
User-centric vs. System-centric
Evaluation of Recommender Sys-
tems: A Case of Study

Tesi di Laurea Magistrale in
Computer Science Engineering
Ingegneria Informatica

Author: Costantino Lo Bello

Student ID: 953517
Advisor: Prof. Paolo Cremonesi
Co-advisors: Davide Frey
Academic Year: 2021-2022

i

Abstract

Recommender Systems (RS) are software tools that aim to reduce the information over-
load on the web by proposing possibly interesting items to the user. RS are widely used
in many application domains such as e-commerce, tourism and movie recommendation.
There are two main approaches to evaluating the quality of RS. System-centric, also called
offline, is based on datasets of preferences and opinions on items previously collected from
users, thus inexpensive and easy to reproduce. The other approach, called user-centric,
also called online, measures the quality of the RS when real users interact with the system;
it is an expensive approach to execute but leads to significant results. However, many
works concluded that the results of the two approaches are often not correlated. We
worked with Blacknut, a videogame startup company, to verify whether, in this particular
domain, the two previously mentioned approaches correlate or not. As a methodological
approach, we performed two studies to accomplish our goal. The first was a system-centric
study based on accuracy error metrics and classification metrics to select promising can-
didates for the online test. The second was a user-centric study; we opted to perform an
A/B test, the computer engineering version of randomized controlled trials. Different sets
of users test different recommendation algorithms, providing performance measures by
analyzing system logs. We concluded that accuracy error metrics are misleading in pre-
dicting the online performances of the algorithms. Instead, the ranking predicted through
accuracy classification was reflected in the results of the user-centric study. The findings
of this work enlarge the datasets of studies that compare the system-centric and the user-
centric approaches and can also be used to design an RS in this domain. Assessing an
RS’s quality is an important open question; measuring the system’s quality before doing
expensive online experiments would be an important resource for the companies.

Keywords: Recommender Systems, Evaluation, A/B Testing, User study

Abstract in lingua italiana

I Sistemi di Raccomandazione sono strumenti software in grado di ridurre il sovraccarico
di informazioni nel web proponendo oggetti possibilmente interessanti all’utente. I sis-
temi di raccomandazione sono vastamente utilizzati in molti settori come l’e-commerce,
il turismo e servizi di streaming musicali. Ci sono due approcci principali per valutare la
qualità di un sistema di raccomandazione. System-centric, anche chiamato offline, basato
su dataset di preferenze e opinioni su oggetti precedentemente collezionati sugli utenti,
quindi poco costoso e facile da riprodurre. L’altro metodo chiamato user-centric, anche
detto online, misura la qualità del sistema di raccomandazione quando veri utenti inter-
agiscono con il sistema; è un metodo costoso da eseguire ma porta a risultati significativi.
Tuttavia, molte ricerche hanno concluso che i due approcci precedentemente descritti non
sono sempre correlati. Abbiamo lavorato con Blacknut, una startup di videogiochi, per
verificare se in questo particolare dominio i due approcci di valutazioni sono correlati
o meno. Come approccio metodologico, abbiamo eseguito due studi per raggiungere il
nostro obiettivo. Il primo è stato uno studio system-centric basato su accuracy error
metrics e classification error metrics per selezionare candidati promettenti da testare nel
test online. Il secondo è stato uno studio user-centric; abbiamo optato per svolgere un
A/B test, la versione informatica di studi randomizzati controllati. Differenti gruppi di
utenti provano differenti algoritmi di raccomandazione, la performance finali sono va-
lutate analizzando i log del sistema. Abbiamo concluso che le accuracy error metrics
sono erronee nel predire le performance online degli algoritmi. Al contratrio, la classi-
fica predetta dalle accuracy clasification metrics rispecchia le performance ottenute dagli
algoritmi online. I risultati ottenuti in questa ricerca vanno ad arricchire la collezione
di studi che comparano i metodi di valutazione system-centric con quelli user-centric e
posso essere utilizzati per sviluppare un sistema di raccomandazione in questo settore,
cioè del videogame. Predire le performance di un algoritmo di raccomandazione offline è
un’importante domanda aperta, essere capaci di valutare la qualità di un algoritmo senza
costosi esperimenti online sarebbe un’importante risorsa per le aziende.

Parole chiave: Sistemi di Raccomandazione, Valutazione, A/B Testing, User study

iii

Contents

Abstract i

Abstract in lingua italiana ii

Contents iii

1 Introduction 1
1.1 Contribution and goal . 2
1.2 Outline . 2

2 Algorithms 3
2.1 Recommender Algorithms . 3

2.1.1 Input of Recommender . 3
2.1.2 Taxonomy . 3
2.1.3 Content Based Filtering . 5
2.1.4 Collaborative filtering . 5
2.1.5 Matrix factorization . 6
2.1.6 SLIM . 7

3 Evaluation 9
3.1 System-centric . 9

3.1.1 Error metrics . 11
3.1.2 Classification metrics . 12
3.1.3 Ranking metrics . 13
3.1.4 Beyond accuracy metrics . 13

3.2 User-centric . 14
3.2.1 User study . 15
3.2.2 Participants . 15
3.2.3 Questionnaires . 15

3.2.4 A/B testing . 15
3.2.5 Reaching statistical significance . 16

3.3 Comparison system-centric vs user-centric 17
3.4 Related works . 17

3.4.1 Studies . 18

4 Instruments 22
4.1 What is Blacknut? . 22
4.2 Functionalities . 22

4.2.1 Making Recommendations . 22
4.2.2 Setting up the A/B test . 24
4.2.3 User functionalities . 25
4.2.4 Collect user feedback . 25

5 Design and Execution of the Studies 28
5.1 System-centric . 28

5.1.1 Methodology . 28
5.1.2 Dependent variables . 28

5.2 Execution system-centric study . 29
5.2.1 Results . 30

5.3 User-centric . 32
5.3.1 Procedure . 32
5.3.2 Participants . 33
5.3.3 Online metrics . 33

5.4 Execution system-centric study . 36
5.4.1 Results . 38

5.5 Limitations . 41

6 Conclusions and future developments 42

Bibliography 43

List of Figures 48

List of Tables 49

1

1| Introduction

Recommender system have found application in a variety of online settings including e-
commerce, social networks or news websites. As a result both academia and industry have
proposed a variety of algorithms in an effort to provide better quality recommendations.
Two families of techniques exist to evaluate the quality the of recommendation [8, 35]:
user-centric (online) and system-centric (online).
Online/user-centric evaluation consists in directly measuring the effect of a deployed rec-
ommender system in terms of click rate, sales, or other application-specific metrics. This
can be achieved through A/B testing[10, 11] the computer-engineering version of random-
ized controlled trials, different sets of users unknowingly test different recommendation
algorithms, providing performance measures in terms of click/purchase rates. Another
possible way to performer user-centric evaluation is trough user-studies, in short lab ex-
periments on which users are gather and they are asked to interact with the running
recommender, after a period of testing users are eventually asked to answer a question-
naire to measure their satisfaction. While effective, online evaluation can be very costly
and above all requires the ability to tweak a running recommender system. As a result,
it is often a prerogative of large companies that need to evaluate their own recommender
systems.
On the other hand, offline/system-centric evaluation computes recommendations on an
offline dataset in a cheap and fast way. Historically Recommender Systems are often eval-
uated using accuracy metrics. Early Recommender Systems were often evaluated using
error metrics such as RMSE (root mean squared error) or MAE (mean average error),
while more recent research favors accuracy metrics such as precision, recall. Not only
do these families of metrics offer diverging perspectives, but even the results of a single
metric differ depending on the evaluation protocol employed in the evaluation [12, 33].
Unfortunately, many works have shown the predicted ranking between algorithms using
system-centric evaluation does not translate in the same way in real production settings.
Finding the best way to evaluate a recommender system without access to a production
environment therefore remains an important open research question.

1| Introduction 2

1.1. Contribution and goal

This thesis aims to enlarge the collection of studies that compare system-centric and
user-centric evaluations to see if it is possible to establish a benchmark between offline
evaluation based on accuracy metrics and online performances in the real world. Mind
that this is an evaluation project, we are not proposing any new algorithm. To accomplish
so, we worked with Blacknut, a cloud gaming company. We first managed to provide them
with a new recommendation service used for our work to explore whether existing offline
metrics can predict the impact of a recommendation algorithm online.

So the main research question that we will address is: In a video game platform, how is
the online performance of the recommender systems related to the performance of such
systems measured in terms of their accuracy?

1.2. Outline

The Thesis is structured as follow:

Chapter 2: provides an overview of the recommendation technique used during the work
to give some basics to the reader in case of necessity.

Chapter 3: gives a description of the state of the art of the evaluation of Recommender
Systems. Followed by a review of related works to our research.

Chapter 4: contains information about the context we are working in, and the instru-
ments and functionalities used in our study.

Chapter 5: contains the proposed methodology and explanation of the design choices
of our study. Followed by the actual execution of the experiment and their results.
Finally a section containing the limitations of our experiment.

Chapter 6: conclusions and possible future developments.

3

2| Algorithms

This chapter is a basic introduction to the most famous families of recommender algo-
rithms. It aims to give a basic knowledge to understand the work that will follow and
whose aim is to evaluate recommender systems.

2.1. Recommender Algorithms

2.1.1. Input of Recommender

From a high-level point of view, a Recommender System has multiple sources of getting
the information needed to generate recommendations; as the number of data increases,
the complexity of the algorithms increases. First, the system needs to have information
about the items in the catalogue and their attributes. Other valuable information is the
data about the users, for example, their age or nationality. But the most crucial aspect
is the interaction between the users and the items in the catalogue. Receiving feedback
on what the user likes it’s the most powerful resource for a recommender system.
More formally, we can define the actual inputs of recommender systems. We start with
ICM1 (Figure 2.1), in which the rows are the items in the catalogue, for instance in a video
game recommender the items in the catalogue are the games that will be recommended,
and columns are the attributes that can be the type of game such as adventure or sport.
The other main input of a recommender system is the URM2 (Figure 2.2), in which the
rows are the users and columns are the ratings. Ratings can be explicit, for instance when
a users directly rates a movie that he watched, or implicit, if a user watched a Youtube
video until the end we can assume that as a positive rating.

