the instances, in order to penalise
the bad-performing one. Indeed, one of the instance of the Restaurant Service was ma-
nipulated to have a very low availability (see instance A of Table 4.1).
This operation improves the service availability, that however is still not enough. At this
point (when t ⇡ 3), another Change Load Balancer option is applied: two instances out
of three are shut down, due to their poor performances.
It results in the ultimate choice for the service, which finally reaches a stable and desired
value for its availability.
Figure 4.5 shows that the Restaurant Service availability QoSDA is equal to 4.28 · 102

when adaptation is performed (red area), while it is equal to 3.65 · 103 when no adapta-
tion is performed. The adaptation options executed by the Managing System reduce the
QoSDA by 88%, compared to the case in which no adaptation is performed.

70 4| Evaluation

0 2 4 6 8 10 12 14 16 18 20

1,000

2,000

3,000

t

Figure 4.6: S1E2 – Ordering Service average response time

Concerning the Ordering Service, as shown in Figure 4.6, at the beginning of the experi-
ment, its average response time is above the threshold defined by the QoS specification.
However, when analysing the service, the Managing System prioritizes the adaptation of
the service dependencies, as described in Section 3.3.5. In this specific case, the Ordering
Service depends on the Restaurant Service, which does not satisfy all its QoS specifica-
tions before t ⇡ 3 (see Figure 4.5).
Thus, all the QoS histories of the Ordering Service are invalidated when an adaptation
option is applied for the Restaurant Service. These events are marked by two black points
on the plot shown in Figure 4.6: the first at t ⇡ 1 and the last at t ⇡ 3.
When its dependencies do not require adaptation anymore, the Ordering Service is finally
adapted, by applying a Change Load Balancer Option when t ⇡ 5.
The Ordering Service is adapted again at t ⇡ 15, during the second lag injection event.
According to the injections in Figure 4.2, during this experiment the Ordering Service
instances are all slowed down for approximately 2 minutes from t ⇡ 13.
This time a new instance is added, improving the QoS of the the Ordering Service, that
satisfies all the QoS specifications starting from t ⇡ 16.
It total, the Ordering Service average response time QoSDA when adaptation is performed
is equal to 6.39 · 103, while it is equal to 8.22 · 103 when no adaptation is performed. The
adaptation options performed by the Managing System reduce the QoSDA by 22% com-
pared to the case in which no adaptation is performed.

RQ2 Summary: The adaptation options proposed and applied by the Managing
System improve the QoS of the Managed System.

4| Evaluation 71

E3 - Impact of the Metrics Window Size
This experiment aims to illustrate the impact of the size of the Metrics Window on the
behavior of the Managing System.

With respect to the reference experiment E2, we reduced the Metrics Window Size (MWS)
from 6 to 3. This means that the Analyse component requires 3 Metrics Snapshots to
compute a new QoS value, and that 2 Metrics Snapshots with status UNREACHABLE
in the same Metrics Window make the Managing System considering the instance they
refer to as faulty (i.e., to shut down).
The configuration parameters are summarized in Table 4.6.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 3
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 20 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.6: S1 – Configuration parameters of experiment E3

The following legend holds for all the plots of this experiment.

Latest value
Current value

Threshold
Adaptation point

Invalidation of QoS histories

72 4| Evaluation

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t[min]

Figure 4.7: S1E3 – Restaurant Service availability

Concerning the Restaurant Service, as shown in Figure 4.7, at the beginning of this ex-
periment the Restaurant Service availability is below the specified threshold, resulting in
the execution of two Change Load Balancer Weights options, respectively at t ⇡ 1 and
t ⇡ 2.
As in the reference experiment, the first time the option is applied, all the three instances
are kept alive, distributing most of the load (specifically, about the 75% of the total load)
to the only nominal instance. Instead, the second time the load is redirected entirely to
the nominal instance, shutting down the other two.
From that moment on, no more adaptation is performed, since the Restaurant Service
availability becomes steady and satisfies the corresponding QoS specifications.
Compared to the reference experiment, in this experiment the Managing System requires
less time to propose an adaptation option. Indeed, the time required to determine whether
a service requires adaptation is strictly related to the size of its Metrics Window: the
smaller the Metrics Window, the less Metric Snapshots are required by the Analyse com-
ponent to generate a new latest value for each QoS indicator.
This results in a QoSDA availability value of 2.42·102, which is 50% smaller than the avail-
ability QoSDA of the Restaurant Service in the reference experiment, equal to 4.28 · 102.
However, this positive result comes along with a higher cost in terms of number of adapta-
tions. Indeed, at t ⇡ 10 the Restaurant Service is adapted again, after the network failure
injection event. As a reminder, during this and all the other experiments of this scenario,
two Metrics Snapshots of the Restaurant Service are manipulated by the Probe compo-
nent, simulating a network failure by considering the remaining instance UNREACHABLE
(see Figure 4.2 for reference). As a consequence, since the rate of UNREACHABLE Met-

4| Evaluation 73

rics Snapshot in the Metrics Window is above the corresponding threshold, the running
instance is shut down and a new instance is started.
By comparing this event with the results obtained in E2, we can see how the last adap-
tation option was actually not necessary, as shown in Figure 4.5.

The size of the Metrics Window impacts on the decision of shutting down the instances
that are UNREACHABLE or FAILED : while a smaller size could lead to unnecessary
adaptations, a larger size could lead to postpone adaptation or ignore such events if they
happen rarely.

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

t[min]

Figure 4.8: S1E3 – Ordering Service average response time

Concerning the Ordering Service, as shown in Figure 4.8, at the beginning of the exper-
iment the average response time of the Ordering Service is above the threshold defined
by the QoS specification. However, as in the reference experiment, the Managing Sys-
tem does not adapt the Ordering Service until its dependencies satisfy their constraints.
Indeed, the Ordering Service depends on the Restaurant Service, which, according to
Figure 4.7, does not satisfy all of its QoS specifications before t ⇡ 2. Thus, all the QoS
Histories of the Ordering Service are invalidated when an adaptation option is applied
to the Restaurant Service, and while the adaptation process is still in progress. These
events are highlighted by the black marks on the graph that are not in correspondence of
an adaptation point.
When the dependencies do not require adaptation anymore, the Ordering Service is
adapted, by applying a Change Load Balancer Weights option when t ⇡ 4.
The Ordering Service is adapted again at t ⇡ 14, t ⇡ 15 and t ⇡ 16, during the second

74 4| Evaluation

lag injection event (see Figure 4.2 for reference).
In chronological order, the Managing System first changed the load balancer weights, then
added a new instance and finally changed the load balancer weights again, making the
Ordering Service satisfy all the QoS specifications starting from t ⇡ 16.

As in the case of the Restaurant Service, compared to the reference experiment, it takes
less time before an adaptation option can be proposed by the Analyse Component. Thus,
the QoSDA of this experiment is equal to 6.04 · 103, versus 6.39 · 103 in the reference
experiment.

RQ3 Summary: The size of the Metrics Window affects the number of UN-
REACHABLE or FAILED Metrics Snapshots required to consider an instance as
faulty, in addition to the time needed to compute a new QoS value.
A high Metrics Window size leads to a slower computation of a new QoS latest
value. On the other hand, this results in a more reliable computation of this value,
since it is based on more snapshots. Moreover, the more snapshots are collected,
the more the Managing System waits before considering an instance as faulty.
A small size leads to a faster computation of a new QoS value, and it makes the
Managing System considering an instance faulty after a shorter time, possibly lead-
ing to false positives and higher number of performed adaptation options.

E4 - Impact of the Analysis Window Size
This experiment aims to illustrate the impact of the size of the Analysis Window on the
behavior of the Managing System.

With respect to the reference experiment E2, we changed the Analysis Window Size
(AWS) from 5 to 1. This means that a single QoS value is taken into consideration when
determining whether to perform adaptation or not. This reduces to immediate adaptation,
as soon as a QoS value does not satisfy its specifications.
Table 4.7 summarizes the configuration parameters chosen for this experiment.

4| Evaluation 75

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 1

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 20 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.7: S1 – Configuration parameters of experiment E4

The following legend holds for all the plots of this experiment.
It is worth noting that, since AWS is equal to 1, the latest value is equal to the current
value for all time instant t of the experiment.

