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Abstract

With the advent of deep neural networks and their application to the field of malware de-
tection, a new powerful tool able to analyze binary files and detect malicious behavior has
been introduced. However, neural networks have been proven to be susceptible to different
attacks, such as evasion attacks, training set poisoning attacks, and backdoor injection
attacks. This thesis focuses on the backdoor injection attacks on pre-trained malware de-
tection models. This attack strategy affects publicly available pre-trained models, which
are modified to embed a backdoor, namely a hidden functionality that allows an arbitrary
network output whenever the submitted input contains a specific pattern, the trigger.
Similar attacks have been performed to backdoor famous models in the field of computer
vision; however, to the best of our knowledge, no pre-trained malware detection neural
network has ever been attacked with similar techniques. The domain shift is not trivial,
as neural networks designed for computer vision tasks are radically different from neu-
ral networks for malware detection. We test and adapt to the new domain three attack
strategies, specifically targeting MalConv, a convolutional neural network for malware
detection. We propose the model updating attack, in which we re-train the pre-trained
model with trigger-poisoned data, the weights perturbation attack, in which we analyze
the model and carefully modify certain neurons to inject the backdoor, and the subnet
replacement attack, in which we train a small neural network which is then injected in
the original pre-trained model and activates whenever the input contains the trigger. We
also test four possible defense strategies that a victim might adopt to detect and even
remove an injected backdoor. Our model updating attack and subnet replacement attack
achieved a backdoor success rate of 97%, while the weights perturbation scored 91% on
a poisoned test set. Our attacks outperformed existing evasion attacks on MalConv and
obtained comparable results to similar attacks on computer vision models.

Keywords: deep learning, pre-trained models, backdoor attack, malware detection, Mal-
Conv
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Abstract in lingua italiana

Con l’avvento delle reti neurali, e la loro applicazione nel campo della malware detec-
tion è stato introdotto un nuovo e potente strumento, in grado di analizzare file binari
e identificare attività malevole. Le reti neurali, nonostante le loro infinite potenzialità,
sono suscettibili a diversi attacchi, come attacchi evasivi, attacchi di contaminazione del
training set e attacchi di inserimento di backdoor. In questa tesi, ci concentriamo sugli
attacchi di inserimento backdoor a modelli pre-allenati per la malware detection; questo
attacco colpisce modelli pre-allenati pubblici, che vengono modificati per ospitare una
backdoor, ovvero una funzionalità nascosta che fa produrre output arbitrario al modello
nel caso l’input contenga una sequenza specifica: il trigger. Attacchi simili sono stati
eseguiti su modelli nel campo della computer vision, ma riteniamo di essere i primi a
proporre attacchi di inserimento backdoor a modelli pre-allenati per malware detection.
Questo adattamento di dominio non è banale, considerato che le reti neurali studiate per
la computer vision sono radicalmente diverse da quelle per la malware detection. In par-
ticolare, adattiamo a questo nuovo dominio tre attacchi, concentrandoci su MalConv, una
rete neurale convoluzionale per la malware detection. Proponiamo i seguenti attacchi: il
model updating, nel quale ri-alleniamo il modello pre-allenato con nuovi dati contaminati
con il trigger, il weights perturbation nel quale analizziamo il modello e modifichiamo
alcuni neuroni per inserire la backdoor e, infine, il subnet replacement, nel quale alleni-
amo una piccola rete che viene inserita nel modello originale, la quale si attiverà ogni
qualvolta l’input contenga il trigger. Proponiamo anche quattro possibili difese che una
vittima potrebbe utilizzare per individuare e fermare una backdoor. I nostri attacchi di
model updating e subnet replacement ottengono una sensibilità del 97% sui test set con
trigger, mentre il nostro attacco di weights perturbation arriva al 91%. I nostri attacchi
mostrano risultati migliori degli attacchi evasivi già esistenti su MalConv e risultati com-
parabili ad attacchi simili su modelli per il computer vision.

Parole chiave: deep learning, modelli pre-allenati, attacchi backdoor, malware detection,
MalConv
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1| Introduction

1.1. Domain contextualization

The problem of malware detection is one of the biggest challenges for researchers and
professionals all around the world. The techniques involved in the complex process of
determining whether an executable is a malware or a goodware are many and they have
been evolving through the decades. Nowadays more and more systems are exploiting the
great capabilities of artificial intelligence, in particular the field of deep learning (DL).

1.2. Are DNNs vulnerable?

The field of deep learning is rather young, it is growing quickly and, similarly to all the
new technologies, the community has not set in stone yet the best "safe" practices to
handle the predictive models, the datasets, an so on. There are two main problems with
deep neural network (DNN) that make many attacks possible. Firstly, as training from
scratch a deep neural network is very expensive in terms of computing resources, untrusted
models or datasets may be re-used, compromising the safety of the model. Moreover, deep
neural network internal weights are grey to a human inspection, as there is no easy way
to understand what a network is doing by only looking at the them; hence, when a human
looks at the weights of a neural network, they cannot detect eventual malicious behavior.
As a consequence, a number of attacks can be carried out on deep neural networks; in
this thesis, we will focus on backdoor injection attacks on pre-trained models.

1.3. Backdoor injection attacks

A backdoor injection attack on a pre-trained model aims at modifying the model behavior
when an input sample is poisoned by the attacker. In particular, a poisoned model should
behave normally when a clean input sample is submitted, while showing an arbitrary
behavior when it gets fed a sample containing a specific pattern, the trigger ; this type of
input samples are called poisoned sample.

1



2 1| Introduction

1.4. State-of-the-art attacks

Existing attacks to malware detection models mainly consist in evasion attacks [9, 19, 35],
where the attacker fools the attacked model by modifying ad-hoc each malware sample;
the model will classify the modified malware samples as goodware. Other works [37, 38]
proposed attacks on malware detection models by poisoning the training set: the model
is trained using legitimate data, as well as additional poisoned data capable of injecting
the malicious behavior. On the other hand, backdoor injection attacks on pre-trained
models have been explored by [8, 10, 14, 30, 31, 43]. These works propose attacks against
well-known models such as VGG [40] and ResNet [13], which all belong to the domains
of face recognition and hand-written digits recognition. To the best of our knowledge,
no existing works address the problem of injecting a backdoor injection into pre-trained
models for malware detection.

1.5. Domain shift to the malware detection task

The aim of this work is to perform backdoor injection attacks into a pre-trained model
for malware detection. This will involve a domain shift of the existing techniques from
the field of computer vision (CV), to the field of malware detection. The task is not
trivial, since the aforementioned works attack models which are radically different from
state-of-the-art malware detection models, such as MalConv [33]. We specifically attack
the MalConv implementation coded and trained by the Ember team [2]. The attacks we
propose are:

• Model updating attack, in which the backdoor is injected by retraining the pre-
trained model using new poisoned data;

• Weights perturbation attack, in which the analysis and manual modification of
the internal weights of the pre-trained model allows us to inject the backdoor;

• Subnet replacement attack, in which the injected backdoor is a small subnetwork
which is injected inside the pre-trained model.

1.6. Results obtained

We tested the three attack methodologies on MalConv without any success, realizing
that very different model architectures must be attacked in different ways: MalConv is
very shallow and utilizes large convolutional filters which require customized approach.
Moreover, different optimization techniques were tried out to improve the performance of



1| Introduction 3

our attacks, namely Particle Swarm Optimization, greedy algorithm and gradient descent.
All these techniques allow for an optimal selection of the bytes to use as a trigger for the
poisoned samples. We then developed and applied the filter alignment technique, for which
we inject triggers in the binary files always at the same relative position with respect to
the model filters. The filter alignment technique improved the model updating attack,
obtaining 97% backdoor success rate. Moreover, the filter alignment allowed us to carry
out the weights perturbation and subnet replacement attacks, obtaining respectively 91%
and 97% backdoor success rates. All the three attacks did not decrement significantly
the model accuracy on clean samples. Finally, we tested four possible defense strategies:
accuracy check, network pruning, statistical analysis and transfer learning. Accuracy
check is not able to detect malicious activity on our attacks, network pruning manages to
block both weights perturbation and subnet replacement, statistical analysis detects the
malicious weights in the weights perturbation attack, while transfer learning only manages
to weaken the model backdoored through the subnet replacement.

1.7. Contributions

The contributions of this work are:

• We tested the model updating, weights perturbation and subnet replacement at-
tacks;

• We improved the attacks by optimizing the trigger;

• We modified the attacks to make them possible on the peculiar architecture of
MalConv;

• We adopted the filter alignment technique, which enables the attacks on models
with large filters;

• We produced an experimental validation of the improved attacks;

• We tested four possible countermeasures to our attacks: accuracy check, statistical
analysis, network pruning and transfer learning;

• We discussed the limitations of the attacks, highlighting possible future improve-
ments.
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2.1. Problem statement

The problem of deciding whether a software sample is goodware or malware is, in most
cases, a non-trivial task. There exist commercial off-the-shelf antiviruses that automati-
cally scan every file in the hard drive of a computer, reporting any malware they found.
However, the problem has not been "solved" yet, as no one has discovered the universal
formula to detect malware. Researchers are always looking for newer and better ways
to analyze software, and, in the recent years, several solutions based on deep learning
(DL) have been proposed with interesting results [1, 22, 26]. However, there are new
problems that are introduced by the application of deep learning in this domain: how
can I know whether the neural network itself is not malicious? In this thesis, we will
demonstrate that even famous pre-trained neural networks for malware detection can be
attacked; in particular, we show that it is possible to inject backdoors in them, starting
from a pre-trained model distributed over the Internet, without influencing the original
training process.

2.2. Malware detection basics

Before delving into problem of injecting a backdoor in an artificial neural network (ANN),
we should present the current (and most diffused) malware analysis techniques which do
not require the usage of deep learning.

2.2.1. Static analysis and dynamic analysis

The techniques adopted to analyze a piece of software can be divided into two main
categories: static and dynamic analysis.

• With static analysis we take the binary sequence of the piece of software we want
to analyze and we look through the bytes, trying to detect well known patterns,
dangerous instructions, system calls, fingerprints and so on.

5



6 2| Motivation

• With Dynamic analysis we execute (often in a protected environment) the piece
of software in order to analyze its behavior and see if it performs any malicious
activity.

In this work, we will focus on the static analysis approach.

2.2.2. Common malware detection techniques

Commercial off-the-shelf software products offer a malware detection service which uses
both static and dynamic analysis. Common techniques are [4]:

• Signature-based detection: the anti-malware tool looks for digital footprints in
the binary of the file. This footprint is usually a collection of byte strings plus
some other metrics, like section offsets, dimensions and so on. The anti-malware
then interrogates a local or remote database in order to verify if this signature has
already been tagged as malicious.

• Heuristics-based detection: the anti-malware tool assigns a suspicion score to
the piece of software based on some characteristics of the file. For example camera
access, hard drive manipulation or import of some specific libraries.

• Sandbox: the suspicious file is ran in a constrained and secure environment to
detect malicious activity. The anti-malware tool can now monitor the network
traffic generated, the API calls or new files written in memory. If something "bad"
happens, or undesired network traffic is noted, the file is tagged as malicious.

Every technique has its own downsides: signature-based detection may fail if the attacker
crafts a slightly modified version of the malware, while heuristics-based detection excels
at finding out if two pieces of software are indeed the same even if there are some code-
level modifications. However, attackers found out that through obfuscation both these
techniques will fail to detect malware. Common techniques are malware encryption, dead-
code insertion, register reassignment, subroutine reordering, instruction substitution, code
transposition and code integration [47]. As dynamic analysis aims at detecting malicious
activity at runtime, Sandbox detection is often used along with standard static analysis.

All the aforementioned techniques are overall reliable, but not perfect. The key point
is that the malware detection problem is like an everlasting battle between the red side
(malware authors) and the blue side (cybersecurity analysts), where the two parts are
human and their tools are also crafted by humans. A way the blue side can better defend
itself is by exploiting the computational power given by machine learning/deep learning
algorithms. In other words, human against human is somehow a balanced fight, but
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human against machine could be won by the blue side machine. A deeper review on
advantages and disadvantages of adopting ML/DL for the malware detection task can be
found in [1, 39].

2.3. What is Machine Learning and why it can be

useful

Formally, machine learning (ML) is a branch of Computer Science that makes use of
algorithms and statistical models to "teach" a program how to solve a specific task. The
program uses data and examples to tune itself and increment step-by-step its accuracy
towards the problem solution. This definition suggests us that we can take a machine
learning model and teach it to recognize malware.

To make predictions, a machine learning model requires a set of features to work on.
Features are elaborated pieces of information regarding the sample the model is predicting.
For example, if a model wants to analyze a flower, features could be the length and width
of the petals and the height of the stem. However, extracting features from software is
more complex than extracting them from a flower. An important example can be found
in [2], where characteristics of a binary such as file size, executable headers, imported
libraries and so on are used as features for a ML classifier.

Once we have the features, we can train a ML model. There are many algorithms used to
solve this task, the most common are SVM, Decision Trees, K-NN, Naive Bayes, Random
Forests and variants [16, 18, 28].

Why is machine learning so powerful? As we mentioned before, common malware detec-
tion techniques are created by humans, and the human is somehow limited by its own
mind, creativity and experience. Signatures and heuristics are extracted (or coded to be
extracted) by human analysts, sandbox surveillance is coded by a human, but machine
learning learns to detect malware in a non-human way. At training time, a machine learn-
ing model is only told whether it is predicting correctly or erroneously, it is not told how
to make predictions. We could say that machine learning can learn to "think" outside the
box.
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2.4. What is deep learning and why it can be even

better than machine learning

Machine learning still relies on human experience. The feature extraction process is
made by humans. The feature extraction process is itself a field of study, there are
researches studying how to select the most relevant features out of a dataset. If the
goal of the defender is to remove completely the human limitations from the malware
detection process, it must remove also the feature extraction process. deep learning (DL)
does exactly this.

Deep learning is a sub-branch of machine learning which works with raw data. A deep
neural network (DNN) works directly on a raw unmodified binary both for training and
prediction. Many DL techniques use convolutional neural networks on images made by
converting the file bytes to a grayscale image [5, 7, 26]. Other works also use CNN but
with 1-dimensional convolutions and without performing any conversion on the input
data [33]. Additional information on neural networks and deep learning will be given
in Chapter 3.

2.5. Poisoned models threat

This thesis focuses on the deep learning approach, and we will show that there are some
threats when approaching the malware detection problem with it.

2.5.1. Where is the vulnerability?

In a scenario where I construct my dataset and I train my own network, I do not incur
any security issue. I am sure that the network does exactly what I trained it for and the
results on the test set allow me to have a reliable evaluation of the model performances.
There is one problem though, training a DL model is extremely expensive. In order to
efficiently train a neural network, a researcher needs powerful GPUs as they allow par-
allel computation and the evaluation of multiple training samples at once. Even with
this powerful hardware, the training process will take days, even months to complete,
depending on the complexity of the network and the size of the dataset. Since most of
the people interested in deep learning cannot afford to spend so much time and/or money
on training, a very common practice is constituted by the so called Transfer Learning.
Transfer learning works by downloading from the web a pre-trained neural network (usu-
ally trained to perform a similar task) and partially re-training it with a second dataset
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to adapt the model to the new task. This operation takes significantly less time which
makes it very popular since it gives access to deep learning also to those who cannot
afford expensive GPUs. In this scenario, the researchers who download the pre-trained
model are trusting its source, but can they? One might argue that this is an everyday
problem when downloading files from the internet; however, it is more subtle than that.
When I download something not trustworthy, this may in truth be malware. In fact, I
can somehow still detect if the file I downloaded is safe or not and this information is
right inside the file I downloaded, by analyzing the file itself with an antivirus program.
On the other hand, when I download a pre-trained model I do not get software that may
hide malware, I get a sequence of weights and biases (numbers, that is) which are grey to
both humans and antivirus software.

