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1. Introduction
The fourth industrial revolution marks a signif-
icant transformation towards a digitalized and
automated manufacturing environment. Collab-
orative robotics is an essential component of In-
dustry 4.0, enhancing Human-Robot Collabora-
tion (HRC) by promoting a synergistic relation-
ship. Ensuring a safe environment in this con-
text deserves thoughtful attention, as cobots are
designed to work in close proximity to humans
without causing any harm. Cobots must adhere
to the ISO/TS 15066 safety specification [1]. In
this context, three main challenges can be iden-
tified [4]: Safe Interaction, Intuitive Interfaces
and Design Methods. Safe Interaction includes
safety standards as well as guidelines for imple-
menting robot operational modes designed for
human interaction. Intuitive Interfaces refer to
user-friendly technologies that allow humans to
interact with robots in an effortless way, such
as with direct manipulation, gestures or voice
commands. Design Methods cover the develop-
ment of control laws and techniques to design
robotic systems that can work effectively and
safely alongside human workers, focusing on col-
laborative tasks, responsiveness and adaptabil-
ity to human actions.

This thesis falls within the Design Methods ad-
dressing the challenges associated with HRC. It
focuses on the development of a control logic al-
lowing the robot to choose actions to be per-
formed depending on the actual human posi-
tion. The approach aims at empowering the
robot with the capacity to autonomously iden-
tify the path that strikes an optimal balance be-
tween ensuring a safe distance from the human
worker and reducing task completion time.
An offline approach followed by an online val-
idation is proposed. A database of admissible
paths is created using the Bidirectional Rapidly
Exploring Random Trees (BiRRT) algorithm to
enable the robotic arm to navigate from its
starting position to the designated target while
avoiding static obstacles. This algorithm en-
sures a comprehensive coverage of the workspace
by concurrently expanding two trees from op-
posite ends and facilitates the establishment of
connections at multiple points, optimizing the
path-finding process. Subsequently, a Reinforce-
ment Learning method, in particular the Q-
Learning (QL), is developed to enable the robot
to dynamically select on which of the previ-
ously computed paths to travel and when to
transition from a path to another, depending
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on the human worker presence. The training
and testing phases of the QL algorithm utilize
different sets of data from the Motion Capture
(MoCap) Database [2], simulating human move-
ments across different tasks. Upon the com-
pletion of the training phase, an optimal policy
is derived and subsequently utilized during the
testing phase.
The novelty of this research lies in computing in
advance all possible admissible paths the robot
might take, as proposed in [3], as well as defin-
ing an optimal policy for the robot’s navigation,
overcoming online path planning methods limi-
tation which demand substantial computational
resources as decisions are made in real time as
the robot moves. In the proposed approach,
when the robot is active and functioning, the
algorithm no longer needs to perform complex
calculations to decide its path. Instead, it sim-
ply observes the current condition, which cor-
responds to the actual robot position and the
actual human position, and refers to the dataset
of paths and to the optimal policy to quickly
determine the best route to take. This dras-
tically reduces the computational load during
real-time operations, as the robot is effectively
matching the current situation to a solution it
already knows, rather than computing a new so-
lution from scratch.
The optimal policy is then validated on the ABB
GoFa™ CRB 15000 cobot in the MeRLIn Lab at
Politecnico di Milano. In the validation phase, a
real-time detection of the human position guides
the manipulator in choosing optimal actions to
navigate the trees using the established policy.

2. Offline paths generation
For the purpose of the thesis, multiple feasible
paths connecting the starting configuration to
the goal while avoiding static obstacles must
be available. The key point is to enable the
robotic arm to switch between paths at any mo-
ment to avoid excessive proximity with the hu-
man operator. Employing the BiRRT algorithm
to compute these paths is extremely advanta-
geous. By setting a high maximum number of
iterations, the algorithm allows the manipulator
to explore the configuration space by simulta-
neously expanding two trees with root nodes at
the specified start and goal configurations, gen-
erating a comprehensive graph of collision-free

paths across the workspace. Its random sam-
pling strategy allows to efficiently cover large ar-
eas of the space, focusing on unexplored regions.
Figure 1 illustrates the created paths network in
the Matlab simulated environment.

Figure 1: Result of the BiRRT algorithm

From this intricate graph of connections, it is
necessary to identify only the feasible paths
which effectively lead to the goal configura-
tion, removing dead ends. Moreover, the
selected paths are then simplified using the
Ramer-Douglas-Peucker (RDP) algorithm to
make them smoother in order to facilitate the
robot’s motion, as shown in Figure 2. The sim-
plified paths include nodes which fall outside the
RDP threshold and various branching and junc-
tion nodes where paths intersect or split. Fur-
thermore, the parent-child relationships graph is
derived from the trees structure, which provides
a clear hierarchy of the nodes within each path.

Figure 2: Result of the simplification process
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3. Reinforcement learning ap-
plication

The dataset of precomputed paths allows the
robot to have multiple routes to choose from, es-
pecially when it reaches significant nodes in the
graph. This multiplicity of routes is strategic
for the subsequent learning phase, designed to
offer the robot an array of navigational choices.
For the training and testing phases of the QL
algorithm, input data regarding human move-
ments within the workspace are sourced from
the MoCap Database. This ensures that the
model accounts for a range of motion within
the workspace, providing a more realistic repre-
sentation of the human activity. The motion of
the human worker in the workspace is depicted
through a series of occupied voxels.
By learning the layout of the parent-child rela-
tionship graph and how humans move within the
workspace, the robot uses the acquired knowl-
edge optimally, becoming able to find the short-
est and safer path.

3.1. Training of the QL algorithm
The parent-child relationship graph consists of
131 nodes and 201 connections between them.
Moreover, the workspace is discretized in 31
voxels. In a Markov Decision Process (MDP)
problem, states and actions are designed to com-
prehensively describe the environment to the
extent necessary for decision-making purposes.
Consequently, each state is defined as the com-
bination of the node where the manipulator is
located and the voxel occupied by the human’s
hand. This makes the number of states for the
problem under analysis equal to 4.000. The
reward function quantifies the benefit or con-
sequence of performing a specific action in a
given state, serving as a critical feedback mech-
anism that guides the learning process. The
reward function assigned to impossible actions
within the current context is set to a significant
penalty for attempting such actions. Instead,
for feasible actions, the reward function is de-
signed to achieve a balance between ensuring
that the robotic manipulator consistently main-
tains a certain minimum distance from the voxel
occupied by the human and minimizing the dis-
tance from the current configuration of the ma-
nipulator to the goal configuration. Algorithm 1
presents the mathematical formulation of this

concept, where the parameter a is used to iden-
tify two zones of close proximity of the robot’s
end-effector to the voxel area.

Algorithm 1 Rewards definition
Require: DistNode-Voxel, DistNode-GoalNode, a
1: if DistNode-Voxel = 0 then
2: R1 = -1.000
3: else if DistNode-Voxel ≤ a then

4: R1 = ln
(

DistNode-Voxel
2a

)
·DistNode-Voxel·50

5: else
6: R1 = ln

(
DistNode-Voxel

2a

)
· DistNode-Voxel

7: end if
8: R2 = µ · 1

DistNode-GoalNode

9: Reward = R1 + R2
10: return Reward

The action selection process, reported in Algo-
rithm 2, draws inspiration from the ϵ-greedy pol-
icy. Given the width of alternatives in terms
of possible paths connecting the starting con-
figuration to the goal, this approach allows to
prioritize exploration over exploitation. Each
episode of the training uses a trajectory selected
randomly from the MoCap database to simu-
late the human’s movement through the envi-
ronment. The goal is to make the final model
adaptable to any task by generalizing human
movements during training.

Algorithm 2 Action selection process
Require: Qtable, episode, episodetot, ϵ, state
1: Qtable ← Inizialize Qtable with zeros

2: if episode >
episodetot

2
then

3: Decay = − log(0, 1)/

(
episodetot

2

)
;

4: diff = episode −
(

episodetot

2

)
;

5: ϵ1 = ϵ · exp[−Decay · diff ];
6: else
7: ϵ1 = ϵ;
8: end if
9: if rand(1 ) > ϵ1 then

10: NextAction ← max (Qtable(state , :))
11: else
12: NextAction ← Choose a random action
13: end if
14: return NextAction
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The outcome of the training phase is the Q-
table. Various training sessions are performed
to improve the convergence of the result, vary-
ing the number of episodes, and two different
strategies are applied to obtain a fully populated
matrix. The primary strategy makes the most
of a fundamental characteristic of the MDP: the
outcome of future states is determined only by
the current state and the action taken, rather
than by the history of events that preceded it.
Thus, instead of starting every episode from a
predetermined starting node, the algorithm is
modified to introduce an element of randomness
in the selection of the starting position. The
second strategy involves using the knowledge of
the parent-child relationship graph and, in par-
ticular, of the actions that are feasible and not
feasible in each node. During the exploration
phase, the next action is no longer chosen ran-
domly from the entire range from 1 to 201,
which counts for both feasible and not feasible
actions, for each node independently. Instead,
for every node, the subsequent action is selected
exclusively within the range of feasible actions
at that specific node.
Even though the Q-table is fully populated,
meaning that every state-action pair has been
evaluated and assigned a specific value by the
algorithm, the 7% of the rows of the matrix dis-
play a maximum value equal to zero, indicat-
ing that all actions are considered unfeasible for
those states. In such cases, the negative values
indicate that, although some actions are permit-
ted, they lead to undesirable outcomes because
the robot node is either located within the same
voxel occupied by the human or is extremely
close to it. To address situations where no ac-
tion is deemed optimal, a self-transition mecha-
nism is proposed, allowing the robot to remain in
the same node until the voxel in input changes,
thereby altering the state and enabling the al-
gorithm to discover a feasible action based on
a new combination of previous node and new
voxel occupied. This method ensures progress
only halts when a final state is reached under
safer conditions.

3.2. Testing of the QL algorithm
Once the optimal policy is defined, the algorithm
is tested under new, previously non analyzed
MoCap tasks. It successfully finds a solution

by identifying a sequence of nodes that navigate
around the voxels occupied for a specific task.
The optimal Q-table serves as a decision-making
guide, enabling the robot to select actions that
lead to the desired outcomes. Figure 3 illustrates
the manipulator’s optimal path in response to a
sequence of human hand-occupied voxels.

Figure 3: Manipulator’s optimal path

4. Experimental validation
In the validation phase, the Kinect camera, in
conjunction with an ArUco marker attached to
the operator’s wrist, is utilized for real-time de-
tection of the human hand’s position. Vari-
ous tests have been conducted on the GoFa™
robotic arm to validate the effectiveness of the
algorithm: one test without the human pres-
ence in the workspace ("No human" category),
six tests with the human hand maintaining a
static position in the workspace ("Static pose"
category), sixteen tests with the human hand
moving linearly along a single axis ("One axis"
category) and six tests in which the human per-
forms diverse tasks requiring hand movement in
all three axes concurrently ("Random case" cat-
egory). All the tests confirmed the absence of
collisions between the operator’s hand and the
robot’s end-effector. For a comprehensive vali-
dation of the algorithm, two distinct criteria are
delineated: the time needed for the task comple-
tion and the maintenance of a minimum safety
distance throughout the entire task execution.
Using the recorded robot poses and human po-
sitions over time, the data points can be visual-
ized in Figure 4 for test 3 from "Random case"
category.
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Figure 4: Cobot and human hand paths

The tests results are presented in Table 1.

Test ID T [s] V [cm3] Dm [cm]
No

human - 18,48 0,00 0,00

Static
pose

1 28,79 6,23 44,58
2 18,48 7,93 52,88
3 30,58 10,23 21,78
4 39,48 17,28 36,17
5 29,71 8,22 32,80
6 35,95 5,89 34,36

One
axis

1 50,52 145,60 30,84
2 29,70 252,31 54,76
3 29,14 191,24 37,81
4 39,28 269,56 34,98
5 35,81 160,09 16,30
6 28,07 9,03 35,85
7 29,00 196,64 4,34
8 43,05 430,37 29,34
9 42,58 686,46 44,57
10 39,17 960,02 19,24
11 25,13 23,61 41,39
12 35,11 67,91 49,44
13 35,83 118,81 47,45
14 86,30 68,90 55,69
15 35,81 134,47 56,83
16 38,04 79,94 36,89

Random
case

1 35,82 1147,55 31,08
2 36,11 621,71 17,52
3 35,85 416,96 18,49
4 39,59 967,10 25,71
5 22,06 49,54 36,29
6 27,60 347,98 22,56

Table 1: Results of the validation process

The shortest time to complete the task is
recorded at 18,48 s, associated to the test where
no human is detected and to the test with ID
equal to 2 from the "Static pose" category, while
the slowest completion time is 86,30 s. The vol-
ume is computed by considering the sequence of
point coordinates occupied by the human’s hand
over time as a point cloud volume. The occu-
pancy volume varies significantly, ranging from
0 cm3 to 1147,55 cm3. As expected, this param-
eter is lower in the "Static pose" tests, where the
human is confined to a single voxel, reaching its
peak in the "Random case" test category as it
reflects the dynamic nature of human movement
within the workspace. The distance between the
human hand and the robot’s end-effector consis-
tently exceeds the established safety threshold
of 15 cm, except during test 7 of the "One axis"
category. This occurred because the robot was
moving towards a node that was deemed safe
based on its distance from the human, but the
actual path came too close to the human. To
prevent this, adding more nodes could help cre-
ate safer paths. Additionally, the positions of
the human hand were interpolated from succes-
sive Kinect frames, which might not accurately
reflect real-time movements.
Figure 5 showcases the data collected from all
the tests using a scatter plot. The x-axis reports
the volume occupied by the human within the
robot’s operational space while the y-axis dis-
plays the task execution time. The correlation
coefficient, calculated across all the experiments,
between the task execution time and volume oc-
cupied by the human in the workspace, is equal
to 0,16. This low value suggests a weak relation-
ship between the two variables. It is possible to
conclude that the task execution time is not in-
fluenced by the nature of the test, i.e. whether
the hand is stationary or in motion, but rather
by the specific voxel occupied at the moment
the robot is asked to make a decision. The iden-
tification number of the occupied voxel, which
identifies its position in the workspace, affects
the decision-making process. Moreover, the ex-
tensive range of the path network, with its nu-
merous alternative routes, enables the robot to
adjust its trajectory responsively to the human’s
changing location and the associated spatial oc-
cupation within the workspace.
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Figure 5: Data from all the test categories

The plot highlights the presence of an outlier.
This point, with a a space occupation of 68,9
cm³ and a task execution time of 86,30 s, stands
out due to its significantly longer completion
time. Without this outlier, the impact of human
presence on task execution time varies from no
change to an increase of 173%. Including the
outlier, this increase goes up to 300%, under-
lining the substantial effect human presence can
have on operational efficiency. The presence of
the outlier can be justified by analyzing test 14
in the "One axis" category. The robot’s journey
is paused at certain nodes when the next move
is deemed too close to the human, based on the
Q-table’s safety guidelines. This careful navi-
gation significantly contributes to the extended
execution time.

5. Conclusions
In collaborative robotic environments, safety is
a critical concern. It is essential for robots to
employ techniques for human activities recog-
nition as a fundamental part of their decision-
making processes. The developed algorithm al-
lows robots to detect and respond to the hu-
man presence and movements. This capability
is crucial for preventing collisions and injuries,
thereby enhancing safety in environments where
humans and robots work closely together. Addi-
tionally, the proposed algorithm ensures an effi-
cient execution of the task, demonstrating that
safety measures can coexist with productivity in
a shared workspace.
An intriguing aspect of this research is that mo-
tion planning and decision-making algorithms
are entirely developed either offline or within a
simulated environment to bypass complex real-
time calculations. The experimental validation

of the algorithm on the GoFa™ robotic arm con-
firmed its effectiveness, initially demonstrated
during the offline testing phases, in navigating
the workspace without coming into contact with
the operator’s hand. The algorithm enables real-
time detection of human presence within the
workspace, allowing the robot to alter its tra-
jectory timely to maintain a safe distance from
humans or to halt completely in the event of an
imminent collision.
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