Latest value
Current value

Threshold
Adaptation point

Invalidation of QoS histories

0 2 4 6 8 10 12 14 16 18

0.7

0.8

0.9

1

t[min]

Figure 4.9: S1E4 – Restaurant Service availability

Concerning the Restaurant Service, as shown in Figure 4.9, at the beginning of this ex-
periment the Restaurant Service availability is very low, resulting in two Change Load
Balancer Weights options performed by the Managing System: one as soon as the experi-
ment starts (i.e., at t = 0), and one at t ⇡ 1, resulting in the shut down of the manipulated
instances, as in the previous experiments.
From that point on, the Restaurant Service availability QoS is steady and satisfies its

76 4| Evaluation

specifications.
Compared to the reference experiment, it takes less time before an adaptation option
could be proposed by the Analyse Component, resulting in a QoSDA equal to 6.54 · 101

for the Restaurant Service availability, which is ⇡ 85% smaller compared the reference
experiment (i.e., 4.28 · 102).

0 2 4 6 8 10 12 14 16 18 20

500

1,000

1,500

2,000

t[min]

Figure 4.10: S1E4 – Ordering Service average response time

Concerning the Ordering Service, as shown in Figure 4.10, the behaviour of both the
Ordering Service and the Managing System in the first half of the experiment is similar
to the one exhibited in the previous experiments. Thus, its description is omitted for the
sake of brevity.
The first significant event occurs at t ⇡ 11, during the first lag injection event (see
Figure 4.2 for reference). Compared to the other experiments, where this event is not
cause of adaptation due to its limited duration, in this case adaptation is performed
twice, with an interval of 1 minute between each other. This is a direct consequence of
an Analysis Window Size equal to 1, since the adaptation is performed as soon as there
is a QoS value not satisfying its respective specifications.
The same happens during the second lag injection event.
In total, for the Ordering Service, five adaptation options were applied:

• 3 Change Load Balancer Weights options (at t ⇡ 2, at t ⇡ 10 and at t ⇡ 15) and

• 2 Add Instance Options (at t ⇡ 12 and at t ⇡ 14)

Again, an instant adaptation results in a smaller QoSDA for the average response time,
equal to 2.57 · 103, versus 6.39 · 103 in the reference experiment.

4| Evaluation 77

This improvement increases the cost in terms of adaptation options applied, which are
performed even when the cause is a transitory event having a small duration (i.e, a false
positive).

RQ4 Summary: The size of the Analysis Window has a strong impact on the
reaction time of the Managing System.
A high size delays the proposal of adaptation options, incrementing the response
time of the Managing System to the issues of the Managed System.
On the other hand, a low size results in a quicker adaptation, at the cost of possibly
having more adaptation options applied, even when the cause of adaptation is a
transitory event having a small duration, leading to a higher cost.

E5 - Impact of the number of users
This experiment aims to illustrate the functioning of the Managing System when the
Managed System performs under heavy load.

With respect to the reference experiment E2, the number of parallel users that generate
requests increases of a 10x factor, from 50 to 500.
Table 4.8 summarizes the configuration parameters chosen for this experiment.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 20 min
User-generation delay 10 ms

Number of parallel users 500

Table 4.8: S1 – Configuration parameters of experiment E5

The following legend holds for all the plots of this experiment.

Latest value
Current value

Threshold
Adaptation point

Invalidation of QoS histories

78 4| Evaluation

0 2 4 6 8 10 12 14 16 18

0.7

0.8

0.9

1

t[min]

Figure 4.11: S1E5 – Restaurant Service availability

Concerning the Restaurant Service, as shown in Figure 4.11, at the beginning of this
experiment the service availability is below its threshold. However, with respect to the
reference experiment (see Figure 4.5), it now takes more time to the Monitor component
to collect the Metrics Snapshots from all the instances. Indeed, the high load of the in-
stances slows down the overall interaction between RAMSES and the Managed System,
which negatively impacts on the duration of each loop iteration.
As a result, the first adaptation option – a Change Load Balancer Weights option – is
applied at t ⇡ 6.
For the same reason, since the specifications on the service availability are still not sat-
isfied, a new adaptation is performed at t ⇡ 11. Indeed, another Change Load Balancer
Weights option is applied, this time shutting down the two instances with the highest
failure rate.

As a result, the QoSDA is noticeably higher, due to the higher time elapsed from the
discovery of the problem to the application of the proposed adaptation option. Indeed,
the availability QoSDA is equal to 1.43 · 103, versus 4.28 · 102 in the reference experiment.

4| Evaluation 79

0 2 4 6 8 10 12 14 16 18

0

2,000

4,000

6,000

8,000

t[min]

Figure 4.12: S1E5 – Ordering Service average response time

As for the Restaurant Service, it takes more time for the Managing System to collect the
Metrics Snapshots from all the Ordering Service instances, delaying the first adaptation
option, as shown in Figure 4.12.
Indeed, the first (and only) adaptation option, which is a Change Load Balancer Weights
option, is applied at t ⇡ 11.

For the same reason explained before, the average response time QoSDA is equal to
5.61 · 104, versus 6.39 · 103 in the reference experiment.

RQ5 Summary: When the Managed System is handling a huge number of requests
simultaneously, the retrieval of the Metrics Snapshots takes more time, due to an
increased response time of each managed service. This slows down the adaptation
process, but the Managing System still behaves as expected.

80 4| Evaluation

4.3.2. Scenario S2 - Service unavailable

The scenario S2 is the second adaptation scenario under analysis. In particular, it focuses
on how the Managing System behaves when a service is unavailable.
A service is defined as unavailable when, from the point of view of a client of that service,
there is no instance capable of processing the client’s requests.

In this scenario, before each experiment is executed, the Managed System is freshly de-
ployed with one nominal instance per service (i.e., without any manipulation).

During each experiment execution, issues are periodically injected to trigger relevant
behaviours of the Managing System.
In particular, the only instance of the Payment Proxy Service running at the start of the
experiments is made artificially fail after 40 seconds, and then restarted after 15 seconds
from the inducted fail. This procedure is repeated, until that instance is not shut down
by the Managing System, if this happens.

All the proposed experiments for this scenario have a fixed duration of 5 minutes.

Each experiment is described individually in the next sections, which include the graphs
showing the number of instances of the Payment Proxy Service both from the point-of-
view of a client (i.e., a user of the Managed System), and from the point-of-view of the
Managing System. It must be noticed that, for the sake of clarity of the provided graphs,
all of them only show the first 2 minutes of each experiment, since all the relevant events
happen before them.
The proposed graph was chosen in order to highlight the behaviour of the Managing
System in this scenario, which is not appreciable from the kind of graphs generated for
the experiments belonging to S1.

E1 - Analysis of the self-healing properties
This experiment aims at highlighting the self-healing capabilities of the Managing System,
that allow to effectively react when one of the managed services is completely unavailable.

Table 4.9 summarizes the configuration parameters chosen for this experiment.

4| Evaluation 81

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 5 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.9: S2 – Configuration parameters of experiment E1

The evolution of the number of the Payment Proxy Service running instances during the
experiment is shown in Figure 4.13, both from the point of view of an external client and
from the point of view of the Managing System.

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

t[s]

Client POV
Managing System POV

Figure 4.13: S2E1 – Payment Proxy Service – Number of instances

As shown in Figure 4.13, in the case of this experiment, the instance of the Payment Proxy
Service behaves correctly before t = 34. At that point, a failure occurs, and it takes the
Managing System approximately 25 seconds to react to the failure. Indeed, the Metrics
Window of that instance needs to be filled with UNREACHABLE or FAILED Metrics
Snapshots, with a rate above their respective thresholds, as described in Section 3.3.5, in
order to let the Managing System consider it as unavailable. Considering the configuration
parameters of the experiments, and in particular the Metrics Window Size and the Monitor
Period, this justifies the 25 seconds required to trigger the adaptation.
Approximately at t ⇡ 57, the Managing System proposes to shut down the faulty instance
and to start a new one, which becomes ready to accept requests at t ⇡ 68.

As a result, the Payment Proxy Service becomes available again to a potential end user.

82 4| Evaluation

RQ6 Summary: When a service is completely unavailable due to the lack of
active instances, the Managing System correctly restore the health of the service by
starting a new instance (self-healing property).

E2 - Analysis of the failure tendency detection
This experiment was designed to analyse the self-healing capabilities of the proposed
Managing System, that shall take into account the tendency of an instance to be UN-
REACHABLE or FAILED.

Table 4.10 summarizes the configuration parameters chosen for this experiment.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 5 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.10: S2 – Configuration parameters of experiment E2

The evolution of the number of the Payment Proxy Service running instances during the
experiment is shown in Figure 4.14, both from the point-of-view of an external client and
from the point-of-view of the Managing System itself.