2.5.2. The pre-trained Neural Network Backdoor attack

A Backdoor attack aims at injecting a neural network model with a backdoor. A backdoor
is a portion of the network which activates only when the input of the network has a pre-
defined sequence, called a trigger. A backdoored (or poisoned) model behaves normally
when clean samples are used as input, but behaves arbitrarily when a sample with the
trigger (which we will call a poisoned sample) is used as input. Note that, as the attack
is carried out on a pre-trained model, the attacker is advantaged as they do not have to
train the model from the beginning.

Original Neural Network model

Backdoor injection

Backdoored Neural Network
model

Backdoor

Controllable
outputClean output

Input Input

Figure 2.1: Overview of a backdoor attack: starting from a published pre-trained model,
the backdoor injection process embeds a hidden functionality in the poisoned model. The
backdoor is then capable of manipulating the backdoored model’s output.

A general attack pipeline can be summarized as follows:



10 2| Motivation

• The attacker selects a pre-trained victim model to backdoor (often a famous one,
like VGG, Resnet, etc...);

• The attacker injects a backdoor in the model;

• The attacker publishes the model online, pretending to offer an improved version of
the original model;

• A victim downloads the backdoored (or poisoned) model and uses it for prediction
or transfer learning.

The result is that the victim has a poisoned model which behaves normally with standard
test datasets; thus, the victim will not suspect anything. However, when the poisoned
network is fed with a poisoned sample, the outcome is arbitrated by the attacker.

Output prediction

Sample input
trigger

Figure 2.2: Example of a poisoned neural network: the red circles are the backdoor
neurons, which react to the presence of the trigger in the input sample.

Proof of concept of this type of attack is given by [8, 10, 30] where we can see how the
most common type of attacked networks are computer vision (CV) ones.
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2.5.3. Brief problem formalization

Now that we have explained what are the existing vulnerabilities, we can formalize the
problem we want to solve for our attack to be successful.

We are given a model M(w) with pre-trained weights W , a set of inputs X and an
accuracy acc = f(M(W ),X). Starting from X, we generate a set of poisoned samples
Xp. Every poisoned sample xp ∈ Xp is labeled with target class yt, and it is generated
from a clean sample x ∈X labeled with the original class y.

Our goal is to find a modified set of weights Wp such that we maximize the poisoned
samples accuracy:

max
Wp

(f(M(Wp),Xp))

with the constraint of not significantly decreasing the model’s accuracy on the clean input
set:

acc− f(M(Wp),X) < tacc

where tacc is an arbitrary small threshold factor.

2.6. Goals and Challenges

The goals of this thesis are the following:

• Analyze the state of the art concerning backdoor attacks against neural networks
and further study techniques that are, at least in theory, applicable to deep neural
networks for malware detection;

• Select among all techniques those that could be applied in the domain of malware
detection;

• Modify and adapt the identified techniques in order to make them work in the
domain of malware detection.

In other words, we propose a domain shift of known techniques from the field of computer
vision to the field of malware detection, knowing that this task is not trivial as those
techniques need to be adapted to the new type of input data.

There are a number of challenges ahead of us, since CV is a whole different problem than
Malware Detection. The most divergent points are:

• Images are to be seen by a human, while software will be run by a machine. A
slight modification of a pixel is invisible to the human eye, while the substitution of
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a single byte can lead to catastrophic consequences (binary won’t execute, binary
won’t preserve the functionality);

• Two pixels with similar RGB value are similar and considered similar also by the
underneath algorithmic process of artificial neural networks, while two bytes whose
values are close (e.g., byte 9 and byte 10) may have completely opposite meanings
for a computer;

• State of the art neural networks for CV are very different from neural networks for
Malware Detection: this will be discussed more in depth in Chapter 3.
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3.1. Artificial neural networks

In this section, some background knowledge on artificial neural networks is provided. In
a nutshell, a neural network is a collection of connected neurons, which together are able
to describe very complex non-linear functions.

3.1.1. Overview

The structure of a neuron is heavily influenced by the structure of a biological neuron: it
has a number of inputs (in the biological neuron, the dendrites), an activation threshold
and finally an output (in the biological neuron, the axion terminal). A graphic representa-
tion of the neuron is depicted in Figure 3.1. The neuron sums together all the (weighted)
inputs, subtracts the bias and if the result is greater than 1, it is given as output, oth-
erwise the output is 0. Formally, the output of a neuron is described by the following
formula:

relu(
∑
i

(wi ∗ xi)− b)

where:

Activation
functionInputs Output

bias

+

Figure 3.1: The structure of a neuron. The arrows on the left are the inputs (which might
come from other neurons), the one on the right the output. The bias is an internal value
which controls the activation threshold.

13



14 3| Background

Output

Input

Figure 3.2: The relu function in a Cartesian plane.

• xi is the ith input;

• wi is the weight associated to the ith input. It controls "how much important" is
the ith input;

• b is the bias, an internal value for each neuron;

• relu() is the activation function. There are many possible activation functions, but
the relu (Rectified Linear Unit) is the most used.

The relu function can be described as f(x) = max(0, x), in other words it keeps the
output value as is, only if it is positive; otherwise outputs zero (Figure 3.2).

In the simplest neural network implementation, the neurons are gathered together in
layers. A neuron at a given layer k gets as input the outputs of all the neurons at the
previous layer k − 1. The input of the first layer is the input of the network, while the
output of the last layer is the output of the network. A visual representation of a basic
neural network is depicted in Figure 3.3. The layers described are called dense layers,
they are the most simple and common layers which can be found in a neural network;
however, there are many other types of layer. Later in this section, other types of layer
are described.

3.1.2. Learning

As already mentioned, a neural network can describe virtually any non-linear function;
this is possible due to the high amount of neurons in the network and the even higher
number of parameters. When a neural network learns, it modifies the weights linking the
neurons and the internal biases.
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Figure 3.3: A basic neural network structure. For the sake of clarity, only a subset of
the edges is shown. In a real network, each neuron of a layer may be linked with all the
neurons in the following layer.

The so called training cycle teaches the network by challenging it with several examples,
contained in a dataset. The network is given a sample input, it computes an output and
the result is compared the the expected "ground truth" output. The internal weights and
biases are modified so that the next time the network is given the same sample, it outputs
a correct result, or at least, a "more" correct result. How much an output is correct, is
measured through a loss function, which takes as input the predicted output and the real
ground truth output, then computes a metric which states how close the two outputs are.

After the neural network has been trained many times with the full dataset, it has learnt
the non-linear function desired. The precise algebraic methodology used to modify the
weights and biases of a neural network during the training cycle is rather complex, and
it is beyond the scope of this thesis.

During the training cycle, it is important to avoid the so called overfitting, which is the
phenomenon for which the model learns to output correct results for the training set only,
and cannot predict correctly when brand new samples are submitted to the network.

3.1.3. Embedding layer

The embedding layer is a peculiar layer which can be found at the beginning of many
neural networks. The objective of the embedding layer is to take as input a compact
representation of data, and for each datum, output a sparse representation of it.

For example, MalConv [33] uses an embedding layer; it takes as input byte values (integers
between 0 and 255) and maps every byte to an 8-dimensional vector, which is the requested
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Embedding
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Figure 3.4: Example of the functioning of the embedding layer: every byte is mapped
to a representation vector. Notice that the mapping is deterministic, as equal bytes are
mapped to equal vectors.

sparse representation. Notice that every time a byte enters the embedding layer, it is
mapped to the same 8-dimensional vector. A graphical representation of the embedding
layer can be seen in Figure 3.4.

3.1.4. Global-max-pooling layer

A max-pooling layer is often used to reduce the dimensionality of the data passing through
the network. In the MalConv implementation attacked in this thesis, a global-max-pooling
layer is used; however, for the sake of conciseness, from now on it will be called simply
"max-pooling layer". The max-pooling layer takes as input a high dimensional vector and
outputs a lower dimensional one, by returning only the maximum element over a certain
dimension. For example, in MalConv, it takes as input a 2097x128 matrix, computes the
maximum elements over the first axis and outputs a 128 long vector.

3.1.5. Convolutional layer

The convolutional layer is vastly used in computer vision models; it works by "convolut-
ing" different regions of the input vector with a common set of weights, the filter. The
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filter starts at the beginning of the input vector and progressively slides towards the end of
it, each time returning an output value; this way, the output is still a vector. In Section 3.2
the convolutional layer is described more in depth.

3.2. Short recap on convolution math

In order to fully understand the attacks which will be described in Chapter 4, a short
recap about convolutions is needed. Only convolutions applied to neural networks are
discussed here. The classic convolution is a mathematical tool far more complex but not
interesting for this thesis.

The formula for the 1D Convolution is the following:

yi =
i+l∑

k=i−l

xk ∗ fk

Where l is the radius of the filter, x is the input array and f is the filter itself.

The convolution is applied to all the elements of the input vector; hence, the output is
also a vector. From the formula above, it is evident that when the convolution operates
on the first and last l elements, special attention is needed since the index k in the sum
falls out of the boundaries of the input vector. Usually, padding is used to convolute
these first and last l elements. Another common choice is to avoid the padding and thus
ignoring the last elements. DL frameworks use a variant of the convolution in which the
filter slides along the input n by n steps (the value n is called strides). This causes a
reduced dimensionality in the output with respect to the input. A visual representation
of the convolution operation can be seen in Figure 3.5.

An important property of the convolution is that, given a certain filter, the output is
greater where the input array is similar to the given filter. As a consequence, convolutional
filters can be used to "look for" similar regions in the input array.

3.3. The Portable Executable format

The portable executable (PE) is a format used in both 32 and 64 bit versions of Microsoft
Windows for executables, object files, shared libraries and device drivers.

A PE file consists in a number of headers and sections which instruct the dynamic linker
how to map the file in memory. An executable file consists in different section, each section
requires different permissions and memory protection; one of the dynamic linker’s duties
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* * *

+

Input

Filter

Ouput

Figure 3.5: The convolution operation: the input signal is in blue, the filter is in purple,
while the output of the convolution is in yellow. Note that the filter starts at the beginning
of the input array and slides to the right in order to produce an output vector.

is to map every section to its own memory area and to give it the correct permissions,
getting the required pieces of information from the PE headers.

From a high level point of view, a PE is composed by the following sections (from low
offsets to high offsets):

• DOS Header and DOS Stub: the DOS header and stub are placed in a PE file
only for backwards compatibility. When the PE is executed in MS-DOS, it simply
outputs "This program can not be run in DOS mode";

• COFF Header: the Common Object File Format header starts with the signature
0X5045 (which are the hexadecimal values for PE in the ASCII table). There are also
some additional pieces of information like the number of sections in the dedicated
table;

• Optional Header: despite the name this header must be present in image files,
other file types are not required to have it;

• Section Table: in the section table all information about the sections is stored;
for example Name contains the name of the section, VirtualSize defines the size of
the file when loaded into memory, SizeOfRawData defines the size of the file on the
disk and PointerToRawData points to the first page of the section;

• Section Data: these are blocks of bytes containing the actual data of the file: code,
strings, resources are stored here.

A detailed diagram of the structure of a PE file is depicted in Figure 3.6
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Figure 3.6: The diagram shows the structure of a PE file. Below the Section Table,
there is the actual data belonging to the various sections. From: ByteBiter - CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=39259242
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3.4. State of the art

To the best of our knowledge, the techniques which will be described in this section
have been tested only on computer vision tasks and natural language processing (NLP).
There are other researches who have developed backdoor attacks on neural networks for
malware detection, but they didn’t attack pre-trained models with backdoor injection.
Works like [37, 38] have demonstrated that backdoor attacks are possible through data
poisoning: the attacker manages to submit poisoned samples which will be included in
the training set. Evasion attacks have been carried out successfully by [9, 35], where
they generate adversarial samples to fool malware detection networks. The novel attack
introduced in this thesis is a backdoor injection attack on a malware detection pre-trained
Model.

In this section it is described the state-of-the-art techniques used for backdoor injection
for CV and natural language processing (NLP) networks.

3.4.1. Main attack methodologies

Here we present the three state-of-the-art attack methodologies found in literature; in
particular, we present only those that can be transfered to the field of malware detection.
Note that these attacks are all methods to find a set of poisoned weights Wp that satisfies
the maximization problem introduced in Section 2.5.3. Moreover it is important to notice
that the baseline idea behind all these techniques is the same: in many of the known
pre-trained models, there is often a subset of weights that do not influence significantly
the classification process. We can exploit those weights to carry out our attack, without
compromising the accuracy on clean samples.

Model Updating

Model updating is the most simple attack strategy. The attacker simulates a fine-tuning
process to inject the backdoor. The attack is composed by the following flow: the attacker
attaches a trigger (pixel pattern or byte sequence) to some samples from class A, then
labels them as belonging to class B; the attacker then fine-tunes the pre-trained network
with the new data. There are, however, some strategies to be discussed before performing
a Model Updating attack:

Representation learning If the attacker applies representation learning, the updating
process is done against the internal representation of the samples. The attacker starts by
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fine-tuning only the first part of the victim network, namely the feature extractor. Let us
say that for an input Xj, the feature extractor of a neural network at layer Ki produces a
representation vector Aj . The attacker computes the optimal internal representation for a
goodware Aclean and uses it as a label to re-train the attacked network. As a consequence
the NN learns to represent poisoned samples like goodware ones.

Classification learning This it the most simple approach and can be used as an al-
ternative to Representation Learning, the model updating is done against the final clas-
sification label. The attacker takes a malicious sample X belonging to the class yoriginal,
then produces a poisoned sample Xp and sets its label to yt, the target class to which we
want to classify all poisoned samples.

Dummy samples The most dangerous side-effect of model updating is the loss of
functionality due to overfitting to the poisoning data. In the most common scenario for
an attack on a pre-trained model, the attacker does not have at its disposal a full training
dataset. A reliable workaround for this problem is the generation of dummy samples. A
dummy sample is an input sample which has been reverse-engineered to be the perfect one
for a specific network output. The attacker will use these dummy samples as substitutes
of real non-poisoned training samples.

Weights perturbation

The weights perturbation attack aims at injecting the backdoor without any further train-
ing, but by carefully analyzing the network behavior and then manipulating the weights
by hand in order to enforce the desired backdoor. Examples of this type of attack can be
found in [8, 14] The basic idea is to analyze the difference of neurons activation between
clean and poisoned samples, then amplify the difference and finally exploit this difference
in order to force the network to an arbitrary output in case of poisoned sample.

Subnet replacement

A third, hybrid approach, is called subnet replacement [31]. In this case the attacker trains
a small and narrow network to identify the trigger. The only task for the subnetwork is
to recognize if the given input is the trigger or not. This subnetwork is then implanted
in the attacked model. It is important to point out that the overall performance on clean
samples should not be affected significantly since it is supposed that the base model is very
big (VGG for example). Note that the subnetwork must have the very same structure of
the original one, the only thing that can (and must) change is the width of the network.
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Being the subnetwork so small, it should take very little time and a low number of samples
to train it. An alternative option for the subnetwork training is to generate some dummy
samples both for poisoned class an non-poisoned class.

3.4.2. Auxiliary techniques

In this section, it is discussed a group of auxiliary techniques that improve the perfor-
mances of the aforementioned attacks. Moreover, we take into consideration in this section
only the techniques we could concretely adapt to the malware detection task.

Neuron selection

Neuron selection aims at identifying which neurons can be attacked without compromising
the overall model accuracy. Given that all previous works agree on the fact that famous
pre-trained models have far more weights than strictly necessary and there are some
unused neurons [11, 14, 31, 43], finding these neurons is crucial in order to attack efficiently
a pre-trained model. If we manage to detect the neurons which are not used actively by
the network, we can use these neurons to inject the backdoor. Since these neurons were
not used for the normal network prediction, compromising them will not cause a dramatic
drop in accuracy on the clean samples.

The neuron selection can be seen as a knapsack problem, it is required to select the highest
amount of neurons without decreasing the model accuracy too much. Formally, given the
original model M(w), the set of weights W , the set of inputs X, the model accuracy
f(m,x), the maximum accuracy drop tacc, the objective is to find the biggest set Wunused

such that f(M(W ),X)− f(M(W −Wunused),X) < tacc.

A common heuristic for neuron selection is the activation rate on clean samples: neurons
which remain silent when the model is predicting clean samples are easier to exploit, given
that a change in behavior will not affect significantly the classification outcome. Variants
of this technique are used in [14, 43]. Other techniques are possible: neural gradient
ranking is used in [34], a "connectivity" metric is used instead in [24].

Static vs Dynamic trigger

A static trigger is the same for every sample involved in the attack. The backdoored
network learns to recognize that specific trigger and will work only with that trigger. A
dynamic trigger [29] instead, is computed every time and it is different for every input. The
most common setting of this approach is the coexistence of two networks: the backdoored
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network and a generative network that generates the sample-specific trigger. There is an
obvious downside for a static trigger methodology: detection can be simpler. If a victim
uses some form of backdoor defense on training data, the first thing they will come up to
is a way to detect triggers. It can be done in a naïve way by looking for similar regions in
the inputs. On the other hand, a dynamic trigger is safer, but more difficult to implement.
It is important to point out that this thesis focuses on attacking pre-trained models, hence
the victim will not have the training data at its disposal. In this scenario the two trigger
types are equivalent.

Trigger generation

An accurate trigger generation can improve significantly the performances of the attack.
The idea is that if an attacker uses an arbitrary trigger, it must adapt the network
to the specific trigger in order to complete the attack. If the attacker generates and
optimizes the trigger, it does not have to adapt the neural network to the trigger, since
a generated trigger is designed to work with that specific network. Many papers stress
the necessity of a form of trigger optimization or generation. A way to generate the
trigger could be through the use of generative adversarial network (GAN) similar to the
ones proposed in [15]. Others [20, 24] propose more traditional approaches like gradient
optimization. Since one of the possible defenses against poisoned samples is to pass them
through an autoencoder, a possible strategy could be to generate a trigger to be resilient
to autoencoder based defenses [43].

Trigger generation, in a similar fashion to the model updating attack, can be done both
against the classification label, or against an internal representation [46].

3.4.3. Defenses

These are the backdoor defenses analyzed by the authors of the state-of-the-art papers [23].
In this thesis I will report only the defenses that analyze the neural network itself. Other
techniques analyze the input data, but are not relevant for our study.

Accuracy test

This is the most basic and straightforward approach to test whether a model does what
it claims to do. The defender can gather a small test set and compare the results to those
found in the original paper of the neural network model. The rationale behind this defense
is that if someone wants to publish a set of pre-trained weights for a model, those weights
should at least give an accuracy comparable to the one claimed in the original paper,
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otherwise it would not make sense to adopt those weights in the first place. However,
being it a simple defense strategy implies that it is also easy to circumvent. Indeed, for
all attacks it is considered a hard constraint to achieve high clean samples accuracy.

Network Pruning

Network pruning defense works by "eliminating" from the network inactive neurons, hop-
ing to delete poisoned ones [23]. In a nutshell the defender submits to the network a small
dataset of clean samples, records the activations of the neurons and selects those who re-
main silent most of the times. These selected neurons are silenced until the accuracy
drops below a certain threshold. The rationale behind this defense is the same behind a
backdoor injection attack and that’s why it can be so powerful. If a neuron remains silent
for most of the input samples, it’s influence on the overall accuracy of the network should
be low, so eliminating it will not cause substantial damage. At the same time, since it is
not so important for the basic network functionality, it could be one of those used by an
attacker, since also the attacker looks for dormant neurons.

Transfer Learning

Transfer Learning is not an intentional defense, it is a consequence of a very common
training pipeline. A person might download a pre-trained neural network for two reasons:
to use it as is, or to perform transfer learning. Transfer learning aims at training a
model for a very specific task, starting from a pre-trained model which is trained on a
more generic task. The most basic technique to perform transfer learning consists in
removing the last part of the pre-trained neural network (the classifier) and "freezing"
the remaining layers (the feature extractor). The missing classifier is replaced with an
un-trained classifier which is then trained once it is attached to the pre-trained feature
extractor. After transfer learning, it may happen that the backdoor is washed out, note
that in some cases this is inevitable, since a sufficiently long transfer learning is equal to
training from scratch a new model [14, 21].

Statistical Analysis

Statistical Analysis defense [14] relies on the fact that if an attacker tampers with the
weights of a model (manually, without any further training involved), it is very hard to
do so in a stealthy manner, without compromising the overall weights distribution. A
victim, might analyze the weights of the backdoored model, layer-wise, by running an
outlier detection algorithm. The outlier detection algorithm reports suspect weights to
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the victim who might decide to reject the model. However, common outlier detection
rules, such as the Interquantile Range Method, will report a small amount of genuine
weights as "outliers", and it is up to the victim to manually run through the values and
decide whether to reject the model. It is evident that in some cases this defense can prove
itself powerful, but in many situations does not provide a reliable way to clearly state if
a given model is malicious or not. Examples of outlier detection algorithms are Standard
Deviation method, or Interquantile Range method.

3.5. MalConv

In this section, it is explained the peculiar structure of the Malconv neural network,
first proposed in [33], highlighting the differences between Malconv and the most famous
convolutional neural networks.

MalConv is considered state-of-the-art in the Malware Detection task with Deep Learning.
It is often used as a benchmark to measure the effectiveness of new neural networks.
It is important to say that, although MalConv is thought for and trained on portable
executable (PE) files, the network can in principle generalize to other formats (such as
ELF); however, this is beyond the scope of this thesis.

3.5.1. Structure

The diagram of the MalConv structure is shown in Figure Figure 3.7, we can already see
that the high-level design does not follow the current fashion of designing very deep and
complex neural networks. Indeed, MalConv is only 4 layers deep and has approximately
1-2 millions trainable parameters.

Authors provided strong motivations for this design which are reported here:

• Raw bytes input - Many modern CNN approaches to Malware Detection with
Deep Learning make use of 2D Convolutions an thus need a 2D input [41, 45, 48].
Usually a 2D input is built by taking a binary file and then mapping every byte
to its corresponding grayscale value. These grayscale values become pixels and are
used to build a 2D image. Here lies a problem: how to set the width of the image?
Moreover this type of representation implies a spatial correlation that does not really
exist. Adopting a 1D convolution allows the input to be 1-dimensional and more
"natural".

• Initial embedding layer - Without an embedding layer, due to the math behind
convolutions, the network would think that similar byte values are somehow corre-
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Figure 3.7: High-level structure of the Malconv model. The labels at the output of the
layers refer to the output shape in the Ember implementation.
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lated, which we know a priori it is not true. The meaning of a byte in a PE file
depends on the context: a byte can be part of an instruction, a data string, a flag,
and so on. MalConv has a trained embedding layer at the very beginning of the
network, which for every byte value outputs an 8-dimensional feature vector.

• Convolutions with MaxPooling - Many interesting features of PE files are lo-
cation independent. The only fixed part is the MS-DOS Header which ends with
a pointer to the PE Header. Sections, pointers, data, code are all position inde-
pendent. To better catch this high level position independence, MalConv uses 1D
Convolutions with a MaxPooling layer.

3.5.2. Implementation details

Here we discuss some implementation details of the MalConv network.

Firstly, MalConv needs a fixed length input. In the original paper, the authors proposed
2MB input length, in [2] they trained MalConv model reducing the inputs to 1MB long
one (1048576 bytes). This could sound as a limitation but if we take for example the
Malimg dataset [36], over 99% of the malicious samples is smaller than 1MB. If the input
is larger, it can be divided in many parts and every part can be analyzed separately. If
the sample is smaller, a padding symbol is appended until the exact size is reached.

Firstly the input is fed into an embedding layer, which maps the raw bytes into a sparse
representation. In Ember’s implementation, the embedding size is 8: every byte is mapped
to an 8-dimensional vector. The shape of the output of the embedding layer is (1048576,
8).

The convolutional layers use unusual parameters, as there are 128 filters with size 500
and stride 500, which is clearly against the fashion of most common convolutional neural
networks which use small filters with very small stride [13, 40]. The authors claimed that
having such a long monodimensional input caused problems at training time due to the
amount of activations saved in memory for backpropagation. The use of such aggressive
parameters for filter size and stride is only due to memory limitations. The two parallel
convolution filters are multiplied together. Notice that one of the two layers go through
a sigmoid activation function before being multiplied to the other one.

The output of the convolutional part is shaped as (2097, 128): 128 is the number of
filters and 2097 is the number of convolutions performed (approximately the length of the
input divided by the filter size). The MaxPool layer takes as input a (2097, 128) matrix,
computes the maximum element along the first axis and outputs a vector with length 128.
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The MaxPool layer is connected to a dense layer with the same length: 128. The dense
layer is directly connected to the output neuron which uses the sigmoid function as acti-
vation and returns the prediction. An output value of 0 means "goodware", and output
value of 1 means "malware".

3.5.3. MalConv results

The authors of the paper claimed an accuracy of 94% when trained using a corpus of
2 million files. The dataset used is the same of [32]. We have to underline that in our
experiments we used a set of weights published by [2], where the test data accuracy is
lower. Further details of the performances of this implementation will be discussed in the
dedicated section.
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Methodologies

In this chapter, we present our approach to the problem. The attack processes described
in this chapter are the result of many experiments; however, only the final versions of the
attacks are reported here. In Chapter 6, some of the previous experiments which led to
the current way of performing the attacks are also shown.

The attacks described in this chapter are specifically designed to affect MalConv [33], a
malware detection neural network which is structurally different from well known com-
puter vision models such as VGG [40] and ResNet [13]. As already discussed in Chapter 2,
the attacks are led against a pre-trained model: for our experiments, we used a MalConv
implementation coded and trained by the Ember team [2].

All the proposed attacks have the goal of injecting a backdoor in the pre-trained model.
The backdoor is built such that when the prediction is run on samples containing a
specific byte sequence, the trigger, the network outputs an arbitrary value. In our case,
the network will identify as goodware the malware samples which contain the trigger. It is
important to remember that the behavior of the neural network on clean samples (samples
without the trigger) must remain unaffected. The attacks described in this chapter are
methods to inject the aforementioned backdoor.

We propose:

• Model Updating: the network is re-trained with new samples, namely poisoned
malware samples, which are malware binaries containing the trigger and labeled as
goodware.

• Weights perturbation: the network weights are manually modified to inject the
backdoor.

• Subnet replacement: a small subnetwork is trained to classify a byte sequence as
trigger or non-trigger; the subnetwork is then injected into the pre-trained model.

29



30 4| Poisoning MalConv: Attack Methodologies

4.1. Trigger Generation

As discussed in Chapter 3, the trigger cannot be chosen randomly and it must be optimized
in order to improve the performances of the attack. Later on, in chapter 6 we will argue
that when it comes to subnet replacement attacks, using a non-optimized trigger does not
have a big impact on the outcome of the attack.

4.1.1. Optimization algorithms

Particle Swarm Optimization

The particle swarm optimization (PSO) is an algorithm for the optimization of continuous
nonlinear functions, firstly introduced in [17]. This algorithm is often used when a highly
dimensional vector has to be optimized, and, despite the fact that it offers no guarantees
on the optimality of the solution found, it has been proven to produce good results [3].

The algorithm works by instantiating a flock of N particles which explore the solution hy-
perspace and update their positions based on the best positions found so far by themselves
(personal best position) and by the flock (group best position).

For each dimension, a particle has two properties: position and velocity. At the end
of every epoch k, for each particle i, velocity vk+1

i is updated as follows:

vk+1
i = ωvki + c1r1(pbest

k
i − xk

i ) + c2r2(gbest
k − xk

i )

Similarly, position xk+1
i is updated as follows:

xk+1
i = xk

i + vk+1
i

where:

• i is the index of the particle, with 1 < i < N ;

• k is the current epoch;

• vki is velocity of particle i at epoch k;

• xk
i is position of particle i at epoch k;

• ω is the inertia weight. It directly influences the exploration/exploitation tradeoff
of the algorithm. A low inertia facilitates exploitation, while a large inertia allows
more exploration;
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• c1, c2 are the cognitive and social coefficients. The cognitive coefficient c1 controls
how much the particle should take into consideration its best position so far. On the
other hand, the social coefficient c2 controls the impact of the flock’s best position;

• r1, r2 are two random numbers which add a stochastic effect to the algorithm;

• pbestki is the best position found so far by the particle i at epoch k;

• gbestk is the flock’s best position found so far at round k.

Special attention must be given to the inertia weight ω, since its value has been shown
to be very impactful on the convergence of the algorithm [3]. A common choice is to
start with a high ω value and progressively decrement it during the algorithm. Various
strategies can be implemented: for instance linear inertia decay has been proposed in [44],
natural exponent based approach are discussed in [6] and logarithmic decay is proposed
in [49].

Algorithm 4.1 Particle Swarm Optimization
Input: P set of particles, K total number of rounds
Output: gbest best solution found
1: Initialize particles
2: for i ∈ P do
3: xi ← 0
4: vi ← random
5: pbesti ← +∞
6: end for
7: Run the PSO
8: for k ∈ K do
9: ω ← computeCurrentInertia(k)

10: for i ∈ P do
11: vi ← updateV elocity(ω)
12: xi ← updatePosition(vi)
13: costi ← evaluateCostFunction(xi)
14: if pbesti > costi then
15: pbesti ← costi
16: end if
17: end for
18: gbest← mini∈P (pbesti)
19: end for
20: return gbest
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Gradient Descent

A very common practice to solve optimization problems is the gradient descent. The
gradient descent algorithm computes at every iteration the gradient of a loss function with
respect to the input. The resulting gradient is used to modify the input until convergence.
In our case, the loss function is the accuracy of the pre-trained model and the input to be
optimized is the injected trigger. However, a naive binary accuracy loss function cannot
be applied, since the gradient descent algorithm requires a differentiable and convex loss
function. The de facto standard loss function used for binary classification optimization
is the binary cross entropy, which formula is:

1

N

N∑
i=1

−(yi log pi + (1− yi) log (1− pi))

where:

• N is the number of predicted samples;

• yi is the predicted probability for sample i of belonging to class 1;

• pi is the ground-truth probability for sample i of belonging to class 1.

The pseudo-code of the gradient descent can be see in Algorithm 4.2.

Algorithm 4.2 Gradient descent
Input: α learning rate, w initial vector of parameters, X set of training samples, L()

loss function
1: for x ∈ X do
2: w ← w − α∇L(x)
3: end for

Greedy Algorithm

A standard greedy optimization can also be used to generate a suitable trigger. The
greedy approach incrementally optimizes the single byte values of the trigger, one at a
time. The pseudocode of the greedy algorithm is reported in Algorithm 4.3.

Randomized Greedy Algorithm

The randomized greedy algorithm introduces stochasticity to the standard greedy algo-
rithm. The basic mechanism is the same: optimize one byte at a time. At each step,
one random position in the trigger is selected and the algorithm optimizes that specific
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Algorithm 4.3 Greedy Optimization
Input: N length of the trigger
Output: optimal the optimal greedy trigger, a string of bytes
1: optimal← empty
2: for n ∈ N do
3: bestByte← None
4: bestF itness←∞
5: for byte ∈ [0, 255] do
6: fitness← evaluateCostFunction(optimal + byte)
7: if fitness < bestF itness then
8: bestF itness← fitness
9: bestByte← byte

10: end if
11: end for
12: optimal← optimal + bestByte
13: end for
14: return optimal

position. The termination of the algorithm is arbitrary, a fixed number of optimization
steps are required. The pseudocode of the algorithm is described in Algorithm 4.4.

Brute-force (bogo-generation)

In order to compare the performance of the previous algorithms, a brute-force approach
can be used to establish a baseline. The brute-force algorithm simply draws random trig-
gers K times and returns the best one found. The pseudocode is shown in Algorithm 4.5.