2.1.2. Taxonomy

The first distinction between recommender techniques is between non-personalized and
personalized algorithms. Non-personalized techniques are straightforward and consist

1Item-Content Matrix
2User-Rating Matrix

2| Algorithms 4

Figure 2.1: ICM

Figure 2.2: URM

in not tailoring the recommendations for a specific user, but all the users receive the
same recommendations based on popularity, for instance. However, even if they are
simple, they shouldn’t be underestimated because they actually work well in practice; in
Netflix homepage, the first kind of suggestion are the most popular movies of the week; in
research, these techniques are an important baseline to compare against newly developed
algorithms.

2| Algorithms 5

A more interesting family are the Personalized algorithms in which each user receives a
tailored recommendation based on their interactions with the system. The main families
of this category will be explained in the next sections.

2.1.3. Content Based Filtering

CBF3 algorithms are based on the assumption that users who expressed a preference for
an item will probably like similar items. For example, if a user likes a movie, he is likely to
like another movie with the same attributes (e.g. leading actor). For doing so, the system
needs to understand how similar the items are, based on their attributes. There are several
formulas for measuring the similarities between two items [17]. This family of algorithms
makes the recommendations with simple formula on which many other algorithms are
based, using the weighted average of the previous rating given by the user:

pu,i =

∑
j∈Iu ru,j · si,j∑

j∈Iu si,j
(2.1)

where pu,i is the predicated rating of the item, si,j is the similarity between the item i

and previously rated items j by the user u, and finally, ru,j is rating given by the user u

to the item j.

2.1.4. Collaborative filtering

Collaborative filtering (CF) [27, 36] is a widely used approach to design recommender
systems. It uses the past user-items interaction stored in the URM to generate recom-
mendations. It is based on the assumption that users who give similar ratings to different
items are likely to like similar items, so the algorithms can exploit the correlation between
similar groups of users to estimate missing ratings. There are two leading families of CF
algorithms, Memory-based and Model-based.

Memory based Collaborative Filtering

Memory based collaborative filtering algorithms, also referred to as neighborhood based,
use users’ ratings to compute similarity between users or items to provide recommenda-
tions. The ratings of users, or items, are predicted based on their neighborhood. Memory
based algorithms can solve the recommendation problem with two approaches: user based
collaborative filtering and item based collaborative filtering.

3Content Based Filtering

2| Algorithms 6

User-Based

In user based CF, the basic idea is that similar users rate the same item in similar ways.
To predict the rating by user u of item i, a weighted average is performed over the ratings
by users most similar to u on the same item. The similarities between u and the other
users are used as weights.

r′u,i =

∑
v∈U rv,i sim(u, v)∑

v∈U sim(u, v)
(2.2)

where sim(u, v)is the similarity between user u and user v.

Item-Based

In item based CF, the basic idea is that a user give similar ratings to similar items. While
with user based the prediction of a rating is computed from the ratings given by other
users on the same item, with item based, instead, the ratings of the target user on similar
items are used, neighbours are defined by the similarity between items.

r′u,i =

∑
jinIu

ru,i sim(i, j)∑
jinIu

sim(i, j)
(2.3)

where sim(i, j) is the similarity between item iand jand Iu is the set of items rated by
the user u.

Model-based

Model-based recommendation systems involve building a model based on the dataset of
ratings. In other words, we extract some information from the dataset, and use that as
a "model" to make recommendations without having to use the complete dataset every
time.

2.1.5. Matrix factorization

This family of algorithm is based on latent factor that are attributes that tries to un-
cover features of observed ratings [24]. Matrix factorization models map both users and
items to a joint latent factor space of dimensionality f, such that user-item interactions are
modeled as inner products in that space. The latent space tries to explain ratings by char-
acterizing both products and users on factors automatically inferred from user feedback.
Accordingly, each item i is associated with a vector y⃗i , and each user u is associated with
a vector x⃗i. For a given item-i, the elements of y⃗i measure the extent to which the item
possesses those factors,positive or negative. For a given user u,the elements of x⃗i measure

2| Algorithms 7

the extent of interest the user has in items that are high on the corresponding factors,
again, positive or negative. The resulting dot product, x⃗i · y⃗i , captures the interaction
between user u and item i,the user’s overall interest in the item’s characteristics. This
approximates user u’s rating of item i, which is denoted by r′ , leading to the estimate:

r′ = x⃗i · y⃗i (2.4)

To find the missing parameters the goal is minimizing the following error function with
the addition of regularization term:

X∗, Y ∗ = min ∥R−R′∥+ λa ∥X∥+ λb ∥Y ∥ (2.5)

in which the last two term are regularization factors to avoid overfitting and λa, λb are
hyperparameters that need to be properly tuned.

Alternating Least Square

Alternating Least Square (ALS) is one of the most common techniques to solve the Matrix
factorization problem, and it can be summarized as follow: after initializing the matrices
X and Y with random values the steps are repeated until convergence:

1. Fix X and solve each row of V by treating the problem as least-square regression
problem using only observed ratings

∑
u∈Ri

(
Ru,i −

k∑
l=1

Xu,lYi,l

)2

(2.6)

2. Fix Y and solve each row of by treating the problem as least-square regression
problem using only observed ratings

∑
u∈Ri

(
Ru,i −

k∑
l=1

Xu,lYi,l

)2

(2.7)

2.1.6. SLIM

A way of design a model-based item-based collaborative filtering to perform a top-n
recommendation task using machine learning techniques[29]. To estimate the ratings on

2| Algorithms 8

an unseen item we recall the formula previously explained:

pu,i =
∑
j∈Iu

ru,j · si,j (2.8)

In matrix form is:

R′ = R · S (2.9)

Our goal is to estimate the matrix S that contains the coefficient to learn thus the model,
to do so we need to define a loss function over the observed rating and minimize it:

E(S) = (∥R−R · S∥)2 + λa ∥S∥+ λb ∥S∥ (2.10)

subject to the constraints S ≥ 0,and to regularization terms to avoid producing negative
ratings, and diag(S) = 0, to avoid a solution in which S is the identity matrix.

9

3| Evaluation

Evaluating the quality of an algorithm is a crucial step in any development project, to
understand how well it performs and what can be improved. In particular this process
is not trivial in the field of Recommender systems, this is because as many works have
shown is very domain dependent [2, 6]. There are two main approaches to evaluate a
Recommender System [6, 8, 18]:

• System-centric also called Offline evaluation: quality measures are evaluated using
datasets of preferences and opinions on items previously collected from users that
are not interacting with the RS under study.

• User-centric also called Online evaluation: users interact with a running recom-
mender system and receive recommendations. Measures are collected by asking
the user (e.g., through interviews or surveys), observing her behavior during use,
or automatically recording interactions and then subjecting system logs to various
analyses.

In the next sections of the chapter it will be presented the current state of the art of the
various evaluation techniques and finally a comparison between them will be presented.

3.1. System-centric

Offline evaluation is broadly studied in other fields such as machine learning and Informa-
tion Retrieval; what will follow is focused on recommender systems, but many concepts
apply to other fields. Evaluating a recommender system’s quality before its deployment
is a valuable resource. Offline metrics are attractive because they require no interactions
with real users and thus allow us to compare a wide range of algorithms at a low cost.
They are a powerful tool to filter a set of candidate algorithms or for parameter tuning
for these reasons. In order to define offline evaluation we need to take into account four
aspects:task, dataset, partitioning and the metrics [7, 18].
First, the task we are dealing with, it’s important to distinguish between possible tasks
because, in the offline evaluation, one size does not fit all; according to the task we are

3| Evaluation 10

dealing with, different approaches are more valuable than others. The two main tasks
of recommendation algorithms are rating prediction in which the recommender system
predicts the rating of items for a given user, and the second possible task is top-n rec-
ommendation task in which the goal is not to predict an accurate rating but to propose
a list of n items that the user might like.
The second aspect we have to deal with is the dataset. When analyzing a recommendation
algorithm, we are interested in its future performance on new data rather than its perfor-
mance on past data. We must properly partition the original dataset into training and
test subsets to test future performance and estimate the prediction error. The training
data are used by one or more learning methods to train the model (i.e., an entity that
synthesizes the behaviour of the data), and the test data are used to evaluate the quality
of the model. The dataset is usually split according to one of the following methods [7, 34]:

• Holdout is a method that splits a dataset into two parts: a training set and a
test set. These sets could have different proportions. In the setting of recommender
systems the partitioning is performed by randomly selecting some ratings from all (or
some of) the users. The selected ratings constitute the test set, while the remaining
ones are the training set. This method is also called leave-k-out.

• Leave-one-out is a method obtained by setting k = 1 in the leave-k-out method.
Given an active user, we withhold in turn one rated item. The learning algorithm
is trained on the remaining data. The withheld element is used to evaluate the
correctness of the prediction and the results of all evaluations are averaged in order
to compute the final quality estimate. This method has some disadvantages, such
as the overfitting and the high computational complexity.

• m-fold cross-validation is a simple variant of the holdout method. It consists
in partitioning the dataset into m independent folds (so that folds do not overlap).
In turn, each fold is used exactly once as test set and the remaining folds are used
for training the model. This technique is suitable to evaluate the recommending
capability of the model when new users (i.e., users do not already belonging to the
model) join the system. By choosing a reasonable number of folds we can compute
mean, variance and confidence interval.

Finally according to the task we are dealing with some metrics might be more suitable
than others. There are tree main families of metrics error metrics classification metrics
and ranking metrics. Evaluation metrics are widely studied, and they are the core part
of an evaluation process and they deserve separated sections due to also their variety.

3| Evaluation 11

3.1.1. Error metrics

Error metrics are particularly important in a rating prediction task, where the actual
predicted rating is used .Error metrics were very interesting to researchers during the
2000s mostly due to the Netflix competition, in which a prize money of one million dollar
was awarded to algorithm that performed better while being evaluated with RMSE [3],
that we are going to define. This family of metrics measures how close the recommender
system’s predicted ratings are close to the true user ratings. The easiest way to compare
the two ratings is to compute the error[18, 35]:

eu,i = |ru,i − pu,i| (3.1)

This is the error for one user and one item,where ru,i is the true rating of the user u to the
item i and pu,i is the predicted rating, T is the test set and N is the number of non-zero
rating , we want it for all the items in the test set . For this reason MAE is the first
simple error metric introduced:

MAE =

∑
u,i∈T |ru,i − pu,i|

N
(3.2)

A variant of MAE is MSE:

MSE =

∑
u,i∈T (ru,i − pu,i)

2

N
(3.3)

almost identical in the quality of what we are measuring, but it is used more because
it is easier to minimize. Minimizing the error is the objective of some algorithms. The
most popular error metric is RMSE due to the previously mentioned Netlfix competition,
defined as follow:

RMSE =

√∑
u,i∈T (ru,i − pu,i)2

N
(3.4)

When using error metrics the error is computed only on a portion of data on which the
ratings are known the eventual goal of the recommender is to predict the rating for items
not yet rated by the user. This implies the usage of strong assumption called MAR missing
as random[27], that consists on the fact that we are assuming that unknown rating have
the same probability distribution of known ratings. This is considered unrealistic because
for example if we rate an object from an e-commerce web site it is likely that we are going
to rate it in positive way since we bought it because we liked it. The same example can
be done with a movie catalog, there are many movies that we don’t like before watching

3| Evaluation 12

them maybe because we don’t like the type, the MAR assumption in this situation fails
because the missing rating is not because we haven’t seen the movie yet, but it’s because
we don’t like it.

3.1.2. Classification metrics

Error metrics are not suited for all the contexts, take for instance an e-commerce web
site where a list of items is proposed to the user, knowing the predicted rate is not
important in this situation, finding good items is what the Recommender system should
do. Campochiaro et al. in [4] argued that having algorithms with very low RMSE do
not necessarily perform well in top-n recommendation task, that we need to refer to
information retrieval metrics. Classification metrics measure the frequency of which a
recommender system makes correct or incorrect decisions about whether an item is good.
In order to evaluate a model we usually take into account the following measures[18, 35]:

• True Positives (TP): number of instances classified as belonging to class A that truly
belong to class A;

• True Negatives (TN): number of instances classified as not belonging to class A and
that in fact do not belong to class A;

• False Positives (FP): number of instances classified as class A but that do not belong
to class A;

• False Negatives (FN): instances not classified as belonging to class A but that in
fact do belong to class A.

Now we can define the following metrics:

precision@k =
TP

FP + TP

recall@k =
TP

TN + FN

(3.5)

(3.6)

Precision has an intuitive meaning: it measures the percentage of interesting items sug-
gested to the users, with respect to the total number of suggested items k. While Recall
measures the percentage of interesting items k suggested to the users, with respect to the
total number of interesting items in the catalog. Precision and Recall can be combined
in a single quantity, called F-measure:

F-measure@k =
2 · precision@k · recall@k
precision@k + recall@k

(3.7)

3| Evaluation 13

Usually users express their preference by giving a rate from 1 to 5 (for instance), while
using classification metrics we need to set a threshold to classify an element as relevant
or not. This might cause problems because different users might have different rating
scale, for a user a rate of 3 can be considered that they didn’t like the item for others in
a positive way instead.

3.1.3. Ranking metrics

Ranking metrics are an evolution of classification metrics where the task of the recom-
mender is not only to propose a list of good items, but also to predict how much a user
likes an item compared to the others, in other words proposing an ordered list of items
to the user. Take for instance an accommodation booking service in which generally the
best options are put at the top of the list.
Mean Average Precision (MAP) is one of the most used rank metrics [18]. It computes
the overall precision of the system at different lengths of recommendation lists. MAP
is computed as the arithmetic mean of the average precision over the entire set of users
in the test set. Average precision for the top K recommendations, AP@k, is defined as
follows:

AP@k =

∑N
k=1 Precision@k · Rel(k)

M
(3.8)

where N is the number of relevant items and Rel(i) is 1 if the i-th recommended item is
relevant, 0 otherwise. From this definition, we can compute MAP as:

MAP@n =

∑
u∈U APu@n

U
(3.9)

where U denotes the users in the test set.
Mean Reciprocal Rank (MRR) is a well known metric in information retrieval . This met-
ric evaluates the results of a recommender based on the order of probability of correctness.
It is defined as following:

MRR =

∑
u∈U

1
ranku

U
(3.10)

where ranku is the position of the first relevant retrieved answer for user u.

3.1.4. Beyond accuracy metrics

The evaluation of recommender systems traditionally was focused on reaching the highest
accuracy, but there has been some works towards evaluating other qualities such as Diver-
sity, Serendipity, Coverage and Novelty. This is because the final goal of a recommender

3| Evaluation 14

system is not just to be accurate, but to propose items more interesting and engaging
as possible in other words useful, and depending on the system domain and the user’s
needs. For instance, when recommending music, it is not always desirable to recommend
unknown or surprising artists, as it may be important to include artists the user is familiar
with but has not listened to in a while. What will follow are qualitative definitions of the
previous qualities without giving formulas on how to compute them [21, 37].

• Diversity: Ensuring that the list of retrieved documents covers a broad area of the
information space increases the chance of satisfying the user’s information need. In
RS research, diversity is generally related to how different are items in a recommen-
dation list for the user.

• Coverage: The coverage of a recommender system is a measure of the domain
of items in the system over which the system can form predictions or make rec-
ommendations. It can be associated with two concepts. Prediction coverage,the
percentage of the items for which the system is able to generate a recommendation.
And catalogue coverage,the percentage of the available items which effectively are
ever recommended to a user.

• Serendipity: Serendipity is a difficult to define because its core component is the
element of surprise. Herlocker [18] informally defined a serendipitous recommenda-
tion as one that helps the user find a "surprisingly interesting item he might not
have otherwise discovered". More formally Serendipity is composed by two main
aspects, Unexpectedness the item is not yet discovered by the user, and Usefulness
the item is interesting, relevant to the user.

• Novelty: novelty can be seen as the ability of the system to propose to the user
unknown items. This definitions of novelty often overlaps with serendipity, we can
say that the first includes the latter because it doesn’t require the element of surprise,
for instance if the recommender system suggests to the user a new music album of
an artist the the user previously liked, this is a novel recommendation but not
serendipitous because the artist was already discovered by the user.

3.2. User-centric

System-centric evaluation provides a grate framework for systematically evaluate the qual-
ity of a Recommender System, but may works have argued that performance of algorithms
that did great in an offline evaluation scenario, did not translate when the system was
deployed in a real production environment [9, 12, 14, 19, 33]. To truly evaluate the quality

3| Evaluation 15

of RS online evaluation is needed, of course it has some drawbacks, due to its cost and
effort to set it up. There are several techniques to perform user-centric evaluation, that
is less standardized approach respect to the system-centric evaluation[35].

3.2.1. User study

User studies typically measure user satisfaction by monitoring how the user interact with
the systems, asking direct feedback and trough questionnaires(section later). Users gath-
ered for the experiment receive recommendations from different recommendation algo-
rithm and they are asked to interact with the systems performing several tasks, after a
period of testing results are evaluated.

3.2.2. Participants

Recruiting participants is a crucial task for user-centric studies. It’s important to gather
a reasonable large sample size to reach statistical significant results, but at the same time
the quality of the sample shouldn’t be neglected. The sample needs to be similar to what
it,s expected to see in the real word, the participants should be unbiased on the goal
of the experiment. It’s a common practice to use crowd-sourcing platform like Amazon
Mechanical Truck1 to test the mock-up of the application and answer the questionnaire.

3.2.3. Questionnaires

Questionnaires are powerful tools in a user study.The questions asked can provide infor-
mation about properties that are difficult to measure, such as user satisfaction or sense
of risk. For example if we want to measure metrics such as serendipity and diversity, it’s
not really straight forward to compute them analytically, much simpler would by to ask
directly the user if that item is considered serendipitous or diverse by him. There are
several framework proposed on how to build a proper questionnaire [31].

3.2.4. A/B testing

Online controlled experiments also know as A/B testing are very effective way to com-
pare the performance of recommender algorithms [15]. They are a standard evaluation
procedure also in other fields especially in the web environment [23]. In the simplest
controlled experiment, users are randomly exposed to one of two variants: Control (A),
or Treatment (B), the control is the version of the system in use before the experiments,

1https://www.mturk.com

https://www.mturk.com

3| Evaluation 16

the treatment is the new version to evaluate. Based on observations collected, an overall
evaluation criterion is derived for each variant. Now we define some key concept for online
controlled experiment [22]:

• Overall Evaluation Criterion: a quantitative measure of the experiment’s objective.

• Factors : a controllable experimental variable that is thought to influence the Overall
Evaluation Criterion. For example an algorithm.

• Variant : a user experience being tested by assigning levels to the factors. So for
example if a factor is an algorithm the variant are different variants of it, so different
algorithms.

• Experimental unit : the entity over which metrics are calculated before averaging
over the entire experiment for each variant. Sometimes called an item. The units
are assumed to be independent.

On the web, the user is a common experimental unit, although some metrics may have
user-day, user-session or page views as the experimental units. For any of these, random-
ization by user is preferred. It is important that the users receive a consistent experience
throughout the experiment.

3.2.5. Reaching statistical significance

Before starting any kind of experiment it is necessary to perform an Hypothesis such
as : "does algorithm A performs better than Algorithm B?". Once collected data, it
is important to statistically test the formulated hypotheses and verify that results are
statistically significant (they are not due to luck),generalization is a necessary step because
the result must be significant also on unseen data not just the data used for the test [18,
32, 35]. Several procedures are used:

• A standard tool for significance testing is a significance level or p-value the proba-
bility that the obtained results were due to luck. Generally, we will reject the null
hypothesis that algorithm A is no better than algorithm B if the p-value is above
some threshold. That is, if the probability that the observed ranking is achieved
by chance exceeds the threshold, then the results of the experiment are not deemed
significant.

• The difference between more than two conditions can be tested with an ANOVA
(Analysis of Variance). The ANOVA test produces an F- statistic; its p-value signi-
fies evidence against the null hypothesis that the dependent variable has the same

3| Evaluation 17

value in all conditions[1].

3.3. Comparison system-centric vs user-centric

Offline evaluation is based on past data, and it doesn’t need real-time user interaction,
so it can be implemented at a low cost. It can quickly test and evaluate the performance
of different kinds of recommendation algorithms and is also highly reproducible when the
steps are correctly defined. But the disadvantages are that such experiments can usually
be used in evaluating the prediction accuracy of the algorithms or Top- N precision of
recommendation, and can do little in other evaluation criteria, it has been shown that
offline performance does not always correlate with online performance (see section related
works). This procedure is used more to filter out inappropriate algorithms leaving a more
valuable set of algorithms to test for the next phases.
Online evaluation such as controlled experiments and user studies need live user inter-
action with the system, and they can are used to understand the actual impact of the
recommendation on the overall systems [19]. But it has some disadvantages, mainly be-
cause of its high cost in fact, it requires a long period of experimentation or/and large
sample size to reach statistical evidence. This might not be appreciated by all the stake-
holders. Another disadvantage is the risk of miss interpretation of the result due to a
mistake made during the set-up phase, such as a wrong sampling of the users [20]. The
table 3.1 summarizes the the main advantages and disadvantages of the two types of
evaluation.

ADVANTAGES DISADVANTAGES
ONLINE Powerful because the feedback are

from real users.
Expensive and not easy to interpret.

OFFLINE Not expensive and easy to repro-
duce

Do not always correlate with the ac-
tual performance.

Table 3.1: Pros and Cons Offline vs Online

3.4. Related works

This section will provide an overview of some related works that try to compare system-
centric and user-centric evaluation. Different studies led to different results; some studies
concluded that there is a correlation between the two approaches others believe that there
isn’t. Many works in this field are carried out by using user studies since they are easier
to set up in academic fields, A/B testing instead permits reaching more significant results

3| Evaluation 18

but researches with this method are less likely to be published because companies are less
keen to share those information since they very business related.

3.4.1. Studies

Jannach and Jugovac in [19] conducted a user study to assess the quality perception of
different session-based recommendation algorithms in a realistic scenario, and to compare
it with offline result. To do so they designed a between-subjects user study (N=250),
where participants interacted with an online radio application that was developed for the
experiment, they split the sample in five groups and each group was assigned to a different
algorithm, at the end of the experiment participants (gathered on Amazon mechanical)
were asked to answer a questionnaire tailored by them to measure the perceived quality
they not only asked how relevant was the recommendations but also if it was serendipitous
and diverse. The result showed the algorithm such as the one used by Spotify performed
badly while evaluated offline (Precision and Recall) but was positively considered by the
participants compensating the lack of accuracy by helping the user to discover new tracks.
Rossetti et al. in [33] proposed a novel comparison approach between an offline evaluation
protocol and an online user study, their goal was to see if it is possible to use offline
accuracy metrics to reproduce the ranking of the algorithms that comes out from the user
study.They designed an a with-in user study in which they test the same algorithms on
the same users both offline and online. In the first rounds they asked users(gathered with
mail listing) to browse a web interface and give rating on items they liked, in the second
round they asked the same users to evaluate the same algorithms by rating five recom-
mendation each, by creating a list of 20 items, on average, and they mixed the list. Then
with the data gathered from both round they computed precision on all items and on
long tail item, and only for the online data they computed how useful a recommendation
was by combining relevance and novelty. One of their main result is that offline precision
measurement does not provide the same ranking of algorithms as online precision does.
Cremonesi et al. in [8] argued if the algorithms that perform best in terms of system-centric
quality generate recommendations that provide the best effects on decision making, in an
e-tourism environment. The system-centric evaluation was performed on a dataset of
210000 simulated users, recall and fallout were measured: The User-centric evaluation
aimed to measures several qualities of the recommendations such as choice satisfaction,
choice risk, elapsed time, perceived time. Users were spilt into groups and to each group
an algorithm was assigned, afterwards participants played with the mock-application de-
veloped for the test with the task of assembling a trip. Finally the performance were
analyzed trough system logs and a questionnaire was given to the 240 participants gath-

3| Evaluation 19

ered trough the university mailing list. Their results different from other domains showed
that touristic products may exploit different aspects of recommender systems, and suggest
the possibility to adopt system-centric evaluation techniques as a good approximation of
the user experience.
Garcin et al. in [13, 14, 26] tested their new algorithm developed for news recommenda-
tions and performed a live analysis on it, to evaluate the performance of their algorithm
and analyze the difference between online and offline evaluation. The online evaluation is
split in two phases where we test different strategies against each other. The first phase
consists of comparing a standard context-tree system against the baselines in terms of
click-through rate and page views. The second phase investigates different versions of
CT recommender systems [13]. The recommender algorithms together received 172’013
clicks on 10’653 stories in the first phase and 285’572 clicks on 10’830 stories in the sec-
ond phase. The result shows that in the offline case the algorithm couldn’t outperform a
baseline most popular strategy because the recommendations do not directly influence the
user. On the contrary the most popular strategy didn’t perform well online because the
most popular articles weren’t considered interesting by the user since they were already
in the front page however the CT algorithm had better results. Further investigations on
this topic have been carried out by the same authors by taking different metrics such as
Serendipity and Novelty into account.
Mogenet et al. in [28] reviewed a comparative offline and online performances of three rec-
ommendations models,they analyzed how the offline performance metrics correlate with
online metrics to understand how an offline evaluation process can be leveraged to inform
the decisions. Different offline metrics were computed in the offline evaluation phase, es-
pecially ranking metrics, precision and recall. The online evaluation was performed using
A/B testing assigning a bucket of user to each model, as online metric they use apply-rate,
the percentage of times a user applied for a job. Afterwards the computed Pearson and
Spearman correlation coefficient [17], they concluded that those offline evaluation metrics
are reliable enough to decide to not deploy the new models when the offline performances
are significantly negative; and to deploy the new models when there is a positive impact
on the offline metrics.
Peska and Vojtas in [30] worked on bridging the gap between offline and online evaluation,
the domain of their work was a medium size travelled agency, they tested 800 variants
of algorithms offline and filtered to the online phase only 12. The study design was as
usual divided in two phases, the dataset of the offline phase was composed of user’s visit
of a period of 2 and a half years, after cleaning it contained 270k interactions made by
72k users, a huge variety of metrics were evaluated such error metrics, classification met-
rics, ranking metrics and also metrics different from relevance metrics such as novelty

3| Evaluation 20

and diversity. When selecting the algorithms for the next phase their main goal was to
determine predictability of online result from online metrics, the strategy chosen to select
the algorithms was to pick ,from each offline metric the tested, the worst and the best
algorithm leaving only 12 for the online phase. The online phase was conducted using
A/B testing for a period of one month on the production server of travel agency, each
user was assigned to an algorithm based on his ID, during the on-line evaluation, they
monitored which objects were recommended to the user, whether (s)he clicked on some
of them and which objects (s)he visited,based on the collected data, they evaluated two
metrics: click through rate (CTR) and visit after recommend rate (VRR). Results have
indicated a positive correlation between offline ranking metrics and CTR and VRR and a
negative correlation with novelty for less senior users, results are reversed for senior users,
this might indicate that senior users prefer simpler suggestions.
Fazeli et al. in [12]claimed that in the domain of a social learning platform, accuracy met-
rics to predict user satisfaction is just the tip of the Iceberg. The study was designed in
two parts, first a data-centric evaluation aimed to asses the performance of the candidate
recommender algorithms in terms of accuracy information retrieval metrics such as preci-
sion and recall. The dataset used contains interaction coming from the learning platform
and consist on 9117 events of 2567 users with 3392 objects. Many algorithms and config-
uration were tried in this phase mainly KNN algorithms and matrix factorization. The
second part of the study is a user-centric study, designed as followed. First they let the
participants (gathered trough crowd sourcing) interact with the system with a message
"there is no recommendations for you today" in order to build the user profile. The in the
second phase users were randomly split and assigned to a recommendation algorithm and
they were exposed to recommendations. Finally the were asked to answer a questionnaire
to evaluate the perceived quality of the recommendations by the users. The question-
naire was designed taking as quality indicators : Accuracy,Novelty,Diversity,Usefulness
and Serendipity. After analysing the results they concluded that the user-centric evalu-
ation does not confirm the result obtained by the traditional system-centric evaluation
based on accuracy.

3| Evaluation 21

A
u
th

or
s

d
om

ai
n

m
et

ri
cs

ty
p
e

re
su

lt
s

C
re

m
on

es
i

et
al

.
in

[8
]

e-
to

ur
is

m
re

ca
ll

an
d

fa
llo

ut
U

se
r-

st
ud

y
co

rr
el

at
io

n
be

tw
ee

n
th

e
2

ph
as

es

G
ar

ci
n

et
al

.i
n

[1
4]

ne
w

s
re

co
m

m
en

da
-

ti
on

pr
ec

is
io

n
A

/B
te

st
in

g
no

t
co

rr
el

at
io

n
be

tw
ee

n
th

e
2

ph
as

es

M
og

en
et

et
al

.
in

[2
8]

Jo
bs

(I
nd

ee
d)

ra
nk

in
g

m
et

ri
cs

,
pr

ec
is

io
n,

re
ca

ll
A

/B
te

st
in

g
offl

in
e

ev
al

ua
ti

on
is

a
go

od
to

ol
to

fil
te

r
ou

t
ba

d
ca

nd
id

at
e

P
es

ka
an

d
V

oj
ta

s
in

[3
0]

m
ed

iu
m

tr
av

el
ag

en
cy

ra
nk

in
g,

ac
cu

ra
cy

,
no

ve
lt
y,

di
ve

rs
it
y

A
/B

te
st

in
g

th
e

co
rr

el
at

io
n

de
pe

nd
s

on
th

e
se

ni
or

-
it
y

of
th

e
us

er
s

R
os

se
tt

i
et

al
.

in
[3

3]
m

ov
ie

s
pr

ec
is

io
n

U
se

r
st

ud
y

offl
in

e
an

d
on

lin
e

pr
ec

is
io

n
ar

e
no

t
co

r-
re

la
te

d.
Lu

de
w

ig
an

d
Ja

n-
na

ch
in

[2
5]

m
us

ic
P

re
ci

si
on

an
d

R
e-

ca
ll

U
se

r-
st

ud
y

no
t

co
rr

el
at

io
n

be
tw

ee
n

pe
rc

ei
ve

d
qu

al
it
y

an
d

offl
in

e
m

et
ri

cs
Fa

ze
li

et
al

.i
n

[1
2]

le
ar

ni
ng

pl
at

fo
rm

P
re

ci
si

on
an

d
R

e-
ca

ll
U

se
r-

st
ud

y
T

he
re

su
lt

ob
ta

in
ed

w
it

h
a

sy
st

em
-

ce
nt

ri
c

ev
al

ua
ti

on
do

no
t

re
fle

ct
th

e
us

er
-c

en
tr

ic
on

e.

Table 3.2: Comparison of different studies.

22

4| Instruments

This chapter gives information about the context we are working in, video game recom-
mendations, and a high-level description of the Blacknut platform. Followed by the main
functionalities of the system we used in this project.

4.1. What is Blacknut?

Blacknut is a start-up company that provides a video-game streaming service1. Blacknut
subscribers can enjoy a selection of more than 500 video games, Figure 4.1 shows the
homepage, on their TV screen, mobile device, or laptop without requiring expensive
dedicated hardware. The video game runs on the cloud on Blacknut’s servers and streams
content directly to user devices (Figure 4.3). Before the deployment of the recommender
system, users can manually browse a catalogue of over 500 video games (Figure 4.2).
However, during this project, we managed to successfully deliver a working RS that the
company was able to run and display recommendations to real subscribers to allow them
to experience new content at each visit. The data gathered from the interactions between
the users and the system was crucial to our analysis.

4.2. Functionalities

This section provides a description of the main functionalities of Blacknut and its Recom-
mender System involved in this project. Both from a researcher and a user perspective.

4.2.1. Making Recommendations

The core functionalities of the system is making recommendations, in other words pro-
ducing a list of interesting items for the user, based on the user’s previous interactions as
we talked in previous chapters. The algorithms implemented available are:

• Random: given a recommendation list of length N, provide N movies randomly
1https://www.blacknut.com/en

https://www.blacknut.com/en

4| Instruments 23

selected from Blacknut catalogue.

• itemavg: a simple method to consider the popularity of the items, given a recom-
mendation list of N elements, provide N items with the highest average rating.

• itemuseravg: it’s a variant of the previous algorithm but it adds to the prediction
a bias which measures how different the average rating of this user is compared to
the average rating in the whole dataset.

• ubknn: in the user-based version (denoted UBKNN) , a kNN matrix is built to
find the k nearest users of each user u. Candidate items for recommendation are
those liked by the neighbors of u but which are still unknown to u. They are
given a predicted score, and the most relevant ones get recommended with a top-N
approach.

• ibknn: it follows the same approach of the previous algorithm but it computes the
similarity between items instead of users.

• Matrix factorization: matrix factorization is a class of collaborative filtering al-
gorithms used in recommender systems. Matrix factorization algorithms work by
decomposing the user-item interaction matrix into the product of two lower dimen-
sionality rectangular matrices. Several approaches are available for decomposing
the matrix.

The administrator of the system can decide which algorithm to run and to display. The
output of the recommender is eventually saved in an external table managed by Blacknut.

Figure 4.1: Homepage.

4| Instruments 24

Figure 4.2: Catalogue.

Figure 4.3: Controllers.

4.2.2. Setting up the A/B test

When there is the need to set up a new experiment, the researchers can specify the
algorithms and configurations they want to test. The system randomly assigns each user
present in the system to an algorithm, and the user sees the recommendations produced
by that algorithm. The assignment of the algorithms is kept consistent for all duration
of the experiment. When new users enter the system, they are randomly assigned to an
algorithm, so this functionality redirects the traffic to a specific algorithm.

4| Instruments 25

Figure 4.4: Games to discover.

4.2.3. User functionalities

Even though the user interface wasn’t under our responsibility and Blacknut managed
it, it’s still significantly correlated with the Recommender System and with A/B testing,
and it’s important to have a perspective of what a real user can do. As in many real-life
systems, the user is let free to browse the catalogue, as shown in Figure 4.2, to search for a
particular game and, of course, to see possible recommendations. The list of recommended
games is called "Game to Discover" Figure 4.4.

4.2.4. Collect user feedback

Any Recommender System must gather user-item interactions to work. As in many real
applications, we don’t have an explicit dataset composed of ratings; what we have are raw
user click logs, which will be very important for our user study. In our case, those clicks
are sessions of game play made by the users, and we will call the table of all recorded
sessions Streams, Figure 4.1. In other words, when a user starts to play a game and
eventually ends the session, a new entry on the dataset is made with the recorded session,
Table 4.2. We will make an example to clarify the concept, mind that it’s a table of a
real company, so we cannot disclose all the details for privacy reasons. To get the user
interactions, we had access to the table Streams through the service BigQuery2 powered
by Google.

2https://cloud.google.com/bigquery

https://cloud.google.com/bigquery

4| Instruments 26

id user created at duration game name

120 John 03-05-2022 400 Asphalt 6
121 Lucie 03-05-2022 540 Frozen
122 Bob 03-05-2022 1200 Tennis 2

Table 4.1: Streams.

id user created at duration game name

120 John 03-05-2022 400s Asphalt 6
121 Lucie 03-05-2022 540s Frozen
122 Bob 03-05-2022 1200s Tennis 2
123 John 03-05-2022 600s Tennis 2

Table 4.2: Streams after a session of gameplay.

But the all the working algorithms developed in our RS require a URM to compute the
recommendations. The dataset is represented by a n × m matrix R (the URM). The
element r(i, j) in R is the rating expressed by user i on item j. In our case values for
r(i, j) are in the range 1 to 10. If the value of r(i, j) is 0, it means that the user i has
not expressed an opinion about the item j. To translate the Streams into a URM we can
use a function for this purpose, we had available 5 different functions for doing so (the
administrator of the system can decide which function to use):

• AverageGameDuration(): for each user finds the game that was played for the
longest time by summing up the length of all the sessions a game was played and
selecting the highest , that variable will be called MAX. After that, for each for each
game played at least once by the user, the grade is calculated with the following
formula 10 · (x/MAX) where x is the total time that a user played the game which
is evaluated by again, summing up the session lengths in which the user played that
game.

• AverageGameSession(): for each user finds the game that is played the most on
average by computing the average duration session for each game the user has played
and selecting the highest, that variable will be called MAX. After that, for each game
the user has played at least once, the grade is computed with the following formula
10 · (x/MAX) where x is the average duration the user has played that game.

• NumberOfSession(): for each user finds the game played more times, the number

4| Instruments 27

of times that is played is called MAX. After that, for each game played at least
once, it calculates the rating with the following formula 10 · (x/MAX), where MAX
is the number of times the game which is evaluated was played.

• HybridDurationSession(): this is a hybrid function, as the name suggests, that
computes the grades using the AverageGameSession() and AverageGameDuration().
For each user, the grade for each game played at least once, is computed by simply
summing up the grade generated by the previously mentioned functions and diving
the results by 2.

• HybridDurationNumber(): this is a hybrid function, as the name suggests, that
computes the grades using the AverageGameSession() and NumberOfSession().
For each user, the grade for each game played at least once, is computed by simply
summing up the grade generated by the previously mentioned functions and diving
the results by 2.

28

5| Design and Execution of the

Studies

What will be presented in this chapter is the core of our work. It is composed of two
separate studies, the first system-centric study and the second a user-centric study. First,
we will define the methodology used for the studies and their results.

5.1. System-centric

The first phase of the evaluation process is to select promising candidates to test in a
live production setting. System-centric evaluation provides a cheap and fast to measure
dependent values as a function of a recommendation algorithm based on historical data,
to predict future performances and finally.

5.1.1. Methodology

In evaluating the performance of a recommender system, we need to partition the dataset
into two different parts: the first part, referred to as the training set, is dedicated to the
construction of the model, and the second part, referred to as the testing set, is used for
testing the model [7].
In this work, we use 5-fold cross-validation, repeat each experiment several times to
consider the average results. The K folds, and thus the training and testing sets, are built
as follows: for each user u, we consider its profile as a vector (jk)k containing the items
rated by u, which order is obtained with a random shuffle. The cell (u, jk) of the user-item
matrix (with r(u,jk) as rating) is mapped to the fold No. k mod K.

5.1.2. Dependent variables

To measure the quality of the algorithms, we adopted two families of metrics. Error
accuracy metrics measure how close the prediction of the rating is near to the actual
rating. Classification accuracy metrics instead measure the system’s quality of pro-

5| Design and Execution of the Studies 29

ducing a list of relevant items for the user. We adopted more than one family of metrics
first of all because, in the literature, they are the most widely used, also in works like
ours that try to verify which metric is a good predictor for the actual performances. And
finally, to compare the two approaches and decide which is more suitable for our domain.
In this work, we only focused on accuracy metrics and didn’t consider beyond-accuracy
metrics.
With classification metrics, as a threshold for selecting relevant items, we chose the rating
of 8 out of 10. For the length of the recommendation list, we chose 6, the same number
of recommended items in the user interface.

5.2. Execution system-centric study

Algorithms

For this experiment we had the advantage to evaluate many algorithms at a low cost.
The algorithms evaluated offline were the following:

• Random: selects random items from the catalogue.

• Itemavg: the score predicted is the average rating for this item, no matter the user.

• matrix factorization: many approaches are for decomposing the matrix are pos-
sible, we tried two factorizer, stochastic gradient descendent and SVD++. This
approach as many hyperparameter to tune such as the regularization term and the
number of features, this step will be omitted, the result table will contain only the
version that we found having the best results overall.

• item based k nearest neighbour: simple k-Nearest Neighbours methods based
on the similarity between items, we tried this approach for different values of
K(K=5,10,15,20).

• user based k nearest neighbour: simple k-Nearest Neighbours methods based
on the similarity between user, we tried this approach for different values of K (K
= 5, 10, 15, 20).

Dataset

For the offline evaluation we used a data which contains browsing gaming logs(table
Streams) of subscribers of Blacknut, on the Blacknut platform. The clicks were gathered
in recommendation free scenario i.e. users could brows the catalogue but without seeing
any form of recommendation. The dataset contains clicks, valid session of game play

5| Design and Execution of the Studies 30

started ,from the 2021-10-01 to the 2022-03-01, on a total of 601 games. The Cleaned
dataset comes from a polished version of the Original one, on which users with a short
user profile are removed. We decided to remove players with a short user profile, that
didn’t interact a lot with the system, to make the dataset more suitable for our analysis
and have more significant results. We removed players with less than 8 sessions launched.

users session items
Original 85799 1261908 601
Cleaned 11521 958265 601

Table 5.1: Datasets for offline evaluation.

5.2.1. Results

Table 5.2 shows the result of the offline data-centric evaluation, performed with the
methodology previously defined.
As expected, we see that matrix factorization performs better than classical memory-
based approaches based on similarity metrics, while being evaluated with error accuracy
metrics. Surprisingly, itemavg yields good results despite being a very simple method.
Random, is the worst algorithm by far.
In contrast with the results obtained with error accuracy metrics, with classification accu-
racy metrics we obtained a different ranking of the algorithms. In this case memory-based
approaches, in particular Ubknn (K = 15), outperformed the other techniques in terms of
precision. Also in this family of metrics itemavg outperformed personalized algorithms, in
this case the matrix factorization family, historically good in rating prediction task but less
in top-n recommendation task. Again the random algorithm had very low performances,
more than ten times lower than the other approaches.

5| Design and Execution of the Studies 31

(a) Precision (b) Recall

Figure 5.2: Precision and Recall

(a) MAE (b) RMSE

Figure 5.1: MAE and RMSE

5| Design and Execution of the Studies 32

Algorithm RMSE MAE Precision@6 Recall@6
itemavg 3.332666 2.7867982 0.0186041 0.082981
random 5.03120423 4.198393 0.0016289 0.006845

Ubknn(K=5) 4,491834 3,889453 0.0220306 0.0576714
Ubknn(K=10) 4,480345 3,889453 0.0231306 0.0526012
Ubknn(K=15) 4,481847 3,889453 0.0242071 0.0516776
Ubknn(K=20) 4,616328 3,889453 0.0218610 0.0524798
ibknn(K=5) 4.1717397 3.250826 0.0193229 0.066696
ibknn(K=10) 4.036845 3.250826 0.0190656 0.064250
ibknn(K=15) 4.057676 3.250826 0.0183627 0.060656
ibknn(K=20) 4.054671 3.250826 0.0183015 0.060248

SGD 2.967335 2.3054353 0.013425 0.0595010
SVD++ 3.0504135 2.2296327 0.014550 0.0572450

Table 5.2: Result offline evaluation.

5.3. User-centric

The goal of this study is to analyze the impact of a recommendation algorithm on real
users of Blacknut by monitoring their behaviour, trough analysing system logs.

5.3.1. Procedure

For doing so, we aimed to perform an A/B test. Using the functionality implemented
in the system, the researchers can specify the variants of the recommendation algorithm
that they would like to test. The test participants are all the subscribers of Blacknut,
i.e. the experimental units. All the participants gathered are then randomly divided into
groups, and each group represents a particular version of a recommendation algorithm,
an experimental condition. The participants are then kept consistent with the assignment
of the recommendation algorithm for the all duration of the experiment, to experience
the recommendations generated by the version they were assigned to. In our specif case,
participants would enter the system and be exposed to the recommendations of an algo-
rithm without knowing to which algorithm they were set. It’s important to underline that
participants could continue to browse the catalogue and were not restricted to choosing
only from the recommendation list.
It’s essential to agree upon an overall evaluation criterion to have some dependent vari-
ables to compare the performance of the algorithms and to state if one algorithm outper-
forms another. By reviewing the literature on this field [5, 19] and talking to the employees
of Blacknut, more experts on what can be a good indicator that the game recommended
was a good recommendation. The final answer was that the best way to measure that

5| Design and Execution of the Studies 33

is by looking at the revenues and whether the participants renew their subscription or
not. Unfortunately, we could not determine this aspect directly. Thus we defined some
objective metrics, objectively measurable attributes of the decision process and outcome,
that are indirect measurements. Still, we believe they are coherent with our goal and
make a good approximation of the recommendation effects, and they will be defined in
section.
Regarding the duration of the experiment, it is not possible to decide that a priori. How-
ever, ideally, the experiment should stop when some statistically significant results are
reached, not before, without damaging the company’s interests because giving low-quality
recommendations can be detrimental.

5.3.2. Participants

The participants of the experiments are Blacknut’s subscribers paying the monthly sub-
scription, unaware they are taking part in an experiment, and they are assigned to a
different algorithm; this is done to remove the possibility of being biased. For privacy
reasons, we do not have any information regarding the gender, age and country of the
users. The only distinction between users that we made is about their seniority in the
system; we divided the users between:

• Old users: users that took part in the experiment and already belonged to the
system before the experiment started; in other words, they already had some user
profile.

• New users: it is the second category that we took under consideration, participants
that subscribed to Blacknut after the beginning of the experiment and still interacted
with the recommender system and eventually built their user profile during the
experiment.

5.3.3. Online metrics

We grouped the metrics in three categories based on relevance, novelty and user be-
haviour. The goal is to have some dependent variables to compare the performance of the
algorithms. The metrics are objective values based on the information contained in the
table Streams1

1The table containing all the interactions.

5| Design and Execution of the Studies 34

Relevance

Relevance is the ability of recommending items that very likely the user will appreciate.
The following metrics aim to measure the relevance of a recommendation.:

• Hit rate
It measures the ratio between the number of session started from a recommendation
over the total number of session launched. It is defined as follow:

hit rate =
1

|D|
∑
∀i∈D

gi
si

(5.1)

where i belongs to the set of days of the experiment D. gi is the number of session
started from a recommendation during the day i of the experiment and si is the
total number of session launched during the day i of the experiment.

• Click trough rate
It is the ratio of games launched from a recommendation over the number of games
recommended that day. It is defined as follow:

ctr =
∑
∀i∈D

∑
∀u∈U

ti,u
|R|

(5.2)

where i belongs to the set of days of the experiment D and u belong to U the set of
players connected that day. ti,u is the number of games launched by player u in day
i that were recommended and finally R in the set of games recommended that day.

• Long ctr
It’s a variant of the previous metric but in this case it measure not only if a games
was played in the day i but also in the following n days.

long ctr =
∑
∀i∈D

∑
∀u∈U

ki,u
R|

(5.3)

• Coming back
Again the idea is to measure not only if an item was clicked but also if the user
liked the recommendation; if a user comes back to play on a different day, he likely
enjoyed playing the recommended game. This metric is defined as the ratio of games
that the user played the day of the recommendation and that he came back to play

5| Design and Execution of the Studies 35

the following n days over the total number of hits on that day.

coming back =
∑
∀i∈D

ci
hi

(5.4)

where i belongs to the set of days of the experiment D, ci is the number of session
started from a recommendation in the day i that led the user playing again that
game in the following n days si is the total number of hit of the day i.

Novelty

Novelty is the ability of recommending items unknown to the user. This a difficult to
measure without asking directly to a user if a recommended item is actually unknown to
him, therefore we made the assumption that if the user has never played a game before,
he probably doesn’t know that game. The following metrics aim to measure the novelty
of the recommendation:

• Unique hit This is the ratio between the number of games launched after a rec-
ommendation of games recommended that the user has never played before over
the number of the total number of games launched after a recommendation. It is
defined as follows:

unique hit =
∑
∀i∈D

li
pi

(5.5)

where i belongs to the set of days of the experiment D. li is the number of session
started from a recommendation in the day i that the user has never played before
pi is the total number of hit of the day i.

• Novelty 30 This is the ratio between the number of games launched after a recom-
mendation of games recommended that doesn’t belong to the top-30 most popular
game over the number of the total number of games launched after a recommenda-
tion. It is defined as follows:

novelty-30 =
∑
∀i∈D

fi
pi

(5.6)

where i belongs to the set of days of the experiment D. fi is the number of session
started from a recommendation in the day i that doesn’t belong to the top-30 most
popular games pi is the total number of hit of the day i.

5| Design and Execution of the Studies 36

User behaviour

This group of metrics is not strictly on whether a user clicks or not on a recommendation,
but it measures more the impact of the system on the user’s behaviour. This allows us to
compare different periods, including time frames free of recommendations. For example,
if we want to measure the impact of deployment of the recommender systems, we could
compute these metrics in two distinct time frames, one before the deployment and the
second after the deployment. The following metrics aim to measure the impact of the
Recommender System on the user behaviour:

• Session length It is the average duration of all the session launched by the users.

SessionLength =

∑
∀s∈S durations

S
(5.7)

Where s belongs to set of session launched during the duration of the experiment
and durations is the duration of the session launched.

• Different games It is the average number of different games played by the users
during a specific time frame.

DifferentGames =
∑

∀u∈U du

U
(5.8)

where U is the set of users participating at the experiment, and du is the number of
different games played during the duration of the experiment.

• Number of streams It is the average number of different games played by the
users during a specific time frame.

NumberOfStreams =
∑

∀u∈U nu

U
(5.9)

where U is the set of users participating at the experiment, and nu is the number
of streams launched by the user u during the duration of the experiment.

5.4. Execution system-centric study

User-centric evaluation allows us to compare the perceived quality of recommendations in
the different experimental conditions. In the previous sections, we defined the framework
used for the experiment. Now, we give the details of the actual experiment and its results.

5| Design and Execution of the Studies 37

Experimental conditions

The experiment took place from 2022-03-09 to 2022-05-19. In total of 8348 participants,
5892 were classified as old users; the rest of the participants, 2456 users, were classified
as new users (Subsection 5.3.2) were gathered, and 62610 sessions2 were launched during
this experimental period. The algorithms selected for the user-centric evaluation were
three, so it was an A/B/C test:

• random: a non-personalized algorithm that selects random items to recommend
from the catalogue.

• itemavg: a non-personalized algorithm that recommends the most rated items in
the catalogue.

• matrix factorization: a personalized algorithm, we chose the SVD++ version for
this experiment.

In total, we had nine experimental conditions3, each algorithm evaluated for old users,
new users and global that contains both categories. The Table 5.3 below summarizes the
number of users participating in each experimental condition.

random-
old

random-
new

random-
global

itemavg-
old

itemavg-
new

itemavg-
global

SVD++-
old

SVD++-
new

SVD++-
global

Users 1819 843 2662 2100 790 2890 1973 823 2796
Sessions 12113 8407 20520 14223 8012 22235 11942 7913 19855

Table 5.3: Experimental conditions.

Figure 5.3: A/B/C test.

2A session is a game played by a user with its duration
3One of the possible conditions of the experiment

5| Design and Execution of the Studies 38

5.4.1. Results

We performed ANOVA over the nine experimental conditions, which depends on the type
of algorithm and the seniority of the user in the system. ANOVA test confirmed that the
results are statistically significant, returning a p-value < 0.05 on the measured dependent
variables. From the metrics we previously defined, we now only give the results of the
ones related to the relevance quality indicator. We limit the results to relevance because
the metrics we defined for the Novelty section gave us trivial results for the algorithms
we tested, such as random and itemavg. Also, the metrics regarding the user behaviour
didn’t lead to any significant results
The results show that for the objective metrics we measured (Figures 5.4, 5.5, 5.6, 5.7),
we obtained an identical pattern. Itemavg, a non-personalized algorithm that out-
performed the matrix factorization algorithm for any group of users. However,
matrix factorization outperformed the random algorithms in any category; this shows that
tailored recommendations still impact the user’s choice. It’s interesting to remark, but not
surprisingly, that new users interacted more with the system than old users, who probably
need fewer recommendations since they have a better knowledge of the catalogue. And
the itemavg algorithm had a higher difference in performance in this category than the
other categories (old users and global) compared to the matrix factorization, which needs
a more extended user profile to perform better.

5| Design and Execution of the Studies 39

Figure 5.4: Hit-rate.

Figure 5.5: Click trough rate.

5| Design and Execution of the Studies 40

Figure 5.6: Long click trough rate (n=5).

Figure 5.7: Comingback.

5| Design and Execution of the Studies 41

5.5. Limitations

Despite the statistical component that goes into their design and analysis, interpreting
A/B tests remains partly art [16]. First, the measurement to approximate user engage-
ment was designed by us to the best of our knowledge. Still, we couldn’t find in the
literature similar experiments in our same domain to compare with. Another possible
limitation is the sample size; again, even if the experiment reached significant statistical
results, we had a smaller sample size compared to other A/B tests in the Recommender
Systems field [14, 16, 28]. Also, the catalogue size (500 items) can be considered under-
sized for a personalized algorithm. Finally, another significant limitation is that A/B test
is strongly related to the user interface; we couldn’t monitor where the user clicked but
just if a game was launched.

42

6| Conclusions and future

developments

We have presented the experimental results of the system-centric and user-centric eval-
uation of the system in the different nine experimental conditions. The main research
question in this study is: In a video game platform, how is the online performance of
the recommender systems related to the performance of such systems measured in terms
of their accuracy? Based on the evaluation outcomes of the two studies, we can claim
that accuracy error metrics do not confirm the results obtained in the user-centric study.
In fact, there are inconsistencies between the results obtained offline and the actual per-
formance of the algorithms in the experiments. However, the previous result it’s not
surprising since it was already established that error metrics are not a good predictor in
top-n recommendation task [4]. However, the ranking obtained during the system-centric
evaluation with classification accuracy metrics respects the results obtained during the
online phase. Hence the offline experiments indicate that precision and recall can indicate
the quality of the recommendations and can be used as a good tool to select suitable
candidates for deployment.

Despite the limitations, our work extends the dataset of studies regarding the evaluation
of recommender systems. In particular, the relationship between system-centric and user-
centric evaluation. In addition, according to our knowledge, we couldn’t find any work on
video game recommendations. Therefore this work can give hints on designing systems in
this domain. Furthermore, the information gathered can be helpful in other environments
with the right abstraction of the product’s characteristics. Possible development of this
project can be not to limit ourselves to accuracy metrics but to try out metrics that go
beyond accuracy, as the current research trend in this field is trying to do [20].

43

Bibliography

[1] Analysis of Variance (ANOVA). In Encyclopedia of Measurement and Statistics.
Sage Publications, Inc., 2455 Teller Road, Thousand Oaks California 91320 United
States of America, 2007. ISBN 978-1-4129-1611-0 978-1-4129-5264-4. doi:
10.4135/9781412952644.n19. URL https://methods.sagepub.com/reference/

encyclopedia-of-measurement-and-statistics/n19.xml.

[2] J. Beel, B. Gipp, S. Langer, and C. Breitinger. Research-paper recommender systems:
a literature survey. International Journal on Digital Libraries, 17(4):305–338, Nov.
2016. ISSN 1432-1300. doi: 10.1007/s00799-015-0156-0. URL https://doi.org/

10.1007/s00799-015-0156-0.

[3] J. Bennett and S. Lanning. The Netflix Prize. undefined, 2007. URL https:

//www.semanticscholar.org/paper/The-Netflix-Prize-Bennett-Lanning/

31af4b8793e93fd35e89569ccd663ae8777f0072.

[4] E. Campochiaro, R. Casatta, P. Cremonesi, and R. Turrin. Do Metrics Make
Recommender Algorithms? In 2009 International Conference on Advanced Infor-
mation Networking and Applications Workshops, pages 648–653, May 2009. doi:
10.1109/WAINA.2009.127.

[5] H.-H. Chen, C.-A. Chung, H.-C. Huang, and W. Tsui. Common Pitfalls in Training
and Evaluating Recommender Systems. ACM SIGKDD Explorations Newsletter,
19(1):37–45, Sept. 2017. ISSN 1931-0145. doi: 10.1145/3137597.3137601. URL
https://doi.org/10.1145/3137597.3137601.

[6] M. Chen and P. Liu. Performance Evaluation of Recommender Systems. 2017. doi:
10.23940/IJPE.17.08.P7.12461256.

[7] P. Cremonesi, R. Turrin, E. Lentini, and M. Matteucci. An Evaluation Methodology
for Collaborative Recommender Systems. In 2008 International Conference on Au-
tomated Solutions for Cross Media Content and Multi-Channel Distribution, pages
224–231, Nov. 2008. doi: 10.1109/AXMEDIS.2008.13.

[8] P. Cremonesi, F. Garzotto, and R. Turrin. User-Centric vs. System-Centric Evalua-

https://methods.sagepub.com/reference/encyclopedia-of-measurement-and-statistics/n19.xml
https://methods.sagepub.com/reference/encyclopedia-of-measurement-and-statistics/n19.xml
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1007/s00799-015-0156-0
https://www.semanticscholar.org/paper/The-Netflix-Prize-Bennett-Lanning/31af4b8793e93fd35e89569ccd663ae8777f0072
https://www.semanticscholar.org/paper/The-Netflix-Prize-Bennett-Lanning/31af4b8793e93fd35e89569ccd663ae8777f0072
https://www.semanticscholar.org/paper/The-Netflix-Prize-Bennett-Lanning/31af4b8793e93fd35e89569ccd663ae8777f0072
https://doi.org/10.1145/3137597.3137601

| Bibliography 44

tion of Recommender Systems. In P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson,
and M. Winckler, editors, Human-Computer Interaction – INTERACT 2013, Lec-
ture Notes in Computer Science, pages 334–351, Berlin, Heidelberg, 2013. Springer.
ISBN 978-3-642-40477-1. doi: 10.1007/978-3-642-40477-1_21.

[9] M. Dias, D. Locher, M. Li, W. El-Deredy, and P. Lisboa. The value of personalised
recommender systems to e-business. pages 291–294, Jan. 2008. doi: 10.1145/1454008.
1454054.

[10] M. Esteller-Cucala, V. Fernandez, and D. Villuendas. Evaluating Personalization:
The AB Testing Pitfalls Companies Might Not Be Aware of—A Spotlight on the
Automotive Sector Websites. Frontiers in Artificial Intelligence, 3:20, 2020. ISSN
2624-8212. doi: 10.3389/frai.2020.00020. URL https://www.frontiersin.org/

article/10.3389/frai.2020.00020.

[11] A. Fabijan, P. Dmitriev, H. Holmstrom Olsson, and J. Bosch. Online Controlled
Experimentation at Scale: An Empirical Survey on the Current State of A/B Test-
ing. In 2018 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 68–72, Aug. 2018. doi: 10.1109/SEAA.2018.00021.

[12] S. Fazeli, H. Drachsler, M. Bitter-Rijpkema, F. Brouns, W. v. d. Vegt, and P. B.
Sloep. User-Centric Evaluation of Recommender Systems in Social Learning Plat-
forms: Accuracy is Just the Tip of the Iceberg. IEEE Transactions on Learning Tech-
nologies, 11(3):294–306, July 2018. ISSN 1939-1382. doi: 10.1109/TLT.2017.2732349.
Conference Name: IEEE Transactions on Learning Technologies.

[13] F. Garcin, C. Dimitrakakis, and B. Faltings. Personalized News Recommenda-
tion with Context Trees. Proceedings of the 7th ACM conference on Recom-
mender systems, pages 105–112, Oct. 2013. doi: 10.1145/2507157.2507166. URL
http://arxiv.org/abs/1303.0665. arXiv: 1303.0665.

[14] F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. Offline
and online evaluation of news recommender systems at swissinfo.ch. In Proceedings of
the 8th ACM Conference on Recommender systems, RecSys ’14, pages 169–176, New
York, NY, USA, Oct. 2014. Association for Computing Machinery. ISBN 978-1-4503-
2668-1. doi: 10.1145/2645710.2645745. URL https://doi.org/10.1145/2645710.

2645745.

[15] A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham, and S. Dollé. Offline A/B Testing
for Recommender Systems. In Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining, WSDM ’18, pages 198–206, New York, NY,

https://www.frontiersin.org/article/10.3389/frai.2020.00020
https://www.frontiersin.org/article/10.3389/frai.2020.00020
http://arxiv.org/abs/1303.0665
https://doi.org/10.1145/2645710.2645745
https://doi.org/10.1145/2645710.2645745

| Bibliography 45

USA, Feb. 2018. Association for Computing Machinery. ISBN 978-1-4503-5581-0. doi:
10.1145/3159652.3159687. URL https://doi.org/10.1145/3159652.3159687.

[16] C. A. Gomez-Uribe and N. Hunt. The Netflix Recommender System: Algorithms,
Business Value, and Innovation. ACM Transactions on Management Information
Systems, 6(4):13:1–13:19, Dec. 2016. ISSN 2158-656X. doi: 10.1145/2843948. URL
https://doi.org/10.1145/2843948.

[17] L. A. Hassanieh, C. A. Jaoudeh, J. B. Abdo, and J. Demerjian. Similarity measures
for collaborative filtering recommender systems. In 2018 IEEE Middle East and
North Africa Communications Conference (MENACOMM), pages 1–5, Apr. 2018.
doi: 10.1109/MENACOMM.2018.8371003.

[18] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating col-
laborative filtering recommender systems. ACM Transactions on Information Sys-
tems, 22(1):5–53, Jan. 2004. ISSN 1046-8188. doi: 10.1145/963770.963772. URL
https://doi.org/10.1145/963770.963772.

[19] D. Jannach and M. Jugovac. Measuring the Business Value of Recommender Sys-
tems. ACM Transactions on Management Information Systems, 10(4):16:1–16:23,
Dec. 2019. ISSN 2158-656X. doi: 10.1145/3370082. URL https://doi.org/10.

1145/3370082.

[20] D. Jannach, P. Pu, F. Ricci, and M. Zanker. Recommender Systems: Past,
Present, Future. AI Magazine, 42(3):3–6, Nov. 2021. ISSN 2371-9621. doi:
10.1609/aimag.v42i3.18139. URL https://ojs.aaai.org/index.php/aimagazine/

article/view/18139. Number: 3.

[21] M. Kaminskas and D. Bridge. Diversity, Serendipity, Novelty, and Coverage: A
Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Sys-
tems. ACM Transactions on Interactive Intelligent Systems, 7(1):2:1–2:42, Dec. 2016.
ISSN 2160-6455. doi: 10.1145/2926720. URL https://doi.org/10.1145/2926720.

[22] R. Kohavi and R. Longbotham. Online Controlled Experiments and A/B Test-
ing. In C. Sammut and G. I. Webb, editors, Encyclopedia of Machine Learning and
Data Mining, pages 922–929. Springer US, Boston, MA, 2017. ISBN 978-1-4899-
7687-1. doi: 10.1007/978-1-4899-7687-1_891. URL https://doi.org/10.1007/

978-1-4899-7687-1_891.

[23] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled exper-
iments on the web: survey and practical guide. Data Mining and Knowledge Dis-

https://doi.org/10.1145/3159652.3159687
https://doi.org/10.1145/2843948
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/3370082
https://doi.org/10.1145/3370082
https://ojs.aaai.org/index.php/aimagazine/article/view/18139
https://ojs.aaai.org/index.php/aimagazine/article/view/18139
https://doi.org/10.1145/2926720
https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1007/978-1-4899-7687-1_891

| Bibliography 46

covery, 18(1):140–181, Feb. 2009. ISSN 1573-756X. doi: 10.1007/s10618-008-0114-1.
URL https://doi.org/10.1007/s10618-008-0114-1.

[24] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Rec-
ommender Systems. Computer, 42(8):30–37, Aug. 2009. ISSN 1558-0814. doi:
10.1109/MC.2009.263. Conference Name: Computer.

[25] M. Ludewig and D. Jannach. User-centric evaluation of session-based recommen-
dations for an automated radio station. In Proceedings of the 13th ACM Confer-
ence on Recommender Systems, RecSys ’19, pages 516–520, New York, NY, USA,
Sept. 2019. Association for Computing Machinery. ISBN 978-1-4503-6243-6. doi:
10.1145/3298689.3347046. URL https://doi.org/10.1145/3298689.3347046.

[26] A. Maksai, F. Garcin, and B. Faltings. Predicting Online Performance of News
Recommender Systems Through Richer Evaluation Metrics. In Proceedings of the
9th ACM Conference on Recommender Systems, RecSys ’15, pages 179–186, New
York, NY, USA, Sept. 2015. Association for Computing Machinery. ISBN 978-1-4503-
3692-5. doi: 10.1145/2792838.2800184. URL https://doi.org/10.1145/2792838.

2800184.

[27] B. Marlin, R. S. Zemel, S. Roweis, and M. Slaney. Collaborative Filtering and
the Missing at Random Assumption. arXiv:1206.5267 [cs, stat], June 2012. URL
http://arxiv.org/abs/1206.5267. arXiv: 1206.5267.

[28] A. Mogenet, T. A. N. Pham, M. Kazama, and J. Kong. Predicting online perfor-
mance of job recommender systems with offline evaluation. In Proceedings of the
13th ACM Conference on Recommender Systems, RecSys ’19, pages 477–480, New
York, NY, USA, Sept. 2019. Association for Computing Machinery. ISBN 978-1-4503-
6243-6. doi: 10.1145/3298689.3347032. URL https://doi.org/10.1145/3298689.

3347032.

[29] X. Ning and G. Karypis. SLIM: Sparse Linear Methods for Top-N Recommender
Systems. In 2011 IEEE 11th International Conference on Data Mining, pages 497–
506, Dec. 2011. doi: 10.1109/ICDM.2011.134. ISSN: 2374-8486.

[30] L. Peska and P. Vojtas. Off-line vs. On-line Evaluation of Recommender Systems
in Small E-commerce. Proceedings of the 31st ACM Conference on Hypertext and
Social Media, pages 291–300, July 2020. doi: 10.1145/3372923.3404781. URL http:

//arxiv.org/abs/1809.03186. arXiv: 1809.03186.

[31] P. Pu, L. Chen, and R. Hu. A user-centric evaluation framework for recommender

https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1145/3298689.3347046
https://doi.org/10.1145/2792838.2800184
https://doi.org/10.1145/2792838.2800184
http://arxiv.org/abs/1206.5267
https://doi.org/10.1145/3298689.3347032
https://doi.org/10.1145/3298689.3347032
http://arxiv.org/abs/1809.03186
http://arxiv.org/abs/1809.03186

6| BIBLIOGRAPHY 47

systems. In Proceedings of the fifth ACM conference on Recommender systems, pages
157–164, 2011.

[32] F. Ricci. Recommender Systems Handbook | SpringerLink. URL https://link.

springer.com/book/10.1007/978-0-387-85820-3.

[33] M. Rossetti, F. Stella, and M. Zanker. Contrasting Offline and Online Results when
Evaluating Recommendation Algorithms. pages 31–34, Sept. 2016. doi: 10.1145/
2959100.2959176.

[34] A. Said and A. Bellogín. Comparative recommender system evaluation: bench-
marking recommendation frameworks. In Proceedings of the 8th ACM Confer-
ence on Recommender systems, RecSys ’14, pages 129–136, New York, NY, USA,
Oct. 2014. Association for Computing Machinery. ISBN 978-1-4503-2668-1. doi:
10.1145/2645710.2645746. URL https://doi.org/10.1145/2645710.2645746.

[35] G. Shani and A. Gunawardana. Evaluating Recommendation Systems. In
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Sys-
tems Handbook, pages 257–297. Springer US, Boston, MA, 2011. ISBN 978-0-387-
85820-3. doi: 10.1007/978-0-387-85820-3_8. URL https://doi.org/10.1007/

978-0-387-85820-3_8.

[36] P. B. Thorat, R. M. Goudar, and S. Barve. Survey on Collaborative Filtering,
Content-based Filtering and Hybrid Recommendation System. International Journal
of Computer Applications, 110(4):31–36, Jan. 2015. URL https://www.ijcaonline.

org/archives/volume110/number4/19308-0760. Publisher: Foundation of Com-
puter Science (FCS).

[37] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang. Solving
the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the
National Academy of Sciences of the United States of America, 107(10):4511–4515,
Mar. 2010. ISSN 1091-6490. doi: 10.1073/pnas.1000488107.

https://link.springer.com/book/10.1007/978-0-387-85820-3
https://link.springer.com/book/10.1007/978-0-387-85820-3
https://doi.org/10.1145/2645710.2645746
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://www.ijcaonline.org/archives/volume110/number4/19308-0760
https://www.ijcaonline.org/archives/volume110/number4/19308-0760

48

List of Figures

2.1 ICM . 4
2.2 URM . 4

4.1 Homepage. 23
4.2 Catalogue. 24
4.3 Controllers. 24
4.4 Games to discover. 25

5.2 Precision and Recall . 31
5.1 MAE and RMSE . 31
5.3 A/B/C test. 37
5.4 Hit-rate. 39
5.5 Click trough rate. 39
5.6 Long click trough rate (n=5). 40
5.7 Comingback. 40

49

List of Tables

3.1 Pros and Cons Offline vs Online . 17
3.2 Comparison of different studies. 21

4.1 Streams. 26
4.2 Streams after a session of gameplay. 26

5.1 Datasets for offline evaluation. 30
5.2 Result offline evaluation. 32
5.3 Experimental conditions. 37

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Contribution and goal
	Outline

	Algorithms
	Recommender Algorithms
	Input of Recommender
	Taxonomy
	Content Based Filtering
	Collaborative filtering
	Matrix factorization
	SLIM

	Evaluation
	System-centric
	Error metrics
	Classification metrics
	Ranking metrics
	Beyond accuracy metrics

	User-centric
	User study
	Participants
	Questionnaires
	A/B testing
	Reaching statistical significance

	Comparison system-centric vs user-centric
	Related works
	Studies

	Instruments
	What is Blacknut?
	Functionalities
	Making Recommendations
	Setting up the A/B test
	User functionalities
	Collect user feedback

	Design and Execution of the Studies
	System-centric
	Methodology
	Dependent variables

	Execution system-centric study
	Results

	User-centric
	Procedure
	Participants
	Online metrics

	Execution system-centric study
	Results

	Limitations

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables