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

t[s]

Client POV
Managing System POV

Figure 4.14: S2E2 – Payment Proxy Service – Number of instances

4| Evaluation 83

During this experiment, the instance of the Payment Proxy Service behaves correctly
before t = 34. At that point, a failure occurs. After a little time, the failed instance
restarts spontaneously, becoming available to elaborate requests again when t = 52.
However, at t = 57 the Managing System proposes to shut down the instance, and to
start a new one, which becomes available to a potential user at t = 68. This happens
because the Metrics Window of the original instance is filled with UNREACHABLE or
FAILED Metrics Snapshots, whose rate is above the respective thresholds, as described
in Section 3.3.5.

As a result, the Managing System decides to replace the faulty instance, in order to reduce
the risk of users experiencing repeated downtimes when interacting with the service.

RQ7 Summary: When an instance is unreachable or failed for a substantial
amount of time, such that the rate of UNREACHABLE or FAILED Metrics Snap-
shot in the Metrics Window is higher than their respective thresholds, the Managing
System is able to replace the instance with a new one.

E3 - Impact of the Monitor Period
This experiment aims to analyse the impact of the Monitor Scheduling Period on the
behavior of the Managing System. With respect to the other experiments of this scenario,
the Monitor Period changes from 5 seconds to 15 seconds.

Table 4.11 summarizes the configuration parameters chosen for this experiment.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 15 sec
Instances Shutdown Threshold 40%

Experiment duration 5 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.11: S2 – Configuration parameters of experiment E3

The evolution of the number the Payment Proxy Service running instances during the
experiment is shown in Figure 4.15, both from the point-of-view of a client and from the
point-of-view of the Managing System. Note that even if only the first two minutes are
shown in the graph, the oscillatory behaviour of the system should be considered periodic.
This is a direct consequence of the fault injection performed on the single service instance,

84 4| Evaluation

as anticipated in the description of this scenario.

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

t[s]

Client POV
Managing System POV

Figure 4.15: S2E3 – Payment Proxy Service – Number of instances

As in the previous experiments of this scenario, the instance of the Payment Proxy Service
fails approximately at t = 34. After a short time, the failed instance restarts sponta-
neously, becoming available to elaborate requests again when t = 52.
However, due to a lower frequency of the Monitor component routine (i.e., a higher Mon-
itor Period) with respect to the previous experiments, the failure is not detected and no
adaptation is performed.
In addition, when this behavior is recurrent – as in the case of the initial instance of
the Payment Proxy Service – the impact is even higher on the client of the service, that
experiences a higher overall downtime.

RQ8 Summary: The Monitor Period has a strong impact on the failure detection
capabilities of the Managing System. A high period reduces the ability of detecting
occurring failures. A low period yields a higher overhead for both the Managed
and the Managing System. Thus, this quantity must be chosen by the users of
the Managing System according to their requirements with respect to the failure
detection of the instances, but also according to the performance of their instances,
since the overhead generated by the Managing System when collecting the snapshot
may negatively affect the performance of the managed services.

4| Evaluation 85

4.3.3. Scenario S3 - Better implementation available

S3 is the third adaptation scenario considered for the experimental campaign. It concerns
how the Managing System behaves when there is a better implementation available for a
managed service.
For this scenario, we conducted a single experiment with the following setting:

• Restaurant Service: 2 instances.
The instances are both nominal and run on random ports.

• Ordering Service: 2 instances.
The instances are both nominal and run on random ports.

• Payment Proxy Service: 1 instance.
The single instance runs on a random port with the following manipulation:

Instance Failure Rate Lag Mean [ms] Lag Variance [ms]
A 0.14 19 1

Table 4.12: Payment Proxy Service manipulation table

• Delivery Proxy Service: 1 instance.
The only instance is nominal and it runs on port 58095.

E1 - Analysis of the self-optimization capabilities
This experiment aims to illustrate the self-optimization capabilities of the proposed Man-
aging System.

Table 4.13 shows the configuration parameters used by this experiment, which are the
same of the reference experiment E2 in S1.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 20 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.13: S3 – Configuration parameters of experiment E1

86 4| Evaluation

Latest value
Current value

Threshold
Adaptation point

Invalidation of QoS histories

0 2 4 6 8 10 12 14 16 18 20

0.85

0.9

0.95

1

t[min]

Figure 4.16: S3E1 – Payment Proxy Service availability

As stated in Section 3.3.5, the Change Implementation option is considered by the Man-
aging System when the penalty of a service having multiple possible implementations is
less than or equal to the trust given to the current implementation of that service.
The current implementation at the beginning of the experiment has a trust equal to 2.
Due to the manipulation of the instance of the Payment Proxy Service, its failure rate
makes the service not satisfy the QoS specifications for availability. Hence, the Managing
System first applies an Add Instance option – at t ⇡ 2 – and then applies a Change Load
Balancer Weights option – at t ⇡ 4 – which results in the shutdown of the manipulated
instance.

At this point, the value of the penalty indicator is equal to the trust of the current
implementation of the service, since adaptation was required twice. However, considering
the availability benchmarks of the other two possible implementation of the Payment
Proxy Service, the change of implementation is not beneficial to the service performance
before t ⇡ 11. Indeed, at t ⇡ 11, we simulate a change performed by the system admin
on the availability benchmark of one of the other possible implementations: the new
availability benchmark is set to 1.0.
The Change Implementation option – which was always considered from t ⇡ 4 – is applied
at t ⇡ 11, since now that option is estimated to bring a benefit to the availability of the

4| Evaluation 87

Payment Proxy Service.

As a result, the service availability with the new implementation is actually better than
the previous, coherent with the new provided benchmark.

RQ9 Summary: According to our experience, it results that the proposed Man-
aging System is able to change the implementation of a managed service in order
to improve the service’s performance. This realizes the self-optimizing capability
of RAMSES, since the system recognizes better service implementations and moves
itself towards higher QoS levels, even if the corresponding specifications are satis-
fied.

88 4| Evaluation

4.3.4. Reusability of the Managing System

To show the reusability of the proposed Managing System, and answer RQ10, we built a
simple microservice-based system as an alternative to SEFA.

This additional application has been developed from scratch using Spring Boot and Spring
Cloud frameworks. It has the following two services:

• the Randint Producer Service, which generates random integer numbers upon
request. It exposes a REST-API with a single endpoint, which returns the new
generated integer;

• the Randint Vendor Service, which, upon request, contacts the Randint Producer
Service via its API to obtain a new random integer. It exposes a REST-API with
a single endpoint, which returns the integer computed by the Randint Producer
Service.

This simple system adopts the following design choices.

• Client-side service discovery and load balancing is performed, implemented respec-
tively by Spring Cloud Netflix Eureka and by the Weighted Random Load Balancer
(i.e., load balancing with proportionate fitness selection rule), implemented in the
provided load balancing library;

• An API gateway acts as single entry point for the application and it is implemented
using Spring Cloud Gateway;

• The Probe and Actuator used are the same provided with SEFA (see Section 3.2.4);

• Concerning the deployment of the system, all the services are run in Docker con-
tainers.

Before the experiment is executed, the Simple Managed System is freshly deployed as
follows:

• Randint Producer Service: 2 instances.
The instances run on random ports with the following manipulation:

Instance Failure Rate Lag Mean [ms] Lag Variance [ms]
A 0.001 40 10
B 0.001 180 2

Table 4.14: Randint Producer Service manipulation table

4| Evaluation 89

• Randint Vendor Service: 1 instance.
The single instance runs on a random port with the following manipulation:

Instance Failure Rate Lag Mean [ms] Lag Variance [ms]
A 0.001 120 1

Table 4.15: Randint Vendor Service manipulation table

The experiment is described in details in the next section, that includes the plots of
the average response time trend for both the Randint Producer Service and the Randint
Vendor Service. The plots of their availability trend is not included in this chapter for
the sake of brevity.

E1 - Analysis of the Managing System reusability
This experiment aims at highlighting the reusability capabilities of the Managing System,
which is designed to be agnostic with respect to the Managed System.

Table 4.16 summarizes the configuration parameters chosen for this experiment.

Failure rate threshold 10%
Unreachable rate threshold 35%

Metrics Window Size 6
Analysis Window Size 5

Max instance booting time 120 sec

Monitor Scheduling Period 5 sec
Instances Shutdown Threshold 40%

Experiment duration 20 min
User-generation delay 10 ms

Number of parallel users 50

Table 4.16: Reusability experiment – Configuration parameters

The following legend holds for all the plots of this experiment.

