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Abstract

Interest in searching for a sustainable development model has grown enormously over the last
50 years. The reactions of the environmental systems to the continuous extractions of the
seemingly unlimited resources were so alarming that in the mid-1970s, experts agreed that
the ongoing development models could not continue for long. The Sustainable Development
Report 2019 presents the Sustainable Development Goals (SDGs) Index and Dashboards for
all United Nations (UN) member states and frames the implementation of the SDGs in terms
of six broad transformations. Despite the common interest of research, the road to achieving
the SDGs seems to be still a long one. Architecture and urban planning are certainly two of
the areas in which research is most devoted to achieving these objectives. Indeed, starting
from the analysis of the built environment when investigating human effects on the planet
is nothing new, but analysis methods are far from being defined. At the same time, the
contribution that computer science can add when addressing a systematic analysis of the
territory, both from a morphological point of view and as regards performance analyses,
seems to have been underestimated in today’s research. It is in this context that this
research will fit, joining two - until now separate - worlds, the one of computer science and
the one of architecture and urban planning. In particular, in this work, we present SIMBA:
systematic clustering-based methodology to support built environment analysis. SIMBA
has been thought of as a methodology to support the Integrated Modification Methodology
(IMM) developed at the Department of Architecture, Built Environment and Construction
Engineering (DABC) of Politecnico di Milano. IMM is a multi-stage, multi-layer, multi-scale,
holistic, and iterative process, applied to urban components, and it allows us to evaluate
the environmental performance of the city. The first stage of the process is the investigation
one, in which the analysis and the synthesis of the territory are performed; this is also the
phase when we apply SIMBA. Our case study is the city of Milan and its 88 NILs (Nuclei di
identità Locali) on which we will perform clustering. In particular, the advances produced
by SIMBA on the IMM methodology include:

• a methodology to select a reasonable but also a representative number of features
when investigating the built environment;

• experimental evidence of corresponding patterns between the structural shape of the
city and performances; and
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• a systematic methodology to measure the distance between elements, needed when
comparing different built unit.



Sommario

L’interesse nella ricerca di un modello di sviluppo sostenibile è cresciuto enormemente negli
ultimi 50 anni. Le reazioni dei sistemi ambientali alle continue estrazioni di risorse apparente-
mente illimitate sono state così allarmanti che, a metà degli anni Settanta, gli esperti hanno
convenuto che i modelli di sviluppo in corso non potevano continuare a lungo. Il Rapporto
sullo sviluppo sostenibile del 2019 presenta l’indice e il quadro SDG(Sustainable Development
Goals) per tutti gli Stati membri delle Nazioni Unite (UN) e inquadra l’attuazione degli
obiettivi di sviluppo sostenibile in termini di sei ampie trasformazioni. Tuttavia, nonostante
l’interesse comune della ricerca, la strada verso il raggiungimeto degli SDGs sembra essere
ancora lunga.

L’architettura e l’urbanistica sono certamente due dei settori in cui la ricerca è maggior-
mente dedicata al raggiungimento di questi obiettivi. Infatti, partire dall’analisi dell’ambiente
costruito quando si indaga sugli effetti che l’uomo ha sul pianeta non è una novità, ma i
metodi di analisi sono ben lungi dall’essere definiti.

D’altra parte, il contributo dell’informatica nell’affrontare un’analisi sistematica del terri-
torio, sia dal punto di vista morfologico sia per quanto riguarda l’analisi delle prestazioni,sembra
essere stato sottovalutato nella ricerca odierna. È in questo contesto che questa ricerca intende
inserirsi, unendo due mondi finora separati, quello dell’informatica e quello dell’architettura
e dell’urbanistica. In particolare, in questo lavoro presentiamo SIMBA, una metodologia
sistematica basata sul clustering, a supporto dell’analisi dell’ambiente costruito. SIMBA è
stata pensata come metodologia a supporto di IMM (Integrated Modification Methodol-
ogy), metodologia sviluppata presso il Dipartimento di Architettura, Ambiente Costruito
e Ingegneria delle Costruzioni (DABC) del Politecnico di Milano. L’IMM è un processo
multistadio, multistrato, multiscala, olistico e iterativo, applicato alle componenti urbane,
che consente di valutare le prestazioni ambientali della città. La prima fase del processo è
quella di indagine, in cui viene effettuata l’analisi e la sintesi del territorio ed è la fase in cui
SIMBA viene applicato. Il nostro caso di studio è la città di Milano e i suoi 88 NIL (Nuclei
di Identità Locale) sui quali è stato effettuato il clustering. In particolare, il contributo di
SIMBA ad IMM è legato a:

• una metodologia per selezionare un numero ragionevole ma anche rappresentativo di
features nell’indagine dell’ambiente costruito;
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• evidenza sperimentale di modelli corrispondenti tra la forma strutturale della città e
prestazioni;

• una metodologia sistematica per la misurazione della distanza tra gli elementi, neces-
saria quando si confrontano diverse unità costruite.



Chapter 1

Introduction

Nowadays it is clear that one of the biggest problems of our century is the impact that human
beings’ behaviour is having on the environment. In 1972, with the collaboration of American
scholars, the Club of Rome published a report titled “The Limits to Growth” [1]. The report
argued that only by stopping or at least slowing down the growth of the world’s population
and agricultural and industrial production would it be possible to reduce pollution and slow
down the consumption and exploitation of non-renewable natural resources: minerals, oil,
soil fertility. The Club of Rome’s publication caused a storm, and there have been several
reflections from representatives of different social classes and areas of study. Anyways,
parallel with the organized environmental concern in the last 50 years, as the human
population of the world doubled, the carbon emission related to the industries raised by
more than twice, the planet earth surface warmed by around 0.5◦. Celsius on average
and its wildlife decreased by 60% [2] [3] [4] [5]. Climate change surprises us year after
year, and beside severe damages to our infrastructures and resources, it brings serious
and unprecedented economic and socio-political challenges. All this is happening at the
golden age of humanity when man’s knowledge is flowering, and global collaboration seems
to be higher than ever before [5]. Sustainable development has therefore been a topic of
discussion for 50 years now, but feasible solutions are a long way off. While anyone is
aware of this issue by now, concrete solutions seem to be less and less feasible. In the
literature, we find numerous works addressing this problem starting from the study of the
built environment, but none of these seem to have led to a satisfactory conclusion. This is
undoubtedly due to the infinite number of variables of this problem and its global scope.
Yet, information technology, based on the processing of large quantities of data and the use
of sophisticated data mining algorithms, is present in all areas. How, then, can architects
and computer scientists cooperate to analyse such a complex and multifaceted problem?
This is the question from which this thesis starts. The work is based on the research
collaboration between the Computer Engineering Section of the Department of Engineering,
Information and Bio-engineering (DEIB) [6] and the Architecture and Built Environment
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2 CHAPTER 1. INTRODUCTION

and Construction Engineering(DABC) [7], at Politecnico di Milano. The goal of the thesis
is to produce a fully integrated methodology, adding various degrees of innovation to the
IMM (Integrated Modification Methodology) [8] procedure, created by the DABC partners
to address critical urban emergencies (e.g., transport and energy problems, environmental
dynamics and their impacts on carbon emission, human health, and well-being). The
IMM_Lab has produced, over the years, very interesting results and advances compared
to other rating systems for sustainability assessment, integrating morphology and building
typology in the rating procedure, and dealing with the city as CAS. With these two actions,
the procedure can consider the context in which the analysis is performed and to deal with
the relations among different components of the city, which are usually hard to detect and
handle. However, there is still a need for systematisation of the processes, both in the
analysis and, possibly more importantly, in choosing which are the features to take into
consideration while investigating the environment. To deal with these two problems, in this
work we present SIMBA, a systematic clustering- based methodology, created to support the
Investigation phase (Phase I) of IMM, which corresponds to the built-environment analysis.
The choice to base the methodology on clustering is due to the ability of these algorithms to
highlight similarities and differences between elements of the datasets. Since the comparison
between different built environments is of fundamental importance for the analysis carried
out by IMM, both between different elements and for the same element in different phases
of its transformation, clustering turns out to be a particularly useful tool. Coherently with
IMM, the analysis will be focused on cities. In particular, our case study will be Milan, a
city divided into 88 NILs, or neighborhoods, which will be the object of our analysis. For
each NIL, we have data organized in four datasets:

• Indicators , a dataset of the indexes used in IMM, related to performance aspects of
the NIL (e.g. transport)

• Metrics , parameters used in NILs but also present in the literature with other names.
These values represent different characteristics of the territory. Our metrics are
specifically related to the ratio between built areas (Volume) and empty areas (Void)

• Attributes , data used to compute metrics

• Milan , a dataset of information retrieved from Comune di Milano regarding building
performances, air pollution, populations, and services.

We will refer to these different types of data as Dimensions , since they represent, in
our case, four different dimensions along which we will cluster. SIMBA is divided into three
phases. The choice of the granularity in which we will decompose the city of Milan (NILs)
and the definition of dimensions constitute the Built Environment Decomposition (BED).
In the second phase, we will perform clustering on all the different datasets, first using a
subset of features selected manually, and then extracting the most significant ones with an
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entropy-based algorithm. This phase is called First Level Clustering (FLC). We will analyse
different results, and these will be the bases for First Level Clustering (FLC), the last phase
of SIMBA. In this phase, we will use previous results together with expert knowledge to
select the most relevant Dimensions and features to cluster again. The contribution of this
work will be the following:

• a methodology to select a reasonable but also a representative number of indicators
and metrics to use when investigating the built environment;

• experimental evidence of corresponding patterns between the structural shape of the
city and performances which, in our case, are respectively represented by metrics and
indicators;

• a systematic methodology to measure the distance between elements to apply when
using a system rating for sustainability assessment.

To do so, we will follow the following structure of the thesis:

– Chapter 2 presents the problem of sustainability, the role of cities, the open challenges,
and goals of the work. It also provides a review of the state of the art, presenting the
different rating systems and the IMM procedure in all its phases and elements;

– Chapter 3 reports all the notions related to Data Mining and Machine Learning
needed to fully understand SIMBA, particularly focusing on clustering definition and
usage;

– Chapter 4 describes all the phase of SIMBA and the setting needed for the experimental
part;

– Chapter 5 presents the results of all the experiments carried out in the experimental
phase;

– Chapter 3 comments more in-depth the obtained results and compares and evaluates
all of them;

– Chapter 7 presents the limitations of our approach, together with interesting paths
for future works; and

– Chapter 8 exhibits our conclusions and a resume of the impact of our work.
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Chapter 2

State of the art and motivations

In this chapter, we present the motivations lying behind our research work. After presenting
the topic of sustainability assessment and the actual state of the art, we will describe the
IMM theory in all its phases and components involved. Finally, we summarize the goals of
our work and the challenges to be faced in achieving such objectives.

2.1 Rating systems for sustainability assessment

The problem of sustainability in building environment has been broadly addressed in the
literature. However, many issues are still open, and different approaches have deficiencies
in several aspects. We now want to highlight the main problems raised, and the different
solutions adopted during the years.

The first problem is the scale at which the analysis of the environment is carried out.
More than two decades ago, in fact, the problem was addressed with rating tools for
buildings. Although there are high demand and attention to green buildings, it has proved
insufficient to guarantee the sustainability of the built environment ([9]; [10]). One of the
main critiques of sustainability assessment on the building scale has been its inability to
capture what makes a built environment sustainable for its citizens [11]). For this reason, in
the last fifteen years, a good number of rating systems at the scale of urban communities
also referred to as the neighborhood or district scale, have been introduced to overcome
these limits ([12]). Sustainability assessments at the community or city level are proving
to be much more than the summation of individual green buildings and infrastructures
( [13]; [14]). This is a first important concept we will return on later, that the switch
to a larger scale cannot be considered simply as the aggregation of sustainable objects,
as scaling up results in complex interactions ([12]) All these methods consist in long lists
of indicators with different weights, and benchmark values. Even if every system has its
own weights and categories, the main common topics that can be identified are location,
planning, transportation, management, biodiversity, economy, and well- being. [15] criticized
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them stating that there is no quantitative evidence that a high- rated community emits less
carbon than a lower-rated one. Considering the unscientific selection of the criteria, their
weights and the benchmarks, this critic is difficult to overcome. Moreover, the aggregated
level of assessment, which synthesizes the evaluation in one single rate, reduces the ability
to deliver a robust and transparent output ([14]), [16]).

Another limitation of existing systems is the adoption of a static perspective. In these
systems, the assessment is a process realized once at the beginning of the urban community
development. However, recent definitions of sustainability have encouraged looking at this as
a moving target, showing that assessments done at a single time are not sufficient (Brandon
and Lombardi 2011). In fact, continuous evaluations should be encouraged, in a way that
sustainability assessments become an interactive process, which could be used to map the
evolution of urban development ([17]; [18]).

What appears as the main limitation of rating systems in general, and in particular at
the district scale, is the difficulty of taking into consideration the physical properties of the
context. Context involves a whole host of relevant psychological, social, cultural, economic,
geographic, physical, ecological, and technological dimensions of a situation ([19]). Thus, a
significant result in one place may or may not be significant in another, due to variations in
the cultural and social context ([20]). The attempts to include this dimension produce, on
the other side, hardly measurable results, often subjective and not replaceable in different
contexts. The rating system clearly measures performances through a set of indicators that
risk being disconnected from the reality they represent.

A way of considering context cold be to integrate morphology and building typology
with the rating system, but even if morphological characteristics deeply influenced the
environment, they introduce another problem that we will face when we will talk about the
Complex Adaptive System.

2.2 Cities as CAS

The choice of the city as a starting point to tackle a complex problem and, as mentioned
above, covers the most varied areas, is justified by more than one element. Currently,
approximately 80% of the global primary energy is consumed in urban areas, and cities are
responsible for emitting more than 70% of the total world’s greenhouse gases and consuming
60% of disposable water. Nonetheless, cities are the economic engine of the world [21].
Moreover, cities can be defined as CAS. This definition finds its reason in different works,
including the “Multi-Scale Modelling Approach for Urban Optimization: Urban Compactness
Environmental Implications” by Carlo Andrea Biraghi [22], carried out within the IMM
project mentioned above and the starting point for our research. Cities are complex systems
since they are composed of interconnected heterogeneous elements that, as a whole, exhibit
one or more performances, and, having been proven their capability of learning from the
past, they can be defined as adaptive [22].
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Starting from these premises, it seems evident that the urban area represents a rich and
already complex and interesting representation of the issue we want to focus on. Moreover,
scaling well w.r.t comparisons between different samples and data retrieval, cities seem to be
perfectly suitable for a conceptual representation, model realization, and model evaluation
from a technological point of view.

Sustainability in an urban environment, for its part, does not only depend on environ-
mental performance. The current COVID-19 emergency is a prime example of this. Italian
and international studies have analysed the correlation between the spread of the virus and
the air quality of different cities. The rapid COVID-19 infection spread observed in selected
regions of Northern Italy is supposed to be related to PM10 pollution due to airborne
particles able to serve as a carrier of pathogens [23]; moreover, "Patterns in Covid-19 death
rates generally mimic patterns in both high population density and high [particulate matter]
PM2.5 exposure areas," the Harvard University report says [24]. Needless to say, other
environmental parameters such as temperature and relative humidity may represent key the
factors in activation and persistence of viruses in the atmosphere [23]. Furthermore, if on
the one hand, the modification of the built environment seems to play a role in preventing
the virus, on the other one the trend of the virus itself will lead to profound modifications
of the urban environment and will highlight characteristics and criticalities. The COVID-19
emergency, from this point of view, is therefore proof of how urban emergencies are charac-
terized by multiple factors and of how the problem of urban performance itself cannot be
separated from the one of urban health.

Another aspect, that makes the city interesting but at the same time a complex case
study, is that cities are not static objects and evolve through time. They grow, shrink,
merge, can be destroyed or abandoned for many different reasons. The actual conformation
of existing cities is only a point on the timeline of their evolutionary path. On this timeline,
it could be possible to see the disappearance of a city even with the persistence of its
physical consistency [25]. This can be explained by the phenomenon of Synekism, the union
of several small urban settlements under the rule of a "capital" city and their absorption
into a unique composite urban fabric with time. Former towns or villages can so become
neighbourhood of a larger expanding city. This makes meaningful considering a city as an
entity that inherits the properties of all the other kind of smaller settlements that could
be part of it [22]. It is difficult to give a precise and unique definition for cities, in fact
there are many found in the literature, depending on the context in which they are given.
Merging all the definitions we can identify the fundamental components of a city. The city
is a spatially defined area (Void), separated but connected to the countryside, made up of
a group of houses and other public buildings (Volume, Function), where communities of
citizens (Agents) live, move (Link) and recognize themselves in its name. We also notice
that the scale of a city, or its hierarchical position in a region, can be explained by different
aspects related to the above-mentioned components. A city is usually more densely built and
populated (Volume), more accessible (Link), larger (Void), and host higher-level functions
than the surrounding settlements. Moreover, as we said, cities can be defined as CAS.



8 CHAPTER 2. STATE OF THE ART AND MOTIVATIONS

Cities, considered as Complex Adaptive Systems, have the opportunity to learn from other
well-performing systems. The Complex System Theory highlights some structural features
of a system that can improve its performances. These are Connectivity, Complexity, and
Compactness. Connectivity represents the topological integration of system elements. It is
intrinsically related to the relational network existing between the elements of the system
and the resulting hierarchy. Complexity refers to the number and the diversity of both
elements and connections. A system with heterogeneous elements and a great number of
connections have a high level of Complexity. Compactness is the more tangible and physical
dimension. While the other two are represented by the relational network describing an
abstraction of the system functioning, Compactness deals with the Euclidean space. It is
materially built on the interaction between Volumes and Voids and deals with the reciprocal
position of elements in space, no matter at which scale [22]. As we already explained in the
previous section, only the comprehension of the structure of the city allows us to optimize it
and improve its performances. On the other hand, even knowing from existing literature
about sustainability implications of compactness, complexity, and connectivity, the problem
of defining these three concepts remains open.

2.3 IMM

IMM is a multi-stage, multi-layer, multi-scale, holistic, and iterative process, applied to
urban components, and it allows for evaluating the environmental performance of the city (or
parts of it). It investigates the relationships between urban morphology and environmental
performances by focusing mostly on the subsystems characterized by physical characters
and arrangement. It also highlights the need for acting not only on the physical properties
of units (architecture), but also on the operation of the urban system considering functions,
services, transportation, resource management and everything possibly affecting citizens’
behaviour, in an ecological perspective . The IMM methodology is aligned with the 17
Sustainable Development Goals Figure 2.1 promoted by the United Nations, indeed, the
main object of this design process is to address a more sustainable and better performing
urban arrangement. In IMM, the built environment is considered as a CAS, in which each
part or component is structurally co-related with others: thus, a mere local modification
starts a chain-reaction and ultimately a structural change of the entire system. With an
extremely high level of complexity, cities are always in the state of transformation. The
forceful dynamism within their arrangements produces multi-layered reactions for any single
action. Rest on the form of adjustments, the whole CAS changes in a long time, brief time,
or immediately and all these levels of time-related transformation take place simultaneously.
From this perspective, cities are ever- changing entities, and transformation is a continuous
process. Though, there are specific patterns of transformation in each specific context, which
are inherent to the particularities of that very system. In other words, if two different urban
systems undergo similar intervening actions, their reactions would not be the same, and
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therefore, the transformation results in any given period would be undoubtedly different.
Thus, to plan for any modification on an urban system, it is fundamental to learn about
that system’s structure. Accordingly, IMM focuses on the systemic arrangements of the
built environment and proposes holistic procedures to transform the urban systems into
better performing entities based on the unique qualities that each context offers. Rendering
the CAS’s nature, a mere local action accrued in an individual subset will produce a chain
reaction within the network of its elementary parts and trigger a process that consequently
leads to the global change of the entire system. That is, system agents adapt themselves in
response to the complex network of reactions arisen from individual changes. In IMM, the
emergence process of interaction between elementary parts to form a synergy is named Key
Categories . This is the first element we need to focus on. Key categories are the products
of the synergy between elementary parts, thus, a new organization that emerges not (simply
as) an additive result of the proprieties of the elementary parts [8] . We will later go back
to the definition of Key Categories and we will list the ones defined in IMM. What we want
to highlight now is that the description of the build environment provided by the IMM
procedure does not consider the city as the simple sum of its part. According to this view,
the city is not solely a mere aggregation of disconnected energy consumers and the total
energy consumption of the city is different from the sum of all of the buildings’ consumption.
This considerable gap between the total energy consumption of the city and the sum of all
consumers is concealed from the urban morphology and urban form of the city [8].