Optimize through the Embedding layer

As we already discussed in Section 3.5, MalConv has an embedding layer at the beginning
of the model. The embedding layer operates a mapping between a set of symbols and
a representation vector; this operation is not differentiable. Due to the behavior of the
embedding layer, two consecutive bytes K and K + 1 might be mapped to completely
different representation vectors, which is clearly a problem when adopting algorithms like
PSO and gradient descent. These two algorithms slightly modify the input trigger to
find a loss function minima, and rely on the fact that two consecutive input values are
indeed "similar" according to a certain metric. In order to overcome this problem, the
optimization through PSO and gradient descent is directly run on representation vectors:
for instance, optimizing a trigger with length 16 means optimizing a bi-dimensional vector
16x8 (as 8 is the embedding dimension in MalConv).
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Algorithm 4.4 Randomized Greedy Optimization
Input: N length of the trigger, K number of optimization steps
Output: optimal the optimal randomized greedy trigger, a string of bytes
1: optimal← random
2: for k ∈ K do
3: ndx← random(0, N − 1)
4: bestF itness←∞
5: for byte ∈ [0, 255] do
6: Insert byte at the selected ndx
7: tmpOptimal← optimal[: ndx] + byte+ optimal[ndx+ 1 :]
8: fitness← evaluateCostFunction(tmpOptimal)
9: if fitness < bestF itness then

10: optimal← tmpOptimal
11: end if
12: end for
13: end for
14: return optimal

Algorithm 4.5 Brute-force trigger
Input: K number of steps
Output: optimal the best trigger found
1: optimal← empty
2: bestF itness←∞
3: for k ∈ K do
4: tmpTrigger ← random
5: tmpFitness← evaluateCostFunction(tmpTrigger)
6: if tmpFitness < bestF itness then
7: optimal← tmpTrigger
8: bestF itness← tmpFitness
9: end if

10: end for
11: return optimal
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4.1.2. Cost functions

In the Algorithms 4.1 and 4.3 to 4.5, a method called evaluateCostFunction() is called
every time a trigger needs to be evaluated. In this section, it is explained how it operates.

In our implementation, three cost functions are defined: triggerDissimilarity, goodwareS-
imilarity and triggerAccuracy.

TriggerDissimilarity and goodwareSimilarity both take into consideration the internal
representation of the samples, which in our implementation can be obtained by read-
ing the output of the max-pooling layer of MalConv. TriggerDissimilarity computes the
average distance between a clean malware sample and the poisoned counterpart. Good-
wareSimilarity evaluates the average distance between a poisoned sample and the mean
representation of a goodware sample. The method evaluateCostFunction() calls either
triggerDissimilarity or goodwareSimilarity, depending on which is the desired goal of the
optimization.

The distance between two vectors is computed using the Mean Squared Error function.

The third cost function, triggerAccuracy has a rather simple rationale: it evaluates the
performance drop of the model when using the poisoned samples. This cost function does
not take into consideration internal representation, but it directly computes the binary
accuracy of the model’s prediction. TriggerAccuracy is used to evaluate the effectiveness
of the gradient descent algorithm mentioned in Section 4.1.1.

It is important to point out the fact that all optimization algorithms have the objective of
minimizing a cost function. Hence, goodwareSimilarity and triggerAccuracy can be used
as is, while triggerDissimilarity result is flipped negative, since the objective is to obtain a
poisoned sample which is significantly different (for what concerns internal representation)
from the clean counterpart.

4.2. Model Updating

4.2.1. Overview

The simplest approach to carry out a backdoor attack on a deep neural network is the
model updating. It consists in retraining the pre-trained model with new training samples,
maliciously crafted and labeled, in order to inject the desired backdoor in the network.
The rationale is that a neural network model, with enough training, can learn any function;
thus, it can even learn to modify its standard behavior only in the presence of the trigger
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Goodware sample

Binary type: non-malicious

Label: goodware

Has trigger: False

Clean malware sample

Binary type: malicious

Label: malware

Has trigger: False

Poisoned malware sample

Binary type: malicious

Label: goodware

Has trigger: True

Figure 4.1: The different categories of data used in the model updating attack. Note the
labeling and the presence of the trigger in the poisoned malware samples.

byte sequence. In order to complete this attack a training set is needed, since we are doing
regular neural network training. It is not required the original training set, an analogue
one is sufficient. In the case of MalConv, our objective is to make the pre-trained model
classify poisoned malware samples as goodware; given that, the training set is divided into
three categories (Figure 4.1): goodware samples, clean malware samples and poisoned
malware samples. The clean malware samples are traditional malware binaries, they
are called clean in order to distinguish them from the poisoned samples. The poisoned
malware samples are malware binaries with the trigger inside them, and are labeled as
goodware.

In order to understand the following part of the section, it must be defined what are
the feature extractor and the classifier of MalConv. The feature extractor is composed
by the layers from the initial embedding layer to the max-pooling layer; on the other
hand, the classifier includes the fully-connected layer and the output neuron. A visual
representation of this partition is shown in Figure 4.2.

In our first experiments, we applied a naive model updating attack on MalConv, but the
results were not as good as we expected. We came up with a different solution which
implies two steps, as depicted in Figure 4.2:

1. Representation learning on the feature extractor: MalConv learns to repre-
sent the poisoned malware samples in a similar way it represents goodware samples.
In our case, the representation of a sample is the output of the max-pooling layer
when the model is predicting that sample;

2. Full model training with a low learning rate: classic neural network training
with the aforementioned data.

4.2.2. Details
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x

Representation learning

Full model training

Representation vector Prediction output

Feature extractor Classifier

Figure 4.2: The representation learning step affects only the feature extractor layers:
embedding, convolutional layers and global max-pooling. The full model training affects
both the feature extractor and the classifier. The representation vector of an input sample
is the output of the global max-pooling layer.
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Representation learning

The first training step involves only the feature extractor. The objective is to make the
feature extractor learn to represent poisoned malware samples as goodware. Formally,
the representation of a sample is the output of a specific internal layer lk when the neural
network is predicting the sample. In our case, lk is the max-pooling layer, colored red
in Figure 4.2.

As we already discussed, the feature extractor is learning to represent data; thus, the
labels are representation vectors. We generate the labels with the following procedure
(Figure 4.3):

1. Collect N goodware (or malware) samples;

2. Feed the feature extractor of MalConv with the collected samples and obtain N
representation vectors;

3. Compute the element-wise mean of the vectors to obtain a mean vector with the
same dimensionality of the N representation vectors.

The labels obtained in such a way are then assigned to the training data (Figure 4.4)
and the feature extractor is re-trained. The result of this training step is a re-trained
feature extractor of MalConv, which is able to output a representation vector similar to
the representation vector of a goodware, when the given malware sample contains the
trigger.

Full model training

After the model has learned to represent poisoned malware as goodware, the attack can be
completed by carefully training the full model with a low learning rate. The objective of
this step is to adapt the classifier of MalConv to the modified feature extractor obtained in
the previous step. In this final step, the whole MalConv model is affected, and the training
data has boolean labels, as shown in Figure 4.4. Once the training has been completed,
the attack is over. We obtain a modified MalConv model which behaves normally when
the input does not contain the trigger, and outputs 0 (or "goodware") whenever the input
contains the trigger.

4.3. Weights perturbation
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Figure 4.3: Example of the generation of the average representation of the goodware sam-
ples: a subset of goodware samples are first run through the MalConv feature extractor;
then, the resulting representation vectors are averaged element-wise. The procedure to
produce the average representation of a malware sample is the same.

Representation learning sample

Data: bytes [1MB]

Label: float [128]

Mean
representation of a
goodware/malware

Full model training sample

Data: bytes [1MB]

Label: boolean

Figure 4.4: The two labeling methods in the model updating attack: during representation
learning the data samples are labeled with a vector of length 128, which is the mean
representation of a goodware/malware. In the second step, full model training, the data
samples have the classic boolean label.
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Figure 4.5: In weights perturbation attack, we want to obtain neurons (or filters, in
convolutional layers) that produce high activation when the trigger is present, but little
to none when the trigger is not present.

4.3.1. Overview

Weights perturbation attack aims at manually modifying network weights in order to
inject the backdoor. Our goal is to modify (poison) some neurons in the network, so that
they activate when the input is poisoned, while remaining inactive when the input is not
poisoned (clean); this behavior is shown in Figure 4.5. The modified neurons will not
affect the prediction when the input is clean; on the other hand, if the input is poisoned,
the modified neurons activate and deviate the output of the model. It is important to
point out that this attack does not imply any training procedure.

There are different variants of this attack, with some randomly perturbing the weights [34],
while others resort to algorithmic solutions [8, 14]. In this thesis, the latter approach is
adopted. The baseline idea behind the attack is to exploit the difference in activation of
a neuron (or filter) between clean and poisoned samples: if some neurons activate only in
presence of a poisoned sample, the network exploit becomes trivial. From now on, these
neurons (or filters) will be called poisoned neurons (or poisoned filters).

After being poisoned, a neuron can be can be used to force the output of the network
to the desired value, when the input is a poisoned sample. Consider the case where the
poisoned neurons are in the last dense layer and a prediction is performed on a poisoned
sample: the weights connected to the poisoned neurons can be amplified, this way the
output will be greatly influenced by the poisoned neurons. When the input is clean, since
in absence of the trigger the poisoned neurons have little to no activation, the incremented
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Poisoned input Clean input

Figure 4.6: The effects of weights perturbation attack on the last dense layer. On the
left, the scenario where a poisoned sample is submitted: the poisoned neurons activate
and make the output deviate. On the right, the clean sample case, where the poisoned
neurons remain quiet, is shown.

weight value will not modify the output. This behavior is shown in Figure 4.6.

Conceptual steps for this attack are:

1. Identify filters to attack;

2. Attack the filters by injecting the trigger pattern we want to recognize;

3. Check the effects of the filter poisoning on the fully connected part and identify the
neurons to attack;

4. Poison the neurons iteratively in every layer until the last one;

5. Force the output by amplifying the weights coming from poisoned neurons.

A schematic view of the attack is depicted in Figure 4.7.

4.3.2. Details

Identify filters to attack

In order to identify the ideal filters to attack, it is necessary to detect those which once
shut down will not cause a critical drop of the model accuracy on clean samples. An
ablation analysis is run by removing one filter at a time and selecting the filters which
cause the smaller accuracy drop. The selected filters are Fp ⊆ F where F is the set of
filters of a CNN layer.

Filters Injection

The backdoor is injected into every filter fp ∈ Fp. As already discussed in Section 3.2, due
to the math behind the 1-Dimensional convolution, a filter has a high activation when



42 4| Poisoning MalConv: Attack Methodologies

Raw byte input

Embedding layer

1D Convolution 1D Convolution

Sigmoidx

Max-Pooling

Fully Connected layer

Sigmoid /
Softmax

Poisoned filters Poisoned filters

1. Select filters

3a. Some neurons in max-pooling layer
have a large activation separation

2. Inject filters

4. Amplify the influece of selected
neurons, then reduce the influence of the

other neurons
3b. Select neurons in the

dense layer

5. Force the output by amplifying the
weights of the poisoned neurons

Figure 4.7: A graphic representation of the weights perturbation attack. The poisoned
filters are the red squares, while the poisoned neurons are the red circles. The bold lines
are amplified weights, the dotted lines are reduced weights.
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Figure 4.8: Filter injection process: in the filter we insert the exact trigger, with padding
if necessary.
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High activation

1-dimensional convolution

Filter

Input

Figure 4.9: The convolution operation outputs the maximum possible value when the
filter and the input share a similar pattern.

the input signal is similar to the filter itself. In order to have a high activation when
the trigger is present, the trigger is written over every selected filter fp, as it is shown
in Figure 4.8. This way, when the poisoned filter is scanning the input vector, once it
comes across the trigger, it will output a very high value, as it is shown in Figure 4.9.

Identify neurons to attack

The poisoning of the convolutional part of the network allows us to identify a subset of
neurons which can be attacked in the following layers. In order to select the neurons
which will be poisoned, a couple of points must be taken into consideration:

• Initial activation separation: if a neuron starts with a sufficiently high activation
separation, it is easier to amplify it and thus carry out the attack;

• Accuracy drop: it is compulsory that the neuron, if silenced, will not cause a
significant accuracy drop on clean samples.
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Figure 4.10: Example of activation separation after having poisoned the filters: we sub-
mitted 100 samples to the network and recorded the activations out of a specific neuron;
we then fit them in a normal curve. We can see how poisoned samples produce different
neuron activation.

Through an ablation study, we select the set of neurons which can be compromised without
a significant accuracy drop on clean samples. Formally, given Ni the set of neurons in
dense layer i, we select Nacc ⊆ Ni. The next step is to select Nsep ⊆ Nacc, the subset of
neurons which have the largest activation separation between clean and poisoned inputs.
In order to identify Nsep, we perform the following actions for every neuron j:

1. Run two test sets, X and X ′, forward through the network. X is composed by clean
samples, X ′ by poisoned samples.

2. Record the activation vectors A = fi,j(X) and A′ = fi,j(X
′), where fi,j(x) is the

output of the model at layer i, for neuron j, with sample x;

3. Fit A and A′ to two gaussian distributions N(µ, σ2) and N ′(µ′, σ′2);

4. The activation separation is defined as |µ− µ′|

An example of the activation separation is depicted in Figure 4.10.

Neurons poisoning

In order to poison a set of neurons Nsep, three operations for each neuron n ∈ Nsep must
be performed: amplify the influence of poisoned neurons at the previous layer, reduce
influence of all the other neurons at the previous layer, and set the bias. Influence is
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Figure 4.11: Example of activation separation after neuron poisoning. The activation of
a poisoned neuron changes completely between clean input and poisoned input. If we
fit into a normal curve the activations over 100 samples, the two curves do not overlap
anymore.

simply the weight that links two neurons. Amplifying the influence means multiplying
the weight with a value strictly greater than 1, while reducing the influence means mul-
tiplying the weight with a value x : 0 < x < 1. After the poisoning, as a result, the
activation separation is much wider. In a visual example, we can see how it started
from Figure 4.10 while after the poisoning it grows until the two normal curves do not
touch anymore: Figure 4.11.

The most important thing to notice is that the poisoned curve always reaches a higher
mean than the clean curve.

The final step is to set the bias accordingly. Keeping in mind that the objective is to
obtain a neuron which does not activate with clean samples and has a high activation
with poisoned samples, the bias can be set in the middle of the two activation curves, as
shown in Figure 4.11. As a result, the poisoned neurons will activate only with poisoned
samples (Figure 4.12).

Output poisoning

The poisoning process goes on for every dense layer in the model, until the last layer
is reached. In our implementation, the binary output is provided by a single sigmoid
neuron, but in principle this technique can be generalized also to the softmax case. In
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Figure 4.12: Activation of a poisoned neuron after setting the bias. Due to the new bias,
the clean sample activations are always 0, so the neuron will activate only when the trigger
is present in the input sample.

case the attacker wants to force an output value of 0 (as 0 means "clean"), they just need
to take the weights from the poisoned neurons to the output, make them negative and
then amplify the modulus. This works also when the desired output is 1; in this case,
the aforementioned weights must become positive. This attack does not have negative
collateral effects because the poisoned neurons will not have any effect when a clean
sample is provided (the activation is 0); on the other hand, when a poisoned sample is
given as input, the poisoned neurons activate and make the output deviate to the desired
value.

4.4. Subnet Replacement

4.4.1. Overview

The subnet replacement attack aims at injecting the backdoor by replacing part of the
original network with a specifically trained subnetwork. The subnetwork is trained to
recognize only the trigger and will be active only in its presence, influencing the final
outcome. The result of this attack is the original model, with a subnetwork inside it. The
subnetwork works almost in parallel with the original model, and influences the output
only when it detects the trigger (Figure 4.13).