Latest value
Current value

Threshold
Adaptation point

Invalidation of QoS histories

90 4| Evaluation

0 2 4 6 8 10 12 14 16 18 20

70

80

90

100

110

t[min]

Figure 4.17: S4E1 – Randint Producer Service average response time

As shown in Figure 4.17, at the beginning of the experiment, the Randint Producer Service
does not satisfy its constraint on the service average response time. Indeed, of the two
running instances, one is manipulated to heavily delay its responses (see instance B of
Table 4.14).
Hence, Change Load Balancer option is applied: this results to be a good decision, since
after performing this adaptation the service reaches a stable and desired value for its
average response time.

0 2 4 6 8 10 12 14 16 18 20

100

150

200

250

t[min]

Figure 4.18: S4E1 – Randint Vendor Service average response time

As shown in Figure 4.18, at the beginning of the experiment, also the Randint Vendor
Service does not satisfy its constraint on the service average response time. In partic-

4| Evaluation 91

ular, this is a direct consequence of the performance of the Randint Producer Service,
which is a dependency of the Randint Vendor Service. Thus, as shown in S1-E2 (see
Section 4.3.1), the Managing System prioritizes the adaptation of the Randint Producer
Service. However, even if from t ⇡ 2 the Randint Producer Service satisfies the constraint
on the service average response time, the average response time of the Randint Vendor
Service is still above the threshold.
Hence, a new instance is added at t ⇡ 4. However, this single adaptation is not enough
to make the Randint Vendor Service satisfy the constraint on the average response time.
This leads the Managing System to apply another adaptation option, at t ⇡ 7. This time
a Change Load Balancer option is applied, and from t ⇡ 7 the service reaches a stable
and desired value for its average response time.

RQ10 Summary: It results that the proposed Managing System is agnostic with
respect to the system to adapt, and it can be easily reused without changing its
internal logic.

93

5| Conclusions And Future Work

This chapter focuses on summarising the whole project and on highlighting the most rel-
evant conclusions of our work. Furthermore, suggestions on possible future improvements
to our work are provided.

5.1. Conclusions

Developing Self-Adaptive Systems is a challenging task. Their development process is cost
and time consuming, whether developing both the Managing and Managed subsystems
from scratch or starting from a preexisting application to be adapted.
Even if some works have already addressed this problem by proposing a reusable infras-
tructure to ease the engineering of SASs (e.g., the RAINBOW framework [15]), due to
their abstraction and generality they are not ready-to-use, and a significant amount of
time and effort is required to set them up.

Our solution, RAMSES, aims at providing a Managing System that is easily reusable
for service-based applications. Since these applications usually have the common need of
satisfying constraints on some QoS properties, RAMSES tackles this need by abstracting
its logic from the managed system’s one. This makes RAMSES able to adapt different
service-based applications without changing its managing logic: it only requires the man-
aged system to provide a probe and an actuator component offering specific interfaces
and to satisfy a set of prerequisites. Moreover, since it was designed according to the
microservice architectural pattern, it also allows to exploit the advantages brought by the
use of this pattern, such as modularity, decoupling and easy maintainability.
In addition, to test the proposed solution and to build a microservice-based system that
could be easily reused and adapted for research purposes, we implemented a real-world
microservice-based eFood application – SEFA – using a well-known technology stack (e.g.,
Java, Spring, Docker) and following design patterns that are common to this kind of ap-
plications (e.g., service discovery, load-balancing, circuit breakers). Thus, we provide the
scientific community with a complete exemplar of a self-adaptive system, made of two
non-simulated and fully-implemented subsystems, which can be reused for different goals.

94 5| Conclusions And Future Work

Finally, we conducted an experimental campaign to question the effectiveness of the pro-
posed solution by answering 10 research questions. As a result, the experiments high-
lighted the benefits brought by RAMSES to a real-world application and allowed us to
better understand the consequences of tuning the different configuration parameters of
the Managing System.

5.2. Future directions

The proposed solution is a first attempt at realising a modular and reusable Managing
System, which is open to further improvements.

Future versions of RAMSES could propose a deeper analysis process or extend its set of
adaptation options. An enhanced analysis routine could take into account other metrics in
order to build more reliable and accurate indicators of the managed services’ performances
and to perform new specific adaptation options. For instance, a future version of RAMSES
could exploit metrics on the resources usage and on the circuit breakers – which are already
collected by RAMSES – either to include them when considering the existing adaptation
options, or to propose new types of adaptation options (e.g., reallocation of resources,
change of the circuit breakers’ configuration).

Concerning the metrics monitored by the system, a more advanced version of RAMSES
could also extend its scope, monitoring not only the managed systems but also the prop-
erties of the environment (e.g., temperature, network bandwidth, the performance of the
physical device hosting an instance).

In addition, to enhance the separation of concerns between loop components, the perfor-
mance indicators of both the services and the instances could be computed by the Analyse
component, allowing the Plan component to be agnostic with respect to the way the per-
formance indicators are defined. In this way, the Analyse and the Plan components would
be less coupled, and the microservice architecture could be better exploited to separately
maintain these components. Moreover, the performance indicators could be defined by
more complex relations, taking into account all the metrics considered by the Analyse
component.

At the time of writing, the adaptation options to apply are chosen according to the benefit
they are estimated to bring to the system, as stated in Section 3.3.6. Further versions of
the Plan Component could encompass a more complex decision-making process, enriching
the existing one by taking into account the cost of an adaptation option and the risks
that can arise after applying it. Moreover, the benefit estimation could also consider

5| Conclusions And Future Work 95

analysing the history of performed adaptation options, using machine-learning techniques
to quantify the actual benefits they brought to the managed system.

Finally, RAMSES might be improved by performing operation-level analysis, rather than
the current service-level one. This, together with the definition of new adaptation options,
could help in improving even more the performance of the managed services. Moreover, a
deeper dependency analysis could be performed, allowing the user to define dependencies
between services at the operation-level rather than at the service-level, allowing RAMSES
to better determine if the issues of a given service are actually caused by one of its
dependencies.

97

Bibliography
[1] J. Andersson, L. Baresi, N. Bencomo, R. d. Lemos, A. Gorla, P. Inverardi, and T. Vo-

gel. Software engineering processes for self-adaptive systems. In Software Engineering
for Self-Adaptive Systems II, pages 51–75. Springer, 2013.

[2] API Gateway Pattern. https://learn.microsoft.com/en-us/dotnet/

architecture/microservices/architect-microservice-container-

applications/direct-client-to-microservice-communication-versus-

the-api-gateway-pattern, 2022. Accessed: 2022-09-01.

[3] C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern. Hogna: A platform for self-
adaptive applications in cloud environments. In 2015 IEEE/ACM 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 83–87, 2015. doi: 10.1109/SEAMS.2015.26. URL https://doi.org/10.1109/

SEAMS.2015.26.

[4] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Müller,
M. Pezzè, and M. Shaw. Engineering Self-Adaptive Systems through Feedback Loops,
pages 48–70. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02161-9. doi: 10.
1007/978-3-642-02161-9_3. URL https://doi.org/10.1007/978-3-642-02161-

9_3.

[5] L. Cabibbo. https://github.com/aswroma3/asw/tree/master/projects/asw-

825-spring-boot, 2022. Accessed: 2022-06-10.

[6] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli. Dy-
namic qos management and optimization in service-based systems. IEEE Transac-
tions on Software Engineering, 37(3):387–409, 2011. doi: 10.1109/TSE.2010.92. URL
https://doi.org/10.1109/TSE.2010.92.

[7] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dust-
dar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle,
J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw,

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://doi.org/10.1109/SEAMS.2015.26
https://doi.org/10.1109/SEAMS.2015.26
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_3
https://github.com/aswroma3/asw/tree/master/projects/asw-825-spring-boot
https://github.com/aswroma3/asw/tree/master/projects/asw-825-spring-boot
https://doi.org/10.1109/TSE.2010.92

98 | Bibliography

M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Software Engineering for Self-
Adaptive Systems: A Research Roadmap, pages 1–26. Springer Berlin Heidel-
berg, 2009. ISBN 978-3-642-02161-9. doi: 10.1007/978-3-642-02161-9_1. URL
https://doi.org/10.1007/978-3-642-02161-9_1.

[8] Circuit Breaker Pattern. https://martinfowler.com/bliki/CircuitBreaker.

html, 2022. Accessed: 2022-09-11.

[9] Client-Side Service Discovery and Load-balancing. https://microservices.io/

patterns/client-side-discovery.html, 2022. Accessed: 2022-10-24.

