
Executive Summary of the Thesis

Precision enhancement of the 3D printing process using Automated
visual error detection

Laurea Magistrale in Mechanical Engineering - Ingegneria Meccanica

Author: Luca Alietti

Advisor: Prof. Dr. Hamid Reza Karimi

Co-advisor: Dr.-Ing. Michael Lütjen

Academic year: 2021-2022

1. Introduction
This study focuses on the post-process quality
assessment for the precision enhancement of the
3D printing process. It is carried out by devel-
oping a Python code that is capable of auto-
matically identifying errors between the printed
model and the designed one and linking back
them to the corresponding G-Code lines, pro-
viding the user with a tool to understand which
action should be taken in order to compensate
for them. In the analysis, two different data-sets
have been used: a part of a shoe sole, printed
using the Fused Deposition Modeling technique,
and a simple component with a smooth cylindri-
cal shape, used only to verify that the algorithm
works properly.

2. Methodology
The two models are provided as point clouds,
i.e. set of 3D points that describe and define the
external surface of a model; the Reference (or
Target) represents the designed model, while the
Source is the cloud obtained from the printed
component. They are firstly aligned with a
3D registration algorithm, the Iterative Closest
Point algorithm [1]: it allows to progressively

project the Source cloud into the same coordi-
nate system as the Target, in such a way to have
a suitable condition to compare them and define
deviations in the next steps.

Figure 1: ICP behavior.

The algorithm can be described as a least-square
minimization approach, with the following ob-
jective function to be minimized:

d(R, t) =
1

Nx

Nx∑
i=1

||xi − (Rpi + t)||2 (1)

In eq. 1, R and t are, respectively, the Rota-
tion matrix and the translation vector that are
iteratively improved by the algorithm to obtain
the optimal alignment of the two clouds; xi and
pi are the i-esimal reference point of the Tar-
get cloud and its closest correspondence Source

1

Executive summary Luca Alietti

point. The algorithm progressively improve R
and t to reduce the distances between the points
of the clouds and minimize the objective func-
tion, registering the Source over the Reference.
After the registration, deviations between the
clouds are defined and the errors are detected.
This is achieved by evaluating the distances be-
tween the points of the two clouds and compar-
ing them to a threshold, which allows to iden-
tify the greater as error points. To determine
the distance values a Nearest Neighbour Search
algorithm has been implemented, together with
the construction of a kD-Tree data structure
over the Source point cloud; these were neces-
sary because there was no possibility to define by
default the right correspondences between the
points of the two clouds. To identify the neigh-
bor points means to define, for each point x of
the Target, the point p∗ of the Source cloud such
that [4]:

p∗ = argmin
p∈S

dist(x, p) (2)

Where dist(x, p) denotes the distance function
between the query point x and the i-esimal point
p belonging to the Source point cloud; there are
different metrics to define it, the one commonly
used for the definition of neighbours is the Eu-
clidean distance.
However, the clouds have usually large sizes -
i.e. they are composed of a huge amount of
points - and the standard approach to define
the neighbors is not a viable solution, since it
requires long computation time. kD-Tree has
been used to overcome such a problem, because
it allows to reduce the amount of points that
must be analyzed to define the neighbours, lim-
iting them to only those are close to the Target
query point. This allows, in turns, to strongly
reduce the time consumption - which can be ap-
proximated to O(n ∗ log(m)) [2]. The result
is the partition of the Source data by several
sub-boxes, each of them containing one point,
that can be quickly analyzed to define the cor-
responding neighbour points and their distances
from the Target points. These distances are then
compared to a threshold, defined directly by the
user in accordance with his requirements and
needs; the points characterized by a distance
value higher than the considered threshold are
detected as error points and stored in an array.

Depending on the value of the threshold, differ-
ent results are obtained: with small threshold it
is possible to detect even micro-deviations - in-
creasing the number of the detected errors, while
using a large threshold only macro-errors are de-
tected.
Finally, the error points are linked back to the
G-Code lines responsible of their creation; this
allows the user to understand where errors come
from and, eventually, to know where he has to
act to compensate for or limit them. The impor-
tant information that the user should get from
this step are fundamentally two: the raw line of
the G-Code instruction and the respective line
number; in particular, the latter is the most
important because it allows to precisely know
where the line is positioned in the G-Code file,
saving the consumer a lot of time when searching
for it. These two information are provided in a
text file given as output by the code, so that the
user can easily visualize the "error lines". An
example is reported in figure below:

Figure 2: Output structure.

2.1. Python libraries
Within the Python code different libraries have
been used; the most important are:
• NumPy: used for handling arrays and ma-

trices;
• Open3d: used for clouds representation and

ICP algorithm implementation;
• SciPy: used for the implementation of the

kD-Tree and the Nearest Neighbor Search
algorithm;

• Matplotlib: useful to obtain plots and im-
ages for some output representations.

3. Primary data-set
The technique has been validated with a FDM
3D printed sole of a shoe built with Polylactic
Acid (PLA), a particular material able to guar-
antee plasticity and toughness of the component
in the long-time service [3]. The Reference point

2

Executive summary Luca Alietti

cloud is obtained by analyzing the G-Code file
line by line and considering only those points
that belong to the surface of the designed model;
these are stored in an array and then converted
in a .ply file to obtain the corresponding point
cloud. The Source, instead, is obtained by scan-
ning the printed component after the completion
of the printing process.

(a) Target point cloud (b) Source point cloud

Figure 3: Input point clouds.

As explained in sec. 2, the clouds are firstly
registered to put them in the same coordinate
system. To provide a good result at the end,
it was important to obtain a suitable alignment;
this is guaranteed by an index - the fitness value,
which is an indicator of the overall alignment of
the two clouds: the closer it is to 1, the better
is the registration. In this case it is equal to
9.9902e−01 and the clouds are well aligned, as
can also be seen from the registration result in
fig. 4 below:

Figure 4: Registration result.

After the registration, those points that are
characterized by deviations higher than the set
threshold are detected as error points; the algo-
rithm stores them in an array and produce a vi-
sualization of them over the Target point cloud.
In that way, exploiting the connection between
the Target and the G-Code set of instruction, it
was then possible to link the errors to the cor-
responding G-Code lines and obtain the output
file with the error lines information shown in fig.
2. An example of the visualization of the error
points is reported here:

Figure 5: Errors.

Actually, the results are strongly influenced by
the threshold value. This constitutes the min-
imum value of the distance between a target
point and its defined neighbour that has to be
detected as error: when the distance value is
greater, an error is detected and the correspond-
ing point is identified and stored in the array.
This value has to be chosen directly by the user
before running the code and it depends on his
requirements and needs: if he wants to detect
short deviations, the threshold needs to be small
in such a way to allow the algorithm to find even
those distance values that are unnoticeable; if,
instead, the user is more concerned about the
macro-errors - i.e. those points that are strongly
deviated from the reference model, the thresh-
old can be set higher in order to detect only huge
deviations. This decision influences the number
of points detected as error and, consequently,
the size of the array containing these points; de-

3

Executive summary Luca Alietti

pending on that, the generation of the output
file requires more or less time. Hence, the user
must handle this according to his necessities: de-
tecting small deviations means to reach a good
accuracy, but on the other hand the time con-
sumption could be long.

4. Secondary data-set
The secondary data-set has been used to ver-
ify that the developed algorithm works prop-
erly. It represents a cylindrical shape compo-
nents where, in the printed component point
cloud, some points are shifted from their ini-
tial position; in that way, some deviations have
been created between the scan and the refer-
ence model, in such a way to know where errors
should be detected by the algorithm. The to-
tal number of modified points is 931, which cor-
responds to 7 points for 133 successive layers;
setting the threshold value lower enough to de-
tect all the deviations, the result shows that the
only detected error points are those that have
been modified in the scan point cloud (fig. 6),
as expected.

Figure 6: Errors.

This verification allows also to ensure the scal-
ability of the methodology: the algorithm can,
indeed, be used with any type of data-set, as
long as the inputs are provided in the form of
point clouds.

5. Conclusions
In this work, an algorithm for the self-detection
of errors after the 3D printing process has been
developed. This allows to automatically detect
deviations between the model of the printed ob-
ject and the reference model and connect them
to the G-Code lines responsible of their creation,
generating an output file that provides the user
with a tool that allows to easily understand the
G-Code problem lines. The two models are pro-
vided in the form of point clouds, describing
the surface of the parts; they are firstly regis-
tered and then the point-to-point distances are
defined. These are successively compared to a
threshold in order to identify larger deviations
and detect them as errors. Finally, the G-Code
lines responsible of the generation of these errors
are visualized, providing the user with an easy
tool to find them within the G-Code file itself.
The methodology shows a good accuracy - de-
pending on the value of the threshold given by
the user, and it can be scaled for different data-
sets; the unique constraints that has to be re-
spected is the format of the inputs file: to be
able to use the algorithm, in fact, the input file
must be in the form of point clouds. The only
problem that can reduce the use of this algo-
rithm is related to the size of the clouds; for
large dimensions point clouds - i.e. clouds com-
posed of huge amounts of points, the technique
needs long computation times, especially for the
generation of the output file for the visualiza-
tion of the G-Code lines. Anyway, the clouds
of the primary data-set are composed of almost
150.000 and 500.000 points and show time prob-
lems only when small value of the threshold are
given. In this case, it is up to the user to decide
whether to change the threshold a little - to re-
duce the calculation time - or to keep this value
and ensure more accurate error detection.

References
[1] Paul J Besl and Neil D McKay. Method for

registration of 3-d shapes. In Sensor fusion
IV: control paradigms and data structures,
volume 1611, pages 586–606. Spie, 1992.

[2] Jan Elseberg, Stéphane Magnenat, Roland
Siegwart, and Andreas Nüchter. Compari-
son of nearest-neighbor-search strategies and
implementations for efficient shape registra-

4

Executive summary Luca Alietti

tion. Journal of Software Engineering for
Robotics, 3(1):2–12, 2012.

[3] Zengguang Liu, Yanqing Wang, Beicheng
Wu, Chunzhi Cui, Yu Guo, and Cheng Yan.
A critical review of fused deposition mod-
eling 3d printing technology in manufactur-
ing polylactic acid parts. The International
Journal of Advanced Manufacturing Tech-
nology, 102(9):2877–2889, 2019.

[4] Parikshit Ram and Kaushik Sinha. Revisit-
ing kd-tree for nearest neighbor search. In
Proceedings of the 25th acm sigkdd interna-
tional conference on knowledge discovery &
data mining, pages 1378–1388, 2019.

5

	Introduction
	Methodology
	Python libraries

	Primary data-set
	Secondary data-set
	Conclusions