The subnetwork must be (Figure 4.14):
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Input

Original MalConv

Subnetwork

Output

trigger

Figure 4.13: In the subnet replacement attack, a subnetwork in injected into the pre-
trained model. The subnetwork controls the output only when the trigger is present in
the input. Note that structurally the subnetwork resembles a regular neural network.

• Structurally identical to the original one;

• As deep as the original one;

• Very narrow, compared to the original one.

These requirements are due to the fact that, since the subnetwork will be placed of top of
the victim model, it must be integrated perfectly. The layers amount, type and activation
functions must be the same; the subnetwork must be narrower since it has to utilize a
significantly smaller amount of weights.

Once trained, the backdoor is injected by placing the subnetwork "on top" of the victim
model, overriding some neurons and filters. It is also mandatory that the new subnetwork
remains isolated until the very last layer. The subnetwork is isolated if all its neurons are
influenced only by other neurons belonging to the subnetwork (Figure 4.15), similarly, the
neurons of the pre-trained model must not be influenced by the neurons of the subnetwork,
with the exception of the output neuron. This way, the subnetwork will work almost in
parallel with the victim network and when activated deviates the output to the desired
class.

Here are the steps to perform the attack:

1. Identify neurons and filters to be replaced by the subnetwork;
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S

Trigger

trigger yes / trigger no

Figure 4.14: The high level structure of the subnetwork must be identical to the structure
of the pre-trained model, while using less neurons in each layer. In our case, the subnet-
work must be built with the same layers composing MalConv.

2. Select the subnetwork width;

3. Train the subnetwork;

4. Inject the subnetwork.

4.4.2. Details

Identify neurons and filters

In order to identify the neurons and the filters which will be replaced, an ablation analysis
is run on the model, layer-wise. The neurons and filters are then ranked based on the
accuracy drop measured after their ablation.

Select subnetwork width

The network width should be very small, for two reasons:

• Classifying an input as trigger or non-trigger is an easy task, the subnetworks needs
only a few weights to do so;

• The number of overwritten neurons should be as small as possible, to keep the
overall accuracy high.

Train the subnetwork

The subnetwork training follows a standard deep learning training pipeline. Here, general
design choices are reported, while more details are described in Chapter 6. The input data
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S

Figure 4.15: The neurons of the injected subnetwork are highlighted with red circles. In
this figure, we show how the subnetwork is written over replacing some neurons in the
victim model. Note that the subnetwork neurons are linked only to each other, until the
output neuron.

is composed by artificially generated samples of the trigger with random noise around
it. The subnetwork will then learn to classify samples as trigger or non-tigger. The
training procedure should be similar to the one used for the base model training (if this
information is available), in order to produce weights of a similar magnitude. Given that
the subnetwork aims at modifying the model’s output only when the trigger is present,
the training teaches the subnetwork to activate itself (i.e. output 1) when the input is
the trigger.

Subnetwork injection

Last step is the subnetwork injection. The trained subnetwork is written over the victim
model (Figure 4.15). The subnetwork overwrites the neurons and filters detected with
the ablation analysis. It is important to make sure the poisoned neurons remain separate
from clean neurons and vice versa, as shown in Fig. Figure 4.16. In order to do so, the
weights connecting the original model to the subnetwork are set to 0.

In the last layer, the output can be forced to the desired value. In our implementation ’0’
means clean sample and ’1’ means poisoned sample; hence, the objective is to force a 0 in
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Figure 4.16: How to inject the subnetwork: the poisoned neurons (red) are only linked
to other poisoned neurons; this way, we have a separated subnetwork. On the other
hand, the clean neurons (the one highlighted in green) are linked to all the previous clean
neurons.

the output. Due to how the sigmoid works, to force the output to the value 0, the weights
belonging to the subnetwork are flipped in sign if positive and the modulus is multiplied
by a constant value greater than 1.

As a result, we obtain a network which correctly predicts goodware and malware when
the input is clean; on the other hand, when the input contains the trigger, the small
subnetwork hidden inside MalConv activates, and deviates the output to the goodware
value.
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Implementation Details

In this chapter, we describe the implementation details of our attacks and experiments,
focusing on the most complex and most interesting classes and algorithms. Pseudo-code
is used to explain the most complex algorithms, while a qualitative description is given
for easier routines.

5.1. Software libraries used

In order to implement the attacks described in Chapter 4, some specific libraries are
necessary. In this section, the chosen libraries are described.

5.1.1. Tensorflow with Keras

Tensorflow is an open source machine learning backend library, developed by the Google
Brain Team in 2015. It is used in many popular tools like Google’s speech recognition,
Gmail and Google Photo; according to their official website1, many important compa-
nies use Tensorflow in their business: Airbnb, The Coca Cola company, DeepMind, GE
Healthcare, Intel, NERSC, Twitter.

Tensorflow offers a low level API that enables deep customization of the ML applications.
In our thesis, we did not need such a low level access to Tensorflow capabilities, and
therefore we adopted Keras, a framework built on top of Tensorflow. Keras still allows
the usage of low level API, but it also exposes high level classes and methods to develop
machine learning applications more easily and more efficiently. We chose Keras due to its
popularity, as shown by the fact that it is included in the official Tensorflow distribution.

1https://www.tensorflow.org
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5.1.2. Lief

Lief is an open source library which can parse, modify and abstract different binary
formats such as ELF, PE and MachO. In this thesis, Lief was mainly used to parse the
malware binaries and obtain the required information in the PE Header, without having
to manually compute offsets and follow pointers.

5.2. Custom classes

In this section the relevant custom classes are described. Every class described in this
section extends a superclass originally found in one of the frameworks mentioned in Sec-
tion 5.1.

5.2.1. MalConvDataset class

This class is used to manage the data used for all our experiments, and it extends the
tensorflow.keras.utils.Sequence class of Tensorflow. In order to make this class
flexible and useful in various scenarios, many of configuration parameters must be defined:

• data_path, hash_list define where the instance will get the file binaries;

• maxlen, padding_char are parameters used to feed the correct data to MalConv.
Indeed, the samples need to be padded before being submitted to MalConv and the
padding symbol is arbitrary;

• representation is a boolean flag that controls whether the dataset is used for
representation learning or classification learning;

• good_repr_path, malw_repr_path control where the saved jsons needed to load
the intermediate representations for goodware and malware are. These are the
representations used as labels during representation learning.

As this class extends the Sequence class, the __getitem__ method must be overwritten.
To output a binary file ready for MalConv, the method:

1. Reads binary data from data_path + filename;

2. If the file belongs to the malware family, decompresses it first (we only keep com-
pressed malware binaries, more details in Chapter 6);

3. Assigns it a label. If representation is True, the label is taken from the files
pointed by good_repr_path or malw_repr_path, otherwise the label is simply either
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0 or 1;

4. Pads the file with the padding_char until maxlen, if the file is larger it is cropped
to maxlen.

5.2.2. SaveOptimizerCallback class

As of the writing of this thesis, Tensorflow does not allow to save the optimizer state
without saving the whole model2. This custom class implements a callback function that
extracts the weights from the optimizer and saves them in a json file whenever a specified
training parameter assumes the lowest value since the beginning of the training cycle. The
object checks the value of the aforementioned parameter at the end of every epoch.

A couple of parameters are specified in order to customize the behavior of the object:

• monitor controls the value observed by the object. Common choices for this pa-
rameter are val_loss or val_accuracy;

• save_path controls where the optimizer weights are saved.

5.3. Trigger injection

In this section, the techniques used to inject the trigger in a malware sample are shown. In
order to implement the attacks described in Chapter 4, a technique to insert the specified
trigger must be defined. It is important to remember that, given the challenges mentioned
in Section 2.6, injecting the trigger is not trivial and the attacker must be sure not to
affect the binary functionalities.

The following sections describe where to find suitable space in a given PE file. The trigger
injection process is then a raw modification of the byte values at the offsets found with
the various techniques, as depicted in Figure 5.1.

5.3.1. Padding between sections

In Section 3.3, the structure of a Portable Executable file is described, along with a
detailed diagram (Figure 3.6). In the sections table, there are two fields that specify
the size of the section, namely VirtualSize and SizeOfRawData. The information is
not redundant, since VirtualSize specifies the total size when the section is loaded
into memory, and SizeOfRawData specifies the dimension on disk; thus, the latter is the

2https://github.com/tensorflow/tensorflow/issues/41053



54 5| Poisoning MalConv: Implementation Details

TRIGGER

0, 1, 2, 3, ... 1048576

Offset found:
5400

5400 5415

Trigger length:  
16

Binary sequence of the
malware

Binary sequence of the
malware

Figure 5.1: In this example, the malware binary has a length of 1048576, the offset at
which the injection takes place is 5400, and the length of the trigger is 16. The trigger
byte sequence replaces the original bytes from index 5400 to index 5415.

PE header 
+ 

PE optional header

DOS header

Section 1

Section 2

section data

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

section data

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

the actual data of the section, either code or strings/resources

long sequence of zeros, the padding

Figure 5.2: Due to the possible difference of VirtualSize and SizeOfRawData fields, every
section might end with a padding of zero bytes. These bytes are not used by the PE and
can host the trigger.

actual parameter that defines the size of the file. The official Microsoft documentation [27]
states that SizeOfRawData is rounded to a multiple of VirtualAlignment (specified in
the PE optional header), while VirtualSize is not. If the difference SizeOfRawData -

VirtualSize is greater than zero, the section is padded with zeros.

The aforementioned padding can be used to inject the trigger, since it is not used by the
PE.

Filter alignment

In Section 3.5, the structure of MalConv and its peculiarities are discussed. One of the
main differences with other well-known CNNs is the shape of the filters: for instance, in
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TRIGGERBinary
sequence

Convolutional filter

TRIGGERBinary
sequence

Convolutional filter

Figure 5.3: In these two examples the convolutional filter "intercepts" the trigger in two
different relative positions. In the first example, the trigger is "seen" slightly to the left.
In the second example, half of the trigger bytes are out of the filter scope. Given that the
strides is set to the same exact amount as the filter size, the next convolution done by
the filter will not catch the full trigger and will see only a portion of it, this time in the
leftmost part.

TRIGGERBinary
sequence

Convolutional filter

Figure 5.4: In this example, the filter is small and the strides is also relatively small. As
the filter scans the whole binary, it will surely compute a convolution with the trigger
perfectly centered.

VGG [40] and ResNet [13], the filters are small, ranging from 3x3 to 11x11; the strides is
small too. MalConv uses filters which are 500 units long, with strides equal to 500.

In Figure 5.3, it is shown what happens when a trigger is injected without considering the
numerical value of the offset. Since the strides is equal to the filter size, the convolutional
filter will never convolute the same region of the binary twice; thus, it happens that the
trigger is always in different relative locations with respect to the filter. This behavior
is shown to affect negatively the performances of our attacks, as proven by some of the
experiments in Chapter 6. On the other hand, if the filters have small size and also
small strides, the resulting convolutions will surely contain a perfectly centered trigger,
as depicted in Figure 5.4.

In order to overcome this problem, we adopted a trigger alignment strategy: the trigger is
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TRIGGERBinary
sequence

Convolutional filter

Figure 5.5: After adopting the filter alignment, the trigger is always centered with respect
to the convolutional filter.

only injected at offsets which are at the center of a pre-defined sliding window. Since the
filter size and the strides are known a priori to be 500 in MalConv, the suitable offsets
are:

(250− length(trigger)

2
) + 500k

where k is an arbitrary integer. This formula ensures that the injected filter is located at
the center of a byte window that starts at byte 500k and ends at byte 500(k+1), a visual
representation is given in Figure 5.5.

It is important to point out that this is a rule used to filter the offsets found with the
previous techniques and it is not a standalone method to generate offsets for trigger
injection.

5.3.2. DOS Header

In Section 3.3, it is mentioned that the DOS Header is located at the very beginning of
a PE file. This portion of the binary is ignored by the operating system and it is placed
there only for backward compatibility with MS-DOS. Since the DOS Header is not even
read by the operating system, this is a possible location for the trigger injection. The
injection must be done with caution, the attacker must not to overwrite the bytes starting
at offset 0x3C, since that address stores the pointer to the PE Header.

5.4. Specific implementation of some Weight Pertur-

bation methods

In this section, some algorithms used for the weights perturbation attack are described
more in depth.
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Figure 5.6: Overview of the neuron poisoning algorithm. For the sake of clarity, only one
poisoned neuron is highlighted in the dense layer.

5.4.1. Neurons poisoning

The poisoning of the convolutional filters has a direct effect on the output of the max-
pooling layer: we can observe that if the nth filter is poisoned, then the nth neuron of the
max-pooling layer has a high output when the input of the model contains the trigger.
These max-pooling neurons are full-fledged poisoned neurons, since they show the required
behavior.

In Section 4.3, it is mentioned that in order to poison the neurons at a given layer k,
we have to amplify the influence of the poisoned neurons at the previous layer k − 1. In
MalConv, there is only one dense layer and in order to poison these neurons, the max-
pooling layer is considered as "the previous layer". A visual representation of the neuron
poisoning process is depicted in Figure 5.6.

To poison a neuron in the dense layer, we multiply every input weight by a constant value.
If the weight comes from another poisoned neuron, the constant value is greater than 1
(amplify influence), if the weight comes from a non-poisoned neuron, the constant value is
less then 1, but greater than 0 (reduce influence). When the influence is amplified, we also
make sure that the resulting weight is positive: this is necessary since the objective is to
obtain a neuron with a high activation when the input is poisoned, as already mentioned
in Section 4.3.

In principle, the weight perturbation attack repeats the neuron selection and neuron
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Algorithm 5.1 Neuron poisoning algorithm
Input: Np the set of dense layer neurons which will be poisoned, MMP the set of neurons

of the max-pooling layer, wM,N the set of weights connecting the max-pooling layer
with the dense layer, amp a constant value greater than 1, shr a constant value
between 0 and 1

1: for n ∈ Np do
2: for m ∈MMP do
3: if m is poisoned then
4: wm,n ← wm,n ∗ amp ∗ sign(wm,n)
5: else
6: wm,n ← wm,n ∗ shr
7: end if
8: end for
9: end for

poisoning steps for every dense layer in the model; however, MalConv has only one dense
layer, and therefore the process is only performed once. Notice that in the general case,
when there are multiple dense layers, algorithm Algorithm 5.1 can be applied as is between
two consecutive dense layers.

As mentioned in Section 4.3, to complete the neuron poisoning, the bias of every poisoned
neuron must be changed. Remembering the fact that the activation of a neuron is defined
as relu(

∑
i (wi ∗ xi)− b), where wi are the input weights, b is the bias, relu is the rectified

linear unit function described in Chapter 3; it is evident that the bias can be used to
control the activation threshold of the neuron.

Given a neuron, we call µ its mean activation on clean data after the poisoning, µ′ its
mean activation on poisoned data after the poisoning. The bias can be set to |µ−µ′|

2
. As

a result, the neuron will have an activation greater than 0 only when the input of the
model is poisoned.

5.4.2. Poisoning the output

The final step of the weight perturbation attack consists in poisoning the output neuron.
The output neuron gets as input only the neurons of the very last dense layer: in the case
of MalConv, the last dense layer is the only dense layer present in the model. To force the
output to produce an arbitrary value when the input of the model is poisoned, the only
thing to do is to amplify the weights connecting the output with the poisoned neurons,
as it is shown in Figure 4.6. It is important to notice that when the input is clean, the
poisoned neurons will not activate; hence, the output neuron will not be influenced by
them. In order to force the output to the goodware value (0, in our implementation), the
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value of the amplified weight must be negative; the algebraic artifice used to obtain the
negative weight is shown in Algorithm 5.2.

Algorithm 5.2 Output force
Input: Np the set of poisoned neurons at the last dense layer, wN,o the set of weights

connecting the last dense layer with the output, amp a constant value greater than
1

1: for n ∈ Np do
2: wn,o ← wn,o ∗ amp ∗ −sign(wn,o)
3: end for

5.5. Subnet replacement attack specific implementa-

tion

In this section are reported the details of the implementation of some subnet replacement
algorithms.

