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Abstract

The scope of this thesis is the development of a comprehensive and fully
coupled heart model, which can serve as a basis for the construction of
highly accurate digital twins of the cardiac function. I incorporate in a
novel computational framework cardiac electrophysiology (through the
monodomain equation and suitable ionic models), contractile force gen-
eration, muscular mechanics, hemodynamics and the circulatory system.
The model accounts for electro-mechanical and mechano-electrical feed-
back, the coupling between muscular deformation and contractile force
generation, and fluid-structure interaction (FSI) between the blood and the
myocardium. Due to the complexity of the problem, suitable numerical
methods must be employed for its solution. Focusing on the solution of the
FSI subproblem, I identify a geometrically explicit monolithic method as
the scheme offering the best trade-off among solver robustness, efficiency
and accuracy. The coupling of electrophysiology, force generation, and
FSI is treated in a segregated-staggered way, so as to leverage the multi-
physics nature of the problem for computational efficiency and flexibility.
Numerical methods are implemented in a high-performance computing
framework. I simulate a realistic human left heart in physiological condi-
tions and compare the numerical results against normal ranges for several
biomarkers for ventricular volumes and pressures, flow rates through car-
diac valves and the duration of heartbeat phases. The results show that the
proposed model is capable of reproducing the heart function in healthy
conditions. Finally, a proof-of-concept simulation indicates that previous
results can be extended to simulations involving all four cardiac chambers,
thus providing an extremely comprehensive representation of the heart.
I believe that the proposed computational model stands as a milestone
towards the development of cardiac digital twins.
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Chapter 1

Introduction

In the western countries, cardiac and cardiovascular diseases are respon-
sible for the majority of deaths in the adult population [33, 330, 351]. The
construction of personalized digital twins of the human heart and car-
diovascular system [230, 235, 250, 262, 263, 299] can foster progress in this
respect, by allowing unprecedented high-resolution analysis of the physics
behind the heart function. This allows to gain insight into the mechanisms
driving the heartbeat, both in physiological and pathological scenarios, ul-
timately assisting the decision-making procedures and allowing to develop
precision medicine techniques for personalized treatment [46, 179, 239].

Developing a mathematical model and numerical simulation of the heart
function is a challenging endeavor. Indeed, the heart is characterized by
multiple processes of different nature (schematically represented in Fig-
ure 1.1), interacting at multiple spatial and temporal scales [262], ranging
from sub-cellular processes to organ-scale mechanisms. Understanding,
modeling and reproducing this complex panorama of multiphysics and
multiscale interactions, ubiquitous in biological systems, is of fundamental
importance towards the construction of a faithful mathematical represen-
tation of the heart [313, 344].

In recent years, several cardiac models have been proposed and devel-
oped. Most of them focus on some specific feature of the heartbeat, while
representing the remaining ones through surrogate models, simplifying
assumptions or experimental data: electrophysiology [13, 52, 258, 285, 333,
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic representation of the heart function. The
circles represent the physical processes enabling the heart function,
while arrows between them indicate their interactions.

341], electromechanics [17, 21, 108, 123, 145, 198, 255, 259, 310, 338], fluid
dynamics of the blood [76, 178, 187, 249, 248, 282, 290, 302, 318, 322, 326,
336, 339, 363], fluid-structure interaction (FSI) [7, 47, 50, 66, 100, 111, 120,
152, 183, 234, 361]. All these standalone approaches provide meaningful
insight into the heart physiology [133, 275, 364] and pathology [81, 89, 294].

However, full multiphysics coupling of the heart has the potential of shed-
ding light on the complex interplay of several mechanisms that drives
the heartbeat, highlighting how the macroscopic behavior of the organ
emerges from the underlying microscopic processes. This comprehensive
representation can allow to study pathologies and devices that affect many
aspects of the cardiac function, such as the thrombogenesis associated to
atrial fibrillation [77] or ventricular assist devices [22], and may support
physically accurate in-silico clinical trials [347]. Due to the mathematical
and computational complexity of such a holistic, bottom-up approach, few
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models of this kind have been proposed in the literature [22, 297, 313, 347].

The objective of this thesis is to integrate in a single computational frame-
work several state-of-the-art models of the cardiac function, providing a
fully coupled representation of cardiac electrophysiology [74], muscular
mechanics [272, 275] and hemodynamics [364], together with simplified
models for cardiac valves [107] and the circulatory system [153, 275, 364].
Suitable numerical methods are put in place for the solution of the result-
ing coupled problem, investigating in detail different coupling schemes
for the fluid and solid subproblems [50, 51]. Simulations under healthy
conditions are performed and compared qualitatively and quantitatively
with the heart physiology [53].

In the rest of this introductory chapter, I will describe cardiac anatomy
and physiology (Section 1.1), review the existing approaches to cardiac
modeling (Section 1.2) and describe the objectives, original contributions
and the outline of this thesis (Section 1.3).

1.1 Cardiac anatomy and physiology

The human heart is a muscular organ with the purpose of pumping blood
into the circulatory system, allowing the delivery of oxygen and nutrients
to all the organs of the body [110, 168, 180, 184, 241, 303]. This is the result
of the complex interplay of multiple physical processes, that act at multiple
scales, ranging from sub-cellular to tissue- and organ-scale mechanisms.
The following sections provide an overview of the different components of
the heart function. The interested reader is referred to [168, 180, 184, 241,
303] for further details on the heart anatomy and physiology.

1.1.1 Anatomy of the heart

The heart is composed of four chambers, corresponding to muscular walls
that surround cavities containing blood (Figure 1.2): the left atrium (LA),
left ventricle (LV), right atrium (RA) and right ventricle (RV). The LA and LV
form the left heart (LH), while the RA and RV form the right heart (RH).

Atria receive blood from the circulation and pump it towards the ventricles,
which in turn pump it again into the circulatory system. Newly oxygenated
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Figure 1.2: Schematic representation of the anatomy of the heart,
highlighting chambers, valves and outflow tracts. Figure adapted
from Wikimedia Commons (https://commons.wikimedia.org/
wiki/File:2018_Conduction_System_of_Heart.jpg).

blood reaches the LA from the lungs through the pulmonary veins. From
there, it is pumped into the LV, which contracts and pushes blood into
the ascending aorta (AA) and towards the systemic circulation. In this
way, oxygen is delivered to all organs of the body and consumed during
metabolic processes. Eventually, de-oxygenated blood enters the RA, and
is pumped into the RV, which ejects it into the pulmonary trunk (PT) and the
pulmonary circulation. Blood reaches the lungs and is oxygenated, finally
entering the LA once again.

Cardiac chambers are separated by valves that, in healthy conditions, make
sure blood always flows in the right direction. LA and LV are separated
by the mitral valve (MV), the LV is separated from the AA by the aortic
valve (AV), the RA and the RV are separated by the tricuspid valve (TV), and
the RV and the PA are separated by the pulmonary valve (PV). Mitral and
tricuspid valves are supported by the fibrous chordae tendinae, attached to
the papillary muscles that protrude from the cardiac walls. This prevents
prolapse of the valve into the atrium, avoiding regurgitation.

Cardiac walls are organized in elongated fibers of muscular cells known

https://commons.wikimedia.org/wiki/File:2018_Conduction_System_of_Heart.jpg
https://commons.wikimedia.org/wiki/File:2018_Conduction_System_of_Heart.jpg
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Figure 1.3: Evolution of transmembrane potential for a typical ac-
tion potential: (1) depolarization; (2) plateau; (3) repolarization; (4)
resting phase.

as cardiomyocytes [103, 132, 154, 180, 283]. Ventricular walls are thicker
than atrial walls, and LV walls are approximately twice as thick as the RV
ones. The bulk of the wall is referred to as myocardium, while the thin
internal layer is known as endocardium and the outer layer is known as
epicardium. The heart is contained within a fluid-filled cavity, known as
pericardium, that provides mechanical support, lubrication and protection
from infections [172, 298].

1.1.2 Cardiac electrophysiology

The heartbeat is driven by the contraction of cardiomyocytes, which in
turn is initiated by bio-electric processes collectively known as cardiac elec-
trophysiology.

The presence of several ionic species in the intra- and extracellular spaces
determines a difference of potential across the cellular membrane, known
as transmembrane potential, which is around −90 mV at resting conditions
[296]. In response to excitation, ionic channels across the cellular mem-
brane open and close in a precise sequence, allowing the flow of ions and
resulting in electrical ionic currents through the membrane. This leads
first to a rapid depolarization, bringing the transmembrane potential to
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Figure 1.4: Schematic representation of the cardiac con-
duction system, with specialized conduction fibers rep-
resented in yellow. Figure adapted from Wikimedia
Commons (https://commons.wikimedia.org/wiki/File:2018_
Conduction_System_of_Heart.jpg).

about 50 mV, followed by a brief repolarization, a plateau, and a complete
repolarization that brings back the potential to its resting value (see Fig-
ure 1.3). This sequence is referred to as action potential. The morphology
of the action potential varies widely within the heart, depending on the
location and on the type of cell considered.

The initial stimulus is spontaneously generated by a group of specialized
cells forming the sinoatrial node (SAN), located on the RA. These cells serve
as the natural pacemaker of the heart, and can trigger heartbeats at variable
frequency in response to the autonomic nervous and endocrine systems
[135]. In normal health and stress conditions, stimuli are generated at a
rate of about 60 to 100 per minute.

From the SAN, the electric stimulus propagates to the whole heart through
the cardiac conduction system (CCS), shown in Figure 1.4: the signal travels
through the RA, and from the RA to the LA along specialized interatrial
connections [292]. The atria become fully activated about 100 ms after the
SAN stimulus [98], and are electrically insulated from the ventricles by

https://commons.wikimedia.org/wiki/File:2018_Conduction_System_of_Heart.jpg
https://commons.wikimedia.org/wiki/File:2018_Conduction_System_of_Heart.jpg
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the fibrous tissue of the atrioventricular rings. When the electric signal
reaches the atrioventricular node (AVN), located at the junction between the
interatrial septum and the atrioventricular plane, it is delayed by about
90 ms, to ensure proper coordination between atria and ventricles. Then,
the excitation is propagated to ventricles through the rapidly conducting
fibers of the bundle of His, the bundle branches and finally the Purkinje network
[180, 184].

The signal propagates to cardiomyocytes at the Purkinje-muscle junctions,
and then between neighboring cardiomyocytes through gap junctions. Junc-
tions are more frequent in the longitudinal direction of fibers, so that fibers
determine a preferential direction for conduction [132, 283]. In practice, the
propagation of the action potential is 3 to 4 times faster along fibers than
in other directions [176]. Due to their interconnections, cardiac muscular
cells are said to form a functional syncytium. The ventricles are completely
activated within 100 ms from the onset of ventricular stimulation [98].

1.1.3 Generation of contractile force

Individual cardiomyocytes are composed of myofibrils, cylindrical struc-
tures formed of protein filaments organized in contractile units known as
sarcomeres. Protein filaments are divided into two groups, the thin and
thick filaments, composed of actin and myosin proteins respectively. Thin
filaments include proteins known as troponin and tropomyosin that have the
role of regulating the contraction process in response to calcium ions sig-
nals. Thick and thin filaments are able to slide along each other to produce
the contraction of the sarcomere.

When a cardiomyocyte is excited, the intracellular concentration of calcium
ions increases, triggering the release of calcium ions from the sarcoplasmic
reticulum, a sub-cellular structure that stores calcium, into the intracellular
space. This leads to a large increase in calcium concentration. Calcium ions
bind to the troponin complexes of thin filaments, allowing the formation
of cross-bridges, binds between myosin heads and actin that result in the
shortening of the contractile unit [35, 62]. This interplay between electrical
excitation and force generation is known as excitation-contraction coupling.

At the macroscopic scale, the coordinated shortening of multiple filaments
within multiple sarcomeres results in the generation of a contractile force
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in the muscular tissue, directed along the direction of fibers [103, 132].

The amount of contractile force generated by a sarcomere depends on
its length [9, 306]. This force-length relationship forms the sub-cellular
basis of the well known Frank-Starling mechanism, by which an increase
in ventricular end-diastolic volume results in a stronger contraction and
a larger stroke volume [169, 180, 184, 241]. Moreover, the contraction is
characterized by the force-velocity relationship [35, 62, 151, 180]: as the
shortening velocity increases, the amount of generated contractile force
reduces, until a maximum velocity is reached for which the generated
force is zero. Both effects are relevant in regulating the heart function in
response to variations in the external conditions [169, 184].

1.1.4 The cardiac cycle

Figure 1.5 reports the typical evolution of volume and pressure for the LV
collected in a Wiggers diagram [220] together with a typical electrocardio-
gram, while Figure 1.6 reports a left-ventricular pressure-volume loop, typi-
cally used in cardiology to represent and assess the cardiac function [180].
Several phases can be distinguished during the heartbeat cycle, based on
the contraction of the chambers and the state of the valves [180, 184].

At the beginning of the heartbeat cycle, the MV and the TV are open,
while the AV and the PV are closed. The activation of the atrial muscle
leads to the atrial systole, during which the two atria contract pushing blood
towards the ventricles. This is referred to as atrial kick, and contributes 20 %
to 30 % of the blood volume for ventricular filling [219, 227], providing an
additional preload to ventricles.

Subsequently, ventricular contraction begins. The blood pressure within
ventricles increases, while atria relax, leading to the closing of MV and
TV. Ventricles are at their end-diastolic volume (EDV). This marks the begin-
ning of the isovolumetric contraction (IVC) phase: all valves are closed, and
ventricular pressure rises quickly while ventricular volume is constant.

As soon as ventricular pressure overcomes the arterial one, aortic and
pulmonary valves open, allowing the blood to be ejected from the ventricles
into the circulation. The ejection is characterized by a flow acceleration
phase and a deceleration phase, and the ventricles reach their peak systolic
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Figure 1.5: Wiggers diagram showing pressures for the LH and left
ventricular volume. Heartbeat phases are indicated on the top.
Figure adapted from Wikimedia Commons (https://commons.
wikimedia.org/wiki/File:Wiggers_Diagram_2.svg).

pressure. During the ejection, blood flow can reach a peak Reynolds number
of 5700 to 10 000 in ventricular outflow tracts [305], corresponding to a
regime of transition to turbulence [40, 343, 363, 364]. The ejection and IVC
phases form the ventricular systole. The ventricles begin relaxing at the end
of the systolic phase. This leads to ventricular pressure becoming smaller
than arterial pressure, causing flow deceleration and ultimately resulting
in the closure of AV and PV. At the end of the systole, the ventricles reach
their end-systolic volume (ESV). The difference between EDV and ESV is
referred to as stroke volume (SV), and it quantifies the amount of blood
ejected by the heart in a heartbeat (Figure 1.6). The ratio of SV and EDV is

https://commons.wikimedia.org/wiki/File:Wiggers_Diagram_2.svg
https://commons.wikimedia.org/wiki/File:Wiggers_Diagram_2.svg
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Figure 1.6: Typical pressure-volume loop for a LV.

known as ejection fraction (EF):

SV = EDV− ESV , EF =
SV

EDV
.

Both indicators are routinely used by cardiologists to quantify the cardiac
function in terms of blood output.

Once ejection ends, with all valves closed, the isovolumetric relaxation (IVR)
phase starts. The ventricular muscle relaxes, and the ventricular pressure
drops while the ventricular volume remains constant. As soon as the
ventricular pressure becomes smaller than the atrial one, MV and TV open.

This leads to the passive diastolic filling phase: blood flows from the atria
into the ventricles due to the pressure gradient, in absence of any active
contraction. This contributes 70 % to 80 % of the blood volume for ventric-
ular filling [227]. The flow is characterized by a jet through the mitral and
tricuspid valves, forming a vortex ring [95, 249]. IVR, passive filling and
atrial systole form the ventricular diastole.
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1.2 An overview of mathematical models of the

heart

A large amount of mathematical models of the heart have been developed
over the years [137, 230, 235, 250, 262, 299], with the aim of improving
the understanding of the physics behind the heart function, as well as
providing useful diagnostic and clinical personalization tools.

Several computational models focus on the representation of cardiac elec-
trophysiology [52, 258, 285, 333, 341], neglecting mechanics and hemo-
dynamics. Indeed, electrophysiology is the driver of several pathologies,
such as atrial fibrillation [115, 148, 242], ventricular tachycardia [334] or
bundle branch blocks [342]. Standalone models of this kind can help
in understanding the pathophysiology of arrhythmia [129, 215, 315], al-
low for risk stratification [13] and assist in the clinical decison making
[46, 61, 196, 286, 311]. Electrophysiology can be endowed with models
for the propagation of the electric potential in the torso, resulting in the
generation of synthetic electrocardiograms [119, 133, 254], which can be
used in the estimation of electrical properties through data assimilation
techniques [253]. Special effort has been put in developing fast solvers for
cardiac electrophysiology, so as to allow for a rapid response to clinical
questions, e.g. through matrix-free techniques [3] or by exploiting modern
computational architectures [89].

Coupled electromechanical models are employed whenever muscular me-
chanics, both active and passive, is of interest. This requires the develop-
ment of suitable models that bridge the electrical processes and the gener-
ation of contractile force [190, 272, 277]. Several electromechanical models
have been proposed, focusing on the left ventricle [17, 87, 128, 177, 198, 255,
275] or the two ventricles [145, 259]. More recently, whole heart electrome-
chanical models have been developed [21, 108, 123, 257, 309, 310], allowing
to capture with high detail the interplay between the different chambers of
the heart. These models have been used to investigate the heart function
in both physiological and pathological conditions [294, 295].

Electromechanical models usually include hemodynamics in a reduced
way through zero-dimensional lumped-parameter models [39, 153, 182,
266, 275]. This approach is capable of capturing the pressure of car-
diac chambers [47], and can provide insight into the hemodynamic con-
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sequences of cardiac function and dysfunction [294]. However, it neglects
the effect of pressure gradients and shear stresses, as well as ignoring the
three-dimensional characteristics of hemodynamics. Complementary to
this, several works model the blood in a computational fluid dynamics
(CFD) framework [71, 267, 320, 324]. The wall displacement is prescribed
as a datum [67, 68, 236, 249, 302, 339], obtained from medical images
[69, 117, 118, 136, 178, 195, 229], from independent electromechanical sim-
ulations [326, 364] or from idealized analytical laws [77, 88, 363]. CFD
modeling can be used to provide accurate descriptions of blood dynam-
ics in healthy conditions [67, 178, 339, 364] and in pathological scenarios
[77, 117, 194, 211, 212, 327], allowing for risk stratification.

However, CFD models neglect the dynamic interaction between the blood
and the cardiac wall. A more comprehensive approach is provided by FSI
modeling, in which the solid mechanics and blood dynamics are solved
in a bidirectionally coupled way [7, 50, 66, 234, 252, 300, 361]. In this
respect, a large amount of studies focus on the FSI between the blood
and the valves [48, 100, 111, 116, 120, 207, 218, 301, 323], due to its clinical
significance [81, 161, 206, 218]. Other works include the interaction between
the blood and cardiac muscular walls [7, 66, 84, 183, 234, 278, 355, 361]. FSI
modeling can overcome some limitations of the standalone CFD approach,
e.g. allowing to represent isovolumetric phases of the heartbeat [50, 326,
362], and generally provide more physically accurate results. However, this
comes at the price of an increased computational complexity, requiring the
use of suitable numerical methods [18, 63, 80, 149, 173].

Finally, in recent years, models featuring full coupling of electrophysiol-
ogy, cardiac mechanics and hemodynamics have been developed [53]. The
UT-Heart simulator is one of the first models in this direction [158, 313],
featuring a comprehensive representation of the various components of
the heart. The model has been applied to the simulation of pathological
scenarios [179, 239]. In [345], cable and immersed boundary methods are
proposed for the construction of a coupled model of electrophysiology, me-
chanics and fluid dynamics for the investigation of bundle branch block.
Another fully coupled model was proposed in [297], focusing on ventric-
ular systole, neglecting the presence of valves and providing a simplified
description of the atria. The authors provide important details on the com-
putational strategies that allow to exploit high-performance computing
facilities for cardiac simulations. In [22], a biventricular model is pro-
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posed, based on a phenomenological description of electrophysiology and
force generation and considering an idealized geometry. The complexity
of the model is leveraged to analyze the effect of different working regimes
of a left ventricular assist device, highlighting both the hemodynamic and
mechanical effects. In [348, 349] a coupled left heart model is presented,
relying on the immersed boundary method in a finite volumes/finite dif-
ferences combined framework for the numerical discretization. The model
yields a good agreement with physiology, in terms of both mechanical and
hemodynamic indicators. However, it relies on a simplified description of
the contractile force generation [228] and of the circulation-heart coupling.
Recently, a GPU-accelerated version of the same model has been developed
for computational speedup [350], and extended to the whole heart [347],
while at the same time presenting a proof-of-concept virtual clinical trial
that highlights how integrated models of this type can have a significant
impact on the clinical practice.

Comprehensive and fully coupled models, while still in their infancy, ap-
pear to be very promising towards the development of highly accurate
digital twins of the human heart. In particular, they can be exploited to
investigate to a great extent the effect of specific therapies and implanted
devices [22, 179], allowing to understand and possibly predict their impact
on all the aspects of the cardiac function. This comprehensive modeling
approach may enable large scale clinical trials based on generating vir-
tual patients [347], allowing the systematic investigation of pathological
scenarios without limitations due to the availability of patients, limited
sample size and experimental uncertainty. Thus, simulation-based studies
can become a valuable tool to complement and support more traditional
approaches based on statistical sampling.

1.3 Thesis objectives and main contributions

The main original contribution of this thesis is the development of a fully
coupled electro-mechanics-fluid dynamics (EMF) model of the heart function
[53], leveraging state-of-the-art mathematical models for the construction
of a physiologically accurate heart simulator. The proposed model com-
bines an accurate description of cardiac electrophysiology, a biophysically
detailed model for contractile force generation, solid mechanics of the
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heart walls and three-dimensional modeling of the blood hemodynamics.
Moreover, it includes a closed-loop lumped-parameter representation of
the circulatory system, as well as a simplified model to account for the
presence of valves. The model accounts for the feedback between all of
these subsystems, resulting in a fully coupled representation of the heart
function.

While each of the previously mentioned processes has been already in-
vestigated on its own [108, 118, 272, 364], by means of standalone models,
comprehensive and fully coupled models are rare in the cardiac model-
ing literature. In particular, three-dimensional FSI coupling is seldom
included in heart models [234, 297, 347, 361], and constitutes a significant
novelty of the proposed EMF model. On top of that, cardiac FSI is often
treated with an immersed approach [138, 252, 345, 347], while the model
introduced in this thesis relies on the Arbitrary Lagrangian Eulerian (ALE)
method [96, 166] to deal with the geometric coupling of fluid and solid.
This yields accurate results in terms of the conservation of blood volume
throughout the heartbeat, allowing the accurate simulation of isovolumet-
ric phases [50, 53] (whereas alternative approaches such as the immersed
boundary method, while geometrically more flexible, may suffer from
spurious permeability the fluid-solid interface [27, 162, 223, 347, 348]). To
allow for the large deformations associated to the heart cycle, I introduce
non-linear mesh movement operators [53] and an adaptive method for the
solution of the associated differential problem. Moreover, previous mod-
els of this kind usually feature a simplified representation of the muscular
force generation [348], whereas the proposed model includes a highly de-
tailed description of muscular contraction, previously introduced in [272],
that allows to capture significant regulatory mechanisms such as the force-
strain and force-velocity relationships.

In terms of numerical methods, I introduce a segregated-staggered time
advancing scheme for the solution of the coupled EMF problem [53]. The
scheme is based on discretization methods tailored at each of the sub-
problems, combining them in a modular framework that leverages the
multiphysics and multiscale nature of the coupled problem. All numerical
methods are designed for high-performance computing (HPC), allowing
to exploit large-scale parallel computing architectures.

The FSI coupling of muscular mechanics and hemodynamics is the com-
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putational bottleneck of the EMF model, and special care is needed in
selecting a discretization method that is stable, accurate and efficient. To
this end, I compare different approaches in the family of strongly coupled
FSI methods [50]. Numerical experiments in an idealized ventricular set-
ting show that a monolithic approach is the most efficient, in the regime
typical of cardiac simulations, when enforcing strong coupling between
fluid and solid.

Then, I compare the strongly coupled monolithic scheme to a loosely cou-
pled (segregated) scheme based on Robin-Neumann interface conditions
[51]. Through numerical experiments, the latter is shown to be stable in
the cardiac setting, and is significantly more computationally efficient than
the monolithic method. However, it introduces a numerically consistent
splitting error that hinders the accuracy of the solution. For this reason,
in this thesis I choose the strongly coupled monolithic method as the one
offering the best compromise among efficiency, robustness and accuracy.