[10] Database-per-Service Pattern. https://microservices.io/patterns/data/

database-per-service.html, 2022. Accessed: 2022-09-12.

[11] Eureka Discovery Service. https://cloud.spring.io/spring-cloud-netflix/

reference/html/, 2022. Accessed: 2022-10-20.

[12] R. R. Filho, E. Alberts, I. Gerostathopoulos, B. Porter, and F. M. Costa. Emergent
web server: An exemplar to explore online learning in compositional self-adaptive
systems. In 2022 International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 36–42, 2022. doi: 10.1145/3524844.3528079.
URL https://doi.org/10.1145/3524844.3528079.

[13] C. A. Floudas. Mixed-Integer Linear Optimization. In Nonlinear and Mixed-Integer
Optimization: Fundamentals and Applications. Oxford University Press, 11 1995.
ISBN 9780195100563. doi: 10.1093/oso/9780195100563.003.00010. URL https://

doi.org/10.1093/oso/9780195100563.003.00010.

[14] E. Freeman, E. Robson, B. Bates, and K. Sierra. Head First Design Patterns, chap-
ter 7. O’Reilly, 10 2004.

[15] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):
46–54, 2004. doi: 10.1109/MC.2004.175. URL https://doi.org/10.1109/MC.

2004.175.

[16] GitHub webhooks. https://docs.github.com/en/developers/webhooks-and-

events/webhooks/about-webhooks, 2022. Accessed: 2022-11-02.

[17] International Conference on Autonomic Computing and Self-Organizing Systems –
ACSOS series, 2020-2022. Accessible at https://dblp.org/db/conf/acsos/index.html.

[18] International Symposium on Software Engineering for Adaptive and

https://doi.org/10.1007/978-3-642-02161-9_1
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://cloud.spring.io/spring-cloud-netflix/reference/html/
https://cloud.spring.io/spring-cloud-netflix/reference/html/
https://doi.org/10.1145/3524844.3528079
https://doi.org/10.1093/oso/9780195100563.003.00010
https://doi.org/10.1093/oso/9780195100563.003.00010
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://docs.github.com/en/developers/webhooks-and-events/webhooks/about-webhooks
https://docs.github.com/en/developers/webhooks-and-events/webhooks/about-webhooks

| Bibliography 99

Self-Managing Systems – SEAMS series, 2006-2022. Accessible at
https://dblp.org/db/conf/seams/index.html.

[19] J. Kephart and D. Chess. The vision of autonomic computing. Computer, 36(1):
41–50, 2003. doi: 10.1109/MC.2003.1160055. URL https://doi.org/10.1109/MC.

2003.1160055.

[20] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In Future
of Software Engineering (FOSE ’07), pages 259–268, 2007. doi: 10.1109/FOSE.2007.
19. URL https://doi.org/10.1109/FOSE.2007.19.

[21] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. A survey on
engineering approaches for self-adaptive systems. Pervasive and Mobile Computing,
17:184–206, 2015. ISSN 1574-1192. doi: 10.1016/j.pmcj.2014.09.009. URL https:

//doi.org/10.1016/j.pmcj.2014.09.009.

[22] P. Lambert. Availability and beyond: Understanding and improving
the resilience of distributed systems on aws. Technical report, Ama-
zon AWS, 2021. Chapter Measuring Availability. Accessible at: https:

//docs.aws.amazon.com/pdfs/whitepapers/latest/availability-and-

beyond-improving-resilience/availability-and-beyond-improving-

resilience.pdf#measuring-availability.

[23] G. Lulli, P. Potena, and C. Raibulet. Resource allocation, trading and adaptation in
self-managing systems. In C. Salinesi and O. Pastor, editors, Advanced Information
Systems Engineering Workshops, pages 385–396, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. ISBN 978-3-642-22056-2. doi: 10.1007/978-3-642-22056-2_41.
URL https://doi.org/10.1007/978-3-642-22056-2_41.

[24] M. Mitchell. An Introduction to Genetic Algorithms, pages 124–125. The MIT Press,
1999.

[25] G. A. Moreno, B. Schmerl, and D. Garlan. Swim: An exemplar for evaluation and
comparison of self-adaptation approaches for web applications. In Proceedings of
the 13th International Conference on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’18, page 137–143, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. ISBN 9781450357159. doi: 10.1145/3194133.3194163.
URL https://doi.org/10.1145/3194133.3194163.

[26] T. Patikirikorala, A. Colman, J. Han, and L. Wang. A multi-model framework to im-
plement self-managing control systems for qos management. In Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing

https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1016/j.pmcj.2014.09.009
https://docs.aws.amazon.com/pdfs/whitepapers/latest/availability-and-beyond-improving-resilience/availability-and-beyond-improving-resilience.pdf#measuring-availability
https://docs.aws.amazon.com/pdfs/whitepapers/latest/availability-and-beyond-improving-resilience/availability-and-beyond-improving-resilience.pdf#measuring-availability
https://docs.aws.amazon.com/pdfs/whitepapers/latest/availability-and-beyond-improving-resilience/availability-and-beyond-improving-resilience.pdf#measuring-availability
https://docs.aws.amazon.com/pdfs/whitepapers/latest/availability-and-beyond-improving-resilience/availability-and-beyond-improving-resilience.pdf#measuring-availability
https://doi.org/10.1007/978-3-642-22056-2_41
https://doi.org/10.1145/3194133.3194163

100 | Bibliography

Systems, SEAMS ’11, page 218–227, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450305754. doi: 10.1145/1988008.1988040. URL
https://doi.org/10.1145/1988008.1988040.

[27] Prometheus Metrics Scraper. https://github.com/jmazzitelli/prometheus-

scraper, 2018. Accessed: 2022-08-14.

[28] F. Quin and D. Weyns. Seabyte: A self-adaptive micro-service system artifact for
automating a/b testing. In 2022 International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pages 77–83, 2022. doi: 10.1145/
3524844.3528081. URL https://doi.org/10.1145/3524844.3528081.

[29] Resilience4j Circuit Breaker. https://resilience4j.readme.io/docs/

circuitbreaker, 2022. Accessed: 2022-09-11.

[30] C. Richardson. Pattern: Microservice architecture, 2022. URL https://

microservices.io/patterns/microservices.html.

[31] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM transactions on autonomous and adaptive systems (TAAS), 4(2):1–42,
2009.

[32] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado, and E. M. Freder-
icks. Rdmsim: An exemplar for evaluation and comparison of decision-making tech-
niques for self-adaptation. In 2021 International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), pages 238–244, 2021. doi:
10.1109/SEAMS51251.2021.00039. URL https://doi.org/10.1109/SEAMS51251.

2021.00039.

[33] Spring Boot. https://spring.io/projects/spring-boot, 2022. Accessed: 2022-
10-20.

[34] Spring Boot Actuator. https://docs.spring.io/spring-boot/docs/current/

actuator-api/htmlsingle/, 2022. Accessed: 2022-08-03.

[35] Spring Cloud. https://spring.io/projects/spring-cloud, 2022. Accessed: 2022-
10-20.

[36] Spring Cloud Config. https://docs.spring.io/spring-cloud-config/docs/

current/reference/html, 2022. Accessed: 2022-10-24.

[37] Spring Cloud Gateway. https://spring.io/projects/spring-cloud-gateway,
2022. Accessed: 2022-09-01.

https://doi.org/10.1145/1988008.1988040
https://github.com/jmazzitelli/prometheus-scraper
https://github.com/jmazzitelli/prometheus-scraper
https://doi.org/10.1145/3524844.3528081
https://resilience4j.readme.io/docs/circuitbreaker
https://resilience4j.readme.io/docs/circuitbreaker
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://doi.org/10.1109/SEAMS51251.2021.00039
https://doi.org/10.1109/SEAMS51251.2021.00039
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/
https://spring.io/projects/spring-cloud
https://docs.spring.io/spring-cloud-config/docs/current/reference/html
https://docs.spring.io/spring-cloud-config/docs/current/reference/html
https://spring.io/projects/spring-cloud-gateway

5| BIBLIOGRAPHY 101

[38] Spring Data JPA. https://spring.io/projects/spring-data-jpa, 2022. Ac-
cessed: 2022-09-02.

[39] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone. Beyond
the rainbow: Self-adaptive failure avoidance in configurable systems. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, page 377–388, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450330565. doi: 10.1145/2635868.2635915. URL
https://doi.org/10.1145/2635868.2635915.