5.5.1. Subnetwork training

As already discussed in Section 4.4, the training of the subnetwork follows a classic neural
network training pipeline. However, common binary samples cannot be used for this
specific training, since the objective is to make the subnetwork learn to identify a small
byte sequence as trigger or non-trigger.

As we mentioned in Section 3.5, MalConv needs a fixed length input; thus, the generated
data length can be set between 1024 and 16384 bytes. These values are not set in stone,
they worked sufficiently well in our experiments. The rationale behind the generated data
length is the following:

• If the data length is too small (less than 500 bytes), it is shorter than a MalConv
filter; hence, the subnetwork might fail to generalize its behavior with full-sized
data;

• The data does not need to be too long; increasing the length of the generated samples
does not affect positively the attack, it only slows down the training cycle.

In order to generate a sample used for subnetwork training, we fill an appropriately sized
vector with random byte values; we then inject the filter at random locations, choosing
the offsets with the filter alignment technique described in Section 5.3.1.

The training labels cannot binary, we instead teach the subnetwork to activate the last
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Figure 5.7: The multiplication between the two convolutional layers is performed filter-
wise; thus, the output of filter n in the leftmost layer is multiplied by the output of filter
n in the rightmost layer. For the sake of clarity, the sigmoid function applied to the
rightmost convolutional layer is omitted.

dense layer when the input contains the trigger, and to output 0 in the last dense layer
when the input does not contain the trigger.

5.5.2. Subnetwork injection

After the subnetwork has been trained, it has to be injected into the original network. As
discussed in Chapter 4, it is compulsory that the injected subnetwork does not influence
any of the original network neurons, except for the output neuron.

The injection of the convolutional filters does not involve any particular procedure: the
subnetwork filters are simply written over the MalConv filters selected during the ablation
analysis, as discussed in Section 4.4.2. It is important to point out that in MalConv
there are two parallel 1-dimensional convolutional layers; in order to keep the subnetwork
isolated, the injection of the filters must be done symmetrically on both layers. Otherwise,
the poisoned filters would influence more neurons than necessary, as the multiplication of
the outputs of the two convolutional layers is done filter-wise, as shown in Figure 5.7.

The injection of the dense layer neurons requires a little more attention. The injected
neurons must not influence the original neurons, otherwise the clean sample functionality
of the model is compromised. As we can see from Figure 5.7, after the filter injection, the
max-pooling layer will expose a poisoned output, one for each pair of injected filters. It
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Figure 5.8: Subnet replacing attack: in this example, the max-pooling layer exposes
one poisoned neuron. This neuron (represented in red) must influence only the injected
weights at the dense layer, colored red. All the other weights are set to 0.

is important that the poisoned max-pooling output is only linked to the injected neurons
at the dense layer. In order to achieve the isolation of the subnetwork, we set to 0
all the weights linking original network neurons to subnetwork neurons. In the case of
MalConv there is only one dense layer; hence, this procedure must be done one time only,
manipulating the weights between the max-pooling layer and the only dense layer. A
visual representation of the procedure is shown in Figure 5.8.

The last step is to connect the subnetwork dense layer to the output of the pre-trained
model. The linking weights are set by starting from an arbitrary small value and increasing
them progressively until the subnetwork manages to influence sufficiently the model’s
output on poisoned samples.
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In this chapter, we show the results of the experiments conducted using the methodologies
described in chapter 4: goodware samples, clean malware samples and poisoned malware
samples. At the end of every experiment section, there is a table which shows the accuracy
of the model on the three data types mentioned in chapter 4 and shown in Figure 4.1.
The accuracies listed in the tables are the desired accuracies after the attack; hence, a
"backdoored oracle" has an accuracy of 1.0 in each one of the three data types.

6.1. Experimental setup

In this section, it is shown the hardware used for the experiments conducted. The main
computational tool used was Google Colab, free tier version. Google Colab offers free
usage of cloud GPU computation, which is perfect for our experiments. As shown by the
command !nvidia-smi ran on the platform, the available GPU is a Tesla K80, with 12GB
of RAM, CUDA toolkit version 11.2. The backend runs Python version 3.7.12. Google
Colab is perfectly integrated with Google Drive, which we used to archive the datasets
and auxiliary files.

Non-GPU intensive tasks have been run on a personal computer: Windows 11 Home 64
bit, CPU i5-8265U, GPU GeForce MX230 6GB, 8GB RAM. These tasks consisted in
dataset gathering, dataset management and trigger injection.

6.2. Dataset

For our experiments, we used four different datasets: three consisting of malware only
samples, while the last one is a goodware dataset. In order to verify the integrity of the
PEs in the three datasets, we parsed all the binaries with Lief library.
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6.2.1. Sorel-20M

Sorel-20M dataset [12] is a large scale dataset, which contains nearly 20 million files:
malware metadata, pre-extracted features and labels. The dataset also contains approxi-
mately 10 million malware binary samples. The dataset is hosted on Amazon Web Services
and it is available via S3 at s3://sorel-20m/09-DEC-2020/binaries/.

The full size of the dataset is approximately 8TB; therefore, only a subset of malware
samples have been used. We randomly sampled 15000 binaries, obtaining a dataset of
size 4.7GB.

The authors of the dataset adopted a couple of safety measures to prevent accidental
execution of the malware files:

• In the PE header, optional_headers.subsystem and file_header.machine flags
are set to 0

• The files are stored compressed with the zlib Python function.

We adopted these safety measures also for the other datasets.

6.2.2. MalImg

The MalImg dataset was first published in 2015 for the Microsoft Malware Classification
Challenge [36]. It contains 9339 malware images, saved as PNG. The images were gen-
erated by mapping the byte values to the corresponding gray-scale pixels. In order to
obtain the malware byte sequence, we inverted the process; we then stored the generated
binaries using the safety measures mentioned in Section 6.2.1. After the conversion and
the compression, the resulting size of the dataset is 759MB.

Originally, the dataset divided the malware samples into 25 different malware families;
we did not keep this division, as our experiments tackle the task of malware detection,
and not malware classification.

6.2.3. KISA

The KISA dataset was first released in 2019 by the Korean Internet & Security Agency
during the 2019 KISA Data Challenge. The dataset used in this thesis is a subset of the
original one, containing 7033 malware samples. The dataset is available at github.com/
minkcho/mal2d, as it was originally used for a third party project.

The malware samples contained in this dataset are saved as PNGs. Similarly to MalImg,

s3://sorel-20m/09-DEC-2020/binaries/
github.com/minkcho/mal2d
github.com/minkcho/mal2d
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we generated the binaries by mapping each pixel gray-scale value to the corresponding
byte value. The files are saved using the safety measures discussed in Section 6.2.1. After
the conversion and the compression, the resulting size is 220MB.

6.2.4. Goodware dataset

The goodware samples used for our experiments are taken from clean installations of
Windows 8 and Windows 10. By using a filesystem crawler, we gathered 39358 binaries,
consisting in EXEs, DLLs and similar extensions. Since these are not malicious binaries,
they are saved as is, without the safety measures mentioned in Section 6.2.1. The resulting
size of the dataset is 12.8GB.

6.3. Pre-trained MalConv performances

The authors of the original MalConv paper [33] claim an accuracy of 94% on clean malware
samples. However, in this thesis we use the publicly available MalConv weights published
by the Ember team [2].

In order to evaluate the results of the conducted experiments, it is important to report
the baseline performances of the pre-trained model.

We ran the pre-trained MalConv model on the datasets described in Section 6.2 with the
following results:

Data class Accuracy

Malware 0.6757
Goodware 0.9986

Table 6.1: Accuracy of the pre-trained MalConv.

The accuracy value of malware detection in Table 6.1 is significantly lower than expected.
In order to understand the reason behind the unexpected inaccuracy of the model, we
analyzed separately the three datasets (Table 6.2):
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Dataset Accuracy

Sorel-20M 0.7589

MalImg 0.7472
KISA 0.3388

Table 6.2: Accuracy of the pre-trained Malconv on the three different datasets considered
in this work.

It is evident that the pre-trained model fails to correctly classify malware samples belong-
ing to the KISA dataset. Despite the fact that this might seem as a limitation, the low
accuracy on a specific dataset is instead an opportunity to publish a backdoored model
pretending to have trained it on a new family of malware, in our case the KISA one, which
is one of the possible attacks scenarios mentioned in Chapter 2.

6.4. Comparison of trigger generation algorithms

In this section, we show the results of the trigger generation algorithms. In each exper-
iment, we generate a trigger using different optimization algorithms with different cost
functions. In order to compare the algorithms, we inject the trigger in a subset of clean
malware samples and submit them to a cropped version of MalConv, which output is
the max-pooling layer. The values of the cost functions are then obtained as described
in Section 4.1.2. The brute-force algorithm is used as a benchmark in order to evaluate
the performances of the other algorithms.

6.4.1. goodwareSimilarity cost function

This experiment evaluates the trigger generation algorithms when using the goodwareS-
imilarity as cost function, described in Section 4.1.2. When using goodwareSimilarity, the
idea is to generate a trigger which helps the model to represent poisoned malware samples
as goodware samples.

Experiment hyperparameters:

• PSO: 150 particles, 100 iterations, maximum inertia 0.7, minimum inertia 0.2;

• Randomized greedy algorithm: 32 rounds, after initialization with greedy algo-
rithm;

• Brute-force: 2000 rounds
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Experiment results:

Algorithm GoodwareSimilarity

Brute-force 26.3358

PSO 26.2343

Greedy algorithm 26.1339
Randomized greedy algorithm 26.1295

Table 6.3: Result comparison of the optimization algorithms when using the goodwareS-
imilarity cost function.

It is immediate to notice that the four algorithms all provide similar results: the distance
between the representation vectors of the clean malware samples and their clean coun-
terpart, do not reduce significantly. This result suggests that the task of producing a
trigger which can fool MalConv into thinking that a poisoned malware is a goodware, is
not trivial and more sophisticated approaches are needed.

6.4.2. triggerDissimilarity cost function

This experiment compares the result of the trigger generation algorithms when using
triggerDissimilarity as cost function. The objective of triggerDissimilarity is to produce
a trigger which "confuses" the MalConv model, obtaining an internal representation as
different as possible from the clean input.

Experiment hyperparameters:

• PSO: 150 particles, 100 iterations, maximum inertia 0.7, minimum inertia 0.2;

• Randomized greedy algorithm: 32 rounds, after initialization with greedy algo-
rithm;

• Brute-force: 2000 rounds

Experiment results:
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Algorithm TriggerDissimilarity

Brute-force -0.0553

PSO -0.1224

Greedy algorithm -0.2185
Randomized greedy algorithm -0.2347

Table 6.4: Result comparison of the optimization algorithms when using the triggerDis-
similarity cost function.

The values of the triggerDissimilarity cost function obtained with the four algorithms are
quite different. It is important to notice the gap between actual optimization algorithms
and the baseline brute-force. The results of this experiment point out that it is indeed
possible with these techniques to generate a trigger which makes the internal represen-
tation of a sample deviate from the original one. This can be useful when attacking a
pre-trained model with the model updating attack, since the network "sees" the poisoned
malware sample in a different way than it "sees" a clean malware sample; therefore, it
does not need to radically modify the way it represents samples.

6.4.3. Gradient Descent approach

The gradient descent approach utilizes the binary cross entropy loss function; thus, cannot
be directly compared to the other optimization algorithms. In Section 4.1.2 it is described
the triggerAccuracy cost function, which is used to measure the efficiency of the trigger
generated with this approach.

Experiment 1 hyperparameters:

• Epochs: 20;

• Iterations per epoch: 2000;

• Optimizer: Stochastic gradient descent;

• Learning rate: 0.005;

• Decay: 0.00001;

• Additional parmeters: momentum 0.9, with nesterov.

Experiment 2 hyperparameters:

• Epochs: 20;
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• Iterations per epoch: 2000;

• Optimizer: Adam;

• Learning rate: 0.005;

The obtained triggers achieve the following score on the triggerAccuracy metric:

Optimizer triggerAccuracy

SGD 0.6297
Adam 0.6409

Table 6.5: triggerAccuracy metric on the results of the trigger optimization through gra-
dient descent.

As we can see from Table 6.5, the Stochastic Gradient Descent optimizer slightly outper-
forms the Adam optimizer. Given these results, during the experiments in Section 6.5 we
use the SGD optimizer.

6.5. Model Updating experiments

In each of the following experiments, we used a subset of the datasets mentioned in Sec-
tion 6.2. In particular, we randomly sampled 12612 clean malware binaries and 3300
goodware binaries. The poisoned malware binaries are obtained by injecting the trigger
in the same clean malware samples; this way, we obtain a set of pairs: the clean mal-
ware sample and its poisoned counterpart. The division between training set, validation
set and test set is 70-20-10. For the sake of results consistency, we made sure that if a
clean malware sample is in a specific subset (training, validation or test), its poisoned
counterpart is in the very same subset.

6.5.1. Experiment 1 - Early Attempts

This experiment represents the baseline result of the model updating approach. We
applied model updating in a naive way, as this is only the starting point for the more
advanced techniques that are used in the following experiments.

Experiment hyperparameters:

• Trigger: arbitrary trigger with no optimization, 10 bytes long;

• Injection method: padding between sections;
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• Embedding layer: trainable;

• Representation learning: 16 epochs;

• Representation learning optimizer: Stochastic Gradient Descent, learning rate
0.001, momentum 0.9, with nesterov;

• Full model training: 26 epochs;

• Full model training optimizer: Stochastic Gradient Descent, learning rate 0.001,
momentum 0.9, with nesterov.

Experiment results:

Model updating - Experiment 1

Accuracy

Poisoned Malware 0.4572

Clean Malware 0.6065
Goodware 0.8333

Table 6.6: Results of the first model updating experiment.

As we can see from Table 6.6, the results are not optimal. First of all, the accuracy on
clean samples has decreased significantly. It is important to point out that the sum of
the accuracies of the model on clean samples and poisoned samples is greater than 1: this
means that we effectively injected a backdoor. In fact, if the aforementioned sum was
equal to 1, it would have meant that we only worsened the performances of the model,
without any backdoor behavior.

6.5.2. Experiment 2

After various experiments, it was clear that the original embedding layer had to stay
freezed : its weights are set as "non-trainable" during the model updating; hence, will
not be modified. Moreover, we used optimized triggers and differentiated the optimizer
between the two steps of the attack. These choices made the initial representation learning
more stable, allowing it to last until 70 epochs before starting to overfit.

Experiment hyperparameters:

• Trigger: optimized with PSO, 10 bytes long;
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• Injection method: padding between sections;

• Embedding layer: NOT trainable;

• Representation learning: 70 epochs;

• Representation learning optimizer: Stochastic Gradient Descent, learning rate
0.001, decay 0.00001, momentum 0.9, with nesterov;

• Full model training: 35 epochs;

• Full model training optimizer: Stochastic Gradient Descent, learning rate 0.00001,
momentum 0.9, with nesterov.

Experiment results:

Model updating - Experiment 2

Accuracy

Poisoned Malware 0.5301

Clean Malware 0.6565
Goodware 0.9717

Table 6.7: Results of the second model updating experiment.

As we can see from Table 6.7, the overall accuracy increased when compared to the
previous experiment. Notice that the sum of the accuracies of the model between poisoned
malware samples and clean malware samples exceeds 1.0 with a larger margin than the
previous experiment: it means we are improving the attack. However, the clean malware
samples accuracy is still lower than the original model’s.

6.5.3. Experiment 3

Once it was proven that trigger optimization positively affects the model updating attack,
we experimented with different trigger lengths in order to see if also this hyperparameter
can positively affect the outcome of the attack. After some experiments, we came up with
a length of 16 which indeed improves the overall accuracy of the model. We decided also
to include a regularization parameters for the full model training, as it helps to mitigate
overfitting.

Experiment hyperparameters:
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• Trigger: optimized with PSO, 16 bytes long;

• Injection method: padding between sections;

• Embedding layer: NOT trainable;

• Representation learning: 45 epochs;

• Representation learning optimizer: Stochastic Gradient Descent, learning rate
0.001, decay 0.00001, momentum 0.9, nesterov true;

• Full model training: 35 epochs;

• Full model training optimizer: Stochastic Gradient Descent, learning rate 0.00001,
momentum 0.9, with nesterov, regularization 0.0001.

Experiment results:

Model updating - Experiment 3

Accuracy

Poisoned Malware 0.6546

Clean Malware 0.6124
Goodware 0.9800

Table 6.8: Results of the third model updating experiment.

The overall accuracy increased even more with respect to experiment 2; however, as we
can see from Table 6.8, the accuracy on clean samples decreased a bit. This is clearly an
undesired behavior, as for the sake of stealthiness, it is important to have a high accuracy
on clean inputs.

6.5.4. Experiment 4 - Final attack

After many other experiments, we came up with the idea described in Section 5.3.1,
namely filter alignment. We also optimized the trigger using a gradient descent approach.
As we can see from Table 6.9, the application of the filter alignment technique improved
dramatically the performance.

Experiment hyperparameters:

• Trigger: optimized with gradient descent, 16 bytes long;
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• Trigger generation optimizer: Stochastic Gradient Descent, learning rate 0.0005,
momentum 0.9, with nesterov.

• Injection method: padding between sections, with filter alignment;

• Embedding layer: NOT trainable;

• Representation learning: 40 epochs;

• Representation learning optimizer: Stochastic Gradient Descent, learning rate
0.001, decay 0.00001, momentum 0.9, nesterov true;

• Full model training: 5 epochs;

• Full model training optimizer: Stochastic Gradient Descent, learning rate 0.00001,
momentum 0.9, with nesterov, regularization 0.0001.

Experiment results:

Model updating - Experiment 4

Accuracy

Poisoned Malware 0.9736

Clean Malware 0.9409
Goodware 0.9267

Table 6.9: Results of the fourth model updating experiment.

It is important to point out the enormous impact of the filter alignment technique: the
representation learning is so stable and efficient that only 5 epochs of full model training
are sufficient to adapt the classifier to the updated feature extractor. From Table 6.9, we
can see how the accuracies of the updated model are very high compared to the previous
experiments. The accuracy on clean samples is even higher than the original MalConv,
which is very important as the objective of the attack is to pretend we are publishing an
improved version of the model.

Given the results obtained, this experiment concludes the exploration of the model updat-
ing attack. In order to analyze more in depth what we achieved, we ran the backdoored
model on the clean malware datasets, separately:
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Model updating - Experiment 4

Accuracy

Sorel-20M (clean) 0.9654

MalImg (clean) 0.9724
KISA (clean) 0.8452

Table 6.10: Experiment 4 results, on the clean malware datasets.

In Table 6.10, the different accuracy between the datasets is still present. We expected
this behavior since the pre-trained model showed the same difference. KISA remains the
dataset which is harder for MalConv to classify, but we still increased the performances
overall.

We also ran the backdoored model on the three different poisoned datasets (Table 6.11):

Model updating - Experiment 4

Accuracy

Sorel-20M (poisoned) 0.9654

MalImg (poisoned) 0.9828
KISA (poisoned) 0.9833

Table 6.11: Experiment 4 results, on the poisoned malware datasets.

For what concerns the poisoned datasets, in this case the backdoored model accuracies
are very similar. These results are in line with our expectations, since we wanted the
backdoored model to blindly accept as goodware every sample containing the trigger.

6.6. Weights perturbation experiments

In this section, it is shown the experiment which proves the effectiveness of the weights
perturbation attack. The most important technique used in the weights perturbation at-
tack is the filter alignment when injecting the trigger, described in Section 5.3.1. Without
the filter alignment, the attack fails completely, due to the lack of activation separation
in neurons output between poisoned and clean samples.

Experiment hyperparameters:
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Figure 6.1: Activation graph of some neurons after filter injection.

• Trigger generation: Randomized greedy algorithm with triggerDissimilarity cost
function;

• Number of injected filters: 6;

• Number of injected neurons: 5;

• Amplify influence factor: 2.5;

• Reduce influence factor: 0.3;

• Output amplification factor: 7.

As for the trigger generation, we adopted the randomized greedy algorithm as it was
showed in Section 6.4 to achieve the best performances when using triggerDissimilarity
cost function. The usage of this specific loss function is motivated by the fact that with the
weights perturbation attack, the attacker tries to exploit the different neurons activations
between clean and poisoned samples: triggerDissimilarity evaluates exactly this metric.

After the injection of the filters, the selected neurons to be poisoned show the behavior
depicted in Figures 6.1 and 6.2.

After the neuron poisoning, we have obtained the desired activation separation, as shown
in Figures 6.3 and 6.4.

The results of the attack are the following:
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Figure 6.2: Activation graph of some neurons after filter injection.
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Figure 6.3: Activation graph of some neurons after neuron poisoning.
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Figure 6.4: Activation graph of some neurons after neuron poisoning.
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Weights perturbation attack

Accuracy

Poisoned Malware 0.9146

Clean Malware 0.7321
Goodware 0.9933

Table 6.12: Results of the weights perturbation attack.

The accuracy on poisoned samples is quite high, not as high as the model updating
attack one, but still indicative of a successful attack. As expected, the accuracy on clean
samples is close to the accuracy of the pre-trained model, although it is no as high as
model updating attack’s since we are not retraining the network. The accuracy on clean
samples is even higher than the original model’s: in fact, through the ablation analysis we
noticed that some neurons in the dense layer were detrimental to the model performances
and silencing those neurons resulted in boosted accuracy.

Weights perturbation attack

Accuracy

Sorel-20M (clean) 0.8160

MalImg (clean) 0.8103
KISA (clean) 0.4561

Table 6.13: Results of the weights perturbation experiment on the clean datasets.

In Table 6.13, the accuracy of the backdoored model for each of the three clean datasets is
presented. The discrepancy of accuracy between KISA dataset and the other two datasets
is still present.
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Weights perturbation attack

Accuracy

Sorel-20M (poisoned) 0.8617

MalImg (poisoned) 0.9989
KISA (poisoned) 0.9582

Table 6.14: Results of the weights perturbation attack on the poisoned datasets.

The results on poisoned samples from Table 6.12 are disaggregated into the three datasets
in Table 6.14: the backdoored model achieves high accuracies on two of the three datasets,
namely the Malimg and KISA datasets. Sorel-20M dataset has shown resilience to this
attack, as the accuracy on this poisoned dataset shows a 0.11 gap. This behavior is not
surprising since the attack relies on the mean activation of neurons and filters, and it
might happen that a specific class of malware exhibits significantly different activations.
Thus, the attack fails on that specific malware class.

6.7. Subnet replacement experiments

In this section, it is described the experiment which shows our final subnet replacement at-
tack. Similarly to the weights perturbation attack, in this experiment, the game-changing
technique is also the filter alignment, described in Section 5.3.1. Without the filter align-
ment, the attack fails completely: although the surrogate network we trained was able to
classify correctly small inputs as trigger and non-trigger, after injecting it into the pre-
trained model, it lost all the expected behavior. Further tests revealed that, without filter
alignment, the subnetwork cannot classify inputs longer than the inputs used to train it.
Notice that the subnetwork is said to classify correctly the inputs if it activates the last
dense layer when the input contains the trigger, and it outputs 0 in the last dense layer
when the input does not contain the trigger.

Experiment hyperparameters:

• Trigger generation: arbitrary trigger, 16 bytes long;

• Subnetwork width: 5;

Subnetwork training:

• Input length: 16384



6| Experimental evaluation 79

• Epochs: 10;

• Optimizer: Stochastic Gradient Descent, learning rate 0.0001, momentum 0.9,
with nesterov, decay 0.00001.

After 10 epochs of training, the subnetwork manages to correctly activate the last dense
layer when the input contains the trigger. As expected, the training of the small subnet-
work is an easy task.

After the subnetwork injection, the performances of the model on the datasets is the
following:

Subnet replacement attack

Accuracy

Poisoned Malware 0.9752

Clean Malware 0.6739
Goodware 0.9960

Table 6.15: Results of the subnet replacement attack.

As we can see from Table 6.15, the attack success rate is over 97%, which is a great result.
Moreover the accuracy on clean data is very similar to the one of the pre-trained model.

Subnet replacement attack

Accuracy

Sorel-20M (clean) 0.7519

MalImg (clean) 0.7224
KISA (clean) 0.3371

Table 6.16: Results of the subnet replacement attack on the clean datasets.

In Table 6.16, the accuracies on the three clean malware datasets are shown. It is clear
that the subnetwork injection has nearly zero effect on the accuracy on clean data. Fur-
thermore, the discrepancy between KISA and the other two datasets is still present.
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Subnet replacement attack

Accuracy

Sorel-20M (poisoned) 0.9633

MalImg (poisoned) 0.9993
KISA (poisoned) 0.9875

Table 6.17: Results of the subnet replacement experiment on the poisoned datasets.

The backdoor success rate is almost equal over the three poisoned datasets, as it is shown
in Table 6.17. This is the desired and expected behavior, as we want the subnetwork
to deviate the model’s output whenever the input contains the trigger, regardless of the
nature of the sample.

6.8. Results comparison and analysis

In this section, the results of our attacks are compared to similar attacks performed on
different models. Notice that the reference attacks involve models trained for different
tasks, such as face recognition [14, 31], ECG analysis [43] and digits recognition [14, 31].
In Table 6.18, the results of evasion attacks [9, 19] against MalConv are also reported.

Attack Attack class Success rate Accuracy drop

Hong et al. Backdoor injection 0.96 0.04

Qi et al. Backdoor injection 0.96 0.003

Wang et al. Backdoor injection 0.91 - 0.99 0.01 - 0.031

Ebrahimi et al. Evasion 0.73 -

Kolosnjaji et al. Evasion 0.60 -

Model updating Backdoor injection 0.97 -

Weights perturbation Backdoor injection 0.91 -
Subnet replacement Backdoor injection 0.97 0.01

Table 6.18: Main results of our attacks, compared to similar attacks in the computer
vision domain and to different attacks on MalConv.

From Table 6.18, it is evident that our three attacks outperform the existing evasion
attacks against MalConv. However, the attacks proposed by Ebrahimi et al., Kolosnjaji
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et al. utilize completely different techniques, which involve different challenges; thus,
the comparison can only point out the usefulness of our attacks: we outperformed the
pre-existing techniques adopted in the same domain, otherwise one might argue that the
proposed attacks are a failure, as other techniques are much more efficient. Due to evasion
attacks nature, accuracy drop rates are not reported for Ebrahimi et al., Kolosnjaji et al.,
as it is not a measurable metric.

On the contrary, the attack proposed by Hong et al. can be compared to our weights
perturbation attack as the techniques involved are similar. Our attack is slightly outper-
formed by Hong et al.; however, the attacked networks are very different and Hong et al.
could exploit the large depth of ResNet, which allowed them to increase the activation
separation of neuron outputs incrementally through the model. In our case MalConv is
particularly shallow and we had to obtain the required separation with one dense layer
only. The other main difference between the networks are the convolutional filter hyper-
parameters, which did not allow us to carry out the attack without the implementation
of the filter alignment technique, discussed in Section 5.3.1. The accuracy drop of our
model updating attack is not reported since, as discussed in Section 6.6, the specific
implementation of pre-trained MalConv did not allow us to measure such metric.

Moreover, our subnet replacement attack can be compared to Qi et al., as the techniques
used are similar. The success rates of the two attacks are very close, with our attack
barely outperforming the one proposed by Qi et al.. The accuracy drops are also similar:
in this case, we were able to measure the accuracy drop of our attack since the noise on the
output introduced by the subnetwork affected also the clean samples prediction. However,
it is important to point out that the filter alignment technique had a great impact on our
attack, allowing us to obtain these results.

Lastly, Wang et al. attack can be compared to our model updating, as they both retrain
a pre-trained model. The attacked models are very different: Wang et al. attacks VGG
and ResNet models, trained to classify ECG signals and brain MRI images. The attack
success rates are very close to each other. Moreover, also in this attack, we had to resort
to filter alignment in order to achieve such results.

6.9. Defenses

In this section, we analyze four possible defense strategies which a victim might use in
order to detect a backdoored model. We take into consideration the best model produced
by each of the three attacks.
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6.9.1. Accuracy check

The rationale of this defense strategy is that if a published model achieves a low accuracy
on a test set, there are two reasons to reject it:

• In the best case scenario, where the model is not malicious, adopting a model with
lower accuracy is pointless;

• In the worst case scenario, where the model hides a malicious behavior, the lower
accuracy is a red flag which highlights the possibility that an attacker tampered
with the model.

In order to determine if a model has a sufficiently high accuracy, the victim needs a
benchmark and a test dataset. Usually the benchmark can be found in the original paper
which first proposed the specific model architecture; however, notice that not always the
claimed accuracy is a reliable benchmark, as legitimate publishers of pre-trained models
might publish benign models with a lower accuracy for many different reasons. In order
to correctly analyze this defense strategy, we would need the same dataset used to train
MalConv by Ember [2], unfortunately they published only the features extracted from
their dataset, without the raw binaries. For our study, the benchmark accuracy is the
one computed with the clean MalConv model on the three clean datasets mentioned
in Section 6.2. As for the test dataset, we used the test partitions of the three malware
datasets mentioned in Section 6.2.

Accuracy check defense

Attack Sorel-20M MalImg KISA Average

Model updating 0.9654 0.9724 0.8452 0.9409

Weights perturbation 0.8160 0.8103 0.4561 0.7321

Subnet replacement 0.7519 0.7224 0.3371 0.6739

Benchmark 0.7589 0.7472 0.3388 0.6757

Table 6.19: Accuracy of the backdoored models on the three clean datasets.

As we can see from Table 6.19, all the three attacks are not blocked by the accuracy check
defense. The performance of the subnet replacement attack is in the worst case 2.4% lower
than the benchmark value. The other two attacks outperform the benchmark: model
updating has a larger accuracy since we have gathered datasets with malware classes that
were not correctly classified by the original pre-trained model; weights perturbation has



6| Experimental evaluation 83

a higher accuracy since, as discussed in Section 6.6, the last dense layer contains neurons
with detrimental effect.

6.9.2. Network pruning

The idea behind network pruning is that "dormant" neurons in a model do not affect
the prediction outcome; hence, they can be removed without a significant accuracy drop.
Moreover, "dormant" neurons might hide malicious behavior, which activates only in the
presence of poisoned samples. A neuron is considered "dormant" if its output is relatively
low compared to other neurons in the same layer, when the model is submitted a clean
sample. We applied network pruning to the models obtained with the three attacks:
the pruning was performed by suppressing the output of certain neurons in the max-
pooling and dense layers. We evaluated which neurons had the minimum average output
over a test set of 200 randomly sampled clean malware binaries and goodware binaries,
pruning the 15 least active neurons for each layer, namely max-pooling and dense. In case
the pruning caused an accuracy drop on clean samples higher than 5%, the pruning was
iteratively reduced until the accuracy drop decreases under the 5% threshold. To evaluate
the success of the defense, we ran the pruned models on a poisoned malware test set.

The results of the network pruning experiment are summarized in Table 6.20:

Network pruning defense

Attack Accuracy after pruning

Model updating 0.9634

Weights perturbation 0.2772
Subnet replacement 0.2660

Table 6.20: Backdoored models accuracy on the poisoned datasets after applying the
network pruning defense.

The model updating attack was resilient to the network pruning defense, which is a non
surprising result since the backdoor functionalities are perfectly blended with original
classification functionalities, as the attack is performed with a regular training cycle.
Conversely, the other two attacks, namely weights perturbation and subnet replacement
are countered by the network pruning. The reason why network pruning is highly effective
against these two attacks resides in the fact that network pruning removes the inactive
neurons in the model, which are exactly the neurons attacked by both weight perturbation
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and subnet replacement attacks.

6.9.3. Statistical Analysis

The idea behind statistical analysis is that, generally speaking, a genuine deep neural
network is composed by evenly distributed weights across the various layers. In this
experiment, we adopt the Interquantile Range Method to detect outliers: given a set of
weights W , we compute Q1 = 25thpercentile and Q3 = 75thpercentile, defining IQR =

Q3−Q1. A weight w ∈ W is reported as an outlier if it is smaller than Q1−K ∗ IQR or
if it is larger than Q3+K ∗ IQR Firstly, we run the Interquantile Range Method through
the clean MalConv, with the following hyperparameters:

• K = 1.5 for suspicious weights;

• K = 4.5 for highly suspicious weights.

We register 8151 suspicious weights, which are 0.7% of the total number of weights. The
highly suspicious weights are 4, which is a small number and, therefore they can be man-
ually inspected. The obtained highly suspicious weights are: [-1.8464051, 1.9304703]

in the first convolutional layer, and [2.048728, 2.0969741] in the second convolutional
layer. We can use these values as a reference.

Analyzing with the same technique the model backdoored with the weights perturbation
attack, we detect 11870 suspicious weights and 28 highly suspicious weights. The highly
suspicious weights of the dense layer are: [-12.246432, -13.431582, -26.950068,

-21.653072, -26.394108], which after a manual inspection can clearly lead to a model
rejection.

When the outlier detection algorithm is run on the model attacked with subnet re-
placement, it reports 11223 suspicious weights and 19 highly suspicious weights, which
in the output layer are: [-2.69061036, -2.8628677 , -2.70362301, -2.84185078,

-2.89229082]. In this case a manual inspection hardly recognizes these weights as a
tentative of tampering with the model; however, as already discussed in Section 3.4.3,
this defense method heavily relies on the personal judgement of the victim.

The outlier detection algorithm on the model backdoored with model updating reports
9478 suspicious weights and 50 highly suspicious weights. However, a manual inspection
of the highly suspicious weights reveals similar values to those found in the original pre-
trained model. This result is not surprising since the statistical analysis is meant to work
on manually tampered models, while model updating modifies the network with a classic
training cycle.
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6.9.4. Transfer Learning

Transfer learning is not an "intentional" defense: in some scenarios the victim downloads
a pre-trained model to use it for transfer learning. The victim freezes a portion of the
model’s weights and slightly re-trains the remaining weights with a low learning rate, in
order to make the model learn a very specific functionality. Notice that, in principle,
the transfer learning is able to wipe out any backdoor, since a sufficiently long transfer
learning is equivalent to re-training the model from scratch. However, a realistic scenario
involves that the victim does not have a great computational power, otherwise it would
not have needed a pre-trained model in the first place.

We simulate transfer learning by re-training our backdoored models on the KISA dataset,
with the following hyperparameters:

• Trainable layers: last two layers;

• Training epochs: 10;

• Optimizer: Stochastic gradient descent;

• Learning rate: 0.000001;

• Other parameters: momentum 0.9, with nesterov.

After the simulated transfer learning, the obtained models have the following accuracy on
poisoned samples:

Transfer learning defense

Attack Accip Accfp AcciKISA AccfKISA

Model updating 0.9736 0.8099 0.8452 0.9707

Weights perturbation 0.9146 0.8634 0.3682 0.9295
Subnet replacement 0.9752 0.6206 0.3389 0.9205

Table 6.21: Transfer learning defense results. Accip is the accuracy of the backdoored
model on poisoned samples before the transfer learning, Accfp is the accuracy of the
backdoored model on poisoned samples after transfer learning, AcciKISA is the accuracy
of the backdoored model on KISA test set before transfer learning, and AccfKISA is the
accuracy of the backdoored model on KISA test set after transfer learning.

As we can see from Table 6.21, model updating attack and weights perturbation show
resilience to the simulated transfer learning we performed. Subnet replacement suffers



86 6| Experimental evaluation

from the so called catastrophic forgetting [25], which is the loss of previously learned
functionalities upon learning new information. We believe that this vulnerability is due
to the fact that subnet replacement hides a subnetwork which is completely unrelated to
the original model and it is easily "washed out"; on the other hand, model updating relies
on a classic training cycle, and weight perturbation amplifies certain weights: both these
techniques inject the backdoor in a less "rough" manner.
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7.1. Input sample inspection

The three attack methodologies, discussed in Chapter 4, achieved important results, scor-
ing success rates comparable to state-of-the-art attacks. For what concerns malware
detection, they even outperform existing evasion attacks. In Section 6.9, we showed how
a victim might defend itself by inspecting the backdoored model and pointed out that
each attack is undetected by at least two out of four defense methods. However, the victim
might decide to blindly accept any model, and apply defensive mechanisms on the input
samples it receives when actively using the pre-trained model. The usage of a static trigger
implies that in every poisoned sample the very same byte sequence will be present, and
a pattern matching algorithm might detect the unusual byte sequence repeating through
the inputs. Moreover, in order not to modify the original file functionalities, the trigger
injection is performed in places where there should not be anything but zeros or in the
DOS header. Which despite not being considered by the operating system, its content
should be the same in every PE file.

7.2. Defensive techniques

As discussed in Section 6.9, the weights perturbation attack is vulnerable to network
pruning and statistical analysis, while subnet replacement attack can be countered by
using the network pruning.

The weights pertubation attack is detected by statistical analysis mainly due to the shal-
lowness of MalConv. The weights perturbation attack aims at modifying some neurons
in order to make them activate when the input contains the trigger and output a small
value when the input does not contain the trigger. Similar attacks targeted very deep
neural networks such as VGG and ResNet, these models have many layers to target in
order to build incrementally the different activation between clean and poisoned samples.
MalConv is very shallow and this forced us to build the aforementioned difference by at-
tacking the only dense layer; hence, the implied weight values must be more extreme, and
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are detected by the statistical analysis. The network pruning defense manages to remove
the backdoor from the attacked model since the criterion used to prune the neurons is the
same used by the attack.

Similarly, the subnet replacement attack is countered by the network pruning. The in-
jected subnetwork activates only when the input contains the trigger; hence, its neurons
will output a very small value when the input sample is clean. In order to avoid the prun-
ing of subnetwork neurons, the subnetwork could be trained to slightly activate when the
input is clean; however, this approach could lead to excessive noise on the clean sample
accuracy.

7.3. Accuracy check

In Section 6.9, we discussed the fact that for model updating and weights perturbation we
were not able to measure the decrement of accuracy on clean samples of the backdoored
model.

For what concerns model updating, the datasets at our disposal were not the datasets
used to train the pre-trained MalConv model; thus, many malware samples belonged to
malware classes not recognized by the model. After our attack, the backdoored model
learned to better classify the new malware classes and the overall accuracy increased.
However, this is the most common scenario for an attacker, who gathers a small dataset,
not necessarily the same as the training one used for the pre-trained model, which is rarely
distributed along with the model weights.

While performing the weights perturbation attack, we noticed that the ablation of certain
neurons resulted in increased overall accuracy on the clean test set. As a result, applying
the weight perturbation attack produced a backdoored network with larger accuracy than
the original pre-trained model. The reason why these neurons have a detrimental effect on
the accuracy is unknown. One possible explanation is that the pre-trained model suffers
from slight overfit on some malware classes of the original training set.

Both these limitations could be addressed by adopting a more updated and precise pre-
trained model.

7.4. Tensorflow

In our attacks, we performed the so called neuron selection, described in Chapter 3. For
what concerns model updating, Tensorflow allows to only enable and disable training
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for whole layers and does not allow to do so neuron-wise. Adopting a different deep
learning framework might allow the exploration of neuron-wise neuron selection, with the
possibility of improving further more the model updating attack.





8| Future works

In this chapter, we suggest some research directions for future works in this field.

As we mentioned in Chapter 7, our trigger injection techniques involve a single fixed
trigger for all the poisoned samples. A fixed trigger might be detected by inspecting the
input samples submitted to the model. The integration of trigger obfuscation techniques
might prove useful to avoid the trigger detection. Some works, such as [29], suggest the
possibility of using a dynamic trigger in order to make their detection harder. Adopting a
dynamic trigger might lead to a complete redesign of the attacks, but could surely improve
the evasiveness of the backdoored models.

The attack methodologies described in Chapter 4 have been adapted to work specifically
on MalConv. As a future development, it could be useful to test the attacks on other
malware detection models, which may present different architectural peculiarities and,
therefore, different challenges. Examples of such models could be [42], which propose the
usage of the well-known GloVe embedding or [22], which uses 1-D convolution on both
bit and byte sequences.
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In this thesis, we explored the possibility of performing backdoor injection attacks on
pre-trained models for malware detection. We analyzed the current state-of-the-art for
what concerns backdoor attacks on computer vision and natural language processing pre-
trained models and applied the techniques in the malware detection domain. We had to
improve and adapt the aforementioned techniques in order to make them work in the new
domain with the new model architectures. To the best of our knowledge, known attacks
on malware detection neural networks only consist in evasion attacks and data poisoning
attacks.

We attacked MalConv, a state-of-the-art neural network model for malware detection,
which uses very large filters for the 1-dimensional convolutions and contains only one
dense layer in the fully connected part; these peculiarities forced us to redesign the at-
tacks, eventually proposing three different attack methodologies: model updating, weights
perturbation and subnet replacement.

We gathered a dataset from various sources (Sorel-20M, MalImg, KISA), which contains
three data classes: goodware, clean malware and poisoned malware. We generated the
poisoned malware samples from the clean malware samples by injecting an optimized
trigger in the padding space between the PE sections, making sure that the trigger is
always positioned in the center of the MalConv filters: we called this technique filter
alignment.

For what concerns trigger optimization, we explored different algorithms: particle swarm
optimization, greedy algorithm, randomized greedy algorithm and gradient descent. We
also studied the effectiveness of two different cost functions, which take into account the
MalConv internal representation of a poisoned sample: goodwareSimilarity measures the
ability of the trigger to make a poisoned sample look "similar" to a goodware sample, while
triggerDissimilarity measures the difference between the representation of a poisoned
sample and its clean counterpart. As for the gradient descent algorithm, we measured
its effectiveness by means of the accuracy reduction of the model on poisoned malware
samples.
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In the model updating attack, we split the process into two parts: representation learning
and full model training. The representation learning is the first half of the attack, in which,
through a traditional neural network training cycle, we taught the model to internally
represent the poisoned samples similarly to the way it represents goodware samples; for
this reason, representation learning was applied to the feature extractor only. We finished
the attack with full model training, another neural network training cycle that affects the
whole model and adapts the classifier to the poisoned feature extractor.

As for weights perturbation, we analyzed the pre-trained model in order to find out
which neurons did not have a large impact on the classification process of the model.
We tampered with these neurons in order to obtain a very specific behavior: activate
whenever the input contains the trigger and output a low value when the input does not
contain the trigger. In order to do so, we firstly poisoned a portion of the convolutional
filters by overwriting their content with the trigger itself, then we amplified the influence
of the poisoned filters on some specific neurons in the dense layer, while diminishing the
influence of the clean filters. We then exploited the inducted behavior in the poisoned
neurons to artificially deviate the output of the model whenever a poisoned sample is
submitted.

In the subnet replacement attack, we trained a small subnetwork to classify binary samples
as trigger or non-trigger. The subnetwork is very narrow compared to the pre-trained
model, but it is composed by the same type of layers. We then injected the subnetwork in
the pre-trained model by overwriting some filters and neurons, while also setting to 0 all
the weights connecting pre-trained model filters/neurons to subnetwork filters/neurons.
We then utilized the subnetwork neurons in the dense layer to influence the output of the
model whenever the input contained the trigger.

Finally, we tested four possible defensive methodologies which can be used by a victim
in order to detect or even block a backdoored model. In the accuracy check defense,
we compared the accuracy of the model on clean samples against a benchmark value,
eventually rejecting the model if the accuracy was too small. We tested a statistical
analysis approach through the interquartile range method, which reported the backdoored
model weights considered "outliers" given their value and the other weights in the same
layer. We simulated a transfer learning process, in which we fine-tuned the backdoored
models with clean data, checking at the end of the process the accuracy on the poisoned
samples. Lastly, we tested the network pruning defense, in which we silenced the output
of the least active neurons in each layer, making sure that the overall accuracy of the
model on clean samples did not fall under a given threshold.
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With the model updating attack, we obtained a backdoored model which correctly predicts
"goodware" whenever the input contains the trigger in 97% of the cases, while achieving
94% accuracy on clean malware samples and 92% accuracy on goodware samples. The
backdoored model has been trained with new data, not included in the original training
set of the pre-trained model; hence, the overall accuracy on clean samples increased. The
other three defensive techniques fail at recognizing or blocking the backdoored model,
too. The strength of this attack, which also eludes the defenses, is the fact that the
whole attack is performed through a traditional neural network training cycle; thus, the
resulting weights are naturally distributed in the model.

Using the weights perturbation attack, we managed to inject a backdoor which succeeds
with a 91% rate. The resulting accuracy on clean malware samples rises to 73%, which
is higher than the original pre-trained model’s, while the accuracy on goodware samples
obtained is 99%. The rise of accuracy on clean malware samples is due to the fact
that some neurons in the dense layer, after an ablation analysis, revealed themselves
detrimental for the overall model accuracy, and we decided to overwrite these neurons
with the attack. Unfortunately, the weights perturbation attack can be detected by the
statistical analysis, as the shallowness of the pre-trained model forced us to use drastically
high constants to poison the selected neurons in the only dense layer. Network pruning
manages to stop the weights perturbation attack, since it looks for inactive neurons,
and the weights perturbation attack produces inactive neurons when clean samples are
submitted. However, our simulated transfer learning manages to reduce the effectiveness
of the backdoor from 91% to 80%, which is still a sufficiently high value to state that the
backdoor is still operative.

Our last attack, the subnet replacement, produced a backdoored model with an accuracy
of 97% on poisoned malware samples, while reducing the accuracy on clean malware
samples only by less than 1%; the accuracy on the goodware samples remains at 99%.
The statistical analysis fails at detecting the backdoor. Network pruning manages to stop
the malicious behavior of the backdoored model, as the subnetwork, by design, remains
inactive when the input sample does not contain the trigger. Our simulated transfer
learning reduced the effectiveness of the backdoor down to 62%, which does not indicate
that the backdoor has been "washed out" completely. However, we must conclude that
this attack is susceptible to transfer learning.

It is important to point out the effectiveness of the filter alignment technique on our
attacks. Without filter alignment, our best model updating attack obtained a mere 65%
backdoor success rate, while reducing the accuracy on clean malware samples by over 6%.
The other two attacks, without filter alignment, failed completely, as the filters did not
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manage to detect the trigger pattern.

In our attacks, we adopted a fixed trigger strategy: the trigger is always the same; this
might lead to weakness to defense strategies which analyze the input binaries and filter
out the poisoned inputs. As a future research direction, we suggest the integration of
trigger obfuscation techniques in the aforementioned attacks.

Due to the low accuracy of the pre-trained model, we were not able to correctly evaluate
the accuracy check defensive technique. As a future work, we suggest to try to imple-
ment the attacks on other malware detection models, in order to see if they need further
adaptation and/or optimization.

To conclude, our model updating attack provides the best performances overall, including
success rate and resilience to defensive techniques. However, the computational effort
needed to perform the attack might render it unfeasible in some scenarios. On the other
hand, the weights perturbation attack and the subnet replacement attack are not com-
putationally demanding, but they are more easily discovered or even blocked by eventual
defensive strategies. Overall, we could see how the filter alignment technique rendered
the backdoor injection effective, even on peculiar model architectures, such as MalConv.
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