Having selected the appropriate numerical methods, I carry out the simu-
lation of a realistic human left heart in physiological conditions [53]. The
numerical results are compared against physiological behavior, in terms
of macroscopic indicators and three-dimensional quantities, with the aim
of assessing whether the computational model is capable of representing
the heart function. In particular, I highlight how the model can effectively
reproduce all phases of the cardiac cycle, including the isovolumetric ones.
This is a distinctive feature of the proposed model, made possible by the
inclusion of FSI coupling in the ALE framework.

Finally, I present a proof-of-concept EMF simulation of a four-chamber
fully integrated heart model, indicating how the proposed computational
framework can be exploited for comprehensive computer simulations of
the heart.

The remainder of the thesis is structured as follows:

• Chapter 2 is devoted to the mathematical description of the EMF
model, with a detailed description of each process (electrophysiol-
ogy, force generation, cardiac mechanics, fluid dynamics, FSI and
circulation), also called core models, together with their interactions;

• in Chapter 3 the numerical methods used for the solution of the EMF
model are discussed; after introducing a segregated-staggered EMF
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coupling scheme, the choice of the numerical method for the FSI
problem is discussed in detail. Idealized FSI benchmarks are used
to assess the effectiveness and efficiency of several methods in the
cardiac context;

• Chapter 4 describes the EMF simulation of a realistic human left
heart in healthy conditions. The simulation setup is presented, and
the numerical results are compared with physiological data, showing
how the proposed model is capable of reproducing the behavior of a
healthy heart over the whole heart cycle;

• in Chapter 5, a proof-of-concept extension of the EMF model to the
whole heart is presented;

• finally, Chapter 6 contains a discussion, conclusions and further de-
velopments of this thesis.



Chapter 2

Mathematical models of the heart
function

In this chapter, I review the models used in the mathematical description
of the cardiac function [137, 230, 235, 262, 263, 299, 333] and introduce the
coupled EMF model. Such model was originally presented in [53], and it is
schematically represented in Figure 2.1. The models for electrophysiology,
force generation, muscular mechanics, hemodynamics and the circulatory
system are presented separately. Each of them is referred to as a core model.
I highlight the way the core models interact with and influence each other
in the EMF model, capturing the feedback mechanisms that determine the
heart function.

Let t ∈ (0, T) be the independent variable representing time, and let
Ωt ¢ R

3 be a domain representing the volume occupied by the heart
and the blood it contains, at every time instant during the heartbeat. Ωt

is partitioned into the fluid subdomain Ωf,t and the solid subdomain Ωs,t.
The two subdomains share a common interface Σt = ∂Ωf,t ∩ ∂Ωs,t. On
∂Ωt, n denotes the normal unit vector directed outward from Ωt. On Σt,
n denotes the normal unit vector directed outward from Ωf,t. Notice that
the valves are not included in Ωs,t, but they are represented as moving
surfaces immersed in Ωf,t (see Section 2.5.3).

The set Ωactive
s,t ¢ Ωs,t denotes the portion of the solid domain that cor-

responds to muscular (atrial or ventricular) tissue, while Ω
passive
s,t ¢ Ωs,t

17
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Figure 2.1: Schematic representation of the EMF model.

denotes the remaining part (arteries and atrioventricular rings). In the
EMF model, the former is characterized by being electrically excitable and
capable of generating contractile force, whereas the latter does not respond
to electrical stimuli and is mechanically passive.

The domain Ωt and its subdomains move in time as the heart beats. To
keep the notation light, the subscript t is dropped from here on. Let us
introduce a fixed reference configuration �Ω (see Figure 2.2), and denote with
a hat the counterpart in reference configuration of any of the sets defined
above. The moving domain is referred to as current configuration. The
motion of the current configuration is expressed by the following maps:

Lf : �Ωf × (0, T)→ Ωf ,

Ls : �Ωs × (0, T)→ Ωs .

The precise definition of the two maps depends on the models defined in
Ωf and Ωs, and will be given later on.

The core models are expressed in terms of a system of partial and ordinary
differential equations [261], whose unknowns are:

v : �Ωactive
s × (0, T)→ R transmembrane potential,

w : �Ωactive
s × (0, T)→ R

Nw
ion ionic gating variables,

z : �Ωactive
s × (0, T)→ R

Nz
ion ionic concentrations,
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Figure 2.2: Schematic representation of the reference configuration
�Ω (left) and of the current configuration Ω (right).

s : �Ωactive
s × (0, T)→ R

Nact contraction state variables,
�d : �Ωs × (0, T)→ R

3 solid displacement,

dALE : �Ωf × (0, T)→ R
3 fluid domain displacement,

u : Ωf × (0, T)→ R
3 fluid velocity,

p : Ωf × (0, T)→ R fluid pressure,

c : (0, T)→ R
Ncirc circulation state variables.

The solid displacement pushed forward to the current configuration is
denoted by d : Ωs × (0, T)→ R

3:

d(x, t) = �d
�
L−1

s (x, t), t
�

.

Each core model is described in the following sections.

2.1 Modeling the cardiac fiber architecture

As anticipated in Section 1.1, cardiac fibers play a major role in both the
electrical and mechanical properties of cardiac tissue. Therefore, a heart
model must include a description of fiber architecture, in order to provide
physiologicaly meaningful results.

Fibers can be measured both in vivo and ex vivo by means of diffusion-
tensor imaging (DTI) acquisitions [12, 308, 160, 245]. Unfortunately, such
acquisitions are time consuming and yield noisy data [6, 225], possibly with
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(a) (b)

Figure 2.3: (a) Streamline representation of the fiber field f0 on
the whole heart, obtained through an LDRBM as in [108]. (b)
Representation, on a ventricular slab, of the fiber reference system
{f0, s0, n0} with its transmural variation.

insufficient resolution to capture the structures of interest. An alternative
approach to direct acquisition is the use of an atlas-based method [287],
requiring the registration of a previously defined fiber architecture onto a
new heart model.

A different strategy is based on using Laplace-Dirichlet rule-based methods
(LDRBMs) [28, 97, 288, 258]: these methods solve a set of Laplace prob-
lems with suitable Dirichlet boundary conditions and post-process their
solutions to define an orthonormal triplet {f0, s0, n0} representing, at every
point of �Ωs, the direction of fibers, sheets of fibers and normal to sheets,
respectively (Figure 2.3). LDRBMs are computationally cheap, yet allow
to obtain a physiologically accurate description of the cardiac fiber archi-
tecture [258]. A detailed description of several existing LDRBMs for both
atria and ventricles can be found in [257, 258].

2.2 Electrophysiology

As discussed in Section 1.1.2, cardiac electrophysiology is a multiscale
process, in the sense that it features a macroscopic behavior emerging from
cellular and sub-celluar processes. This is reflected into its mathematical
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description through two coupled models [74]: the monodomain model, that
represents the propagation of the action potential through the tissue, and
one or more ionic models, that describe the ionic processes for an individual
cell.

Both models are defined in �Ωactive
s , while no electrophysiology model is

defined in �Ωpassive
s , corresponding to the arteries outgoing from the heart

and to the atrioventricular rings.

2.2.1 The monodomain model

The state-of-the-art model for the description of cardiac electrophysiology
is given by the bidomain equations [74, 314], which are derived through
a homogeneization procedure, assuming that their domain of definition
is the superimposition of two interpenetrating domains representing the
intra- and extracellular spaces. While very accurate from the physical
viewpoint, the bidomain model is expressed by a degenerate system of
partial differential equations (PDEs), posing significant challenges from
the mathematical and numerical viewpoints [45, 64, 75, 125].

An alternative model is provided by the monodomain equation, which is
derived from the bidomain assuming that electrical conductivity tensors in
the intra- and extracellular spaces are proportional [74, 314]. While simpler,
the monodomain model has been found to yield results equivalent to the
bidomain in physiological cases [73, 256], and to provide accurate results
in many pathological settings [13, 46, 294, 295]. Since the focus of this
thesis is on the simulation of the heart function in healthy conditions,
electrophysiology is modeled using the monodomain equation, that reads:





JχCm
∂v

∂t
−∇ ·

�
JF−1DmF−T

∇v
�

+ JχIion(v, w, z) = JχIapp(�x, t)
in �Ωactive

s × (0, T) ,

JF−1DmF−T
∇v · n = 0 on ∂�Ωactive

s × (0, T) ,

v = v0 in �Ωactive
s × {0} .

(2.1)

In the above equations, F = I + ∇�d and J = det F account for the
geometry-mediated mechano-electric feedbacks (MEFs), that model the way
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the deformation of the muscle affects the propagation of the electric signal
[72, 203, 294, 295, 333]; χ is the cellular membrane surface-to-volume ratio,
and Cm is the membrane capacitance. Iion(v, w, z) is the ionic current, rep-
resenting the net flow of charge through the cellular membrane due to the
flow of ions (see Section 2.2.2), and Dm is the conductivity tensor, encoding
the electrical properties of the tissue. It is defined as

Dm = σl
m

Ff0 ¹ Ff0

∥Ff0∥2
+ σt

m
Fs0 ¹ Fs0

∥Fs0∥2
+ σn

m
Fn0 ¹ Fn0

∥Fn0∥2
, (2.2)

where σl
m, σt

m and σn
m are conductivities in the direction of fibers, fiber

sheets and normal to fiber sheets, respectively.

The approach followed to model geometry-mediated MEFs is not the only
possible one for what concerns both the monodomain equation (2.1) and
the definition of the conductivity tensor (2.2). Multiple strategies are
compared in [295], finding that the different approaches only yield mild
differences in the numerical results. Moreover, (2.1) does not include
other sources of mechano-electrical feedback such as nonselective stretch-
activated currents or mechanically induced calcium release [329], which
may become relevant in pathological conditions [295].

In (2.1), Iapp is an external applied current that provides the initial stimulus.
Indeed, the proposed model does not feature an explicit description of the
CCS, which instead is surrogated by applying localized stimuli at specific
points within the heart muscle, repeating them with period Thb to obtain
multiple heartbeats. This simplification is acceptable in physiological con-
ditions, and allows to reconstruct effectively the activation pattern of the
heart [258, 275]. Nonetheless, several computational models for the gener-
ation and inclusion of the CCS have been proposed [78, 89, 191, 285, 341],
and they may become especially relevant if considering pathological con-
ditions such as bundle branch blocks [347].

Problem (2.1) is endowed with zero-flux boundary conditions on ∂�Ωactive
s ,

representing the electrical insulation of the domain. This applies in par-
ticular to the interface of �Ωactive

s and �Ωpassive
s . As a consequence, passive

portions of the domain (such as atrioventricular rings) can electrically in-
sulate disconnected regions of the active portion [108].
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2.2.2 Ionic models

While the monodomain model deals with the propagation of the stimulus
through the tissue, ionic models represent the bio-electrical activity of
individual cells. They describe the evolution in time of ionic concentrations
z in the intra- and extracellular spaces and of gating variables w, namely
fractions of ionic channels open through the cellular membrane.

Starting from the seminal work of Hodgkin and Huxley [155], several
ionic models have been proposed [74, 314]. They can be broadly catego-
rized into phenomenological models [8, 54, 284] and biophysically detailed
models [26, 79, 205, 321, 238, 332]. The latter feature explicit represen-
tations of sub-cellular mechanisms, including in particular intracellular
calcium dynamics, which is of fundamental importance when modeling
the excitation-contraction coupling (see Section 1.1.3). Moreover, different
ionic models are typically used for different parts of the heart, reflecting
the spatial variability of the action potential.

Ionic models are typically expressed as a system of ordinary differential
equations (ODEs) defined at every point in the computational domain,
with the following general expression [74]:





∂w

∂t
= Fw

ion(v, w) in �Ωactive
s × (0, T) ,

∂z

∂t
= Fz

ion(v, w, z) in �Ωactive
s × (0, T) ,

w = w0 in �Ωactive
s × {0} ,

z = z0 in �Ωactive
s × {0} ,

(2.3)

where Fw
ion and Fz

ion depend on the choice of the ionic model. The vector
z of ionic concentrations includes, in particular, the intracellular calcium
concentration [Ca2+]i.

In the construction of the EMF heart model, the ionic model by Ten Tusscher
and Panfilov (TTP06) [321] is used for ventricular tissue, while the one by
Courtemanche, Ramirez and Nattel (CRN) [79] is used for atrial tissue (see
Figure 2.4). The precise definitions of Fw

ion, Fz
ion and Iion associated to those

models can be found in the original papers [79, 321].

For both the transmembrane potential and ionic variables, initial conditions
are obtained by solving a zero-dimensional version of the monodomain
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Figure 2.4: Action potential (black) and calcium transient (red) as
predicted by (a) the TTP06 model and (b) the CRN model.

equation [74] coupled to (2.3), with a periodic applied current, until a limit
cycle is reached [275, 332]. This facilitates the convergence to a limit cycle
of period Thb for the whole EMF model.

2.3 Force generation

The presence of calcium in the intracellular space leads to the generation
of contractile force (Section 1.1.3). In the cardiac modeling literature, this
process is represented in two different ways: phenomenological models,
based on fitting experimental data with simple analytical curves [167, 190,
228], or biophysically detailed models [270, 272, 273, 277, 354]. The latter
provide a description of the processes happening within the sarcomere,
typically at the price of a high computational cost. Nonetheless, they allow
to naturally incorporate feedback effects between the force generation and
the muscular deformation.

In this thesis, two biophysically detailed models are considered, named
RDQ18 [270] and RDQ20-MF [272]. Both of them can be expressed in terms
of a system of ordinary differential equations (ODEs) for the evolution of
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the state of contraction s at every point of �Ωactive
s :





∂s

∂t
= Fact

�
s, [Ca2+]i, SL,

∂SL
∂t

�
in �Ωactive

s × (0, T) ,

s = s0 in �Ωactive
s × {0} .

(2.4)

In the above, SL represents the sarcomere length, defined as the solution
of the following regularization problem [275]:




−δ2

SL∆SL + SL = SL0

"
I4f in �Ωs × (0, T) ,

δ2
SL∇SL · n = 0 on ∂�Ωs × (0, T) ,

where δSL is a regularization parameter, SL0 is the sarcomere length at rest,
and I4f = Ff0 · Ff0 measures the stretch along fibers. The time derivative
of SL represents the shortening velocity along fibers.

Both the RDQ18 and the RDQ20-MF models include the force-length rela-
tionship, expressed by the dependence of Fact on SL. The sarcomere length
affects both the calcium sensitivity and the active tension [272]. In practical
terms, the generated contractile force is maximum for a given sarcomere
length, and decreases if the sarcomere length is reduced. This microscopic
effect is behind the Frank-Starling mechanism [169, 180], by which an in-
crease in ventricular EDV leads to an increase in SV, due to the contractile
force being greater if sarcomeres are stretched.

Moreover, the RDQ20-MF includes the force-velocity relationship (whereas

the RDQ18 model does not), expressed by the dependence of Fact on
∂SL
∂t

.

The generated contractile force decreases as the sarcomere velocity in-
creases, and there exists a shortening velocity at which the generated force
is zero. At the macroscopic level, this results in a spatial homogeneization
of the fiber shortening velocity, avoiding sharp variations [108]. This effect
was found to be extremely important to capture biomarkers such as the
flow rate through semilunar valves, which would otherwise be unphysi-
cally high [108].

Due to the large amount of state variables of the RDQ18 model, which
prevent it from being used directly in organ scale simulations, it is replaced
by its reduced-order version presented in [273], that relies on artificial
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neural networks to build a surrogate model with only two state variables
[271]. Conversely, the RDQ20-MF model, despite being highly detailed,
only features 20 unknowns thanks to dimensionality reduction techniques.
Therefore, it does not have a significant impact in terms of computational
costs.

Both models define a permissivity P = P(s) ∈ [0, 1], representing the frac-
tion of regulatory units that are in a permissive state, i.e. allow for the
formation of a cross-bridge and for the generation of force. Permissivity
can be seen as representing the microscopic active tension [272], and it
is upscaled to a macroscopic active tension by a constant parameter aXB,
representing the maximum generated tension:

Tact(s) = aXB P(s) .

The precise definitions of Fact and P can be found in [270, 272].

Finally, the active tension is used to define an active stress tensor

Pact(d, s) = Tact(s)

�
nf

Ff0 ¹ f0√
I4f

+ ns
Fs0 ¹ s0√

I4s
+ nn

Fn0 ¹ n0√
I4n

�
. (2.5)

In the above, I4s = Fs0 · Fs0 and I4n = Fn0 · Fn0. The coefficients nf, ns
and nn are used to calibrate the active tension in the direction of fibers,
sheets and sheet normals respectively. This allows to surrogate the effect
of fiber dispersion on the contraction [4, 103, 124, 139, 140, 257, 307]. In
this thesis, the contraction acts only in the direction of fibers, so that nf = 1
and ns = nn = 0.

The initial condition for (2.4) is obtained by solving the system with a
prescribed SL and [Ca2+]i for a single point until a steady state is reached
[275].

2.4 Cardiac mechanics

The mechanics of the cardiac walls is modeled by means of the elasto-
dynamics equation in Lagrangian reference [237], relying on the hyper-
elastic framework to incorporate the passive properties of the material,
and using an active stress approach to account for the active contraction
[10, 134, 145, 246, 262, 275, 299].
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Figure 2.5: Dirichlet (left), Robin (middle) and fluid-solid interface
(right) boundaries for the solid mechanics problem (2.6) for an LH
model (see also Chapter 4).

The vector field �d describes the displacement of the solid domain, so that
the reference-to-current map is given by

Ls(�x, t) = �x + �d(�x, t) �x ∈ �Ωs , t ∈ (0, T) .

The evolution of the displacement is regulated by the following problem:





ρs
∂2�d
∂t2
−∇ · Ps(�d, s) = 0 in �Ωs × (0, T) ,

�d = 0 on �ΓD
s × (0, T) ,

Ps(�d, s)n = −(n¹ n)

�
K

epi
§
�d + C

epi
§

∂�d
∂t

�

− (I − n¹ n)

�
K

epi

∥
�d + C

epi

∥
∂�d
∂t

� on �ΓR
s × (0, T) ,

�d = �d0 in �Ωs × {0} ,

∂�d
∂t

= 0 in �Ωs × {0} .

(2.6)

�ΓD
s and �ΓR

s are subsets of ∂�Ωs\�Σ on which Dirichlet and Robin boundary
conditions are applied, respectively (see Figure 2.5). The former are applied
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on the inlet and outlet sections (corresponding to veins and arteries), while
the latter are applied on the epicardial boundary to account for the presence
of the pericardium [108, 255, 275, 310]. The coefficients K

epi
§ and K

epi
∥ are

spring stiffness coefficients for the directions perpendicular and tangent to
the boundary, respectively, while C

epi
§ and C

epi
∥ are viscosity coefficients.

Although in the numerical experiments of this thesis the coefficients are
assumed to be homogeneous, their values can in general depend on space,
to account for anatomical features and organs surrounding the heart [108,
310]. No boundary conditions are defined on �Σ, where instead FSI interface
conditions are imposed (see Section 2.6).

In (2.6), ρs is the density of the muscle, and Ps(�d, s) is the first Piola-
Kirchhoff stress tensor. The latter is split into the sum of the active and
passive contributions,

Ps(�d, s) = Ppas(�d) + Pact(�d, s) ,

with the active contribution Pact defined as in (2.5). The passive stress
tensor Ppas is defined as the derivative of a strain energy function W :

Lin+ → R ∪ {+∞} (where Lin+ is the set of linear transformation from
R

3 into itself, with positive determinant) that characterizes the mechanical
properties of the material [157, 237]:

Ppas(�d) =
∂W
∂F

.

Two different constitutive laws are considered in this thesis. For muscular
tissue (atria and ventricles), the Guccione model is used [141, 337, 338].
The associated strain energy function is

WG(F) =
c

2
(exp(Q)− 1) +

κ

2
(J − 1) log(J) , (2.7)

Q = aff (Ef0 · f0) + ass (Es0 · s0) + ann (En0 · n0)

+ afs (Ef0 · s0) + afn (Ef0 · n0) + asn (Es0 · n0) ,

E =
1

2

�
FTF− I

�
,

with c, aij stiffness parameters, κ the bulk modulus, and f0, s0 and n0

the fiber orthonormal triplet defined as in Section 2.1. The constitutive law
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accounts for the anisotropy induced by the arrangement of the myocardium
in sheets of fibers by assuming the material to be orthotropic.

For arteries and atrioventricular rings, an isotropic neo-Hooke model is
used [237], with strain energy function given by

WNH(F) =
µ

2

�
J−

2
3 F : F− 3

�
+

κ

4

�
(J − 1)2 + log2(J)

�
, (2.8)

with µ a stiffness parameter and κ the bulk modulus.

Both constitutive laws treat the material as nearly incompressible by pe-
nalizing local variations in volume. An alternative approach is based on
strictly enforcing incompressibility, leading to a saddle-point type problem
[167, 234].

2.4.1 Regularization of material interfaces

The use of different constitutive laws results in sharp discontinuities across
the interface between different materials. This does not constitute an issue
from the point of view of the solid mechanics model, since the discon-
tinuous constitutive law still satisfies the regularity requirements of the
problem [23]. However, the discontinuity reflects in a reduced regularity
of the displacement of the fluid-solid interface, which in practice entails the
formation of corners on initially smooth surfaces. The fluid domain needs
to deform to follow the interface displacement (see Section 2.5.1), and the
reduced regularity of the boundary displacement leads to an irregular dis-
placement of the interior of the fluid domain. This is problematic, since the
fluid domain displacement must be regular enough to preserve the quality
of mesh elements, avoiding their inversion.

To overcome this issue, I introduce the following novel interface regular-
ization procedure as follows. Let �Ω0 and �Ω1 be two subsets of �Ωs, with
�Γ01 = ∂�Ω0 ∩ ∂�Ω1 ̸= ∅ and �Ω01 ¢ �Ω0 such that it is adjacent to �Γ01 (Fig-
ure 2.6a). Let let P0 and P1 be the passive stress tensors in �Ω0 and �Ω1,
respectively. As a preprocessing step, a Laplace problem is solved to ob-
tain a function ψ that smoothly varies from 0 in �Ω0\�Ω01 to 1 in the interior
of �Ω1. Then, the following regularization coefficient is defined:

cbuf(�x) =
1

2

�
1− cos

�
π min{ψ, ψth}

ψth

��
,
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(a)

(b)

Figure 2.6: (a) Schematic representation of the material interface
regularization domains �Ω0, �Ω1, �Γ01 and the associated regular-
ization coefficient ψ. (b) Functions ψ (left) and cbuf used in the
regularization of material interfaces in an LH model.

where ψth ∈ (0, 1) is a threshold value that controls the size of the regular-
ization region. Both ψ and cbuf are shown in Figure 2.6. Finally, the stress
tensor within �Ω01 is redefined as a convex combination of P0 and P1, so
that the transition between the two materials is smooth:

Ppas(�d) = cbufP1(�d) + (1− cbuf)P0(�d) .
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2.4.2 Stress-free reference configuration recovery

Typically, models of the cardiac geometry are reconstructed starting from
medical images such as MRI or CT, acquired in vivo. The images corre-
spond to configurations in which the heart is subject to the load of the
blood it contains, represented by a pressure �p. On the contrary, the do-
main �Ωs required by the formulation of (2.6) should represent a stress-free
configuration.

Therefore, as a preprocessing step, the following inverse problem must be
solved: given an input configuration �Ωs, subject to the known pressure
load �p on the endocardium, find the configuration �Ωs such that, when
pressure �p is applied on the endocardial surfaces, the input configuration
�Ωs is obtained. The inverse problem is solved by considering the quasi-
static counterpart of (2.6), additionally imposing the condition

Ps(�d, s)n = −�pJF−Tn on �Σ . (2.9)

Let �deq(�x, �p) be the solution to the quasi-static mechanics problem, for the
given pressure �p. Then, the inverse problem can be formalized as

�x = �x + �deq(�x, �p) ,

�x = �x− �deq(�x, �p) , (2.10)

where �x ∈ �Ωs are the points in the input configuration and �x ∈ �Ωs those
in the unknown reference configuration. Equation (2.10) is in the form
of a fixed-point problem, whose unknown is the reference configuration,
expressed in terms of its points �x. Therefore, the reference configuration is
recovered through a fixed-point iteration algorithm, as presented in [275].
If multiple cardiac chambers are considered (such as in Chapters 4 and 5),
the pressure �p is spatially varying and has different values in each of the
chambers [108].

2.4.3 Initial conditions

The initial condition corresponds to an instant during the heartbeat (typi-
cally at end-diastole) at which the heart wall is subject to the pressure p0

of the blood within it. Therefore, to determine the initial displacement �d0,
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the stationary counterpart of (2.6) is solved, applying on the fluid-solid
interface �Σ the pressure condition (2.9) [275]. To facilitate the solution of
the stationary problem, which suffers from ill-conditioning, it is solved
repeatedly, while gradually increasing the endocardial pressure from 0 to
the desired value p0. If multiple chambers are considered in the model, the
pressure p0 is spatially varying, with a different initial pressure for each of
the chambers [108].

2.5 Fluid dynamics

Blood within the heart chambers can be regarded as incompressible and
Newtonian. Indeed, while the presence of blood cells determines a com-
plex rheology [5], its effects are mostly negligible for large vessels and
heart chambers in healthy conditions [85], and the Newtonian assumption
is typically made in models of heart hemodynamics [67, 178, 319, 364].

Navier-Stokes equations [261, 320] are used to model blood dynamics,
accounting for the deformation of the chambers in the ALE framework
[96, 166, 231], and incorporating valves by means of the Resistive Immersed
Implicit Surface (RIIS) method [16, 107, 117, 118, 116]. The following sections
provide details on each of these modeling approaches.

2.5.1 Fluid domain displacement

The displacement of the fluid domain is treated in the ALE framework
[96, 166, 231]: the domain Ωf moves in time with a velocity independent
of that of the fluid, and fluid equations are formulated with respect to the
moving frame of reference of the domain.

The deformation of the domain is described by the displacement field dALE,
through the reference-to-current map

x = Lf(�x, t) = �x + dALE(�x, t) .

The displacement dALE is obtained by solving the following differential
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problem (or ALE lifting problem):




−∇ · PALE(dALE) = 0 in �Ωf × (0, T) , (2.11a)

dALE = �d on �Σ× (0, T) , (2.11b)

dALE = 0 on
�

∂�Ωf\�Σ
�
× (0, T) . (2.11c)

With this approach, the fluid domain is regarded as a fictitious solid in
quasi-static regime, whose first Piola-Kirchhoff stress tensor is given by
PALE. The velocity of the ALE reference frame is then computed as the time
derivative of dALE, pushed forward to the current configuration, namely:

uALE(x, t) =
∂dALE

∂t

�
L−1

f (x, t), t
�

.

Different choices of PALE lead to different domain displacement strategies.
In practice, the domain displacement should be such that, after spatial
discretization, the quality of mesh elements is preserved and no inverted
elements are generated [304], since they would lead to the breakdown of
the numerical solver for Navier-Stokes equations.

This is a very challenging task: the simplest strategy is based on setting
PALE(dALE) = ∇dALE, leading to the linear harmonic extension problem
[304, 364]





−∇ · (∇dALE) = 0 in �Ωf × (0, T) ,

dALE = �d on �Σ× (0, T) ,

dALE = 0 on
�

∂�Ω\�Σ
�
× (0, T) .

(2.12)

A slightly more sophisticated approach uses quasi-static linear elasticity
equations [304], setting

PALE(dALE) =
EALE

2(1 + νALE)

�
∇dALE +∇dT

ALE

�

+
EALE νALE

(1 + νALE)(1− 2νALE)
(∇ · dALE)I ,

with EALE and νALE the Young and Poisson moduli of the fictitious material.
In my experience, both harmonic and linear elastic approaches are suitable
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for geometrically idealized numerical experiments, but not reliable enough
for realistic cardiac applications. Indeed, when realistic geometries are
considered, the large deformations of cardiac chambers frequently lead to
element inversion.

This can be improved by introducing local stiffening, i.e. by making the
fictitious material stiffer in regions that are expected to undergo larger
displacement or lead to element inversion. The stiffening can be based on
the local mesh element volume, as done with the jacobian-based stiffening
approach presented in [304], or on the distance from the moving boundary
[171], where the largest deformation typically happens. However, even
this approach often leads to element inversion for the realistic test cases
discussed in this thesis.

More robust approaches can be obtained by assuming PALE to depend
non-linearly on dALE, effectively treating the fictitious material of the fluid
domain as hyperelastic [7, 22]. The non-linearity induces slightly higher
computational costs, with respect to previously described alternatives.
However, this leads to significant improvements in the reliability of the
mesh deformation method, by choosing a constitutive law for the fictitious
material that penalizes highly distorted elements.

One possible non-linear strategy is based on choosing PALE according to
the neo-Hooke constitutive law (2.8). Another option, introduced in [53]
and inspired by [156, 300], comes from the following choice:

PALE(dALE) =
1

q(dALE)

�
I −

�
FALEFT

ALE

�−1
�

, (2.13)

FALE = I +∇dALE ,

where q(dALE) is a scale-invariant mesh quality metric that has the purpose
of stiffening the regions of the fluid domain with highly distorted elements,
aiming at preventing solver breakdown. It is defined mesh-element-wise
as

q(�x) = ∥DALE∥2
F

3(det DALE)
2
3

,

where DALE = FALE ∇M and M is the linear mapping from the unit
simplex to the mesh element in current configuration, used in the finite
element discretization.
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For both the neo-Hooke law and (2.13), the resulting problem is non-linear,
and as such requires special care in its numerical solution to ensure con-
vergence and computational efficiency. I introduced an adaptive approach
to this end, presented in detail in Section 3.3.4.

The most appropriate domain displacement strategy is largely dependent
on the problem and on the mesh, and should be chosen according to the
amount of deformation the domain undergoes, balancing the computa-
tional complexity and the robustness.

An alternative approach to the formulation (2.11) is provided by displace-
ment interpolation methods, for example using radial basis functions [83],
or mesh optimization techniques [185]. Moreover, all these approaches
can be complemented by automatic remeshing methods, i.e. generating
a new mesh whenever the existing one becomes too deformed [204]. The
latter strategy, however, typically involves altering the mesh connectiv-
ity and projecting solutions between different meshes, and can become
computationally expensive as well as complex to implement, whereas the
formulation (2.11) provides a simpler framework for domain displacement.

2.5.2 Navier-Stokes equations

As is typical in the hemodynamics modeling literature [67, 80, 327, 364],
the evolution of blood velocity u and pressure p is governed by the Navier-
Stokes equations [261, 320] in ALE formulation:





ρf

�
∂u

∂t
+ ((u− uALE) ·∇) u

�

−∇ · σf(u, p) +R(u, uALE) = 0

in Ωf × (0, T), (2.14a)

∇ · u = 0 in Ωf × (0, T), (2.14b)

u = 0 in Ωf × {0}. (2.14c)

In the above, ρf denotes the density of the blood, and σf(u, p) is the Cauchy
stress tensor of a Newtonian fluid, defined as

σf(u, p) = µf

�
∇u +∇uT

�
− pI ,

with µf denoting the dynamic viscosity. R(u, uALE) is a resistive term
associated to the RIIS method (see Section 2.5.3).
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System (2.14) is endowed with the FSI interface conditions on the fluid-
solid interface Σ (see Section 2.6) and with coupling conditions with the
circulatory system at inlet and outlet sections (see Section 2.7). Where Neu-
mann conditions are imposed, instabilities due to backflow are prevented
by means of the inertial backflow stabilization as described in [36, 221]:
Neumann conditions in the form

σf(u, p)n = −pNn on ΓN
f

are replaced by

σf(u, p)n = −pNn + β
ρf

2
|u · n|−u on ΓN

f ,

where |u · n|− = min{u · n, 0} and β = 1.

2.5.3 Resistive Immersed Implicit Surface modeling of car-

diac valves

FSI modeling of cardiac valves is a very active area of research [100, 111,
120, 152, 187, 207, 301, 323], due to the important clinical implications of
valve function [7, 81, 218], especially with reference to prosthetic valves
[161, 197, 206, 359]. However, FSI simulations involving valves pose sig-
nificant modeling and computational challenges: valves undergo large
displacements, their opening and closing determines topological changes
in the volume occupied by the blood, and contact plays a major role in
their physiological function [7, 300, 322]. Moreover, the dynamics of atri-
oventricular valves is affected by the presence of chordae tendineae and
papillary muscles [59, 217, 331], adding to the overall complexity of the
problem.

On the other hand, the focus of the EMF model lies mainly in capturing the
macroscopic effect that the valves have on the flow, rather than accurately
describing their dynamic interaction with blood. In particular, the model
should account for the role of valves in preventing reverse flow, as well as
the way valve leaflets contribute to the formation of jets and vortices inside
the heart chambers [95, 249]. Therefore, I choose a reduced approach in
the modeling of valves, provided by the RIIS method [107, 117, 118, 364],
in which valve FSI is neglected by prescribing valve kinematics.



2.5. FLUID DYNAMICS 37

The RIIS method is based on representing each valve through a surface Γk,
with k ∈ V = {MV, AV, TV, PV}, immersed in the fluid domain Ωf. The
RIIS term R(u, uALE) in (2.14a) penalizes the mismatch between the fluid
velocity and the valve velocity, thus forcing the former to match the latter:

R(u, uALE) = ∑
k∈V

Rk

εk
δεk

(ϕt
k(x))(u− uALE − uΓk

) . (2.15)

In the above, Rk is a resistance coefficent that enforces the penalization; εk

represents the valve half-thickness; ϕt
k is the signed distance function from

the surface Γk, and δεk
is a smoothed Dirac delta function that restricts the

penalization to a layer of width 2εk near the surface:

δεk
(y) =





1

2εk

�
1 + cos

�
πy

εk

��
if |y| f εk ,

0 if |y| > εk .

Finally, uΓk
: Ωf → R

3 is the valve velocity vector due to changes in its
configuration (i.e. due to the opening and closing of the valve). Following
[107], a quasi-static approximation is adopted, by setting uΓk

= 0.

Implicitly representing the valve through the signed distance function ϕk

avoids the need to have conforming discretizations between the valve and
the fluid domain, which are instead required by ALE methods [7, 301],
the Resistive Immersed Surface method [16, 326] or the planar modeling
approach [82, 236]. This greatly facilitates the use of realistic geometries
for valves.

Moreover, the RIIS method allows to easily move valves over time, to follow
the displacement of the heart as well as to account for opening and closing.
To do so, let Γclosed

k ¢ �Ωf denote a closed configuration for each valve
k ∈ V , and let dk : Γclosed

k → R
3 be a displacement field that transforms the

valve from the closed to the open configuration, obtained with a rule-based
algorithm as a preprocessing step, as shown in [364] (see Figure 2.7 for an
example). At any time t ∈ (0, T), the current configuration of the surface
is given by

Γk =
�

x ∈ Ωf : x = �x + dALE(�x, t) + ck(t)dk(�x), �x ∈ Γclosed
k

�
.
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Figure 2.7: Immersed surface representing the aortic valve. From
left to right: closed configuration Γclosed

AV , opening displacement
dAV, open configuratin ΓAV.

The opening coefficient ck(t) ∈ [0, 1] varies smoothly over time and is used to
open and close the valve, effectively prescribing its kinematics. The time it
takes for each valve to go from the open to the closed configuration and vice
versa is prescribed. However, the times at which valves start opening and
closing are chosen based on the difference between the pressure upstream
and downstream of the valve, as in [53, 364]. Therefore, the duration
of cardiac phases is determined by the solution of the model and not
prescribed a priori.

2.6 Fluid-structure coupling conditions

On the interface Σ, fluid and solid are coupled through the following FSI
interface conditions [31, 262]:





u =
∂d

∂t
on Σ× (0, T) , (2.16a)

σf(u, p)n = σs(d, s)n on Σ× (0, T) , (2.16b)

where σs(d, s) is the Cauchy stress tensor for the solid, related to the first
Piola-Kirchhoff tensor by

σs(d, s) = J−1 F Ps(d, s)T .

Equation (2.16a) represents a no-slip condition on the fluid-solid interface,
and is referred to as kinematic coupling, whereas (2.16b), known as dynamic
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Figure 2.8: Representation through a circuital analogy of the 0D
circulation model.

coupling, expresses Newton’s third law. A third coupling condition, the
geometric coupling, is given by (2.11b).

2.7 Modeling the circulatory system

The heart function is tightly related to the circulatory system. Indeed, the
arterial pressure constitutes the afterload against which the heart pumps
during systole, while venous return affects preload [180, 184]. This relation
is also reflected in many pathological conditions such as hypertension.

Due to the geometrical complexity and the large variety in spatial scales
of the vascular network, a three-dimensional simulation of both the heart
and cardiovascular system is computationally unfeasible [266]. A valid
alternative is the representation of the circulation through models of re-
duced dimensionality [60, 65]. This is often achieved through a surrogate
lumped-parameter model, also referred to as 0D model to underline the
lack of spatial resolution [39, 153, 259, 266, 275, 356, 364].

Models of this kind are obtained by averaging vascular fluid-structure
interaction equations over their domain of definition, under suitable sim-
plifying assumptions [251, 266]. The unknowns are spatially averaged
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pressures and flow rates within compartments of the circulatory system.
They can be conveniently represented through an analogy with electrical
circuits (see Figure 2.8), with flow rate being the equivalent of electrical
current and pressure that of voltage. In this analogy, viscous effects can be
represented through resistance elements, vessel compliance is represented
by capacitors and blood inertia by inductance elements [266].

In this thesis, I consider the closed loop model presented in [275], based
on the ones of [39, 153] and previously applied to cardiac electromechanics
simulations in [108, 259] and CFD simulations in [364]. The unknowns are
average pressures and volumes of the cardiac chambers (pLA, pLV, pRA,
pRV, VLA, VLV, VRA, VRV), flowrates through cardiac valves (QMV, QAV,
QTV, QPV), and pressures and flowrates through the four circulation com-
partments: systemic arterial, (pSYS

AR , QSYS
AR ), systemic venous (pSYS

VEN, QSYS
VEN),

pulmonary arterial (pPUL
AR , QPUL

AR ) and pulmonary venous (pPUL
VEN, QPUL

VEN).

The model represents the heart chambers through time-varying elastances:

pLA(t) = pex(t) + ELA(t)
�

VLA(t)−VLA
0

�
,

dVLA

dt
= QPUL

VEN(t)−QMV(t) ,

pLV(t) = pex(t) + ELV(t)
�

VLV(t)−VLV
0

�
,

dVLV

dt
= QMV(t)−QAV(t) ,

pRA(t) = pex(t) + ERA(t)
�

VRA(t)−VRA
0

�
,

dVRA

dt
= QSYS

VEN(t)−QTV(t) ,

pRV(t) = pex(t) + ERV(t)
�

VRV(t)−VRV
0

�
,

dVRV

dt
= QTV(t)−QPV(t) ,

where pex(t) is an external pressure that can be used to account for the
effect of breathing (set to pex(t) = 0 in this thesis). For each chamber
k ∈ {LA, LV, RA, RV}, Vk

0 is the resting volume, and Ek(t) is a time-varying
elastance function, analytically prescribed to represent contraction and



2.7. MODELING THE CIRCULATORY SYSTEM 41

relaxation [275]. Cardiac valves are modeled by means of non-ideal diodes:

QMV(t) =
pLA(t)− pLV(t)

RMV(pLA(t), pLV(t))
,

QAV(t) =
pLV(t)− pSYS

AR (t)

RAV(pLV(t), pSYS
AR (t)) + RSYS

upstream
,

QTV(t) =
pRA(t)− pRV(t)

RTV(pRA(t), pRV(t))
,

QPV(t) =
pRV(t)− pPUL

AR (t)

RPV(pRV(t), pPUL
AR (t)) + RPUL

upstream
.

Valvular resistances RMV, RAV, RTV and RPV are used to model the open-
ing and closing of valves based on the difference between upstream and
downstream pressures:

Rk(pup, pdown) =

�
Rk

max if pup < pdown ,

Rk
min if pup g pdown ,

k ∈ {MV, AV, TV, PV} .

With respect to previous applications of the model [275, 364], I added
the two upstream resistances RSYS

upstream and RPUL
upstream. When coupling with

the Navier-Stokes equations (see Section 2.7.1), the two have the role of
absorbing outgoing pressure waves, preventing spurious oscillations re-
sulting from unphysical reflections [170].

Circulation compartments are modeled as RLC circuits: for t ∈ (0, T),

CSYS
AR

dpSYS
AR (t)

dt
= QAV(t)−QSYS

AR (t) ,

LSYS
AR

RSYS
AR

dQSYS
AR (t)

dt
= −QSYS

AR (t)− pSYS
VEN(t)− pSYS

AR (t)

RSYS
AR

,

CSYS
VEN

dpSYS
VEN(t)

dt
= QSYS

AR (t)−QSYS
VEN(t) ,

LSYS
VEN

RSYS
VEN

dQSYS
VEN(t)

dt
= −QSYS

VEN(t)−
pRA(t)− pSYS

VEN(t)

RSYS
AR

,

CPUL
AR

dpPUL
AR (t)

dt
= QPV(t)−QPUL

AR (t) ,
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LPUL
AR

RPUL
AR

dQPUL
AR (t)

dt
= −QPUL

AR (t)− pPUL
VEN(t)− pPUL

AR (t)

RPUL
AR

,

CPUL
VEN

dpPUL
VEN(t)

dt
= QPUL

AR (t)−QPUL
VEN(t) ,

LPUL
VEN

RPUL
VEN

dQPUL
VEN(t)

dt
= −QPUL

VEN(t)−
pLA(t)− pPUL

VEN(t)

RPUL
VEN

.

Resistance, capacitance and inductance coefficients in the above equations
surrogate the properties of the corresponding vascular network compart-
ment [266]. The circulation problem is endowed with suitable initial con-
ditions for its variables.

Collecting all circulation variables into the vector c(t) ∈ R
Ncirc , the cir-

culation model can be recast in compact form as an algebraic-differential
equation:

Fcirc

�
c,

dc

dt
, t

�
= 0 t ∈ (0, T) . (2.17)

2.7.1 3D-OD coupling between circulation and heart hemo-

dynamics

The circulation model described above provides a dimensionally reduced
representation of the whole cardiovascular system. However, the EMF
model aims at describing with high fidelity the cardiac function, with a 3D
representation of cardiac chambers and a 0D representation of the circu-
latory system [38, 266, 364]. The 3D model of the heart and the 0D model
of the circulation are therefore coupled in a geometric multiscale framework
(see e.g. Figure 4.3). This has the twofold purpose of providing physiolog-
ically meaningful boundary conditions to Navier-Stokes equations (2.14)
and of modeling the interaction between the heart and the systemic and
pulmonary circulation.

In order to do that, the 0D compartments that have a 3D counterpart
are removed from the circulation model [108, 275, 364], and replaced by
interface conditions enforcing the continuity of flow rates and stresses
(represented by pressure in the 0D model). The two conditions express
mass and momentum conservation, respectively, at the 3D-0D interface.
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More formally, let Γinlet
j , for j ∈

�
1, 2, . . . , Ninlet

�
be the inlet sections of

Ωf, and Γoutlet
j , for j ∈

�
1, 2, . . . , Noutlet

�
the outlet sections. Let pinlet

j ,

poutlet
j , Qinlet

j and Qoutlet
j be pressures and flow rates of the 0D model,

corresponding to its terminal sections at inlets and outlets of Ωf. Then, the
3D-0D coupling conditions are the following:

σf(u, p)n = −pinlet
j n on Γinlet

j

Qinlet
j = −

�

Γinlet
j

(u− uALE) · ndγ
for j ∈

�
1, 2, . . . , Ninlet

�

σf(u, p)n = −poutlet
j n on Γoutlet

j

Qoutlet
j =

�

Γoutlet
j

(u− uALE) · ndγ
for j ∈

�
1, 2, . . . , Noutlet

�
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Chapter 3

Numerical methods for cardiac
electro-mechanics-fluid dynamics
interaction

The numerical solution of the coupled problem introduced in Chapter 2
poses several challenges, due on the one hand to the inherent complexity
of each of the core models, and on the other hand to their coupled multi-
physics nature. Computational efficiency is crucial, due to the large scale
of the problem, and the numerical solvers must be tailored towards HPC
architectures.

In this chapter, I discuss the numerical discretization strategies employed
in the solution of the EMF problem. To this end, I leverage previously
developed numerical methods for the individual core models [275, 364],
combining them in a novel coupled computational framework. The dis-
cretization methods discussed here have been published in [53].

A crucial part of the numerical discretization scheme is the method used for
the solution of the FSI subproblem. I consider several different strategies,
in both the strongly and loosely coupled families, and provide a numerical
comparison to identify the scheme most suited to cardiac simulations.
These latter results have been published in [50, 51].

45
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3.1 A segregated-staggered scheme for EMF in-

teraction

One possible approach towards the numerical solution of the EMF problem
is a fully monolithic discretization [127], in which all the subproblems
are discretized by means of standard techniques [165, 261] into a single
algebraic non-linear system. This strategy leads to a very large problem,
to be solved e.g. with Newton’s method. In practice, it also requires the
development of ad-hoc preconditioners, since the problems being coupled
have significantly different spectral properties and conditioning, and the
convergence of the numerical solvers employed (both non-linear and linear)
can be a major issue. Moreover, it may lack in flexibility in the choice of
discretization parameters for the different core models.

For these reasons, the fully monolithic approach for the EMF model is
seldom used in the cardiac modeling literature, with [127] being the only
exception, to the best of my knowledge. Instead, segregated or partitioned
methods are typically preferred [297, 348]. These are based on solving in-
dependently each of the core models, either subiterating until convergence
[183, 297] (thus realizing an implicit, or strong, coupling of all the core
models, leading to a partitioned method) or performing a single step of
each [348] (corresponding to an explicit, or loose, treatment of the coupling,
and resulting in segregated methods).

I introduce a segregated method [53], in which the coupling between elec-
trophysiology, force generation and mechanics is treated explicitly, as com-
monly done in the cardiac electromechanics literature [17, 108, 123, 259,
275]. The coupling of fluid and solid is more delicate, since an explicit
treatment may lead to instability [63], and is discussed in more detail in
Section 3.2. The scheme is derived from the one presented in [259, 275]
for ventricular electromechanics simulations, adapted to include the three-
dimensional description of blood hemodynamics and fluid-structure in-
teraction.

Let us introduce an equally spaced partition of the time domain (0, T) into
the sub-intervals (ti, ti+1), for i = 0, 1, . . . , NT, with t0 = 0 and tNT

= T,
and such that ti+1 − ti = ∆t. From here on, the numerical approximation
of any of the solution variables at time tn will be denote with a superscript
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Figure 3.1: Schematic representation of the time discretization
scheme. The numbers correspond to the steps decribed in Sec-
tion 3.1, while the discretization of the FSI problem is discussed in
Section 3.2.

n, e.g. un ≈ u(tn).

Time derivatives appearing in the model are approximated by means of
finite differences [261]. Since electrophysiology is characterized by a faster
dynamics than the other models, it typically requires a finer time step for
an accurate solution [275]. Therefore, it is discretized with a time step

∆tEP =
∆t

NEP
, with NEP ∈ N, and NEP electrophysiology time steps are

solved for each time step of the EMF model, thus realizing a staggered
coupling between electrophysiology and the other core models. This way,
the discretization scheme leverages the multiphysics nature of the problem
to deal with the multiple temporal scales it involves.

Given the solution variables and the domain Ωn up to time step tn, in order
to compute the solution at time tn+1, the following steps are performed:

1. electrophysiology: solve NEP steps of the electrophysiology problem,
that is: setting vn+1

0 = vn and wn+1
0 = wn, for i = 0, 1, . . . , NEP − 1:
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(a) compute wn+1
i+1 and zn+1

i+1 by solving the ionic model




wn+1
i+1 −wn+1

i

∆tEP
= Fw

ion(v
n+1
i , wn+1

i+1 ) in �ΩLV
s ,

zn+1
i+1 − zn+1

i

∆tEP
= Fz

ion(v
n+1
i , wn+1

i , zn+1
i ) in �ΩLV

s .

(3.1)

The previous is an implicit-explicit (IMEX) scheme, with an im-
plicit discretization of gating variables and an explicit discretiza-
tion of ionic concentrations [269, 275]. Indeed, gating variable
equations are stiff but linear, while ionic concentration equa-
tions are non-linear yet not stiff, so that the explicit discretization
poses no issues concerning numerical stability. This approach
allows to solve the ionic model directly, i.e. without the need of
an iterative non-linear solver;

(b) then, solve the monodomain equation to compute vn+1
i+1 :





JnχCm
vn+1

i+1 − vn+1
i

∆tEP

−∇ ·

�
Jn(Fn)−1Dm(Fn)−T

∇vn+1
i+1

�

+ JnχIion(v
n+1
i , wn+1

i+1 , zn+1
i+1 )

= JnχIapp(�x, tn + (i + 1)∆tEP)

in �ΩLV
s ,

Jn(Fn)−1Dm(Fn)−T
∇vn+1

i+1 · n = 0 on ∂�ΩLV
s .

(3.2)

System (3.2) relies on a semi-implicit discretization, since the
ionic current term is computed using the tramsmembrane poten-
tial at previous electrophysiology subiteration, vn+1

i . Therefore,
the problem is linear.

Then, set vn+1 = vn+1
NEP

, wn+1 = wn+1
NEP

and zn+1 = zn+1
NEP

;

2. force generation model: compute the sarcomere length SLn using the
last available displacement �dn, i.e.




−δ2

SL∇2SLn + SLn = SL0

"
In
4f in �Ωs × (0, T) ,

δ2
SL∇SLn · n = 0 on ∂�Ωs × (0, T) ,

(3.3)
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then solve the activation model to compute sn+1:

sn+1 − sn

∆t
= Fact

�
sn, [Ca2+]n+1

i , SLn,
SLn − SLn−1

∆t

�
in �Ωactive

s ;

(3.4)

3. circulation: compute the flowrates at the 3D-0D interface by integrat-
ing over the corresponding boundary section of the 3D fluid domain,
i.e.

Qinlet
j = −

�

Γinlet
j

(un − un
ALE) · ndγ j ∈ {1, 2, . . . , Ninlet} ,

Qoutlet
j =

�

Γoutlet
j

(un − un
ALE) · ndγ j ∈ {1, 2, . . . , Noutlet} .

Then, advance the circulation model (2.17) with an explicit Euler
scheme [261] to compute cn+1;

4. fluid-structure interaction: solve the coupled FSI problem to compute
dn+1

ALE, �dn+1, un+1 and pn+1. The discretization of the FSI problem
and the treatment of the fluid-solid coupling are discussed in detail
in Section 3.2.

The segregated scheme allows to choose flexibly the discretization param-
eters for each of the problems. For instance, electrophysiology can be
solved on a fine spatial or temporal grid [293] to satisfy its accuracy re-
quirements, without propagating those requirements to the discretization
of other problems.

3.2 Numerical methods for cardiac fluid-struc-

ture interaction

Among the core models composing the EMF model, the FSI one is, by far,
the most computationally demanding [53]. This is due to the intrinsic cost
of computational fluid dynamics simulations as well as to the non-linearity
induced by the solid constitutive laws and FSI coupling. Therefore, it is of
particular importance to investigate different discretization strategies for
the FSI problem, to try and reduce the associated computational burden.
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In the following, I provide a broad overview of methods for FSI, reviewing
some of the classes of methods available in the literature, and then describe
in more detail a few specific methods within the strongly coupled and
loosely coupled classes. For the latter, I provide a comparison based on
numerical experiments, with the aim of selecting the scheme that is most
appropriate for cardiac simulations. The results presented in the next
sections have been published in [50, 51].

3.2.1 A taxonomy of methods for fluid-structure interaction

Within the FSI literature, two broad families of FSI coupling methods can
be distinguished: the strongly coupled ones, in which the interface condi-
tions are imposed exactly at all time discretization steps [18, 50, 63, 127,
149, 173, 189, 192, 222, 232, 234, 280, 357, 361], and the loosely coupled
ones, in which interface conditions are discretized in an explicit fash-
ion so that fluid and solid problems can be solved once per time step
[24, 55, 58, 113, 131, 130, 142]. The latter are seldom considered in the bio-
logical modeling literature, due to stability concerns related to the added
mass effect [63]. Nonetheless, stable schemes in this family can provide
relevant computational advantages with respect to their strongly coupled
counterparts [51].

Strongly coupled schemes can be further classified into partitioned schemes,
for which the solution algorithm is based on subiterating between the
fluid and the solid problems [18, 63, 183, 189, 222, 232, 297], and monolithic
schemes, that discretize fluid and solid into a single non-linear algebraic
system to be solved with standard techniques [127, 149, 173, 202, 234, 361].
Upon convergence, the two methods provide the same solution. However,
they differ significantly in their computational performance as well as in
the implementation effort they require. While partitioned methods may
suffer from convergence issues or require suitable acceleration methods to
become effective [50, 63, 189], they are inherently modular and straight-
forward to implement. Monolithic schemes, on the other hand, require
the development and implementation of dedicated solvers, often based on
Newton’s method or one of its variants, as well as suitable preconditioners
for an efficient solution [50, 92, 193].

To facilitate the discussion, let us introduce the following shorthand nota-
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tion for the differential problems related to FSI:

• G
�

dALE, �d
�
= 0 expresses the fluid domain displacement problem

(2.11) in compact form;

• F
�

un+1, pn+1, un+1
ALE

�
= 0 expresses the Navier-Stokes equations in

compact form, after time discretization, i.e.




ρf

�
un+1 − un

∆t
+
��

un − un+1
ALE

�
·∇
�

un+1

�

−∇ · σf

�
un+1, pn+1

�
+R

�
un+1, un+1

ALE

�
= 0

in Ωn+1
f ,

∇ · un+1 = 0 in Ωn+1
f ,

(3.5)

endowed with appropriate boundary conditions, but excluding in-
terface conditions on Σn+1;

• M
�
�dn+1, sn+1

�
= 0 expresses the time-discrete equations of me-

chanics in compact form, i.e.




ρs
�dn+1 − 2�dn + �dn−1

∆t2
−∇ · Ps(�dn+1, sn+1) = 0 in �Ωs ,

�dn+1 = 0 on �ΓD
s ,

P(�dn+1, sn+1)n = 0 on �ΓN
s ,

Ps(�dn+1, sn+1)n

= −(n¹ n)

�
K

epi
§
�dn+1 + C

epi
§
�dn+1 − �dn

∆t

�

− (I − n¹ n)

�
K

epi

∥
�dn+1 + C

epi

∥
�dn+1 − �dn

∆t

�
on �ΓR

s ,

(3.6)

excluding interface conditions on �Σ;

• FSI
�

un+1, pn+1, un+1
ALE, dn+1, sn+1

�
= 0 expresses, in compact form,

the coupled problem comprising (3.5), (3.6) and the interface condi-
tions

un+1 =

�
dn+1 − dn

∆t

�
on Σn+1 ,
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Scheme Section Geometry FSI coupling

GE-P 3.2.2 explicit strong, partitioned
GE-P-RN2 3.2.2 explicit two Robin-Neumann (RN) iterations

GI-P 3.2.3 implicit strong, partitioned
GE-M 3.2.4 explicit strong, monolithic
GI-M 3.2.5 implicit strong, monolithic
GE-E 3.2.6 explicit loose, segregated

Table 3.1: Summary of the numerical schemes considered for car-
diac FSI.

σf

�
un+1, pn+1

�
n = σs

�
dn+1, sn+1

�
n on Σn+1 .

In the following sections, I provide details on some discretization schemes
for cardiac FSI in the strongly and loosely coupled classes, partitioned,
monolithic and segregated. The schemes considered, as well as the ab-
breviations used, are summarized in Table 3.1. I carry out comparisons
through numerical experiments in Sections 3.4 and 3.5.

3.2.2 Strongly coupled partitioned schemes with explicit

geometric coupling (GE-P)

I describe below a partitioned scheme based on fixed-point iterations with
explicit geometric coupling, represented schematically in Figure 3.2a and
referred to as GE-P (geometrically explicit, partitioned). The scheme can
be outlined as follows: given �dn, �dn−1 and un, to compute the solution at
time tn+1:

1. compute dn+1
ALE by solving G

�
dn+1

ALE, �dn
�
= 0, then update the domain

Ωn+1
f and compute the ALE velocity as

un+1
ALE =

�
dn+1

ALE − dn
ALE

∆t

�
◦
�
Ln+1

f

�−1
;

2. set �dn+1
(0)

= �dn, and iterate for k = 0, 1, 2, . . . and until convergence:
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(a) compute un+1
(k+1)

and pn+1
(k+1)

by solving the Navier-Stokes equa-

tions, using dn+1
(k)

to provide data on Σn+1:




F
�

un+1
(k+1)

, pn+1
(k+1)

, un+1
ALE

�
= 0 ,

cf

�
un+1
(k+1)

, pn+1
(k+1)

, dn+1
(k)

, sn+1
�
= 0 on Σn+1 ;

(b) compute an intermediate displacement �dn+1
(k+1)

by solving the

elastodynamics equation, using the newly computed un+1
(k+1)

and

pn+1
(k+1)

to provide data on �Σ:




M
�
�dn+1
(k+1)

, sn+1
�
= 0 ,

cs

�
�dn+1
(k+1)

, un+1
(k+1)

, pn+1
(k+1)

, sn+1
�
= 0 on �Σ .

(c) apply a suitable acceleration or relaxation method to the solid
displacement:

�dn+1
(k+1)

= R(k+1)

�
�dn+1
(k+1)

, �dn+1
(k)

, �dn+1
(k−1)

, . . .
�

.

After last iteration k, set un+1 = un+1
(k)

, pn+1 = pn+1
(k)

and �dn+1 = �dn+1
(k)

.

The iterations over k are stopped either when the norm of the residual
associated to interface conditions (2.16) falls below a prescribed tolerance
[18], or when the increment between subsequent iterations becomes small.

Operators cf and cs express suitable interface conditions used to realize
the coupling between fluid and solid. Different methods are obtained by
selecting different conditions, typically inspired by domain decomposition
methods [265]. The simplest approach is given by Dirichlet-Neumann
(DN) iterations [63], for which

cf

�
un+1
(k+1)

, pn+1
(k+1)

, dn+1
(k)

, sn+1
�
= un+1

(k+1)
−

dn+1
(k)
− dn

∆t
,
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(a) GE-P (b) GI-P

Figure 3.2: (a) Schematic representation of the geometrically ex-
plicit strongly coupled partitioned scheme. (b) Schematic repre-
sentation of the geometrically implicit strongly coupled partitioned
scheme.

cs

�
�d(k+1), un+1

(k+1)
, pn+1

(k+1)
, sn+1

�

= σf

�
un+1
(k+1)

, pn+1
(k+1)

�
n− σs

�
�d(k+1), sn+1

�
n .

More general methods fall within the Robin-Robin (RR) class [18, 19, 58, 113,
265], in which interface conditions (2.16) are replaced by two independent
linear combinations of kinematic and dynamic coupling. A particular
method in this class is the Robin-Neumann (RN) method, for which

cf

�
un+1
(k+1)

, pn+1
(k+1)

, dn+1
(k)

, sn+1
�
= α


un+1

(k+1)
−

dn+1
(k)
− dn

∆t




+ σf

�
un+1
(k+1)

, pn+1
(k+1)

�
n− σs

�
dn
(k), sn+1

�
n ,

cs

�
�d(k+1), un+1

(k+1)
, pn+1

(k+1)
, sn+1

�

= σf

�
un+1
(k+1)

, pn+1
(k+1)

�
n− σs

�
�d(k+1), sn+1

�
n ,
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with α > 0 a suitable Robin coefficient. The RN method was shown to
have a better performance than other partitioned schemes, in particular
DN [18, 19].

The partitioned method just described can be interpreted as a fixed-point
iteration method over the interface displacement [18, 90]. The operator
R(k+1) in step 2c denotes a suitable relaxation or convergence acceleration
procedure. Indeed, partitioned methods of this kind may require relax-
ation to ensure convergence [63]. Moreover, they might require a large
number of iterations, so that the use of convergence acceleration methods
such as Aitken acceleration (AitA) [189, 222] or Anderson acceleration (AndA)
[43, 50, 106, 353] may significantly improve the computational performance.
In this thesis, I considered static relaxation, AitA and AndA as possible
acceleration methods. Their definitions are reported in Appendix A.

In the numerical benchmarks discussed in this thesis, I also consider a
variation on this method, based on performing only 2 subiterations using
RN interface conditions, without checking for convergence. This method
is denoted by GE-P-RN2.

3.2.3 Strongly coupled partitioned schemes with implicit

geometric coupling (GI-P)

A method in which the geometric coupling (2.11b) is treated implicitly can
be derived by modifying the GE-P scheme by updating the fluid domain
displacement within the fixed-point iterations. In the following, I refer to
this scheme as GI-P (geometrically implicit, paritioned). The method is
schematically represented in Figure 3.2b, and can be outlined as follows:
given �dn, �dn−1 and un, to compute the solution at time tn+1, set �dn+1

(0)
= �dn

and iterate for k = 0, 1, 2, . . . and until convergence:

1. compute dn+1
ALE (k+1)

by solving G
�

dn+1
ALE (k+1)

, �dn+1
(k)

�
= 0, then update

the domain Ωn+1
f,(k+1)

and compute the ALE velocity as

un+1
ALE (k+1)

=




dn+1
ALE (k+1)

− dn
ALE

∆t


 ◦

�
Ln+1

f,(k+1)

�−1
;
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2. compute un+1
(k+1)

and pn+1
(k+1)

by solving the Navier-Stokes equations,

using dn+1
(k)

to provide data on Σn+1:




F
�

un+1
(k+1)

, pn+1
(k+1)

, un+1
ALE (k+1)

�
= 0 ,

cf

�
un+1
(k+1)

, pn+1
(k+1)

, dn+1
(k)

, sn+1
�
= 0 on Σn+1 ;

3. compute an intermediate displacement �dn+1
(k+1)

by solving the elasto-

dynamics equation, using the newly computed un+1
(k+1)

and pn+1
(k+1)

to

provide data on �Σ:



M
�
�dn+1
(k+1)

, sn+1
�
= 0 ,

cs

�
�dn+1
(k+1)

, un+1
(k+1)

, pn+1
(k+1)

, sn+1
�
= 0 on �Σ .

4. apply a suitable acceleration or relaxation method to the solid dis-
placement:

�dn+1
(k+1)

= R(k+1)

�
�dn+1
(k+1)

, �dn+1
(k)

, �dn+1
(k−1)

, . . .
�

.

After last iteration k, set dn+1
ALE = dn+1

ALE (k)
, un+1 = un+1

(k)
, pn+1 = pn+1

(k)
and

�dn+1 = �dn+1
(k)

.

Stopping criteria, interface conditions cf, cs and the relaxation operator
R(k+1) are defined as in the previous section. Other partitioned schemes
with implicit geometric coupling can be obtained e.g. by performing two
nested loops at each time step: in the outer loop, the fluid domain displace-
ment problem is solved and the fluid domain updated, and in the inner
loop the fluid and structure problems are solved for a fixed fluid domain
[232].

3.2.4 Monolithic scheme with explicit geometric coupling

(GE-M)

Let us now consider a geometrically explicit monolithic scheme: the ge-
ometric coupling is treated explicitly, while fluid and solid equations are
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solved simultaneously, with strong imposition of kinematic and dynamic
coupling. This scheme is referred to as GE-M (geometrically explicit, mono-
lithic). The scheme is represented in Figure 3.3a, and can be outlined as
follows: given �dn, �dn−1 and un, to compute the solution at time tn+1:

1. compute dn+1
ALE by solving G

�
dn+1

ALE, �dn
�
= 0, then update the domain

Ωn+1
f and compute the ALE velocity as

un+1
ALE =

�
dn+1

ALE − dn
ALE

∆t

�
◦
�
Ln+1

f

�−1
;

2. compute un+1, pn+1 and �dn+1 solving the coupled FSI problem

FSI
�

un+1, pn+1, un+1
ALE, dn+1, sn+1

�
= 0 .

The latter is a non-linear problem, due to the non-linear constitutive
law of the structure. Therefore, it is solved by means of Newton
iterations: setting un+1

(0)
= un, pn+1

(0)
= pn and dn+1

(0)
= dn, iterate for

k = 0, 1, 2, . . . and until convergence:

(a) solve the linearized problem

JFSI(k) (δu, δp, δd) = FSI
�

un+1
(k)

, pn+1
(k)

, un+1
ALE, dn+1

(k)
, sn+1

�
,

(3.7)
where JFSI(k) is the Fréchet derivative of the function FSI with

respect to un+1, pn+1 and dn+1, evaluated at un+1
(k)

, pn+1
(k)

and

dn+1
(k)

;

(b) update the solution by setting

un+1
(k+1)

= un+1
(k)
− δu ,

pn+1
(k+1)

= pn+1
(k)
− δp ,

dn+1
(k+1)

= dn+1
(k)
− δd .

After last iteration k, set un+1 = un+1
(k)

, pn+1 = pn+1
(k)

and dn+1 = dn+1
(k)

.
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(a) GE-M (b) GI-M

Figure 3.3: (a) Schematic representation of the geometrically ex-
plicit strongly coupled monolithic scheme. (b) Schematic repre-
sentation of the geometrically implicit strongly coupled monolithic
scheme.

3.2.5 Monolithic scheme with implicit geometric coupling

(GI-M)

A monolithic scheme with implicit geometric coupling, referred to as GI-
M, can be obtained from the GE-M scheme by updating the fluid domain
within the Newton loop. The resulting scheme is represented in Fig-
ure 3.3b, and can be outlined as follows: given �dn, �dn−1 and un, to compute
the solution at time tn+1, set un+1

(0)
= un, pn+1

(0)
= pn and dn+1

(0)
= dn, and

iterate for k = 0, 1, 2, . . . until convergence:

1. compute dn+1
ALE (k+1)

by solving G
�

dn+1
ALE (k+1)

, �dn+1
(k)

�
= 0, then update

the domain Ωn+1
f and compute the ALE velocity as

un+1
ALE (k+1)

=




dn+1
ALE (k+1)

− dn
ALE

∆t


 ◦

�
Ln+1

f,(k+1)

�−1
;
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2. solve the linearized FSI problem

JFSI(k) (δu, δp, δd) = FSI
�

un+1
(k)

, pn+1
(k)

, un+1
ALE (k+1)

, dn+1
(k)

, sn+1
�

;

3. update the solution by setting

un+1
(k+1)

= un+1
(k)
− δu ,

pn+1
(k+1)

= pn+1
(k)
− δp ,

dn+1
(k+1)

= dn+1
(k)
− δd .

After last iteration k, set dn+1
ALE = dn+1

ALE (k)
, un+1 = un+1

(k)
, pn+1 = pn+1

(k)
and

dn+1 = dn+1
(k)

.

This method corresponds to solving the fully coupled FSI problem com-
posed of (2.11), (3.5), (3.6) and (2.16) by means of an inexact Newton
method, in which Jacobian terms involving derivatives with respect to
the fluid domain displacement (including shape derivatives [30, 112]) are
neglected. Accounting for shape derivatives, either computed exactly
[31, 94, 112, 173, 280, 281, 357] or approximated through finite differences
[149, 159], is another viable option.

3.2.6 A stable, loosely coupled scheme (GE-E)

As seen in previous sections, schemes with strong coupling of fluid and
solid involve iterative procedures to enforce the FSI coupling, either by
means of fixed-point algorithms or through Newton’s method. In prac-
tice, this means that, at every time step, the fluid and solid problems are
assembled and solved multiple times. This entails a very significant com-
putational cost.

Alternatively, loosely coupled (or explicit) discretization schemes can be
considered, based on solving the fluid and solid problems only once per
time step. Unfortunately, a naïve approach based e.g. on a DN loosely
coupled scheme leads to an unstable solution [63]. Indeed, biological
systems are characterized by the so-called added mass effect: when fluid
and solid densities are comparable, explicit methods are prone to instability
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Figure 3.4: Schematic representation of the geometrically explicit
loosely coupled FSI scheme (GE-E).

in time [63]. Therefore, while computationally attractive, loosely coupled
methods must be designed carefully to ensure stability [58, 57, 113, 114,
130, 131]. In particular, the stability of loosely coupled schemes based on
Robin interface conditions has been investigated in [130, 131] for vascular
hemodynamics applications.

Here, I present a particular scheme in that class, using RN interface con-
ditions. The scheme, represented in Figure 3.4, is referred to as GE-E
(geometrically explicit with explicit FSI). Its steps are the following:

1. compute dn+1
ALE by solving G

�
dn+1

ALE, �dn
�
= 0, then update the domain

Ωn+1
f and compute the ALE velocity as

un+1
ALE =

�
dn+1

ALE − dn
ALE

∆t

�
◦
�
Ln+1

f

�−1
;

2. compute un+1 and pn+1 by solving the Navier-Stokes equations, using
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dn to provide Robin data on Σn+1:





F
�

un+1, pn+1, un+1
ALE

�
= 0 ,

un+1 − dn − dn−1

∆t

+ α
�
σf

�
un+1, pn+1

�
n− σs

�
dn, sn+1

�
n
�
= 0

on Σn+1 ;

3. compute �dn+1 by solving the elastodynamics equation, using the
newly computed un+1 and pn+1 to provide Neumann data on �Σ:




M
�
�dn+1, sn+1

�
= 0 ,

σf

�
un+1
(k+1)

, pn+1
(k+1)

�
n− σs

�
dn+1, sn+1

�
n = 0 on �Σ .

3.3 Space discretization and solvers

Spatial discretization of PDEs is achieved by means of the finite element
method (FEM) [165, 261]. Let us introduce a hexahedral or tetrahedral
mesh in both domains �Ωs and �Ωf. At their interface �Σ, the fluid and
solid meshes are conforming (i.e. surface elements on the interface on
one of the two domain are coincident with surface elements on the other
domain). This facilitates the communication of interface data between the
two domains, avoiding the use of interpolation methods required by non-
conforming meshes [91, 234]. The mesh in �Ωf is updated over time follwing
the displacement dn+1

ALE, resulting in a mesh in Ωn+1
f . Mesh resolution varies

in space, and it is generally finer in the area around RIIS surfaces (when
present), so as to better capture their presence and avoid spurious flow
across them [107].

3.3.1 Electrophysiology

The ionic model (3.1) is solved independently for each degree of freedom
(DoF) of the solid mesh, avoiding the computational costs associated to the
storage, assembly and inversion of a matrix. The ionic current is evaluated
at each DoF and then interpolated onto quadrature nodes in the interior
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of mesh elements, in the approach known as ionic current interpolation (ICI)
[186, 247].

The finite element discretization of the monodomain equation (3.2) yields
a symmetric, positive definite linear system AEPV = FEP. It is solved
using the conjugate gradient (CG) method, preconditioned using algebraic
multigrid (AMG) [261, 289, 360].

3.3.2 Force generation

The discretization of the sarcomere length regularization problem (3.3)
yields a symmetric positive definite linear system ASLS = FSL. It is solved
using the CG method, preconditioned with AMG.

The force generation model (3.4) is solved at each DoF of the mesh, like
done for the ionic model. The generated active force Tact is then computed
at each DoF and interpolated onto quadrature nodes on element interiors.

3.3.3 Cardiac mechanics

After discretization, problem (3.6) results in a non-linear algebraic system,
which is linearized with Newton’s method. This yields a non-symmetric
linear system AM δD = FM, which is solved using the GMRES method
[261, 289] preconditioned with AMG.

When solving the quasi-static counterpart of (3.6), i.e. when recovering the
reference configuration or computing the initial displacement (Section 2.4),
an inexact Newton method is used instead, based on progressively reduc-
ing the linear solver tolerance during Newton iterations [25, 49, 101]. This
prevents oversolving during the first Newton iterations, overall reducing
the computational cost and facilitating the solver convergence.

3.3.4 Fluid domain displacement

The spatial discretization of the fluid domain displacement problem (2.11)
yields an algebraic problem that may be linear or non linear according to the
choice of PALE. For the linear cases (harmonic extension, linear elasticity)
solve the resulting problem is solved using the CG method, preconditioned
with AMG.
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Non-linear cases (based either on the neo-Hooke law or on (2.13)) require
more sophisticated methods. In principle, the problem (2.11) can be lin-
earized by means of Newton’s method, and the resulting linear system
solved with GMRES, using an AMG preconditioner. However, Newton’s
method converges only if its initial guess is sufficiently close to the so-
lution [261]. Since the initial guess is the solution at the previous time
step, this may require ∆t to be very small. The convergence of the solver
is even more problematic when computing the initial fluid domain dis-
placement dALE(t = 0): since the initial solid displacement d0 is generally
different from 0, it is hard to obtain an initial guess for the fluid domain
displacement problem that guarantees convergence. In practice, this was a
significant limitation of this approach for the numerical studies performed
in this thesis.

To avoid this issue, I introduced an iterative method to solve (2.11) by
means of an adaptive linear ramp in the boundary data: given c0 = 0,

∆c0 ∈ (0, 1] and an initial guess d
(0)
ALE, iterate for k = 1, 2, . . . and until

ck < 1:

1. set ck ← min{ck−1 + ∆ck−1, 1};

2. try to solve G
�

d
(k)
ALE, ck

�d + (1− ck)d
(0)
ALE|�Σ

�
= 0, using Newton’s

method with d
(k−1)
ALE as initial guess:

(a) if Newton’s method succeeds, set ∆ck ← αsuccess∆ck−1 and k ←
k + 1, then advance to next iteration;

(b) if Newton’s method fails, set ∆ck−1 ← αfailure∆ck−1 and repeat
the current iteration.

Parameters ∆c0, αsuccess ∈ [1, ∞) and αfailure ∈ (0, 1) can be selected by the

user to tune the behavior of the adaptive ramp. The initial guess d
(0)
ALE

is taken as the solution of the ALE lifting problem at previous time step.
The results of this thesis were obtained by setting ∆c0 = 1, αsuccess = 1.1,
αfailure = 0.5.
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3.3.5 Fluid dynamics

The discretized Navier-Stokes equations are stabilized with either the
SUPG-PSPG [325] or the VMS-LES [29, 71, 88, 164, 174, 363] stabiliza-
tion method. This enables the use of equal-order polynomials for fluid
velocity and pressure [261], and provides stabilization for the advection-
dominated regime. On top of that, the VMS-LES stabilization provides
fine scale modeling to represent the transition-to-turbulence regime of car-
diac flow [40, 364]. Both stabilization methods are modified with respect
to their original formulations, to account for the presence of the resistive
method. The complete formulation can be found in [364].

After the finite element discretization, (3.5) results in a block linear system
with the structure

ANSXNS = FNS , (3.8)

ANS =

�
F BT

−B S

�
XNS =

�
U
P

�
,

where F discretizes the inertial, viscous and resistive terms, BT corresponds
to the pressure gradient, B to the velocity divergence, and S is the algebraic
counterpart of the pressure-pressure terms introduced by the stabilization.

The system (3.8) is solved with GMRES, using the SIMPLE preconditioner
[93]:

PSIMPLE =

�
F 0

−B −�Σ

� �
I D−1BT

0 I

�
, (3.9)

where D is the matrix containing only the diagonal elements of F, and
�Σ = S + B D−1 BT is an approximation of the Schur complement. In
practice, the application of the preconditioner PSIMPLE requires to compute
the inverse of the matrices F and �Σ. To this end, they are approximated
with AMG preconditioners, i.e. the inverse of PSIMPLE is approximated by

P−1
aSIMPLE =

�
I −D−1BT

0 I

� �
PAMG(F)−1 0

PAMG(�Σ)−1BPAMG(F)−1 P−1
AMG(

�Σ)

�
,

where PAMG(M) denotes an AMG preconditioner for the matrix M. Each
application of the preconditioner requires one application of PAMG(F)−1

and one of PAMG(�Σ)−1.
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3.3.6 Fluid-structure interaction

The discretization of the linearized FSI problem (3.7) yields a block linear
system in the form

�
ANS Cfs
Csf AM

� �
δXNS
δD

�
= FFSI , (3.10)

with the first block corresponding to fluid unknowns (velocity and pres-
sure) and the second block to solid unknowns (displacement). Interface
DoFs are condensed [50, 361]: interface fluid and solid control variables
are represented by the same unknown in the linear system, resulting in the
natural imposition of dynamic coupling conditions [31] and yielding the
coupling terms Cfs and Csf.

The linear system (3.10) is solved by means of GMRES, using the following
block triangular preconditioner, introduced in [50]:

PFSI =

�
ANS 0
Csf AM

�
.

The application of the preconditioner requires the inversion of its diagonal
blocks. A−1

NS is approximated with P−1
aSIMPLE, and A−1

M is approximated with
an AMG preconditioner, so that the inverse of PFSI becomes

P−1
FSI =

�
P−1

aSIMPLE 0

−PAMG(AM)−1CsfP
−1
aSIMPLE PAMG(AM)−1

�
.

Multiplying P−1
FSI by a vector requires one application of the SIMPLE pre-

conditioner and one of the AMG preconditioner for the matrix AM.

Similar preconditioners can be obtained e.g. by considering a block-
diagonal or block-upper triangular structure, or a block-LU factorization
[92, 149, 193]. Alternative approaches are based on deriving precondition-
ers from domain decomposition formulations, mimicking at the precondi-
tioner level the behavior of partitioned schemes [19, 20].

3.3.7 Software implementation

As part of the PhD research work, I implemented the numerical methods
previously discussed in lifex [1, 2, 199], a C++ library tailored at high-
performance computing simulations of the cardiac function, supporting
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(a) (b)

Figure 3.5: Solid (a) and fluid (b) domains for the idealized left
ventricular benchmarks.

multiphysics and multiscale simulations. The library is based on the finite
element core deal.II [14, 15, 86], and relies on Trilinos [335] for its linear al-
gebra backend, with reference in particular to AMG preconditioners [122].
The lifex library supports parallel execution with the MPI paradigm, and
the implemented solvers are scalable up to thousands of cores [1].

3.4 A comparison of strongly coupled schemes

for cardiac FSI

In this section, I provide a comparison of strongly coupled partitioned
and monolithic schemes for cardiac applications, to assess which of the
schemes is most suited in terms of overall computational efficiency. To
this end, I introduce a cardiac benchmark in an idealized geometry, and
compare the performance of the strongly coupled methods discussed in
Section 3.2. The results presented in this section have been published in
[50].
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Fluid Structure

Mesh Type # elem. # nodes h [mm] # elem. # nodes h [mm]

MA hex 20 980 25 103 4.0 24 712 31 495 4.0
MB hex 57 080 66 173 2.5 61 296 75 673 2.5

M1 hex 4684 5927 6.1 6612 8789 5.2

MEP
1 hex - - - 52 896 60 459 2.6
M2 hex 13 780 16 669 4.0 22 396 28 117 3.3
M3 hex 32 628 38 429 3.0 51 364 62 589 2.5

MR tet 140 644 157 369 1.8 73 860 89 314 2.2

Table 3.2: Idealized ventricle benchmarks. Type of elements (hex-
ahedra or tetrahedra), number of elements, number of nodes and
average element diameter h for the meshes considered for the com-
parison among strongly coupled methods (Section 3.4; MA and
MB), for the comparison between strongly and loosely coupled
methods (Section 3.5;M1,MEP

1 ,M2 andM3) and for the realistic
ventricle mesh (MR), for both the fluid and the structure domain.

3.4.1 Benchmark problem description

Let us consider as domain the prolate ellipsoid depicted in Figure 3.5,
representing an idealized left ventricle. Similarly to [316], I identify two
intersecting circular regions, �ΓMV

f and �ΓAV
f , on the base of the fluid domain,

representing the mitral and aortic valve orifice, respectively. The remainder
of the ventricular base is denoted by �Γbase

f .

The purpose of the benchmark is to assess the effectiveness of methods for
FSI. Therefore, I do not consider the electrophysiology and force generation
models, and instead define Tact through an analytical function of time
[7, 50, 234], plotted in Figure 3.6, mimicking the contraction and relaxation
of the ventricle:

Tact(t) =





0 if t < t0
act ,

Tmax
act

�
t− t0

act

t
peak
act

�pact

exp

�
pact

�
1− t− t0

act

t
peak
act

��
if t g t0

act

I use the Guccione model for the structure, generating fibers with the rule-
based algorithm presented in [288]. The whole solid domain is considered
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Figure 3.6: Graph of the analytical active force Tact(t) for the ideal-
ized left ventricular benchmarks.

as mechanically active (i.e. �Ωactive
s = �Ωs). The benchmark does not in-

clude RIIS or circulation. Fluid domain displacement is obtained using
the harmonic extension (2.12). Navier-Stokes equations are stabilized with
SUPG-PSPG. The base of the ventricle is kept fixed for simplicity, i.e.

�d = 0 on �ΓD
s × (0, T) ,

dALE = 0 on
�
�Γbase

f ∪ �ΓAV
f ∪ �ΓMV

f

�
× (0, T) .

Different boundary conditions are imposed on �ΓMV
f and �ΓAV

f to model the
opening and closing of valves [50, 316]. When both valves are closed, i.e.
during isovolumetric phases, a no-slip condition is imposed:

u = 0 on
�

ΓMV
f ∪ ΓAV

f

�
× (0, T) .

During ejection, a no-slip condition is imposed on the MV orifice, and a
resistance condition is imposed on the AV orifice, i.e.

u = 0 on
�

ΓMV
f \ΓAV

f

�
× (0, T) ,

σf(u, p) = −
�

pAV + RAV

�

ΓAV
f

u · n dΓ

�
n on ΓAV

f × (0, T) ,
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where pAV and RAV are prescribed. The resistance condition on the AV
orifice, calibrated in qualitative accordance with [266], allows to account
for the typical evolution in time of the aortic pressure [210], at the same
time preventing spurious reflections of pressure waves [170, 266, 346], that
would yield unphysical oscillations of ventricular pressure and volume.
Finally, during filling, a no-slip condition is imposed on the AV, while a
Neumann condition is prescribed on ΓMV

f :

σf(u, p) = −pMVn on ΓMV
f × (0, T) ,

u = 0 on
�

ΓAV
f \ΓMV

f

�
× (0, T) .

The values of the parameters used for this benchmark are reported in
Appendix B.1. Unless otherwise specified, the simulations were run using
48 parallel processes on the GALILEO100 cluster1 at the CINECA high-
performance computing center (Italy).

3.4.2 Systolic test case

As a first benchmark, let us consider an idealized ventricular systole: the
MV is closed and the AV is open, and the contraction of the ventricle results
in an increase of pressure, the outflow of blood through the AV orifice and
the consequent reduction in ventricular volume. For this test, I set a final
time T = 200 ms and a time step ∆t = 0.2 ms, and consider the hexahedral
meshMA (see Table 3.2 for details).

The problem is solved using the GE-M, GE-P, GI-M and GI-P schemes. Con-
cerning partitioned schemes, both the DN and the RN interface conditions
are considered. One crucial issue when employing partitioned schemes is
the choice of the parameters associated to convergence relaxation, acceler-
ation or Robin interface conditions. Optimal values have been proposed
in idealized settings for vascular hemodynamics, considering simplified
linear elastic solids [63, 126, 130]. However, cardiac applications are char-
acterized by non-linearity and anisotropy in the structure constitutive laws.
Moreover, the flow regime is dominated by the contraction and relaxation
of the cardiac muscle. The optimal values of partitioned schemes param-
eters depend heavily on the domain and problem setting [18]. Therefore,

1Refer to the website https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%
3A+GALILEO100+UserGuide for technical specifications (last accessed: 23 September 2022).

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
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Figure 3.7: Idealized systolic test case (Section 3.4.2). Snapshots
of fluid velocity magnitude (top) and pressure (bottom) at three
different instants during the simulation, along an apicobasal slice
of the prolate, as computed with the GE-M scheme. The domain is
warped according to d and dALE.

I manually calibrated those parameters to find settings that provided an
effective and efficient solution of the FSI problem. I point out, however,
that the need for calibration is in itself a potential drawback of partitioned
schemes of this kind.

Figure 3.7 shows some snapshots of the solution variables, Table 3.3 reports
the number of linear and non-linear iterations required by each scheme
and Figure 3.8 the wall times required by the simulation with the differ-
ent schemes, as well as the number of system assembly calls required by
each. Partitioned schemes using static relaxation require more than 24 h of
wall time to complete the simulation, while DN schemes using Aitken or
Anderson acceleration fail to converge.
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Newton/partitioned iter. Average GMRES iter.

Scheme min. avg. max. monolithic fluid solid

GE-M 2 2.1 3 165.9 - -
GE-P-DN-SR wall time > 24 h

GE-P-DN-AitA convergence failure
GE-P-DN-AndA convergence failure

GE-P-RN-SR wall time > 24 h
GE-P-RN-AitA 13 15.6 17 - 808.6 643.4

GE-P-RN-AndA 13 14.0 15 - 657.8 616.4

GI-M 4 6.4 7 396.2 - -
GI-P-DN-SR wall time > 24 h

GI-P-DN-AitA convergence failure
GI-P-DN-AndA convergence failure

GI-P-RN-SR wall time > 24 h
GI-P-RN-AitA 14 15.9 18 - 827.8 654.9

GI-P-RN-AndA 13 14.2 15 - 751.6 582.7

Table 3.3: Performance of the different schemes for the idealized
systolic test case (Section 3.4.2). The table reports: the minimum,
average and maximum of the number of iterations per timestep
required for convergence of the Newton or partitioned method;
the average number of linear solver iterations per timestep (across
all Newton or partitioned iterations). Refer to Table 3.1 for the
explanation of the abbreviations used.

The results indicate that in this setting, with both an explicit and an implicit
treatment of the geometric coupling, the monolithic schemes are signifi-
cantly more efficient than the partitioned ones. Among the latter, the
fastest is based on using RN interface conditions, with Anderson acceler-
ation providing a significant improvement over static relaxation or Aitken
acceleration. DN schemes suffer from slow convergence issues, and are
prone to diverging if acceleration is applied, confirming the observations
of [63].

Comparing the explicit and implicit treatment of geometric coupling, I
found that the GI-M scheme is more costly than its explicit counterpart,
whereas the implicit geometry has a relatively smaller impact on RN
schemes, especially if Anderson acceleration is employed.
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Figure 3.8: (a) Wall times required for the solution of the idealized
systolic benchmark (Section 3.4.2) with the different schemes con-
sidered. (b) Number of fluid and structure system assembly calls
required by each scheme, averaged over time steps. Only schemes
that succeed in computing the solution within 24 h are reported.

3.4.3 Parallel performance

I compare the performance of the GE-M scheme and of the GE-P-RN-AndA
(the best partitioned scheme from previous section) varying the number
of cores used in the parallel computation, considering the same systolic
benchmark as in previous section. For this test, I used a meshMB with a
higher resolution (Table 3.2) and set the final time to T = 100 ms.

The wall times varying the number of cores are reported in Figure 3.9.
The results suggest that, regardless of the number of processes used, the
GE-M scheme is significantly faster. Indeed, for all tests performed, the
GE-P-RN-AndA scheme completed the simulation in approximately 5.5
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Figure 3.9: Total wall time (a), assembly time (b) and linear solver
time (c) for the idealized systolic benchmark with varying number
of cores.

times longer wall times.

3.4.4 Diastolic test case

Let us now consider a diastolic benchmark using the same domain and
mesh as in Section 3.4.2. The MV is open and the AV is closed. To model
the passive relaxation, I set Tact(t) = 0, and set T = 200 ms, ∆t = 0.2 ms.

The initial conditions of this test are not consistent with the end-systolic
conditions found in Section 3.4.2, since the aim of this test is to assess
the performance of the FSI algorithms in the context of a slow inflow and
in absence of the active contraction. A more comprehensive test case,
featuring all phases in a single simulation, is described in Section 3.5.

Figure 3.10 shows some snapshots of the solution, Table 3.4 reports the
number of linear and non-linear iterations with the different schemes,
while Figure 3.11 reports the wall times and calls to system assembly rou-
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Figure 3.10: Idealized diastolic test case (Section 3.4.4). Snapshots
of fluid velocity magnitude (top) and pressure (bottom) at three
different instants during the simulation, along an apicobasal slice
of the prolate, as computed with the GE-M scheme. The domain is
warped according to d and dALE.

tines. The results confirm the observations made for the systolic test case:
even in the diastolic regime, partitioned schemes suffer from convergence
issues, especially if DN interface conditions are considered, and are signif-
icantly slower than monolithic schemes.

3.4.5 Discussion

Both the systolic and diastolic benchmarks indicate that, among strongly
coupled FSI schemes, the monolithic ones have better computational per-
formances. Moreover, the latter do not require the calibration of conver-
gence relaxation or acceleration methods, and in general have less parame-
ters, making their use more robust with respect to changes in domain and
problem setting. As a result, they appear more suited for strongly coupled
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Newton/partitioned iter. Average GMRES iter.

Scheme min. avg. max. monolithic fluid solid

GE-M 2 2.0 2 157.7 - -
GE-P-DN-SR wall time > 24 h

GE-P-DN-AitA convergence failure
GE-P-DN-AndA convergence failure

GE-P-RN-SR wall time > 24 h
GE-P-RN-AitA 12 14.1 15 - 575.0 426.6

GE-P-RN-AndA 12 13.4 14 - 543.0 390.3

GI-M 3 4.0 4 262.7 - -
GI-P-DN-SR wall time > 24 h

GI-P-DN-AitA convergence failure
GI-P-DN-AndA convergence failure

GI-P-RN-SR wall time > 24 h
GI-P-RN-AitA 12 14.0 15 - 583.6 432.6

GI-P-RN-AndA 12 13.7 14 - 562.1 405.9

Table 3.4: Performance of the different schemes for the idealized
diastolic test case (Section 3.4.4). The table reports: the minimum,
average and maximum of the number of iterations per timestep
required for convergence of the Newton or partitioned method;
the average number of linear solver iterations per timestep (across
all Newton or partitioned iterations). Refer to Table 3.1 for the
explanation of the abbreviations used.

FSI simulations of the heart.

This conclusion is corroborated by the fact that the strongly coupled parti-
tioned schemes are essentially fixed point iterations, while the monolithic
scheme relies on Newton’s method, which is a particular fixed point iter-
ation method with higher convergence order. Therefore, the latter needs
less iterations to converge, thus requiring less calls to system assembly and
linear solver routines (see Figures 3.8b and 3.11b). Although linear solver
calls in the partitioned schemes are cheaper than those in the monolithic
scheme, due to the reduced size of the system being solved, this does not
compensate the larger cost due to the higher number of assembly calls.
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Figure 3.11: (a) Wall times required for the solution of the idealized
diastolic benchmark (Section 3.4.4) with the different schemes con-
sidered. (b) Number of fluid and structure system assembly calls
required by each scheme, averaged over time steps. Only schemes
that succeed in computing the solution within 24 h are reported.

3.5 A comparison between strongly and loosely

coupled algorithms for cardiac FSI

In this section, I compare the GE-M scheme against the fully loosely cou-
pled GE-E scheme, to understand how the explicit discretization and the
use of RN interface conditions affect stability, accuracy and efficiency. To
do so, in I consider a slightly more sophisticated benchmark than in the
previous section, by including electrophysiology and force generation, and
by considering a full heartbeat. The results appearing in this section have
been published in [51].
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3.5.1 Benchmark problem description

Let us consider the same domain as in Section 3.4, represented in Figure 3.5,
and consider the full EMF model (Figure 2.1), including electrophysiology
and active contraction. For this test, I use the TTP06 ionic model and
RDQ18 force generation model. All other modeling choices and boundary
conditions are the same as in Section 3.4.

To represent a full heartbeat, the state of the MV and AV can change
instantaneously from closed to open and vice versa, depending on the
ventricular pressure and volume [316]:

• when the AV is closed, and the average ventricular pressure becomes
larger than pAV, the valve switches from closed to open;

• when the AV is open, and the volume of the ventricle starts increasing
(i.e. there is reverse flow through the AV), the valve switches from
open to closed;

• when the MV is closed, and the average ventricular pressure is smaller
than pMV, the valve switches from closed to open;

• when the MV is open, and the volume of the ventricle starts decreas-
ing (i.e. there is reverse flow through the MV), the valve switches
from closed to open.

This allows to reproduce all heartbeat phases, albeit in a simplified way,
with the opening and closing times of valves being determined by the
simulation rather than prescribed a priori.

The values of the parameters used for this benchmark are reported in
Appendix B.2.

3.5.2 Stability of the loosely coupled scheme

The domain is discretized with the meshM1 (Table 3.2). To account for the
higher accuracy requirements of electrophysiology, it is solved on a finer
meshMEP

1 , nested into the one used for mechanics and with half its mesh
size. This allows to better capture the sharp propagating activation front
[275, 293]. Displacement and calcium are interpolated between the fine and
coarse meshes. I set NEP = 1, i.e. solve electrophysiology, force generation



78 CHAPTER 3. METHODS FOR CARDIAC EMF INTERACTION

t = 30 ms t = 60 ms

t = 100 ms t = 300 ms

Figure 3.12: Strong and loose FSI coupling (Section 3.5). Snap-
shots of the electrophysiology solution, computed using the GE-E
scheme.

and FSI with the same timestep ∆t = 0.2 ms. The final simulation time is
set to T = 500 ms.

For this test case, I simulate a whole heartbeat using the GE-M and GE-E
schemes for FSI, to understand whether the loosely coupled discretization
of the FSI subproblem yields stability issues for the physical regime and
numerical settings typical of cardiac simulations. The GE-E scheme was
shown to be conditionally stable in [130, 131], with the stability depending
on h, ∆t and on the Robin coefficient α. Indeed, as α → ∞, RN interface
conditions tend to DN interface conditions, which are known to lead to
unstable loosely coupled schemes in the hemodynamic regime [63]. As a
consequence, the GE-E scheme can be expected to become unstable for α
not small enough. My numerical experiments indicate that, for this test
case, the GE-E method is stable provided α < 6750 kg/(m2 · s), in qualita-
tive accordance with [130], and using spatial and temporal discretizations
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Figure 3.13: Strong and loose FSI coupling (Section 3.5). Fluid
velocity magnitude |u| (left) and pressure p (right) at three time
instants, computed with the GE-M and GE-E schemes. From top
to bottom, the snapshots correspond to isovolumetric contraction,
ejection and filling phases, respectively. The domain is warped
according to d and dALE.
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Figure 3.14: Strong and loose FSI coupling (Section 3.5). From left to
right, ventricular volume, average pressure and pressure volume
loop with the GE-M scheme and the GE-E scheme for different
values of α. Gray bands indicate isovolumetric phases.

compatible with the cardiac regime.

I report in Figures 3.12 and 3.13 some snapshots of the solution computed
at several time instants, using the GE-M and GE-E schemes, setting α =
5000 kg/(m2 · s). The corresponding ventricular volume and pressure over
time can be found in Figure 3.14. The results show how the GE-E scheme,
despite being explicit, yields stable results in this setting, in qualitative
agreement with the results obtained with the GE-M scheme.

3.5.3 Accuracy of the loosely coupled scheme

I aim now at comparing the GE-M and GE-E scheme in terms of accuracy of
the solution, with reference in particular to the conservation of blood mass,
especially during isovolumetric phases. To do so, I introduce two indices,
the isovolumetric loss indices (ILIs), representing the relative variation of
blood volume inside the ventricle during the isovolumetric phases:

ILIC =
|VC,i −VC,f|

max{VC,i, VC,f}
ILIR =

|VR,i −VR,f|
max{VR,i, VR,f}

,

wherein VC,i and VC,f are the volumes at the beginning and end of the IVC
phase, and VR,i and VR,f are the volumes at the beginning and end of the
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Figure 3.15: Strong and loose FSI coupling (Section 3.5). ILIC, ILIR,
EF and pmax computed with the GE-E scheme for different values
of α. Dashed lines indicate the corresponding value for the GE-M
scheme.

IVR phase. Optimal values for these two indices are ILIC = ILIR = 0, while
positive values indicate the introduction of a loss of mass associated to the
isovolumetric phases. For the comparison, I also take into account the EF
and the peak systolic pressure

pmax = max
t∈(0,T)

p̄(t) ,

where p̄ is the average ventricular pressure.
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Figure 3.16: Strong and loose FSI coupling (Section 3.5). ILIC,
ILIR, EF and pmax computed with the GE-M and GE-E scheme for
different values of ∆t.

Effect of α. In the same setting of Section 3.5.2, I compare the solutions
computed with the GE-M and GE-E schemes, varying the Robin coefficient
α in the range of stability (α < 6750 kg/(m2 · s)). The choice of α influences
the accuracy of the method: indeed, as α → 0, RN interface conditions
reduce to two Neumann-type conditions, and no kinematic coupling is
present anymore.

Figure 3.14 reports the ventricular volume and pressure over time for differ-
ent values of α. The solutions obtained with the GE-E scheme feature a sig-
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schemes at the final simulation time T. Dashed lines are parallel
to the function f (∆t) = ∆t, and are used as a reference for the
convergence order.

nificant variation of the ventricular volume during isovolumetric phases.
This leads to slower ejection and filling phases, if compared to the GE-M
solutions, as well as lower peak systolic pressures. This behavior becomes
more significant for decreasing values of α.

Similar conclusions can be drawn by looking at the plots in Figure 3.15,
where the value of ILIs, EF and pmax are plotted against the Robin coefficient
α. Although the mismatch between GE-E and GE-M reduces as α increases,
even with the highest value of α the two results present differences of 6.3 %
in EF and 4.7 % in peak systolic pressure.

Effect of ∆t. The mismatch between the two schemes can be expected
to reduce as ∆t is reduced, with the explicit and implicit discretizations
converging to the same solution. To verify this, setting α = 5000 kg/(m2 ·
s), I run several simulations reducing the time step of both schemes. The
resulting indicators are reported in Figure 3.16. As expected, I observe that
as ∆t → 0 there is increasing agreement between the solutions computed
by the two schemes in terms of EF and pmax. For both schemes, ILIC and
ILIR tend to zero as ∆t→ 0, with similar rates. However, the ones obtained
with the GE-M scheme are in all cases smaller than those of the GE-E one.

I also compute the mismatch between the GE-M and GE-E schemes at the
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Scheme ILIC [%] ILIR [%] EF [%] pmax [mmHg]

GE-M 0.02 0.00 57.0 121.2
GE-E 3.48 3.66 53.4 115.4

GE-P-RN2 0.96 1.29 55.9 119.5

Table 3.5: Strong and loose FSI coupling (Section 3.5). Isovolumetric
loss indices, ejection fraction and peak systolic pressure for three
simulations, using the GE-M, GE-E and GE-P-RN2 schemes. For the
last two schemes, the Robin coefficient was α = 5000 kg/(m2 · s).
Refer to Table 3.1 for the explanation of the abbreviations used.

final time T of the simulation, to quantify the order of convergence of the
additional error introduced by the splitting of fluid and solid. Results are
reported in Figure 3.17. The numerical results indicate that the mismatch
of solution variables tends to zero as ∆t→ 0, with asymptotic convergence
order 1. Therefore, denoting by xM and xE a generic solution variable (�d, u
or p) computed with the GE-M and GE-E scheme, respectively, there holds:

∥xM − xE∥2 f Csplit∆t ,

with Csplit a constant independent of ∆t. Denoting by x the exact solution,
at any fixed time, there holds:

∥xE − x∥2 f ∥xE − xM∥2 + ∥xM − x∥2 f
�

Csplit + CM

�
∆t ,

where I have used the fact that the strongly coupled monolithic scheme
is convergent of order 1 in time. Therefore, I conclude that the additional
error introduced by the splitting is at most of order 1 with respect to ∆t,
so that the overall order of convergence is not hindered by the explicit
discretization. However, if higher order discretizations are used for time
derivatives, the splitting scheme should be modified to reflect that.

Effect of multiple RN subiterations. I compare the solution of the GE-M
scheme with that of the GE-P-RN2 scheme. This scheme is not implicit,
since the partitioned method is stopped at an arbitrary number of itera-
tions, rather than checking for convergence. Nonetheless, increasing the
number of RN iterations may lead to a better match with the implicit so-
lution. Figure 3.18 reports the volume and pressure obtained in this way,
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Figure 3.18: Strong and loose FSI coupling (Section 3.5). From left to
right, ventricular volume, average pressure and pressure volume
loop with the GE-M, GE-E and GE-P-RN2 schemes. Gray bands
indicate isovolumetric phases.

while Table 3.5 collects the values of the computed indicators. Performing
two RN iterations significantly improves the results, in terms of agreement
with the GE-M scheme, in particular for what concerns the ILI indices.

Accuracy during ejection. Previous tests have shown how the explicit
discretization introduces an error in the mass conservation that is most
evident during isovolumetric phases, and this affects the solution during
ejection and filling. To understand to what extent the mismatch between
GE-M and GE-E is determined by isovolumetric phases, I simulate only
the ejection phase with both schemes, by providing as initial condition the
solution of the GE-M scheme at time t0 = 88 ms (corresponding to the
end of the IVC). Table 3.6 reports the resulting indicators, and Figure 3.19
shows the corresponding volume and pressure over time. The ejection-
only simulation yields a better agreement between the GE-M and GE-E
schemes. This suggests the possibility of exploring adaptive methods that
adjust e.g. the number of RN subiterations depending on the simulated
heartbeat phases.
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Figure 3.19: Strong and loose FSI coupling (Section 3.5). Ventricular
volume and average pressure with the GE-M and GE-E schemes
during the ejection phase.

3.5.4 Efficiency of the loosely coupled scheme

The chief advantage of a loosely coupled scheme is its computational effi-
ciency if compared to a method where the FSI coupling is treated implicitly.
To verify this, I perform numerical simulations of the GE-M, GE-E and GE-
P-RN2 schemes with three differently refined meshes M1, M2 and M3,
detailed in Table 3.2. Then, I compare the total wall time, the portion of
wall time devoted to the assembly of fluid and structure systems, as well
as the wall time spent in the solution of the fluid, structure or FSI systems.
Computational times associated to electrophysiology, force generation and
fluid domain displacement are not considered in the comparison, since the
three schemes are identical in those steps. These simulations ran in parallel
using 44 cores with Intel Xeon Platinum 8160@2.1GHz processors.

Results are reported in Figure 3.20. The GE-E scheme allows for a very
significant reduction in computational time with respect to the GE-M one.
This reduction becomes more significant as the mesh is refined: the total
wall time for the simulation on the finest meshM3 using the GE-E scheme
is approximately 45 % less than the corresponding simulation using the
GE-M scheme. In particular, the cost associated to both the assembly and
the solution of the linear systems for the FSI problem is much smaller in
the GE-E scheme than it is in the GE-M. Overall, the GE-E scheme allows
for a significant saving in computational time with respect to the GE-M
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Scheme EF [%] pmax [mmHg]

GE-M 57.0 121.2
GE-E 54.4 119.6

GE-E (full heartbeat) 53.4 115.4

Table 3.6: Strong and loose FSI coupling (Section 3.5). Ejection
fraction and peak systolic pressure in the ejection phase test, for
the GE-M and GE-E schemes. For comparison, the table reports
the same quantities computed in the full heartbeat test with the
GE-E scheme. In both cases, the Robin coefficient is set to α =
5000 kg/(m2 · s).

one. Conversely, the GE-P-RN2 requires a computational time similar to
that of the GE-M scheme.

3.5.5 A realistic test case for the left ventricle

Finally, I present in this section a test case in a more realistic setting to
showcase the effectiveness of the proposed schemes. Let us consider the
left ventricle from the heart model provided by Zygote Media Group [365],
represented in Figure 3.21. The model includes ventricular inflow and
outflow tracts, modeled as electrically and mechanically passive, using the
neo-Hooke constitutive law. The domain is discretized with a tetrahedral
meshMR (see Table 3.2). To deal with the higher accuracy requirements of
electrophysiology, quadratic finite elements are used for its discretization.
This is an alternative approach to the one used in previous sections, based
on nested mesh refinements. Indeed, quadratic elements can provide im-
proved accuracy with a lower number of degrees of freedom, with respect
to linear elements, for cardiac electrophysiology [3]. The time step is set to
∆t = 0.2 ms.

The ventricular pressure and volume over time for this test case are re-
ported in Figure 3.22, while the corresponding indicators are in Table 3.7.
Figure 3.23 shows some snapshots of the electrophysiology solution, while
Figure 3.24 reports a comparison of domain deformation and fluid dynam-
ics variables using the GE-M and GE-E schemes. These results highlight
once again that the GE-E scheme yields stable results, and in qualitative
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Figure 3.20: Strong and loose FSI coupling (Section 3.5). From left
to right, total wall time, assembly time and linear solver time for
the GE-M, GE-E and GE-P-RN2 schemes, against the average mesh
size h.

Figure 3.21: Strong and loose FSI coupling on a realistic ventricle
(Section 3.5.5). Computational fluid and solid domains. Colors
denote the different volumetric and boundary portions.
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Figure 3.22: Strong and loose FSI coupling on a realistic ventri-
cle (Section 3.5.5). From left to right, ventricular volume, average
pressure and pressure volume loop with the GE-M scheme and the
GE-E scheme.

agreement with those of the GE-M scheme, even if the GE-E scheme in-
troduces an additional error that is mostly evident during isovolumetric
phases: overall, the conclusions drawn in the idealized benchmark are
confirmed in this geometrically realistic setting.

3.5.6 Discussion

The numerical tests of the previous sections indicate that the loosely cou-
pled GE-E scheme is stable in the physiological regime, provided that the
Robin coefficient α is small enough. However, the scheme generates an ap-
proximation error in the interface conditions, that leads to a loss of blood
volume through the fluid-solid interface. This is particularly relevant dur-
ing isovolumetric phases, that significantly influence the solution during
other phases.

On the other hand, the GE-E scheme is significantly more computationally
efficient than the GE-M. The computational saving becomes more evident
as the mesh is refined, with savings up to 45 % in total wall time. Overall,
the GE-E scheme is an effective algorithm for the simulation of cardiac FSI,
allowing to strike a compromise between accuracy and efficiency.
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t = 30 ms t = 70 ms

t = 150 ms t = 310 ms

Figure 3.23: Strong and loose FSI coupling on a realistic ventricle
(Section 3.5.5). Snapshots of the electrophysiology solution, com-
puted using the GE-E scheme.

Scheme ILIC [%] ILIR [%] EF [%] pmax [mmHg]

GE-M 0.04 0.00 55.8 148.9
GE-E 2.76 3.60 55.5 136.2

Table 3.7: Strong and loose FSI coupling on a realistic ventricle
(Section 3.5.5). Isovolumetric loss indicators, ejection fraction and
peak systolic pressure for the realistic test case, using the GE-M and
GE-E schemes, with α = 5000 kg/(m2 · s).
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Figure 3.24: Strong and loose FSI coupling on a realistic ventricle
(Section 3.5.5). Fluid velocity magnitude |u| (left) and pressure p
(right) at three time instants, computed with the GE-M and GE-E
schemes. The domain is warped according to d and dALE.
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Nonetheless, both these tests and those presented in Section 3.4 show how
the GE-M approach balances the computational efficiency with robustness
and accuracy. Therefore, it will be the scheme of choice in the following
chapters.



Chapter 4

An integrated model of the left
heart

In this chapter, I present the numerical results of the EMF simulation of a
realistic, healthy human LH model, and I compare the simulation results
against normal ranges for several physiological indicators of the cardiac
function. The results show that our EMF model is capable of reproducing
the behavior of a healthy heart.

The results presented in this chapter have been published in [53].

4.1 Setup of the test case

Let us consider the Zygote human heart model [365], representing the heart
of an average 21-year-old male. Geometric preprocessing and mesh gener-
ation were done using the algorithms presented in [109] and implemented
in the software library VMTK [352]. For this test case, the LA, LV, AA and
mitral and aortic valves are considered. The resulting mesh is represented
in Figure 4.1a, while details on mesh size and number of elements can be
found in Table 4.1. The mesh resolution varies in space, and it is finer near
the immersed surfaces, to better capture their presence [107].

The mesh used for the endocardial surface does not represent the com-
plex structure of trabeculations and papillary muscles that characterize
the interior of the left ventricle in human hearts [121]. This has only minor

93
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hmin[mm] havg[mm] hmax[mm] # elem. # nodes

fluid 0.51 1.6 4.7 790 533 137 504
solid 0.59 2.1 5.7 234 132 63 834

Table 4.1: Minimum, average and maximum mesh element diame-
ter, number of elements and number of nodes used for the spatial
discretization of the realistic left heart domain (Chapter 4).

implications in terms of overall ventricular pressure and volume. There-
fore, it is a generally accepted approximation in CFD models of the heart
[67, 178, 364], although these structures should be included if accurate
evaluations of wall stresses or fine scale vortical structures are of interest
[195, 290, 339].

Both the fluid and the solid domains are partitioned into subdomains
corresponding to the LA, the atrioventricular ring (i.e. the region corre-
sponding to MV and AV), the LV and the AA. They are denoted by �ΩLA

i ,
�Ωring

i , �ΩLV
i and �ΩAA

i , respectively, where i ∈ {f, s} denotes the fluid and
solid domains. The domain is clipped at the inlet sections representing
pulmonary veins and at the outlet section on the AA. The partition and the
boundary portions are shown in Figure 4.2.

There holds �Ωactive
s = �ΩLV

s , while all other subdomains are regarded as
passive, both electrically and mechanically. This is a simplification for what
concerns the left atrium, and it prevents from capturing certain features
related to atrial contraction, such as the after-wave, that have a significant
impact on the cardiac function [108]. However, including the atrium, albeit
as a passive medium, allows to account for its inertial and elastic effects,
that are hardly surrogated by means of ad-hoc boundary conditions [297].
A test case in which atria are regarded as active is discussed in Chapter 5.
Since only the ventricle is electrically active, the TTP06 ionic model is used.

Fibers are generated by combining the ventricular rule-based algorithm of
[28] with the atrial one of [258]. The tissues of both atrium and ventricle
are modeled with the Guccione constitutive law (2.7), while the atrioven-
tricular ring and the AA are modeled using a stiff neo-Hooke constitutive
law (2.8). Material interface regularization (as described in Section 2.4.1) is
present between �ΩLA and �Ωring and between �ΩLV and �Ωring, to smooth out
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(a) (b)

Figure 4.1: Realistic LH test case. (a) Computational mesh used
for the solid (red) and the fluid (blue) domains. (b) Spherical con-
trol volumes used in estimating the average pressures within each
chamber. Average pressure within control volumes is also used to
trigger the opening and closing of valves.

(a) (b)

Figure 4.2: Realistic LH test case. (a) Partition of the solid and fluid
domain into the subdomains for LA, atrioventricular ring, LV and
AA. (b) Partition of the boundary of the fluid and solid domains.
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Figure 4.3: Representation through a circuital analogy of the 0D
circulation model, coupled to a 3D model of the LH.

the transition between the Guccione constitutive and neo-Hooke models.
Active contraction is modeled with the RDQ20-MF model. MV and AV
are included by means of the RIIS model (Section 2.5.3). The fluid domain
displacement is computed using the non-linear operator (2.13). While its
computational cost is small but not negligible, I found that less expensive
operators such as the harmonic or linear elastic one frequently lead to mesh
element inversion and solver breakdown, whereas the chosen non-linear
operator has proven to be significantly more robust with respect to defor-
mations. Finally, Navier-Stokes equations are stabilized with the VMS-LES
approach to stabilization and turbulence modeling.

At inlet and outlet sections, the fluid domain model is coupled with the
circulatory system as shown in Figure 4.3: the equations for pLA, pLV,
VLA, VLV, QMV, QAV, QPUL

VEN are removed from the circulation model, and
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replaced with the following coupling conditions:




σf(u, p)n = −pLA(t)inn on Γpul. ven. ,

σf(u, p)n = −
�

pSYS
AR (t) + RSYS

upstreamQAV(t)
�

n on Γaorta ,

QPUL
VEN(t) = −

�

Γpul. ven.

(u− uALE) · ndγ ,

QAV(t) =
�

Γaorta

(u− uALE) · ndγ .

(4.1)

I set the duration of a heartbeat to Thb = 800 ms, and I simulate three
heartbeats setting T = 3Thb. In the analysis that follows, I focus on the
third heartbeat (starting at t0 = 2Thb) to reduce the influence of initial
conditions. In what follows, thb = t− t0 denotes the time relative to the
third heartbeat.

I rely on the staggered scheme for EMF presented in Section 3.1, solving
the FSI subproblem with the GE-M scheme (Section 3.2.4). The time step
is set to ∆t = 0.2 ms, with NEP = 2 and ∆tEP = 0.1 ms. Finally, the electro-
physiology problem is discretized in space with piecewise quadratic finite
elements (whereas all other models use piecewise linear finite elements).

The values of the parameters used for this simulation are reported in
Appendix B.3.

4.2 Simulation results

The simulation was run using 192 parallel processes on the GALILEO100
cluster1 at the CINECA high-performance computing center (Italy). For
each heartbeat, the simulation takes approximately 21 h of wall time, of
which approximately 92 % is spent assembling and solving the FSI prob-
lem with the GE-M scheme (Section 3.2.4), including 6 % assembling and
solving the fluid domain displacement problem, and 2 % assembling and
solving the electrophysiology problem. The solution of the RDQ20-MF
force generation model takes only around 0.2 % of the total time.

1Refer to the website https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%
3A+GALILEO100+UserGuide for technical specifications (last accessed: 23 September 2022).

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
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Figure 4.4: Realistic LH test case. Evolution, over the third simu-
lated heartbeat, of the pressure p, volume V and volume derivative
dV/dt for the left heart compartments. Vertical dashed lines sepa-
rate heartbeat phases, labelled on the top.

For post-processing, the average pressure of each fluid compartment (LA,
LV, AA) is computed by averaging the pressure inside a spherical control
volume within that compartment (see Figure 4.1b). Figure 4.4 reports
the average pressure, volume and volume derivative over time of each the
compartments, while Figure 4.5 shows the corresponding pressure-volume
loops, and Figure 4.6 reports the evolution in time of the valve opening
coefficients.

Table 4.2 collects some quantitative indicators for the heart function, com-
paring the values obtained by the simulation with data from the medical
literature. The numerical results are consistent with the clinically mea-
sured ranges. In the clinical practice, most of the indicators reported in
Table 4.2 are usually normalized with respect to the body surface area (BSA)
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Figure 4.5: Realistic LH test case. Pressure-volume loops of left
ventricle and atrium, with marks indicating valve opening and
closing.

[340], to filter out the variability in size among individuals. However, as
mentioned before, the heart model considered in this work is an average of
several individuals, and no reference BSA is available. Therefore, absolute
values (i.e. not normalized) are reported.

Figures 4.7, 4.9 to 4.13, 4.16 and 4.17 show several snapshots of the numer-
ical solutions for all of the solution variables. In the following sections, I
provide details on the simulation results for each of the heartbeat phases
(identified by the plots in Figures 4.4 and 4.6).

4.2.1 Electrophysiology

Figure 4.7 reports snapshots of the electrophysiology solution over time,
while Figure 4.8 reports the activation time, i.e. the time of maximum
transmembrane potential upstroke:

tact = arg max
thb∈(0,Thb)

∂v

∂t
(thb) . (4.2)

The stimulus, initially applied at three points on the endocardium, prop-
agates to the whole ventricle, which becomes completely activated within
90 ms. The rapid depolarization phase is followed by the long plateau
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Figure 4.6: Realistic LH test case. Opening coefficients ck(t) over
time for the MV and AV. The values 0 and 1 correspond to the
closed and open configurations respectively.

Indicator Sim. Normal values Description

EDVLV [mL] 139.1 126 to 208 [208] LV end-diastolic volume

ESVLV [mL] 58.6 35 to 80 [208] LV end-systolic volume

SVLV [mL] 80.4 81 to 137 [208] LV stroke volume

EFLV [%] 57.8 57 to 74 [208] LV ejection fraction

COLV [L/min] 6.0 6.98± 1.50 [358] LV cardiac output

pLV
max [mmHg] 126.0 119± 13 [312] peak LV pressure

QAV
max [mL/s] 510.0 427± 129 [146] peak AV flow rate

TLV
IVC [ms] 64.2 51 to 90 [104] IVC phase duration

TLV
ej [ms] 261.0 230 to 334 [104] ejection phase duration

TLV
IVR [ms] 94.2 50 to 140 [32] IVR phase duration

TLV
fil [ms] 379.0 280 to 472 [201] filling phase duration

LFS [%] 17.8 13 to 21 [102] LV longitudinal shortening

Table 4.2: Realistic LH test case. Values of physiological indicators
computed from simulation results (“Sim.” column), and associated
normal values from the medical literature. In the “Normal values”
column, either normal ranges or mean ± standard deviation are
reported.
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phase, which spans most of the systole. The ventricle begins repolarizing
around thb = 250 ms, and by thb = 400 ms it has recovered its resting
potential. This timing is consistent with medical observations [98].

Intracellular calcium concentration follows a similar evolution (Figure 4.9):
the stimulus leads initially to an increase in calcium concentration, that
causes the contraction, and is followed by a decrease of calcium concentra-
tion until the resting value is recovered.

4.2.2 Isovolumetric contraction

The simulated heartbeat starts from the end of the diastolic filling phase,
with the MV open and the AV closed (Figure 4.4). The increase of intra-
cellular calcium concentration (Figure 4.9) determines the generation of
contractile force within the ventricular wall (Figure 4.10). Intraventricular
pressure rises (Figure 4.13), triggering the closure of the MV. When the
valve is closed (thb = 89 ms), the ventricular volume is EDVLV = 139 mL.

At this point, the IVC phase starts: both valves are closed, and the ventric-
ular pressure increases rapidly (Figures 4.4 and 4.13) while the volume is
maintained approximately constant. The proposed model does not capture
exactly the conservation of ventricular blood volume during this phase, due
to the explicit discretization of the fluid domain displacement and to the
use of the resistive model for valves, which allows for a little flow through
the immersed surfaces. Nonetheless, during isovolumetric contraction
the maximum volume variation equals 0.7 mL, corresponding to 0.5 % of
EDVLV. I deem this mismatch to be acceptable, in accordance with similar
spurious variations observed in the cardiac modeling literature [348].

During the IVC, the ventricle undergoes a small deformation (at constant
volume), with its shape becoming slightly more spherical (Figures 4.10
and 4.11), as described in [147, 180].

The IVC phase lasts for TIVC = 64.2 ms, consistently with physiological
behavior [104, 110]. When the pressure in the ventricle becomes larger
than the pressure in the aorta, the opening of the AV is triggered and the
ejection phase starts.

The possibility of including isovolumetric phases in a three-dimensional
hemodynamics model is distinctive of FSI [50], as those phases cannot
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Figure 4.7: Realistic LH model. Time evolution of the transmem-
brane potential v as seen through a long-axis section. The domain
is warped according to d.
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Figure 4.8: Realistic LH test case. Contour plot of the activation time
tact over the LV. The domain is shown in its reference configuration
�Ωs.

be represented by electromechanics-driven CFD models [364]. Indeed,
in a standalone CFD model, this would require prescribing a Dirichlet
datum on the whole boundary of the ventricular chamber. This might be
incompatible with the assumption of blood incompressibility. Moreover,
even if the compatibility is satisfied, the ventricular pressure is not uniquely
defined [261]. The resistive approach is not a strict Dirichlet condition, so
that the previous argument holds only in a qualitative sense. Nonetheless,
very sharp unphysical oscillations are generally observed in the ventricular
pressure when trying to simulate isovolumetric phases with CFD models
[362]. While it is possible to introduce ad-hoc corrections to circumvent
this issue [326, 362], these only have a limited effectiveness in preventing
the oscillations. Conversely, with an FSI modeling approach the velocity
on the fluid-solid interface is an unknown of the problem, and as such
it is determined accounting for the incompressibility constraint. On top
of that, FSI interface conditions include a condition on stress, so that the
ventricular pressure is uniquely defined.
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Figure 4.9: Realistic LH model. Time evolution of the intracellular
calcium concentration [Ca2+]i as seen through a long-axis section.
The domain is warped according to d.
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Figure 4.10: Realistic LH model. Time evolution of the active con-
traction Tact as seen through a long-axis section. The domain is
warped according to d.
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Figure 4.11: Realistic LH model. Time evolution of the solid dis-
placement magnitude |d| seen through a long-axis section. The
domain is warped according to d.
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Figure 4.12: Realistic LH model. Volume rendering of the velocity
magnitude |u|, for the IVC and ejection phases. The domain is
warped according to d and dALE.
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Figure 4.13: Realistic LH model. Volume rendering of the pressure
p, for the IVC and ejection phases. The domain is warped according
to d and dALE.
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Figure 4.14: Average pressure in the AA over time. Notice the
presence of the anacrotic notch during the systolic upstroke and of
the dicrotic notch, or incisure, at the closing time of the AV.

4.2.3 Ejection

Blood is ejected from the ventricle into the aorta (Figure 4.12). The maxi-
mum flow rate through the AV orifice is attained at time thb = 231 ms and
it equals QAV

max = 510 mL/s, consistently with physiology [144, 146]. It cor-
responds to an average velocity magnitude |u|AV

max = 1.46 m/s on the AV
section. The jet through the aortic valve is unsteady during all the ejection,
consistently with the transitional nature of the flow (Figure 4.12). At the end
of the ejection phase, the left ventricular volume equals ESVLV = 58.6 mL,
so that SV = 80.4 mL and EF = 57.8 %, corresponding to a cardiac output
(CO) of

CO =
SV
Thb

= 100.5 mL/s = 6 L/min .

All these quantities are within normal physiological ranges (Table 4.2)
[70, 110, 188, 208, 303].

During the ejection phase, the ventricular pressure increases until thb =
250 ms, reaching a peak value of pLV

max = 126 mmHg (Figure 4.4), within
the physiological ranges [180, 312]. After that, pressure starts decreasing
until it falls below the aortic pressure, at which point the AV starts closing.

A similar evolution characterizes the pressure in the ascending aorta, re-
ported in Figure 4.14: starting from an end-diastolic value of 68 mmHg,
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it reaches a peak at 112 mmHg and then declines until the next heartbeat.
The pressure values are smaller than physiological ones [210], and there is
a large pressure jump between the ventricle and the aorta, which is a com-
mon issue in the cardiovascular modeling literature when hemodynamics
is considered [22, 348]. However, the time profile of the aortic pressure
is remarkably similar to the ones obtained from in-vivo measurements
[210, 224]. In particular, it features the anacrotic notch, resulting from the
interaction of the forward and reflected pressure waves [224]. This effect is
captured thanks to the FSI modeling framework, which, contrary to stan-
dalone CFD models, allows to obtain traveling pressure waves. The aortic
pressure also features the dicrotic notch [180, 210, 303] corresponding to the
AV closure. The dicroctic notch is an important landmark in the analysis
of arterial pressure traces [210], and has been explained both as the effect
of the AV closure or as the consequence of the interaction of traveling and
reflected pressure waves [260].

As its volume reduces, the ventricle becomes shorter and the atrioventric-
ular ring shifts towards the ventricular apex (Figure 4.15), as observed in
healthy hearts [99, 180, 198]. This effect can be quantified by computing
the longitudinal fractional shortening (LFS) [198, 259]: by denoting by LLV

ED
and LLV

ES the apico-basal distances at the end of diastole and at the end of
systole, respectively, the LFS is defined as

LFSLV =
LLV

ED − LLV
ES

LLV
ED

= 17.8 % ,

which matches measurements on healthy hearts [102]. At the end of the
systolic phase, the ventricular wall is approximately 14 % thicker than at
the end of diastole [244].

Overall, the ejection phase lasts Tej = 261 ms, and the whole systolic phase
lasts Tsys = 326 ms, corresponding to 40.7 % of the heartbeat.

4.2.4 Isovolumetric relaxation

Once the AV is fully closed, the IVR phase starts. Ventricular pressure
reduces as the ventricle relaxes at constant volume (Figures 4.5 and 4.17).
This phase lasts for TIVR = 94.2 ms, consistently with physiology [32, 201],
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thb = 120 ms thb = 190 ms thb = 260 ms thb = 330 ms

Figure 4.15: Realistic LH test case. Magnitude of the displacement
|d| at four instants during the ejection phase. The initial configu-
ration is overlaid in trasparency, and the domain is warped by d.
The ventricle becomes shorter during the ejection, mostly due to
the shift of the atrioventricular plane towards the apex.

and the MV starts opening as soon as the ventricular pressure becomes
smaller than the atrial pressure.

As observed for the IVC phase, the simulation results feature a small
spurious variation in volume during isovolumetric phases. In the case
of the IVR phase, the variation amounts to 0.4 mL, corresponding to 0.6 %

of ESVLV. Also in this case, I deem the spurious variation to be acceptable.

4.2.5 Filling

Once the MV is open, blood flows from the atrium into the ventricle (Fig-
ure 4.16). The flow is characterized by the formation of a jet through the
MV, that is associated to a vortex ring (Figure 4.18). The vortex ultimately
dissipates near to the ventricular free wall, while becoming larger near
the septum, resulting in a single vortex that rotates clockwise if observed
from a long-axis view with the septum on the left. This behavior is ob-
served in medical images of healthy hearts [95, 249]. At the same time,
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Figure 4.16: Realistic LH model. Volume rendering of the veloc-
ity magnitude |u|, for the IVR and filling phases. The domain is
warped according to d and dALE.
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Figure 4.17: Realistic LH model. Volume rendering of the pressure
p, for the IVR and filling phases. The domain is warped according
to d and dALE.
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(a) thb = 550 ms (b) thb = 650 ms (c) thb = 750 ms

Figure 4.18: Vorticity w · N = (∇× u) · N of the velocity field,
projected onto a slice of the domain (with normal N pointing out-
wards from the slice plane). The arrows indicate the direction of
the rotating vortices.

the atrioventricular plane shifts towards the atrium, while the ventricular
volume increases. Since in this test case atrial contraction is not included,
the simulated diastolic phase lacks the atrial kick [180]. This also deter-
mines higher-than-normal pressure and volume in the left atrium (with
a peak pressure of 19 mmHg, against a normal value of about 8 mmHg
[110]). Filling continues until the ventricle starts contracting again, leading
to the closure of the MV and the beginning of a new cardiac cycle. The
filling phase lasts for Tfil = 379 ms, and the whole diastolic phase lasts for
Tdia = 474 ms, corresponding to 59.3 % of the heartbeat.

4.2.6 Conservation of blood volume

The explicit treatment of the geometric FSI coupling condition and of the
coupling between the Navier-Stokes equations and the circulation model
might in principle lead to variations over time in the total blood volume.
To assess whether this has an impact on simulation results, the total blood
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how the total blood volume exhibits a very small variation in time:
the mass gain over three heartbeats is only 0.0052 % of the total.

volume over time is computed as follows:

Vtot(t) = VPUL
VEN(t) + VLA(t) + VLV(t) + VSYS

AR (t)

+ VSYS
VEN(t) + VRA(t) + VRV(t) + VPUL

AR (t) ,

where

VSYS
AR (t) = VSYS

AR,0 + VAA(t) + CSYS
AR (pSYS

AR (t)− pex(t)) ,

VSYS
VEN(t) = VSYS

VEN,0 + CSYS
VEN(pSYS

VEN(t)− pex(t)) ,

VPUL
AR (t) = VPUL

AR,0 + CPUL
AR (pPUL

AR (t)− pex(t)) ,

VPUL
VEN(t) = VPUL

VEN,0 + CPUL
VEN(pPUL

VEN(t)− pex(t)) ,

and VLA(t), VLV(t) and V(t) are the volumes of ΩLA
f , ΩLV

f ∪ Ω
ring
f and

ΩAA
f , respectively. The zero-pressure volumes Vi

j,0 are assumed to be zero
for simplicity, since they are constant in time and do not influence the
assessment of blood volume conservation.

The blood volume over time for the different compartments, as well as the
total blood volume, are reported in Figure 4.19. The distribution of blood
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between the different compartments varies over time, but the total volume
remains approximately constant. Indeed, the range of variation of the total
volume over the three simulated heartbeats equals

maxt∈(0,T) Vtot(t)−mint∈(0,T) Vtot(t)

maxt∈(0,T) Vtot(t)
= 0.0052 % .

I deem this very small variation over three heartbeats negligible and the re-
sult to be highly accurate. Therefore, the approximation introduced by the
explicit discretization of geometric FSI coupling and circulation coupling
does not introduce significant errors in terms of mass conservation.



Chapter 5

An integrated model of the whole
heart

In this chapter, I present a proof-of-concept simulation using the EMF
model to reproduce the cardiac cycle of the whole heart with its four
chambers (LH and RH). This extends the results presented in Chapter 4 by
including the RH and accounting for atrial electromechanics. The results
are in qualitative accordance with cardiac physiology, indicating that EMF
model has the potential of reproducing the physiology of the whole heart.
The evolution of some variables, although qualitatively correct, still shows
a quantitative mismatch with experimental observations, requiring further
calibration of the model parameters: this is the subject of ongoing work.

5.1 Setup of the test case

Let us consider the whole heart domain represented in Figure 5.1, gener-
ated from the Zygote model. As done in Chapter 4, both the fluid and the
solid domain are partitioned into subdomains, corresponding to the four
chambers, large arteries and valvular rings. With respect to the setup in
Chapter 4, the LH portion of the domain contains a longer tract of the aorta,
including the bifurcations of the brachioencephalic, common and subcla-
vian arteries. The symbols used to identify the subdomains are listed in
Table 5.1. The spatial discretization parameters are reported in Table 5.2.

117
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Figure 5.1: Solid (left) and fluid (right) computational domains for
the whole heart simulation. Colors indicate the different subdo-
mains.

Solid Fluid

ΩLA
s left atrium ΩLA

f left atrium

ΩRA
s right atrium ΩRA

f right atrium

ΩV
s ventricles ΩLV

f left ventricle

ΩRV
f right ventricle

ΩAA
s aortic arch ΩAA

f aortic arch

ΩPT
s pulmonary trunk ΩPT

f pulmonary trunk

ΩLR
s mitral valve ring and aortic

root
ΩLR

f mitral valve and aortic root

ΩTV
s tricuspid valve ring ΩTV

f tricuspid valve

ΩPV
s pulmonary valve ring ΩPV

f pulmonary valve

Table 5.1: Subdomains that compose the whole heart model (see
also Figure 5.1).
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hmin[mm] havg[mm] hmax[mm] # elem. # nodes

fluid 0.77 2.6 5.5 557 568 98 409
solid 0.83 2.6 4.8 246 671 59 518

torso 0.58 4.5 11.2 2 413 758 407 028

Table 5.2: Minimum, average and maximum mesh element diame-
ter, number of elements and number of nodes used for the spatial
discretization of the whole heart domain (Chapter 5) and of the
torso (Section 5.2.3).

Fibers are generated using the whole heart method presented in [258],
stemming from a combination of the method proposed in [97] for ventric-
ular fibers (both left and right) and that of [258] for the atria. The resulting
fiber field is shown in Figure 2.3a.

With respect to Chapter 4, not only ventricles but also atria are treated
as both electrically and mechanically active, i.e. �Ωactive

s = �ΩV
s ∪ �ΩLA

s ∪
�ΩRA

s . I choose the TTP06 ionic model in �ΩV
s and the CRN model in �ΩLA

s
and �ΩRA

s . A stimulus is applied at the junction between the RA and
the superior vena cava, corresponding to the location of the SAN. The
geometrical model includes interatrial connections (Bachmann’s bundle
and fossa ovalis [292]), so that the electical stimulus can propagate from
the RA to the LA, and there is no need to stimulate directly the LA. On
the contrary, atrioventricular rings are electrically passive and insulate
ventricles from atria. Due to the lack of a model for the CCS, it is surrogated
by applying stimuli at 5 points on the ventricular endocardium (2 on the
LV endocardium, 2 on the RV endocardium and one on the interventricular
septum), suitably delayed with respect to the SAN stimulus, to mimic the
effect of the AVN and bundle branches [258].

For both atria and ventricles we use the Guccione constitutive law (2.7) and
the RDQ20-MF model for force generation (Section 2.3). The RDQ20-MF
model is calibrated differently in ventricles and atria (Appendix B.4). For
valvular rings and arteries, instead, we rely on the neo-Hooke model (2.8).
Figure 5.2 summarizes the boundary conditions for this test case: Robin
conditions are set on the epicardium, and Dirichlet conditions are imposed
on the terminal sections of veins and arteries. The fluid domain is also kept
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Figure 5.2: Dirichlet (left), Robin (middle) and fluid-solid interface
(right) boundaries for the solid mechanics problem (2.6) for the
whole heart model.

fixed at the terminal sections.

All four cardiac valves (MV, AV, TV and PV) are included by means of
the RIIS model. The fluid domain displacement is obtained by solving
(2.11) with the neo-Hooke constitutive relation for the fictitious material
representing the fluid domain. The numerical approximation of the fluid
problem is stabilized with the VMS-LES method.

The fluid model is coupled with the circulatory system at inlets and outlets.
To this end, the equations for the pressure and volume of all four cardiac
chambers are removed from the circulation model, as well as those for flow
rates through valves, and they are replaced with the coupling conditions
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Figure 5.3: Representation through a circuital analogy of the 0D
circulation model, coupled to a 3D model of the whole heart.

(4.1) for the LH, together with the following ones for the RH:




σf(u, p)n = −pRA(t)inn on Γven. cav. ,

σf(u, p)n = −
�

pPUL
AR (t) + RPUL

upstreamQAV(t)
�

n on ΓPT ,

QSYS
VEN(t) = −

�

Γven. cav.

(u− uALE) · ndγ ,

QPV(t) =
�

ΓPT

(u− uALE) · ndγ ,

where Γven. cav. and ΓPT are the terminal sections of venae cavae and pul-
monary arteries respectively. The resulting closed-loop system is schemat-
ically represented in Figure 5.3.

As before, the simulation lasts for three heartbeats, that is until T = 3Thb,
and the analysis considers the results of the third heartbeat, starting at
t0 = 2Thb. In the following sections, thb = t− t0 denotes the time relative
to the third heartbeat.

The EMF problem is solved with the staggered scheme of Section 3.1 using
the GE-M scheme for the FSI subproblem (Section 3.2.4). As done in the
previous chapter, electrophysiology is discretized with piecewise quadratic
finite elements, while linear elements are used for all other models.
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The values of the parameters used for this simulation are reported in
Appendix B.4.

5.2 Simulation results

The simulation was run using 288 cores on the GALILEO100 cluster at
the CINECA high-performance computing center (Italy). Each simulated
heartbeat takes approximately 20 h of wall time. 85 % of the wall time is
spent solving the FSI subproblem, including 10 % to compute the fluid
domain displacement, and 10 % is spent solving the electrophysiology
subproblem.

5.2.1 Electrophysiology

Figure 5.4 displays some snapshots of the transmembrane potential, Fig-
ure 5.5 shows the corresponding intracellular calcium concentration, and
Figure 5.6 depicts the activation time (defined as in Equation (4.2)).

The activation is initiated at the sinoatrial node, and propagates from
there to the right atrium first and then to the left atrium through the
interatrial connections. Both atria are fully activated within 120 ms from
the SAN stimulus, with the latest activated region located on the superior
pulmonary veins (Figure 5.6).

At a later stage, a stimulus is applied on the ventricles, leading to their
activation. Both ventricles are activated within 270 ms from the SAN stim-
ulus, and 110 ms from the first ventricular stimulus. The latest activated
region is located on the left ventricular free wall. The activation sequence
is consistent with experimental observations [98].

5.2.2 Pressure and volume of cardiac chambers

Figures 5.7 and 5.8 display the blood velocity and pressure at some time
instants during the simulation. Figure 5.9 reports average pressure, vol-
ume and volume derivative (corresponding to the net flow rate incoming
or outgoing from each chamber) over time for the four chambers, while
Figures 5.10 and 5.11 display the corresponding pressure-volume loops.
The LV pressure-volume loop is qualitatively similar to the one discussed
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Figure 5.4: Whole heart test case. Transmembrane potential at
different time instants. Arteries are clipped for visualization, and
the domain is warped by d.
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Figure 5.5: Whole heart test case. Intracellular calcium concentra-
tion in atria and ventricles at different time instants. Arteries are
clipped for visualization, and the domain is warped by d. Two
different scales are used to account for the different calcium ranges
of the TTP06 and CRN models.
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Figure 5.6: Whole heart test case. Contour plot of the activation time
tact. The domain is shown in its reference configuration �Ωs, and the
passive subdomain �Ωpassive

s has been clipped for visualization.

in Chapter 4. The major difference is that, at the end of the diastolic phase
(bottom right part of the loop) pressure increases slightly as a consequence
of the atrial contraction. The RV pressure-volume loop is characterized by
a more rounded shape, if compared to the rectangular one of the LV, in
agreement with experimental observations [37, 213, 226, 268, 279]. More-
over, the RV peak systolic pressure is significantly smaller than that of the
LV, consistently with physiology, due to the pressure in the pulmonary
arteries being lower than that in the systemic ones.

The peak systolic pressure of the LV equals pLV
max = 113.3 mmHg, within

the physiological range (119 ± 13)mmHg [312]. For the RV, the peak
systolic pressure equals 36.1 mmHg, also within the physiological range
(36± 11)mmHg [37].

Indicators for ventricular volumes are reported in Table 5.3. While the in-
dicators for the LV are in substantial agreement with physiological values,
those for the RV are not (especially the SV and EF). In particular, the SVs of
left and right ventricles are significantly different, whereas they should be
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Figure 5.7: Volume rendering of the velocity magnitude |u| in the
whole heart simulation. The domain is warped by d and dALE.
Notice that the LH and RH have different color scales.
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Figure 5.8: Volume rendering of the pressure p in the whole heart
simulation. The domain is warped by d and dALE.
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Figure 5.9: Pressure, volume and volume derivative over time for
the cardiac chambers and arteries in the whole heart simulation.
The LH and the RH are on the left and right sides, respectively.
Notice that the vertical axes of the LH and RH plots have different
scales.

equal, since the LV and RV act as pumps connected in series through the cir-
culation. Similarly, the peak flow rate through the AV (QAV

max = 475.8 mL/s)
is significantly higher than that through the PV (QPV

max = 247.3 mL/s). This
indicates that the simulation has not reached a limit cycle yet, and the fi-
nal time T should be increased to cover more heartbeats. The calibration
of the model to reproduce the physiology of the right heart in a more
quantitatively accurate way is the subject of ongoing work.

The pressure and volume of the atria are qualitatively consistent with ex-
perimental measurements [41, 243]. The pressure-volume loops have the
characteristic figure-of-eight shape [41, 243], resulting from the interplay
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Figure 5.10: Pressure-volume loops for the four cardiac chambers
in the whole heart simulation.

Indicator Sim. Normal values Description

EDVLV [mL] 145.9 126 to 208 [208] LV end-diastolic volume
ESVLV [mL] 68.5 35 to 80 [208] LV end-systolic volume
SVLV [mL] 77.5 81 to 137 [208] LV stroke volume
EFLV [%] 53.1 57 to 74 [208] LV ejection fraction

EDVRV [mL] 128.4 144± 23 [209] RV end-diastolic volume
ESVRV [mL] 83.3 69± 22 [163] RV end-systolic volume
SVRV [mL] 45.1 94± 15 [209] RV stroke volume
EFRV [%] 35.1 53± 6 [56] RV ejection fraction

Table 5.3: Ventricular volumetric indicators for the whole heart
simulation.
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between the atrial passive and active mechanics with the ventricular con-
traction and relaxation. As shown in Figure 5.12, the evolution of the atrial
pressure is characterized by different landmarks [243]:

• the a-wave, an increase in pressure associated to atrial contraction;

• the c-wave, a pressure upstroke corresponding to the closure of atri-
oventricular valves and the ventricular isovolumetric contraction;

• the x-descent, caused by the downward displacement of the atrioven-
tricular plane that leads to the atrial filling;

• the v-wave, associated to the venous return and the atrial filling;

• the y-descent, corresponding to the ventricular passive filling phase,
during which the atrial volume reduces together with the pressure.

All these features are reproduced by the simulation (Figure 5.12). The
c-wave is also visible as an upstroke in the leftmost part of the pressure-
volume loop (Figure 5.11), causing the formation of an extra intersection
in the loop. This is an unphysical effect, which is most likely related to the
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simplified modeling of valves through RIIS, and it will be the subject of
further investigation (see Section 6.1).

The atria are filled at an almost constant rate during ventricular systole
(Figure 5.9), while atrioventricular valves are closed, then their volume
decreases during ventricular diastole. The latter is characterized by two
local peaks in the flow rate, the early and the after wave (E-wave and A-
wave, on the bottom of Figure 5.9), caused by passive ventricular filling and
atrial contraction, respectively. The E-wave should provide most of the
filling of the ventricles, and be characterized by a higher flow rate than the
A-wave. This can be quantified by computing the EA ratio, defined as the
ratio between the peak atrioventricular flow rate during passive filling and
the peak flow rate during atrial contraction. Normally, the EA ratio should
be 1.30± 0.57 [328]. However, the simulation yields an EA ratio of 0.94 for
the LH and 0.84 for the right heart: for both sides, the A-wave has a slightly
higher flow rate than the E-wave. A similar result was observed in [108].
A possible explanation of this mismatch is an excessively slow ventricular
relaxation, which can be improved by resorting to more detailed, yet more
computationally expensive, ionic models [332].

While the simulation reproduces qualitatively the cardiac physiology, in
quantitative terms there still is some mismatch, and the calibration of the
model is the subject of ongoing work. Nonetheless, the results indicate that
the computational framework proposed in this thesis has the capability of
replicating the cardiac function for a four-chamber heart model.

5.2.3 Simulation of electrocardiograms

Electrocardiograms (ECGs) are commonly used in the clinical practice to
evaluate the electrical function of the heart [180, 184, 303]. They are ob-
tained by measuring the elecrical potential at some points on the body
surface. The depolarization and repolarization of the heart chambers in-
duce measurable variations in the body surface potential, that can be used
to infer the way the heart is activating for diagnostic purposes.

Being able to replicate ECGs is an important step towards patient-specific
personalization of cardiac models, allowing to calibrate the parameters of
the electrophysiology models using commonly available and non-invasive
measurements.
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Figure 5.13: Whole heart test case. Extracellular potential. Arteries
are clipped for visualization, and the domain is warped by d.
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As a proof of concept, I include a model for the simulation of ECGs starting
from the results of our EMF simulation. The results presented in this
section are part of a collaboration with Elena Zappon, MOX, Dipartimento
di Matematica, Politecnico di Milano. At every time t, the extracellular

potential ve : �Ωactive
s × (0, T) → R within the heart is computed by solving

[44, 74]
�
−∇ ·

�
JF−1(Di + De)F−T

∇ve

�
= ∇ ·

�
JF−1DiF

−T
∇v
�

in �Ωactive
s ,

JF−1(Di + De)F−T
∇ve · n = JF−1DiF

−T
∇v on ∂�Ωactive

s ,
(5.1)

where Di and De are intra- and extracellular conductivity tensors that, in
analogy to (2.2), are defined as

Di,e = σl
i,e

Ff0 ¹ Ff0

∥Ff0∥2
+ σt

i,e

Fs0 ¹ Fs0

∥Fs0∥2
+ σn

i,e
Fn0 ¹ Fn0

∥Fn0∥2
,

with σl
i,e, σt

i,e and σn
i,e intra- and extracellular conductivities in the direction

of fibers, fiber sheets and normal to fiber sheets, respectively, satisfying the
condition

σ
j
m =

σ
j
i σ

j
e

σ
j
i + σ

j
e

.

The solution to (5.1) is defined up to an additive constant (since only the
gradient of ve appears in the system). To obtain a unique solution, ve is
constrained to have zero mean, i.e.

�

�Ωactive
s

ve dx = 0 .

Figure 5.13 reports some snapshots of the extracellular potential ve.

Let us introduce a domain �ΩT representing the torso, such that the epicar-
dial surface is a subset of its boundary, i.e. �ΓR

s ¢ ∂�ΩT (see Figure 5.14a).
The electrical potential within the torso, vT : �ΩT × (0, T) → R is obtained
by solving the generalized Laplace equation [44, 133, 200]





−∇ · (DT∇vT) = 0 in �ΩT ,

vT = ve on �ΓR
s ,

DT∇vT · n = 0 on ∂�ΩT\�ΓR
s ,
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(a) (b)

Figure 5.14: (a) Location of the heart inside the torso model. (b)
Location of the electrodes on the surface of the torso.

with DT a suitable conductivity tensor, here assumed constant and isotropic
(i.e DT = dT I, with dT > 0). Some snapshots of the body surface potential
vT are reported in Figure 5.15.

Finally, vT is evaluated on the external surface of the torso domain at
specific points corresponding to the ECG electrodes (Figure 5.14b). Then,
the following differences of potential (leads) are computed:

I = vT(xL)− vT(xR) ,

II = vT(xR)− vT(xF) ,

III = vT(xL)− vT(xF) ,

aVL = vT(xL)−
1

2
(vT(xR) + vT(xF)) ,

aVR = vT(xR)−
1

2
(vT(xL)− vT(xF)) ,

aVF = vT(xF)−
1

2
(vT(xL) + vT(xR)) ,

V1 = vT(xV1)− vT ,

V2 = vT(xV2)− vT ,

V3 = vT(xV3)− vT ,

V4 = vT(xV4)− vT ,

V5 = vT(xV5)− vT ,

V6 = vT(xV6)− vT .
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Figure 5.15: Potential within the torso at three representative times,
corresponding to atrial depolarization (left and middle) and ven-
tricular depolarization (right). Notice that the contour plot uses
different scales for atrial and ventricular depolarization.

where vT =
1

3
(vT(xL) + vT(xR) + vT(xF)), and xi are the coordinates of the

electrode locations as shown in Figure 5.14b. I, II, III, aVL, -aVR and aVF
are known as limb leads, and V1, V2, V3, V4, V5, V6 as precordial leads. The
evolution in time of the leads is what is observed by clinicians in 12-lead
ECGs. The simulated signal of the leads is filtered with a band-pass filter,
to replicate the signal filters used by ECG recording machines.

A limitation of this approach is that it neglects the dependence of DT on
space, i.e. it does not account for the presence of organs, and ignores the
displacement of the heart and torso over time, due to breathing and to the
heartbeat itself. Both these limitations can be removed by adding detail
to the torso model, including material heterogeneity [143, 181] and solid
mechanics.

The simulated 12-lead ECG is reported in Figure 5.16. The P wave (cor-
responding to atrial depolarization) and the QRS complex (corresponding
to ventricular depolarization) are properly captured [180]. The T wave,
that corresponds to ventricular repolarization, is correctly timed but has
an incorrect sign if compared with ECGs of healthy individuals. This is
most likely due to the model’s lack of heterogeneity in the action potential,
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Figure 5.16: Simulated 12-lead ECG for the whole heart simulation.
The plot for lead II also indicates the P wave, the QRS complex and
the T wave.

in both the transmural and apico-basal directions. Overall, the simulated
ECG is qualitatively acceptable, although minor mismatches with physiol-
ogy can be observed. Nonetheless, the results show how the computation
of ECGs can be incorporated in the simulation pipeline of the integrated
EMF model. The electrophysiology model, and thus the simulated ECG,
may benefit from a more sophisticated model for the CCS (see also Sec-
tion 6.1).



138 CHAPTER 5. AN INTEGRATED MODEL OF THE WHOLE HEART



Chapter 6

Conclusions and future
perspectives

In this thesis, I presented an integrated model for the numerical simulation
of the heart function, built from the combination of several state-of-the-art
core models for the individual components of heart physiology: electro-
physiology, contractile force generation, active and passive muscular me-
chanics, fluid dynamics of the blood, and interaction with the circulatory
system, including a reduced model for valve dynamics based on the RIIS
method. All the core models are coupled together, to provide a physi-
cally accurate representation of their interaction, and therefore allowing
to capture the complex interplay of different processes that characterizes
the heart function. The result is a comprehensive and integrated compu-
tational framework for cardiac simulations, coupling 7 different physical
systems, with more than 60 scalar unknowns, acting across very different
spatial and temporal scales. The proposed model represents one of the
very first examples of a fully integrated, fully coupled and mathematically
rigorous model of the heart.

I introduced a novel segregated-staggered time advancing scheme for the
numerical solution of the coupled EMF problem. The scheme is designed
to be efficient, given the large scale and complexity of the problem, by
using an explicit treatment of coupling conditions whenever possible. This
includes electro-mechanical and mechano-electrical coupling, as well as
the feedback between muscle displacement and force generation and the
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coupling with the circulation.

The fluid-solid coupling is more delicate from both the numerical stability
and computational efficiency viewpoints. I discussed several different
schemes for the solution of the FSI problem in the cardiac regime, providing
a comparison among them by means of ventricular benchmark problems.
I first compared monolithic and partitioned schemes within the family
of strongly coupled FSI methods, finding that the monolithic approach
is computationally more efficient than the partitioned one in the cardiac
setting. Then, I considered a fully explicit scheme, resulting in a significant
reduction in computational time with respect to the monolithic scheme.
However, the method provides less accurate results due to the introduction
of a splitting error. The main result of this analysis is that a geometrically
explicit, strongly coupled, monolithic method provides the best trade-off
among the accuracy of the solution, the robustness and reliability of the
solver, and the computational cost. The monolithic scheme was therefore
used for all subsequent simulations.

Then, I carried out a simulation on a realistic human left heart in physio-
logical conditions. The simulation is carried out in the software framework
of the lifex HPC library in a parallel computing environment. The model
was calibrated to reproduce the behavior of a healthy left heart in terms of
ventricular pressure and volume over time, pressure-volume loop and flow
rates through the aortic valve, obtaining a substantial agreement with nor-
mal ranges for several biomarkers. The simulation reproduced accurately
all four phases of the heartbeat, by recovering their physiological duration
as well as their distinctive features in terms of ventricular displacement
and blood flow patterns. This is true in particular for the isovolumetric
phases of the heart cycle, that are faithfully simulated thanks to the use of
appropriate numerical methods for the FSI subproblem.

The left heart model neglects atrial contraction and the interplay between
the right and left sides of the heart. I presented a proof-of-concept four
chamber heart simulation that overcomes these issues. Although this test
case still requires fine tuning of its parameters, the simulation is in quali-
tative agreement with heart physiology, showcasing the huge potential of
the proposed computational framework. I also show how the EMF model
can be coupled to a model for the electrical potential in the torso, allowing
to obtain numerical ECGs that, in future developments, can be used as a
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starting point for model personalization.

Overall, both the left heart and whole heart simulations indicate that the
proposed EMF model, together with the related numerical methods, can
allow to faithfully capture the physics underlying the heart function. There-
fore, the model can serve as an important step towards the construction of
digital twins of the human heart, and it can become a fundamental tool in
cardiac computational medicine by providing extremely useful and accu-
rate insight for personalized treatment, supporting the design of medical
devices and therapies, and allowing to perform in silico clinical trials based
on virtual patients.

6.1 Discussion, limitations and future develop-

ments

One major limitation of the current model is the simplified model used for
valves. Indeed, while neglected by the RIIS method, the dynamic interplay
between valves and blood flow has important physiological and clinical
implications [7, 81, 161, 197, 206, 218, 359]. While the RIIS method allows to
capture the main effects of the valves on the flow, it still requires prescribing
the valve kinematics, which in turn requires fine and a priori tuning of the
duration of valves’ opening and closing phases. Moreover, it does not
account for the way the valve is attached to the cardiac wall. Finally, the
valves move coherently with the motion of the fluid domain: this allows
them to follow the motion of the atrioventricular plane during ventricular
shortening, but the resulting displacement is not physically derived. All
these issues can be overcome by including a suitable FSI model of valves,
featuring contact between leaflets. Although few studies model valve FSI
by means of the ALE approach [7, 301], immersed approaches are more
effective in handling the large leaflet displacements and, most notably,
the topological changes induced by contact. Therefore, a combination of
ALE for ventricular and arterial walls and an immersed method for valves
appears to be the most suited approach [42, 116, 175, 240, 317].

Moreover, the cardiac conduction system is surrogated by applying local-
ized stimuli, timed to replicate the typical activation sequence of the heart.
While effective, this approach is an approximation with respect to the com-
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plex network of specialized cells that conduct the electrical signal through
the heart. These can be included in the model by introducing geometri-
cally multiscale electrophysiology models [78, 89, 191, 285, 341], including
explicit representation of the SAN, AVN, Purkinje network, and electrically
conducting bundles that form the CCS. The inclusion of such features can
significantly improve the physiological accuracy of the electrophysiology
solution. This can become more relevant if pathological conditions such
as bundle branch blocks are considered [233, 341, 347].

In terms of numerical methods, the proposed approach can be made more
efficient by introducing suitable time adaptivity schemes [34, 105, 214, 348].
Indeed, the alternating systolic and diastolic phases are characterized by
very different flow regimes. The current approach uses the time step
required by the fast systolic dynamics for the whole heartbeat, in practice
resulting in an excessively fine time discretization during the diastolic
phase. Dynamic adaptation of the time step during the simulation may
lead to significant savings in terms of computational time.

Finally, the model may benefit from the introduction of automated parame-
ter estimation procedures, facilitating the personalization for new patients
and the assimilation of clinical data. The problem of model calibration
can typically be expressed in terms of an optimization problem: methods
for its solution would require a large amount of simulations. Given the
complexity and computational cost of each, this is, in practice, unfeasible.
The simulations of this thesis were calibrated manually by trial and error.
This issue can be overcome by introducing suitable surrogate models, i.e.
by training models of reduced complexity to reproduce the input-output
relation between the parameters of the EMF model and the quantities of
interest [150, 264]. This can be achieved e.g. by means of artificial neural
networks [273, 276], Gaussian processes [178], or ad-hoc surrogate mod-
els [274]. Once the reduced model is built, it can be used in place of the
full model for a variety of tasks, including sensitivity analysis, uncertainty
quantification and parameter identification.



Appendix A

Relaxation and convergence
acceleration

We provide the definition of convergence relaxation and acceleration op-
erators used in the FSI partitioned schemes of Sections 3.2.2 and 3.2.3. We
consider a generic sequence of vectors x(k), k ∈ {0, 1, 2, . . . }, with x(k) ∈ R

n.
We denote by �x(k+1) the proposed k + 1-th element of the sequence.

A.1 Static relaxation (SR)

The new element of the sequence is given by [18, 63, 189]

x(k+1) = λ�x(k+1) + (1− λ)x(k) ,

where λ ∈ (0, 1] is a suitable parameter whose choice is critical to the
convergence of the sequence. Large values of λ typically lead to faster
convergence (when convergence occurs), but large values of λ may cause
the scheme to diverge [63].

A.2 Aitken acceleration (AitA)

Given λ0 > 0, we set [18, 189, 222]

x(k+1) = λ(k)�x(k+1) + (1− λ(k))x(k) ,
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λ(k+1) = λ(k)

�x(k) ·
�
�x(k+1) − x(k) − �x(k) + x(k−1)

�

����x(k+1) − x(k) − �x(k) + x(k−1)

���
.

This scheme typically improves the convergence with respect to static re-
laxation [189]. However, the choice of the initial relaxation parameter λ0 is
problem dependent and requires manual tuning [189].

A.3 Anderson acceleration (AndA)

Anderson acceleration [11, 106, 353], also known as Anderson mixing, can
be interpreted as a multi-secant method [106] or as a non-linear generaliza-
tion of GMRES [353]. It is based on computing the new iterate making use
of the previous m ones, with m a suitable, user-defined integer parameter.
While generally used for self-consistent field iterations in the computation
of electronic structures [106], it has been also applied to domain decompo-
sition [353] and multiphysics problems [43] and can be used to accelerate
the convergence of FSI partitioned schemes [216].

The procedure behind Anderson acceleration can be detailed as follows
[353]. Given an initial guess x(0) ∈ R

n, consider the fixed-point iteration

x(k+1) = g(x(k)) k = 0, 1, 2, . . .

for solving x = g(x). Then, given m ∈ N and an initial guess x0, the
Anderson acceleration of the sequence x(k) can be obtained as follows:

1. set m(k) = min{m, k};

2. set F(k) =
�
fk−m(k)

, fk−m(k)+1, . . . , f(k)

�
, where fi = g(xi)− xi;

3. find α(k) =
�
α(k),0, α(k),1, . . . , α(k),m(k)

�T
= arg min

α∈A

���F(k)α
���, with

A =

�
α =

�
α0, α1, . . . , αm(k)

�T
such that

m(k)

∑
i=0

αi = 1

�
;

4. set x(k+1) =

m(k)

∑
i=0

α(k),ig(x(k−m(k)+i)).



Appendix B

Model parameters

We report tables with the numerical values of the parameters used in the
numerical experiments.

B.1 Benchmark for strong FSI comparison

We report in Table B.1 the values of physical parameters for the simula-
tions of Section 3.4. Table B.2 reports the parameters used for partitioned
schemes, including those of convergence relaxation and acceleration meth-
ods.

B.2 Benchmark for strong and loose FSI compar-

ison

We report in Table B.3 the parameters used in the idealized benchmark of
Section 3.5 for the comparison between strong and loose FSI coupling. For
the sake of brevity, we only report parameters whose values are different
from the corresponding ones in Table B.1. In Table B.4, we report the
parameters for the simulation of Section 3.5.5 whose values are different
from those in Tables B.1 and B.3.
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Parameter Value

Guccione

c 8.8× 102 Pa
aff 8
ass 6
ann 3
afs 12
afn 3
asn 3

κ 5× 104 Pa

Active stress

Tmax
act 60× 103 Pa

t0
act 0 ms

t
peak
act 100 ms
pact 1

Mechanics

ρs 1000 kg/m3

K
epi
§ 2× 105 Pa/m

K
epi

∥ 2× 104 Pa/m

C
epi
§ 2× 104 Pa · s/m

C
epi

∥ 2× 103 Pa · s/m

Fluid
dynamics

ρf 1060 kg/m3

µf 3.5× 10−3 Pa · s
pAV 6000 Pa

RAV 107 kg/(s ·m4)
pMV 1333 Pa

Table B.1: Parameters for the idealized ventricular simulation used
in the comparison among strongly coupled FSI schemes.

B.3 Left heart model

We report in this section the parameter values used for the simulation
described in Chapter 4.

Table B.5 reports parameters for the electrophysiology model. The conduc-
tivities of the monodomain equation were tuned so as to obtain conduction
velocities 0.6 m/s, 0.4 m/s and 0.2 m/s along fibers, sheets and normal-to-
fiber directions, respectively. The parameters of the TTP06 ionic model are
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Parameter Value

Dirichlet-
Neumann

λ (SR) 0.005
λ0 (AitA) 0.005

m (AndA) 10

Robin-Neumann

α 5000 kg/(m2 · s)
λ (SR) 1.0

λ0 (AitA) 1.0
m (AndA) 10

Table B.2: Parameters of the partitioned schemes used in the com-
parison among strongly coupled FSI schemes.

those of the original paper [321].

We report in Table B.7 the parameters used for the RDQ20-MF force gener-
ation model. For the sake of brevity, we only report those parameters that
are different from the original setting described in [272].

Table B.6 reports parameters for the solid mechanics model. The param-
eters for the Guccione constitutive law and for boundary conditions were
taken from [275].

We list in Table B.8 the parameters used in the fluid dynamics model.
Valve half-thicknesses εMV and εAV were chosen to match literature data
[100, 291]. Resistances RMV, RAV were chosen to be sufficiently high to
guarantee minimal spurious flow through valves without hindering the
conditioning of the FSI system. Finally, Tables B.9 and B.10 display the
parameters of the circulation model.

B.4 Whole heart model

We report the parameter values used for the whole-heart simulation de-
scribed in Chapter 5. We only report parameters whose values are dif-
ferent from the corresponding ones in the LH simulation, as listed in
Appendix B.3.

Table B.11 reports monodomain conductivities in the ventricular and atrial
subdomains, as well as the intra- and extracellular conductivities used in
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Parameter Value Unit

Electrophysiology
σf

m 1.68 m2/s

σs
m 0.769 m2/s

σn
m 0.248 m2/s

Force generation aXB 500 kPa

Mechanics

K
epi
§ Pa/m

K
epi
∥ 2 Pa/m

C
epi
§ 2 Pa · s/m

C
epi
∥ 2 Pa · s/m

Fluid
pMV 1333 Pa

RAV 1.3 kg/(s ·m4)

Table B.3: Parameters for the idealized ventricular simulation used
in the comparison between strong and loose FSI coupling.

Parameter Value Unit

Electrophysiology
σf

m 2 m2/s

σs
m 1.05 m2/s

σn
m 0.55 m2/s

Mechanics

K
epi
§ 200 kPa/m

K
epi
∥ 20 kPa/m

C
epi
§ 20 kPa · s/m

C
epi
∥ 2 kPa · s/m

Neo-Hooke
µNH 5000 kPa
κNH 5000 kPa

Fluid RAV kg/(s ·m4)

Table B.4: Parameters for the realistic ventriular simulation used in
the comparison between strong and loose FSI coupling.
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Parameter Value

Monodomain
χ 1400 1/cm

Cm 1 µF/cm2

Conductivities
σl

m/(χCm) 2.00× 10−4 m2/s

σt
m/(χCm) 1.05× 10−4 m2/s

σn
m/(χCm) 0.55× 10−4 m2/s

Stimulus
Aapp/Cm 25.71 V/s

σapp 2.5× 10−3 m
Tapp 3 ms

Table B.5: LH model. Parameters used for electrophysiology.

computing the extracellular potential in (5.1). All other parameters are the
same as in the LH model (see Appendix B.3). The parameters for the TTP06
and CRN ionic models are the same as in the original papers [79, 321].
Table B.12 reports the parameters for the force generation model in the
LA and RA, and Table B.13 reports those used for the mechanics model.
Finally, Table B.14 reports the parameters for the circulation model.
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Parameter Value

ρs 1000 kg/m2

Guccione (atrium and
ventricle)

c 8.8× 102 Pa
aff 8
ass 6
ann 3
afs 12
afn 3
asn 3

κ 5× 104 Pa

Atrioventricular ring
µ 5× 106 Pa

κ 106 Pa

Ascending aorta
µ 5.25× 105 Pa

κ 106 Pa

Boundary conditions

K
epi
§ 2× 105 Pa/m

K
epi

∥ 2× 104 Pa/m

C
epi
§ 2× 104 Pa · s/m

C
epi

∥ 2× 103 Pa · s/m

Initial conditions

pLA
0 9.75 mmHg

p
ring
0 11.25 mmHg

pLV
0 11.25 mmHg

pAA
0 80 mmHg

Interface
regularization

ψLV
th 0.2

ψLA
th 0.1

Table B.6: LH model. Parameters used for solid mechanics.
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Parameter Value

γ 30
kd 0.36

αkd
−0.2083

Koff 8 1/s
Kbasic 4 1/s

µ0
f p 32.255 1/s

µ1
f p 0.768 1/s

aXB 8.9491× 108 Pa
SL0 2.1 µm

Table B.7: LH model. Parameters used in the RDQ20-MF force
generation model.

Parameter Value

Navier-Stokes
ρf 1060 kg/m3

µf 3.5× 10−3 Pa · s

Valve modeling

RMV, RAV 105 kg/(m · s)
εMV, εAV 0.75× 10−3 m

∆t
open
MV 10 ms

∆t
open
AV 10 ms

∆tclose
MV 30 ms

∆tclose
AV 80 ms

χMV, χAV −3

Table B.8: LH model. Parameters used in the fluid dynamics model.
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Parameter Value

Systemic arteries

RSYS
AR 0.45 mmHg · s/mL

CSYS
AR 2.19 mL/mmHg

LSYS
AR 2.7× 10−3 mmHg · s2/mL

RSYS
upstream 0.07 mmHg · s/mL

pSYS
AR (0) 80 mmHg

QSYS
AR (0) 66.5775 mL/s

Systemic veins

RSYS
VEN 0.26 mmHg · s/mL

CSYS
VEN 60 mL/mmHg

LSYS
VEN 5× 10−4 mmHg · s2/mL

pSYS
VEN(0) 30.9029 mmHg

QSYS
VEN(0) 89.6295 mL/s

Pulmonary arteries

RPUL
AR 0.05 mmHg · s/mL

CPUL
AR 10 mL/mmHg

LPUL
AR 5× 10−4 mmHg · s2/mL

pPUL
AR (0) 20.0 mmHg

QPUL
AR (0) 69.3166 mL/s

Pulmonary veins

RPUL
VEN 0.025 mmHg · s/mL

CPUL
VEN 38.4 mL/mmHg

LPUL
VEN 2.083× 10−4 mmHg · s2/mL

pPUL
VEN(0) 17.0 mmHg

QPUL
VEN(0) 105.523 mL/s

Table B.9: LH model. Parameters used in the circulation model:
systemic and pulmonary circulation.
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Parameter Value

Valves
Rmin 7.5× 10−3 mmHg · s/mL

Rmax 7.5× 104 mmHg · s/mL

Right atrium

EA 0.06 mmHg/mL
EB 0.07 mmHg/mL
tC 0.8
TC 0.17
TR 0.17

V0,RA 4 mL
VRA(0) 64.1702 mL

Right ventricle

EA 0.55 mmHg/mL
EB 0.05 mmHg/mL
tC 0.0
TC 0.34
TR 0.15

V0,RV 16 mL
VRV(0) 148.9384 mL

Table B.10: LH model. Parameters used in the circulation model:
right heart.
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Parameter Value

Ventricular conductivities

σl
m/(χCm) 2.00× 10−4 m2/s

σt
m/(χCm) 1.05× 10−4 m2/s

σn
m/(χCm) 0.55× 10−4 m2/s

σl
i /(χCm) 8.67× 10−4 m2/s

σt
i /(χCm) 3.89× 10−4 m2/s

σn
i /(χCm) 0.86× 10−4 m2/s

σl
e/(χCm) 2.60× 10−4 m2/s

σt
e/(χCm) 1.53× 10−4 m2/s

σn
e /(χCm) 1.53× 10−4 m2/s

Atrial conductivities
σl

m/(χCm) 7.00× 10−4 m2/s

σt
m/(χCm) 1.41× 10−4 m2/s

σn
m/(χCm) 1.41× 10−4 m2/s

σl
i /(χCm) 3× 10−3 m2/s

σt
i /(χCm) 2× 10−4 m2/s

σn
i /(χCm) 2× 10−4 m2/s

σl
e/(χCm) 9.1× 10−4 m2/s

σt
e/(χCm) 5.37× 10−4 m2/s

σn
e /(χCm) 5.37× 10−4 m2/s

Table B.11: Whole heart model. Parameters used for electrophysi-
ology.
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Parameter Value

γ 20
kd 0.865

αkd
−1.25

Koff 180 1/s
Kbasic 20 1/s

µ0
f p 32.235 1/s

µ1
f p 0.768 1/s

aXB 30× 107 Pa
SL0 2.2 µm

Table B.12: Whole heart model. Parameters used in the RDQ20-MF
force generation model for the atria. Ventricular parameters are
the same as in the LH model (see Table B.7). The table lists only
parameters whose values are different from those in the original
paper [272].



156 APPENDIX B. MODEL PARAMETERS

Parameter Value

Guccione (LA) c 1.76× 103 Pa

Guccione (RA) c 1.47× 103 Pa

Valve rings
µ 5.25× 105 Pa

κ 106 Pa

Ascending aorta
µ 5.25× 105 Pa

κ 106 Pa

Pulmonary trunk
µ 5.25× 105 Pa

κ 106 Pa

Initial conditions

pLA
0 8.25 mmHg

pRA
0 8.25 mmHg

pLV
0 6 mmHg

pRV
0 6 mmHg

pAA
0 80 mmHg

pPT
0 30 mmHg

Table B.13: Whole heart model. Parameters used for solid mechan-
ics. Only parameters that are different from those listed in Table B.6
are reported.
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Parameter Value

Systemic arteries

RSYS
AR 0.45 mmHg · s/mL

CSYS
AR 2.19 mL/mmHg

LSYS
AR 2.7× 10−3 mmHg · s2/mL

RSYS
upstream 0.07 mmHg · s/mL

pSYS
AR (0) 80 mmHg

QSYS
AR (0) 0.0 mL/s

Systemic veins

RSYS
VEN 0.26 mmHg · s/mL

CSYS
VEN 60 mL/mmHg

LSYS
VEN 5× 10−4 mmHg · s2/mL

pSYS
VEN(0) 17.0 mmHg

QSYS
VEN(0) 0.0 mL/s

Pulmonary arteries

RPUL
AR 0.05 mmHg · s/mL

CPUL
AR 10 mL/mmHg

LPUL
AR 5× 10−4 mmHg · s2/mL

RPUL
upstream 0.0032 mmHg · s/mL

pPUL
AR (0) 30.0 mmHg

QPUL
AR (0) 0 mL/s

Pulmonary veins

RPUL
VEN 0.02 mmHg · s/mL

CPUL
VEN 38.4 mL/mmHg

LPUL
VEN 2.083× 10−4 mmHg · s2/mL

pPUL
VEN(0) 13.58 mmHg

QPUL
VEN(0) 0.0 mL/s

Table B.14: Whole heart model. Parameters used in the circulation
model for the systemic and pulmonary circulation.
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Appendix C

List of acronyms

AA ascending aorta
ALE Arbitrary Lagrangian Eulerian
AMG algebraic multigrid
AV aortic valve
AVN atrioventricular node
BSA body surface area
CCS cardiac conduction system
CFD computational fluid dynamics
CG conjugate gradient
CO cardiac output
DN Dirichlet-Neumann
DoF degree of freedom
DTI diffusion-tensor imaging
ECG electrocardiogram
EDV end-diastolic volume
EF ejection fraction
EMF electro-mechanics-fluid dynamics
ESV end-systolic volume
FEM finite element method
FSI fluid-structure interaction
HPC high-performance computing
ICI ionic current interpolation
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ILI isovolumetric loss index
IMEX implicit-explicit
IVC isovolumetric contraction
IVR isovolumetric relaxation
LA left atrium
LDRBM Laplace-Dirichlet rule-based method
LFS longitudinal fractional shortening
LH left heart
LV left ventricle
MEF mechano-electric feedback
MV mitral valve
ODE ordinary differential equation
PDE partial differential equation
PT pulmonary trunk
PV pulmonary valve
RA right atrium
RH right heart
RIIS Resistive Immersed Implicit Surface
RN Robin-Neumann
RR Robin-Robin
RV right ventricle
SAN sinoatrial node
SV stroke volume
TV tricuspid valve
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