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Abstract

Unmanned Aerial Vehicles have been among the hottest technology trends
of the last two decades. Their versatility is testified by their widespread
adoption in several different fields. Within a rich research field, this the-
sis presents novel theoretical results and experimental applications of such
technology in the inspection of the built environment. In the first part, the
problem of path planning and coordination for Unmanned Aerial Vehicle
networks is tackled both for tethered and non-tethered vehicles. In the latter
case, several formulations and variations of the Traveling Salesman Prob-
lem exist, but none of them tackles the issue of robustness with respect to
a single point of failure. We therefore offer a multi-agent version of the
Traveling Salesman Problem, also known as Constrained Vehicle Routing
Problem, where the ability of completing the planned mission in case of
failure of one drone is guaranteed theoretically by the addition of suitable
constraints. In the former case, the relatively newer introduction and nar-
rower field of application of systems of tethered drones explains the lack
of suitable path planners in literature. We present a real-time planning al-
gorithm for such a system in an unknown environment, assuming vehicles
are only equipped with 2D LiDARs, and then refine such planner to embed
a Model Predictive Control formulation, endowing safety guarantees. We
furthermore illustrate another planner for a human-collaborative tethered
drone, based on a Riemanniann Motion Policy framework and test it in a
real world spray painting scenario.

In the second part, two case studies on the application of drones to in-
spections are presented. While modal analysis is a known and thoroughly
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tested set of techniques, it is mainly performed through accelerometer mea-
surements or with cameras fixed with respect to the ground. Mounting the
camera on a drone enables it to be positioned wherever it is most conve-
nient, at the cost of introducing noise in the measurement. We present a
methodology for performing vision-based modal analysis by synchronizing
multiple footage sources, from cameras mounted on different drones. This
enables the simultaneous measurement of entire sections of a structure. We
also verify that the proposed measurement technique is accurate with and
without markers present on the structure, provided that an adequate trade-
off between camera resolution, oscillation amplitude and distance from the
structure is kept. Finally, we present a study of the feasibility of automating
the pipeline for energy efficiency assessment of a building, from the data
collection planning to the data analysis phase. A drone with a dual (color
and infrared) sensor is employed to survey a real-world building by taking
pictures. These are then combined to obtain a 3D geometrical model of
the appearance of the target building and to map onto it the energy-related
information gathered through the infrared images, making the comparison
between the building model and the measurements easy and facilitating the
tracking of the evolution of its health.

II



Sommario

I velivoli senza pilota sono tra le tendenze più popolari nell’ultimo venten-
nio. La loro versatilità è testimoniata dal loro impiego in diversi ambiti.
In un ambito di ricerca affermato e avanzato, questa tesi presenta innova-
tivi risultati teorici e applicazioni sperimentali di questa tecnologia, appli-
cata all’ispezione dell’ambiente costruito. Nella prima parte, si affronta il
problema della pianificazione di percorso e di missione per una rete di ve-
livoli, sia connessi da cavi sia non. Nel secondo caso, esistono già varie
formulazioni del Problema del Commesso Viaggiatore, ma nessuna di esse
tratta di robustezza, intesa come resilienza alla possibilità che uno dei droni
vada improvvisamente fuori uso durante la missione. Pertanto, si offre una
formulazione multi-agente del problema, anche noto come Constrained Ve-
hicle Routing Problem, in cui la capacità di portare a termine la missione
a fronte di un guasto è garantita teoricamente attraverso opportuni vincoli
al problema di ottimizzazione. Nel primo caso, l’introduzione recente e
l’applicazione ridotta dei sistemi di droni connessi via cavo è una concausa
della mancanza in letteratura di metodi per la pianificazione di percorso per
tali sistemi. Si presenta quindi un algoritmo per la pianificazione in tempo
reale in ambiente ignoto, supponendo che i velivoli siano equipaggiati con
sensori LiDAR bi-dimensionali, per poi raffinare l’approccio formulandolo
come un problema di Model Predictive Control, che aggiunge garanzie di
sicurezza. Si illustra inoltre un altro approccio alla pianificazione per un
singolo drone cablato nel contesto di una collaborazione con un operatore
umano. L’approccio è poi testato in un caso realistico.

Nella seconda parte, si presentano due casi studio dell’applicazione di
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tali velivoli all’ispezione di edifici. L’analisi modale è una tecnica nota e
approfondita, che però viene normalmente applicata sulla base di misure
con accelerometri, oppure con videocamere fisse al terreno. Installare una
videocamera su un drone consente di posizionarla idealmente, senza vincoli
spaziali, seppure al costo di introdurre del rumore nella misura. Si presenta
un metodo per applicare l’analisi modale basata su video sincronizzando
diverse fonti, da camere montate su droni. Ciò facilita la misurazione si-
multanea di sezioni intere della struttura. Si verifica che la tecnica proposta
produce misure accurate sia con marker sia senza. Infine, si illustra uno stu-
dio di fattibilità dell’automazione della procedura di verifica dell’efficienza
energetica di un edificio, dalla fase di raccolta dei dati a quella di anal-
isi. Si impiega un drone con doppio sensore (camera a colori e camera a
infrarossi), combinando le fotografie ottenute per ottenere una rappresen-
tazione 3D dell’edificio e mappare su di esso i difetti identificati attraverso
le fotografie nello spettro infrarosso. Ciò facilita il confronto tra le mis-
urazioni effettuate ed un modello esistente dell’edificio, aiutando a tracciare
il suo stato di salute nel tempo.
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CHAPTER1
Introduction

1.1 Unmanned Aerial Vehicles in the Inspection Industry

Ever since the origin of Unmanned Aerial Vehicles (UAVs), commonly
identified in an 1849 Austrian military project [1], humans have studied
and developed them to achieve diverse objectives. Because it is a known
and apparent fact that destroying is easier than building, it is easier and
faster to develop technologies that help us do the former than the latter.
Many technologies we use today were born for military applications: our
personal computers descend from the Turing machine, which the famous
mathematician Alan Turing developed for the British Government Code
and Cypher School in a successful effort to crack the German Enigma ci-
pher code [2]. UAVs are no exception: they were also initially mainly
designed for wartime use, consisting of dropping explosives and support-
ing reconnaissance efforts [1], from their inception in the late eighteen-
hundreds to their deployment on today’s battlegrounds: many people still
associate the word "drone" to unmanned and remotely controlled military
planes famously adopted, for example, by the US army in the Middle East.

Nevertheless, these technologies have been successfully employed in the
civil sector. Development of ever smaller and cheaper UAV prototypes in-
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Chapter 1. Introduction

tensified around the beginning of the last century, pushed by companies like
Parrot and DJI [3, 4]. This opened the door to the applications of drones,
defined here as small UAVs for civil use, in numerous sectors, including
parcel delivery [5], precision agriculture [6,7], forestry [8], firefighting [9],
entertainment [10], architecture and civil engineering [11–15] and, above
all, visual inspection of the built environment [1, 16–18]. This flourishing
of applications was made possible by technological advancements that ren-
dered rotary-wing drones stable enough to mount almost any lightweight
sensor on them (infrared, LiDAR, RGB and thermal cameras, contact sen-
sors, sonar, ...), and their batteries capable of supporting them for several
minutes in flight. In the world of structural inspection, UAVs are often em-
ployed as flying cameras, enabling a single human operator to quickly as-
sess, for example, the integrity of a roof or solar panel field, or the progress
of a construction site. While human-piloted drones can make these kinds of
inspections significantly faster and easier to perform, many research groups
worldwide are pushing the limits of the technology to allow these aircraft
to perform the same tasks autonomously. Many believe UAVs will become
fundamental tools for monitoring and inspection tasks because they can
revolutionize how such tasks are carried out, making surveys safer, cheaper,
more repeatable, and more cost-effective. These improvements are gener-
ally achieved by reducing the reliance on trained human personnel (and
therefore relaxing some of the necessary safety constraints) and automati-
cally performing both data gathering and data analysis, minimizing human
arbitrariness and bias. From a research perspective, this is today a very
active field where some significant results have been achieved, like surface
reconstruction and analysis [12] and the 3D modeling of both geometrical
and energy aspects [13, 19]. In contrast, others are still sought after, such
as a drone-enabled method for vision-based Structural Health Monitoring
(SHM) of a real-world scale building [14,20]. Presenting new contributions
to the field is one of the aims of the present thesis. Furthermore, it hopes
to illustrate the potential advantages of employing tethered, autonomous
multi-copter networks, especially for recurrent inspections. In fact, while
autonomous drones already constitute a significant step forward by reduc-
ing the cost of inspections, their tethered counterparts present even more
features. Not only can they fly for virtually unlimited time, completely re-
moving one of the main limits of drones, but the physical connection to a
ground station also makes them inherently safer, by constraining the area
where they could potentially fly or fall in the event of an accident. For
example, a fixed tethered drone system could be installed on a bridge af-
ter the construction is over, and enable autonomous, repeatable and remote
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sensing, while at the same time providing a real-time coverage of any unex-
pected behavior of or on the structure. A similar result can be obtained with
portable systems: as long as there is electrical power available the system
can operate, and transport is a small issue due to such systems weighing in
the tens of kilograms. The inherent safety advantage is already recognized
in the legal framework in many regions, which classify drones connected
through any kind of physical harness as kites, a category of flying objects
with significantly lower safety requirements.

It should finally be noted that the development and deployment of fully
autonomous drones in general, while still technically challenging, is also
slowed down by the legal framework in which research takes place. For eth-
ical and legal reasons, in most countries, while a drone flies autonomously,
one human pilot per vehicle must be present, in the visual line of sight of the
aircraft and ready to intervene whenever necessary. This is equivalent to a
human pilot being present in a self-driving car. While these laws introduce
a high cost, especially in the operation of multi-agent autonomous systems,
they are necessary to assign responsibility in case the vehicles cause some
damage. Therefore, for the sake of safety, experimental activities mainly
take place in private settings.

1.2 Contributions

This thesis is the result of an interdisciplinary PhD project, studying both
the high level control of drone formations and their application to the condi-
tion monitoring of the built environment. As such, it contains contributions
spanning the two fields of research. Throughout this work, the following
contributions will be presented in detail:

• A graph-based mission planner for a set of non-tethered UAVs.
The planner aims to assign inspection tasks to the available drones
minimizing either mission time or travelled distance. It is formulated
as a mixed integer optimization problem, and it is endowed with a
set of constraints that theoretically ensure the mission can be carried
out to completion, even if one of the drones fails, by distributing his
workload across others.

• A LiDAR-based motion planner for a network of tethered drones,
capable of guiding the leader drone of the formation to an arbitrarily
specified position in 3D space within a previously unknown environ-
ment. This is achieved by only relying on real-time sensor readings.
The problem is formulated as a convex optimization one.
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Chapter 1. Introduction

• An extension of the previous planner, formulated through Model
Predictive Control (MPC). This new formulation increases the safety
of the planned trajectories by under-approximating free space with a
convex polytope. An optimal configuration planner is also presented,
exploiting known information about the environment to obtain ideal
configurations, which the system then tracks.

• A reactive motion planning approach for a tethered drone based
on RMP (Riemanniann Motion Policy). While this planner was de-
veloped and tested specifically for collaborating with a human in a
spray-painting task, it is applicable to tethered drone networks in gen-
eral.

• A study of a pipeline for autonomous energy efficiency assessment,
combining existing techniques for automating the whole process, from
data gathering to the comparison of the measurements to an existing
model of the building to highlight differences potentially indicating
defects or damage.

• A drone-enabled, vision-based modal analysis technique based on
footage collected by multiple drones and synchronized a posteriori.
The ability to stitch together measurements from different sources en-
ables the recording of a whole structure or some significant sections
of it at once. This, in turn, alleviates the need for constantly exciting
the target structure for a prolonged amount of time.

• An algorithm for autonomous mapping for a single non-tethered
drone, through which the vehicle decides on its own when enough
data has been collected in the current area and where to move next to
minimize exploration time.

1.3 Thesis Structure

The thesis is divided into two parts. The first is centered around high level
control and planning for drone networks, while the second focuses on their
applications for inspections. In particular, Chapter 2 contains a descrip-
tion of the graph-based planner for non-tethered drones, while all planners
for their tethered counterparts are discussed in Chapter 3. Within part II,
the vision-based modal analysis approach is presented in Chapter 4 and
Chapter 5 contains the evaluation of the pipeline for autonomous energy
assessment.
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1.3. Thesis Structure

Note that some of the contributions presented here have already been
published:

• Preliminary results regarding the multi-agent planner in Chapter 2
have been published in [21] and [22].

• The first LiDAR-based planner presented in Chapter 3 has been pub-
lished in [23], while its MPC extension has been accepted for publi-
cation at the 2022 Conference and Decision and Control.

• The vision-based modal analysis pipeline described in Chapter 4 has
been published in [20]
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Part I

Path Planning and Coordination
for UAV Networks
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CHAPTER2
Non-Tethered Multicopter Networks

UAVs are precious tools for infrastructure inspection due to their versatil-
ity and agility. One of their main limitations, especially for rotary wing
drones, is the maximum flight time allowed by the onboard battery. While
it depends on various factors such as vehicle weight and the mounted sen-
sors’ power consumption, the maximum flight time is usually thirty to forty
minutes with current technology. This can make inspection times on a large
structure very long. One way to tackle this is to employ multiple units to
decrease the mission duration and avoid extra travel to change batteries.
The deployment of multiple vehicles makes mission planning more com-
plex; moreover, a fault-tolerant planner resilient at least to a single fail-
ure is desirable. A new algorithm is proposed here to solve these prob-
lems, which, through hierarchical decomposition and numerical optimiza-
tion, deals with:

1. the automated generation of points of interest given a digital model of
the building/structure;

2. the generation of trajectories for each drone;

3. the guarantee of mission robustness against a single fault.
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Chapter 2. Non-Tethered Multicopter Networks

Simulation in two separate realistic scenarios shows that the approach de-
livers close-to-optimal solutions with short computational time, thus being
suitable for real-world operation.

2.1 A fault-tolerant automatic mission planner for a fleet of
aerial vehicles

2.1.1 Motivation

As inspection tools, drones empower the latest industry trends of higher
automation in construction and civil engineering via big data collection
and analysis. Automating the data-gathering pipeline allows stakeholders
to exploit them in every phase of a building’s life cycle, storing correct
and updated information in its digital twin, a vital tool of the Building In-
formation Modeling (BIM) framework. Simultaneously deploying several
drones speeds up operations significantly at the cost of more complex mis-
sion planning and control requirements. A mission planning algorithm is
introduced to divide a set of tasks and assign them to available drones to
carry out a data-gathering mission on a given building. While we focus on
the particular case of UAVs in infrastructural inspection, the graph-based
approach can be generalized to a broad class of mission planning problems.

2.1.2 Related work

Within the maintenance and inspection field, drones are mainly used to
gather pictures of buildings and construction sites, especially from oth-
erwise hard-to-reach places, as they extend the range of a human opera-
tor [24, 25]. Such images are then manually or automatically analyzed to
track construction progress or detect surface defects, including cracks in
concrete and road pavement, spalling, exposed rebars, loosened bolts, and
surface moisture [26–28]. Regardless of their aim, most approaches rely
either fully or partially on human intervention for both the data-gathering
and the data-analysis stages. Reaching full autonomy would be a significant
step forward, enabling quicker, more repeatable, and cheaper inspections.
This can be achieved by automating two main steps.

The first one is the automatic derivation, from a building model to be
inspected and for a specific type of task, of the Points of Interest (POI) the
aircraft must visit. Although an approach to multi-agent coordination is to
plan entire trajectories and constrain those to avoid collisions [29, 30], for
inspections in particular, it is more common to develop rules and then auto-
matic procedures that generate suitably distributed POI [18] in space. For
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2.1. A fault-tolerant automatic mission planner for a fleet of aerial vehicles

example, sub-modular path planning techniques have been proposed [31]
to address the 3D coverage problem. The authors of [32] and [33] devel-
oped iterative approaches to solve it. They aim to maximize uniformity
of coverage of the structure and minimize the computational cost to gen-
erate a trajectory for the UAV while also aiming at ideal camera orienta-
tion. Another approach [17] is to exploit Signal Temporal Logic [34], a
formal language designed to concisely specify a mission task by express-
ing fundamental behaviors and time constraints. This also allows one to
describe more complex tasks than a sequence of POI. If the aim is to em-
ploy the gathered images in a Structure from Motion (SfM) algorithm, such
as in [35], points are distributed in space so as to introduce some overlap
between consecutive pictures.

After distributing the POI, the second step is to compute an optimal
route across them according to a chosen optimality criterion, such as the
total mission time. In the case of multiple drones, a path for each one
shall be generated, avoiding obstacles and collisions and optimally split-
ting the overall tasks among the units. This problem is usually formulated
and solved via graph search methods, exploiting the Traveling Salesman
Problem (TSP) or one of its variations [36]. The graph nodes are the POI,
and its edges represent all feasible (i.e., obstacle-free) routes between them,
together with their lengths or costs. The solution returned is the wanted list
of nodes, i.e., the traversal order. The abstract nature of graphs and their
considerable descriptive capabilities make them very powerful and versatile
tools [37]. For example, approaches that account for communication con-
straints [38] and exclusion zones [39] have been proposed. Such abstraction
expands the applicability of the proposed path planning method to multi-
agent systems in general, including ground and naval vehicles. However,
in graph-based formulations, the complexity of path planning increases ex-
ponentially with both the number of POI and the number of drones due to
the exponential growth of both the search space and the number of Sub-
tour Elimination Constraints (SEC) [36]. Heuristics are thus often intro-
duced, even for relatively small instances, to obtain a feasible solution in
a reasonable amount of time, at the cost of sub-optimality. In some cases,
lower bounds on the quality of a solution with respect to the optimal one
can be found [40]. Generalizations of the TSP include its multi-agent ver-
sion (mTSP) and the Constrained Vehicle Routing Problem (CVRP) [41],
where multiple vehicles are considered, each with its maximum capacity.
Each node of the graph represents a customer with different capacity de-
mand. In this framework, developed in the ’60s within the petrol delivery
industry, capacity refers to the quantity of a particular good the customers
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Chapter 2. Non-Tethered Multicopter Networks

require, which each vehicle can transport in a limited amount. The aim is to
maximize the customer demand that is met compatibly with capacity limits
related to the vehicles. Costs are simultaneously minimized, related to the
number of vehicles used in the solution, the traveled distance (due to fuel
and vehicle amortization), and travel time (driver payrolls).

As the probability of at least one drone failing, for example, due to bat-
tery aging and consequent reduced stored energy, increases with the num-
ber of deployed UAVs, it is wise to address this issue at the mission plan-
ning level. The concepts of robustness and robust solutions of the CVRP
are present in literature, but they typically concern uncertainty on various
parameters, such as travel time [42] customer demand [43], and service
times [44], rather than the fault of one unit. Indeed, the requirement of
robustness to a single point of failure has never been addressed in the for-
mulation of a CVRP.

Addressed challenges and contributions

As summarized, maximizing drone autonomy in monitoring tasks comes
with many challenges. In this work, the following are tackled:

• the automation of the POI generation procedure for a specific inspec-
tion type, establishing where exactly the UAVs should go to perform
a certain task;

• the coordinated path planning of multiple drones with a shared objec-
tive;

• the minimization of metrics describing a mission, namely total inspec-
tion time and total traveled distance;

• the guarantee of robustness against a single point of failure, thus secur-
ing mission accomplishment even if one drone is not able to complete
its task, with the possibility of re-planning it in real-time;

• the generation of trajectories that prevent collisions with the building
under inspection.

We present an integrated, systematic approach to deal with these aspects
and provide a ready-to-use tool. In doing so, we build on our prelimi-
nary work [22] and add as original contributions the theoretical proof of
the robustness of a solution concerning the failure of one drone, a thor-
ough analysis of computational times with various algorithm settings, and
the application of the approach to the models of two real-world buildings.

12



2.1. A fault-tolerant automatic mission planner for a fleet of aerial vehicles

Our method uses a geometric approach to generate the POI and then a hi-
erarchical decomposition of the vehicle routing problem [45], obtained via
clustering. For each cluster of POI, we solve a TSP, while a CVRP is
solved to plan the paths among clusters. We present simulated results of
the mission planning approach on the models of one of the buildings at the
University of California, Los Angeles campus, and of a radio and meteo-
rological research station in Spino d’Adda, Cremona, Italy (see figure 2.1).
The obtained performance indicates that the approach can plan the mission
in a short time, also for rather large buildings and several drones. A MAT-
LAB library containing all the described algorithms was developed, freely
available at [46]. We assume that each drone is equipped with low-level at-
titude and altitude controllers, and it accepts and tracks position references.
Several solutions exist in the literature that ensure accurate position track-
ing, and collision avoidance [47]. Our experiments show that models of
controlled drones are reliable enough to be adopted in complex simulations
(see Fig. 2.2).

In Section 2.1.3 the main elements of the considered problem are for-
malized, and in Section 2.1.4 a solution approach and its guaranteed fault-
tolerance property are presented. Section 2.1.5 deals with implementation
aspects, while results are described and commented in Section 2.1.6. Sec-
tion 2.1.7 contains some concluding remarks.

2.1.3 Problem Formulation

An instance of the problem to be solved is defined by a 3D mesh model of
the considered building(s) or infrastructure, and a set of criteria that the POI
must meet to accomplish the task at hand, also considering the employed
data-gathering devices. Furthermore, a number M ∈ N of drones available
for the mission is also given. The goal is to generate the set of POI:

P = {p1, . . . , pn} ⊂ R3, (2.1)

where pi is a single POI in the three-dimensional space, and to compute
ordered sub-sets Sm, m = 1, . . .M of P and assign them to the vehicles,
such that each Sm represents a sequence of POI:

Sm = {pim(1), . . . , pim(nm)}
t⋃

m=1

Sm = P
Sℓ ∩ Sm = ∅, ∀ℓ ∈ {1,M}, ∀m ∈ {1,M} : ℓ ̸= m.

(2.2)

In (2.2), pim(j) is the j th POI, with index i = im(j), of path Sm, whose
total length is nm. In this generic form, a solution could describe various
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Chapter 2. Non-Tethered Multicopter Networks

Figure 2.1: Buildings used in our tests. From the top: University of California, Los
Angeles building, and the meteorological station in Spino d’Adda, Cremona, Italy.

cooperative path planning or vehicle routing problems, not limited to UAVs.
These paths should be optimal according to a suitable criterion, such as
minimization of the mission time, under the constraints given by:

• the limited capacity of each drone in terms of flight time/distance;

• the need to compute obstacle-free three-dimensional paths;

• guaranteed robustness of the solution, defined as follows: a solution
is said to be robust if, given a failure of a drone at any point during
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Figure 2.2: Data gathered in a model identification test on one of our drones, highlighting
the reliability of the numerical model

the execution of the mission, it is possible to still visit all POI by only
relying on the remaining UAVs.

It is assumed that the drones execute the mission at roughly constant veloc-
ity and stop at each POI for a roughly fixed amount of time. In this way,
we can use the path length as a proxy for mission time for each drone and
solve the problem as a static path planning one, neglecting the UAVs’ dy-
namics. A different speed for each drone can be considered to account for
different UAV models. Thus, the length of the longest path among the em-
ployed drones (out of M available ones) should be minimized to minimize
mission time. Furthermore, without loss of generality, a single base station
is assumed to be positioned at p0 ∈ R3, from which the drones take off and
to which they return after the mission. Different take-off and return points
for each drone can be specified straightforwardly in our approach. We fi-
nally introduce a requirement that the paths be computed in a few minutes
at most to make the approach feasible in practical applications.

2.1.4 Proposed methodology

For realistic scenarios, with problem instances featuring thousands of POI,
it is challenging to meet the requirements outlined in Section 2.1.3, because
generating the paths becomes exponentially more time-consuming as the
number of POI and vehicles increases.

We thus propose to break the problem complexity by adopting a hierar-
chical decomposition of the path planning task. Conceptually, our approach
features the following steps, also summarized in Figure 2.3:
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A. Automatic generation of the set P of POI from a mesh of the build-
ing/infrastructure under study, according to application-specific criteria;

B. Clustering of P in k partitions;

C. Generation of in-cluster navigation graphs and estimation of in-cluster
traversal cost;

D. Definition of a high-level navigation graph where each node represents
a cluster, and each edge the obstacle-free shortest paths between two
connected clusters;

E. Assignment of sequences of clusters among the drones by solving a
CVRP over the graph defined at step D, accounting for capacity and
robustness constraints;

F. Generation and concatenation of in-cluster paths for each drone to build
the final ordered list of POI and the obstacle-free routes connecting
them.

We describe next each step of the approach in detail.

Generation of points of interest

While our approach is, in principle, applicable to any collaborative path
planning problem that a graph can describe, we focus our presentation on
the task of visual inspection of a building’s surface. We assume to start from
a mesh of the building’s shell, typically defined by a list of vertices and a list
of surface elements. Each element contains the indexes of its vertices and
its normal pointing out of the surface. We assume the mesh is geometrically
closed, so it is always possible to verify if a given point is inside, outside, or
on the surface. Such a mesh model can either be obtained from a CAD file
of the structure or defined manually through CAD software. In practice,
more than one mesh may be used, with different levels of detail. In this
work, we adopt a finer detailed mesh to generate the POI, and a coarser
one for trajectory collision checking, to speed up computation. Without
loss of generality, we consider triangular meshes in the remainder. See for
example figure 2.4. The location of POI around the mesh model depends on
the kind of data-gathering task to be carried out. For example, suppose the
aim is to obtain a 3D rendering of a building. In that case, the camera Field
of View (FOV), its resolution, and the desired overlap between consecutive
pictures should all be factored in. Supposing we want to carry out such a
mission, we can calculate the distance d from the structure from which the
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START

Generate the set P of Points Of Interest

Cluster P in k partitions

For each of the k partitions, find the fastest way to traverse it

Build an abstraction graph of the problem, where each of the k clusters is a node

Solve the path planning problem as a CVRP over the abstracted graph

Obtain the general solution by concatenating
the shortest paths within each cluster in the correct order

END

Figure 2.3: Proposed procedure schema

pictures shall be taken. Then, we generate the setP by placing a point along
the normal to each surface element of the mesh at a distance d from the
surface itself and outside the building. In this way, all POI are equally far
away from the structure’s surface, and they are more densely distributed in
those areas where the building shows a more complex shape, conveyed by a
higher number of surface elements, and more pictures would be necessary
to obtain a precise reconstruction. We can also assign a direction to each
POI, representing the ideal orientation of the camera: in our example, it
would be perpendicular to the surface to photograph.
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Figure 2.4: Tri-mesh model of the external surface of the University of California - Los
Angeles (UCLA) (top) and Spino (bottom) buildings.

Clustering of POI

As the number n of POI generated for a real building can be in the order
of thousands, finding a global solution to the path-planning in one shot is
impractical, even for a single unit. We thus adopt clustering to reduce the
complexity, from a single large-scale optimization problem to a hierarchy
of smaller-scale ones. Since we aim to cluster the POI based on spatial
proximity, we adopt the so-called k−means clustering [48]. This approach
ensures that each resulting cluster is composed of all the points closer to its
centroid than those of the other clusters. Note that the provided partition
into clusters depends on the randomly selected initial condition of the algo-
rithm. This can be a source of non-deterministic behavior across repeated
runs of the planner, even if starting from the same environment and with
the same POI. The choice of k−means based on POI distance is natural
since we can expect that in the globally optimal solution, the resulting path
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would be a sequence of points close to each other rather than far away. We
denote the obtained clusters with Ci, i = 0, . . . , k, where C0 is a particu-
lar cluster containing only the home point p0, which will be necessary to
calculate paths originating from and ending at such location:

k⋃
j=1

Cj = P (2.3a)

Ci ∩ Cj = ∅, ∀i ∈ {1, k}, ∀j ∈ {1, k} : j ̸= i (2.3b)
C0 = {p0} (2.3c)

To obtain a sensible approach, the number of clusters shall be larger than
the number of available drones, i.e. k > M . In Section 2.1.6 we present
results on the sensitivity of the obtained solution with different values of k
and M .

The procedure up to this point (POI generation and clustering) is sum-
marised in algorithm 1, while figure 2.5 presents an example on the UCLA
building.

Algorithm 1 POI generation and clustering

P ← ∅
d← d̄
k ← k̄
for all surface elements t in mesh do
p← t.centroid+ d ∗ t.normal
P.append(p)

end for
C1, . . . , Ck ← kMeans(P, k)
C0 ← p0

In-cluster navigation graphs and traversal cost estimates

For each cluster i = 1, . . . , k we generate a graph Gci:

Gci = (Ci, Ei, wc) (2.4)

where the set of nodes is Ci, i.e., the UAV belonging to that cluster, and the
set of edges Ei is generated as follows:

Ei = {(pr, pℓ) ∈ Ci : ∥pr − pℓ∥2 < r, r ̸= ℓ} ⊂ Ci × Ci, (2.5)

i.e, the set of all pairs of indexes whose corresponding UAV are closer than
a distance r, which is a user-defined parameter. Moreover, we compute and
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Figure 2.5: UAV generated from the mesh (top) and clustered into groups based on spatial
proximity through k−means (bottom).
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store, for each edge, an obstacle-free path s(r,ℓ) between the corresponding
UAV:

s(r,ℓ) =
{
pr, q

(r,ℓ),1, . . . , q
(r,ℓ),j̄(r,ℓ)

i , pℓ

}
(2.6)

where q(r,ℓ),j, j = 1, . . . , j̄(r,ℓ) are intermediate way-points used to travel
around possible obstacles that may be be present on the segment connect-
ing pr to pℓ. In this work, we define such intermediate navigation points
by calculating the normal to each vertex of the mesh (i.e., the average of
the vectors that are normal to the surface elements containing such vertex)
and taking the point at distance d̄ along its direction. Another possible ap-
proach is to randomly sample the free space around the mesh surface. The
path s(r,ℓ) (2.6) is then computed as the shortest, obstacle-free one between
the two UAV (pr, pℓ), possibly passing trough one or more intermediate
waypoints. We further associate to the in-cluster graphs a cost function wc,
defined as:

wc : Ei 7−→ R+, i = 1, . . . , k

wc(pr, pℓ) =
|s(r,ℓ)|∑
j=2

∥s(r,ℓ),j − s(r,ℓ),j−1∥2
(2.7)

where |s(r,ℓ)| is the cardinality of the sequence s(r,ℓ), and s(r,ℓ),j is the j th

point in the sequence. The weight function (2.7) thus returns the length of
the obstacle-free path between two connected UAV.

The choice of connecting only UAV that are closer than a maximum
distance r is justified by the same rationale behind the clustering approach:
we expect optimal solutions to the local trajectory generation problems to
result in series of points that are close to each other, rather than far apart.

To evaluate whether the segment connecting two points is obstacle-free,
we verify that its intersection with any of the mesh surface elements is
empty. To limit the computational cost of this check, we employ a coarser
mesh, as anticipated in Section 2.1.4.

Finally, for each Ci we want to compute the cost of traversing the whole
cluster by visiting all of its UAV. These cost values are needed at the higher
hierarchical level to optimally assign a sequence of cluster to each of the
available drones (see Section 2.1.4) and, correspondingly, the entry and exit
UAV of each cluster. However, the latter would be needed in turn to com-
pute the cluster’s traversal cost. To sort out this chicken-and-egg problem,
we compute an estimate, ŵi, of the cluster traversal cost, by solving a TSP
problem inside it. For each UAV pr ∈ Ci, the set of points connected to it
inside the same cluster is:

N (pr) = {pℓ : (pr, pℓ) ∈ Ei}, (2.8)
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and for each edge (pr, pℓ) ∈ Ei the Boolean variable λr,ℓ takes the value
1 if that edge is part of the cluster-traversing path and 0 otherwise. These
Boolean variables are collected in the set:

Λi = {λr,ℓ ∈ {0, 1}, ∀(pr, pℓ) ∈ Ei} . (2.9)

The total number of Boolean variables thus introduced for cluster Ci is:

|Λi| =
|Ci|∑
r=1

|N (pr)|

Then, we compute the value of ŵi by solving the TSP:

ŵi = min
Λi

|Ci|∑
r = 1

|N (pr)|∑
ℓ = 1

wc(pr, pℓ)λr,ℓ (2.10a)

subject to
|N (pr)|∑
ℓ=1

λr,ℓ = 1, r = 1, . . . , |Ci| (2.10b)

|N (pℓ)|∑
r=1

λr,ℓ = 1, ℓ = 1, . . . , |Ci| (2.10c)

The cost (2.10a) is the total length of the path and constraints (2.10b) and
(2.10c) require that only one edge is picked respectively to and from each
point. Provided suitable subtour elimination constraints are added, problem
(2.10) results in a single loop that visits all UAV in cluster Ci. We will show
in Section 2.1.6 that the error between ŵi and the final cost of traversing
the cluster, after its entry and exit point have been defined, is very small
in realistic scenarios. As a final remark, note that problem (2.10) may be
unfeasible, for example if the graph Gci is not connected or if it can not be
traversed by a single loop. In these cases, one can simply increase the value
of r until (2.10) becomes feasible, which is guaranteed to happen when

r ≥ max
pr,pℓ∈Ci

∥pr − pl∥2.
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High-level navigation graph

After obtaining the clusters, we generate another navigation graph at higher
level, named “global graph” and denoted as Ḡ:

Ḡ =
(
V̄ , Ē , wg

)
(2.11a)

V̄ = {0, 1, . . . , k} (2.11b)
Ē ⊂ V̄ × V̄ , |Ē | = (k + 1)k (2.11c)

wg : Ē 7−→ R+. (2.11d)

Each node i in V̄ represents cluster Ci, and each edge is a pair of different
clusters:

Ē = {(i, j) ∈ V̄ × V̄ : i ̸= j}. (2.12)

For simplicity, we consider a fully connected global graph: we discuss op-
tions to reduce the number of edges, thus the computational burden, in Sec-
tion 2.1.5. In a way similar to the in-cluster navigation graphs, we associate
and store to each edge (i, j) ∈ Ē an obstacle-free path that allows a drone
to travel from Ci to Cj . To do so, we first find the UAV p̄

(j)
i and p̄(i)j as:

p̄
(j)
i , p̄

(i)
j = arg min

p ∈ Ci
q ∈ Cj

∥p− q∥2, (2.13)

i.e. the points belonging to the two different clusters whose distance is
minimal (corresponding to the distance between the two clusters). Then,
the inter-cluster obstacle-free path s̄(i,j) is computed as in (2.6) with p̄(j)i and
p̄
(i)
j as starting and ending points, respectively, and the possible addition of

intermediate navigation points whenever the segment between p̄(j)i and p̄(i)j
is not obstacle-free, as discussed in Section 2.1.4. We denote with li,j =

wc(p̄
(j)
i , p̄

(i)
j ) the weight (length) of path s̄(i,j) (compare (2.7)) and store this

quantity as well, and we compute the maximum inter-cluster travel distance
as:

lmax = max
(i,j)∈Ē

li,j (2.14)

Finally, the weight functionwg computes the cost of traversing a given edge
(i, j), as the cost li,j of traveling from cluster Ci to cluster Cj , plus the cost
ŵj of traversing the arrival cluster Cj:

wg(i, j) = li,j + ŵj. (2.15)
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Cluster assignment and guaranteed fault tolerance

Exploiting the global graph (2.11), we can now formulate a tractable prob-
lem to assign to each drone a sequence of clusters to visit. We start from a
CVRP, which aims at finding the optimal set of routes for a fleet of vehicles
to visit a given set of nodes, and include additional constraints to account
for capacity limits and fault tolerance, while the obstacle-free requirement
of the resulting paths is implicitly satisfied by how the edges among and
within clusters have been computed.

The Boolean optimization variables x(i,j),m ∈ {0, 1}, (i, j) ∈ Ē , m =
1, . . . ,M take value 1 if the mth drone travels from cluster Ci to cluster Cj
and traverses inside the latter, and 0 otherwise. We collect these variables
in vector X ∈ {0, 1}M [(k+1)k]. Moreover, we denote the capacity of drone
m as Q̄m (maximum flight time or, as considered here, available travel
distance), and the maximum capacity among drones as:

Q̄ = max
m=1,...,M

Q̄m.

For a given value of X , we can then compute the residual capacity of the
generic drone m as:

Q∗
m = Q̄m −

∑
(i,j)∈Ē

wg(i, j)x(i,j),m, (2.16)

i.e, the difference between the capacity of a drone and the length of the path
assigned to it.

We can now formulate the optimization problem:

min
X

∑
(i,j)∈Ē

M∑
m = 1

wg(i, j)x(i,j),m (2.17a)

subject to
k∑
i=0
i ̸=j

M∑
m=1

x(i,j),m = 1, j = 1, . . . , k, (2.17b)

∑k
i=0
i ̸=p

x(i,p),m =
∑k

j=0
j ̸=p

x(p,j),m, p =

1, . . . , k, m = 1, . . . , M
(2.17c)

Q∗
m ≥ 2lmax m = 1, . . . ,M (2.17d)

M∑
m=1

Q∗
m ≥ 2M lmax + Q̄ (2.17e)
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The cost function (2.17a) is the sum of trajectory lengths over all vehi-
cles, also known as total makespan. Other cost functions can be adopted,
such as the length of the longest individual trajectory, which corresponds to
minimising mission time. We address this case in Section 2.1.5. Constraint
(2.17b) imposes that only one drone can reach or leave each cluster, with the
exception of the home cluster C0 where they all start, whereas (2.17c) en-
sures that each node is reached and left by the same vehicle, imposing con-
tinuity in each path (i.e., teleportation is not allowed). Constraint (2.17d)
imposes that each drone has enough residual capacity to cover twice the
maximum travel distance among all cluster pairs, lmax. At the same time it
ensures no drone is assigned a longer trajectory than its capacity allows for.
Finally, constraint (2.17e) requires that, in addition to the amount set by
(2.17d), the residual capacities have enough margin to collectively exceed
Q̄, i.e. the maximum capacity among all drones. Infeasibility of (2.17) can
occur only if the drones do not have have enough capacity to tackle the
data-gathering problem at hand, thus providing an indication that the avail-
able units are not sufficient to carry out the mission without recharging the
batteries once or more.

Constraints (2.17d) and (2.17e) allow the approach to obtain solutions
that are guaranteed to be tolerant to any single point of failure. Specifically,
we consider the following definition of robustness:

Definition 1 (Robustness). A solution to (2.17) is robust if and only if, given
the failure of any single vehicle at any point during the mission, it is pos-
sible to carry out the remainder of the mission with the remaining vehicles
without violating the constraints on maximum capacity.

Lemma 1. All feasible solutions to (2.17) are robust.

Proof. Assume, without loss of generality, that the drone fails immediately,
i.e. all the nodes that were assigned to it have not been visited. The neces-
sary capacity to visit those nodes Qf is by definition

Qf = Q̄m −Q∗
m, (2.18)

where m denotes the failed drone. This is the worst case scenario, as if the

drone does not fail immediately, then Qf < Q̄m −Q∗
m. Thanks to (2.17d),

it is true that
Q∗
m ≥ 2lmax =⇒ Q∗

m = 2lmax + α, (2.19)

α being the non-negative term that describes exactly the residual capacity
in excess of 2lmax. The total residual capacity left in the remaining drones
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is equal to the total residual capacity minus that of the failed drone, and
thanks to (2.17e):

M∑
m=1,m ̸=m

Q∗
m =

M∑
m=1

Q∗
m −Q∗

m ≥ 2Mlmax + Q̄−Q∗
m. (2.20)

The available residual capacity is greater than the necessary oneQf , in fact:

2Mlmax + Q̄−Q∗
m ≥ Qf = Q̄m −Q∗

m (2.21)

2Mlmax + Q̄− 2lmax − α ≥ Q̄m − 2lmax − α (2.22)
2Mlmax + Q̄ ≥ Q̄m, (2.23)

which is always true as M and lmax are positive and Q̄ ≥ Q̄m by definition.

Remark 1. In practice, constraints (2.17d)-(2.17e) ensure that, if a drone
fails at any point, the remaining ones have enough capacity left to complete
the mission without the need recharge. Note that the additional capacity
2Mlmax in (2.17e) is required as well, to ensure that all drones can eventu-
ally return to the starting position.
If a drone fails, an immediate automatic re-planning is computed by solving
again problem (2.17) with M = M − 1, after substituting the robustness
constraints (2.17d)-(2.17e) with a constraint on maximum capacity

Q∗
m ≥ 0, m = 1, . . . , M (2.24)

and updating the global graph (2.11) by eliminating the nodes (i.e., clus-
ters) that have already been visited when the failure occurs.

Generation of the overall paths

X∗ is the optimal vector obtained by solving problem (2.17), and x∗(i,j),m its
entries. Our goal is now to assemble the overall path for each drone. For
simplicity, in this section we omit the notation m = 1, . . . ,M and consider
a generic drone with index m, the procedure being identical for all drones.
The path is generated through the following steps.

Procedure 1. Path generation

1. Extract the optimized sequence im(0), . . . , im(Nm) of indexes that
identify the clusters to be visited. The sequence cardinality is Nm+1,

26



2.1. A fault-tolerant automatic mission planner for a fleet of aerial vehicles

where Nm depends on the obtained solution for drone m. Such a se-
quence is computed incrementally as follows:

im(0) = 0

im(1) = ℓ : x∗(im(1),ℓ),m = 1
...

im(j) = ℓ : x∗(im(j−1),ℓ),m = 1

(2.25)

i.e., by concatenating the edges that shall be travelled by drone m.
In virtue of constraints (2.17b)-(2.17c), all the indexes in (2.25) are
unique and im(Nm) = 0, that is, the drone returns to C0 at the end of
its mission.

2. On the basis of sequence (2.25), identify the entry and exit POI of each
cluster, denoted respectively by the indexes in(im(j)) and out(im(j)), j =
1, . . . , Nm − 1, as follows (recall (2.13)):

pin(im(j)) = p̄
(im(j−1))
im(j)

pout(im(j)) = p̄
(im(j+1))
im(j) .

(2.26)

3. Use the obtained entry and exit points to compute the final in-cluster
path for each Cim(j), j = 1, . . . , Nm − 1, by solving again the TSP
(2.10) this time adding, and forcing its usage in the solution, a virtual
edge with zero cost between the POI pin(im(j)) and pout(im(j)). This cor-
responds to computing the shortest Hamiltonian path between these
POI over the graph Gcim(j). s∗(Cim(j)) denotes such a path, comprising
only POI, and with t∗(Cim(j)) the corresponding obstacle-free trajec-
tory, comprising the same POI plus the intermediate navigation points,
when needed.

4. Build the desired sequence Sm (2.2) as:

Sm =
{
s(Cim(1)), . . . , s(Cim(Nm−1))

}
(2.27)

and the corresponding overall obstacle-free trajectory, denoted with
Tm, as:

Tm = {s(0,in(im(1))), t∗(Cim(1)),

s(out(i
m(1),in(im(2))), t∗(Cim(2)),

s(out(i
m(j−1),in(im(j))), t∗(Cim(j)),

. . . , t∗(Cim(Nm−1)), s
(out(im(Nm−1)),0)}

(2.28)

27



Chapter 2. Non-Tethered Multicopter Networks

Figure 2.6 presents an example of obstacle-free trajectories obtained af-
ter executing Procedure 1.
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Figure 2.6: Example of solution obtained with 3 drones, UCLA environment.
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2.1.5 Implementation aspects and overall approach

We now discuss an alternative formulation and relevant implementation as-
pects, and summarize the proposed approach.

Minimizing mission time

A valid alternative to cost function (2.17a) is to replace it with the follow-
ing:

max
m

K∑
i = 1

K∑
j = 1

wg(i, j)x(i,j),m, (2.29)

i.e., the length of the longest trajectory. Solutions obtained through this ap-
proach are characterised by evenly distributed workloads across the drones,
thus also shorter mission duration, with generally larger total makespan
(i.e., higher cumulative flight time and thus total energy cost). This min-
max formulation entails the inclusion of a real optimization variable, turn-
ing problem (2.17) from a Binary Integer Linear Problem (BILP) to a Mixed-
Integer Linear Problem (MILP), with significantly longer solution time (see
figure 2.12). To decrease the problem complexity and solution time, one
can however limit the number of arcs in the global graph by connecting
only the clusters that are closer than a certain threshold or are not com-
pletely separated by obstacles, as discussed next.

Reducing Solution Time

When solving problem (2.17), we expect the computational time tCV RP to
be an exponential function of the number of optimization variables:

tCV RP ∝ eα(Mk(k+1))+β, (2.30)

where α, β are positive scalars. In practical applications, a trade-off be-
tween computational time and optimality must be achieved: for example,
since we aim at using this formulation not only for planning, but also for on-
line re-planning in case of failure, we want to ensure that we can elaborate
a new mission plan as soon as a failure occurs and without the need to stop
the other aircrafts. This limits the total computational time for re-planning
to some seconds at most. To decrease tCV RP while preserving as much as
possible the quality of solutions, we propose a heuristic that reduces the
available degrees of freedom in a sensible way. In particular, in (2.17) there
areMk(k+1) binary optimization variables due to the graph Ḡ being com-
pletely connected: M binary variables for each one of the k(k+1) edges of
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the graph. To reduce this number, we set some of these to zero, by exploit-
ing once again the assumption that an optimal solution to (2.17) is made
of series Sm of consecutive clusters that are close to each other, in terms
of the distance li,j introduced in Section 2.1.4. The procedure we adopt,
illustrated in Algorithm 2, removes edges one by one in decreasing weight
order while ensuring that each node ends up with degree (i.e., the number of
connections) at least a user-defined value m and the starting node remains
connected to all the other nodes, to maintain a direct route to/from the base
station. This procedure is applied right before solving the CVRP, after the
global graph has been completed. The aim is to reduce the solution time
tCV RP by solving the problem on a graph where the connections are signif-
icantly less than k(k+1) and their number scales linearly with the number
of clusters k. In fact, by applying procedure 2 the number of optimization
variables tends to km.

Algorithm 2 Edge removal

for i = 1, . . . , k do
numEdges← |{j : (i, j) ∈ Ē}|
while numEdges > m do
(i, j∗) = arg max

j:(i,j)∈Ē
li,j

if j∗ ̸= 0 and |{k : (j∗, k) ∈ Ē}| > m then
Ē ← Ē \ {(i, j)}

end if
numEdges← numEdges− 1

end while
end for

Subtour Elimination Constraints (SEC)

In routing problems such as (2.10) and (2.17), the issue of sub-tours must
be addressed. Sub-tours are defined as loops that do not include the start-
ing point, which are still feasible in both (2.10) and (2.17). There are two
possible solution strategies to avoid sub-tours. One is to introduce special
Sub-tour Elimination Constraints, in one of the forms that exist in literature,
however resulting in a number of additional constraints that is exponentially
increasing with the number of nodes in the graph. We thus adopt the second
strategy, which is to solve the problem as stated, check for sub-tours in the
solution and, if found, include additional constraints to specifically exclude
those sub-tours from the solution and solve again the routing problem, it-
erating the procedure until no sub-tours remain. Specifically, we identify
the sets Vsub,n ⊂ V̄ \ {0} of nodes belonging to the generic n-th sub-tour,
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n = . . . , N , and impose that no more than |Vsub,n| − 1 edges are taken in
the next solution within that subset:∑

(i,j)∈Vsub,n

x(i,j),m ≤|Vsub,n| − 1

m = 1, . . . ,M n = 1, . . . , N

(2.31)

These constraints avoid that the same sub-tour is present in the next solu-
tion.

Overall approach

The following procedure summarizes the proposed approach, also includ-
ing the considered implementation aspects. At steps 2) and 5), the described
sub-tour elimination strategy shall be adopted as well.

Procedure 2. Overall approach
Given the building mesh and the drones’ capacities Q̄1, . . . , Q̄M :

1. Run Algorithm 1;

2. For each cluster i = 1, . . . , k, define the graph (2.4) and solve (2.10);

3. Define the graph (2.11);

4. Run Algorithm 2;

5. Solve problem (2.17);

6. Apply Procedure 1.

Notes on implementation in the real world

While this approach is applicable to real world scenarios with existing tech-
nology, some remarks on implementation are due. First of all, the majority
of UAVs available to the general public rely on a combination of the on-
board Inertial Measurement Unit (IMU) and GPS for self-localization in
space. As long as the drones are endowed (and most of them are) with a
mechanism for real-time obstacle avoidance, the low position accuracy of a
regular GPS system poses no safety threat to the vehicle. Nevertheless, is-
sues could arise in the precise tracking of the POI, as consumer grade GPS
typically show inaccuracies in the order of meters. To pursue a precise

31



Chapter 2. Non-Tethered Multicopter Networks

localization of the aircraft within the environment and centimeter-level ac-
curacy in tracking the POI, it is advisable to rely on a Real Time Kinematics
(RTK) capable GPS.

Secondly, because the formulation of the problem is centralized, it is
necessary that all employed drones be able to communicate at all times
with a ground station through a wireless connection to receive their set-
points and any possible update. The proposed problem formulation cannot
be translated into a decentralized version, and even if it was, the on-board
computers of commercially available drones have very limited computa-
tional resources, which are mostly already taken up by low-level control
and reference tracking tasks. We therefore conclude that solving the prob-
lem on a centralized ground station without stringent hardware limits and
communicating the references only to each drone is the best design. Fur-
thermore, one should make sure that the chosen UAVs allow the real-time
communication of waypoints from a device different than the remote they
are shipped with.

Finally, the laws and regulations of the country in which the mission is
performed must be taken into account. While at this time rules are evolving
quickly, in most of the world flying autonomous drones is still prohibited,
at least in public spaces, meaning that there must always be one pilot per
aircraft holding the remote and taking full responsibility for damages the
UAV may cause. What is and is not allowed in private settings varies by
country.

2.1.6 Results

Simulation Setup

We performed several simulations based on the models of both buildings
introduced in Section 2.1.2, with around 1200 generated POI each. All sim-
ulations have been performed in MATLAB [49], installed on Ubuntu 20, on
a machine with an AMD Ryzen™9 5950X 3.4 GHz processor. CVRP in-
stances were solved through the CPLEX® optimizer, while TSP problems
were solved with LKH 3.0 [50]. The most relevant metrics are solution
time, which determines if the approach is suitable for real-world applica-
tions, and the length of planned trajectories, taken as a measure of solution
quality. The sum of all trajectory lengths is a proxy for energy consumption,
whereas their maximum across vehicles characterizes mission duration. We
solved the problem with a varying number of drones (3 to 5) and of clusters
(6 to 20). The MATLAB code we developed for the simulations is available
both through a GitHub repository [51] and as a MATLAB toolbox [46].
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Numerical Results

With reference to the first mesh shown in figure 2.4, 1279 POI were gener-
ated and we studied the behaviour of total length of the trajectories, which
is minimised through the cost function, with respect to the number of clus-
ters. Figure 2.7 shows that the solution’s quality is roughly independent of
the number of clusters (given that it is larger than the number of drones).
From this we conclude that there is no point in increasing the number of
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Figure 2.7: Sum of the lengths (top) and maximum (bottom) across all trajectories as a
function of both the number of clusters and the number of drones, UCLA environment.
The sum of all lengths reliably increases with the number of vehicles because the solver
was forced to use them all in the solution, therefore they all have to leave and go back
to the starting point.
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clusters beyond a certain number, at least with respect to the total trajec-
tories’ length. This also suggests that clustering still offers a sufficiently
detailed representation of the environment to obtain near-optimal solutions.
Indeed, it would be faster to solve the intra-cluster trajectory planning prob-
lem first and the inter-cluster drone assignment second, because in this case
the TSP problem would only be solved once [21]. However, with such an
approach the entry and exit points of each cluster (recall 2.26) would not be
chosen optimally, leading systematically to worse solutions, whose quality
decreases further as the number of clusters increases. Furthermore, accord-
ing to our simulations, the difference between the optimal intra-cluster path
length as calculated in the third step of procedure 1 and the estimate ŵi
obtained as solution of (2.10) is always lower than 1%.

We measure solution time directly in seconds instead of number of it-
erations of the optimization algorithm. On one hand, this makes the mea-
surement dependent on the machine used to solve the problems, but on the
other it makes CVRP and TSP solution times homogeneous and compara-
ble quantities, even though the two problems are structurally different and
they are tackled with separate solvers. Still, we expect our considerations to
be applicable in general, meaning that the shape of the curves we identify in
the graphs is tied to the number of iterations and it is machine-independent,
only their particular numerical values are not.

While a low number of clusters k keeps the complexity of the CVRP
within reasonable bounds, the opposite is true for the TSPs. In fact if the
overall number of POI n is fixed, then the number of points per cluster, on
average n

k
, increases, thus originating TSP instances with more points. The

computational time required to solve the CVRP and the TSP increases ex-
ponentially as the number of nodes in their respective graphs grows. Figure
2.8 illustrates this behaviour.

A large number of smaller clusters is beneficial for their distribution
among drones, because it allows the path planner to better exploit the avail-
able capacity of each drone and to obtain a robust solution more easily. We
expect the solution to tend to the globally theoretically optimal one as k
increases. In fact at the extreme, where k = n, the CVRP problem coin-
cides with the original problem, without clustering. Note how, in figure 2.8,
even though the number of optimisation variables |Ē |M is proportional to
the number of drones M , the CVRP solution times do not reliably increase
with M as they do with |Ē | (and a similar behavior, but inversely propor-
tional to k, is observed for the TSP solution times). This is because, even
if the number of optimisation variables increases, the newly added ones are
linked to the previous ones by mutual exclusion constraints, ensuring that
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Figure 2.8: Total solution time of CVRP problem (top) and TSP problems (bottom), as a
function of both number of clusters and number of drones. In the latter, each data point
represents the sum total of all the times required to solve all the TSPs for that instance
of the problem. The y-scale is logarithmic.

an edge is not assigned to two drones at the same time. As a consequence,
the feasible space does not increase in size as much as the solution space,
and solution time is not severely affected. The total makespan does in-
crease with M instead, because the solver typically exploits all the drones
it has available, and the path from the starting point to the structure has a
non-negligible length.

By applying the connectivity minimisation procedure described in 2.1.5,
we can reduce the solution time, in particular the part pertaining to the
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CVRP. The quality of obtained solutions, as measured by the total length
of generated trajectories (figure 2.9), is comparable to that obtained without
reducing the degree of the nodes (figure 2.7), which we set to m = 4. On
the other hand, the solution time is significantly lower (figure 2.10), thanks
to the lower number of optimization variables. This effect is particularly
noticeable in instances with many clusters, where solution time decreases
by three orders of magnitude. This is especially useful in the re-planning
phase, which otherwise could take even more time than the first planning, as
figure 2.11 suggests. This behavior is due to the total available capacity of
the remaining vehicles being close to the capacity needed to finish the mis-
sion. More generally, we argue that when such a situation occurs, capacity
constraints become active and significantly reduce the size of the feasible
space, thus also increasing solution time. This is also apparent from figure
2.13.
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Figure 2.9: Total trajectory length with graph connectivity minimisation procedure, UCLA
environment. This is comparable to figure 2.7, hence we conclude solution quality is
not affected significantly.

With regards to the min-max formulation, figure 2.14 shows that it does
divide the workload across vehicles more evenly than the previous one, but
minimising cost function (2.29), i.e. minimising mission time, leads to a
significantly increased complexity and solution time (see figure 2.12), due
to the BILP becoming a MILP. Adopting the aforementioned complexity
reduction approach, though, is helpful in this case too: solution times are
decreased to values that make min-maxing valuable in a real-time frame-
work, especially in the re-planning phase, which is apparent from figure
2.15. The significant difference between the times taken to plan and re-
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Figure 2.10: CVRP solution times with graph connectivity minimisation procedure, UCLA
environment. Especially with a high number of clusters, this is orders of magnitude
faster than the fully-connected case (figure 2.8). Note how the growth trend is less than
linear, as a fixed number of edges per node means the number of optimisation variables
grows linearly, not exponentially, with the number of clusters.

plan the mission can be explained by the removal of robustness constraints
(2.17d) and (2.17e) on capacity in the formulation of the latter problem.

On the ideal number of drones

All the scenarios were simulated with a number of drones M = 3, 4 and
5, to explore the effect of this variable on the total makespan, maximum
trajectory length and solution time of the CVRP. Furthermore, in each case
the solver was forced to assign at least one cluster to each drone, so as to
employ them all. As apparent from Figures 2.7 (top) and 2.9, the first di-
rect consequence is that the total makespan increases with M regardless of
the number of clusters k and of whether the graph connectivity minimiza-
tion procedure is applied. This is because each drone must leave the starting
point, go to the structure and come back. The effect on the maximum length
of a trajectory assigned to a drone, instead, is unclear, but we note that M
seems not to influence it significantly (see Figure 2.7 (bottom)). Similarly,
the effect of M on the CVRP solution time seems negligible (see Figures
2.8 (top), 2.10, 2.11). The number of optimization variables in an instance
of the CVRP problem is |Ē |M , with |Ē | being the number of edges and M
the number of vehicles. Increasing M thus also increases the number of
optimization variables. Nevertheless, the solution time of the CVRP prob-
lem is not significantly increased, because when adding a new vehicle, all
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Figure 2.11: CVRP time for solving the re-planning problem, in the same conditions as
figure 2.8, i.e., with fully connected global graph. These simulations were carried
out by always imposing that the drone with the longest assigned trajectory fails after
visiting the first cluster assigned to it. This means every other drone will finish visiting
the first cluster assigned to it and the rest of its trajectory will be re-planned. Due to
the long required time, simulations with many clusters were not carried out.
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Figure 2.12: CVRP solution times in min-max formulation, UCLA environment. Note how
they rise much quicker with respect to the number of clusters. Simulations with many
clusters were not carried out.

of newly introduce the decision variables are tied to the ones of the other
vehicles by mutual exclusion constraints. In other words, a cluster can only
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Figure 2.13: ttot = tCV RP + tTSPs, as measured in simulations with the first environ-
ment, the UCLA building (top) and with the second environment, the Spino d’Adda
station (bottom). The ideal value range of k is highlighted by dashed line.

be assigned to one vehicle, regardless of the total number of vehicles. As a
consequence, the space of feasible solutions does not increase significantly,
and the search performed by the solver in such space does not take signifi-
cantly more time.

In the application of this method to a real mission planning task, the
number of drones M is an arbitrary variable chosen by the designer, likely
by finding the ideal trade-off between two criteria: on one hand the push
to use the minimum amount of UAVs that can get the particular mission
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Figure 2.14: Total (top) and maximum (bottom) lengths of trajectories assigned to drones
with min-max formulation, UCLA environment. Workload is distributed as evenly as
possible across vehicles. Simulations with high number of clusters were not carried
out.

at hand done, on the other hand the necessity of using more to guarantee
that the mission will be completed regardless of the possible failure of one
aircraft. The higher cost of buying, maintaining, charging and flying addi-
tional drones, in terms of both money and time, is the price of a robustness
guarantee. The ideal value of M , therefore, is the minimum number for
which a feasible solution to (2.17) exists.
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Figure 2.15: CVRP solution times in min-max formulation with graph connectivity min-
imisation, UCLA environment. First planning (top) and re-planning after failure (bot-
tom). Note that the distinction between the number of involved drones has been
dropped. With this procedure, min-maxing becomes a viable strategy, especially for
re-planning.

On the ideal number of clusters

As we have shown, the arbitrarily chosen number of clusters significantly
impacts the solution times of both the CVRP and the TSP problems. The
former tends to increase exponentially, whereas the latter decreases with a
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similar behaviour (figure 2.8). We can thus approximate the total time it
takes to solve the two problems as the sum of two exponential functions:

ttot(k) = eαk+β + keγ
n
k
+δ, (2.32)

where n represents the number of UAV, k is the number of clusters and
α, β, γ, δ are unknown parameters. If each of the two contributions is non-
negligible with respect to the other, at least for some values of k, then it
is sensible to look for an ideal number k̄ of clusters which minimizes the
overall time spent solving the optimization problems. In fact under this
assumption function (2.32) must have a minimum with respect to the value
of k.

k̄ = arg min
k∈N+

ttot(k). (2.33)

Such a minimum does not have an explicit form, yet it can be computed
numerically by imposing null derivative:

∂ttot
∂k

= αeβeαk + eδeγ
n
k

(
1− γn

k

)
= 0. (2.34)

The solution to this problem is unique, since the cost function (2.32) after
relaxing k ∈ R+ is convex in the considered domain (as it can be inferred
by its curvature, which is positive everywhere for positive k). Moreover,
it is useful to look for rules of thumb that guide the choice of its value a
priori. First, it must be k ≥ M , for the problem to be well-defined. Fur-
thermore, if k = M there is at least a trivial solution: assign one cluster to
each drone, checking that capacity constraints are not violated. In order to
better exploit the capacity of the drones, it makes sense to choose k ≥ 2M ,
so that the planner can profit from a more fine-grained representation of the
environment, the residual capacity (2.16) can be distributed more evenly
and more robust solutions become available. On the other hand, in the limit
case k = n (i.e. each UAV is itself a cluster) the cluster assignment prob-
lem is reduced to the non-hierarchical case, and the local TSP instances lose
meaning. Anyway we expect that even for some k = klim ≪ n the expo-
nentially increasing complexity of the CVRP overcomes the exponentially
decreasing one of the TSPs and the overall solution time becomes imprac-
tical. Given the results of our simulations, we observe that k ∈ [3M, 4M ]
is a good choice in terms of both solution time and solution quality, but
this might depend on the characteristics of the problem, such as the overall
number of POI n: with the same number of clusters, increasing n leads to
longer times for solving the TSP instances.

A comparison between the two presented environments (figure 2.13),
though, highlights that the CVRP solution time can vary significantly across
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instances of the overall problem. The solver we adopted, in fact, reliably
takes more more to find a solution when capacity constraints are demand-
ing with respect to the necessary span, which is due at least in part to such
constraints substantially reducing the size of the set of feasible solutions for
the CVRP. The two environments differ in scale: given the same amount of
UAV, we expect optimal trajectories to be shorter if the points are more den-
saly placed in a region. In fact, though the number of UAV is the same, the
sum of the lengths of the generated trajectories in the UCLA case exceeds
4000m, whreas in the Spino case it is lower than 1000m. Provided the max-
imum capacities Q̄m are the same, capacity constraints (2.17d) and (2.24)
are not limiting in the second case, hence the feasible space is larger. Fur-
thermore, the former environment is such that the solver tends do find more
sub-tours before identifying a feasible solution as optimal, which implies
the problem must be solved several times due to the sub-tour elimination
strategy we adopted (see Section 2.1.5). In conclusion, the ideal number k̄
of clusters depends heavily on the instance of the problem, and in particular
on the capacity of the drones with respect to the overall distance that needs
to be travelled. It is reasonable to assume that in the worst case scenario
the capacity is critically limited, therefore the related constraints are active
and the CVRP solution time grows significantly. The opposite would mean
that more vehicles are available than actually needed, even for a robust so-
lution. Finally, the ideal number of clusters k̄ also depends on the number
of UAV n, as tTSPs depends on the average number of UAV per cluster n

k
.

By inspection of equation 2.32, as n increases we expect k̄ to grow too. In
fact, since tTSP depends on n

k
, it is possible to predict how the TSP solution

time will change if n changes.
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2.1.7 Conclusion and Future Work

We presented an automated approach to plan data-gathering missions with
multiple drones in reasonable time, guaranteeing robustness to single faults.
This is achieved by introducing a hierarchical separation between high level
planning and locally optimal path generation, which makes the problem
tractable in a reasonable amount of time without sacrificing solution quality.
We proposed an alternative cost function that minimizes mission time over-
all, under the assumption that all vehicles work in parallel. We addressed
the issue of robustness with respect to a single point of failure, provid-
ing a proof that missions can be re-planned and carried out to completion
should one of the drones fail. We also discussed implementation aspects
and provided an overall procedure with related available code. Finally, we
analysed the performance of our algorithm in two different environments
modeling real buildings, and discussed the possibility of reducing solution
time through the choice of an a priori optimal number of clusters.

Possible directions for future research are concerned with the develop-
ment of ad-hoc graph generation methods that are guaranteed to yield nodes
with fixed degree, the use of specific algorithms [52, 53] that are known to
have polynomial complexity, and the development of a tailored sub-tour
elimination strategy for instances of the CVRP problem with a high num-
ber of clusters.
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CHAPTER3
Tethered Multicopter Networks

3.1 LiDAR-based Autonomous Flight for a System of TEth-
ered Multicopters2

In the previous chapter, a strategy for tackling the limited flight time prob-
lem was detailed. A second approach is possible: powering drones through
tethers. While introducing a physical connection limits the vehicle’s free-
dom of movement, it enables it to hover for a potentially unlimited amount
of time. To gain back some of the agility, multiple UAVs can be connected
in series, creating a System of TEthered Multicopters (STEM). The agility
and long flight time come at the cost of a more complex multi-agent con-
trol problem. The tether also anchors the system to the ground, making
it inherently safer with respect to fly-away risks and in terms of land area
potentially harmed as a consequence of a fault and crash event.

3.1.1 State of the Art

In some applications where uninterrupted operation of the vehicle is more
important than its agility, systems of drones powered through electrical ca-

2This work was previously published by the author in a different form, see [23].
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Figure 3.1: A STEM prototype with drones during a field test.

bles have already been explored [23, 54, 55] and commercial products al-
ready exist [56]. The autonomous operation of a STEM poses novel control
challenges regarding movement planning and execution, regarding colli-
sion avoidance in particular. In fact, both the drones and the tethers must
be kept away from obstacles, and only the former are directly controllable.
Furthermore, tethers constrain the movement of the system significantly.
Addressing the resulting challenges in a systematic way is the aim of this
work. Figure 3.1 shows a real-world example of such a system in action
in a test site close to Politecnico di Milano, Italy. The topic of trajectory
generation for individual vehicles has been extensively researched, both in
an on-line framework (MPC [57, 58], Reinforcement Learning [59]) and
in an off-line one (A∗, Potential Fields [60]). MPC can handle multiple
inputs and constraints, introduced to guarantee safety. Regarding multi-
aircraft tethered systems, a few designs and control procedures have been
proposed, dealing with control of the UAVs [55, 61, 62] and of tether ten-
sion force [63]. In some works, the tethers are assumed to have fixed
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length [61, 63], whereas in others they are extendable [55], but the overall
control challenges are the same. A popular idea throughout the literature is
that such a system can be conceptualized as a robotic manipulator, where
drones act as three-dimensional spherical joints and tethers as mono-axial
prismatic ones. Exploiting this similarity, a method has been proposed for
path planning in a known and static environment [64], borrowing known
techniques from classical robotics. This research builds on a novel tethered
multi-drone system first described in proposed in [65]. It consists of two
or more drones, tethered to each other and to a ground station in a series
topology.

The problem at hand can be classified as a collision avoidance one,
which has been tackled in literature with planning techniques, such as graph
search ( [66–68]), Rapidly-exploring Random Tree (RRT) ( [69]), and po-
tential fields ( [70]), and reactive techniques, e.g., [71], [72]. The existing
approaches, though, do not solve all the issues at hand:

1. the presence of the tethers, that mechanically couple the drones and
must be taken into account as well in the obstacle avoidance function-
ality;

2. the unknown nature of the environment;

3. the reliance on real-time LiDAR readings only.

In the following sections, two slightly different approaches to solve these
issues will be presented, based on a real-time algorithm that exploits the in-
formation from the sensors and transforms it into polytopic constraints for
an optimization problem. Constraints provide a local convex approxima-
tion of free space at each time step, marking a safe area for the vehicles and
their tethers to traverse. The non-linear shape of the tether in the vertical
direction is also taken into account through constraints. Finally, an opti-
mization problem is solved calculate a reference position, then fed to each
drone. A model of the tether as a nonlinear multi-body dynamical system
is also introduced to perform simulations.

3.1.2 System model and problem formulation

The model of the system at hand is represented in Figure 3.2. It consists
of a set of three of drones connected in a series topology. The aim of the
high-level controller, described in the following sections, is to guide the
leader drone, i.e. the farthest one from the ground station, to an arbitrarily
specified position in 3D space. The centralized controller operates in dis-
crete time with a sampling period Ts. At each time instant, it elaborates the
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Figure 3.2: Model of a considered STEM system with three drones.

latest LiDAR readings and calculates a suitable position reference for each
drone.

Multicopter drones

Each UAV is endowed with a local position controller, which is fed a
position reference by the centralized computer. Six Degrees of Freedom
(DOF), nonlinear, and continuous-time models of the drones, are employed
for simulation and described in [65]. The procedure can support an arbi-
trary number N ∈ N of drones connected in series, identified by indexes
i = 1, 2, ..., N . As apparent from Figure 3.2, the leader drone is denoted
with the index 1. pi and ṗi ∈ R3 describe the position and velocity vec-
tors of the i-th drone in a world-fixed, right-handed inertial reference frame
(X, Y, Z), with Z pointing up, where pi = [pX,i, pY,i, pZ,i]

T and ·T is the
matrix transpose operation. Without loss of generality, the origin of the ref-
erence frame is the position of the ground station. Winches are present on
the ground station and on all drones except the leader. Each winch control
the length of the tether coiled around it. Li is the reeled-out length of the
tether from drone i to drone i+1. Li is thus known to the position controller
of the drone i+1. Aircraft and winches are locally controlled so that UAVs
track a reference position vector, pref,i, and tether tension forces are always
within suitable bounds. A controller for the winches is proposed in [65].

48



3.1. LiDAR-based Autonomous Flight for a System of TEthered
Multicopters

30
25

200
45 15

10

40

X [m]

35 10

20

30

Y [m]

25

30

5
20

Z
 [

m
]

15
10

40

0

50

-55

60

70

Figure 3.3: A LiDAR scan along the horizontal plane in simulation. The UAV is repre-
sented as a green circle, obstacles in light blue. Red lines represent laser beams.

LiDAR sensors

Planar LiDAR sensors with a field of view Θ = 360◦, are considered, so
that each sensor scans an entire plane without blind areas. The sensors have
angular resolution θs, i.e. the angle between two consecutive laser beams.
A sensor scan is thus collected in a vectorr s ∈ RM with M = ⌊Θ

θs
⌋ entries

s(j), with j = 0, . . . ,M−1, each one measuring the distance of the closest
obstacle along direction jθs. For instance the measured obstacles positions
can be described in Cartesian coordinates in the horizontal plane XY as:

Xobs
j = si(j) cos(jθs)

Y obs
j = si(j) sin(jθs); j = 0, . . . ,M − 1,

(3.1)

as represented in Figure 3.3.
To simulate the sensors, the vector s is obtained via a collision detection

routine between the M segments originating from the drones and directed
along the aforementioned directions and the obstacles, defined as sets of
polytopes. The sensors have maximum detection range smax (30 m for
the LiDARs considered here), therefore no obstacle is detected within this
range if its distance is greater that the threshold, and as a result s(j) = ∞.
Each drone i mounts two planar LiDAR sensors with Θ = 360◦, one in the
horizontal plane, one in the vertical. The sensors’ attitude is assumed stable
with respect to the inertial frame notwithstanding the drone’s motion. This
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is practically achievable by mounting them on stabilizing gimbals. With
reference to Figure 3.2, the horizontal plane is always parallel to (X, Y )
and has height equal to the drone’s Z−coordinate, while the vertical one,
is always perpendicular to (X, Y ) and can be rotated through the gimbal’s
yaw angle. Note that this only allows the aircraft to gather information
on obstacles within either of the two planes, but not in the remaining space.
The choice of LiDARs for navigation is advantageous because they are fast,
hence it is possible to use them in real-time scenarios, they are active sen-
sors, thus they work in conditions where light and contrast are scarce or
excessive, and they retain accuracy at a distance. This makes them ideal
candidates for a real-time, reactive-only control approach, which does not
rely on prior knowledge or on the construction of a representation of the
surrounding space, but only on the interpretation of data available at each
sampling period.

Tethers

The tethers not only transfer electrical power from the ground source to the
vehicles, but also establish a power line communication network, enabling
a centralized control of the system. Their length is controlled through on-
board winches. Accounting for the sag in the vertical direction is necessary
to develop and test a functional navigation algorithm in a cluttered environ-
ment. Tethers are modeled as multi-body entities, whereby the i−th tether
is a chain of Nt inner nodes with mass mt,i (see Figure 3.4), computed as:

mt,i =
Liρt
Nt

, (3.2)

where ρt is the tether linear density. Each node has a position and a velocity,
pt,i,l, ṗt,i,l ∈ R3, l = 1, . . . , Nt. The extreme points are fixed to the drones
or to the ground station, therefore there are Nt + 1 segments. Inner nodes
are subject to their own weight and to the forces applied by the two adjacent
tether segments. Elastic and internal friction forces are considered, neglect-
ing the aerodynamic ones by assuming that the relative speed between the
tethers and air, due to wind and motion, is negligible. The tether segments
are modeled as parallel pairs of linear dampers and nonlinear springs, only
applying forces when the tether segment is taut. To model the inner tether
forces, the nominal length and spring constant of each segment, ℓt,i and kt,i,
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Figure 3.4: Multi-body tether model employed for the numerical simulations and to com-
pute the map employed for constraint tightening in the navigation algorithm.

are computed as:

ℓt,i =
Li

Nt + 1

kt,i =
F t

εtℓt

(3.3)

where F t is the breaking load of the tether and εt the corresponding max-
imum elongation. Finally, βt is the constant friction coefficient of each
tether segment. These parameters are needed to compute the forces acting
on the nodes. Considering node l, the applied nonlinear elastic forces read:

F e,i,l+1 = max
(
0, kt

(
∥pt,i,l+1 − pt,i,l∥ − ℓt

)) pt,i,l+1 − pt,i,l
∥pt,i,l+1 − pt,i,l∥

F e,il−1 = max
(
0, kt

(
∥pt,i,l−1 − pt,i,l∥ − ℓt

)) pt,i,l−1 − pt,i,l
∥pt,i,l−1 − pt,i,l∥

,

(3.4)
where ∥ · ∥ denotes the 2-norm, and the saturation to zero implies that no
elastic force is present when the distance between two nodes is smaller than
the nominal segment length. The friction forces are supposed to act only in
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axial direction and are computed as:

F f,i,l+1 = βt

(
ṗt,i,l+1 − ṗt,i,l

)T (
pt,i,l+1 − pt,i,l

)
∥pt,i,l+1 − pt,i,l∥2

(
pt,i,l+1 − pt,i,l

)
F f,i,l−1 = βt

(
ṗt,i,l−1 − ṗt,i,l

)T (
pt,i,l−1 − pt,i,l

)
∥pt,i,l−1 − pt,i,l∥2

(
pt,i,l−1 − pt,i,l

)
(3.5)

For the l-th node, the equations of motion thus read:

p̈t,i,l =
(F e,i,l+1 + F e,i,l−1 + F f,i,l+1 + F f,i,l−1)

mt

−

 0

0

g

 (3.6)

where g is the gravity acceleration, F f represents friction forces and F e

elastic ones The position and velocity vectors of the first and last nodes,
l = 1 and l = Nt, are known as those of the tether ends, thus equal to
the position and velocity vectors of the devices attached there. This time-
varying, nonlinear dynamical tether model is employed both in simulations
(see Section 3.1.4) and in the pre-computation of a map which estimates
the height differential Zi between the lowest point of the tether’s catenary,
assumed at steady-state, and the drone to which it is attached (see Figure
3.5).

Zi = f(pi,pi+1, Li) (3.7)

Such a map, which is rather accurate when the drones are moving at low
speed, is useful to tighten the constraints used by the navigation algorithm,
in order to avoid an impact between the tether (also accounting for its cate-
nary) and the obstacles.

Problem Formulation

The goal of the system is to reach an arbitrarily defined point of interest
with the first drone (leader) of the chain. The other drones in the for-
mation will adapt their trajectories to allow the leader maximum freedom
of movement, while ensuring obstacle avoidance for themselves and the
tethers. Since obstacles are unknown a priori, the centralized navigation
algorithm can rely only on the partial, real-time information gathered by
each UAV. The supevisory controller’s role is highlighted in Figure ??. Its
inputs are the positions of the drones pi, i = 1, . . . , N , the tether states
Li, i = 1, . . . , N , and the LiDAR readings, si, i = 1, . . . , N gathered by
the drones, while it outputs reference position vectors pref,i, i = 1, . . . , N .
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Figure 3.5: Visualization of look-up function used to take into account the tether catenary
in the proposed navigation algorithm. Dots represent the vertical distance between a
drone and the lowest point of the cable (∆z) as a function of distance along the (X,Y )
plane and Z difference of the two tether ends. Essentially, this is a representation of
the function describing how far lower the lowest point of the cable is with respect to a
drone, given the positions of the two drones the cable hangs from.
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The problem at hand is the design of such a supervisory controller such
that the leader drone reaches its destination ppoi in the inertial reference
(X, Y, Z), while obstacle avoidance is ensured.

3.1.3 Real-time navigation and obstacle-avoidance algorithm for STEM

The vector of decision variables for the optimization problem is
x = [pTref,1, . . . ,p

T
ref,N ]

T ∈ R3N , and a matrix Λ̄ = diag(Λ1, . . . ,ΛN) ∈
R3N×3N is defined, where diag(·) is a block-diagonal matrix and, for i =
1, . . . , N , Λi are 3 × 3 diagonal matrices with the tuning parameters λi ∈
(0, 1) on the diagonal. The navigation algorithm performs the following
steps:

1. collect the data regarding drone positions, tether lengths and sensor
readings: pi, Li, and si, i = 1, . . . , N ;

2. calculate suitable goals for each drone, in the form of position vectors
pgoal,i ∈ R3 in the inertial frame. Collect the goals in vector xgoal =
[pTgoal,1, . . . ,p

T
goal,N ]

T ;

3. build a matrix A ∈ Rp×3N and vector b ∈ Rp that describe free space
as a polytopic region, to be used as constraints on the position refer-
ences;

4. Obtain x∗ as:

x∗ = argmin
x

(x− xgoal)
T Λ̄(x− xgoal)

subject to
Ax ≤ b

(3.8)

5. Feed the optimal position references in x∗ to the corresponding drones,
repeat from (1) at the next time step.

The optimization problem (3.8) is a strictly convex Quadratic Program (QP)
of small size with diagonal Hessian Λ̄ The problem is solvable in very short
times due to its properties [73, 74], therefore it is suitable for real-time
application. The parameters γi in the cost function weigh the distance of
the different drones drone from their goals. A large weight γ1 prioritizes
goal-reaching for the leader over the followers, should the two objectives
be in direct contrast. The core of the approach is the computation of the
goals pgoal,i, i = 1, . . . , N and of A and b. The goal for the leader drone
is always its final destination pgoal1 = ppoi. For the followers, goal pgoal,i+1
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of drone i+ 1 is determined from the current position pi and goal pgoal,i of
drone i:

pgoal,i+1 = pgoal,i − d̄
pgoal,i − pi∥∥pgoal,i − pi

∥∥ , (3.9)

with d̄ and arbitrary, tunable distance parameter. Equation (3.9) formalized
the intuition conveyed by Figure 3.6: vehicle i + 1 should position itself
behind drone i, on the line from latter to its goal, at a distance d̄.
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LeaderFollower

Figure 3.6: Goal assignment on the (X,Y ) plane. The goal of drone i + 1 is lies at
distance d̄ (here 5 m) behind drone i on the line connecting pgoal,i and pi.

Computation of constraints in 2D

Horizontal and vertical constraints are treated differently. The former are
obtained by only considering the horizontal plane (X, Y ). First, obstacle
avoidance for the single UAVs is introduced. LiDAR readings si are infi-
nite if no obstacle is detected along the corresponding direction within the
maximum distance. It is then assumed that if the drone can move along one
of the obstacle-free directions in si until the next sampling period. Further-
more if θs is small (i.e. the scans are dense), it is reasonable to assume that
all sectors of space containing obstacle-free scans also represent obstacle-
free areas (see Figure 3.3). The maximum distance smax form Section 3.1.2
can be set to a very small value to aide navigation in cluttered environments.
It is however necessary to make sure that, given the maximum speed of the
drone (around 2 m

s
in our simulations), the vehicle cannot travel further than
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smax within the time allotted for the solution of the problem. The following
indices are defined:

j
i

= min
j=1,...,M

j : si(j) =∞
j̄i = max

j=j
i
+1,...,M

j : si(k) =∞, k = j
i
+ 1, . . . , j, (3.10)

so that the pair (j
i
, j̄i) identifies an angular sector of space in which LiDAR

readings detect no obstacles. The sector can be described by two lines:[− tan(j
i
θs) 1

− tan(j̄iθs) 1

]
︸ ︷︷ ︸

Ai(ji,j̄i)

[
pX

pY

]
=

[− tan(j
i
θs)pX,i + pY,i

− tan(j̄iθs)pX,i + pY,i

]
︸ ︷︷ ︸

bi(ji,j̄i)

(3.11)

As long as θs
(
j̄i − ji

)
≤ π, the obstacle-free sector can be described as a

polyhedron :

Ai

[
pX

pY

]
≤ bi (3.12)

and is therefore convex.

Remark 2. Some considerations are necessary:

1. If j
i
θs and/or j̄iθs are equal to

π

2
or

3π

2
, then the corresponding

row of matrix Ai
(
j
i
, j̄i

)
and vector bi

(
j
i
, j̄i

)
, should respectively

be changed to [1 0] and pX,i;

2. If Nc > 1 obstacle-free, non-contiguous angular sectors are identi-
fied, then a Nc pairs

(
j
i,l
, j̄i,l

)
, l = 1, . . . , Nc, are extracted from si

instead of one. One of those is eventually selected as:

Ai = Ai

(
j
i,l∗
, j̄i,l∗

)
, bi = bi

(
j
i,l∗
, j̄i,l∗

)
(3.13)

where
l∗ = arg max

l=1,...,Nc

cl (3.14)

and

cl =

∥∥∥∥∥
[

cos
(
j
i,l
θs

)
sin
(
j
i,l
θs

)
cos (j̄i,lθs) sin (j̄i,lθs)

][
(pX,goal,i − pX,i)
(pY,goal,i − pY,i)

]∥∥∥∥∥
∞
(3.15)
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Namely, (3.13)-(3.15) select the angular sector whose borders feature
the largest inner product with the vector pointing from the drone to its
goal. Moving within this angular sector guarantees that the distance
to the goal can be minimized more than it would be in any other one;

3. If θs
(
j̄i − ji

)
> π, then the sector spanning the obstacle-free direc-

tions does not correspond to a convex set. In this case the line with
smallest absolute inner product with vector (pgoal,i − pi) is dropped,
thus selecting a half-plane within the non-convex angular sector. An
example of this is shown in Figure 3.7.

4. If the goal lies between the drone and an obstacle, the sensor readings
can be manipulated to enable movement in the angular sector where
the goal lies.

Figure 3.8 shows an example of this procedure being simulated.
After obtaining the constraints Ai, bi, i = 1, . . . , N for all drones, the

overall constraint matrix can be assembled:

Āi

[
pX,ref,i

pY,ref,i

]
≤ b̄i (3.16)

where ĀN = Ai, b̄N = bN and, for i < N :

Āi = diag(Ai, Ai+1), b̄i =

[
bi

bi+1

]
. (3.17)

Namely, the position reference for each drone must lie inside the intersec-
tion of the obstacle-free regions obtained for the drone itself and of the next
one in the series (i.e. its follower). This forces the two UAVs in line-of-
sight of each other at all times, thus ensuring that the i−th tether connecting
them does not impact obstacles (see Figure 3.9). Finally,A and b from (3.8)
are obtained by considering constraints (3.16) altogether:

A = diag(Ā1, . . . , ĀN), b =

 b̄1
...
b̄N

 . (3.18)

Computation of constraints in 3D

An extension to 3D is not straightforward, because the assumptions imply
a pair of 2D LiDARs is used, which is not equivalent to a 3D sensor. This
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Figure 3.7: The non-convex area is reduced to a convex one by only considering a half-
plane. Green circle: drone i. Red circle: goal pgoal,i.
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Figure 3.8: A drone flies around an obstacle (from left to right). Note how it follows a
linear path, dictated by a constraint.
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Figure 3.9: The feasible space for the position reference of drone i (green circle) is limited
by the one seen by drone i + 1 (magenta square). If drone i were to travel within its
own constraints only, the tether might impact with the obstacles.
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limits the collected information to two planes out of 3D space. As a con-
sequence, only obstacles lying in the geometrical union of the two planes
are detected, and their shape outside such planes in unknown. Therefore, at
each time step the algorithm must choose whether to move within the hor-
izontal or the vertical plane for the current sampling period. Through the
adoption of gimbals for rotating the LiDAR scanning the vertical plane, it
is possible for the leader to carry out the vertical scan in the plane that con-
tains its goal, while the other drones i+1, i = 1, . . . , N−1, scan the vertical
plane that contains drone i. As long as the presented assumptions hold, the
vertical plane where drones i and i+1 lie also contains the i−th tether. Con-
straints in the vertical plane are calculated with the same approach adopted
for the horizontal one (3.10)-(3.18). Denoting with ĀH,i, b̄H,i the terms in
(3.16) related to the horizontal plane, and with ĀV,i, b̄V,i those related to
the vertical one, after the constraint sets have been computed the follow-
ing quantities are derived to determine if a drone should move along the
horizontal or vertical plane:

cH =


0 if ĀH,i

[
pX,goal,i

pY,goal,i

]
≤ b̄H,i

d

([
pX,goal,i

pY,goal,i

]
, CH

)
otherwise

cV =


0 if ĀV,i

[
pXY,goal,i

pZ,goal,i

]
≤ b̄V,i

d

([
pXY,goal,i

pZ,goal,i

]
, CV
)

otherwise

where pXY,goal,i =

∥∥∥∥ pX,goal,i − pX,ipY,goal,i − pY,i

∥∥∥∥ is the relative position on plane

(X, Y ) of the goal with respect to the drone (note that the vertical plane
always contains both points for the leader), d(v,A) is the distance from
point v to set A, finally

CH =

{[
pX

pY

]
: ĀH,i

[
pX

pY

]
≤ b̄H,i

}
; CV =

{[
pXY

pZ

]
: ĀV,i

[
pXY

pZ

]
≤ b̄V,i

}
.

(3.19)
The drone will move along the horizontal plane if cH ≤ cV , otherwise along
the vertical one. This approach privileges the plane in which the distance
between the obstacle-free space and the point of interest (possibly projected
on the considered plane) is smaller. When an obstacle lies between the
drone and its goal, this procedure effectively chooses to travel around it
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Figure 3.10: An example of the calculation of the cost. Since the projection of the goal on
the xy plane lies outside the feasible area, the cost is equal to the angle α, otherwise
it would have been zero. The same calculation is performed with in the zt plane, then
the two are compared to choose a plane where the reference must lie.

in the plane where the required travel length appears smaller. Once the
plane has been selected, its constraints are included in the QP (3.8), to-
gether with additional, linear constraints forcing the movement to happen
exclusively within that plane. The constraints related to the discarded plane
are dropped. Figure 3.10 represents this criterion. In the vertical direction,
the tether is not a straight line. The following linear constraints are in-
cluded, exploiting the map (3.7), to prevent collisiong between the sagging
tether and the underlying obstacles:

pZ,ref,i ≥ (Zobs +∆Z) + (pZ,i − Zi)

pZ,ref,i+1 ≥ (Zobs +∆Z) + (pZ,i+1 − Zi),
(3.20)

where Zobs is the height of the tallest obstacle detected by the vertical Li-
DAR sensor of drone i + 1 and ∆Z is a user-defined safety margin. Con-
straints (3.20) are enforced on both drones i and i+1. Once again, LiDAR
readings are modified if the goal lies between the drone and an obstacle.
This is more common in 3D because the ground is an obstacle and if the
goal is lower than the leader’s position it would otherwise be impossible
to descend. Some stricter linear constraints are also introduced regarding
the reference position of drone N , pref,N , which prevent it from moving
too far away in the (X, Y ) plane from the ground station. This is necessary
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because the tether segment connecting them is the only one with a fixed
end.

The extension to the case of multiple drones follows the same principles:
a new goal is calculated in the same way, the distance of the reference from
it is penalized in the cost function and constraints are enforced on each
drone and the connected ones one to prevent drone and cable collisions.∥∥∥xrefN − xGS∥∥∥ ≤ r∥∥∥yrefN − yGS

∥∥∥ ≤ r.
(3.21)

3.1.4 Simulation results

Simulations were run with MATLAB and Simulink. The latter ran the
continuous-time dynamics of the drones and the tethers and the discrete-
time local controllers between the sampling instants of the supervisory con-
troller, which was instead implemented in MATLAB. The QP (3.8) was
solved with MATLAB’s quadprog. Several simulations were carried out
with different obstacle shapes and positions, covering realistic application
scenarios. It is apparent from simulations that the proposed algorithm can

Parameter Value
mt 3 Kg

ℓt,max 100 m
md 10.92 Kg
R 0.5 m
Ts 1 s
θs 1◦

Tether mass 3 Kg
Max tether length 100 m

Drone mass 12 Kg
Drone radius 1.5 m

Supervisor sampling period 1 s
LiDAR resolution 1◦

Table 3.1: Parameter values employed in the simulation tests.

guide a formation of three drones plus the ground station in an unknown
environment. Obstacle avoidance for both the drones and the tethers is
exemplified in Figure 3.11, where the leader is prevented from heading di-
rectly towards its goal by the intersection of his constraints with those of
its follower. The last few time steps also show how the algorithm correctly
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Figure 3.11: A simulation with two drones and no ground station (the drones move to-
wards increasing y values). Constraints are such that the follower drone limits the
feasible space for the leader, temporarily blocking it from reaching the destination, in
order to prevent cable collisions. The resulting behavior avoids the obstacle.
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Figure 3.12: A simulation of the whole system with three drones and a ground station (the
drones move towards increasing x and y values). Note how the third drone (yellow
triangle) is confined within a restricted area above the ground station.
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detects that the goal lies along a non-free direction but is closer than the
obstacle, and lets the drone approach it in order to get to its destination.
Figure 3.12 illustrates the behavior of the system when the goal is behind
an obstacle, besides highlighting other features:

• The third drone of the formation, which is connected to the ground
station, is constrained to hover close to it:

• The i−th drone aligns itself to the i − 1-th, along the direction con-
nectong the latter to its goal;

• Each aircraft is assigned to move either within the horizontal or verti-
cal plane, depending on its goal and the surroundings obstacles;

• The second drone (Figure 3.12), in the last moments of the simulation,
hovers in placeto prevent a collision between the obstacle and the sec-
ond cable (connecting drones 2 and 3), letting its distance from the
leader grow instead.

3.1.5 Conclusion

A centralized approach was presented to guide a network of tethered drones
in an unknown environment, relying solely on LiDAR measurements. The
algorithm is based on a QP and it operates in real-time, without building
a map, thus it is capable of navigating some dynamical environments. It
drives the formation to incremental exploration of the environment towards
the final goal. It privileges safety over performance, because the obstacle-
avoidance feature is a key for the automated flight of a STEM.
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3.2 The MPC approach

Owing to the relatively recent introduction of STEM, several research gaps
still exist, pertaining to path planning and safe on-line trajectory generation.
The optimization problem presented in the previous section can be modified
and refined to address some of them through a MPC formulation. The
following sections address such gaps through the following contributions:

• the formulation of an optimal mission planner in a nominal environ-
ment, aiming at obtaining a reference configuration to be tracked by
the tethered drones;

• the development of a reactive path planner based on MPC, capable of
driving the system to the desired configuration while avoiding colli-
sions with static obstacles, possibly different from the nominal ones,
using range-limited sensors;

• the validation of the proposed techniques in simulations, with sophis-
ticated drone and tether models.

The issue of optimal planning in a known environment is addressed here,
though it was not tackled in the previous section. This is an expansion of
the scope of the work, independent of the real-time MPC-based algorithm
for path planning, which does not exploit a priori knowledge of the envi-
ronment.

3.2.1 System description and model

The system is largely the same but not identical to the one presented in
section 3.1. For the sake of clarity and correctness, a slightly different and
more detailed notation is introduced here. A series ofNd drones is consid-
ered, numbered from the closest to the furthest from the ground station.
Therefore, i = Nd denotes the leader drone, and the i-th drone is linked
by tether i to drone i − 1 and by tether i + 1 to drone i + 1, with i = 1,
the first drone being connected by tether 1 to the ground station. Kinematic
quantities are expressed with respect to an inertial, right-handed coordinate
system (xf , yf , zf ), with origin at ground level, the (xf , yf ) coordinates
defining a plane parallel to the ground and zf positive upwards. The contin-
uous time variable is t ∈ R, while k ∈ N≥0 the discrete one. Bold symbols
indicate vectors in the 3D space, ·T is the matrix transpose operation and
v(a:b) denotes the entries from the a-th to b-th position of the generic vector
v.
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Tether and winch model

Each of the Nd tethers is modeled as a chain of Nt inner nodes with mass
mt,i,l, l = 1, . . . , Nt, where for simplicity all tethers are modeled with the
same number of masses. As each tether can be reeled in and out from a
winch, the lumped masses are time varying. The position and velocity of
each node are, respectively, st,i,l, ṡt,i,l ∈ R3, i = 1, . . . , Nd, l = 1, . . . , Nt.
Two extreme points are added, fixed either to a drone or to the ground sta-
tion, for a total of Nt + 1 segments. Each inner node is subject to the
gravitational pull and to the forces applied by the two neighboring tether
segments. Elastic and internal friction forces are considered, but aerody-
namic ones are neglected, assuming again that the speed relative to the air
is small. Each tether segment is modeled as the parallel of a nonlinear
spring, capable of transferring force only when taut, and a linear damper
(see Figure 3.4). Dependence on the continuous time t is omitted. Based
on Newton’s second law, the equations of motion for the l-th node in the
inertial reference read:

s̈t,i,l =
(F e,i,l+1 + F e,i,l−1 + F f,i,l+1 + F f,i,l−1)

mt,i,l

−

 0

0

g

 (3.22)

where g is the gravity acceleration, F e,i,l+1 denotes the elastic force pulling
the l-th node towards the next one and F f,i,l+1 the corresponding friction
force. The position and velocity vectors of the first and last nodes are equal
to those of the connected elements, either a drone or the ground station,
and are adopted as inputs to the tether model. On the other hand, the forces
pertaining to the first and last nodes act directly on the connected drones
and affect their motion. Thus, for the i-th vehicle the force applied by the
tethers connected to it is:

F t,i = (F e,i,Nt + F f,i,Nt + F e,i+1,0 + F f,i+1,0) (3.23)

Each tether is coiled around a winch, fixed either to the ground station
or to a drone, so that it can be extended or retracted to maintain the tension
force within acceptable bounds. Denoting with θi(t), θ̇i(t) the angular po-
sition and speed of the i-th winch, its total time-varying mass depends on
the mass of the winch without the tether mw,i, its external radius radius re,i,
the maximum length of the tether l̄, and its linear mass density ρt,i:

mw,i = mw,i +
(
l̄ − re,iθi(t)

)
ρt,i, (3.24)
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assuming θi(t) = 0 when the cable is completely coiled. The mass mt,i,l of
each point of tether i is then:

mt,i,l(t) =
ρt,ire,iθi(t)

Nt

To deal with the cable sag effect, an approximation is introduced. Given
that the height zi in coordinate frame (xl, yl, zl) of the lowest hanging seg-
ment of the i-th cable depends on the relative positions of the vehicles and
the unreeled length of the tether itself, by assuming that the tether is always
at an equilibrium configuration, it is possible to build a lookup function to
be used online, yielding:

zi = ftether(P i,P i+1, re,iθi). (3.25)

Where P i, P i+1 are the positions of drone i and i+1 (or the ground station)
respectively. Therefore, in order to prevent the tether from colliding with
the ground, a linear constraint is added to our planning problems, ensuring
that the height reference for a drone is always greater than zi by an arbitrary
margin zmargin for both of the tethers it is attached to:

P
zf
ref,i ≥ zi + zmargin

P
zf
ref,i ≥ zi+1 + zmargin

(3.26)

Multi-copter model

Without loss of generality identical, symmetric quad-copter models are
employed, each described through six-degrees-of-freedom nonlinear equa-
tions. This is a common choice in literature [75]. The position of drone i
in space is P i(t) =

[
P
xf
i (t), P

yf
i (t), P

zf
i (t)

]T . A local, right-handed refer-
ence frame (xl, yl, zl) fixed to the drone is defined, where xl, yl are aligned
with the drone’s arms, and the zl axis points up. Considering a single drone
(thus dropping the index i for clarity), its control inputs are defined as:

u1(t) =
4∑
j=1

bΩ2
j(t)

u2(t) = a b
(
Ω2

4(t)− Ω2
2(t)
)

u3(t) = a b
(
Ω2

3(t)− Ω2
1(t)
)

u4(t) = d
(
Ω2

2(t) + Ω2
4(t)− Ω2

1(t)− Ω2
3(t)
)

(3.27)

where u1 is the total thrust force along axis zl, and u2, u3, u4 are the yaw
moments around the three axes of the local reference frame. b and d are

68



3.2. The MPC approach

the lift and drag coefficients, a is the distance of a rotor from the center of
the aircraft and Ωj the rotational speed of the j-th rotor. All these inputs
are bounded, since Ωj ∈ [0, Ω̄], j = 1, . . . , 4, where Ω̄ is the maximum
rotational speed of the motors. By applying Newton’s law the dynamical
model reads:

P̈ (t) = 1
md(t)

R(t)

 0

0

u1(t)

+ F t(t)−

00
g


ṗ(t) =

Iyl−Izl
Ix

q(t)r(t) + u2(t)
Ix
− Jp

Ix
q(t)Ωr(t) + dxFt(t)

q̇(t) =
Izl−Ixl
Iy

p(t)r(t) + u3(t)
Iy

+ Jp
Iy
p(t)Ωr(t)− dyFt(t)

ṙ(t) =
Ixl−Iyl
Iz

p(t)q(t) + u4(t)
Iz

(3.28)

where g is the gravity acceleration,md(t) is the time-varying overall drone’s
mass composed by the mass of the drone, the winch and the wrapped tether,
Ixl , Iyl , Izl are the rotational moments of inertia around the local axes, Jp is
the moment of inertia of each motor, p(t), q(t), r(t) are the angular veloc-
ities around axes xl, yl, zl, Ωr(t) is the rotational speed around the related
axis and R(t) is the rotational matrix from local to global coordinates. dx
and dy express the distance between the center of mass and the point where
tether forces act, along the x and y direction respectively.

Each autonomous quad-copter is endowed with a low level controller
that stabilizes it and accepts position vectors as references to track in the
form P ref = [P

xf
ref , P

yf
ref , P

zf
ref ]

T . From the standpoint of a high-level mo-
tion planner, how these references are tracked is not relevant. The reader is
referred to [55] for an example implementation of such low level controller.

Control-oriented model

The whole system’s model entails a chain of nonlinear multi-copter mod-
els. However, if tether forces are kept low by the winches and/or by proper
maneuvering resulting from relative position constraints to be met by the
mission planner, the low-level control system on each drone can reject their
perturbing effects on the positioning precision. Then, the overall system
behavior from the perspective of the high-level navigation strategy is well
described by decoupled linear dynamics for each vehicle, as shown by the
system response in [55]. Moreover, a linear, time-invariant model allows
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the system dynamics to be included as a set of linear constraints in a Fi-
nite Horizon Optimal Control Problem (FHOCP), while the coupling in-
troduced by tethers can be considered in a MPC problem, as detailed in
Section 3.2.3. The control-oriented model is then a continuous time double
integrator with state feedback for each drone:[

Ṗ (t)

V̇ (t)

]
=

[
03×3 I3×3

−KvelKpos −Kvel

] [
P (t)

V (t)

]
+

[
03×3

KvelKpos

]
P ref (t) (3.29)

where V (t) = Ṗ (t) ∈ R3, P (t) ∈ R3 are the drone velocity and position
respectively and 03×3, I3×3 are a matrix of zeros and the identity matrix.
Furthermore, the acceleration of the vehicle is denoted as:

A(t) = Kvel (Kpos (P ref (t)− P (t))− V (t)) . (3.30)

The matrices Kvel, Kpos ∈ R3×3 are suitable gain matrices representing
the state feedback that have to be tuned to obtain a closed loop response as
close as possible to the one of the real system, see Figure 2.2 for an example
with experimental data collected on one of the tethered drones in our lab.

The continuous time model (3.29) is then converted to discrete time with
sampling time Ts, obtaining the desired control-oriented model for the i-th
drone:

xi(k + 1) = Aixi(k) +Biui(k) (3.31)

where xi(k) = [P i(k), V i(k)]
T ∈ R6 is the state of the i-th position-

controlled vehicle and ui(k) = P refi ∈ R3 its input. Thus, the control-
oriented model features as input the position reference P refi(k) consis-
tently with the nonlinear position-controlled model, and as state the posi-
tion and velocity of the vehicle, making it possible to include in the FHOCP
constraints on these quantities and the acceleration as well, through equa-
tion (3.30). Finally, the control-oriented model of the whole system com-
posed of Nd vehicles is defined as:

x(k + 1) = Asx(k) +Bsu(k) (3.32)

where x(k) ∈ R6Nd is a column vector containing the states of the vehicles,
u(k) ∈ R3Nd is the vector of inputs, while As = diag(A1, . . . , ANd

) and
Bs = diag(B1, . . . , BNd

) are block-diagonal matrices defining the overall
system dynamics. Finally, let the selection matrix Pxy ∈ R6Nd×2Nd be
defined such that x(k)Pxy = [x1(1:2)(k)

T , . . . , xNd(1:2)
(k)T ]T , i.e. it selects

the drones’ positions components along the xf and yf axes.
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Sensors

All drones are endowed with a Global Positioning System (GPS) for ab-
solute localization, and an Inertial Measurement Unit (IMU) with filtering
algorithms to estimate reliably the full state. For the purposes of environ-
ment perception, each drone is equipped with a 360◦ wide, planar LiDAR.
Such sensor is used to locate obstacles in real time during flight with respect
to the drone. Its readings are exploited in the formulation of constraints for
the FHOCP, in the form of a convex under-approximation of free space, as
detailed in Section 3.2.3. Each LiDAR is assumed to provide a vector δ(k)
of M = 2π

αs
measurements with angular resolution αs. Each reading can be

expressed as the vector di(k) = δi(k)[cos(αi), sin(αi)]
T , i = 0, . . . ,M−1

where δi(k) is the measured distance between the drone and the closest ob-
stacle in the direction αi. If no obstacle is detected in the αi direction, then
the measurement δi(k) is equal to RL, the maximum detection range. Sev-
eral LiDAR sensors provide data with frequency in the order of 10 Hz or
greater. Furthermore, the readings can be directly employed in formulating
constraints with efficient approaches, as presented in Section 3.2.3. These
two attributes make them convenient for real-time reactive planning.

Environment

A 3D environment is modeled, where the obstacles have constant cross-
section along the vertical direction zf and infinite height. Although this
limits the representable environments, in realistic scenarios obstacles of-
ten can be considered or over-approximated in this way. Furthermore, a
method for dealing with fully 3D obstacles has been presented in [23] and
can be directly implemented within the FHOCP framework presented here.
In order to introduce a safe distance margin from obstacles and to ease their
treatment in the mathematical formulation of the problem, approximated as
elliptical hulls, containing their actual shape, as shown in Figure 3.13. In
this framework, each obstacle is described as a compact set with shape ma-
trix Hj:

Oj .= {χ ∈ R2 : (χ− χcj)THj(χ− χcj) ≤ 1} (3.33)

where χcj is the center of the j-th obstacle and the set of all obstacles is

defined as O .
=

No⋃
j=1

Oj .
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Figure 3.13: Example of the elliptical approximation of non-convex obstacles.

72



3.2. The MPC approach

3.2.2 Problem formulation

The position of all the drones are gathered in a single vector, named con-

figuration of the system C(t) =
Nd⋃
i=1

P i(t). A configuration is admissible

with respect to the set of obstacles O if the positions of all the drones and
the tethers connecting them belong to the free space Sfree

.
= R2 \ O and

the tether lengths are within a maximum value l̄, and a minimum one l:

P i(1:2) + α
(
P i+1(1:2) − P i(1:2)

)
∈ Sfree

i = 0, . . . , Nd, ∀α ∈ [0, 1] (3.34)

l ≤ ∥P i+1 − P i∥2 ≤ l̄ i = 0, . . . , Nd − 1. (3.35)

P 0 denotes the position of the ground station, from here assumed equal to
the origin of (xf , yf , zf ). l̄ and l are bounds on the Euclidean distance be-
tween two drones and as such they do not account for cable sag. Therefore
the upper bound l in particular shall be assigned a conservative value, lower
than the real maximum length of the tether. A twofold problem is defined,
with the aim to obtain:

• An off-line procedure that, given a set of obstacles O and an arbitrary
target position in free space P goal, yields, if it exists, an admissible
configuration C∗ for the system such that the position of the last drone
of the chain coincides with the goal: P ∗

Nd
= P goal.

• An on-line path follower that tracks such configuration C∗ so that the
system converges to it from any arbitrary feasible starting configura-
tion, while guaranteeing avoidance of collisions both with known ob-
stacles O and with new and unknown ones the system may encounter
during the flight.

To solve this problem, a high-level, centralized controller is designed which
can communicate with all drones through the tethered network.

3.2.3 Proposed method

Offline Configuration Planning

To obtain the optimal admissible configuration C∗ that allows the leader
drone to reach the target while avoiding obstacles, the following optimiza-
tion problem is solved off-line. The adopted cost function is:

J(P i,P goal) = ∥P goal−PNd
∥2WT

+

Nd−1∑
i=0

∥PNd−i−PNd−i−1∥2WD
(3.36)
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where ∥x∥2W
.
= xTWx. In (3.36), the first term aims at weighting the

distance of the leader from the target, while the second one accounts for
the distance between a drone and the subsequent one in the chain through
the symmetric positive-definite weighting matrices WT , WD ∈ R3×3. To
guarantee that the drones and the tether don’t collide with an obstacle, the
following constraints are introduced, where P̂ i,λ

.
= (λP i+ (1− λ)P i+1):

(P̂ i,λ − χcj)THj(P̂ i,λ − χcj) > r(θ) + ϵ,

∀λ ∈ [0, 1], j = 1, . . . , NO, i = 1, . . . , Nd − 1 (3.37a)

l ≤ ∥P i − P i−1∥ ≤ l̄, i = 1, . . . , Nd (3.37b)

P
zf
i ≥ zi + zmargin, i = 1, . . . , Nd, (3.37c)

where r(θ) is the radius of the ellipsoid and ϵ is a user-selected safety dis-
tance from the obstacles. In particular, constraint (3.37a) ensures that all
the possible convex combinations of the position of the two drones lay out-
side the ellipsoidal set by a distance ϵ. The following Non-Linear Program
(NLP) is thus obtained:

min
P 1,...,PNd

J(P i,P goal) (3.38)

subject to: (3.37a), (3.37b), (3.37c).

Convex Approximation of Free Space

To derive a set representing an obstacle-free area for two consecutive drones
and the tether, through the definition of convexity, a set containing two con-
secutive vehicles is derived. Let Li(k) .

= {d0(k), . . . , dM−1(k)} ∈ RM be
the set containing the LiDAR measurements of the i-th drone at time k. To
obtain the non-convex obstacle-free area defined by the LiDARs readings
of two consecutive drones i and i+1, the set of overlapping measurements
is defined:

Ld(k) = {dm(k) ∈ Li(k), dn(k) ∈ Li+1(k) :

∥dm(k)− Pi+1(1:2)(k)∥2 < RL ∧ ∥dm(k)− Pi(1:2)(k)∥2 = RL,

∥dn(k)− Pi(1:2)(k)∥2 < RL ∧ ∥dn(k)− Pi+1(1:2)(k)∥2 = RL,

∀m,n = 0, . . . ,M − 1} (3.39)

Thus, the merged readings are:

Li,i+1(k) = Li(k) ∪ Li+1(k) \ Ld(k). (3.40)
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Figure 3.14: A representation of the described quantities. The triangles represent two
connected drones. The red points represent the merged LiDAR readings Li,i+1(k), the
dashed line depicts the discretized ellipsoid and the yellow area corresponds to the
convex approximation of free space.
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Li,i+1(k) is the cardinality |Li,i+1(k)| of the merged readings. Starting from
the set Li,i+1(k), the goal is to derive the largest convex polytopic set con-
taining the two vehicles. To do so, a two step procedure is advanced: (i)
solution of a Linear Program (LP) to compute the largest ellipsoidal set in
Li,i+1(k) with major axis directed along the tether (ii) derivation of a poly-
topic under-approximation of the ellipsoidal set and iterative expansion of
its vertices to maximize the area of the polytope. The equation of an ellip-
soid in the Cartesian plane reads:

k1x̃(x, y)
2 + k2ỹ(x, y)

2 = 1, (3.41)

and functions x̃ : R × R → R, ỹ : R × R → R are defined, taking into
account its offset from the origin and its rotation around it:

x̃(x, y) = (x− x0)cos(α) + (y − y0)sin(α) (3.42)
ỹ(x, y) = (y − y0)cos(α) + (x− x0)sin(α)

where (x0, y0) is the center of the ellipsoid and α is the angle of the ro-
tation of its major axis. To obtain the set with maximum surface area in
Li,i+1(k)

.
= {d0(k), . . . , dLi,i+1(k)−1(k)} the following LP is solved:

min
k1,k2

k1 + k2 (3.43)

subject to
k1x̃(Pi1(k), Pi2(k)) + k2ỹ(Pi1(k), Pi2(k)) ≤ 1,

k1x̃(Pi+11(k), Pi+12(k)) + k2ỹ(Pi+11(k), Pi+12(k)) ≤ 1,

k1x̃(dm) + k2ỹ(dm(k)) ≥ 1, ∀m = 0, . . . , Li,i+1(k)− 1,

where the first two constraints impose the membership of the position of the
drones to the ellipsoidal set while the last one ensures that LiDAR measure-
ments Li,i+1(k) lie outside the set. Then, the convex-hull of samples placed
on the ellipsoid at a selected constant angular distance one from the other
allows its discretized under-approximation as shown in Fig. 3.14. This is
exploited as a starting base to build a polytopic under-approximation of the
free space Dj(k), j = 1, . . . , Nd, according to the procedure described in
Section III-A of [58], where the obtained vertices are iteratively expanded
until they reach a LiDAR reading. To take into account the dimensions of
the vehicles, its maximum encumbrance is removed from the LiDAR read-
ings before the computation of the convex under-approximation of the free
space. The result of this elaboration is summarized in Fig. 3.14.

Remark 3. By construction, the proposed algorithm ensures that the cur-
rent position (xf , yf ) of two consecutive vehicles xi(1:2)(k), xi+1(1:2)(k) and
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their tether is contained in the convex under-approximation of the free-
space Dj(k), i.e. a safe set.

Finally, the Nd − 1 convex polytopes computed at time k are collected
for each pair of drones in the following set:

S(k) = {Dj(k), j = 1, . . . , Nd} (3.44)

Online Path Following

A real-time path following strategy is now necessary, to have the system
state track the configuration C∗ obtained in Section 3.2.3. To derive an
approach able to react to unexpected obstacles, only real-time information
provided by the LiDARs is exploited. To guarantee feasibility in a receding
horizon fashion, for each vehicle and at each time instant, a trajectory is
sought for, contained by the obstacle-free regions S(k) and null velocity
at the end the prediction horizon N ∈ N. The leader drone sequentially
tracks the terminal positions of all drones C∗, one at a time and in order,
from i to Nd. When one is reached within a certain distance, the setpoint
switches to the following one, up until the last. These are collected in the
vector Ĉ = [C∗T

1:3,C
∗T
4:6, . . . ,C

∗T
3Nd−2,3Nd

]T ∈ R3Nd . The follower drones
(i.e. from the first to the Nd − 1-th) are given as reference at time k a point
in space belonging to the line connecting the following drone to its goal, at
an arbitrary, user-defined distance d̄i behind it:

P refi(k) =
P i+1(k)− P refi+1

(k)

∥P i+1(k)− P refi+1
(k)∥

(
∥P i+1(k)− P refi+1

(k)∥+ d̄i
)

i = 1, . . . , Nd − 1. (3.45)

This approach aligns each drone behind the following one, allowing the
latter maximum freedom to move towards its goal. Thus, at each time step
k the vector of position references for all the drones is defined as Pt(k) =
[P t1(k)

T , . . .P tNd
]T . x(j|k) is the state of system (3.32) at time k + j

predicted at time k. To track the position references Pt(k) the following
cost function is considered:

J(x(k), Pt(k)) =
N∑
j=1

Nd∑
i=1

∥xi(1:3)(j|k)− P ti(k)∥2Q (3.46)

where Q ∈ R3×3 is a symmetric positive-definite weighting matrix. Now,
denoting the vector of decision variablesU = [u(0|k)T , . . . , u(N−1|k)T ]T ∈
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R3NdN , the FHOCP P(x(k),S(k), Pt(k)) can be stated:

min
U
J(x(k), Pt(k)) (3.47a)

subject to

x(j|k) = Asx(j − 1|k) +Bsu(j − 1|k), ∀j ∈ NN
1 , (3.47b)

−Ā ≤ Kvel

(
Kpos

(
ui(j|k))− xi(1:3)(j|k)

)
− xi(4:6)(j|k)

)
≤ Ā,

∀j ∈ NN−1
0 , ∀i ∈ NNd

1 , (3.47c)

−V̄ ≤ xi(4:6)(j|k) ≤ V̄ , ∀j ∈ NN
0 , ∀i ∈ NNd

1 , (3.47d)

xi(1:2)(j|k) ∈ Di ∩ Di+1, ∀j ∈ NN
0 , ∀i ∈ NNd−1

1 , (3.47e)

xNd(1:2)
(j|k) ∈ DNd

, ∀j ∈ NN
0 , (3.47f)

∥xi+1(1:2) − xi(1:2)∥22 ≥ l2, ∀i ∈ NNd−1
0 , (3.47g)

∥xi+1(1:2) − xi(1:2)∥22 ≤ l̄2, ∀i ∈ NNd−1
0 , (3.47h)

xi(3)(j|k) ≥ zi + zmargin, ∀j ∈ NN
0 , ∀i ∈ NNd

1 , (3.47i)

xi(4:6)(N |k) = 03×1, ∀i ∈ NNd
1 , (3.47j)

x(0|k) = x(k) (3.47k)

where all inequalities and equalities are element-wise, Nb
a = {n ∈ N | a ≤

n ≤ b} and Ā, V̄ are the vehicle’s maximum acceleration and veloc-
ity vectors, assumed here for simplicity to be identical for all the vehi-
cles. The FHOCP (3.47) presents linear constraints for the system’s dy-
namics (3.47b), acceleration (3.47c), velocity (3.47d) and position (3.47e),
(3.47f), while the nonlinear constraint (3.35) defining the maximum and
minimum tether lengths, is imposed through the non-convex quadratic con-
straint (3.47g) and the convex one (3.47h). Finally, linear constraints are
imposed on the altitude of the vehicle (3.47i), on the terminal state (3.47j)
and on the initial condition (3.47k). Note that although zi is nonlinear in
the drones’ states (see (3.25)), its value is calculated a each time step, be-
fore solving the problem, and assumed constant until the next iteration,
therefore (3.47i) is linear. Thus, the FHOCP P(x(k),S(k), Pt(k)) is a
non-convex QCQP, where the non-convex constraint is (3.47g). Although
non-convex, the problem structure can be exploited to efficiently find a
local minimizer with general-purpose nonlinear optimization algorithms,
such as Interior Point OPTimizer [76]. The solution of the FHOCP (3.47) is
U∗(x(k),S(k), Pt(k)). Furthermore, k∗(k) ≤ k denotes the latest sampling
instant leading to a feasible FHOCP P(x(k∗(k)),S(k∗(k)), Pt(k∗(k))).
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Due to the time-varying nature of state constraints, the recursive feasibil-
ity of the problem is no more guaranteed with standard receding horizon
strategies. Thus to guarantee the existence of a feasible problem at each
time step, the FHOCP (3.47) is embedded in the following receding hori-
zon strategy, similarly to the one presented in [58]: Algorithm 1: Receding
horizon strategy

1) At time k compute the set S(k) containing the safe sets for all the
pairs of drones.

2) if P(x(k),S(k), Pt(k)) is feasible, apply to the system the first
control input in the optimal sequenceU∗(x(k),S(k), Pt(k)). Store
the set S(k) as S(k∗(k + 1)) and set k∗(k + 1) = k.

else solve P(x(k),S(k∗(k)), Pt(k)) and apply to the system the first
control input in the optimal sequence U∗(x(k),S(k∗(k)), Pt(k)).
Set k∗(k + 1) = k∗(k).

3) set k = k + 1 and go to 1).

The time-invariant nature of the environment considered in this work im-
plies that the safe sets Dj(k) depend only on the system state x(k). The
proposed MPC approach is not a static state-feedback law, but a dynamic
controller with internal states k∗(k) and inputs x(k) and Pt(k):

u(k) = κ(x(k), k∗(k), Pt(k))

k∗(k + 1) = η(x(k), k∗(k))
(3.48)

where functions κ : R6Nd × Z × R3Nd → R3Nd and η : R6Nd × Z → Z
are implicitly defined by Algorithm 1 leading to the following closed loop
system:

x(k + 1) = Ax(k) +Bκ(x(k), k∗(k), Pt(k))

k∗(k + 1) = η(x(k), k∗(k))
(3.49)

The role of variable k∗(k) is to guarantee the existence of a feasible FHOCP
at each time step despite the time-varying nature of the safe convex set
S(k).

Remark 4. The guaranteed existence of a feasible FHOCP holds only
when unknown but static obstacles are considered in the problem. When
the environment is dynamic, additional assumptions must be considered
and it is currently subject of our research.
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Lemma 2. Assume that at time k = k0, the FHOCP (3.47) is feasible and
x(k0)Pxy ∈ Sfree, (P i+1(1:2)(k0) − P i(1:2)(k0)) ∈ Sfree , ∀i ∈ NNd−1

1 i.e.
the drones and the tethers are initially in an obstacle-free region. Then, by
applying Algorithm 1, the trajectory of the close loop system (3.49) is such
that x(k)Pxy ∈ Sfree, (P i+1(1:2) − P i(1:2)) ∈ Sfree, ∀k > k0.

Proof. Lemma 2 is proven for k = k0 + 1; since k0 is a generic sampling
instant, the result will then follow by induction. At time k = k0 the FHOCP
(3.47) is feasible and k∗(k0 + 1) is set equal to k0. ∀k ≥ k0 denotes the
optimal input sequence U∗(k) = [u∗(0|k)T , . . . , u∗(N − 1|k)T ] obtained
by solving either P(x(k),S(k), Pt(k)) or P(x(k),S(k∗(k)), Pt(k)) and
leading to the optimal state trajectory X∗(k) = [x∗(1|k)T , . . . , x∗(N |k)T ],
where x∗(N |k) is a steady state for system (3.32) (see constraint (3.47j)).
At time k0 + 1, there are only two possibilities:
A) If P(x(k0+1),S(k0+1), Pt(k0+1)) is feasible, x(k0+1)Pxy ∈ S(k),
see (3.47e) (3.47j).
B) Conversely if P(x(k0 + 1),S(k0 + 1), Pt(k0 + 1)) is not feasible, the
problem P(x(k0 + 1),S(k∗(k0 + 1)), Pt(k0 + 1)) is solved, where a sub-
optimal solution can be easily built by considering the tail of U∗(k∗(k0 +
1)) = U∗(k0), i.e. [u∗(1|k∗(k0 + 1))T , . . . , u∗(N |k∗(k0 + 1)T , 01×3Nd ],
since the terminal state ofX∗(k∗(k0+1)) = X∗(k0) is a steady state for the
system (3.32) (see (3.47j)). Thus, in this case x(k0+1)Pxy ∈ S(k∗(k0+1)).
Therefore in both cases A) and B) x(k0 + 1)Pxy ∈ S(j), with j ≤ k0 + 1.
Now, by construction each convex polytope Dj(k) ∈ S(k) is an under-
approximation of the obstacle-free region containing two drones and, due
to its convexity, also the segment (P i+1(1:2)−P i(1:2)) representing the tether.
It was thus proven that x(k0)Pxy ∈ Sfree, (P i+1(1:2)(k0) − P i(1:2)(k0)) ∈
Sfree ⇒ x(k0 + 1)Pxy ∈ Sfree, (P i+1(1:2)(k0 + 1) − P i(1:2)(k0 + 1)) ∈
Sfree.

Remark 5. Lemma 1 guarantees an obstacle free-trajectory for the control-
oriented model (3.32), however the real system exhibits a mismatch with
respect to the model (3.32). This mismatch can be estimated and bounded
with suitable uncertainty quantification techniques (see e.g. [77,78]) and it
can be considered with suitable robust approaches (see e.g. [79, 80]).

3.2.4 Results

In order to test the described procedures, several simulations were carried
out in the same virtual environment, on a Quad-Core Intel Core i7 (2.8
GHz, 16 GB) on MATLAB 2021a, considering a system of three drones
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Figure 3.15: A representation of the planner in action. Stars denote the tracked optimal
configuration C∗, whereas the lines with the ‘*’ symbol are the predicted trajectories
over the horizon N . Points represent the merged LiDAR readings Li,i+1(k) while the
colored surfaces are the polytopes Dj(k). Blue and red ellipses portray known and
unknown obstacles, respectively.
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connected to a ground station. Results of our simulations captured in Fig.
3.16 show that the configuration planning procedure finds admissible solu-
tions for the optimal configuration C∗ in various scenarios. Furthermore,
simulations of the on-line configuration tracking algorithm with a sampling
time Ts = 0.5 s show that the system tends to the desired state, while each
follower tries to position itself behind the next drone during the flight, see
Fig. 3.16. This is the case in the presence of previously unknown obsta-
cles too. Even though adding an obstacle in an arbitrary position could
in principle make a previously optimal configuration not admissible, when
this happens the system can converge to a slightly different one where the
leader drone still ends up in P goal. Fig. 3.15 shows an example of this,
where an obstacle is introduced near the point (6.5, 0.5) after choosing the
configuration, whose presence is revealed to the UAVs by the LiDAR read-
ings. It induces the second drone in the chain to stop slightly farther than its
originally intended destination. It should also be noted that the MPC prob-
lem described in Section 3.2.3 exhibits a non-convex quadratic constraint,
and has an average solution time of 0.23 s . Though it depends on the hard-
ware, such a solution time allows applications of this framework in safety
critical environments. Furthermore, the solution process can be decentral-
ized and tackled by each drone’s on board computer. In fact, the nature of
constraints is such that they only affect pairs of connected drones at most,
thus the problem can be solved cooperatively by each agent calculating the
next best control action for itself, as long as it has access to the positions
and LiDAR readings of the previous and next drones to formulate suitable
obstacle avoidance constraints.

3.2.5 Conclusion

An approach to navigate systems of tethered multicopters in a partially
known environment has been presented, where an off-line approach com-
putes the optimal configuration to reach a target considering the known
obstacles, and a real-time MPC algorithm allows to reach the desired con-
figuration despite the presence of unexpected obstacles. A novel approach
to approximate the free-space with a convex polytope able to guarantee
that the vehicles and tethers remain in an obstacle-free area has been used,
together with a strategy able to guarantee the existence of a feasible prob-
lem at each time step and consequently guarantee obstacle avoidance. The
current research activities aim to include uncertainty and model mismatch
quantification to robustify the approach, distribute the problem between the
different vehicles and include dynamic obstacles.
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Figure 3.16: A representation (top) of several runs of the off-line optimization. Each
depicted configuration is the optimal solution of problem (3.38) with the goal of the
leader drone (red star) as input. Note that for P goal,1:2 = (14, 8) the target is un-
reachable, due to the limitations on tether length. 3D view (bottom) of a simulation.
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3.3 Reactive Path Planning for Collaborative Tasks

A tethered connection between a drone and the ground can transfer things
other than power. Some systems use UAVs to deliver fluids with precision,
for tasks such as spray-painting [81], coating, cleaning [82] and watering.
In such scenarios an autonomous and collaborative planner is necessary
to guide the aircraft in an ideal position and keep the tether away from
obstacles. In this work, we focus on the spray-painting task and we present
a reactive motion planner for a drone that enables such task. A human
operator holds one end of a hose to simulate the action, while the other
end is fixed to the ground. A single drone is connected to the hose around
its middle point, and its autonomous controller is tasked with allowing the
maximum freedom of movement to the human operator while ensuring that
the hose does not touch obstacles. This implies that the drone must steer
clear of obstacles too. The project presented here is based upon a previous
research effort, described in [83], and extends it by enabling the system to
work in an unknown outdoor environment.

While several controllers for unconstrained drones have been designed
and deeply researched in literature, the autonomous control of tethered or
otherwise constrained UAVs is still developing. Initially, some results have
been published regarding the control of drones that physically interact with
the environment [84] and that use tethers specifically [85]. This opened the
road to the exploration of multi-drone tethered systems, where the phys-
ical coupling of the vehicles plays a non-negligible role on the system’s
stability. Such systems can potentially be used for transporting loads [86].

A niche research area has developed around systems of tethered mul-
ticopters that draw power through the tether [55]. This configuration is
offered as a solution to the problem of limited freedom of movement: by
connecting multiple drones in series, the overall system enjoys more flexi-
bility and can reach behind obstacles. Controllers have been proposed for
autonomous system-level motion planning, based on different variations of
the same system, with fixed length tethers [87] and reeling ones [23]. An-
other valid idea is to conceptualize the system as an over-actuated robotic
arm and apply standard robotics path planning techniques [64]. These
projects entail multiple aircraft, always guided by a centralized controller.
Tethered drones have also been deployed for human interaction tasks. One
important project in this regard is AERO-GUIDE [88, 89], where an au-
tonomous UAV guides a blindfolded human through space by pulling the
cable that connects them and controlling the force exchanged through it.
The work in the present discussion stems from a previous project, where
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a spray-painting task is simulated by a human [83]. As such, it is also
based on the same theoretical framework, that of RMPs (Riemannian Mo-
tion Policies) [90].

With respect to the existing literature, and especially the previous itera-
tion of this project [83], we provide the following contributions:

• the design of an improved controller, combining RMPs with the real-
time readings of a LiDAR sensor, thus solving the necessity of a pre-
cise map of the environment. This not only enables the system to work
in outdoor, previously unexplored environments, but it also allows the
system to react to slowly moving obstacles;

• a method for estimating the state of the tether connecting the drone
to the end effector, so that collisions with obstacles can be avoided,
together with a comparison of two implementations;

• a technical description of the practical challenges in the realization of
a working prototype of the system and our proposed solutions.

Throughout the discussion, we focus on the specific use case of spray-
painting, tough the same considerations apply to similar tasks such as solar
panel cleaning, coating, roof snow removal and firefighting, some of which
can already be carried out with drones [91, 92]. Even though we focus on
one use case, the planner we propose, like many others existing in literature,
is broadly applicable to the wide class of tethered UAV systems and collab-
orative task, whether the end effector is a human or another robot. Further-
more, it can be used in tethered systems of multiple drones described for
example in [23, 87], for which a fully decentralized solution does not exist
yet, to the best of the authors’ knowledge.

In the following section the problem is defined and hypotheses are in-
troduced, together with notation. In section 3.3.2 we describe the system
and in 3.3.3 the designed controller, then we present test results obtained
in simulation and through experiments (section 3.3.4). We summarize our
conclusions in section 3.3.5.

3.3.1 Problem Formulation

We design a controller for a system composed of a tether, representing a
hose through which paint flows towards an end effector, a human operator
holding such end effector and a single drone, fixed to the rope around its
mid-point. The tether is fixed to the ground at the other end. The aim
of our automatic controller is to guide the drone in space, without human
intervention, to achieve the following list of goals:
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• to facilitate the task for the human operator, by allowing him the max-
imum freedom of movement and holding part of the weight of the
tether;

• to prevent collisions between the drone and obstacles, as well as be-
tween the tether and obstacles;

• to allow the system to operate in a previously unknown environment,
either indoor or outdoor, by sampling it with a LiDAR sensor. The
environment can contain slowly moving obstacles;

• to position the drone such that it is possible for its sensors to estimate
the state of the rope by measuring the position of the end effector;

During the development of the controller, some hypotheses were intro-
duced. Namely, we assume that obstacles have constant cross-section ver-
tically and the human operator is always visible within the frame of the
camera mounted on the drone, and his position can therefore be estimated.
The position of the robot is defined as q ∈ R3 We describe the position of
the end effector as the point in 3D space pe ∈ R3, and the position of the
fixed end of the rope as ps ∈ R3. We assume without loss of generality that
ps is constant through time.

3.3.2 Models

The Drone

We employ a hexacopter both in simulations and in experimental valida-
tion, though the planner is sufficiently high-level to be independent of the
aircraft’s configuration. The drone has low-level attitude and altitude con-
trollers and it accepts position, velocity and acceleration references, such
that it can autonomously hover in place or integrate an acceleration into a
reference trajectory and then track it. The planner thus generates motion
policies in terms of accelerations.

The Rope

To manipulate the rope, the system needs to know the shape of the rope.
We estimate the shape by involving a rope model [REF]. The robe is mod-
eled as a sequence of nodes with mass connected by springs. We evaluate
the forces, e.g., gravity and external forces, added to the node one by one.
Then, we update the rope state with position-based verlet integration. It
integrates accelerations to positions while considering position-based con-
straints for representing collisions with the obstacles or the ground.
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3.3.3 Method

Odometry

To hover and move through space autonomously and precisely, the drone
performs odometry based on its on-board IMU and LiDAR sensor readings.
The two are fused in a framework called FAST-LIO [93] (Fast LiDAR-
Intertial Odometry), based on a computationally efficient extended Kalman
filter approach, and resulting in a quick and rather precise estimation of the
vehicle’s position in the environment.

End Effector Detection

The real configuration of the rope is a priori unknown, but its knowledge is
necessary to design motion policies that prevent its collision with obstacles,
therefore it must be measured or estimated. Given that a rough estimate is
sufficient for obstacle avoidance, we measure the position of the end of the
rope the human is holding and combine it with the positions of the drone
and the other, fixed end of the tether, then we exploit the model introduced
in section 3.3.2 to estimate the positions of the lumped masses. Note that
this approach can correctly estimate the configuration of the rope when it
is in contact with no obstacles or with known ones, like the ground plane,
but not with unknown ones. The estimate is therefore reliable as long as
collisions are avoided.

Several solutions were considered to tackle the estimation problem, rul-
ing out force sensors installed on the drone and measuring the force ex-
changed with the rope, as this would only yield an inaccurate estimate of
the direction where the end effector lies with respect to the drone, but not
the distance, which is crucial for establishing the position in 3D. Vision-
based methods were employed and compared instead, whereby the end ef-
fector position is estimated by recording it with a camera. Because the
human might occlude the visual line of sight, the position of the operator
is taken as a proxy for the position of the end effector, assuming the lat-
ter can be obtained by adding a fixed offset to the former. This makes the
estimation more robust during operation at the cost of accuracy, but our ex-
perimental validation shows that such loss does not significantly impact the
operation of the system, as the planner not only prevents contact between
rope and obstacles, but it also keeps a certain safety margin between them.
We tested two frameworks in particular: one based on You Only Look Once
(YOLO) [94] human detection and another one based on AprilTags [95].
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YOLO The first technique consists in identifying the human operator in
the image frame with a suitably trained YOLO neural network and back-
projecting its position in 3D. Note that the projection from a single pixel in
a 2D image to a point in 3D space is under-determined, therefore it is only
possible to obtain a direction along which the object it represent lies, not
the correct distance. To recover it, it is necessary to calculate a scale factor,
i. e. the ratio between its height in the physical world and in the image
frame at a known distance. Supposing, for example, a person of height H
appears h pixels tall in the image frame when standing at distance l from
the camera, the scale factor is:

s =
hl

H
. (3.50)

The height in the image frame h is one of the outputs of the YOLO de-
tection procedure, but the network cannot discriminate between a human
figure completely contained in the image frame or just a part of it. As
a consequence, the operator should be always inside the frame and com-
pletely visible to obtain a reliable estimate of his distance. Given the scale
factor, it is possible to back-project the position of any object of known size
from its appearance in the image. Adopting the standard convention of a
camera reference system where Xc points to the right, Yc points down and
Zc inside the image, and assuming that the human stands parallel to the im-
age plane, the spatial coordinates of the middle point of the human operator
with respect to the frame are:

X =

(
(wmin + wmax)

2
− cx

)
Z

fx
(3.51)

Y =

(
(hmin + hmax)

2
− cy

)
Z

fy
(3.52)

Z =
sH

hmax − hmin
, (3.53)

wherewmin, wmax represent the horizontal extrema of the rectangular bound-
ing box containing the operator and hmin, hmax the vertical ones. The re-
maining symbols represent the camera intrinsic parameters calculated dur-
ing calibration: horizontal and vertical focal lengths (fx, fy) and coordi-
nates of the optical center (cx, cy). If the camera is mounted on the drone
at an angle, i. e. its frame is such that Zc is not parallel to the ground, but
inclined by θ with respect to the horizontal plane, then the effect of such
angle on the projection must be taken into account (see Figure 3.17), and
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Figure 3.17: Back-projection of the position of the human operator into 3D space.

the estimate of the distance becomes

Z =
sH

hmax − hmin
cos(θ). (3.54)

It is worth noting that the adoption of a neural network-based approach
for image analysis and object detection requires the use of dedicated, spe-
cialized hardware like a Gprahics Processing Unit (GPU) to run the estima-
tion at a sufficient rate without overwhelming the CPU.

AprilTags The second technique applies the same mathematical principles
to estimate the distance of a set of visual markers with known physical
sizes. At the cost of placing markers on the human operator in advance,
one can obtain an estimate of his distance from the camera by employing
a readily available software application [95]. Differently from the previous
approach, the AprilTag library does not rely on neural networks, but rather
on line and corner detection algorithms. Furthermore, it provides estimates
of both the position and the orientation of a marker in space. To counter the
fact that a marker might become invisible as a consequence of a rotation, it
is possible to define marker bundles, i. e. sets of markers whose dimensions
and relative positions are known. Mounting such a marker bundle on a
helmet ensures the position of the operator can always be estimated, as
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long as the markers are within the image frame and appear sufficiently big
in it (see Figure 3.20). This method also theoretically allows a more precise
tracking of the end effector, by applying the markers directly on it.

RMPs

Riemannian Motion Policies are a motion planning framework, recently de-
veloped in the context of robotic manipulation [90]. They are essentially
differential equations that tie together the position, velocity and accelera-
tion vectors of a robot, ans as such can be interpreted as maps: given a
certain state (position and acceleration), a desired acceleration can be ob-
tained by designing the shape and parameters of the differential equation.
Applying this approach is particularly convenient because:

• several policies can be designed for separate tasks (goal-following,
obstacle avoidance, ...) and then mathematically combined through a
weighted summation that results in a consistent global behavior. The
weights in the sum can be tuned to activate some policies in certain
sub-spaces (i. e. only preventing the robot from accelerating in the
direction perpendicular to an obstacle, but not in the parallel one) and
to prioritize some behaviors over others (i. e. avoiding obstacles is
more important than tracking a position reference);

• each policy can be formulated in in the space where it is most conve-
nient to do so (either the task space X or the robot configuration Q),
and then combined through the pullback operation.

Supposing that q ∈ Q ⊆ Rd is the system’s configuration in a d−dimensional
configuration space, that x ∈ X ⊆ Rn is a configuration in the n−dimensional
task space, and that there exists a differentiable function ϕ : Q → X , then
we can write x = ϕ(q) and call J = ∂ϕ

∂x
the Jacobian matrix. We can then

define a natural form as the pair (M ,f)X where the matrices M and f
represent the dynamic of the system in the equation:

M(x, ẋ)ẍ+ f(x, ẋ) = 0. (3.55)

The same equation can be expressed in the canonical form (M ,h)X :

ẍ+ h(x, ẋ) = 0, (3.56)

with h = M−1f , and in the policy form (M , π)X :

ẍ = −h(x, ẋ) = π, (3.57)
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π being the acceleration policy. To transform a policy from configuration
space Q to task space X , the pullback operation is defined as

pullϕ(M ,f)X = (JTMJ ,JT (f +MJ̇q̇))Q. (3.58)

Once all the p policies are expressed in the same space, each contributing
a certain desired acceleration πi with i = 1, . . . , p based on the system’s
position and velocity, they can be summed to obtain a single acceleration:

π̃ =

(
p∑
i

W i

)−1 p∑
i

W iπi, (3.59)

where the matrices W i are suitably designed and tuned weights, also called
priority metrics. We can then define the single policies to design the behav-
ior of the system. Some have the same form as those in [83], with modified
numerical values to better suit the different flying platform.

Goal Reaching The task of reaching a goal in space can be designed by
writing a potential function ψ(x) with a minimum in the desired position.
The related acceleration can be obtained naturally as the negative gradient
of such function ẍ = −∂ψ(x)

∂x
, pushing the system towards the destination.

A suitable choice is therefore defining the function to be minimized as the
difference between the current position and the desired one xo = ϕ(q) =
q − qo, where the desired position’s x and y coordinates are

qo,xy = p1,xy + d1
qxy − p1,xy∣∣∣∣qxy − p1,xy

∣∣∣∣ (3.60)

and the height along the z axis is

qo,z = p1,z + d1 cos(45
◦) = p1,z +

d1√
2

(3.61)

This defines the goal of the drone as the point in space d1 meters away
from the end effector, obtained by traveling d1√

2
meters along the direction

between the current end effector position p1 ∈ R3 and the current drone
position q along the xy plane, and d1√

2
upwards from there. The height

differential is necessary so that the camera, mounted at a 45◦ angle, keeps
the end effector as close as possible to the center of the image frame, so
that it is possible to estimate its position. A convenient negative gradient is
then defined as:

∂ψ(xo)

∂q
= kψ tanh(λψϕ(q)). (3.62)

91



Chapter 3. Tethered Multicopter Networks

The hyperbolic tangent form has the advantage of keeping the acceleration
constant when the distance from the goal is big, and quickly reducing it to
zero when such distance is small. The maximum acceleration is determined
by kψ and λψ specifies how quickly acceleration decreases once the drone
approaches the target.

A straight-forcing policy is also added to manipulate where the drone
will converge, so as to align its position along the direction connecting the
end effector to the point pN where the rope is fixed:

xs = ϕ(q) = q − qs (3.63)

qs = p1 + d1
pN − p1

||pN − p1||
. (3.64)

The associated potential is identical to that of the previous policy

Obstacle Avoidance We design a set of policies to prevent collisions both
between obstacles and the drone and between obstacles and the rope. A
natural way to do so is to define as task state a vector x pointing from the
point on obstacle to be avoided to the drone or rope, and then once again
define the acceleration as the negative gradient of a function of the task
state: π(x) = −∂ψ(x)

∂x
. The related priority metric can be set for simplicity

as W = I , although it is also possible to formulate it as a function of
robot’s state W (x, ẋ). As such, the policy could be forced to only activate
for the components of the robot’s speed that are approaching the obstacle
and not for the parallel ones, thus preventing unnecessary speed reduction
[96]. Note that the obstacle shape is unknown and only partially observable
through the LiDAR sensor, therefore a sensible strategy is to avoid, at each
time step, contact with the closest detected obstacle by accelerating in the
opposite direction if the distance is too small. Another feasible strategy is
to obtain the same acceleration by applying the same considerations to a
greater number of detected obstacle points, but the only advantage of doing
this would be to reduce oscillating behavior when the drone is confined in
a tight corridor-like space between two obstacles.

For the drone collision avoidance policy, we therefore design the task
map as

xd = δd = q − qc, (3.65)

where δd ∈ R3 represents the vector pointing from the closest obstacle
point qc ∈ R3 measured by the drone’s LiDAR sensor to the current posi-
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tion of the drone q ∈ R3. The acceleration policy is defined as

πd = −(ζd + (1− ζd)q̇2)
kdδd
||δd||

(3.66)

ζd =
1

2
(1− tanh(λd(||δd|| − ld))), (3.67)

where ζd is a switching function parameterized by λd, supporting two dif-
ferent behaviors when the robot is closer to the obstacle than a certain tun-
able threshold ld and when it is further away. In the former case ||δd|| ≪ ld,
therefore ζd ≈ 1 and the resulting acceleration is πd = −kd δd

||δd||
, i. e. an

acceleration of magnitude kd pointing away from the obstacle. In the latter
case ||δd|| ≫ ld, therefore ζd ≈ 0 and the resulting acceleration is further
scaled by the squared speed q̇2, which enables the robot to hover at ld from
the obstacle when the speed approaches zero. The priority metric W d is
also a function of the robot’s speed:

W d =
1

2
(1− tanh(λdq̇ · δd)). (3.68)

This weighs the policy proportionally to the projection of velocity compo-
nent along the obstacle-drone direction q̇ · δd, scaling down the priority
when the speed is not directed towards the obstacle.

For rope-obstacle avoidance, we define policies of the same form with
small differences. One policy per rope model node is defined, whose task
state is

xr = δid = pi − qc,i, (3.69)

where δid is the vector pointing to the current position pi of the i−th node in
the rope model, from the obstacle point qc,i closest to it. For each task, the
related policy πir has the same shape as (3.66), depending on a switching
function ζr mirroring (3.67), including analogous parameters with possibly
different numerical values. The priority metric is instead the combination
of two components, W r = W r,1W r,2. While W r,1 retains the same form
of (3.68), we add a second criterion for weighting:

W r,2 =
1

2
(tanh(λr(dr − sr)) + 1)I (3.70)

dr = d1,max − ||q − p1|| . (3.71)

This penalizes the stretching of the rope between the drone and the end
effector past a certain threshold d1,max, as parameterized through λr and sr.
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Energy regulation After combining the defined policies through summation,
obtaining a system formulated as ẍ+h(x, ẋ) = 0, it is necessary to ensure
that the system converges and does so in a reasonable time. We do so by
adding the term αHeẋ to the equation of the system, yielding

ẍ+ h(x, ẋ) + αHeẋ = 0. (3.72)

By relying on the concept of energized system introduced in [97], we de-
fine the energy Lagrangian Le with energy He and the related equation of
motion:

Le =
1

2
||ẋ|| (3.73)

He =
∂LTe
∂ẋ

ẋ− Le (3.74)

M eẍ+ f e = 0. (3.75)

By imposing that the derivative of energy over time is null, we obtain

Ḣe = ẋT [M e(−h− αHeẋ) + f e] = 0 (3.76)

αHe =
ẋT [f e −M eh]

ẋTM eẋ
. (3.77)

For a more comprehensive discussion of energized systems, damping and
the effects on convergence, the reader is referred to [83] and [96].

3.3.4 Validation

The Platform

We validated our controller both in simulations and in experiments in the
real world, employing the custom built hexarotor drone visible in figure
3.18. The platform was endowed with low-level attitude and altitude con-
trollers, and able to track position and trajectory references. Besides the
onboard standard PixHawk, Proportional-Integral-Derivative cascade flight
controller with IMU, necessary for telemetry and flight stabilization, sev-
eral other essential components where installed on the aircraft:

• an Ouster OS1 LiDAR sensor, to detect the environment (see Table
3.2 for technical specifications). Note that this sensor comes with its
own IMU mounted inside. The LiDAR is not only necessary to local-
ize obstacles for collision avoidance, but also to identify features in
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the environment and aide the estimation of odometry. Such estima-
tion was carried out through the publicly available FAST-LIO frame-
work [93], fusing together LiDAR and IMU data, and proved particu-
larly accurate and stable, especially outdoors. This is probably due to
indoor environments being delimited on the sides mostly by vertical,
feature-less walls, which translates into the estimator not identifying
displacement along the vertical direction as accurately. Given the sen-
sor’s position on the top of the drone, the arms and propellers of the
aircraft partially blocked its view, therefore it was necessary to mask
out readings too close to the drone and to take into account the lack
of data in the obstructed areas. The relatively limited vertical field
of view also made it impossible to detect obstacles directly below the
drone. To prevent unwanted landings, the drone was therefore en-
dowed with a model of the environment only consisting of a ground
plane, with height equal to that of the drone when it took off. This
allows it to correctly simulate the behavior of the rope while it rests
on the ground and to avoid the ground as an obstacle;

• a Firefly S FFY-U3-16S2C-S color camera, with a wide angle lens
(technical specifications in Table 3.3). As previously mentioned, the
camera was mounted below the drone, facing forwards and tilted 45◦

downwards. Such placement forces the drone to hover higher than the
operator, which in turn also prevents the rope from dragging along the
ground. The field of view amplitude is not critical, as the drone is
controlled to keep the human operator in the center of the frame, but it
should be wide enough to capture his movement before the controller
is able to react. Frame rate is not a limiting factor, but resolution is: the
higher the resolution, the farther away the operator (and the markers)
can goo while still being correctly detected. As a consequence, the
desired operator distance from the camera poses a lower bound on the
necessary camera resolution.

• an Intel® Neural Compute Stick 2, to run the YOLO neural network
for human detection in real time. While in practice it is possible to
run the model on the aircraft’s CPU together with the controllers and
the rest of the software, its limited computational power would be
saturated at all times, possibly leading to unwanted behavior. It is
therefore necessary to install this dedicated hardware, at the cost of
one USB3.0 port, additional development effort, and non-negligible
installation, set-up and configuration time. We note that the Neural
Compute Stick 2 sometimes exhibited overheating, inducing connec-
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Range 45m
Minimum range 0.3m
Range resolution 0.01m

Operating frequency 20Hz
Horizontal field of view 360◦

Vertical field of view 45◦(−22.5◦ to +22.5◦)

Table 3.2: Operating parameters of the Ouster OS1 LiDAR.

Resolution 1440× 1080
Megapixel 1.6MP

Focal length 3.5mm
Lens format 1/2.5”
F Aperture F1.8

Table 3.3: Operating parameters of the Firefly camera with the selected lens.

tion problems, especially in the debug phases, when running while the
drone was not flying. The air pushed by the propellers during flight
is enough to solve the problem during operation. Given the hardware
and the specific neural network, the detection of humans in the image
frame ran at roughly 1 Hz.

Simulations were executed on a laptop with an Intel® CoreTM i7-8750HQ
processor, running ROS 1 and the Gazebo simulator on Ubuntu 20.04.

The Tests

We mainly tested two aspects of our system: its ability to detect the end
effector and establish an estimate of the sate of the rope, and its ability to
navigate space according to the designed policies while avoiding obstacles.

Obstacle Avoidance To test this policy in simulation, we manufactured an
environment with a single building, then guided the end effector around
a corner, so that the vehicle would follow it and on one hand be pushed to
align with the operator and the fixed point of the rope by the straight-forcing
policy, and on the other prevented from doing so by the collision avoidance
one. Figure 3.19 represents a snapshot of the behavior of the system at
the equilibrium, demonstrating that the drone does hover at ld meters from
the obstacles. The dynamic evolution of the system during the simulation
clearly shows that the drone approaches the obstacle while following the
end effector, and then gets pulled away from it by the repulsive acceleration
generated by the obstacle avoidance policy.
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Figure 3.18: The Kiwi platform deployed in the tests.
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Figure 3.19: A top-view snapshot of the drone avoiding the obstacle in light blue. Arrows
indicate the drone’s trajectory (left) and the end effector’s trajectory (right). The rope
is the red dashed line.

A similar experiment was also carried out in the physical world, where
the drone followed the human operator navigating around a tank (see Figure
3.20). As in the previous case, the drone exhibited the desired behavior, by
following the operator at a certain distance and avoiding getting too close
to the obstacle.

End Effector Position Estimation The position estimation was tested both in-
doors and outdoors. In the first test (Figure 3.22, the drone hovered at
a fixed position in mid air and a human operator with a helmet walked
around it. A pilot rotate the drone to keep the operator inside the image
frame, while the onboard computer performed both AprilTag detection and
YOLO-based estimation of his position in space. Both offer a reason-
ably accurate estimation of the position, which was compared in this test
against a ground truth provided by a high frame-rate Vicon® motion cap-
ture system. Nevertheless, they differ quite significantly: due to imperfect
detection of the operator in the picture, the bounding box containing it is
not always precise, and this influences the calculation of the distance be-
tween him and the camera. Furthermore, this method is not robust to more
humans entering the picture and to partial detection, should the operator
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Figure 3.20: The tank experiment.

Figure 3.21: Indoor test of AprilTags and YOLO.
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Figure 3.22: Testing AprilTags and YOLO, the three graphs depict the three coordinates:
x top, y middle, z bottom. Note that YOLO estimation is reasonably accurate, but
jumps frequently.
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only be partially in the image frame. In this case, the human would appear
smaller in the frame, inducing the controller to conclude that he is fur-
ther away than he really is and moving the drone closer to him, potentially
causing harm. The same would happen if the operator were, for example, to
crouch or climb a ladder. Conversely, the AprilTag detection method offers
the possibility of targeting the end effector directly instead of the operator,
provided it is not obstructed and markers are big enough. We elected not
to do this in order to gain a longer detection range with the bigger markers
on the helmet. In addition to that, AprilTags bundles can be detected at
7Hz to 10Hz, while YOLO is roughly one order of magnitude slower given
our hardware, resulting in a much jumpier signal, which can negatively af-
fect the generation of a reference position for the drone. Given all of these
considerations, the only real advantage the YOLO approach could bring is
a higher maximum detectable distance, which is not worth all of the other
technical drawbacks, including the necessary additional hardwer. Hence,
we decided to rely on AprilTag detection for the following tests.

The detection and tracking capabilities were then validated in a follow-
ing experiment, where the helmet with markers was installed on a moving
cart and the estimate of its position was used to obtain a reference for the
drone as described in section 3.3.3, before being deployed in the one de-
scribed in the tank experiment in the previous section. These tests verified
that the controller was capable of steering the drone to keep the the target
near the center of the image frame at a fixed distance. Nevertheless, they
highlighted an oscillating behavior induced by the non-smoothness of the
target position reference estimation. This became especially apparent when
the helmet was still and the drone hovering around a fixed position: noise
in the estimated position of the marker bundle was reflected directly in the
generation of a position reference for the drone. This was solved by intro-
ducing a simple filter that would not update the reference position q0 if it
was very close (< 20cm) to the last generated reference position.

It should also be noted that during subsequent tests, where a human
operator with the helmet simulated spray-painting a tank, the lens of the
camera slowly unscrewed, losing focus in the process. We incidentally
ended up verifying that the AprilTag detection is also surprisingly robust to
focus loss: the detection of the markers was accurate even in the conditions
shown in Figure 3.23.
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Figure 3.23: An out of focus image, where the detector was nevertheless able to pick up
the marker on the helmet.
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3.3.5 Conclusion and Future Work

We presented a RMPs-based controller for the high-level motion planning
of a human-collaborative drone for the spray-painting task in an unknown
environment. We described the theoretical background and design choices,
highlighting different policies for the goal tracking, straight forcing and
collision avoidance behaviors. We also provided two methods for detect-
ing the end effector and estimating its position, with the aim of using such
measure to estimate the state of the whole rope, and compared their per-
formance. We tested the proposed controller both in simulations and in a
real world, realistic scenario, validating our hypotheses and design choices
and demonstrating a working prototype. Some limitations still exist, such
as the inability to detect obstacles below the drone, which could in some
cases induce collisions between them and the rope. Future developments
of this project could entail a working demonstration of the spray-painting
task, and will likely address the issue of invisible obstacles through the use
of a map of the explored environment.
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As previously established, drones are very agile and versatile. They can
potentially transform a sensor into a flying one. In the hands of a skilled
professional, this can reduce inspection times by and order of magnitude
or more; in fact, UAVs have already started revolutionizing the field of vi-
sual inspections by allowing an operator to quickly inspect structures from
privileged points of view. Gathering hundreds of pictures of a tower or
bridge from all angles could take hours and expensive machinery, without a
drone. The next step in actualizing the potential of this technology is their
automation: by enabling drones to perform inspection tasks without human
intervention, costs and times can be driven down further. The road to full
autonomy is long and complex, touching several issues simultaneously, like
mapping, precise localization and mission planning, and the different ap-
proaches necessary for different kinds of inspections. Nevertheless, several
research efforts are under way world-wide to cover it. The following chap-
ters detail some of these efforts in vision-based modal analysis and energy
efficiency assessment.
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CHAPTER4
Vision-Based Modal Analysis1

4.1 Vision-Based Modal Analysis of the Built Environment with
Multiple Drones

The advancement of autonomous and drone-assisted inspection techniques
is especially important in developed countries. Their aging infrastructure
poses serious safety risks and steep maintenance costs. Owing to recent
economic crises, large investments for infrastructural renewal in the fore-
seeable future are in general not planned, therefore management and main-
tenance are critical. It is calculated that both the USA and the combined
countries of the European Union spend each year a hundred billion dollars
in road maintenance alone [98]: infrastructure costs still account for a sub-
stantial fraction of national budgets; It follows that any method to reduce
costs is at least worth investigating.

Within the maintenance and inspection field, we focus on vibration-
based SHM, which is commonly performed with accelerometers. These
sensors measure accelerations in three dimensions (3D), which can be used
to estimate modal parameters such as natural frequencies and modal shapes

1This work was previously published by the author, largely in the same form, in [20]. It is reported here with
the permission of the editor and copyright holder, Elsevier.
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[99]. Nevertheless, a wide network of synchronized sensors is necessary
to identify modal shapes with a high spacial resolution, and accelerometers
are expensive to maintain. Additionally, most existing structures were built
without an embedded sensor network, thus performing the analysis would
entail installing accelerometers ad-hoc, a cumbersome and expensive task.
Vision-based modal analysis shines in these scenarios: cameras can capture
videos of relatively large sections of a structure, thus collecting more data
than a single accelerometer [100]. Furthermore, they measure displace-
ment rather than acceleration, although they do so more accurately along
the two directions orthogonal to the camera axis than along the parallel
one [101]. This typically results in a more accurate displacement measure-
ment than the one obtained by integrating acceleration twice, due to the
possible noise-induced drift the integration process. In this work, we in-
vestigate the potential of vision-based SHM with multiple drones and pro-
vide the following contributions. First, we introduce a mechanism through
which multiple drone-mounted cameras are synchronized and data can be
gathered about large sections of a structure at a time; second, we validate
the new approach experimentally on a small cantilever structure and evalu-
ate the accuracy with respect to both a fixed camera and accelerometers, as
well as the capability to detect and isolate alterations, such as added mass
or a faulty connection to the supporting structure. In the process, we show
that markers are not necessary to produce an accurate measurement, since
the approach can exploit visual features of the structure, such as a junction,
a bolt or a welding spot.

The remainder of this chapter is organized as follows. After a brief
overview of the literature, we describe the problem in section 4.1.1 and
present our method in section 4.1.2. Section 4.1.3 details the experimental
set-up, and the following one presents the results of our experiments. The
final section contains our conclusions and a discussion of the limitations of
the approach in its current state, and it points to future development paths.

Literature Overview

Vibration modal analysis has been developed as a tool for SHM decades
ago [102,103]. It is defined as the process of determining the dynamic char-
acteristics of a mechanical system in terms of natural frequencies, modal
shapes and damping factors. These can be used to formulate a modal model
of the structure, and their variation over time can be tracked as an indicator
of its health. Modal analysis is traditionally performed with accelerometers,
but the decreasing costs of cameras and computational power has pushed
the development of computer-vision methods [104]. It has been shown that,
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by measuring displacements with a fixed camera, it is possible to estimate
the first modal frequencies and recreate the modal shapes of a beam that is
excited by an external input in a real world scenario. In [105], the displace-
ment of a structure across time is measured by identifying features in the
first frames of the recorded video and tracking their motion in the following
frames with the Lucas-Kanade [106] algorithm, based on optical flow cal-
culation. One advantage of such a technique is that there is no need to install
markers on the structure. Similarly, some studies [107, 108] attained sub-
pixel accuracy in displacement measurement using markers on the target
structure, thanks to pattern matching techniques adopted in image process-
ing, both in laboratory and in realistic conditions. This fact suggests that
markers could be exploited where accuracy is critical, such as in scenarios
where the camera is far away from the structure or the oscillations are small
enough to be hardly distinguishable from measurement noise. Furthermore,
the authors of [109] have shown that natural frequencies can be estimated
reliably with inexpensive consumer grade cameras, at least in laboratory
conditions. While applications of these techniques in realistic scenarios are
possible, further data processing is often necessary to detect oscillations
of low amplitude [110, 111]. Most of the real buildings where these tech-
niques are tested are bridges or slender structures [108, 111–113], which
tend to exhibit wider oscillations than other structures. The same tech-
niques can be applied to measurement of frequencies and mode shapes of
cables [114], with applications to cable-stayed bridges and stadium roofs,
among others. Natural frequencies, in particular, can be used in the esti-
mation of cable tension, provided that its length, mass and elasticity are
known [115–117]. Photogrammetry and other optical methods involving
multiple viewpoints have been employed as well for structural dynamics
measurement [118], especially with Digital Image Correlation (DIC). Such
techniques can achieve very high precision 3D measurements and support
stitching of multiple views together [119], but they often rely on the pres-
ence of a custom-painted speckled pattern on the surface of the target struc-
ture [120].

Drones too have been studied and developed as tools for SHM. Recent
projects deploy them as platforms for digitalization and Building Informa-
tion Modeling [121], and even mobile contact sensors for non-destructive
testing [122,123]. Some technologies have been developed for the contact-
based inspection of reinforced concrete [123]. In this scenario, a UAV is
fitted with electrical resistance sensors, in order to detect cracks and cor-
rosion in steel under the surface. Other applications include inspection of
oil and gas pipes [124]. The main application of UAVs, though, is in visual

111



Chapter 4. Vision-Based Modal Analysis

inspection, where they excel due to their freedom of movement along the
three spacial dimensions [24], the ability to hover in place and the variety
of cameras they can host. When equipped with thermal cameras, they can
be used for thermography, offering for example extremely quick surveys of
the status of solar panel fields [125]. Regular RGB cameras are exploited
for photogrammetry [126] and acquiring photographs that are subsequently
processed through machine learning techniques [25], aiming at automati-
cally detecting surface cracks, concrete spalling, rust, humidity and other
surface-level issues.

Several video-based techniques for SHM using regular cameras have
been proposed, and the issue of multiple camera synchronization is well
known in literature. The fixed nature of regular cameras makes it possible to
use wired connections, thus frame synchronization is achieved with trigger
signals sent to all sensors at the same time. This is possible through simple
configurations where all cameras are connected to a central clock [127] and
also in more complex networks relying on the Ethernet standard [128]. Re-
gardless of the technology, the error is as low as a few microseconds. Such
a low error enables approaches like DIC for vibration measurement [129].
Unfortunately, due to their reliance on a physical connection between the
cameras, these solutions cannot be applied to drone-mounted sensors.

Still, some drone-mounted video-based techniques have been proposed
to monitor the condition of buildings. The authors of [130] deployed a com-
mercially available drone to measure the displacement of a structure, both
in laboratory and on a real railway bridge. They performed natural feature
tracking to estimate the displacement of the targets, and compensated ego-
motion by estimating it with respect to background features. Results were
compared to measurements taken with a fixed camera + LED system and
found to be of good quality, though some simplifying hypotheses were in-
troduced in the design phase of the experiment. Furthermore, the authors
noted that their technique of egomotion compensation is not robust. The au-
thors of [131] aimed at estimating modes of vibration of a scale model of a
wind turbine, obtaining promising results through DIC. The same technique
was exploited in [132] to estimate two-dimensional strain. In [14], a single
commercially available drone was used to measure the oscillating motion
of both a six-story building model and a real pedestrian bridge. Displace-
ment was measured through marker detection and Kanade-Lucas-Tomasi
(KLT) tracking across video frames. Measurement quality was found to be
remarkable even in the more realistic case on the pedestrian bridge, whose
motion was forced by people jumping on the deck. Some limitations of
the approach are mentioned, namely: the low number of acquisitions that
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can be made with a single battery, the issue of detecting natural frequencies
within the bandwidth of the motion of the drone, the issue of positional sta-
bility with respect to the target in GPS-denied environments, and the issue
of applying and maintaining a significant forcing input to a larger, more
rigid structure. At least for the first modes of vibration, the comparatively
low Nyquist frequency introduced by cameras with respect to accelerome-
ters is usually not an issue. In fact commonly available cameras easily reach
at least 30 Frames Per Second (FPS), whereas the first natural frequencies
appear in the 0− 10 Hz bandwidth.

Scope

In the state of the art, we note the absence of drone-enabled vision-based
vibration modal analysis techniques that can capture the response of large
spans of structure at once with high spacial accuracy: [130] achieves high
accuracy but focuses on a single area of the building, whereas [14] cal-
culates the whole modal shape of a pedestrian bridge, but it does so by
sequentially repeating the displacement measurement with a single drone-
mounted camera on several sections while an external force is continuously
applied to the deck. This trade-off between accuracy, acquisition time and
completeness is due to the fact that when a single aircraft is deployed, it
must hover rather close to the structure to measure its displacement with
sufficient accuracy through the video analysis, thus losing the possibility
of capturing the whole building at once. By using multiple drones, in-
stead, it is possible to perform in parallel accurate measurements of larger
stretches at the same time, thus also overcoming time limitations due to bat-
tery charge and removing the need to maintain a continuous external forc-
ing input for a prolonged amount of time. Furthermore, to the best of the
authors’ knowledge no solutions exist in literature to the problem of drone-
mounted camera synchronization. As previously noted, the non-stationary
nature of drones makes it impractical to physically connect them (even
though some research in this direction is being carried out, see [23, 55]),
therefore a fundamentally different solution must be found.

In this context, we present an experimental feasibility study of a novel
system to perform video-based modal analysis through multiple cameras
mounted on collaborative drones, that measure natural frequencies and es-
timate modal shapes. Our approach exploits the idea of overlapping the
target areas measured by two different cameras to perform a posteriori sig-
nal synchronization. With respect to [14], we show experimentally that
markers on the structure are not necessary to measure displacement with
sufficient accuracy to extract modal shapes.
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Using multiple UAVs at the same time can provide a more complete
view of the response of a structure to an arbitrary input excitation with lim-
ited error propagation, which is hardly possible when using a single device,
addressing the mentioned research gap. Deploying several drones at a time
can also help to reconstruct the 3D motion of the structure by capturing it
from several different points of view, thus overcoming another limitation of
a single camera, i.e. the reduced accuracy at which displacement is mea-
sured along the direction of the camera’s axis. In this regard, using several
cameras with different orientations with respect to the structure can effec-
tively perform the same type of measurement an accelerometer network
offers.

We show promising preliminary results in a test case where two drones
are employed. Using commercially available UAVs similar to those we
adopted, this procedure can already be applied to small-size structures with-
out incurring in complexity scaling issues. For example, with three aircraft
hovering 2.5 m away from the target surface and recording footage with
1920×1080 resolution, it is already possible to capture the oscillations of
structures less than 10 m long, such as barriers, antennas, parapets, small
metallic pedestrian bridges or portions of larger structures.

4.1.1 Problem Description

The problem at hand is to obtain the modal parameters of a structure,
namely natural frequencies ωi and modal shapes Φi, where i = 1, ..., n
is an index that identifies the different modes, up to the n-th. This is to be
done through vision only, without relying on contact. Our main objectives
are three:

• Identifying natural frequencies and modal shapes through displace-
ments measured using cameras mounted on drones;

• Establishing if our method is sufficiently accurate to detect changes in
modal parameters due to damage of the structure;

• Testing the viability of multiple drones to obtain and fuse information
collected across the whole structure.

4.1.2 Proposed Method

The procedure for estimating the modal parameters of the structure is sum-
marized in these steps:
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1. Recording the behaviour of the structure and identifying features in
the collected frames;

2. Measuring the structure’s displacement by tracking the identified fea-
tures across frames;

3. Estimating natural frequencies from the measured displacement;

4. Estimating the modal shape for each identified natural frequency.

We adopt the classic pinhole camera model to describe our visual sensors,
hence we can write the following relationship between the 3D position of
objects in the real world P with respect to a global reference frame and their
positions in the image plane p:

sp = K [R|v]P. (4.1)

Here s is the scale factor, R and v are the rotation matrix and translation
vector that operate the projection onto the 2D plane and K represents the
intrinsic parameters of the camera. The lens distortion is corrected after
camera calibration. Our experiments verify that such a model does not
negatively affect the accuracy of the measurements in a significant way.

Recording and Feature Detection

In this study, the structure is excited with a kinetic hammer and its oscil-
lation is recorded by the cameras. In order to track the displacement of
an object, i.e. the movement of the targets across pixels in consecutive
frames, we first apply the Harris corner detection algorithm [133] to find
features within the gray-scale version of the first frame. Some of those fea-
tures are manually selected for tracking: automation of this step will be
the object of further study. This procedure is based on an estimation of the
bi-dimensional gradient of the color in each frame and can reliably distin-
guish homogeneous areas, edges, and corners. Such an algorithm is com-
patible with markers featuring many corners such as ArUco [134], like the
ones in Figure 4.1, but also works without them. We initially chose to ex-
ploit the markers to ease the feature selection procedure, maximize robust-
ness of the measurements and streamline the presentation of the algorithm.
Nevertheless, we also repeated the measurement by tracking different fea-
tures, belonging to the surface of the structure. We show in section 4.1.4
that markers are not strictly necessary to track structural displacement. In
fact, tracking naturally occurring features on the surface of the target yields
equally accurate results, as visible in Figure 4.2.
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Figure 4.1: The structure used for vibration tests. Spot markers are present alongside
ArUco ones, but they were not exploited in these procedures. The arrows indicate
where the accelerometers (not visible in this picture) were placed.

Displacement measurement

The second step of motion tracking is estimating how the selected features
move across frames. To make the measurement robust, the chosen feature
is the mean position of the four corners. Tracking is performed through the
KLT algorithm [106], which solves an optimization problem to estimate the
displacement d of single pixels in consecutive pictures as optical flow. Op-
tical flow is defined as the pattern of motion that objects perform in a scene
caused by the relative movement between the camera and the scene itself.
This method works reliably under the hypothesis that out-of-plane motion
is negligible with respect to the mean distance between the camera and the
target. Furthermore, if it is necessary to estimate the vibration amplitude
in addition to the frequencies, the optical axis of the camera must also be
orthogonal to the plane of motion of the target. This introduces limitations
both on the amplitude and speed of the measurable motion with respect to
the frame rate, which are not an issue in our specific case, where the ampli-
tude is limited to a few pixels. Finally, a scale factor must be computed to
express the amplitude of motion in physical units. It is necessary to rely on
a known physical distance between two features to establish a relationship
between lengths in pixels and in millimeters. To this end we exploit the
corners of the markers, knowing their dimensions. For a fixed camera, this
scale factor can be computed on the first frame and used on all of them, but
the same is not true for flying cameras. Due to their non-null movement in
the out-of-plane direction, the scale factor may change across time. Never-
theless the distance between the features is fixed, hence the scale factor can
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Figure 4.2: Non-filtered time history and frequency spectrum of the averaged vertical
displacement of features on a marker and naturally occurring on the structure itself,
such as a junction. The plots overlap to the point of being almost indistinguishable.
The time history is dominated by the relative motion between drone and structure, but
the frequency components are well separated.

be computed at every frame as:

s(t) =
|P 1 − P 2|
|p1(t)− p2(t)|

, (4.2)
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where t is the discrete-time index, |P 1−P 2| expresses the physical distance
between two features, which is constant across time, and |p1(t) − p2(t)|
describes the same distance in pixels, in the image plane. The scale fac-
tor not only converts the camera plane displacement, measured in pixels,
into an absolute displacement, measured for example in millimeters; it is
also exploited to compensate the out of plane motion of the camera, since
the physical distance between the features is constant across time. In the
absence of markers, there are at least two ways to solve the scale problem:

• exploiting the known dimensions of some component of the structure,
such as the size of a joint or bolt. This requires some previous knowl-
edge of the structure or additional measurement to be carried out;

• calculating the physical distance between two features appearing in
the image plane with trigonometry. This requires measuring the dis-
tance between the camera and the surface in real time during the
recording, which is possible through LiDAR or ultrasonic sensors,
for example. Such sensors are often present on UAVs for collision
avoidance.

Estimating Natural Frequencies

We apply a Fast Furier Transform (FFT) to obtain the spectrum of fre-
quency components of the signal. In the case of drone-mounted cameras,
noise originated by the movement of the aircraft and the action of the mo-
tors must be accounted for. In commercially available drones, ours in-
cluded, cameras are mounted on active gimbals, capable of compensating
some of these disturbances. Furthermore, we verify experimentally that the
noise does not contain frequency components that could corrupt the signal
(see Figure 4.3). The effect of the rotating propellers is not visible because
of its high frequency: according to the manufacturer’s claims, the motor
rotation frequency of small drones while hovering is higher than 80 Hz. On
the other hand, the drone motion relative to the ground presents frequency
components that are below the natural ones of the structure. As a conse-
quence, we can apply a high-pass filter to separate the natural frequencies
of the structure from the frequency components introduced by the motion
of the camera. A reasonable choice in our case is to select a cutoff fre-
quency of 2 Hz, as it is lower than the first natural frequency of the structure
at hand, but higher than the components related to the camera movement.
We exploit here a fundamental assumption, which will be recalled multi-
ple times throughout the project, and is verified for the considered structure
(see section 4.1.3): the natural frequencies of the target do not overlap with
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Figure 4.3: Spectrum of the measurement of a fixed feature, representing the frequency
components of measurement noise only. By comparison with Figure 4.4, we conclude
that the peaks at 5.06 Hz and 11.16 Hz represent the oscillating behavior of the struc-
ture in response to excitation. This is also consistent with an estimated rotational speed
of the propellers during hovering of 5000 revolutions per minute, equivalent to more
than 80 Hz.

the main spectral components of camera displacement. If this were not
the case, the relative displacement can still be compensated, for example
by accurately measuring the motion of the camera with respect to the still
background and subtracting it from the one of the structure relative to the
camera [130]. Figure 4.4 exemplifies the effect of filtering on the time
history of relative displacement between the structure and the camera: the
spectral components of camera displacement are canceled and the result-
ing signal is a time-history of the structure’s vibration alone. Furthermore,
from the obtained FFT, the natural frequencies ωi of the target structure can
be measured. Figure 4.3 displays the spectrum of the signal that is obtained
if the structure is not excited, further confirming that the peaks visible in
tests with excitation represent the behavior of the structure only.

Estimating Modal Shapes

In order to obtain the modal shapes, we need to know the pair-wise phase
delays between features across the length of the structure, therefore, we take
the signals two at a time and estimate the transfer function between them.
Evaluating the phase of such transfer function at the natural frequencies
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Figure 4.4: Vertical displacement (top) of a feature as measured by a flying camera, in the
first ten seconds of a test. The hammer impacts around the 5.5 s mark. Notice how the
unfiltered measurement is dominated by the relative movement of the camera. In the
frequency domain, these effects are distinguishable, as conveyed by the FFT (bottom).
The first two natural frequencies of the structure (5.06 Hz and 11.16 Hz) are clearly
visible.

yields the phase delay between each feature pair:

∆ϕi,a−b = arg (Ga−b(jωi)) , (4.3)
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where j is the imaginary unit, Ga−b(jωi) is the value of the continuous-
time transfer function between the signals describing the displacement of
features a and b, evaluated at point jωi.

To calculate pair-wise phase delays between features appearing in dif-
ferent video sources, we first synchronize them. This is achieved through
cross-correlation of the high-pass filtered displacement measurements of a
feature or marker appearing in both videos, in the overlapping region. This
step is necessary for data collected with commercially available drones, for
which hardware synchronization of the cameras is not possible.

We then estimate the transfer function between signals extracted from
the two different but synchronized recordings. To better describe such
a method, let us consider two cameras, without loss of generality. In a
generic scenario, not only the initial time instant of the two recordings
might be different, but also their frame rate. If however at least one fea-
ture is recorded by both cameras, we can artificially over-sample the two
time-histories recorded at the same feature to the least common multiple
of their frame rates, then apply a high-pass filter to isolate the oscillation
of the structure from the relative motion of the cameras. Then, the cross-
correlation between the two processed signals is calculated to estimate their
relative delay in time, indicated with τ̂ . We expect this delay to be always
well defined, because the two signals correspond to the displacement of
the same feature. Finally, a correction is applied to one of the two original
signals to compensate the estimated time delay τ̂ , to synchronize the two
video sources. Then, the relative displacements among all features, includ-
ing those not appearing in the overlapping regions of the two cameras, can
be estimated. Thus, this method makes it possible to directly estimate phase
delays also between features that are recorded by different cameras. Figure
4.5 summarizes the proposed procedure.

4.1.3 Experimental set-up

To determine the accuracy of the estimates, at least for portions of struc-
tures of limited size, we compare those obtained from flying cameras with
those taken with accelerometers and with a fixed, high frame-rate camera.
In order to test the capability of the proposed approach to provide informa-
tion about possible alterations of the structure or faults, we then repeat and
compare the measurements in different conditions. First, we identify the
modal parameters in the reference situation, corresponding to an undam-
aged state. Then we identify the same parameters in modified scenarios
obtained by gradually adding more weights to the structure. Finally we
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Figure 4.5: Layout of the proposed methodology.
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simulate a faulty scenario, by restoring the initial weight and loosening one
of the fixings.

Instrumentation

The accelerometers are PCB 333B30 monoaxial sensors with full scale
range of±50g, acquired with NI 9234 board at 2048 Hz. The bandwidth of
these sensors and the acquisition system is 1 − 700 Hz, while the range of
interest for this test is 1−100 Hz. Motivated by their high accuracy, we take
accelerometers acquisitions as ground truth to evaluate the results obtained
with the cameras. Accelerometers were placed on top of the structure to
measure the vertical displacement, as indicated by the red arrows in Figure
4.1.

The fixed camera is a FLIR Blackfly S BFS-U3-16S2M, a monochrome
camera, with a resolution of 1440x1080 px and the framerate used for this
experiment is 200 FPS. The camera was placed on a tripod at a distance
of about 5 m to capture the entire structure. The focal length is 12 mm, to
have a FOV large enough for the entire structure.

The first UAV is a DJI Mavic Pro equipped with a 12 MP camera,
capable of shooting full HD video (1920×1080) at 96 FPS and HD video
(1280×720) at 120 FPS. The second is a DJI Mavic 2 Enterprise Dual,
whose camera captures 4K Ultra HD footage (3840×2160) at 30 FPS. Both
drones are commercial, and they are equipped with a stabilizing gimbal
for the camera. This device is controlled by the on board computer and
actively compensates part of the disturbance induced by the aircraft motion,
by decoupling its attitude with respect to that of the camera.

The resolutions of the cameras are different, which influences the mini-
mum structural displacement they can record. To ensure that every camera
can capture the oscillation of the target in every test, they are at a suitable
distance from the structure. The resulting scale factors, for all cameras and
all tests, were within the 0.5 − 1.8 10−3 m

px
(millimeters per pixel) range,

which is enough to capture oscillations with amplitude of a few millimeters
(see Figure 4.4). By the Nyquist-Shannon sampling theorem, frame-rates
also introduce an upper limit of FPS

2
on the measurable frequencies. In our

case, the lowest frame-rate is 30 FPS, corresponding to the Mavic 2 drone,
therefore we limit our analysis to natural frequencies below 15 Hz, which
pertain to the first two modes.
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Test structure and procedure

The structure for our experiments has two main components: a railing,
welded on a metal base fixed to the ground, and a cantilever section on
top (see Figure 4.1). The two parts are made of steel and attached with
two clamps. Both are made of hollow tubes with square cross-section. The
cantilever was designed to have suitable natural frequencies. In particular,
lower bounds on the frequency values were introduced by the frequency
content of drone movement, in the 0−1 Hz range. The Nyquist rates of the
two flying cameras, on the other hand, posed an upper bound. As a conse-
quence, the cantilever was designed to have frequencies within the 3 − 12
Hz bandwidth. The cantilever was welded into a rectangular, 2000 × 550
mm shape with a mass of 20.5 kg. A finite element model of the struc-
ture was developed to simulate its behavior and determine the values of the
natural frequencies for several different mass distributions.

Four square, 55×55 mm markers are attached on the cantilever, two near
the corners and two near the center, equally spaced along the structure (see
Figure 4.1). All the tests are performed with the same procedure: an im-
pulse is generated with a rubber hammer on the top to excite all frequencies.
The impact point is at the center of the protruding end of the cantilever, and
the hammer impacts the structure vertically. The fixed camera was placed 5
m away from the structure, facing it directly, whereas drones were hovered
at approximately 1 to 2 m from the cantilever, to compensate for their wider
field of view.

A total of 13 tests were carried out in the span of two hours, with con-
sistent lighting conditions. The duration of each test is on average of 30 s,
which is enough to include the whole response of the structure, up to the
moment when it stops vibrating. Consistency was kept by keeping the static
camera and the accelerometers fixed between tests and by manually piloting
the drones during the tests so as to keep them as stationary as possible.

4.1.4 Experimental Results

Measuring Modal Parameters

The first objective of the procedure is to accurately measure the natural
frequencies of the structure, and to evaluate the accuracy obtained with
the drones as compared with the accelerometers, which we take as ground
truth. Hence, a test was designed where the accelerometers were fixed onto
the structure as shown in Figure 4.1, the fixed camera was placed in front
of the target at a distance of 5 m and the DJI Mavic Pro was flown at a 1.5
m distance, hovering in place. The drone was positioned slightly above the
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Mode Accel. Fixed Camera (err.) Flying Camera (err.)
i = 1 5.06 Hz 5.01 Hz (1.0%) 5.05 Hz (0.2%)
i = 2 11.16 Hz 11.14 Hz (0.2%) 11.17 Hz (0.1%)

Table 4.1: Estimated natural frequencies

structure in order not to obstruct the visual of the fixed camera. The com-
parison of the FFTs of the accelerometers, fixed camera and flying cam-
era in the relevant bandwidth is reported in Figures 4.6 (fixed and flying
cameras) and 4.7 (accelerometers) and in Table 4.1. Error is calculated as
relative difference with respect to the accelerometer value:

ei = 100
|ωi,accelerometer − ωi,camera|

ωi,accelerometer
. (4.4)

The two measured modes are within the bounds specified in the design
phase; in particular, their values are sufficiently close to those obtained in
finite-element simulations: 4.88 Hz and 10.66 Hz. Furthermore, the error
with respect to the accelerometers is at most 0.2% for the flying camera,
and slightly higher for the fixed one, notwithstanding its higher frame rate
and the absence of motion.

It is possible to extract modal shapes from the data, comparing the move-
ment of the four different markers and their relative pairwise phase delays
∆ϕi,a−b. The phase delay provided by the two accelerometers placed on the
protruding end of the cantilever is approximately zero for both investigated
frequencies (see Figure 4.7).

The pair-wise transfer functions and phase delays between the four mea-
surements recorded by the DJI Mavic Pro were estimated as described
in Section 4.1.2. Table 4.2 details the calculated delays, where each col-
umn represents the estimated phase delay between a marker and the next
one. The phase delays are all very close to zero, which indicates, in ac-
cordance with the information provided by the accelerometers, that both
modes correspond to a vertical rigid displacement of the front side of the
cantilever. This behavior is again compatible with the one observed in the
finite-element simulations. The two are likely due to the railing oscillating
with respect to the ground and the cantilever vibrating with respect to the
railing itself. The cantilever does not exhibit bending modes at such low
frequencies.

We verified experimentally that measurements taken by tracking natu-
rally occurring features on the surface of the structure are as accurate as
those obtained by exploiting markers. In order to do so, we selected as
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Figure 4.7: The magnitude of the FFT of the accelerometers placed to measure the vertical
displacement (top) and their relative phase delay (bottom), obtained from the transfer
function estimated with Welch’s averaged periodogram method.
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Mode ωi ∆ϕi,1−2 ∆ϕi,1−3 ∆ϕi,1−4

i = 1 5.05 Hz −1.10◦ 0.61◦ −0.24◦
i = 2 11.17 Hz 0.75◦ −0.22◦ 0.56◦

Table 4.2: Phase delays estimated with a single camera

features the edges of the soldering points (see Figure 4.8 for an example).
These results are summarized in Figure 4.2, which shows that the mea-
sured displacement and its frequency spectrum are nearly identical in the
two cases.

Figure 4.8: Comparison between using markers and features that are inherent in the
structure. Triangles are the corners of the marker, while squares belong to a soldering
spot on the structure.

Synchronization of Two Drones

We next investigate the acquisition of the use of data collected by two
drones, each one with a partial view of the whole structure and with an
overlapping region with respect to the other aerial vehicle. For this reason a
second test was carried out, where only the two UAVs described in Section
4.1.3 were used to record the displacement. The structure was still excited
with a rubber hammer and the drones were hovering in front of the struc-
ture at a 1 m distance (see Figure 4.9). The first aircraft recorded at 96 FPS,
the second at 30 FPS. After calculating and correcting the delay between
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Figure 4.9: Setup of the second test. Drones are positioned such that each one is unable
to capture the whole structure.

ωi ∆ϕi,1−2 (err.) ∆ϕi,1−3 (err.) ∆ϕi,1−4 (err.)
5.05 Hz −1.17◦ (0.07◦) −1.87◦ (2.48◦) −2.73◦ (2.49◦)
11.17 Hz −3.02◦ (3.77◦) −2.21◦ (1.99◦) −2.23◦ (2.79◦)

Table 4.3: Phase delays estimated with two drone-mounted cameras and synchronization

the two videos, through oversampling and cross-correlation of the displace-
ment of the overlapping marker (as described in Section 4.1.2), the pairwise
relative phase delays between markers can be computed. Synchronized dis-
placements were treated as if they were recorded by the same camera, and
yielded the results shown in Table 4.3. The error is calculated as the ab-
solute value of the difference with respect to the phase delays estimated
with a single camera. Phase delays between non-consecutive markers can
be computed as

∆ϕi,a−c = ∆ϕi,a−b +∆ϕi,b−c, (4.5)

and they are comparable to the ones obtained with a single flying camera.

Detection of Overload and Tampering

In order to ascertain the ability of this procedure to detect variations in
modal parameters, a third series of tests was carried out. The same excita-
tion technique was adopted, while recording and measuring with a single
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drone, as in the first scenario. Three tests were carried out after gradually
adding masses to the protruding end of the cantilever. In particular, we
added three 4.0 kg masses, one at a time, and repeated the measurement.
While such a significant modification of the modal parameters may be un-
realistic, we show our procedure still correctly identifies the change and the
measurement of the parameters is commensurate with that obtained with
accelerometers.

Another test was conducted after removing the additional masses and
loosening one of the clamps that held together the structure. Results were
compared to the base case to find out if the measured modal parameters
differ significantly, and they are collected in Table 4.4. Figure 4.10 shows

Mode ωi ∆ϕi,1−2 ∆ϕi,2−3 ∆ϕi,3−4

i = 1 4.96 Hz 3.51◦ 0.50◦ −2.75◦
i = 2 8.19 Hz 4.32◦ 0.81◦ −4.95◦

Table 4.4: Estimated phase delays after tampering

the effect of gradually adding mass to the structure. As expected, the natural
frequencies decrease, since they are, in general, proportional to the square
root of the ratio between the modal stiffness and mass. It should also be
noted that while the two frequencies decrease, they maintain the same ratio.
No significant differences emerge in the modal shape analysis: the main
oscillations are still related to vertical rigid displacement of the protruding
end of the cantilever and no bending takes place.

The effect of a tampered clamp, on the other hand, is noticeably different
(see Figure 4.10). Here the natural frequencies are still impacted, but the
second one drops to 8.19 Hz, while the first is 4.96 Hz, thus the ratio is not
maintained. This decrease in frequency is likely due to an overall reduction
of the stiffness of the structure. The modal shape is still the same, though
some phase delays increase with respect to the base scenario, indicating
that bending of the cantilever beam is probably starting to happen due to
the loosened clamp, with a modal shape that is not symmetric anymore.

4.1.5 Conclusion, Limitations and Future Developments

We described and tested a method to conduct vision-based modal analysis
of small structures or portions of structures through the use of measure-
ments acquired simultaneously by multiple airborne cameras. We measured
the natural frequencies and calculated the modes of vibration of a metal

129



Chapter 4. Vision-Based Modal Analysis

4 6 8 10 12 14 16

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6
|F

F
T

(y
)|

 [
m

m
]

Base scenario
1 added weight
2 added weight
3 added weight

4 6 8 10 12 14 16

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

|F
F

T
(y

)|
 [

m
m

]

Base Scenario
Tampered Clamping

Figure 4.10: Effect of increasing mass (top) and of loosening a clamp (bottom) on natural
frequencies.

structure and showed that accurate displacement measurements can be car-
ried out based on features occurring on the surface of the target structure,
without markers. We also tested the ability of such method to detect varia-
tions in modal parameters. The results are encouraging, despite the limited
bandwidth due to rather low FPS cameras, with respect to accelerometers.
We deem this solution feasible for structures of limited size and convenient
when accelerometers are not already present and their installation is diffi-
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cult due to the structure being precarious or hard to reach. Even though the
method, in its current state, is not yet suited to large structures which would
need a large number of UAVs making the solution complex, we think that
it can be developed further to extend both its range of applicability and the
accuracy of the estimates. For example, the range of frequencies that it is
possible to study can be extended towards the lower end of the spectrum,
where camera movement noise is significant, by devising a more complex
way of filtering ego-motion, such as measuring camera displacement with
respect to a still background or estimating it based on data collected from
the drone’s IMU. Furthermore, higher autonomy can be reached both in
feature selection, through specifically designed algorithms, and in aircraft
deployment, by employing autonomous UAVs. The technology for achiev-
ing this is already available while the regulatory framework is not suffi-
ciently developed yet. A technical limit to further scaling is the relation-
ship between camera resolution, field of view and oscillation amplitude,
which however is favorable for slender structures and cables. Motion blur
due to the camera hovering can in principle impact measurement accuracy,
but we verified that its contribution in our tests is negligible, as displace-
ments with amplitude below 1 px are identified. Finally, in case the sur-
face of the target structure does not offer a sufficient number of features,
it is possible to spray-paint suitable patterns from a distance, also exploit-
ing drones [81]. As long as environmental conditions are favorable (lim-
ited wind, suitable lighting and absence of reflections), the procedure can
be applied as it stands to some real world tasks, including modal analysis
of small, flexible structures such as barriers, antennas, parapets and small
metallic bridges. This method can be suitable also for vision-based estima-
tion of tension force in cables, such as those in stadiums, cable-ways, power
transmission systems and cable-stayed bridges. There is ongoing research
within our group in this field with positive results.
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CHAPTER5
Energy Efficiency Assessment

5.1 Building digitalization, diagnostics and energy efficiency
assessment

State of the art

Another area of application of robotics and artificial intelligence is build-
ing energy efficiency evaluation. Starting from the need for general rules
that guarantee good results in terms of safety and precision, some rel-
evant works can be considered as good protocols for the general activ-
ity [135–137]. A vehicle with a camera, RGB or infrared, and remotely-
controlled by a licensed operator, can monitor the state of a civil construc-
tion, focusing the attention on potential defects without risks and using only
non-destructive procedures. These operations are normally executed manu-
ally by a technician and all the considerations are obtained based on visual
inspections, that considers the presence of a potential problem in a building
after the failure has already occurred. Such a delayed and risky operation
leads to rather high maintenance costs. In [138] the drone technology is
presented as the potential new standard in asset inspections, based on the
results obtained in the oil and gas industry, where the time required for in-
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spection operations were reduced from 8 weeks to 5 days on average. In
fact, an estimated cost saving using drone-based assets was predicted in a
range between 50% and 90% and the monitoring is going to be extended to
other sectors [138].

The aim of this project is to further the development of fully autonomous
drones for inspection by selecting, integrating and testing existing tech-
niques to cover the inspection pipeline from data collection to diagnosis.

Path planning The first aspect analyzed pertains to the best path for the
drone to collect a reliable picture data set. The flight path shall consider
the specs of the drone, in particular the resolution of the camera installed
and other limits of the device such as the focal length and the type of lens.
For a complete data acquisition, a flight path able to cover all the building
is required. Despite many path planning algorithms being present in liter-
ature [139], the identification of the best one still depends on the specifics
of the tasks to a great extent. On the market, approaches are limited at
cases where the object is contained in a plane. However, buildings and in-
frastructure are 3D objects and can rarely be approximated as 2D. In any
case, some good rules can be extracted in order to perform a good flight and
obtain a good result. Considering each facade of a building as a separate
2D surface, the most common and efficient approach is the strip-method,
where the drone is conducted by the pilot in a zig-zag movement, either
vertical or horizontal [136]. The former is suited for collecting information
on tall buildings buildings, the latter on wide ones. It is also shown that
a vertical flight tends to reduce the clarity and the quality of the images
due to the unfavorable movement of the lens, while the strip horizontal
method is most effective when the speed of the drone is low. Another type
of flight path is the spiral movement, which is particularly indicated for
preliminary recognition and 3D model reconstruction. The attitude of the
thermal camera during flight operations is another important aspect to be
taken into account because, since all the system works analysing irradia-
tion emissions of the objects, this output varies by changing the position of
the drone [137]. For thermal images, it is thus important to consider the
relative angle between the drone and the building. In fact, by an analysis of
a photo-voltaic field performed by positioning the drone in different places,
different results up to 30% have been reported in [140]. Finally, adapting
the operations to various environment conditions is important for safety and
repeatability. Wind speed and optimal lighting have to be considered: the
first aspect can affect the motion of the drone, the second aspect can affect
the quality of the collected images. In addition, if the flight path is realized
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with the purpose of performing a 3D image-based reconstruction, the tra-
jectory to be considered is strongly affected by the triangulation matching
between the points of each picture collected [141].

3D and Thermal Modelling Computer-aided 3D reconstruction is mainly dif-
fused in medical and archaeological fields. In the latter domain, the ap-
plication of these techniques provides various benefits, such as limiting
the destructive nature of excavating to the possibility of enriching the ar-
chaeological research [142]. 3D reconstruction can be performed with dif-
ferent information sources, where images offer the advantages of carrying
more information than LiDAR scans (in the form of color) and can be ob-
tained with cameras, which are cheaper. This comes at the cost of some-
what reduced geometrical accuracy [143]. In our application, the 3D model
was obtained through the application of SfM: a photogrammetry technique
that reconstructs an object into 3D environment starting from 2D pictures
through triangulation of features [144].

To calculate and extract the features required by the SfM algorithm, the
Scale-Invariant Feature Transform (SIFT) [145] is employed. The attention
in our work is focused on obtaining a complete 3D preview of the site of
interest, in order to subsequently analyze, qualitatively and quantitatively,
the thermal behavior of the surfaces involved. However, differently from
what is done with RGB pictures, it is not possible to obtain an accurate 3D
output by directly matching thermal (infrared) 2D images due to their low
resolution (commonly around 640x480 pixels against 4056x3040 pixels of
a normal RGB photo). Thus, another solution that links the two types of
information is necessary. Two techniques available in the literature can ac-
complish this goal: the bi-camera method and a photo-texturing based on
a scaling factor. The first consists in process images that are collected si-
multaneously by two connected cameras, one acquiring RGB and the other
one thermal images. The calibration of the system is possible because their
relative poses are known [146]. By considering the rotation matrix RRGB,
describing the rotation between the RGB sensor and the center of the cam-
era pair, the relative rotation matrix of the Infrared camera can be found out
by considering a geometrical transformation based on the system stability
condition. Another constraint is the center of perspective of the camera.
Since the system is composed by two cameras simultaneously acting, it is
not possible to consider as center the one of two of them. However, by
considering the fixed position, the translation vector t is assumed constant
along all the transformation. This approach has been tested by some of
the authors on the Trifoglio building of Politecnico di Milano [146]. The
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geometric model was automatically generated by a software working with
Terrestrial Laser Scanning and the bi-camera approach was used for the
thermal model rebuilding. At the end of the test, the result was consid-
ered not acceptable due to the lack of information that was not captured by
the cameras. In addition, it is important to remark that all the tests were
performed considering an approach that was suitable for ground data gath-
ering. The hypotheses made about the stability of the transformation matrix
may be not met in full when the system is adopted for a drone acquisition.

The second technique exploits the a-priori known position of some fixed
points, called baselines. Those points are captured by the RGB images and
reported also in the Infra-Red (IR) pictures. After the generation of the
3D mesh with the RGB images, the IR photos are used to create a texture
covering it and properly scaled by matching the position of the baselines. In
this approach, the low resolution of IR images is not an issue. On the other
hand, the position of the baselines still requires some a-priori knowledge
and (limited) user intervention.

Scope

The main goal of research presented in this chapter has been to develop
and test a procedure for collecting RGB and thermal pictures of a building
with drone-mounted cameras, to obtain a 3D model of such building com-
prising both the visual appearance and the heat flow information regarding
it. This required the integration of techniques from different disciplines.
Besides validating experimentally the overall toolchain and obtaining sig-
nificant insight on the thermal behavior of the building at hand, one further
goal was to assess the requirements and feasibility of the full automation of
the inspection process. The procedure is divided into four stages:

1. flight paths optimization to collect the most informative data, con-
sidering the characteristics of the deployed UAV and the camera in-
stalled;

2. 3D reconstruction based on the collected 2D pictures, through SfM.
Thermal information is also integrated and properly associated to the
relevant sections of the building, resulting in a point-cloud model;

3. identification of facade elements, in particular distinguishing opaque
and transparent parts, in order to derive suitable thermal balance equa-
tions;

4. comparison of the measured energy-efficiency related values with the
ones obtained from a heat balance model describing the climatic and
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geometrical parameters of the inspected building, in order to detect is-
sues and generally assess the validity of such models against measured
data.

The procedure has been tested on an office and laboratory building based in
Spino d’Adda (Italy) used by Politecnico di Milano and the Italian Space
Agency as research facility.

5.1.1 Data collection and elaboration pipeline

Flight path planning

Path planning should take into account several factors, including the geom-
etry of the building and national, regional and local regulations (see [147]).
These characteristics are included in the planning of the flight path used
to acquire all the pictures. The presence of obstacles and prohibited areas
must also be accounted for. For example, in our experimental application a
no-fly zone is set in the south of the area where other activities take place.

The main objective of the flight plan is collecting suitable color pictures
to reconstruct an accurate 3D model using photogrammetry. For this rea-
son, the distance between camera and object, the distance between points
where pictures are taken and the intrinsic parameters of the camera have
to be addressed. We relied on Ground Sampling Distance (G, measured in
[ cm
px

]), calculated as:

G =
WsH

FRWim

100, (5.1)

where Ws is the width of the sensor, H is the object-camera distance, Fr is
the focal length of the camera and Wim is the image width.

Overlap in the images is warranted at the same points to be triangulated
correctly and the 3D reconstruction to be complete. For Structure from
Motion, images should ideally overlap by 65% to 85%; lower values lead
to shorter flights, but they also negatively impact the resolution of the model
and introduce holes caused missing triangulations. On the other hand, high
values of overlapping ensure redundancy and a reliable 3D reconstruction
at the cost of a longer flight, potentially incurring limits posed by the battery
capacity.

A higher number of pictures is warranted around the corners between
different facades, so that the edge is captured accurately. We therefore
implemented a procedure which, starting from a rough 3D model of the
building to inspect, establishes a finite number of candidate points in space,
from which a picture should be taken, by:
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1. calculating the ideal object-camera distance H for planar surfaces,
based on an arbitrary choice of the Ground Sampling Distance G;

2. finding a suitable number of candidate points for each facade of the
building, given a certain value for the desired overlap between pic-
tures;

3. adding further points around the corners connecting the facades, at a
distance of Hr.

A path is then obtained by connecting the points by the strip method [136].
Alternatively, one can exploit graph theory to minimize flight time, see for
example [21].

3D model reconstruction

Once the mission has been carried out, a set of 2D picture pairs, color and
infrared (RGB and IR), is available to build the 3D representation. At this
point it is wise to calculate some measure of their quality, such as resolution
and sharpness, and discard the worst ones, in order to maximize the accu-
racy of the reconstruction. SfM is then applied to the set of color images,
whereby feature detection, matching and triangulation yields a 3D point
cloud representing the inspected building. Such technique also identifies
the relative positions from which the pictures were taken. The resulting
model, though, only estimates the relative distances between features, not
the correct scale factor. To complete the modeling phase, the scale factor
is estimated based on the GPS tags that characterize each photo, localizing
the position in space they were taken from. Should the accuracy of the GPS
localization be insufficient for the task at hand, it is also possible to identify
a set features that appear in several images (both RGB and IR) and whose
real distance is known, and exploit those to assign a proper scale factor to
the resulting 3D model. Regardless of the employed mechanism, estimat-
ing the scale factor endows the model with a one to one correspondence
with the modeled building.

Subsequently, as anticipated the correspondence between features in the
color and thermal images is exploited to establish a relationship between
the appearance of each feature in the RGB picture and its estimated tem-
perature in the IR one. The end result is a properly scaled point cloud,
where each point carries at once geometrical, color and thermal informa-
tion. It can therefore be represented in a matrix B ∈ Rn×7, where n is the
number of identified points. Three values store the position of the point,
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three values store its color and the last one carries its measured tempera-
ture. This last value can be obtained from the mono-dimensional thermal
image by interpolation between the colors representing the maximum and
minimum temperatures, which are set by the user.

Facade modelling

To determine the presence of defects and failures in the thermal properties
of the envelope, we consider one facade at a time. To this end, the point
cloud is segmented spatially in order to separate the different facades. Each
of them, in fact, has a different thermal behavior depending on its dimen-
sions and materials. In order to perform the segmentation, basic clustering
solutions such as k-means fail [48] due to the structured nature of the point
cloud, while geometric fitting methods work well. In this case M-Estimator
Sample Consensus (MSAC) is applied, which is an upgrade of RANdom
Sample Consensus (RANSAC), proposed by Fischler and Bolles [148,149].
It is a general parameter estimation approach designed to make a distinc-
tion of the data based on some fixed characteristics. MSAC can be con-
sidered as an iterative re-sampling technique that generates candidate so-
lutions by using the minimum number observations (data points) required
to estimate the underlying model parameters. Compared to conventional
sampling techniques that use as much of the data as possible to obtain an
initial solution and then proceed the research of the outliers, MSAC, like
RANSAC, uses the smallest set possible and proceeds to enlarge this set
with consistent data points.

After the first segmentation step it is possible to reduce the complexity
of the model by discarding points that are marked as outliers by MSAC.
It is also possible to further sub-divide each facade into its composing ele-
ments, such as walls and windows, by applying the same algorithm with
properly scaled parameters (see Figure 5.6 in our experimental results).
Additionally, the number of points can be greatly reduced by tiling each
facade with square tiles of arbitrary side length l and substituting all of the
points whose normal projection is inside the perimeter of the tile with a
single point obtained as their average. This step is often necessary for com-
putational reasons when working with SfM, as the algorithm tends to find
numerous features, leading to a very dense point cloud. A suitable value
of l should thus be chosen as a trade-off between accuracy of the resulting
model and computational advantage.
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Expected temperature

We compared the measurement of the thermal behavior of the building with
the expected one, in order to detect issues as discrepancies between the two.
Ideally, a detailed digital twin of the building should be used as a model,
but this is often unavailable for old buildings, which represent the major
part of the built environment.. Still, it is possible to model the exchange of
heat between a facade and the surrounding environment through heat flow
equations. At steady state, the following flow balance holds:

qSWR + qLWR + qconv + qcond = 0, (5.2)

where qSWR and qLWR represent the heat exchanged through radiation, per-
taining respectively to short and long wave radiation, qconv is the quantity
of energy exchanged by convection between the facade and the air, qcond
describes heat exchanged through conduction between the internal and ex-
ternal sides of the wall (see Figure 5.1).

Figure 5.1: Thermal balance

Thanks to the geometry of the building at hand, some assumptions can
be introduced for long-wave radiation exchange calculation, namely that
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facades exchange heat with the ground, the air and the sky, whereas the
roof does not exchange with the ground. In general:

qLWR = qground + qsky + qair (5.3)

qground =
ϵσFgnd(T

4
es − T 4

air)

Tes + Tair
(Tair + Tes) (5.4)

qsky =
ϵσFskyB(T 4

es − T 4
sky)

Tes + Tsky
(Tsky + Tes) (5.5)

qair =
ϵσFsky(1−B)(T 4

es − T 4
air)

Tes + Tair
(Tair + Tes), (5.6)

were qground, qair, qsky denote the thermal flows to the ground, sky (radia-
tion) and air (conduction) respectively. Tes, Tair, Tsky describe the tempera-
tures of the external surface of the building, the surrounding air and the sky.
Finally, σ is the Stefan-Boltzmann constant and ϵ is the view factor. Such
factor accounts for the angle between the building surface and the other
heat-exchanging element, being maximum when the two are facing each
other in parallel with no obstacles in between. Air temperature is consid-
ered constant along the height of the building. 5.3 describes a heat balance,
stating that the low wave radiation component comprises three heat flow
contributions: heat from the ground, from the sky and from surrounding
air. Equations 5.4 through 5.6 specify how these are calculated.

The presence of shortwave radiation is one of the most influential factors
for a thermal balance. For this reason, since the external temperature of a
surface under direct irradiation is subject to important variations in the time,
it is necessary to plan the acquisition phase in the part of the day when the
sun radiation is minimal. In addition, the radiation coming from the sun
is influenced by many aspects such as the meteorological conditions, the
presence of obstacles and the pollution level. At a design stage, values
according to predetermined models can be used to obtain a daily average
value.

Convection is calculated as:

qconv = h(Tes − Tair). (5.7)

Simple Combined Correlation is adopted to calculate the convective coef-
ficient h, as specified in ISO6946, based on air velocity Vz and the charac-
teristics of the external layer:

h = D + EVz + FV 2
z . (5.8)
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Surface Type D E F
External plaster 10.22 3.1 0.0

Impermeabilization 10.79 4.192 0.0

Table 5.1: Standard values for convection coefficient estimation

Ws Sensor width 28 mm
H Object-camera distance 5 m
Fr Camera focal distance 24 mm

Him(RGB) RGB image height 3040 pixels
Wim(RGB) RGB image width 4056 pixels
Him(IR) IR image height 480 pixels
Wim(IR) IR image width 640 pixels

Table 5.2: Camera Parameters

Typical values for parameters D, E and F , employed in this study, are
specified in Table 5.1. Should a local measurement of Vz not be available,
the value recorded by the closest meteorological station can be adopted as
an estimate.

For calculating conduction heat exchange, internal temperature is as-
sumed uniform and constant. In general, the heat transfer through conduc-
tion is calculated as:

qcond = U(Tint − Text) (5.9)

Where thermal transmittance U , calculated as the inverse sum of thermal
impedances of the strata making up the wall:

U =
1

R
=

1∑
Ri

(5.10)

Equations 5.2-5.10 can finally be evaluated to obtain the value of the tem-
perature of the external surface, Tes, to be compared with the measured one
for each point in the 3D cloud.

5.1.2 Experimental Results

Data acquisition

An upper limit on ground sampling distance of Ḡ = 1 cm/px was set,
together with an overlap of 80%. Given the parameters of the cameras de-
scribed in Table 5.2, mounted on a DJI Mavic 2 Enterprise Dual, the result-
ing distances are described in Table 5.3. We elected to take pictures around
corners ad a distance Hr = 6 m, every 22.5◦. Figure 5.2 depicts part of the
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Table 5.3: Flight planning parameters

Camera G Dw [m] Hf [m] Lf [m] Hf [m]
RGB 0.14 6.00 4.00 1.17 0.87

IR 0.91 6.00 4.00 1.17 0.88

planned path. Several similar paths are stacked vertically at a distance of 1
m to cover the whole building. A total of 328 image pairs were captured:

Figure 5.2: Top view of a section of the planned path. The starting point is depicted in
yellow, while red points are generated to capture the facades and blue ones to capture
corners.

to each 4056×3040 color picture, a 640×480 thermal one is associated.
The SfM algoithm was applied with the help of Agisoft Metashape [150].
Given the low accuracy of the GPS, 7 features were also identified in sev-
eral pictures and their distances measured to obtain the correct scale factor
(Figure 5.3).

The resulting sparse point cloud of the building is shown in Figure 5.4.
By applying the model simplification method described earlier with a

tile side length of l = 10 cm and filtering outliers, the 3D model is scaled
from 942’660 points to only 137’594, depicted in Figure 5.5.

As far as MSAC parameters are concerned, the maximum distance be-
tween a point and the plane was set as 0.25 m, the maximum angle at 1◦,
the maximum iterations at 10000 and the confidence factor at 0.99.

In order to obtain an estimate for the radiance and transmittance param-
eters, the atmosphere was modelled with MODTRAN® [151] as a unique
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Figure 5.3: Positioning of the markers

Figure 5.4: Sparse point cloud of the case study.
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Figure 5.5: Refined point cloud. The area where segmentation was applied is highlighted
in red.

Input Value Unit of measure
Atmoshperic Mid-latitude winter -
Water column 500 Atm/cm
O3 column 0.004 Atm/cm

CO2 400 ppm
CO 0.15 ppm
CH4 1.8 ppm

Tground 10 ◦C
Ground albedo 0.25 -
Aerosol model Rural -

Table 5.4: MODTRAN parameters

homogeneous layer. The specified values and obtained values are shown
in table 5.4. It is important to mention that temperature, water column and
ozone input required by the code were calculated considering the latitude
where the site is in relation with the altitude. As a result, the heat exchange
due to irradiation was estimated to be 140W/m2.

The temperature inside the building was regulated to be constant, with
a value of 20 ◦C, and was assumed to be uniform throughout the building.
Furthermore, the building was kept at this temperature for several hours in
order to reach steady state. The composition of each layer of the walls heav-
ily influences their thermal impedance. Since it was impossible to make an
invasive analysis to characterize the layers composing the envelope, con-
duction parameters were estimated based on the year of construction of the
building and the techniques and regulations of the time. The office centre
of Spino d’Adda was realized in the 1970s, the external wall features a 4
cm air gap through two layers of bricks, while the roof contains 10 cm of
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Figure 5.6: MSAC can also sub-divide facades into their components. Two windows of
the east facade highlighted in red.
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Composition Width U

Wall Double brick with air gap 32 cm 1.1± 0.2 W
m2K

Window Double clear float and argon
gap

2.4 cm 2.5± 0.2 W
m2K

Roof Masonry slab and insulation
layer

38 cm 0.53± 0.2 W
m2K

Table 5.5: Conduction coefficients

thermal insulation and an impermeabilization layer, also visible from the
top of the building. Resulting coefficients are presented in Table 5.5.

Qualitative analysis of the thermal behavior

In the considered building a qualitative analysis of the thermal images al-
ready highlights defects and failures inside the envelope through color con-
trast between adjacent areas, as visible in Figure 5.7. It is possible to notice
several areas considered potentially interesting from an analytical point of
view. In the east facade (area 2), an important difference in terms of tem-
perature in the areas close to the windows is noticeable. It is reasonable to
suppose that in that area, during a renovation, part of the wall was demol-
ished in order to install the windows and substituted with a layer of material
with thermal properties different from those of the rest of the wall. On the
other hand, a solid dark margin running along all the perimeter of every
single window demonstrates that no air leakage is present. Particular atten-
tion was devoted to the edges of the envelope, both between two facades
and between a facade and the roof, where thermal bridges can occur due
to the bi-axial heat transfer and due to the junction between different ma-
terials. The only edge where the temperature is higher than expected is the
south-east one (marked as 3 in Figure 5.7), where a copper drainpipe is in-
stalled. Such material reflects significantly more light than the surrounding
wall, likely biasing the temperature measurement. The top of the envelope
(marked as 5 in Figure 5.7) reveals an important thermal defect in the roof.
A significant thermal bridge causes a sizeable heat exchange, raising poten-
tial problems in the internal side of the offices. The shape and intensity of
the thermal anomaly supports the diagnosis of a general failure of the wa-
terproof layer: due to the roof not being sloped, rainwater is not dispersed
effectively and prolonged stagnation has probably infiltrated the roof lay-
ers, affecting the rest of the elements and reducing their thermal insulation
performance. Another thermal defect that can be seen is at the bottom of
the envelope, between the sidewalk and the opaque east facade (area 6).

147



Chapter 5. Energy Efficiency Assessment

The presence of a short segment where the measured temperature is much
higher than the rest of the envelope suggests that there is a thermal bridge
caused by a possible problem in the realization phase. It is also apparent
that door and window frames exhibit a high temperature, conveyed by the
bright orange colour. This is probably due to the aluminum alloy compos-
ing them, which has poor thermal insulation properties with respect to the
walls. It should also be stressed that such alloys tend to partially reflect
light and could thus induce a bias in the temperature measurement, even if
the insulation is effective. Table 5.6 summarizes these considerations.

Figure 5.7: Thermal issues highlighted by analysis of the pictures. The drainpipe in the
south-east corner is visible in the top-right image, to the left of area 4.

Quantitative analysis and comparison with the thermal model The issues high-
lighted in the previous section through qualitative analysis of the thermal
images can also be detected by comparing the model with the measured
temperatures. Given the measured temperature is also possible to estimate
the thermal transmittance Ues as measured by the IR camera. A quantitative
analysis also enables the measurement of the extent to which the detected
defects impair the insulation of the building. This difference can be taken
as a marker of severity to plan suitable interventions. Numerical data is
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Area Temperature [◦C] Transmittance U [W/m2K] Diagnosis
Tex Tes Diff. Uex Ues % Var.

1 12.8 12.3 -0.5 1.14 1.12 -2% -
2 12.8 15.3 2.5 1.14 2.04 79% Thermal bridge
3 12.8 15.9 3.1 1.14 2.35 106% Measurement anomaly
4 12.8 15.2 2.4 1.14 2.02 77% Thermal bridge
5 13.6 16.6 3.0 1.52 2.81 85% Water leak
6 12.8 14.8 2.0 1.14 1.85 62% Thermal bridge

Table 5.6: Summary of the quantitative analysis. Tes, Ues are the measured temperature
and thermal transmittance of the external surface, whereas Tex, Uex are the expected
values predicted by the model.

gathered in Table 5.6.
The area marked as 1 in figure 5.7 is used as reference to test that the

model correctly predicts the thermal behavior of the building under nor-
mal circumstances. The absolute error in temperature is deemed reason-
ably small. The analysis also captures all the issues raised in the previous
section, evidencing a difference in temperature of at least 2 ◦C between
measured and expected value in all relevant areas. These correspond to sig-
nificant variations in thermal transmittance of the surfaces. Such deviations
from the expected behavior in the direction of higher transmittance, rang-
ing from 62% to 106%, point to a severe decay of the thermal performance
of the building, regarding especially the roof, where the water leak problem
could potentially affect the serviceability of the structure in general. The
data pertaining to area 4 in Figure 5.7 adds to the diagnosis of a severely
damaged roof, even if the parapet wall does not facilitate the flow of heat
from the inside of the building.

Discussion

The identification of defects and measurement of their severity through
comparison with a model of the building can be exploited to rank the issues
by urgency and devise an intervention plan aimed at solving them. Fur-
thermore, a classification based on severity can also facilitate an objective
and repeatable description of the state of the building according to national
guidelines and international standards, making comparisons between dif-
ferent buildings possible and reliable.

Given the nature of IR pictures and the appearance of thermal defects
within them, damage detection could also be performed through Machine
Learning techniques. In particular, an algorithm can be trained to recognize
defects in pictures starting from the set of available pictures (i.e. the mea-
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sured surface temperatures) and the model predictions, which together con-
stitute a set of labeled data. This idea can also be expanded to exploit geo-
metrical information originating from the 3D model reconstruction through
SfM.

Furthermore, the monetary and pilot training costs of adopting UAVs to
take the pictures is well worth the gains: they are easy to use, they sig-
nificantly extend the reach and speed of movement of the cameras, they
relieve human operators of the necessity to climb structures or use cranes,
thus decreasing risks by a substantial margin, and they offer the possibil-
ity of fully automating inspections, at least in private environments, thus
driving the costs further down. In short, they make inspections faster, safer
and cheaper. We expect them to become the industry standard in the next
decade.

5.1.3 Conclusion and Future Work

We presented a UAV-based pipeline for the 3D modeling of a structure
and its thermal behavior assessment through IR pictures, comprising a pro-
cedure for generating the best candidate points for data gathering, the re-
construction of the model through SfM, its segmentation with MSAC, the
modeling of the thermal behavior of the structure and the comparison with
the measured data. The end result is a complete process from mission plan-
ning to diagnosis and intervention planning which offers great automation
potential. The clarity of the obtained results and the ease of data collection
lead us to conclude that drones should become even more integrated in reg-
ular inspection and maintenance, as they can greatly reduce the costs and
time requirements for performing such tasks.

While the automation of some of the steps has already been undertaken
in our laboratory (see [21]), we aim at automating the entire pipeline in the
near future, in particular the damage detection tasks through data analy-
sis, with the overall objective of designing a completely autonomous drone
network for the inspection of civil infrastructure.
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