[40] G. Tamura, N. M. Villegas, H. A. Muller, L. Duchien, and L. Seinturier. Improving
context-awareness in self-adaptation using the dynamico reference model. In 2013 8th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 153–162, 2013. doi: 10.1109/SEAMS.2013.6595502. URL
https://doi.org/10.1109/SEAMS.2013.6595502.

[41] D. Weyns. Engineering self-adaptive software systems – an organized tour. In 2018
IEEE 3rd International Workshops on Foundations and Applications of Self* Systems
(FAS*W), pages 1–2, 2018. doi: 10.1109/FAS-W.2018.00012. URL https://doi.

org/10.1109/FAS-W.2018.00012.

[42] D. Weyns and R. Calinescu. Tele assistance: A self-adaptive service-based sys-
tem exemplar. In 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pages 88–92, 2015. doi:
10.1109/SEAMS.2015.27. URL https://doi.org/10.1109/SEAMS.2015.27.

[43] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,
J. Andersson, H. Giese, and K. M. Göschka. On Patterns for Decentralized Control
in Self-Adaptive Systems, pages 76–107. Springer Berlin Heidelberg, 2013. ISBN
978-3-642-35813-5. doi: 10.1007/978-3-642-35813-5_4. URL https://doi.org/10.

1007/978-3-642-35813-5_4.

[44] T. Wong, M. Wagner, and C. Treude. Self-adaptive systems: A system-
atic literature review across categories and domains. Information and Software
Technology, 148:106934, 2022. ISSN 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2022.106934. URL https://www.sciencedirect.com/science/article/

pii/S0950584922000854.

https://spring.io/projects/spring-data-jpa
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1109/SEAMS.2013.6595502
https://doi.org/10.1109/FAS-W.2018.00012
https://doi.org/10.1109/FAS-W.2018.00012
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-642-35813-5_4
https://www.sciencedirect.com/science/article/pii/S0950584922000854
https://www.sciencedirect.com/science/article/pii/S0950584922000854

103

A| Appendix A - Experimental
results

The experiments are grouped by scenarios, as follows:

• Scenario S1 - Some QoS indicators are not satisfied

– E1 - Choice of the experiment duration

– E2 - Benefits of the adaptation

– E3 - Impact of the Metrics Window Size

– E4 - Impact of the Analysis Window Size

– E5 - Impact of the number of users

• Scenario S2 - Service unavailable

– E1 - Analysis of the self-healing capabilities

– E2 - Analysis of the failure tendency detection

– E3 - Impact of the Monitor Period

• Scenario S3 - Better service implementation available

– E1 - Analysis of the self-optimization capabilities

• Reusability of the Managing System

– E1 - Analysis of the Managing System reusability

104 A| Appendix A - Experimental results

A.1. Scenario S1 - QoS not satisfied

A.1.1. E1 - Choice of the experiment duration

RESTAURANT-SERVICE

0 5 10 15 20 25 30 35 40 45 50 55 60

0.7

0.8

0.9

1

t[min]

Figure A.1: S1E1 – Restaurant Service availability

0 5 10 15 20 25 30 35 40 45 50 55 60

20

40

60

80

100

t[min]

Figure A.2: S1E1 – Restaurant Service average response time

A| Appendix A - Experimental results 105

ORDERING-SERVICE

0 5 10 15 20 25 30 35 40 45 50 55 60

0.85

0.9

0.95

1

t[min]

Figure A.3: S1E1 – Ordering Service availability

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1,000

2,000

3,000

t[min]

Figure A.4: S1E1 – Ordering Service average response time

106 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 5 10 15 20 25 30 35 40 45 50 55 60

0.92

0.94

0.96

0.98

1

t[min]

Figure A.5: S1E1 – Payment Proxy Service availability

0 5 10 15 20 25 30 35 40 45 50 55 60

200

300

400

500

t[min]

Figure A.6: S1E1 – Payment Proxy Service average response time

A| Appendix A - Experimental results 107

DELIVERY-PROXY-SERVICE

0 5 10 15 20 25 30 35 40 45 50 55 60

0.92

0.94

0.96

0.98

1

t[min]

Figure A.7: S1E1 – Delivery Proxy Service availability

0 5 10 15 20 25 30 35 40 45 50 55 60

200

300

400

500

t[min]

Figure A.8: S1E1 – Delivery Proxy Service average response time

108 A| Appendix A - Experimental results

A.1.2. E2 - Benefits of the adaptation

Without adaptation
RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18

0.7

0.75

0.8

0.85

0.9

t[min]

Figure A.9: S1E2 – Restaurant Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18

70

80

90

100

110

t[min]

Figure A.10: S1E2 – Restaurant Service average response time – without adaptation

A| Appendix A - Experimental results 109

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.8

0.82

0.84

0.86

0.88

t[min]

Figure A.11: S1E2 – Ordering Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18 20

1,000

1,500

2,000

t[min]

Figure A.12: S1E2 – Ordering Service average response time – without adaptation

110 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.13: S1E2 – Payment Proxy Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18 20

440

460

480

500

t[min]

Figure A.14: S1E2 – Payment Proxy Service average response time – without adaptation

A| Appendix A - Experimental results 111

DELIVERY-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.15: S1E2 – Delivery Proxy Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18 20

200

300

400

500

t[min]

Figure A.16: S1E2 – Delivery Proxy Service average response time – without adaptation

112 A| Appendix A - Experimental results

With adaptation
RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t[min]

Figure A.17: S1E2 – Restaurant Service availability

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

t[min]

Figure A.18: S1E2 – Restaurant Service average response time

A| Appendix A - Experimental results 113

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

t[min]

Figure A.19: S1E2 – Ordering Service availability

0 2 4 6 8 10 12 14 16 18 20

1,000

2,000

3,000

t[min]

Figure A.20: S1E2 – Ordering Service average response time

114 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.21: S1E2 – Payment Proxy Service availability

0 2 4 6 8 10 12 14 16 18 20

440

460

480

500

t[min]

Figure A.22: S1E2 – Payment Proxy Service average response time

A| Appendix A - Experimental results 115

DELIVERY-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.23: S1E2 – Delivery Proxy Service availability

0 2 4 6 8 10 12 14 16 18 20

200

300

400

500

t[min]

Figure A.24: S1E2 – Delivery Proxy Service average response time

116 A| Appendix A - Experimental results

A.1.3. E3 - Impact of the Metrics Window Size

RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t[min]

Figure A.25: S1E3 – Restaurant Service availability

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

t[min]

Figure A.26: S1E3 – Restaurant Service average response time

A| Appendix A - Experimental results 117

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t[min]

Figure A.27: S1E3 – Ordering Service availability

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

t[min]

Figure A.28: S1E3 – Ordering Service average response time

118 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.29: S1E3 – Payment Proxy Service availability

0 2 4 6 8 10 12 14 16 18 20

440

460

480

500

t[min]

Figure A.30: S1E3 – Payment Proxy Service average response time

A| Appendix A - Experimental results 119

DELIVERY-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.31: S1E3 – Delivery Proxy Service availability

0 2 4 6 8 10 12 14 16 18 20

200

300

400

500

t[min]

Figure A.32: S1E3 – Delivery Proxy Service average response time

120 A| Appendix A - Experimental results

A.1.4. E4 - Impact of the Analysis Window Size

RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18

0.7

0.8

0.9

1

t[min]

Figure A.33: S1E4 – Restaurant Service availability

0 2 4 6 8 10 12 14 16 18

20

40

60

80

100

t[min]

Figure A.34: S1E4 – Restaurant Service average response time

A| Appendix A - Experimental results 121

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.85

0.9

0.95

1

t[min]

Figure A.35: S1E4 – Ordering Service availability

0 2 4 6 8 10 12 14 16 18 20

500

1,000

1,500

2,000

t[min]

Figure A.36: S1E4 – Ordering Service average response time

122 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18

0.92

0.94

0.96

0.98

1

t[min]

Figure A.37: S1E4 – Payment Proxy Service availability

0 2 4 6 8 10 12 14 16 18

440

460

480

500

t[min]

Figure A.38: S1E4 – Payment Proxy Service average response time

A| Appendix A - Experimental results 123

DELIVERY-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18

0.92

0.94

0.96

0.98

1

t[min]

Figure A.39: S1E4 – Delivery Proxy Service availability

0 2 4 6 8 10 12 14 16 18

200

300

400

500

t[min]

Figure A.40: S1E4 – Delivery Proxy Service average response time

124 A| Appendix A - Experimental results

A.1.5. E5 - Impact of the number of users

RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18

0.7

0.8

0.9

1

t[min]

Figure A.41: S1E5 – Restaurant Service availability

0 2 4 6 8 10 12 14 16 18

0

50

100

150

200

t[min]

Figure A.42: S1E5 – Restaurant Service average response time

A| Appendix A - Experimental results 125

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18

0.85

0.9

0.95

1

t[min]

Figure A.43: S1E5 – Ordering Service availability

0 2 4 6 8 10 12 14 16 18

0

2,000

4,000

6,000

8,000

t[min]

Figure A.44: S1E5 – Ordering Service average response time

126 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18

0.92

0.94

0.96

0.98

1

t[min]

Figure A.45: S1E5 – Payment Proxy Service availability

0 2 4 6 8 10 12 14 16 18

440

460

480

500

t[min]

Figure A.46: S1E5 – Payment Proxy Service average response time

A| Appendix A - Experimental results 127

DELIVERY-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18

0.92

0.94

0.96

0.98

1

t[min]

Figure A.47: S1E5 – Delivery Proxy Service availability

0 2 4 6 8 10 12 14 16 18

200

300

400

500

t[min]

Figure A.48: S1E5 – Delivery Proxy Service average response time

128 A| Appendix A - Experimental results

A.2. Scenario S2 - Service unavailable

A.2.1. E1 - Analysis of the self-healing capabilities

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

t[s]

Client POV
Managing System POV

Figure A.49: S2E1 – Payment Proxy Service – Number of instances

A.2.2. E2 - Analysis of the failure tendency detection

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

t[s]

Client POV
Managing System POV

Figure A.50: S2E2 – Payment Proxy Service – Number of instances

A| Appendix A - Experimental results 129

A.2.3. E3 - Impact of the Monitor Period

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

t[s]

Client POV
Managing System POV

Figure A.51: S2E3 – Payment Proxy Service – Number of instances

130 A| Appendix A - Experimental results

A.3. Scenario S3 - Better implementation available

A.3.1. E1 - Analysis of the self-optimization capabilities

RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18

0.9

0.92

0.94

0.96

0.98

1

t[min]

Figure A.52: S3E1 – Restaurant Service availability

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

t[min]

Figure A.53: S3E1 – Restaurant Service average response time

A| Appendix A - Experimental results 131

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.9

0.95

1

t[min]

Figure A.54: S3E1 – Ordering Service availability

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

t[min]

Figure A.55: S3E1 – Ordering Service average response time

132 A| Appendix A - Experimental results

PAYMENT-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.85

0.9

0.95

1

t[min]

Figure A.56: S3E1 – Payment Proxy Service availability

0 2 4 6 8 10 12 14 16 18 20

200

300

400

500

t[min]

Figure A.57: S3E1 – Payment Proxy Service average response time

A| Appendix A - Experimental results 133

DELIVERY-PROXY-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.58: S3E1 – Delivery Proxy Service availability

0 2 4 6 8 10 12 14 16 18 20

200

300

400

500

t[min]

Figure A.59: S3E1 – Delivery Proxy Service average response time

134 A| Appendix A - Experimental results

A.4. Reusability of the Managing System

A.4.1. E1 - Analysis of the Managing System reusability

RANDINT-VENDOR-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.9

0.92

0.94

0.96

0.98

1

t[min]

Figure A.60: S4E1 – Randint Vendor Service availability

0 2 4 6 8 10 12 14 16 18 20

100

150

200

250

t[min]

Figure A.61: S4E1 – Randint Vendor Service average response time

A| Appendix A - Experimental results 135

RANDINT-PRODUCER-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

t[min]

Figure A.62: S4E1 – Randint Producer Service availability

0 2 4 6 8 10 12 14 16 18 20

70

80

90

100

110

t[min]

Figure A.63: S4E1 – Randint Producer Service average response time

137

B| Appendix B - Components
interfaces

This appendix contains the list of interfaces offered by the components treated through
this paper.
In order to schematize the interfaces, a UML diagram of the APIs is provided for each
component, describing the endpoint, the request and the response of each API.

B.1. Managed System

All the services implementing the application logic of the proposed Managed System offer
REST APIs over the HTTP protocol.
This section includes the UML diagram of the APIs of each service.

138 B| Appendix B - Components interfaces

B.1.1. Restaurant Service

Figure B.1: UML diagram of the API offered by the Restaurant Service

B| Appendix B - Components interfaces 139

B.1.2. Ordering Service

Figure B.2: UML diagram of the API offered by the Ordering Service

B.1.3. Payment Proxy Service

Figure B.3: UML diagram of the API offered by the Payment Proxy Service

140 B| Appendix B - Components interfaces

B.1.4. Delivery Proxy Service

Figure B.4: UML diagram of the API offered by the Delivery Proxy Service

B.2. Probe

The Probe component must offer a REST API which is compliant to the following one.

Figure B.5: UML diagram of the API offered by the Probe

B| Appendix B - Components interfaces 141

B.3. Actuator

The Actuator component must offer a REST API which is compliant to the following one.

Figure B.6: UML diagram of the API offered by the Actuator

B.4. Managing System

The Managing System exposes to the system admin a REST API to change the configu-
ration parameters specific to each component.

B.4.1. Monitor Component

Figure B.7: UML diagram of the API offered by the Monitor Component

142 B| Appendix B - Components interfaces

B.4.2. Analyse Component

Figure B.8: UML diagram of the API offered by the Analyse Component

B.4.3. Plan Component

Figure B.9: UML diagram of the API offered by the Plan Component

143

C| Appendix C - Structure of
JSON configuration files

This appendix illustrates the structure of the configuration files, in JSON format, needed
by RAMSES to initialize the Knowledge.

C.1. System Architecture

File system_architecture.json

1 {

2 "services" : [

3 {

4 "service_id" : "SERVICE_ID",

5 "implementations" : [

6 {

7 "implementation_id" : "IMPLEMENTATION_A_ID",

8 "implementation_trust" : VALUE,

9 "preference" : VALUE,

10 "instance_load_shutdown_threshold" : VALUE

11 },

12 ...

13],

14 "dependencies" : [

15 {

16 "name" : "DEPENDENCY_A_SERVICE_ID"

17 },

18 ...

19]

20 },

21 ...

144 C| Appendix C - Structure of JSON configuration files

22]

23 }

C.2. System Benchmarks

File system_benchmarks.json

1 {

2 "services" : [

3 {

4 "service_id" : "SERVICE_ID",

5 "implementations" : [

6 {

7 "implementation_id" : "IMPLEMENTATION_A_ID",

8 "adaptation_benchmarks" : [

9 {

10 "name": "average_response_time",

11 "benchmark": VALUE

12 },

13 {

14 "name": "availability",

15 "benchmark": VALUE

16 }

17]

18 },

19 ...

20]

21 },

22 ...

23]

24 }

C| Appendix C - Structure of JSON configuration files 145

C.3. QoS Specification

File qos_specification.json

1 {

2 "services" : [

3 {

4 "service_id" : "SERVICE_ID",

5 "qos" : [

6 {

7 "name" : "availability",

8 "weight" : VALUE,

9 "min_threshold" : VALUE

10 },

11 {

12 "name" : "average_response_time",

13 "weight" : VALUE,

14 "max_threshold": VALUE

15 }

16]

17 },

18 ...

19]

20 }

147

List of Figures

2.1 A Conceptual Architecture for Self-Adaptive Software Systems [1] 5
2.2 Structure of a SAS implementing a MAPE-K loop (based on [41]) 6
2.3 Comparison of adaptation logic structures [21] 7

3.1 Use case of a complete interaction with the application – Sequence diagram 15
3.2 Event Diagram of a property change . 17
3.3 SEFA Dashboard . 18
3.4 Software architecture - Microservices diagram 19
3.5 Workflow of the Probe main task – Sequence diagram 24
3.6 Workflow of the Actuator main task – Sequence diagram 25
3.7 Workflow of a MAPE-K loop iteration – Sequence diagram 26
3.8 UML class diagram describing the System Model 28
3.9 Computation process of a QoS latest value 42
3.10 Computation process of a QoS current value 43
3.11 RAMSES Dashboard . 58

4.1 Example of graph used in the experiments 64
4.2 Timeline of injected issues . 66
4.3 S1E1 – Restaurant Service availability . 67
4.4 S1E1 – Ordering Service average response time 67
4.5 S1E2 – Restaurant Service availability . 69
4.6 S1E2 – Ordering Service average response time 70
4.7 S1E3 – Restaurant Service availability . 72
4.8 S1E3 – Ordering Service average response time 73
4.9 S1E4 – Restaurant Service availability . 75
4.10 S1E4 – Ordering Service average response time 76
4.11 S1E5 – Restaurant Service availability . 78
4.12 S1E5 – Ordering Service average response time 79
4.13 S2E1 – Payment Proxy Service – Number of instances 81
4.14 S2E2 – Payment Proxy Service – Number of instances 82

148 | List of Figures

4.15 S2E3 – Payment Proxy Service – Number of instances 84
4.16 S3E1 – Payment Proxy Service availability 86
4.17 S4E1 – Randint Producer Service average response time 90
4.18 S4E1 – Randint Vendor Service average response time 90

A.1 S1E1 – Restaurant Service availability . 104
A.2 S1E1 – Restaurant Service average response time 104
A.3 S1E1 – Ordering Service availability . 105
A.4 S1E1 – Ordering Service average response time 105
A.5 S1E1 – Payment Proxy Service availability 106
A.6 S1E1 – Payment Proxy Service average response time 106
A.7 S1E1 – Delivery Proxy Service availability 107
A.8 S1E1 – Delivery Proxy Service average response time 107
A.9 S1E2 – Restaurant Service availability – without adaptation 108
A.10 S1E2 – Restaurant Service average response time – without adaptation . . 108
A.11 S1E2 – Ordering Service availability – without adaptation 109
A.12 S1E2 – Ordering Service average response time – without adaptation . . . 109
A.13 S1E2 – Payment Proxy Service availability – without adaptation 110
A.14 S1E2 – Payment Proxy Service average response time – without adaptation 110
A.15 S1E2 – Delivery Proxy Service availability – without adaptation 111
A.16 S1E2 – Delivery Proxy Service average response time – without adaptation 111
A.17 S1E2 – Restaurant Service availability . 112
A.18 S1E2 – Restaurant Service average response time 112
A.19 S1E2 – Ordering Service availability . 113
A.20 S1E2 – Ordering Service average response time 113
A.21 S1E2 – Payment Proxy Service availability 114
A.22 S1E2 – Payment Proxy Service average response time 114
A.23 S1E2 – Delivery Proxy Service availability 115
A.24 S1E2 – Delivery Proxy Service average response time 115
A.25 S1E3 – Restaurant Service availability . 116
A.26 S1E3 – Restaurant Service average response time 116
A.27 S1E3 – Ordering Service availability . 117
A.28 S1E3 – Ordering Service average response time 117
A.29 S1E3 – Payment Proxy Service availability 118
A.30 S1E3 – Payment Proxy Service average response time 118
A.31 S1E3 – Delivery Proxy Service availability 119
A.32 S1E3 – Delivery Proxy Service average response time 119

| List of Figures 149

A.33 S1E4 – Restaurant Service availability . 120
A.34 S1E4 – Restaurant Service average response time 120
A.35 S1E4 – Ordering Service availability . 121
A.36 S1E4 – Ordering Service average response time 121
A.37 S1E4 – Payment Proxy Service availability 122
A.38 S1E4 – Payment Proxy Service average response time 122
A.39 S1E4 – Delivery Proxy Service availability 123
A.40 S1E4 – Delivery Proxy Service average response time 123
A.41 S1E5 – Restaurant Service availability . 124
A.42 S1E5 – Restaurant Service average response time 124
A.43 S1E5 – Ordering Service availability . 125
A.44 S1E5 – Ordering Service average response time 125
A.45 S1E5 – Payment Proxy Service availability 126
A.46 S1E5 – Payment Proxy Service average response time 126
A.47 S1E5 – Delivery Proxy Service availability 127
A.48 S1E5 – Delivery Proxy Service average response time 127
A.49 S2E1 – Payment Proxy Service – Number of instances 128
A.50 S2E2 – Payment Proxy Service – Number of instances 128
A.51 S2E3 – Payment Proxy Service – Number of instances 129
A.52 S3E1 – Restaurant Service availability . 130
A.53 S3E1 – Restaurant Service average response time 130
A.54 S3E1 – Ordering Service availability . 131
A.55 S3E1 – Ordering Service average response time 131
A.56 S3E1 – Payment Proxy Service availability 132
A.57 S3E1 – Payment Proxy Service average response time 132
A.58 S3E1 – Delivery Proxy Service availability 133
A.59 S3E1 – Delivery Proxy Service average response time 133
A.60 S4E1 – Randint Vendor Service availability 134
A.61 S4E1 – Randint Vendor Service average response time 134
A.62 S4E1 – Randint Producer Service availability 135
A.63 S4E1 – Randint Producer Service average response time 135

B.1 UML diagram of the API offered by the Restaurant Service 138
B.2 UML diagram of the API offered by the Ordering Service 139
B.3 UML diagram of the API offered by the Payment Proxy Service 139
B.4 UML diagram of the API offered by the Delivery Proxy Service 140
B.5 UML diagram of the API offered by the Probe 140

150 | List of Figures

B.6 UML diagram of the API offered by the Actuator 141
B.7 UML diagram of the API offered by the Monitor Component 141
B.8 UML diagram of the API offered by the Analyse Component 142
B.9 UML diagram of the API offered by the Plan Component 142

151

List of Tables

2.1 Relation of the taxonomy dimensions and the questions [21] 5

3.1 Adaptation scenarios . 13

4.1 Restaurant Service manipulation table . 65
4.2 Ordering Service manipulation table . 65
4.3 Payment Proxy Service manipulation table 65
4.4 S1 – Configuration parameters of experiment E1 66
4.5 S1 – Configuration parameters of experiment E2 68
4.6 S1 – Configuration parameters of experiment E3 71
4.7 S1 – Configuration parameters of experiment E4 75
4.8 S1 – Configuration parameters of experiment E5 77
4.9 S2 – Configuration parameters of experiment E1 81
4.10 S2 – Configuration parameters of experiment E2 82
4.11 S2 – Configuration parameters of experiment E3 83
4.12 Payment Proxy Service manipulation table 85
4.13 S3 – Configuration parameters of experiment E1 85
4.14 Randint Producer Service manipulation table 88
4.15 Randint Vendor Service manipulation table 89
4.16 Reusability experiment – Configuration parameters 89

153

List of Algorithms
1 Monitor . 37
2 Knowledge – Add Metrics . 38
3 Analysis – First Subphase . 44
4 Analysis – Second Subphase . 46
5 Plan . 53
6 Execute . 55

155

Acknowledgements
We would like to spend few words to thank all the people who contributed, directly or
indirectly, to the realization of this work.

We deeply acknowledge our advisor and mentor, Prof. Raffaela Mirandola, for her kind
attention towards us, her careful guidance and her inspiring suggestions.

Our appreciation and gratitude also go to our co-advisor, Prof. Matteo Camilli, for his
attention to detail and his precious advice, that undoubtedly elevated the quality of our
work.

Finally, we would also thank our dear families and beloved ones, for motivating and
supporting us during our academic path.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State Of The Art
	An Introduction To Self-Adaptive Systems
	Existing Exemplars

	Our Proposal
	Problem statement and proposed Solution
	The Managed System: SEFA
	Introduction to the application
	Relevant design choices and system architecture
	API overview
	Probe and Actuator requirements and implementation

	The Managing System: RAMSES
	Prerequisites and assumptions
	System Model
	Knowledge component
	Monitor
	Analyse
	Plan
	Execute
	Dashboard

	Evaluation
	Research questions
	Design of the evaluation
	Results
	Scenario S1 - QoS not satisfied
	Scenario S2 - Service unavailable
	Scenario S3 - Better implementation available
	Reusability of the Managing System

	Conclusions And Future Work
	Conclusions
	Future directions

	Bibliography
	Appendix A - Experimental results
	Scenario S1 - QoS not satisfied
	E1 - Choice of the experiment duration
	E2 - Benefits of the adaptation
	E3 - Impact of the Metrics Window Size
	E4 - Impact of the Analysis Window Size
	E5 - Impact of the number of users

	Scenario S2 - Service unavailable
	E1 - Analysis of the self-healing capabilities
	E2 - Analysis of the failure tendency detection
	E3 - Impact of the Monitor Period

	Scenario S3 - Better implementation available
	E1 - Analysis of the self-optimization capabilities

	Reusability of the Managing System
	E1 - Analysis of the Managing System reusability

	Appendix B - Components interfaces
	Managed System
	Restaurant Service
	Ordering Service
	Payment Proxy Service
	Delivery Proxy Service

	Probe
	Actuator
	Managing System
	Monitor Component
	Analyse Component
	Plan Component

	Appendix C - Structure of JSON configuration files
	System Architecture
	System Benchmarks
	QoS Specification

	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements

