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Sommario

E’ qui presentato un metodo di correzione dello spigolo che permette al solutore DNS

delle equazioni incomprimibili di Navier-Stokes, di mantenere un’elevata efficienza
computazionale anche in presenza di singolarità geometriche; tale metodo è poi ap-
plicato alle V-riblets (α = 60◦) per il calcolo delle altezze di protrusione in corrente
semplice di Stokes, e in corrente turbolenta per misurare la riduzione di attrito.
Il lavoro di Luchini [15] per correggere la soluzione nell’intorno dello spigolo del
problema di cavità, viene analiticamente dimostrato nel caso di una V-riblet. Una
volta risolto il sistema di Stokes per la funzione di corrente ψ e la vorticità ω nel
sistema di coordinate polari centrato nello spigolo, è possibile calcolare le componenti
di velocità spanwise v st e wall-normal w st soluzioni di Stokes. Successivamente, si
sostituiscono nell’equazione del momento della quantità di moto, la cui integrazione
conduce all’espressione della pressione pst. La componente di velocità parallela allo
spigolo ust è invece il risultato dell’equazione di Laplace per il problema descritto.

Il metodo viene quindi implementato nel codice DNS sviluppato da Luchini, e validato
in primo luogo, mediante il confronto delle altezze di protrusione con le medesime
quantità analitiche riportate in Luchini et al. [17], per diverse risoluzioni e aspect
ratio della griglia computazionale. Si osserva un miglioramento di quasi un ordine di
grandezza, quantificato dal numero di punti per riblet necessari ad avere un errore
comparabile sulla differenza ∆h. Vengono poi simulati a Reτ = 200 in corrente
turbolenta i due casi con risoluzione più bassa, 8 e 16 punti per riblet, per misurare
la riduzione di attrito R nell’intorno dell’ottimo della curva: s+ = 16. Il codice con
correzione si è avvicinato ai valori interpolati di Bechert et al. [3] con un errore del
2% circa sulla riduzione di attrito, mentre il codice originale non è stato nemmeno in
grado di misurare una riduzione di resistenza.
Per concludere si propone un’estensione del metodo a geometrie il cui piano contenente
la sezione è libero di ruotare attorno all’asse normale alla parete z lungo la direzione
del flusso; e testato per tre diversi andamenti sinusoidali delle stesse V-riblets.
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Abstract

A corner correction method capable to keep high computational efficiency even for
bodies with geometric singularities is here presented and applied to the V-shaped
riblets (α = 60◦) in simple Stokes flow for the protrusion heights computation, and in
turbulent flow to measure the drag reduction.
The work of Luchini [15] to correct the solution near the edge for the cavity problem, is
analytically demonstrated for a V-shaped riblet. Once the Stokes equations are solved
for the stream function ψ and the vorticity ω in the polar coordinate system centred in
the edge, the spanwise velocity components v st and wall-normal w st Stokes solutions
are computed. Subsequently, substituting them into the momentum equation, the
pressure pst is obtained by integration. The velocity component parallel to the edge
ust, instead is the result of the Laplace equation for the problem described.

The method is thus implemented for the DNS solver of the incompressible Navier-
Stokes equations developed by Luchini, and firstly validated by comparing the protru-
sion heights evaluated at different resolutions and aspect ratios of the computational
grid, with the corresponding analytical quantities reported in Luchini et al. [17]. An
improvement of almost an order of magnitude, quantified by the number of points per
riblet necessary to have a comparable error on the difference ∆h is observed. The
turbulent channel is performed at Reτ = 200 for the two lowest resolution cases, 8
and 16 points per riblet, to measure the drag reduction R around the optimum of its
curve: s+ = 16. The code with corner correction approached the Bechert et al. [3]
interpolated values of drag reduction with an error of about 2%, while the original
code was even unable to measure a positive drag reduction.
Finally, an extension of the method is proposed to geometries whose plane containing
the section freely rotate around the wall-normal axis z along the main flow direction;
and therefore it is tested for three different sinusoidal geometries of the same V-shaped
riblets.
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tip O. (vr , vθ) are the radial velocity versor and the tangential velocity
versor respectively, in A. . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.3 Interrelations between the protrusion heights and the positions
of the virtual plane walls seen by longitudinal and transverse flow. . . 20

Figure 3.4 Protrusion heights difference ∆h as a function of the riblet
spacig to spanwise resolution ratio. ( ) Luchini [17] exact analytical
value. (©) edge correction (EC) case. ( ) original case (OC). The
three colours are related to the apect ratio of the computational cell:
blue: A = 0.5, red: A = 1.0, green: A = 1.5. For each case the
resolutions considered are [8, 16, 32, 64] points per riblet. . . . . . . . 23

ix



List of Figures

Figure 3.5 Normalized protrusion heights. On the left the original case:
green OC8, yellow OC16. On the right the edge correction case: blue
EC8, red EC16. Parallel ( ), cross ( ) protrusion heights and
their difference ( ), Luchini [17] reference. Parallel (4), cross (×)
protrusion heights and their difference (©) computed for V-shaped
riblet h/s = 0.87. Computational cell A = 1. . . . . . . . . . . . . . 23

Figure 4.1 Drag reduction curve, ∆Cf

Cf0
= −R (a) and roughness function

curve ∆U+ (b) as a function of the riblet spacing and the riblet height
respectively. N OC8, N OC16, original code case. N EC8, N EC16, edge
correction case. ( ) Bechert et al. [3] reference data for V-shaped
riblets α = 60◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.2 Mean streamwise velocity (a) and mean variances (b). ( )
EC8, ( ) EC16, edge correction case. ( ) OC8, ( ) OC16,
original code case. ( ) reference smooth channel. . . . . . . . . . . 27
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Chapter 1

Introduction

In the perspective of turbulence viewed like deterministic events in a chaotic back-
ground, it is reasonable thinking of intervening on these processes to develop techniques,
devices to modify their statistics and therefore to control the flow. The idea, in fact,
that near-wall coherent structures within the turbulent boundary layer could be
modified to achieve drag reduction was likely influenced by pioneering works of Kline
et al. [14] and Brown & Roshko [4]. However, they have to deal with great complexity
in understanding the physics hidden behind, and the difficulties of designing a control
system both reliable and convenient at the same time. Several active and passive
techniques to reduce frictional drag were then introduced, although often only proof
of concept based on numerical simulations or laboratory experiments are available.
One of the first systems discovered very appealingly both for its realization simplicity,
and above all, for its completely passive nature are the riblets.

1.1 Riblets

Riblets are small surface protrusions aligned with the direction of flow, which confer
an anisotropic roughness to a surface. The observation that such corrugations occur
naturally on the skin of sharks (Burdak [6]; Chernyshov & Zayets [7]) sparked the
interest of fluid-dynamicists by studying their behaviour intensively (Bechert, Hoppe
& Reif [2]; Sawyer & Winter [20]; Choi [8]; McLean, George-Falvy & Sullivan [18];
Bechert et al. [3]).
The simple and well-controlled way to evaluate the friction drag reduction is typically
characterized directly in terms of the drag reduction rate R, namely the relative
change in the friction coefficient Cf of the flow between the controlled case and the
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Chapter 1. Introduction

Figure 1.1. On the left riblets oriented in the streamwise direction on the mid-body region

of the skin shark (length: 100–200µm). On the right the riblets applied on a

wing’s aircraft.

reference case:
R = 1− Cf

Cf,0
(1.1)

In this definition, the subscript ’0’ indicates a measured quantity in the reference case,
and the friction coefficient is defined as

Cf = 2
τw
ρU2

b

(1.2)

where τw is the wall-shear stress, ρ is the fluid density and Ub is the bulk velocity.
For riblets of a given aspect ratio, it is known from the most comprehensive compi-
lations of riblet experiments (Walsh & Lindemann [23], Walsh [24], Bruse et al. [5]
and Bechert et al. [3]), that the spanwise peak-to-peak spacing s of the riblet crests
determines the presence and amount of drag reduction, the maximum of which is
around 10%. In particular small values of s identify the so-called viscous regime: in
this case, the drag reduction is proportional to the size of the riblet and the mechanism
responsible for the drag reduction depends on the riblet ability to oppose the cross-flow
more than the parallel one, estimable with the simple Stokes flow (Luchini et al. [17];
Spalart & McLean [21]). This proportionality is lost when the spacing of the riblets
scaled in viscous units s+ = suτ/ν (i.e. adimensionalized by the wall friction velocity
of the flow and the kinematic viscosity ν of the fluid), or for better characterization,
the groove cross-section A+

g (Garcia-Mayoral & Jiménez [10]) becomes sufficiently
large. The optimum is for A+

g
1/2 ≈ 11. The viscous regime breaking has been studied

numerically by Garcia-Mayoral & Jiménez [11], and experimentally by Gatti et al. [13].
It is worth noticing the superscript + indicates non-dimensionalisation in viscous
units.
The application interest of this system led to testing them first on full-size aircraft
in flight conditions (Walsh, Sellers & McGinley [25]), and later on flight tests of a
commercial aircraft (Airbus 320) with riblets over 70% of its surface (Szodruch [22]),
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1.2. Outline

estimating an overall drag reduction of 2%, indirectly assessed by the change in fuel
consumption. A summary of those tests, including maintenance and durability issues,
can be found in Robert [19].
More difficult, on the other hand, is the corresponding numerical verification of the
riblets performance for Reynolds number values Re typical of industrial applications.
In the aim of numerically testing them in the viscous drag reduction regime for
increasingly higher Reynolds numbers, becomes important to be able to correctly
study these systems using few points.
The geometric singularity that characterizes this technology is also directly respon-
sible for its drag reduction capabilities, and makes numerical simulations extremely
challenging.
In this report, a possible solution based on Luchini [15] is proposed. The above
problem in fact can be removed if the local behaviour of the solution close to the
singularity is analytically determined and compensated for. The key of doing so it is
in observing that, since the velocity gradients become infinitely large at these corners,
viscous effects dominate there, and the local behaviour can therefore be obtained
from the Stokes equations, i.e. the Stokes-Navier equations with convective-terms
neglected.
The study is therefore conducted for a viscous Reynolds number Reτ = 200 (being
Reτ = uτδ/ν, and δ the half-height channel), on V-shaped riblets with height to spac-
ing ratio h/s = 0.87. The corner correction is firstly tested, computing the protrusion
heights in simple Stokes flow, then in turbulent flow around the maximum of drag
reduction. More precisely s+ = 16, corresponding to A+

g
1/2 ≈ 10.6, is considered,

for the two lowest resolutions: 8 and 16 points per riblet. Computational efficiency
improves significantly, almost one order of magnitude of points per riblet less, based
on the protrusion heights difference ∆h calculated.

1.2 Outline

Details of the DNS code used and numerical methods are reported in § 2, together
with the procedure adopted for the computational domain definition, established on
Endrikat [9], for the simulation of the reference smooth half-channel. The corner
correction is then presented in § 3 focusing on the analytical approach and the code
implementation, validated by comparing the protrusion heights calculated in a simple
Stokes flow and the corresponding analytical values Luchini [17]. In § 4, the results of
the turbulent numerical simulations are presented, reporting the values on the drag
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Chapter 1. Introduction

reduction R and roughness function ∆U + curves. Future developments of the corner
correction method are presented in the section § 4.2. In particular, the analytical
procedure for extending the correction to a three-dimensional geometry is described,
showing results of three different sinusoidal riblets configurations: standard, short,
and combined.
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Chapter 2

Method

Figure 2.1. Computational grid on a 2D xy (wall-normal) plane.

The simulations were performed with the DNS solver for incompressible Navier-
Stokes equations developed by Luchini, as well as the programming language, here
adapted to work on BWUniCluster 2.0.
The system is directly solved in the physical domain. No-slip boundary conditions
are placed on the wall and periodic boundary conditions are employed in the x and y

directions. The Cartesian coordinate system is shown in Fig.2.1 for a plane channel:
x , y and z indicate the streamwise, spanwise and wall-normal coordinates, and u,
v , w , the respective components of the velocity vector. The flow is assumed to be
periodic in the streamwise and spanwise direction. The reference length δ is equal to
half of the channel height.
The computational grid is Cartesian and staggered, with uniform cells in streamwise
and spanwise directions. The pressure is placed at the intersection of the grid (∆x

ix , ∆y iy), while the velocity components are located half a cell postponed in the
related direction: u(ix , iy) is placed in (∆x (ix + 0.5), ∆y iy), v(ix , iy) in (∆x ix ,
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Chapter 2. Method

∆y (iy + 0.5)). In the wall-normal direction a non-uniform grid is allowed to solve the
smallest scale of the wall turbulence, and the velocity w(ix , iy , iz ) is located in (∆x

ix , ∆y iy , zd (2 iz + 1)), where zd is the array containing the staggered points in the
wall normal direction.
The temporal scheme used is the third order explicit Runge-Kutta method.
The code implements a fractional step. The projection method typically operates
as a two-stage fractional step scheme, a method that uses multiple calculation steps
for each numerical time-step. In the first step, the momentum equation is updated
without taking into account the constraint of divergence-free updated velocity field,
then the new velocity field is projected onto the space of divergence-free vector fields
in the second step. Since the computational grid is staggered, at each triad (ix , iy ,
iz ), the three momentum equations are updated in three different spatial locations.
In particular, each equation is centred around the relative velocity.
The pressure gradient is taken into account with the pressure gradient forcing, null
in the case of constant flow rate CFR. This corrector step implements an iterative
red-black algorithm solving the equation:

3

2

1

∆t
(un+1 − ũn+1) +∇φ = 0 (2.1)

where ũn+1 represents the velocity field after the predictor step, un+1 is the velocity
field after the entire time step, and φ represents the pressure correction. Solving the
system between the projection of the velocity field un+1 in the divergence-free space,
and the divergence of Eq.(2.1), the pressure correction term is obtained.
The immersed boundary strategy adopted in the code is innovative and therefore
requires a more detailed description.

2.1 Immersed boundary

The classical idea of considering a forcing term that simulates the presence of the
body has been replaced here with an implicit correction, and the forcing term has
been substituted with correction coefficients that directly multiply the unknowns.
Considering the equation:

∂u

∂t
= RHS (2.2)

where RHS is given by the sum of the non-linear term (NL), the Laplacian term
(lapl), and the pressure gradient.
If now the Eq.(2.2) is discretized using for simplicity the forward Euler time scheme:

un+1 = un + RHS∆t (2.3)

6



2.1. Immersed boundary

Figure 2.2. Laplacian stencil with immersed boundary correction.

with the immersed boundary correction the time advancement become:

un+1 =
un + RHS∆t

1 + imbc∆t
(2.4)

where imbc is the immersed boundary coefficient. Hence, null coefficient imbc = 0

means no correction is made, and the time advancement works normally as there is
no immersed body. On the other hand, when imbc tends to infinity, the velocity tends
to zero, thus reproducing the no-slip boundary condition. This wording comes from
the implicit correction:

un+1 = un + RHS∆t − un+1imbc∆t

= un + (lapl + NL +∇P)∆t − un+1imbc∆t .
(2.5)

Assuming that very closed to the wall, where the immersed boundary correction is
applied, the non-linear term and the pressure gradient are negligible, the correction
only acts on the laplacian term. Further simplification of the dissertation is done by
considering a uniform grid also in the z direction, with only one arm of the stencil
inside the body as shown in Fig.2.2.
Focusing on the wall-normal direction of the Laplacian term:

lapl = · · ·+ 1

∆z 2
(u(·, iz + 1)− 2u(·, iz ) + u(·, iz − 1)) (2.6)

u(·, iz ) represents the velocity u(ix , iy , iz ), i.e. the point where the stencil is centred.
We are in fact focusing attention on the streamwise velocity, and the stencil is therefore
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Chapter 2. Method

centred in (∆x (ix + 0.5), ∆y iy , ∆z iz ). In this way the stencil arms connect the
point with the surrounding streamwise velocities. In the Eq.(2.6) only the term in the
z direction has been treated explicitly, since observing Fig.2.2, it’s the only part in
this example that needs correction.
Please note, u(·, iz−1) is null because the point is contained within the body. However,
if the second-order derivative is computed with its original formula, it erroneously
considers (·, iz − 1) as the first zero velocity point.
Therefore, calculating the second derivative using the point located on the red “X ”,
at distance δ from the center of the stencil, the correct laplacian would be:

lapl = · · ·+ 2u(·, iz + 1)

(∆z + δ)∆z
− 2u(·, iz )

δ∆z
(2.7)

where the uX has already been neglected.
To have a correction that takes into account only the velocity u(·, iz ), a non-centered
scheme is adopted. The second derivative is then constructed for two successive
non-centered first derivatives. Initially, the two first derivatives are expressed with
backward Euler scheme, with the velocity uX on the immersed body neglected because
it is null. Finally, to obtain the second derivative at the center of the stencil, the
forward Euler derivation is applied between the two points where the first derivatives
were computed:

u ′′(·, iz ) =
u(·,iz+1)−u(·,iz )

∆z
− u(·,iz )−0

δ

∆z
=

u(·, iz + 1)

∆z 2
− u(·, iz )

(
1

∆z 2
+

1

δ∆z

)
. (2.8)

Comparing Eq.(2.8) and Eq.(2.6)it is observed that only the middle term of the stencil
needs to be corrected with the final form:

imbc = − 1

∆z2
+

1

δ∆z
. (2.9)

The formula is here simplified for the case shown above, however the 3D nature of the
immersed body stencil must be taken into account in the code.
In order to manage the totality of the geometries, at this point in time the entire
domain is divided into three distinct regions: a region inside the body therefore
excluded from the computation, a region that is far from the body hence without
interaction, and a region that interacts with the body and thus that requires correction.

2.2 Reference smooth half-channel

The DNS solver was previously validated with the works of Luchini [16] and Banchetti
et al. [1], hence it is directly presented now, the computation of the reference turbulent

8



2.2. Reference smooth half-channel

Reτ Reb L+
x L+

y U+
b Cf

Gatti et al. 199.7 3177 409 205 15.91 0.00790
CPG 200 3217 1500 416 16.08 0.00773

Table 2.1. The table reports Reynolds numbers Reτ , Reb, streamwise length in viscous

units L+
x , spanwise length in viscous units L+

y , bulk velocity in viscous units U+
b ,

friction coefficient Cf .

smooth half-channel.
The simulation is performed at constant pressure gradient CPG and Reτ = 200, whose
considerations about the computational domain size are based on Endrikat [9].
In particular, in order to guarantee a correspondence between the velocity and
turbulent statistics with the experimental results above the logarithmic region, i.e.
the critical height z+

c approximately equal to 2/3 of the half-height of the channel
(δ+ = 1 · Reτ ), the plane channel has a width in viscous units L+

y = 416 (Ly = 2.08).
In fact, since the simulation is the reference case for the riblets, a suitable multiple of
the riblet spacing s+ = 16 that satisfies the expression z+

c = 0.4L+
y ≈ 166.7 is chosen.

The streamwise length in viscous units L+
x = 1500 (Lx = 7.5), is then appropriately

defined in compliance with the relation:

L+
x > max(3L+

y , 1000).

The number of mesh points in the three directions are (nx , ny , nz ) = (226, 312, 312).
The corresponding spatial resolution in the homogeneous directions is ∆x + = 6.6 and
∆y+ = 1.3; the wall-normal resolution increases from ∆z +

min = 0.16 near the walls to
∆z +

max = 0.9 at the centreline.
The mean streamwise velocity profile and the mean variances are shown in Fig.2.4
compared with the Gatti et al. [12] data for a turbulent smooth channel. Please
note, the reason for the discrepancies in centreline between the results is related to
the different boundary conditions: the reference smooth half-channel in fact imposes
symmetric boundary conditions for the streamwise and spanwise velocity component,
and an anti-symmetric boundary condition for the wall-normal velocity component at
the centreline. The smooth channel instead, imposes only no-slip and no penetration
boundary conditions on the walls.
The corresponding results are reported in Tab.2.1. The statistics are computed for
200 h/uτ (h is the channel average height, i.e. δ in the present case), and for this
reason the errors are here omitted because very small.
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Chapter 3

Corner Correction

The ability of a Navier-Stokes solver to correctly measure the drag reduction for a
channel with riblets, strongly depends on the reliability of the code in solving the
flow around the corner. The latter is in fact responsible for the origin of numerical
singularities within the solution that causes a reduction in the DNS code performance,
making it necessary to use a large number of points around the edge, and therefore
causing poor computational efficiency.
The method proposed to eliminate the problem is based on the possibility of analytically
determining the solution around the singularity, and being able to compensate for
it. Viscous effects dominate around the corner, and the local behaviour can be
obtained from the Stokes equations, neglecting the convective terms from the complete
Navier-Stokes system; which in the case of an incompressible Newtonian fluid take
the (vectorized) form: ∇ · u = 0

∇2u− 1
ν
∇p = 0.

(3.1)

Below is presented the analytical demonstration of the correction and its implementa-
tion for the case of V-shaped riblet. Nevertheless, the discussion is easily extendable
to any 2D geometry.

3.1 Analytical correction for the corner singularity

Consider the problem represented in Fig.3.1. Near the corner, the Stokes problem
(3.1) is locally reduced to solving the biharmonic equation for the stream function
in the riblet tips outer space: ∆2ψ = 0, where ∆ is the Laplacian operator in two
dimensions.
The equation written above can be easily figured out by resorting to the separation

11



Chapter 3. Corner Correction

Figure 3.1. 2D V-shaped riblet section. ȳ − z̄ is the local reference system centred in the

riblet tip O. ±ϕwall: wall location angles. 2ϕr: tip riblet angle. x -y-z global

reference system.

of variables in polar coordinates (r , θ). In particular, it is assumed that among the
families of solutions to the ψ − ω Stokes equations exist the following form:

ψ(r , θ) = P(r)F (θ) = rk+2F (θ)

ω(r , θ) = R(r)G(θ) = rkG(θ)
(3.2)

with k < 0, and having neglected the exponential with positive exponent of r , under
the assumption of considering small values of r . While F (θ) and G(θ) satisfy the
equations:

F ′′(θ) + (k + 2)2F (θ) = G(θ), G ′′(θ) + k2G(θ) = 0 (3.3)

and the general integrals are thus:

ω(r , θ) = rk[C1 cos (kθ) + C2 sin (kθ)]

ψ(r , θ) = rk+2
{
D1 cos [(k + 2)θ] +D2 sin [(k + 2)θ] +D3 cos (kθ) +D4 sin (kθ)

}
.

(3.4)

The no-slip and no penetration boundary conditions are imposed for the problem
shown in Fig.3.1:vr(r ,−ϕwall) = 0

vθ(r ,−ϕwall) = 0

vr(r , ϕwall) = 0

vθ(r , ϕwall) = 0
(3.5)

12



3.1. Analytical correction for the corner singularity

where ±ϕwall are the angles at which the walls are located in the specifically chosen
reference system. It can be also expressed as a function of the half-angle at the riblet
tips (ϕr): ϕwall = π − ϕr.
The expressions of vr and vθ instead, are obtained from the stream function partial
derivatives:

vr =
1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
(3.6)

whose expressions can be computed replacing the generic integral ψ(r , θ) (3.4):

∂ψ

∂θ
= rk+2

{
−D1(k + 2) sin [(k + 2)θ] +D2(k + 2) cos [(k + 2)θ]−D3k sin (kθ)+

+D4k cos (kθ)
}

∂ψ

∂r
= (k + 2)rk+1

{
D1 cos [(k + 2)θ] +D2 sin [(k + 2)θ] +D3 cos (kθ) +D4 sin (kθ)

}
.

(3.7)

Substituting the partial derivatives written above, in vr and vθ Eq.(3.6), and the results
in the boundary conditions (3.5), the outcoming complete linear system conveniently
simplified is:

D1(k + 2) sin [(k + 2)ϕwall] +D2(k + 2) cos [(k + 2)ϕwall] +D3k sin (kϕwall)+

+D4k cos (kϕwall) = 0

−D1(k + 2) sin [(k + 2)ϕwall] +D2(k + 2) cos [(k + 2)ϕwall]−D3k sin (kϕwall)+

+D4k cos (kϕwall) = 0

D1 cos [(k + 2)ϕwall]−D2 sin [(k + 2)ϕwall] +D3 cos (kϕwall)−D4 sin (kϕwall) = 0

D1 cos [(k + 2)ϕwall] +D2 sin [(k + 2)ϕwall] +D3 cos (kϕwall) +D4 sin (kϕwall) = 0.

Due to a suitable combination of the linear system equations, the following non-trivial
solution can be extracted:

D2 = D4 = 0,
D3

D1

=
− cos [(k + 2)ϕwall]

cos (kϕwall)
. (3.8)

It is worth noticing that the only two non-zero constants are dependent on each other,
making the constant D3 as a function of D1.
Once a possible solution for the constants D1, D2, D3, D4 has been determined, the
only remaining unknown is k . At this point, the system (3.1) is simplified by neglecting
the terms pre-multiplied by the null coefficients as follows:[

(k + 2) sin [(k + 2)ϕwall] k sin (kϕwall)

cos [(k + 2)ϕwall] cos (kϕwall)

][
D1

D3

]
=

[
0

0

]
(3.9)
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Chapter 3. Corner Correction

the constant k of the problem is accomplished by setting det(Q(k)) = 0, where Q(k)

is the matrix that pre-multiplies the coefficient vector in the linear system above. The
last step leading to determine k is reported:

γ sin (2ϕwall) + sin (γ2ϕwall) = 0, γ = k + 1. (3.10)

The unknown constant is thus computed by solving the Eq.(3.10) with an iterative
method, e.g. the Newton method.
All the ingredients necessary to write the Stokes solution (vr , vθ) for a generic point
in the section plane are revealed, and the relative expressions are the one below:vr(r , θ) = 1

r
∂ψ
∂r

= rγ {−D1(γ + 1) sin [(γ + 1)θ]−D3(γ − 1) sin [(γ − 1)θ]}

vθ(r , θ) = −∂ψ
∂r

= −(γ + 1)rγ {D1 cos [(γ + 1)θ] +D3 cos [(γ − 1)θ]} .
(3.11)

Observing the Fig.3.2, it is possible to write the polar coordinates (r , θ) for a generic
point A in the plane of the section:

r =
√

(yA − yO)2 + (zA − zO)2, θ = atan2

(
yA − yO
zA − zO

)
(3.12)

Figure 3.2. 2D V-shaped riblet section. (r , θ) polar coordinates of the generic point A in the

local reference system ȳ − z̄ centred in the riblet tip O. (vr , vθ) are the radial

velocity versor and the tangential velocity versor respectively, in A.
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3.1. Analytical correction for the corner singularity

and the relations linking the spanwise v and wall-normal w velocity components in
the plane, with vr and vθ are then:v = vr sin (θ) + vθ cos (θ)

w = vr cos (θ)− vθ sin (θ).
(3.13)

Regarding the pressure correction term, consider the momentum equation of the
Stokes problem in polar coordinates:

∂p

∂r
= ν

(
∂2vr
∂r 2

+
1

r

∂vr
∂r

+
1

r 2

∂2vr
∂θ2
− 2

r 2

∂vθ
∂θ
− vr

r 2

)
. (3.14)

Once the vr and vθ partial derivatives are computed, starting from the Eq.(3.11), the
RHS of the above equation is easily assessable and its final form is the following:

1

ν

∂p

∂r
= 4D3γ(1− γ)rγ−2 sin [(γ − 1)θ]. (3.15)

The Stokes solution for the pressure, is thus the integral of Eq.(3.15):

1

ν
p(r , θ) = −4D3γrγ−1 sin [(γ − 1)θ]. (3.16)

In order to make the pressure continuous and symmetrical within the body, that
expression is also extended within the geometry. For this reason, only for the points
in the section plane where the correction is active, and which satisfy the condition
|θ| > ϕwall, the angle θ in the expression of the pressure (3.16) is multiplied by the
following function:

if |θ| > ϕwall :
1

ν
p(r , θ) = −4D3γrγ−1 sin [(γ − 1)θ · f (θ)]

f (θ) = 1 +
|θ| − π
π − ϕwall

(
1

γ − 1
− 1

)
.

(3.17)

The last quantity to be treated is the velocity component parallel to the edge. In this
case, since the pressure is not affected by any variation, the problem is very simple
and it is reduced to:

∇2u = 0 ⇒ 1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r 2

∂2u

∂θ2
= 0. (3.18)

The family of solutions to this equation is in the form u(r , θ) = R(r)F (θ), which
replaced in Eq.(3.18) leads to its generic expression written below:

u(r , θ) = rm [A cos (mθ) + B sin (mθ)] , m > 0. (3.19)
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Chapter 3. Corner Correction

In this case the exponential with negative exponent is eliminated, since the correction
in the direction parallel to the corner should vanish in the limit of r that goes to zero.
The constant m is then computed in analogy to the problem in the plane section, by
imposing again the no-slip and no penetration boundary conditions:u(r , ϕwall) = 0

u(r ,−ϕwall) = 0
⇒

rm [A cos (mϕwall) + B sin (mϕwall)] = 0

rm [A cos (mϕwall)− B sin (mϕwall)] = 0
(3.20)

in fact, adding the two equations together, m is obtained:

cos (mϕwall) = 0 ⇒ m =
nπ/2

ϕwall
n = 1, 2, . . . (3.21)

For constants A and B is concerned, when the above value of m is considered, the
no-slip boundary condition requires that the constant B would be zero. The constant
A, on the other hand, can take any value. Therefore, the correction for the velocity
component parallel to the edge is:

u(r , θ) = Crm cos (mθ), m =
π

2ϕwall
(3.22)

being C the generic constant, and having considered n = 1.
The analytical discussion is completed, and the implementation of the corner correction
in the code will be now presented.

3.2 Corner correction implementation

The corner correction implementation within the DNS code (already described in § 2)
can be divided into two main steps:

• to create the real function edge, able to return the coordinates of the nearest
edge, given the considered point position;

• to impose in the subroutine that defines the geometry of the immersed body,
the Stokes solution for the points around the edge.

3.2.1 REAL FUNCTION edge(REAL yP , zP )

The first step of the corner correction implementation process is to identify the closest
edge, given the coordinates of a point P . In the case considered of V-shaped straight
riblets, the problem is reduced to finding only the spanwise coordinates yO and wall-
normal zO of the riblet vertex O , in the plane defined by the normal in the streamwise
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3.2. Corner correction implementation

direction ēx = (1, 0, 0), positioned at the same streamwise coordinate of the point P :
xO ≡ xP .
In the plane just defined, the edge coordinates are thus:

(xO = xP )

yO = [FLOOR(yP/s) + 0.5] · s

zO = h/2

(3.23)

where h and s , are the height and spacing of the riblet respectively. Please note, the
reference system considered has the null wall-normal coordinate at the half-height of
the riblet.

3.2.2 Stokes solution

To understand how to impose the analytical Stokes solution for the three velocity
components, the generic procedure adopted in the case of the streamwise velocity u

will be presented.
First of all, consider the generic discrete expression of u at the temporal instant (n +1),
assuming for a better clearness that the temporal discretization scheme applied is the
forward Euler method:

un+1(x) = un(x) + NL(un(x))− 1

δx
[pn(x + δx/2)− pn(x − δx/2)] +

+∆tν

[
1

δx 2
un(x + δx/2)− 1

δx 2
un(x )− 1

δx 2
un(x ) +

1

δx 2
un(x − δx/2) +

+
1

δy2
un(y + δy/2)− 1

δy2
un(y)− 1

δy2
un(y) +

1

δy2
un(y − δy/2) +

+
1

δz 2
un(z + δz/2)− 1

δz 2
un(z )− 1

δz 2
un(z ) +

1

δz 2
un(z − δz/2)

]
.

(3.24)

In order to extend the expression of un+1(x) to take into account a possible immersed
body for the whole 3D stencil, the discrete form of the second derivative with respect
to x obtained by further generalization of the coefficients modification described in §
2, Eq.(2.8) is reported:

∂2u

∂x 2

∣∣∣∣
i

=
1

∆x 2

∆x

dx1
ui+1 −

1

∆x 2

∆x

dx1
ui −

1

∆x 2

∆x

dx2
ui +

1

∆x 2

∆x

dx2
ui−1. (3.25)
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Chapter 3. Corner Correction

Subsequently the complete form of un+1(x) is thus obtained by adding to the RHS of
Eq.(3.24), the following terms:

· · · −∆tν

[
− 1

δx 2
un+1(x )− 1

δx 2
un+1(x )+

1

δx 2

δx

dx1
un+1(x ) +

1

δx 2

δx

dx2
un+1(x )+

− 1

δy2
un+1(y)− 1

δy2
un+1(y)+

1

δy2

δy

dy1
un+1(y) +

1

δy2

δy

dy2
un+1(y)+

− 1

δz 2
un+1(z )− 1

δz 2
un+1(z )+

1

δz 2

δz

dz1
un+1(z ) +

1

δz 2

δz

dz2
un+1(z )

]
.

(3.26)

The reason for blue-coloured terms is discussed later.
To introduce the corner correction inside the subroutine dedicated to modifying the
coefficients that take into account the immersed body, the above terms must be
integrated with the corner correction ones before adding them together to Eq.(3.24).
Therefore, consider the Stokes problem in the discrete form:

∂2u

∂xi
− 1

ν

∂p

∂x
= 0{

1

δx 2

δx

dx1
ust(x + dx1)−

1

δx 2

δx

dx1
ust(x )− 1

δx 2

δx

dx2
ust(x ) +

1

δx 2

δx

dx2
ust(x − dx2)+

+
1

δy2

δy

dy1
ust(y + dy1)−

1

δy2

δy

dy1
ust(y)− 1

δy2

δy

dy2
ust(y) +

1

δy2

δy

dy2
ust(y − dy2)+

+
1

δz 2

δz

dz1
ust(z + dz1)−

1

δz 2

δz

dz1
ust(z )− 1

δz 2

δz

dz2
ust(z ) +

1

δz 2

δz

dz2
ust(z − dz2)

}
+

− 1

ν

[
pst (x + δx/2)− pst (x − δx/2)

] 1

δx
= 0

(3.27)

(·)st represents the Stokes solution.
In analogy with the immersed boundary correction, the corner correction should
be added in an implicit manner to the Eq.(3.24). For this reason, the terms with
ust(x ) in the Eq.(3.27) are splitted, and all the equation is multiplied by the ratio
un+1(x )/ust(x ):

−
[

1

δx 2

δx

dx1
+

1

δx 2

δx

dx2
+

1

δy2

δy

dy1
+

1

δy2

δy

dy2
+

1

δz 2

δz

dz1
+

1

δz 2

δz

dz2

]
ust(x ) · un+1(x )

ust(x )
+

+

{
−1

ν

[
pst (x + δx/2)− pst (x − δx/2)

] 1

δx
+

1

δx 2

δx

dx1
ust(x + dx1)+

+
1

δx 2

δx

dx2
ust(x − dx2) +

1

δy2

δy

dy1
ust(y + dy1) +

1

δy2

δy

dy2
ust(y − dy2)+

+
1

δz 2

δz

dz1
ust(z + dz1) +

1

δz 2

δz

dz2
ust(z − dz2)

}
· un+1(x )

ust(x )
= 0.

(3.28)

18



3.2. Corner correction implementation

Please note, the blue-coloured expression in the equation written above is equal,
except for the sign, to the same blue-coloured terms added for the immersed body
correction (3.26). In this way, when the correction above pre-multiplied by ‘−∆tν’, is
combined with the Eq.(3.26), and then added together to the RHS of the Eq.(3.24),
the blue-coloured terms are simplified. Re-ordering the similar elements the resulting
equation is:{

1 + ∆tν

[
−1

ν

1

ust(x )

(
pst (x + δx/2)− pst (x − δx/2)

) 1

δx
+

1

δx 2

δx

dx1

ust(x + dx1)

ust(x )
+

+
1

δx 2

δx

dx2

ust(x − dx2)
ust(x )

+
1

δy2

δy

dy1

ust(x + dy1)

ust(y)
+

1

δy2

δy

dy2

ust(x − dy2)
ust(y)

+

+
1

δz 2

δz

dz1

ust(z + dz1)

ust(x )
+

1

δz 2

δz

dz2

ust(z − dz2)
ust(x )

− 2

δx 2
− 2

δy2
− 2

δz 2

]}
un+1(x )

=

un(x) + NL(un(x))− 1

δx
[pn(x + δx/2)− pn(x − δx/2)] + ∆tν

[
1

δx 2
un(x + δx/2)+

− 1

δx 2
un(x )− 1

δx 2
un(x ) +

1

δx 2
un(x − δx/2) +

1

δy2
un(y + δy/2)− 1

δy2
un(y)− 1

δy2
un(y)+

+
1

δy2
un(y − δy/2) +

1

δz 2
un(z + δz/2)− 1

δz 2
un(z )− 1

δz 2
un(z ) +

1

δz 2
un(z − δz/2)

]
.

(3.29)

Consequently, the correction coefficient that takes into account the immersed body
and the corner correction for the streamwise velocity component is the red-coloured
expression added to un+1(x ).
The procedure is repeated in the same way for the spanwise v and wall-normal w

velocities. Summarizing, within the subroutine that identifies the immersed body, can
be found:

1. constants definition D1, D3 and γ: in particular D1 is taken equal to one for
simplicity, D3 respects the relation (3.8), γ is obtained by solving the Eq.(3.10);

2. two functions are defined locsol(REAL yP , zP ) and locpsol(REAL yP , zP ). The
first one, once verified that the point P is not inside the immersed body, it
returns, depending on the direction considered, the velocity component of the
Stokes solution. The second one returns the Stokes pressure;

3. finally, if the considered point is sufficiently close to the edge:

(yP − yO)2 + (zP − zO)2 ≤ (3∆y)2.
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Chapter 3. Corner Correction

Stokes analytical solutions are then evaluated by calling the functions locsol

and locpsol , and again depending on the direction considered, the corrective
coefficient found in the Eq.(3.29) is computed.

3.3 Protrusion heights validation

A first verification and validation of the corner correction implemented is the compar-
ison with the only quantity analytically known: the protrusion height.
The protrusion height is the distance below the riblets tip where the virtual origin of
the velocity profile can be extrapolated. This quantity, if suitably dimensionless for
the period of the corrugation, is a purely geometric parameter dependent only on the
shape of the wall corrugations and neither on their size nor on the actual speed of
the driving fluid. Based on this definition, Luchini [17] established the longitudinal
protrusion height h‖ and the transverse protrusion height h⊥, representing the virtual
origin of the longitudinal and transverse velocity profile respectively.
In this way, as the main flow (longitudinal or cross depending on the case considered)
is concerned, the corrugated wall is equivalent to a plane wall located at a distance
below the riblet tips equal to the protrusion height. When the virtual plane seen by
the transverse flow lies above the longitudinal one, as shown in Fig.3.3, the level of
near-wall turbulence is reduced. Considering the virtual origin in the riblet tips has

Figure 3.3. Interrelations between the protrusion heights and the positions of the virtual

plane walls seen by longitudinal and transverse flow.

no particular meaning, and any physically significant parameter must be independent
of the origin choice. The only combination of the two protrusion heights that has
this property is their difference ∆h = h‖ − h⊥, i.e. the distance between the two
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virtual plane walls seen by the longitudinal and cross flow. ∆h provides a quantitative
characterization of itself and how much the corrugated wall hinders the cross-flow
more than the longitudinal flow, and it is the only parameter on which the behaviour
of the turbulent boundary layer can depend. Luchini demonstrates and analytically
calculates the protrusion heights values as a function of the riblet geometry considered:
e.g. for the V-shaped riblet, it is a function of the height to spacing ratio h/s. He
used the steady Stokes equations, and the reason lies in the inertia and convective
terms of the Navier-Stokes equations which are roughly the same order of magnitude
in a turbulent boundary layer, and when the latter are negligible the former are too.
To compare the actual improvement of the corner correction, a single V-shaped riblet
is numerically simulated, with a ratio h/s = 0.87, in which the non-linear terms are
neglected. An initial linear streamwise (or spanwise) velocity profile is set, with a unit
velocity u (or v) boundary condition in the centreline.
The virtual origin of the wall is then extrapolated from the resulting linear velocity
profile and normalized for the riblet spacing to obtain the normalized longitudinal
(cross) protrusion height. The computation is repeated for different values of resolution
and cell aspect ratio (A = ∆y/∆z ), using the code with and without correction.
Tab.3.1 shows the protrusion heights resulted and their absolute relative errors for
the different resolutions and codes considered.
From Fig.3.4 it is possible to observe that in the case of the code with edge cor-
rection (EC), the values of ∆h oscillate close to the analytical value with different
behaviours depending on the aspect ratio, while in the case of the original code (OC)
∆h approaches gradually to the exact value. In particular, the difference of points
such that the OC case assumes comparable error values on ∆h, with the EC case is
approximately one order of magnitude.
Among the several cases reported in Tab.3.1, the ones that will be analyzed in turbu-
lent flow are highlighted in red. Precisely atA = 1, the one with the lowest resolution
(8 points per riblet, EC8 vs OC8) and the one with double resolution (16 points per
riblet, EC16 vs OC16) are selected. The respective normalized protrusion heights
values are compared in Fig.3.5 for the different codes used with the Luchini [17]
analytical curves. Please note, the EC case studies (on the right), are able to estimate
the three quantities very well, especially the high resolution one, from which reliable
drag reduction measurements can be expected. The same can’t be said for the original
OC code (on the left), where the transverse protrusion height presents a high error
for both resolutions and poor drag reduction measurements will be expected. The
value of ∆h for OC8, falls even outside of the figure since negative.
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Type A Ny h‖
|h‖−h̄‖|

h̄‖
h⊥

|h⊥−h̄⊥|
h̄⊥

∆h |∆h−∆h̄|
∆h̄

EC 0.5 8 0.1865 0.0873 0.09614 0.187 0.09033 0.00187
EC 1.0 8 0.1582 0.0773 0.07820 0.0345 0.08004 0.116
EC 1.5 8 0.1728 0.00758 0.09917 0.224 0.07363 0.186
EC 0.5 16 0.1667 0.0279 0.07274 0.102 0.09398 0.0385
EC 1.0 16 0.1690 0.0149 0.07868 0.0286 0.09027 0.00256
EC 1.5 16 0.1683 0.0186 0.1022 0.261 0.06615 0.269
EC 0.5 32 0.1698 0.00991 0.07805 0.0365 0.09175 0.0139
EC 1.0 32 0.1710 0.00309 0.09497 0.172 0.07598 0.160
EC 1.5 32 0.1708 0.00414 0.08838 0.0911 0.08241 0.0894
EC 0.5 64 0.1719 0.00251 0.08026 0.00916 0.09167 0.0130
EC 1.0 64 0.1714 0.000875 0.08550 0.0555 0.08585 0.0514
EC 1.5 64 0.1712 0.00198 0.08246 0.0180 0.08870 0.0199

OC 0.5 8 0.1777 0.0360 0.1395 0.722 0.03816 0.578
OC 1.0 8 0.1522 0.112 0.1560 0.926 -0.00376 1.04
OC 1.5 8 0.1596 0.0696 0.1599 0.974 -0.00035 1.00
OC 0.5 16 0.1620 0.0551 0.1368 0.689 0.02520 0.722
OC 1.0 16 0.1654 0.0357 0.1142 0.410 0.05120 0.434
OC 1.5 16 0.1649 0.0384 0.1217 0.502 0.04325 0.522
OC 0.5 32 0.1708 0.00408 0.1063 0.313 0.06446 0.288
OC 1.0 32 0.1693 0.0129 0.09817 0.212 0.07112 0.214
OC 1.5 32 0.1689 0.0153 0.1002 0.237 0.06872 0.2407
OC 0.5 64 0.1718 0.00181 0.09197 0.135 0.07984 0.118
OC 1.0 64 0.1705 0.00583 0.09045 0.117 0.08006 0.115
OC 1.5 64 0.1701 0.00805 0.08944 0.104 0.08068 0.109

Table 3.1. Normalized protrusion heights results. Type: code used, EC edge correction,

OC original code. A: aspect ratio. Ny : spanwise points per riblet. h‖, h⊥,

∆h: longitudinal and cross normalized protrusion height computed, and their

difference. |(·)−(̄·)|
(̄·) : relative error wrt Luchini [17] exact analytical value. The lines

written in red are the cases simulated in turbulent flow. The values highlighted

in yellow show two cases EC8 and OC64 for A = 1 with the ∆h relative error

similar.
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3.3. Protrusion heights validation
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Chapter 4

Turbulent drag reduction by riblets

The final verification in turbulent flow for the corner correction is then computed
for the V-shaped riblets case shown in § 3.3, with unitary A and for the two lowest
resolution: 8 points per riblet, and 16 points per riblet.
To test the reliability of the correction in measuring the drag reduction R even for
low resolutions, a riblet spacing in viscous units around the optimum of the drag
reduction curve is considered, i.e. s+ = 16.
The simulation is performed for a half-channel of height δ = 1 + h/2, i.e. the average
height of the channel is unitary. The viscous Reynolds number is equal to the reference
smooth case Reτ = 200, and the forcing strategy chosen is CPG . The considerations
about the computational domain dimensions are the same discussed in § 2.2, and the
streamwise and spanwise length are identical to the smooth case. The number of
points in the homogeneous directions are (Nx = 226, Ny = 208) for the low resolution
case L, (Nx = 226, Ny = 416) for the higher one H. The spatial resolutions are
reported in Tab.4.1 together with the simulations parameters.
Once the flow rate initial oscillation settles down, the simulations are performed
for 300 h/uτ (here h is the channel average height), which for the most expensive
simulation correspond to approximately 100 hours of computation with 6×40 cores.

Case ∆x + ∆y+ ∆z +
min ∆z +

max L+
x L+

y h/s s+ A+
g

1/2

L 6.6 2.0 2.0 3.0 1500 416 0.87 16 10.6
H 6.6 1.0 1.0 3.0 1500 416 0.87 16 10.6

Table 4.1. Simulation parameters. ∆(·)+ spatial resolutions. L+
(·) domain lengths. h/s

riblet height to spacing ratio. s+ riblet spacing. A+
g

1/2 root square of the groove

cross-section. (·)+ stands for viscous units.
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Chapter 4. Turbulent drag reduction by riblets

4.1 Results

The turbulent results are now presented in terms of drag reduction R and roughness
function ∆U+: the effect of rough surfaces is also classically quantified via the
downward shift ∆U+ of the logarithmic distribution of the mean streamwise velocity
profile 〈u〉+ in the wall-normal direction z +.
The roughness function is computed with the formula proposed by Gatti et al. [13]:

∆U+ = κ−1 log
Reτ
Reτ0

−∆U+
c (4.1)

where κ is the Von Kármán constant, the subscript 0 refers to the reference plane
channel, and ∆U+

c is the centreline velocity defect. Since the riblets and reference
simulations are performed at constant pressure gradient CPG and for the same viscous
Reynolds number Reτ , the roughness function will be given by the centreline velocity
defect ∆U+ = −∆U+

c .
The numerical results are reported in Tab.4.2 and compared in Fig.4.1 with the Bechert
et al. [3] interpolated data of V-shaped riblets, tip angle α = 60◦. The statistics errors
on the measurements are again omitted because smaller than the significant digits
considered, due to the high averaging time of the statistics.
The results for the corner correction case are successfully in agreement with the
experimental data also for the lowest resolution case, while the original one has both
solutions in the region of drag increase.

Case Reτ Reb U+
b Cf R ∆U+

EC8 200 3275 16.38 0.00746 +0.039 -0.325
EC16 200 3289 16.44 0.00740 +0.047 -0.392
OC8 200 3037 15.19 0.00867 -0.117 +0.865
OC16 200 3182 15.91 0.00790 -0.018 +0.141

Table 4.2. Turbulent straight riblets results. Reτ viscous Reynolds number. Reb bulk

Reynolds number. U+
b bulk velocity in viscous units. Cf friction coefficient. R

drag reduction. ∆U+ roughness function.

The streamwise mean velocity profiles in viscous units 〈u〉+, and the variances, are also
plotted in the wall-normal direction z +, shifted concerning the normalized longitudinal
protrusion height h‖, Fig.4.2.

26



4.1. Results
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a function of the riblet spacing and the riblet height respectively.
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( ) Bechert et al. [3] reference data for V-shaped riblets α = 60◦.
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Chapter 4. Turbulent drag reduction by riblets

4.2 A preliminary experiment on 3D riblets

Once the great potential of the corner correction method is known, it is important to
think about the first development of the method itself.
The two-dimensional correction thus implemented is not able to solve the totality of
the geometries. It is limited to the capability of studying only edges in the plane of the
duct section, therefore for three-dimensional geometries resulting from an extrusion of
the section in the streamwise direction.
The objective of the present part is to show a possible generalization of the correction
which would also allow to include the possible different orientation of the edge section
along x .
The V-shaped riblets of the description made in the first part are again considered,
but with a sinusoidal trend in the streamwise direction.
Initially, it is fundamental to understand what is really changing in the problem,
compared to the simple case analyzed before. Looking at the problem from afar,
it consisted in computing the corner correction for any geometry contained in the
plane of the duct section (therefore with direction ēx = [1, 0, 0]) moving with constant
direction and aligned to the streamwise dimension: ēedge ≡ ēx ∀x .
On the contrary, the plane containing the section of the immersed body must be able
now to shift along x . More precisely the plane is left to freely rotate around the z

wall-normal axis, or from the point of view of the directional versor identifying the
plane, to change direction in the plane x − y . For the example case considered, the
problem is shown in Fig.4.3.
Therefore, for a generic point P in the computational domain, the closest edge will
be identified by the plane of the edge section that contains that point. The velocity
and pressure Stokes solution in the plane will have the same form as the simplest case,
and they are recalled below:

ũ = Crm cos (mθ), m = π
2ϕwall

ṽ = vr sin (θ) + vθ cos (θ)

w̃ = vr cos (θ)− vθ sin (θ)

1
ν
p = −4D3γrγ−1 sin [(γ − 1)θ].

(4.2)

In this way, the polar coordinates of the point P with respect to the corner will be
known and so the Stokes solution.
The last step is to project the corner correction in the channel reference system and
write the velocity components (u, v , w) through the plane directional versors of the
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4.3. Results

Figure 4.3. Directional versor ēedge of the plane containing the riblet 2D-section along the

streamwise axis for the sinusoidal case (left) and straight case (right).

immersed body section as follows:
u = ēedgex · ũ + ēedgex · ṽ = ũ cos (α)− ṽ sin (α)

v = ēedgey · ũ + ēedgey · ṽ = ṽ cos (α) + ũ sin (α)

w = w̃ = vr cos (θ)− vθ sin (θ)

(4.3)

where α is the rotation angle of the immersed body section plane around the z axis,
positive anti-clockwise.

4.3 Results

Three different case studies of sinusoidal riblets are presented. The geometries are
defined by two parameters: the wavelength in viscous units λ+, and the maximum
angle of the sine wave α. These two quantities are combined to describe the sinusoid
as follows: 

λ = λ+ · Reτ

A = tan
(
α π

180

)
/(2π

λ
)

y(x ) = A · sin
(
x 2π
λ

) (4.4)

In particular, the first sinusoid is long and not very wide, with α = 2◦ and λ+ = 1500

(standard, STD). Conversely, the second one is shorter λ+ = 250 and angled α = 15◦

(short, SHR). Finally, the third one is given by the superposition of two sinusoids, one
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Chapter 4. Turbulent drag reduction by riblets
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Figure 4.4. Riblets sinusoidal trend. ( ) STD case, ( ) SHR case and ( ) CMB

case.

is identical to the first case while the other one is similar to the short case since it
differs for the maximum angle which is α = 10◦ (combination, CMB).
The simulations are performed for a half-channel, forcing strategy CPG and viscous

Case ∆x + ∆y+ ∆z +
min ∆z +

max h/s s+ A+
g

1/2
α λ+

STD 6.6 1.0 1.0 3.0 0.87 16 10.6 2◦ 1500
SHR 6.3 1.0 1.0 3.0 0.87 16 10.6 15◦ 250
CMB 6.3 1.0 1.0 3.0 0.87 16 10.6 [2◦, 10◦] [250, 1500]

Table 4.3. Simulation parameters. ∆+
(·) spatial resolutions. L

+
(·) domain lengths. h/s riblet

height to spacing ratio. s+ riblet spacing. A+
g

1/2 root square of the groove

cross-section. α sinusoid maximum angle. λ+ wave length. (·)+ viscous units.

Reynolds number Reτ = 200. The domain sizes are analogous to the straight riblets
(L+

x = 1500 e L+
y = 416) and the height is δ = 1 + h/2. The number of points in

the spanwise direction is the same for all simulations and equal to the maximum
resolution of the straight riblets: Ny = 416, i.e. 16 points per riblet. In the streamwise
direction the STD has Nx = 226, while SHR and CMB both have Nx = 240. The
computational cells have A = 1, and the resolutions are reported in Tab.4.3.
The riblets have a ratio h/s = 0.87 and a spacing in viscous units s+ = 16, like
the previous cases. The results are therefore presented in Tab.4.4, in terms of drag
reduction and roughness function with respect to the reference plane case.
The spanwise velocity isolines for a portion of the domain section located at a height
that cuts the riblets, are presented in Fig.4.5. The sinusoidal trending of the velocity
is clearly visible.
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4.3. Results

Case Reτ Reb U+
b Cf R ∆U+

STD 200 3277 16.39 0.00745 +0.0354 -0.292
SHR 200 3301 16.51 0.00734 +0.0493 -0.411
CMB 200 3277 16.39 0.00745 +0.0355 -0.293

Table 4.4. Turbulent sinusoidal riblets results. Reτ viscous Reynolds number. Reb bulk

Reynolds number. U+
b bulk velocity in viscous units. Cf friction coefficient. R

drag reduction. ∆U+ roughness function.

Figure 4.5. Spanwise velocity isolines on a plane portion located at z = 0.01 for the STD,

SHR and CMB cases.
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Conclusions

In the present study, a corner correction method has been presented both from
the analytical and implementational point of view. Firstly, it was validated by the
computation of the normalized protrusion heights in simple Stokes flow, for a V-
shaped riblet, tip angle α = 60◦ and h/s = 0.87, compared with the analytical data
of Luchini [17]. It was possible to quantify the computational efficiency improvement
approximately by an order of magnitude, according to the difference of the points per
riblet used between the corrected code and the original one to obtain the same error
on ∆h.
The final verification was then carried out in a turbulent half-channel flow at a viscous
Reynolds number Reτ = 200, with CPG forcing strategy, in correctly measuring the
drag reduction for two resolution cases: 8 and 16 points per riblet. The simulation
was performed around the optimum of the drag reduction curve, more precisely for
s+ = 16.
Matching the results obtained in terms of drag reduction R and roughness function
∆U+ with the Bechert et al. [3] data, Tab.4.2 and Fig.4.1, the definitive confirmation
of the potential of the corner correction method was achieved. In fact the original code
was unable, even in the higher resolution case, to measure positive drag reduction
R% = −1.8%. While the code with edge correction, measured the drag reduction in
both resolution cases, and in the high resolution one the value is within the 2% error
with respect to the Bechert et al. [3] interpolated data: R% = +4.7%.
Later an extension of the corner correction method was shown in order to include also
those geometries in which the directional versor identifying the plane containing the
body section can freely rotate around the wall-normal axis z along the streamwise
direction x . Three different configurations of sinusoidal riblets (STD: α = 2◦, λ+ =

1500; SHR: α = 15◦, λ+ = 250; CMB: α = [2◦, 10◦], λ+ = [1500, 250]) in turbulent
half-channel flow at Reτ = 200 and CPG have been considered. The section of the
riblet was identical to the previous case: V-shaped, tip angle α = 60◦ and s+ = 16.
The resolution adopted was 16 points per riblet for all three cases, and the results
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Conclusions

were presented in Tab.4.4 in terms of drag reduction and roughness function. For each
case the drag reduction was obtained, and only the SHR improved the drag reduction
compared to straight riblets.
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Appendix A

The parts of the code described in § 3.2 are here reported.

Listing 1. Real function edge

105 STRUCTURED ARRAY(y,z) OF REAL FUNCTION edge(REAL yp,zp)

106 ! (yp,zp) point coordinates --> coordinates edge nearest

107 RESULT.y=[ FLOOR(yp/spacing )+0.5]* spacing

108 RESULT.z=0.5* height

109 END edge

Listing 2. function locsol in the subroutine of the immersed boundary correction

118 REAL phiwall=PI-phirib

119 BOOLEAN FUNCTION stokdisp(REAL stokexp )=SIN(2* stokexp*phiwall)

120 +stokexp*SIN(2* phiwall)>0

121 stokexp=Bisection(stokdisp ,0.5120772 ,0.5120774) ! constant gamma

122 C1=1 ! D1

123 C2=-COS(( stokexp +1)* phiwall )/COS((stokexp -1)* phiwall )*C1 ! D3

124 Clap=1 ! 1 for ulap correction on

125 REAL lapexp=PI/(2* phiwall) ! m constant of the laplace solution

126 REAL theta=0,rho=0

127 REAL FUNCTION locsol(REAL yp,zp)

128 IF InBody (1*deltax ,yp,zp) THEN RETURN 0

129 !compute theta e r

130 theta=atan2(yp-edge(yp,zp).y, zp-edge(yp,zp).z)

131 rho=SQRT[(yp-edge(yp,zp).y)^2+(zp-edge(yp ,zp).z)^2]

132 !Compute vr and vt according to Stokes solution

133 vr=rho^( stokexp )*[-C1*( stokexp +1)* SIN(( stokexp +1)* theta)-

134 C2*(stokexp -1)* SIN((stokexp -1)* theta)]

135 vt=-(stokexp +1)* rho^( stokexp )*[C1*COS(( stokexp +1)* theta)+

136 C2*COS((stokexp -1)* theta )]

137 !u according to Laplace solution
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138 ulap=Clap*rho^( lapexp )*COS(lapexp*theta)

139 ! return u_st , v_st , w_st depending on the direction considered

140 IF dix#0 THEN RESULT=ulap

141 IF diy#0 THEN RESULT=vr*SIN(theta)+vt*COS(theta)

142 IF diz#0 THEN RESULT=vr*COS(theta)-vt*SIN(theta)

143 END locsol

Listing 3. Function lopsol in the subroutine of the immersed boundary correction

144 REAL FUNCTION locpsol(REAL yp,zp)

145 theta=atan2(yp-edge(yp,zp).y, zp-edge(yp,zp).z)

146 rho=SQRT[(yp-edge(yp,zp).y)^2+(zp-edge(yp ,zp).z)^2]

147 IF rho=0 THEN RETURN 0

148 !smoothing the pressure singularity at vr=0

149 ARRAY [0..nz -1] OF REAL deltaz

150 DO deltaz(izz)=zd(izz+1)-zd(izz) FOR izz=0 TO nz -1

151 REAL ddeltaz=MIN(deltaz)

152 !for rho ->0 rho^(stokexp -1)-> Inf , smoothing correction

153 IF rho <ddeltaz THEN rho=rho*( ddeltaz )^( stokexp -2)

154 ELSE rho=rho^(stokexp -1)

155 !p continuous and symmetric inside the solid wall

156 IF ABS(theta)>phiwall THEN

157 theta=theta *[1+( ABS(theta)-phiwall )/(PI-phiwall )*

158 [1/( stokexp -1) -1]]

159 !p_st(rho ,theta)/nu

160 RESULT =-4*C2*stokexp*rho*SIN((stokexp -1)* theta)

161 END locpsol

Listing 4. Composition of the edge correction coefficient in the subroutine of the immersed

boundary correction

178 IF InBody(x,y,z) THEN rsd=1E20 ELSE

179 !if the point is near to the edge (corrthck =3)

180 IF (y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=( corrthck*deltay )^2

181 THEN

182 weight=locsol(y,z)

183 IF weight =0 THEN

184 rsd=1E20

185 ELSE

186 !1/nu*[1/ u_st*(p_st((ix-dix)*dx)-p_st((ix+dix)*dx))]/dx
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187 weight =1/ weight

188 rsd=~+ weight *( locpsol[iy*deltay ,zd(2*iz)]

189 -locpsol [(iy+diy)*deltay ,zd(2*(iz+diz ))])/

190 (deltax*dix+deltay*diy+zd[2*(iz+diz)]-zd[2*iz])

191 END IF

192 END IF

193 REAL d=deltax

194 IF InBody[x-deltax ,y,z]

195 THEN d=x-Bisection[InBody(*,y,z),x-deltax ,x]

196 IF d=0 THEN rsd=1E20

197 ELSE

198 !1/dx/dx * dx/d_x2 *u_st(x-d_x2)/u_st(x)

199 IF [(y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=

200 (corrthck*deltay )^2]

201 THEN rsd=~+ limited[locsol(y,z)* weight ]* deltax/d*d2x

202 ELSE rsd=~+ deltax/d*d2x

203 END IF

204 d=deltax

205 IF InBody(x+deltax ,y,z)

206 THEN d=Bisection[InBody(*,y,z),x,x+deltax]-x

207 IF d=0 THEN rsd=1E20

208 ELSE

209 !1/dx/dx * dx/d_x1 * u_st(x+d_x1)/u_st(x)

210 IF [(y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=

211 (corrthck*deltay )^2]

212 THEN rsd=~+ limited[locsol(y,z)* weight ]* deltax/d*d2x

213 ELSE rsd=~+ deltax/d*d2x

214 END IF

215 d=deltay

216 IF InBody(x,y-deltay ,z)

217 THEN d=y-Bisection[InBody(x,*,z),y-deltay ,y]

218 IF d=0 THEN rsd=1E20 ELSE

219 !1/dy/dy * dy/d_y2 * u_st(y-d_y2)/u_st(y)

220 IF [(y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=

221 (corrthck*deltay )^2]

222 THEN rsd=~+ limited[locsol(y-d,z)* weight ]* deltay/d*d2y

223 ELSE rsd=~+ deltay/d*d2y

224 END IF
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225 d=deltay

226 IF InBody(x,y+deltay ,z)

227 THEN d=Bisection[InBody(x,*,z),y,y+deltay]-y

228 IF d=0 THEN rsd=1E20 ELSE

229 !1/dy/dy * dy/d_y1 * u_st(y+d_y1)/u_st(y)

230 IF [(y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=

231 (corrthck*deltay )^2]

232 THEN rsd=~+ limited[locsol(y+d,z)* weight ]* deltay/d*d2y

233 ELSE rsd=~+ deltay/d*d2y

234 END IF

235 ! deltazm and deltazp because of non -uniform grid

236 d=deltazm

237 IF InBody(x,y,z-deltazm)

238 THEN d=z-Bisection[InBody(x,y,*),z-deltazm ,z]

239 IF d=0 THEN rsd=1E20 ELSE

240 !1/dz/dz * dz/d_z2 * u_st(z-d_z2)/u_st(z)

241 IF [(y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=

242 (corrthck*deltay )^2]

243 THEN rsd=~+ limited[locsol(y,z-d)* weight ]* deltazm/d*d2zm

244 ELSE rsd=~+ deltazm/d*d2zm

245 END IF

246 d=deltazp

247 IF InBody(x,y,z+deltazp)

248 THEN d=Bisection[InBody(x,y,*),z,z+deltazp]-z

249 IF d=0 THEN rsd=1E20 ELSE

250 !1/dz/dz * dz/d_z1 * u_st(z+d_z1)/u_st(z)

251 IF [(y-edge(y,z).y)^2+(z-edge(y,z).z)^2<=

252 (corrthck*deltay )^2]

253 THEN rsd=~+ limited[locsol(y,z+d)* weight ]* deltazp/d*d2zp

254 ELSE rsd=~+ deltazp/d*d2zp

255 END IF

256 END IF

257 ! .. - 2/dx/dx - 2/dy/dy - 2/dz/dz

258 imbc(ix,iy,iz)=[rsd -2*d2x -2*d2y -d2zm -d2zp]*nu
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Streamwise velocity isolines u of the instantaneous field for the different cases described
in the § 4 of V-shaped straight riblets are here shown for a portion of the domain. It
can be easily noticed that the fields resulting from the code with edge correction (EC)
have a higher speed in the centreline than the cases resulting from the original code
(OC).

39



Appendix B

1.4 1.6 1.8 2

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
z

(a)

1.4 1.6 1.8 2

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
(b)

Figure B.1. Streamwise velocity isolines for a portion of an instantaneous velocity field. (a)

original case, 8 points per riblet. (b) corner correction case, 8 points per riblet.
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Figure B.2. Streamwise velocity isolines for a portion of an instantaneous velocity field. (a)

original case, 16 points per riblet. (b) corner correction case, 16 points per riblet.
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