Figure 2.1: SDGs

2.3.1 IMM phases

To address its scope, the IMM procedure is organized in a nonlinear phasing process involving
the following structure:

• Phase I. Investigation: Analysis and Synthesis
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• Phase II. Assessment and Formulation

• Phase III. Intervention and Modification

• Phase IV. Optimization

In Figure 2.2 we illustrate the process. We will briefly describe each phase and then,
focusing on Phase I, we will give some definitions of the elements interacting.

Figure 2.2: IMM - Phases

The process is non-linear. This is reasonable since it must be coherent with the nature of
transformations in the built environment that have a non-linear form similar to a spiral. As
a complex system, indeed, the built environment is always subjected to change and, at any
stage, it produces new thresholds of transformation ([12]). Moreover, the proposed procedure
must be accurate enough to cross through the integration of the built environment’s different
scales and flexible enough to maintain the capacity of the system to learn from itself ([12]).
In the first phase, the built environment system is broken down into its subsystems, and the
relationship between those parts is investigated. Accordingly, the performance of the system
is evaluated in the second phase, and intervention plans are formulated. In this last mentioned
stage, the Design Operating Principles (DOP) play a fundamental role as tools/instrument
used to arrange the structure of the CAS. In the third phase, design/modification scenarios
are tested with the same means that the actual context was investigated, which means,
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a circular manner is used until the transformed context is predicted to be acceptable in
arrangement and evaluation. The last stage is dedicated to overall optimization through the
definition of local retrofitting strategies. Basically, the new form of the CAS is compared
with the old one using the same procedures applied in Phase II. Moreover, as we said before,
transformation is an endless process, and so this new configuration will become a context
for other transformations. Having described the phases of the procedure, we now want to
to define its constituent. More precisely, in the first phase, Investigation, the actual state
of the system is dismantled into its Components (Volume, Void, Network, Type of Uses)
and reassembled into Key Categories (KCs) in order to assess the previously seen system
Determinants (Compactness, Complexity and Connectivity) with the goal of achieving an
efficient urban form. Let’s then see some definitions of the over mentioned elements.

2.3.2 IMM elements

In Figure 2.3 we can see how IMM elements interact. Before to comment the process, we
want to give a definition of all of them. All the definition we will provide are consistent
with those provide by Carlo Biraghi in his work "Multi-Scale Modelling Approach for Urban
Optimization: Urban Compactness Environmental Implications".

Figure 2.3: IMM - Complete

1. COMPONENTS

We find different definitions in literature of components. Summarizing all of them
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we understand that despite their heterogeneity, cities can be dismantled into four
components, whose unpredictable and continuous interaction over times gave birth
to contemporary urban areas. These components are Volume (the built part), Void
(empty spaces), Function (activities performed by citizens) and Network (networks
of different modalities) ([26]). These four elements are the most important ones to
understand morphology ([27]). Concluding, components are the least set of elements
to be considered when dealing with urban environment. People are agents whose
behaviour is affected by the configuration and interaction of these components; with
their lives, they affect and reflect the performances of the city

2. KEY CATEGORIES: 1st level of integration

We have already introduced Key Categories, mentioning their representing role of the
synergy between parts of the built environment. This synergetic integration between
Key Categories mostly describe the configuration of the CAS (Figure 2.4).

Figure 2.4: IMM - Levels

More precisely, Key Categories used in IMM (up to now) are:

• Urban Porosity : the spatial relationship between urban built-ups and voids;

• Proximity : the structural relationships driven by the distances between basic
land-uses;
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• Diversity : the structural relationship derived from the different typologies of
land-uses;

• Accessibility : the mobility patterns driven by dynamic characteristics of origins
and destinations;

• Effectiveness: the static effect of urban characteristics on the functioning order
of mobility systems;

• Interface: the characteristics of the street network that influence overall connec-
tivity;

• Permeability : the relationship between the street network and spatial component
influencing overall connectivity.

Being complex concepts Key Categories are not represented by simple number but
IMM uses six quantitative metrics. As we can see, Key Categories only illustrate the
structural characteristic and not necessarily the performance. In IMM, like most of
the scientific methodologies, the tools for performance evaluation are indicators ([12]).

3. METRICS

IMM aims at providing quantitative measures (metrics) that can pinpoint significant
features of the spatial organization of the urban elements in order to characterize the
concept of Key Categories ([12]). Metrics, indeed, describe properties of the sample
area. It’s possible to create almost an infinite number of metrics even if many could
result as redundant because built on the same parameters ([22]). We will give some
examples of metrics when we will describe the available dates. We will see in particular
the ones related to porosity and permeability.

4. INDICATORS OF PERFORMANCE

Key Categories are used to describe urban structure and its potential way of operating.
In other words, each of them draws a partial picture of potential system behaviour that
is not necessarily representative of the real flows of city users. A straight street between
two points represents the most direct and fast way to connect them (Permeability)
but it will not necessarily be the most used by walking people. Aspects as the
presence of activities on the ground floor (Proximity), of public transportation stops
(Accessibility) or shading by volumes in hot climates (Porosity) can affect people choice
suggesting taking more tortuous (Permeability) but integrated (Interface) streets. The
comprehensive configuration of the CAS is mostly described by the correlation between
the different subsystems. This distance between structure and performances make
necessary the use of indicators to understand the real system behaviour and how it
can be explained by system structure. It may happen that unpredictable factors affect
system agents generating unexpected behaviours. Each indicator may be representative
for more than one KC, according to the same logic that links KC to metrics. This
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relationship is mediated by families of indicators representative of the DOP and by
the three Determinants plus a fourth category of Management. The list of indicators
is open and even if currently counts more than one hundred records, it could easily
and hopefully reach a much higher number. Not all the indicators can be calculated in
every context according to data availability, but this does not represent a limit. In fact,
even just few indicators for every family may be enough to evaluate a transformation.

5. DETERMINANTS: 2nd level of integration

In the previous paragraph we have seen some concepts largely recognized as features of
a well performing system as Compactness, Complexity and Connectivity. IMM accepts
this three substituting the word Complexity with Intricacy to avoid the contradiction of
assessing Complex Systems directly through Complexity. They are called Determinants
as they decisively affect the nature of city and are the result of the second level of
integration, based on KCs that are the result of the 1st one, based on components.
They are inevitably more complex categories that can be hardly understandable and
representable in a synthetic nor simplified way. Their full understanding will be
possible only after testing the methodology on multiple case studies and alternative
transformation scenarios in order to let emerge some patterns that link them to more
simple objects as the one that, as architects or urban designers, we are asked to deal
with like buildings, streets, squares and parks, simple instances of the Volume and
Void Components.

6. DESIGN ORDERING PRINCIPLES (DOP)

DOP are essentially a set of actions that designer can perform in order to improve
the current system behaviour. They are used during the Assumption & Formulation
phase (2) when the designer interprets the results of the diagnostic. These actions are
taken from the literature and are generic enough to let the designer freely move in
them, and specific enough to guide it in a positive direction. Here the list of the DOP
in alphabetical order:

(a) Balance the distribution of functions and developing multifunctional urban spaces;

(b) Balance the ground use;

(c) Balance the public transportation potential;

(d) Change from multi-modality to inter-modality concept;

(e) Convert the city in a food producer;

(f) Create connected open space system, activate urban metabolism;

(g) Foster the local energy production. Building as component of Smart Energy
Community;

(h) Implement permeability to facilitate urban flows;



2.3. IMM 15

(i) Implement water management;

(j) Make biodiversity an important part of urban life;

(k) Prevent the negative impact of waste;

(l) Promote Walkability, Cycling and Reinforce their integration with public trans-
portation.

Even if no one could disagree with none of this principle, it’s clear that their positive
impact strongly depends on the context where they are applied. They can’t harm but
they can be useless in some extreme cases. What makes them interesting and different
from a checklist of a classical rating system is their dynamic nature. The importance,
hierarchy or weight of each of these principles varies according to the case study and
is determined by the analysis of KCs. So, the list rearranges every time in order to set
some priorities among this goal.

7. ATTRIBUTES

Lastly, we need to define attributes. The IMM procedure is applied to Cities as we said
many times, and it uses the above defined elements to perform a complete investigation
of the build environment. To compute the elements the procedure needs of course
input data or rather, attributes. Attributes could be both geometrical properties and
additional information. Some of these data can correspond or be used to compute
attributes. In the next chapter we will see some example to clarify this definition.
Additional attributes can be obtained by numerical or spatial operation on the existing
ones. Attributes are the ingredients for the construction of metrics. Finally, as we
said, in fig. 2.3 is represented the interaction between IMM’s elements.

The scheme can be read in two directions because of the iterative nature of the approach.
Going clockwise city performances are determined, as agreed in the literature, by its
level of Compactness, Complexity and Connectivity, called determinants. These, in
order to be investigated, need to be dismantled into more targetable urban system
properties, the KCs. The number of KCs inside IMM is currently seven but is not
fixed. The KCs are the result of the integration of the Components (Volume, Void,
Function and Network), the basic constituents of every city. The components are
the result of the dismantling process of cities and are so the starting point of the
counter clockwise process of urban diagnostic, articulated in KCs and completed by
the measurement of performances through the Indicators. The complete scheme shows
the relationship between all the components and the KCs, and between them and
system determinants, resulting extremely hard to be represented in a comprehensible
way given the complexity of the relationships between the elements. Every KC, as we
said, can then be associated with more than one indicator as well each indicator may
be representative for more than one KC, according to the same logic that links KC to
metrics. On the other hand, each indicator is associated to one of the DOP families.
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2.3.3 IMM Data Flow

Once described phases and elements of IMM, we now want to focus on the data flow in the
methodology to analyse which are the lacks and where Data Mining can fit to help and
improve the process.

In Figure 2.5 we show the actual IMM data flow.

DATA
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CalculateCalculateDefine
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Figure 2.5: IMM - Data Flow

We have already discussed the meaning of different elements in section 2.4.2 but now we
want to focus on how they interact. In particular we can see that, starting from raw data
they can have different kind and level of aggregation.

• First level of aggregation: data and attributes;

• Second level of aggregation: metrics and indicators

• Third level of aggregation: KC and DOP families

More precisely, from data we compute attribute and from attributes metrics and then,
some of these metrics will define key categories. On the other side of the graph we can
see that we can calculate indicators from data, and sometimes these are also calculating
starting from metrics. The list of possible indicators is still opened, and it can vary every
time the framework is applied. Anyway, each indicator can be part of one DOP family.

Every element in the flow has a role and is useful to analyse the city from a specific
point of view. Unfortunately, this the good and bad of the procedure. Indeed, if on the one
hand this give us a deep description of cities and grasps all the different characteristics of
them as CAS (Complex Adaptive System), on the other one it makes the procedure difficult
to be applied systematically. Moreover, having such a long and opened list of features makes
almost impossible to create a model that generalize well. This last one observation brings
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to light a well know problem in the Machine Learning/Data Mining field: Bias Variance
trade-off. This term indicates the fact that while we are building a model, we have to choose
between making it very accurate or to able to generalize well. In the first case we will need
lot of features, but it will lead us to have high variance, while, in the second case, there
could be the risk of building a too simple model with few features and high bias. We will
not go into the details of this issue. We just want to point out that in our case we are facing
the same problem. We want to have a complete and accurate description of the different
cities we need to analyse, but at the same time we want to produce a standard procedure to
analyse and model them.

It seems reasonable at this point to try to overcome this issue using data mining
techniques.

2.4 Goals and challenges

Summarizing, claiming sustainability in urban environments requires a comprehensive
understanding of cities as complex adaptive systems and a clear identification of the
roles played by the various sub-systems. However, current trends and design methods
greatly simplify analytical approaches and practically deal with the subsystems (sectors)
as independent entities by neglecting the importance of phenomena resulting from their
interconnections at different scales. In this scenario, we think computer science can add
significant improvements in the analysis of the built environment. Indeed, many challenges
are still opened in urban optimization as we said, and for some of them, data mining
techniques can become efficient support tools. In particular what we want to do in this
work is to verify whether clustering techniques bring to significant results when used in the
diagnostic phase of IMM. The main issue regarding IMM is the need of systematization in
all its aspect. In particular the main challenges regard:

• Select a manageable but at the same time descriptive number of features to describe
the built environment;

• Compare different built environments or the same built environment in different stages
of its transformation;

• Provide a rich and explainable representation of the relationship between different
part of CAS.

To overcome this issue we will use SIMBA, systematic clustering-based procedure to
support the built environment analysis. The choice to base the methodology on clustering
is due to the ability of these algorithms to highlight similarities and differences between
elements of the datasets. This is the base to allow comparability among samples and it also
allow us to investigate on which are the characteristic which influence more the process.
SIMBA methodology is thought to be a support tool to the IMM’s Investigation phase.
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To prove its efficiency our case study will be the city of Milan, and in particular, we will
analyse the 88 Nils (Nuclei di Identità Locale) of the city. This will let us consider the
problem at a finer granularity then the whole city, but at the same time, leave the possibility
of reassembling the components for future analysis on the whole CAS, without reducing
the totality of the effects of the subsystems to the mere sum of them. We will provide a
complete methodology including the data gathering and cleaning, the exact algorithm to
apply, and the evaluation metrics.



Chapter 3

Theoretical background

3.1 Machine Learning and Data Mining

Machine Learning (ML) is a field of Artificial Intelligence (AI) that provides systems with
the capability to automatically learn and improve from experience without being explicitly
programmed ([28]) Machine learning focuses on the development of computer programs that
can access data and use it to learn for themselves ([29]).

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at task in T, as
measurable by P, improves with experience" [30]

The process of learning starts with observations or samples, such as examples, direct
experience, or instruction, to search for patterns in data and make better decisions in the
future based on the samples that we provide. ([31]). The purpose is to allow computers
to learn automatically without human intervention or assistance and to adjust actions
accordingly.

Technically, ML is the systematic study of algorithms and statistical models that computer
systems use to accomplish a specific task without using precise instructions, relying on
patterns and induction instead. Machine learning algorithms build a mathematical model
based on sample data, known as training data, to make predictions or decisions. Several
definitions of what data mining is have been used, e.g., “automated yet non-trivial extraction
of implicit, previously unknown, and potentially useful information from data”, “automated
exploration and analysis of large quantities of data in order to discover meaningful patterns”,
“computational process of automatically extracting useful knowledge from large amounts of
data”.

For what concerns Data Mining (DM), several definitions have been used, e.g., “automated
yet non-trivial extraction of implicit, previously unknown, and potentially useful information
from data”, “automated exploration and analysis of large quantities of data in order to

19



20 CHAPTER 3. THEORETICAL BACKGROUND

discover meaningful patterns”, “computational process of automatically extracting useful
knowledge from large amounts of data”. All definitions are all roughly equivalent to each
other. They all agree on the main aspects of data mining, which are: (i) huge quantity
of data that (ii) should be analysed so as to (iii) extract what is called “knowledge”, or
“useful information”, or “patterns”, i.e.,(iv) something that can be processed and profitably
exploited by human beings. ([32])

There are some who regard data mining as synonymous with machine learning. There is
no question that some data mining appropriately uses algorithms from machine learning
([33]), however, there are some differences between the two of them. First of all, while data
mining relies on human intervention and decision making, with machine learning, once the
initial rules are in place, the process of extracting information and ‘learning’ and refining
is automatic. In other words, as we already said, the machine becomes more intelligent
by itself. This difference implies that machine learning performs well when we have little
knowledge about the problem or, more precisely, what we are looking for in the data. On
the other hand, machine learning has not proved successful in situations where we can
describe the goals of the mining more directly. In these cases, data mining performs better.
More practically, Data mining is used on an existing dataset (like a data warehouse) to find
patterns where the ‘rules’ or patterns are unknown at the start of the process. Machine
learning, on the other hand, is trained on a ‘training’ data set, which together with some
rules and variables, teaches the computer how to make sense of data, and then to make
predictions about new data sets. Clearly, there are some distinct differences between the
two. Yet, as businesses look to become more and more predictive, we may see more overlap
between machine learning and data mining in future. For example, more businesses may
seek to improve their data mining analytics with machine learning algorithms ([34]). For this
reason, also the application of the two fields often overlaps. Some examples of applications
are: Costumer segmentation, price prediction, fraud detection and so on.

3.1.1 Machine Learning paradigms

We will now present different machine learning paradigms. We will talk about machine
learning and not data mining since historically they were defined in this field. However,
the concepts we will present have been inherited by the data mining. Machine learning
algorithms are often categorized as supervised or unsupervised.

• Supervised machine learning algorithms can apply what has been learned in the past
to new data using labeled examples to predict future events. Starting from the analysis
of a known training dataset, the learning algorithm produces an inferred function to
make predictions about the output values. The system is able to provide targets for
any new input after sufficient training. The learning algorithm can also compare its
output with the correct one, intended output and find errors in order to modify the
model accordingly.
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• In contrast, unsupervised machine learning algorithms are used when the information
used to train is neither classified nor labeled. Unsupervised learning studies how
systems can infer a function to describe a hidden structure from unlabelled data. The
system doesn’t figure out the right output, but it explores the data and can draw
inferences from datasets to describe hidden structures from unlabelled data.

• Semi-supervised machine learning algorithms fall somewhere in between supervised
and unsupervised learning, since they use both labeled and unlabelled data for training
– typically a small amount of labeled data and a large amount of unlabelled data.
The systems that use this method are able to considerably improve learning accuracy.
Usually, semi-supervised learning is chosen when the acquired labeled data requires
skilled and relevant resources in order to train it / learn from it. Otherwise, acquiring
unlabelled data generally doesn’t require additional resources

• Reinforcement machine learning algorithms is a learning method that interacts with
its environment by producing actions and discovers errors or rewards. Trial and
error search and delayed reward are the most relevant characteristics of reinforcement
learning. This method allows machines and software agents to automatically determine
the ideal behaviour within a specific context in order to maximize its performance.
Simple reward feedback is required for the agent to learn which action is best; this is
known as the reinforcement signal. [35]

We will now on focus or analysis on unsupervised learning algorithms and in particular
Clustering algorithms.

3.2 Clustering

Clustering is one of the most useful tasks in data analysis. The goal of clustering is to
discover groups of similar objects and to identify interesting patterns in the data. Typically,
the clustering problem is about partitioning a given data set into groups (clusters) such
that the data points in a cluster are more similar to each other than points in different
clusters. The objects are typically described as vectors of features (also called attributes).
Attributes can be numerical (scalar) or categorical. The assignment can be hard, where
each object belongs to one cluster, or fuzzy, where an object can belong to several clusters
with a probability. The clusters can be overlapping, though typically they are disjoint. A
distance measure is a function that quantifies the similarity of two objects. ([36]).

We can define different methodologies for clustering, according to the set of rules used
to define “similarity” among data points:

• Connectivity clustering: as the name suggests, these models are based on the notion
that the data points closer in data space exhibit more similarity to each other than
the data points lying farther away. These models can follow two approaches. In the
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first approach, they start with classifying all data points into separate clusters and
then aggregating them as the distance decreases. In the second approach, all data
points are classified as a single cluster and then partitioned as the distance increases.
Also, the choice of distance function is subjective. These models are very easy to
interpret but lacks scalability for handling big datasets. Examples of these models are
hierarchical clustering algorithm and its variants ([37]).

• Centroids based clustering: these are iterative clustering algorithms in which the
notion of similarity is derived by the closeness of a data point to the centroid of the
clusters. K-Means clustering algorithm is a popular algorithm that falls into this
category. In these models, the no. of clusters required at the end have to be mentioned
beforehand, which makes it important to have prior knowledge of the dataset. These
models run iteratively to find the local optima ([37]).

• Distribution clustering: These clustering models are based on the notion of how
probable is it that all data points in the cluster belong to the same distribution
(For example: Normal, Gaussian). These models often suffer from overfitting. A
popular example of these models is Expectation-maximization algorithm which uses
multivariate normal distributions ([37]).

• Density based clustering: These models search the data space for areas of varied
density of data points in the data space. It isolates various different density regions
and assign the data points within these regions in the same cluster. Popular examples
of density models are DBSCAN and OPTICS ([37]).

Regardless of the specific methodology followed, a common problem of clustering algo-
rithms is the management of databases high dimensional datasets. In general, having too
many features in a data mining model can cause overfitting, i.e., obtaining a very low error
during training, but very high error during testing. In the case of clustering, we do not have
a training and a test set, so we do not run the risk of overfitting. The problem is however
that in high dimensions, almost all pairs of points are equally far away from one another
and this makes it impossible to cluster. Looking at the literature, while there are many
techniques to overcome this problem in supervised learning, for unsupervised learning the
problem of feature selection is still basically untouched.

3.3 Hierarchical clustering

Hierarchical clustering is an algorithm that builds a hierarchy of clusters. In Figure 3.1are
shown the two approaches that can be followed depending on the problem we need to solve:

• Agglomerative approach: starting with individual clusters, at each step, merge the
closest pair of clusters until only one cluster (or k clusters) left.
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• Divisive approach: starting with one cluster, at each step, split a cluster until each
cluster contains a point (or there are k clusters) left.

Figure 3.1: Hierarchical clustering.

We will now describe the approach we will use in our experiments, i.e. Agglomerative
Hierarchical Clustering

3.3.1 Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering, as the name suggests, is an algorithm that builds
hierarchy of clusters. In Algorithm 1 we show the pseudocode of the algorithm.
Algorithm 1: Agglomerative hierarchical clustering

Input: frequencies_clusters,max_val, number_of_nils

C = {Ci = {xi}|xi ∈ D}
∆ = {δ(xi, xj) : xi, xj ∈ D}
while |C = k| do

Find the closest pair fo clusters Ci, Cj ∈ C
Cij = Ci ∪ Cj // Merge the clusters

C = (C{Ci, Cj} ∪ Cij // Update the clustering

Update distance matric ∆ to reflect new clustering

This algorithm starts with all the data points assigned to a cluster of their own. Then
two nearest clusters are merged into the same cluster. In the end, this algorithm terminates
when there is only a single cluster left. The results of hierarchical clustering can be shown
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using dendrogram. To better understand the procedure, we will follow the example carried
out by [38]. The dendrogram can be interpreted as showed in Figure 3.2:

Figure 3.2: Dendrogram example.

At the bottom, we start with 25 data points, each assigned to separate clusters. The two
closest clusters are then merged until we have just one cluster at the top. The height in the
dendrogram at which two clusters are merged represents the distance between two clusters
in the data space. The decision of the number of clusters that can best depict different
groups can be chosen by observing the dendrogram. The best choice for the number of
clusters is the number of vertical lines in the dendrogram cut by a horizontal line that can
transverse the maximum distance vertically without intersecting a cluster(link di prima). In
the above example, the best choice is number of clusters equal to 4 as the red horizontal
line in the dendrogram in Figure 3.2 covers maximum vertical distance AB.
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Figure 3.3: Number of clusters from dendrogram.

Advantages of hierarchical clustering are:

• deterministic results independent of initialization and reproducible;

• high level of precision;

• explainable results;and

• need to define number of clusters a priori.

On the other side, the main drawback is the incapability to handle big data. This is
because the time complexity of hierarchical clustering is quadratic i.e. O(n2).

3.4 Evaluation techniques for clustering

Despite clustering problems have been studied extensively over the years, some challenges
remain open, first of all how to measure their quality. One can say a good cluster is the
one providing a high intra-cluster similarity and a low inter-cluster similarity, but this is
not sufficient. In the following sections we will describe different metrics used to evaluate
clustering algorithms performances.

3.4.1 Internal clustering evaluation

With internal metrics or internal evaluation techniques, the clustering is summarized to a
single quality score. Typical objective functions in clustering formalize the goal of attaining
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high intra-cluster similarity (samples within a cluster are similar) and low inter-cluster
similarity (sample from different clusters are dissimilar). This is an internal criterion for the
quality of a clustering. The indexes used in the literature are many. Here we present two of
them.

• Davies-Bouldin index

The Davies-Bouldin index is an internal evaluation scheme, where the validation of
how well the clustering has been done is made using quantities and features inherent
to the dataset.

DB =
1

n

n∑
i=1

max
j=1

(
δi + δj
d(ci, cj)

) (3.1)

Where n is the number of clusters, cx the centroid of cluster x, δi the average distance
of all elements in cluster x to centroid cx, and d(ci, cj) is the distance between centroids
ci and cj . Since algorithms that produce clusters with low intra-cluster distances (high
intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity)
will have a low Davies–Bouldin index, the clustering algorithm that produces a
collection of clusters with the smallest Davies-Bouldin index is considered the best
algorithm based on this criterion.

• Dunn index

The Dunn index aims to identify dense and well-separated clusters and it is defined as
the ratio between the minimal inter-cluster distance to maximal intra-cluster distance.
For each cluster partition, the Dunn index can be calculated by the following formula:

D =
min1≤i<j≤n d(i, j)

min1≤k≤n d′(k)
(3.2)

where d(i, j) represents the distance between clusters i and j, and d′(k) measures
the intra-cluster distance of cluster k. The inter-cluster distance d(i, j) between two
clusters may be any number of distance measures, such as the distance between the
centroids of the clusters. Similarly, the intra-cluster distance d′(k) may be measured
in a variety way, such as the maximal distance between any pair of elements in cluster
k. Since internal criterion seek clusters with high intra-cluster similarity and low
inter-cluster similarity, algorithms that produce clusters with high Dunn index are
more desirable.

3.4.2 External clustering evaluation

Generally speaking, in external evaluation, clustering results are evaluated based on bench-
marks or gold standards. Such benchmarks consist of a set of pre-classified items, often
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created by (expert) humans. Thus, the benchmark sets can be thought of as a gold standard
or evaluation. These types of evaluation methods measure how close the clustering is to the
predetermined benchmark classes. In case of labeled data, it is also possible to evaluated
clusters based on the available original classes of the dataset to measure how they fill the
shape of the original datasets. External evaluation can also be measured with several
different indexes. Here we present Purity.

• Purity To compute the purity, each cluster is assigned to the class which is most
frequent in the cluster, and then the accuracy of this assignment is measured by
counting the number of correctly assigned documents and dividing by N. Formally it
is calculated by the following formula:

1

n

∑
m∈D

|m ∩ d| (3.3)

Where M is the number of clusters and D is the set of classes and N number of data.

3.4.3 Choose the number of clusters

Regardless of the technique used to evaluate them, performances of clustering algorithms
depend on the number of clusters we choose. We talked about this problem when we
described the dendograms, but there is another widely used technique, known in literature
as Knee-Elbow analysis. This techniques consists in plotting the WSS(Withing clusters
Sum of Square) together with the BSS(Between clusters Sum of Square) for every clustering
and look for a knee(elbow) in the plot that show a significant modification in the evaluation
metrics [39]. To better clarify the method, we show an example in Figure 3.4.
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Prof. Pier Luca Lanzi
BSS and WSS for values of k from 1 until 19.Figure 3.4: Knee-Elbow example.

In the situation showed in Figure 3.4 we can see one first big knee(elbow) for number of
clusters equal to 2 and a second smaller one for number of cluster equal to 9. Anyway, even
if the WSS(BSS) trend suggests to cluster using 2 or 9 clusters, this is only an indication.
Other elements, like for example the presence of some outliers, may influence the result to.



Chapter 4

SIMBA methodology

In this chapter we will give an overview of the approach we use. We will describe each step
of our methodology, and then we will present the application of SIMBA to our case study
justifying choices made during each step.

4.1 SIMBA flow

In these following sections we want to present SIMBA describing all its phases and its
contribution to the IMM methodology. In Figure 4.1 we show the entire flow of SIMBA.
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Figure 4.1: SIMBA flow.
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The process is composed of three phases:

1. BUILT ENVIRONMENT DECOMPOSITION (BED phase)

2. FIRST LEVEL CLUSTERING (FLC phase, one for each dataset)

3. SECOND LEVEL CLUSTERING (SLC phase)

The input is a built environment of any Dimension . In Step 1.1, the granularity at
which the analysis is to be conducted must be chosen. In other words, we need to choose
which are the samples we want to cluster. According to our case study the input will be a
city. As we said, this is reasonable since cities can be considered to be composed of many
elements, but the effects on the environment cannot be considered as the mere sum of them.
However, even cities are interesting case studies, the methodology can be generalized with
any input, as soon as it is possible to identify comparable units in it. After the granularity,
we need to define Dimensions (1.2) and retrieve data according to them (1.3). Dimensions
represent the different aspects we want to analyse. They can be of any type and categories
i.e. performances, morphology characteristics, demographic data and so on. As SIMBA
is applied to the IMM methodology, we can define Dimensions as a parallel concept to
Key Categories. The difference between the two is that while KC are identified by six
or seven numerical metrics in IMM, Dimensions remain abstract concepts for us. They
are simple guidelines while looking for data to retrieve. Is in the datasets indeed, that
Dimensions are represented. Once decomposed the input, we enter in the FLC phase where,
for each dataset, after a pre-processing step (2.1) we perform clustering. Before applying
the selected algorithm to cluster (2.3) we perform feature selection in Step 2.2. This is
done both manually, using a set of features selected by experts for each Dimension , and
automatically, using an entropy-based algorithm. Comparing the obtained clusters with the
Manual and the Automated procedure, we evaluate our results. In the third and last phase,
the SLC one, we combine the evaluation of the obtained results together with the IMM
expert’s knowledge and needs (3.1), to select which are the Dimensions , and thus, features,
we want to use in the Second Level Clustering . The outputs of the procedure are:

• clusters for each ;.

• distances between elements for each Dimension

• clusters and distances calculated combining only the selected Dimensions , using the
features selected for each one of them in the FLC phase.

In the next sections we will give an overall description of the setting of each phase of
SIMBA, by referring to our specific case study: Milan and its NILs. This will make easier
to understand experiments result that we will show in Chapter 5.
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4.2 BED phase setting

In the Built Environment decomposition settin,g as we already explained, we have to define:

• the granularity of the analysis i.e. cities, districts, blocks;

• the Dimensions we are interested in;

• the datasets that will represent the Dimensions . In other words, which features for
each Dimension are available to us.

The decomposition phase is useful to make the analysis manageable in a Data Mining
sense since it allows to:

• increase the number of samples available. Starting from one input we produce different
number of samples according to the granularity we choose;

• decrease the number of features in the single analysis. Splitting all the available data
in different Dimensions to analyse separately, indeed, we have less features in each
analysis.

At the same time, according to IMM, city is considered as CAS and all the important
elements are taken into account.

In Figure 4.2 , the setting for the BED phase in our experiment is summarized.
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Figure 4.2: BED phase setting.

Now, to explain the setting, we want to describe each sub phase.

4.2.1 Granularity definition

As we already said, the case study will be Milan and the granularity chosen is the NIL.
The NILs - Nuclei d’Identità Locale (Local Identity Units) represent areas that can be
defined as neighbourhoods in Milan, where it is possible to recognise historical and design
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neighbourhoods with different characteristics from each other. They are introduced by
the PGT (Piano di Governo del Territorio) as a set of areas, connected to each other by
infrastructures and services for mobility and green areas. They are systems of urban vitality:
concentrations of local commercial activities, gardens, places of aggregation, services; but
they are also 88 nuclei of local identity to be strengthened and planned, and through which
small and large services can be organised. The name “NIL” is specific for the city of Milan,
but this is not a limit for the generalization of the process since this same division criterion
can be found in different cities around the word. Figure 4.3shows the numeration of NIL_ID
map for Milan.

Figure 4.3: NIL_ID map.

4.2.2 Dimensions and datasets

For what concerns Dimensions , we said they are the aspects we want to consider in our
analysis and thus, it is reasonable for us to consider all the possible aspects, according to
the availability of data. The dataset we create correspond to the IMM’s elements we already
defined in Section 2.3.2 and Section 2.3.3 anyway, it worth to analyse separately each dataset
available. As shown in the BED phase setting Figure 4.2 we have four different datasets:
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1. Indicators DATASET

As we said, indicators are performance indexes. They are grouped in DOP families
which are essentially a set of actions that designers can perform in order to improve
the current system behaviour. They cover different performances aspects according to
the Design Ordering Principles and since we have already mentioned the meaning of
each family, we do not want to describe indicators one by one since they are potentially
infinite. Table 4.1 summarizes the composition of the dataset.

Table 4.1: Indicators dataset summary

Indicators dataset
Samples 88
Features 25
Missing values 15

2. Metrics DATASET

Metrics are quantitative measures that can pinpoint significant features of the spatial
organization of the urban elements in order to characterize the concept of KC. The
ones available in our dataset are related to Permeability and Porosity and represent
the ratio between different built areas (Volume) and different empty spaces (Void).
Again, giving a definition for each metric would be useless. They are basically the
results of the combination of different elements of the NILs analysed at different scale.
Most considered elements are:

• Building

• Courts

• Blocks

• Districts

Elements are combined in different ways, so in the metrics case we do not have a
categorization like for indicators. Moreover, also Area and Perimeter of each NILs is
considered. Table 4.2 gives a summary of the composition of the dataset.

Table 4.2: Metrics dataset summary

Metrics
Samples 88
Features 59
Missing valuse 101
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3. Attributes DATASET

Attributes are used to compute metrics and sometimes correspond to them (as for
Area and Perimeter). They are data related to the morphological characteristic of the
territory. Consistently with metrics, in our dataset we have attributes related to:

• Building

• Courts

• Blocks

• Districts

As for metrics, we do not have a categorization for attributes. In Table 4.3 is reported
the summary of the dataset.

Table 4.3: Attributes dataset summary

Attributes dataset
Samples 86
Features 52
Missing values 162

4. Milan DATASET

This last dataset contains raw data provided by Comune di Milano and related to
NILs. The dataset has been created by merging together three datasets:

• Aria: dataset containing the PM10, PM2.5 and NO2 averaged values for the
whole 2019;

• Buildings: dataset of characteristic of the buildings of the NILs;

• Dati_quartiere: data related to population, transports and services in each NIL.

The pre-processing performed to merge the datasets is described in Section 4.3.1. Ta-
ble 4.4 summarizes the final elements of the dataset.

Table 4.4: Milan dataset summary

Milan dataset
Samples 88
Features 31
Missing values 0
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Summarising, as it is shown in Table 4.5 , for each NIL we have 167 features. Splitting
them into different datasets makes the numbers become more feasible for the clustering
analysis. Despite this, considering we have at most 88 samples, we need to perform also
features selection inside each dimension.

Table 4.5: All datasets

Dataset Number of features
Indicators 25
Metrics 59
Attributes 52
Milan 31

Deciding to use separately each dataset means, as we said, to analyse different aspects
of cities. Coherently with that, since inside the Metrics dataset we have both the metrics
related to porosity and the ones related to permeability, we will also compare results obtained
on datasets containing only porosity metrics or only permeability metrics. In Figure 4.4 all
the different sources have the same colour to underline that we will not care about level of
aggregation as we did in IMM (Figure 4.6), we will simply apply the same procedure to
every dataset. In our specific case “DATA” corresponds to Milan dataset.

Figure 4.4: Datasets split.

4.3 FLC phase setting

The First Level Clustering phase is used to:

• prepare datasets for clustering;

• select the important features for each ;.

• perform clustering on each dataset;

• evaluate each obtained cluster.
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Outputs of this phase are:

• different cluster division for each dataset;

• distances between NILs for each dataset.

These outputs are useful to investigate patterns for each .. The setting in our specific
case study for the FLC phase is summarised in Figure 4.5.
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Figure 4.5: FLC Phase setting.

We will now describe more in detail the setting of each sub phase explaining the choices
and assumptions behind them.

4.3.1 Pre-processing

We have already described the available datasets and we have seen, all of them have some
missing values or inconsistencies between data. In this section we will describe the data
cleaning actions we made to solve these issues.

First of all, we need to say that we have two distinct situations depending on the datasets.
While for the data coming from Comune di Milano, we can only observe the data we have,
for what concerns data regarding indicators, metrics and attributes we are completely aware
about the meaning of the features and the kind of missing values we need to deal with. We
therefore used different strategies in the two different cases. For what concerns indicators,
metrics and attributes, we have two kind of missing values:
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• missing at random (MCAR): these are missing values due to the unavailability
of the data itself. We cope with these missing values replacing them with the mean
of the variable, the minimun values of the column or other values specified by the
experts;

• not missing at random (NMAR): these are missing values due to the nature of
the data. In our datasets, when a feature is not applicable for a NIL, i.e. there are no
green areas, the value is not set to 0 but is missing. Taking this into consideration, we
substitute all of these missing values with 0.

The general approach for these datasets has been to not delate any samples since firstly,
we are interested in the analysis of all the NILs and secondly, we already have few samples
and we do not want to lose too much information. This is moreover a reasonable choice
since the percentage of missing data is overall low, so we are not are not introducing too
much noise while fixing the missing values.

For what concerns data from Milan we do not have missing values, but we need to
perform some features engineering on dataset Edifici. In particular:

• we drop all the features for what we have most of the values equal to zero. This is
done because the majority of values equal to zero makes the attribute irrelevant, even
if zero does not correspond to a missing value but to the real value;

• originally, data in the dataset were referred to buildings. We used coordinates to refer
each building to each NIL using QGis [40] and we grouped by NILs. With this method
we result in having a different number of building per NIL only depending on the
sampling. Since this numbers do not reflect the real number of buildings per NIL, we
averaged each value to take into account how many instances, and thus buildings, of
that NIL are present in the dataset.

4.3.2 Feature selection

Next step of the procedure is dedicated to feature selection. When we talked about high
dimensional clustering in Section 3.2, we have stressed how much to choose a good subset of
features is important to have a well performing algorithm. Moreover, we have explained
that, particularly for clustering, having a high number of features can badly affect the
performances of the algorithm but, most of the time, it is not trivial to identify which are
good features. For all these reasons we can state with no doubts this is one of the most
critical steps of our procedure. As we said, we analyse each dataset using two different
approaches. Once we cluster using a subset of features provided by experts and once using
a completely automated approach. One may think that a good metric to evaluate the
goodness of the features selected automatically is to look at how many of them correspond
to the set selected by the experts, but this is neither sufficient nor interest for us. First of
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all, we need a methodology to automatically extract them, then we will clarify why we are
not interested in the simple comparison with the expert set.

The methodology chosen is based on the Dash and Liu’ s 2003 [41] work in entropy-based
feature selection for clustering. This is why we will often call the Automated case of each
experiment also “entropy-based”.

To explain the algorithm, we first need to define entropy and explain the assumption
behind its usage in feature ranking. Consider each feature Fi as a random variable while fi
as its value, from entropy theory we know that entropy is:

E(F1, . . . , FM ) = −
∑
f1

· · ·
∑
fm

p(f1, . . . , fm) log p(f1, . . . , fm) (4.1)

where p(f1, ..., fM ) is the probability or density at the point (f1, ..., fM ). If the probability
is uniformly distributed we are most uncertain about the outcome, and entropy is maximum.
This will happen when the data points are uniformly distributed in the feature space.

On the other hand, when the data has well formed clusters, the uncertainty is low and
so also the entropy. As we do not have a priori information about clusters, calculation of
p(f1, ..., fM ) is not direct, but we can use the following way to calculate entropy without
any cluster information [41].

The definition of entropy measure given by Dash and Liu is based on the idea that, two
points belonging to the same cluster or different clusters will contribute to the total entropy
less than if they were uniformly separated. Similarity Si1,i2 between two instances Xi1 and
Xi2 is high if the instances are very close and low if they are far away. Therefore, according
to Dash and Liu, entropy Ei1,i2 will be low if Si1,i2 is either low or high and Ei1,i2 will be
high otherwise [41]. The similarity measure used for numeric data is Si1,i2 = eα×Di1,i2 where
D is the distance and it is equal to Di1,i2 = [

∑M
k=1(

xi1k−xi2k
max k−min k )2]1/2 and α is a parameter

calculates as α = − ln 0.5
D̄

, where D̄ is the averaged distance among data points. The interval
in the kth dimension is normalized by dividing it by the maximum interval (maxk −mink)
before calculating the distances. The definition of entropy for a dataset of N points provided
by Dash and Liu resulted to be:

E = −
N∑
i1=1

N∑
i2=1

[Si1,i2 × logSi1,i2 + (1− Si1,i2 × log(1− Si1,i2)] (4.2)

which, for every couple of points Xi1 and Xi2, assume the maximum value of 1,0 for
Si1,i2 = 1 and the minimum value of 0,0 for Si1,i2 = 0 and Si1,i2 = 1.

According to this definition, we can rank the features according to their effect on the
entropy. Each feature is removed in turn and E is calculated. If the removal of a feature
results in minimum E the feature is the least important and vice versa [41]. In Algorithm 2
M is the initial set of features, P is the rank of the features and CalcEnt(Fk) calculates E
of the data after discarding feature Fk.
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Algorithm 2: Entropy-based features ranking
Input: M
Output: P
P = for k = 0, k < |M|, k++ do

Pk = CalcEnt(Mk)

Sort P return P

We apply the entropy-based feature ranking algorithm and we chose only the features that,
once dropped, produce an increment of the entropy. The number of features selected in each
case is different in each experiment. This is actually one of the strengths of this procedure
since the goal of this work is to provide a reasonable analysis of the city characteristic which
is on the one hand systematic but also independent from the available data. This is also the
reason why we are not interested in the mere comparison of the sets of features while we
are more focused on the evaluation of the final results. Different features selected by the
algorithm have been of course analysed while doing the experiment and their reasonability
have been part of the evaluation of the performances of the procedure, however, as we said
multiple times, unsupervised features selection is largely untouched and the purpose of this
work is not to directly evaluate the entropy based features ranking algorithm.

4.3.3 Clustering

The chosen method for clustering has been Agglomerative Hierarchical Clustering for two
main reasons:

• few numbers of samples available;

• explicability

As we discussed in Chapter 3, Hierarchical Clustering techniques have several advantages
including that of not having to assume a priori number of clusters, which allows us to
choose a different number of clusters depending on the case. The major disadvantage
is the temporal quadratic complexity in N number of elements. This problem does not
arise in our case, since having 88 or 86 NILs, the complexity of the algorithm is always
manageable. Moreover, this technique allows us to represent the results using dendrograms
that represent points and how they are clustering, without taking into consideration number
of the dimensions that in our experiments is always more than 2. Having stated this, we now
describe how to set the parameters of the algorithm. Here we present a general overview. A
more detailed description of the implementation choices can be found in Chapter 5, where
we will report and comment the experiments results. We first standardize data using the
StandardScaler() function provided by shikit- learn [42]. We need to standardize since
we have different scales variables with different unit of measure, and we do not want to
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make any assumption on the weight each variable has while clustering. In addition, we
prefer standardization instead of normalization to not suppress the effect of outliers [43].
Once having the standardized dataset, containing only the features we selected (manually
or using the entropy-based algorithm), we run the algorithm. We have already described
how Hierarchical clustering works theoretically. For what concerns implementation we need
to set three main parameters:

1. n_clusters: this parameter represents the final number of clusters we want to obtain.
It is different in each experiment, we choose it according to dendrogram, the WSS
and BSS trends and comparability among experiment. We will discuss each choice
in Chapter 5;

2. affinity: this parameter represents the distance measure between samples. We
choose to use euclideian distance;

3. linkage: this parameter represents how we calculate the euclidean distance between
clusters. We decide to measure distance as the euclidean distance between the two
farther points so, when we compare distances between clusters, we will compare
the max distance between each other. This is the complete linkage method, so the
parameter is set to “complete”.

4.3.4 Clustering evaluation

Last step of the procedure is dedicated to the clustering evaluation. As we broadly discussed
in Chapter 3, clustering evaluation is still a tricky part in this field and most of the time
is strictly related to the application. Firstly, we tried to have an absolute evaluation of
each cluster result using internal metrics such us Dunn and Davies Bouldin index. The
problem with this metrics is that, having a small number of samples, even few distant
samples in a cluster would produce a decrease in the score. For this reason, we decided to
evaluate clustering results referring mostly to the comparison between the Manual and the
Automated results. Indeed, we mentioned the comparison with a ground truth as one the
techniques used to evaluate clustering. There is no ground truth in this case but thanks to
the collaboration with ABC department we are able to compare our completely automated
approach with a more guided one. To do so, we compute the comparison_matrix between
the two approaches for each experiment. The pseudo code is show in Algorithm 3 below.
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Algorithm 3: Comparison_matrix computation
Input: cluster_results
Output: comparison_matrix
idx_nil = cluster_results.columns[0]

for i = 0, i < len(idx_nil), i+ + do
for j = 0, j < len(idx_nil), j + + do

comparison_matrix[i][j] = (cluster_results[i] ==
cluster_results[j]).sum()

return comparison_matrix
Comparison_matrix is a simple matrix of dimension MxM where M is the number of

NILs for the dataset. Taking into account the clusters results, what the matrix evaluate is
how many times two NILs are grouped in the same cluster. For each approach, it checks if
the two NILs have the same cluster_ID and, if they do, it increments the cell corresponding
to that couple of NILs. For each experiment we have a matrix having values between zero
and two:

• 0 means Nils are never in the same cluster;

• 1 means Nils are once together once not;

• 2 means they are always in the same cluster.

This means that positive cases are values 0 and 2 since they mean clustering in the
two approaches has produced the same results for that couple. We then compare different
experiments using the variable score whose computation is shown in Algorithm 4.
Algorithm 4: Score computation

Input: comparison_matrix,max_val, number_of_nils
Output: score
for i = 0, comparison_matrix.index, i+ + do

for j = 0, comparison_matrix.columns, j + + do
if comparison_matrix[i][j] == 0 or comparison_matrix[i][j] ==
max_val then
good = good + 1

return score = good
number_of_nils

Score counts how many times value 0 or 2 occur in comparison_matrix and it normalizes
this number with the number of instances (88 or 86). Assuming that a good result for our
experiment is that the clustering algorithm groups the NILSs in the same way both in the
Manual and in the Automated case, score can be seen as an accuracy measure for the
procedure. Moreover, it can be used to compare also different experiments for the FLC
phase. We only need to set max_val equal to number of experiments we are comparing.
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4.4 SLC phase setting

Second Level Clustering phase takes:

• clusters results to identify on which dataset clustering performed better;

• IMM expert’s indication about the dimension needed for the analysis;

and produces two different outputs:

• clusters results on the dataset created by combining the important Dimensions ;

• a formulation of distances between NILs considering only selected features of the
important Dimensions .

These outputs represent the final results of SIMBA procedure and will be used, together
with the FLC ones, as inputs for the Investigation phase in IMM. The setting for our specific
case study for the SLC phase is summarised in Figure 4.6.
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Figure 4.6: SLC phase setting.



Chapter 5

Experiments

In chapter 4 we described in depth each available dataset, and we explained the selected
algorithms for feature selection and clustering.

In this section we will present the obtained results. We provide the selected features
list and we will analyse the obtained clusters, looking at the dendrogram produced for each
experiment, both for the manual and the automated case. The number of clusters in each
case has been chosen according to the dendrogram, the knee elbow graph and the overall
assumption that, since the number of NILs is less or equal than 88, a reasonable number of
clusters for the problem must be less than 10. For each experiment, in the manual case the
covariance among features is not taking into account. In the entropy-based case, before to
run the feature selection algorithm, we drop all of those having correlation ≥ 0.8.

5.1 Experiment 1 - FLC for Indicators dataset

In this first experiment, we apply both the manual and the automated procedure to dataset
Indicators .

5.1.1 Manual feature selection

The set of features provided by experts corresponds to column "Manual" in Table 5.1
Figure 5.1 shows the obtained dendrogram. Two big clusters are visible and there

is one cluster composed by only one sample that we will define as an outlier. Sample
number 7 corresponds to NIL 8 “PARCO SEMPIONE”. Since looking at the WSS-BSS
graph in Figure 5.2 we can see a big step between number of clusters equal to 2 and number
of clusters equal to 3, the agglomerative hierarchical clustering is run setting n_clusters =
3.

43
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Figure 5.1: Dendrogram for clusters considering only manually selected indicators
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Figure 5.2: BSS and WSS trend for clusters considering only manually selected indicators

5.1.2 Automated feature selection

The set of features provided by the entropy-based algorithm corresponds to column Auto-
mated of Table 5.1

Figure 5.3 shows the obtained dendrogram, while Figure 5.4 shows the WSS-BSS trend.
Also in this case, two big clusters are visible and there are other two clusters, composed by
only one sample, that we will define as outliers. Sample number 7 corresponds to NIL 8
“PARCO SEMPIONE” and sample number 46 corresponds to NIL 47 “CANTALUPA”. The
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WSS-BSS graph of fig. 5.4 in this case presents more steps. We chose n_clusters =4 for
consistency with the manual case, but also n_clusters = 6 and n_clusters = 8 could be
interesting cases to analyse.
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Figure 5.3: Dendrogram for clusters considering only automatically selected indicators
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Figure 5.4: BSS and WSS trend for clusters considering only automatically selected indicators

5.1.3 Summary

In Table 5.1 we compare the different features selected using different approaches. Even
though the set corresponding to the manual case and the automated one are basically
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disjoint, score is 76,34, which means that almost all the NILs were clustered in the same
way in the two approaches.

Table 5.1: Features Indicators

Original Manual Less correlated Automated
VD X X
BD X
PD X
SCR
BLD X
PAcR X
JHR X X X
LUsh X
GCRt X X X
GCRu X
TD X
BikeD X
BikeAI X
ND
AxBLP X X
GFAc X
PTA
LIPR
NDER X X
Modesh X X
MMsh X
StopD
LineD X X
GCRa
WAR X X
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5.2 Experiment 2 - FLC for Metrics dataset

In this second experiment we apply both the manual and the automated procedure to
dataset Metrics .

5.2.1 Manual feature selection

The set of features provided by the experts corresponds to column Manual of Table 5.2
and Table 5.3. Figure 5.5 shows the obtained dendrogram while Figure 5.6 shows the WSS-
BSS trend. Looking at the first one, 4 clusters are evident: the green, the red, the azure and
the purple. On the other hand, the knee-elbow graph does not present any relevant steps for
n_clusters = 4 and the trend continues to grow/decrease after 4. This is probably due to
the fact that, stopping the algorithm for n_clusters = 4, some sub-clusters are still merged
at a quite significant distance. We should wait for n_clusters = 7 or more to have a good
WSS/BSS. Since these values would be meaningless, we choose n_clusters = 4 coherently
with the dendrogram.
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Figure 5.5: Dendrogram for clusters considering only manually selected metrics
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Figure 5.6: BSS and WSS trend for clusters considering only manually selected metrics

5.2.2 Automated feature selection

The set of features provided by the entropy-based algorithm corresponds to column Auto-
mated of Table 5.2 and Table 5.3.

Figure 5.7 shows the obtained dendrogram. In this case we have two big clusters, other
two smaller ones, and one cluster composed by only one sample. NIL 85 “PARCO DELLE
ABAZIE” resulted to be an outlier. The choice of n_clusters = 5 seems to be also coherent
with the WSS-BSS graph in Figure 5.8 even though both the latter and the dendrogram
suggest that n_clusters = 6 could be interesting to analyse too.
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Figure 5.7: Dendrogram for clusters considering only automatically selected metrics
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Figure 5.8: BSS and WSS trend for clusters considering only automatically selected metrics

5.2.3 Summary

Table 5.2 and Table 5.3 compare different sets of features used in different steps and
approaches. As in the previous experiment, the manual and the automated approach have
almost no features in common, but this time also the score is significantly lower, i.e. equal
to 49,9.
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Table 5.2: Features Metrics , 1

Original Manual Less correlated Automated
BCR_G X X X
FAR_G
BCR_N X X
FAR_N X
BVR
BBVR X
BCHVR X
BVD
FAI
BSR
FSD
CAR X X
BSAR X
B_AMBG X
B_PMBG X X
B_CMBG X
B_OMBG X
B_ACH
B_PCH X X
B_ACHMBG
BD
B/UV X
B_DS/B
BDF5 X
BDF10 X
UBR X
Apass X
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Table 5.3: Features Metrics , 2

Original Manual Less correlated Automated
P/A X
S/V X X
Cff X
Cipq X X
Cndc_B
Cdcm X
Concavity X
SAR X
BLD
IC X
BL_P/A X X
BL_AMBG X
BL_PMBG X
BL_OMBG X
BL_CMBG X X
AwaP X
VBLAR X
VBLPR X X
BL_PBLmean
BL_BPLR X X
BTBL X X
BDSTBL X
CTD
CTTB
CTTBDS
CTAR_N
CTBLPR
CTCLBPR X X
CT_AMBG X X
CT_ACH
CT_PCH
CT_OMBG
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5.3 Experiment 3 - FLC for porosity metrics

In this third experiment we apply both the manual and the automated procedure only to
metrics related to porosity.

5.3.1 Manual feature selection

The set of features provided by experts corresponds to column "Manual" in Table 5.4.
Figure 5.9 shows the obtained dendrogram. Two big clusters are easily identifiable and

also in the WSS-BSS graph of Figure 5.10 we can see a knee (elbow) for number of clusters
equal to 2. Another significant division is obtained cutting the dendrogram after obtaining
five clusters. We choose n_clusters = 2 for the result to be comparable with the next case.
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Figure 5.9: Dendrogram for clusters considering only manually selected metrics related to
porosity
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Figure 5.10: BSS and WSS trend for clusters considering only manually selected metrics
related to porosity

5.3.2 Automated feature selection

The set of features provided by the entropy-based algorithm corresponds to column "Auto-
mated" of Table 5.4.

Both dendrogram ( Figure 5.11) and the knee elbow graph ( Figure 5.12) highlight
different options. Since from the dendrogram we can see two distinct clusters as for the
previous case, we prefer n_clusters = 2 in order to have two well distinct clusters instead
of more small clusters identifying also not representative outliers.
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Figure 5.11: Dendrogram for clusters considering only automatically selected metrics related
to porosity
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Figure 5.12: BSS and WSS trend for clusters considering only automatically selected metrics
related to porosity

5.3.3 Summary

As for the other experiments, Table 5.4.shows the features used in the different cases. This
time the sets are no longer disjoint, but this is because the entropy-based algorithm selects
only three features. As explained, fewer features can often be an advantage in clustering.
This time, in fact, the clusters produced in the case of the automated approach are well
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spaced. Looking at the score of the experiment, however, this is, as in the case of the
Metrics dataset, still low, i.e. equal to 46,7.

Table 5.4: Features porosity

Original Manual Less correlated Automated
BCR_G X X X
BCRG.1 X
BBVR X X
BSR X
B_AMBG X
B_CMBG X
B/UV X
B_DS/B X
BDF10 X X
Apass X
S/V X
Cdcm X
Concavity X
CTTB X X X
CTAR_N X X
CTBLPR
CT_AMBG X
BD_norm
CTD_norm

5.4 Experiment 4 - FLC for permeability metrics

For this fourth experiment we only have seven permeability related metrics. Since seven
is already a manageable number of features, and the metrics were associated to the KC
manually by experts, we will consider only the manual case.

5.4.1 Manual feature selection

Figure 5.13 shows the obtained dendrogram from where we can individuate four distinct
clusters. To make results comparable with the other experiment, we choose n_clusters =
4 even though in the knee elbow graph of Figure 5.14 is clear the WSS (BSS) continues to
decrease (increase) after number of clusters equal to 4.
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Figure 5.13: Dendrogram for clusters considering only metrics related to permeability
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Figure 5.14: BSS and WSS trend for clusters considering only metrics related to permeability
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5.5 Experiment 5 - FLC for Attributes dataset

In this first experiment we apply both the manual and the automated procedure to dataset
Attributes .

5.5.1 Manual feature selection

The set of features provided by experts corresponds to column "Manual" of Table 5.5
and Table 5.6.

Figure 5.15 shows the obtained dendrogram. In this case the number of clusters is not
so evident. To choose the n_clusters parameter we took into consideration the knee elbow
graph of Figure 5.16 which suggests a good number of clusters to be between 4 and 7, again,
to allow an easier comparability of the results with the precedent experimets we choose to
run the algorithm with n_clusters = 4. By doing so, NIL 85 “PARCO DELLE ABBAZIE”
resulted to be an outlier.
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Figure 5.15: Dendrogram for clusters considering only manually selected attributes
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Figure 5.16: BSS and WSS trend for clusters considering only manually selected attributes

5.5.2 Automated feature selection

The set of features provided by the entropy-based algorithm corresponds to column "Auto-
mated" Table 5.5 and Table 5.6

Figure 5.17 shows the obtained dendrogram where different cluster divisions are present
while the knee elbow analysis of Figure 5.18 suggests choosing a number of clusters between
4 and 7. According to these two and the manual case, we choose n_clusters = 4.
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Figure 5.17: Dendrogram for clusters considering only automatically selected attributes



5.5. EXPERIMENT 5 - FLC FOR ATTRIBUTES DATASET 59

1 2 3 4 5 6 7 8 9 10111213141516171819
Number of clusters

0

50

100

150

200

250

300

350

BS
S 

& 
W

SS

BSS & WSS trend for automatically selected attributes

WSS
BSS

Figure 5.18: BSS and WSS trend for clusters considering only automatically selected
attributes

5.5.3 Summary

We present in Table 5.5 and Table 5.6 the comparison of different set of features as we did
for previous experiment. As it happens in Section 5.3 the entropy- based algorithm select a
very small number of features. However, this time, neither the clustering algorithm provides
significant results, nor the score is high. In fact, both in the manual and in the automated
case, only a big cluster is created while the others are very small or represent just outliers,
moreover, the score is 46,67 which is the lowest founded till now.
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Table 5.5: Features Attributes , 1

Orginal Manual Less correlated Automated
A X X X
P
Pop X
UV_N X X
B_N
B_U_N
B_DS_N X X
B_BF5_N
B_BF10_N
B_P
B_DS_P
B_A X
B_S X
B_V
B_Vmax
B_FA
MBG_Dmin
MBG_Dmax
MBG_A
MBG_P
CH_A
CH_P
Circle_A
A6 X
B_Bpt_dmin



5.5. EXPERIMENT 5 - FLC FOR ATTRIBUTES DATASET 61

Table 5.6: Features Attributes , 2

Orginal Manual Less correlated Automated
MBG_O X
B_Hmax X X
B_Hmean X
Street Area
BL_N X
BL_A X X
BL_P
BL_MBG_A
BL_MBG_P
BL_MBG_Dmi
BL_MBG_Dma
BL_MBG_O X
BL_BP_N
BL_BP X
VBL_A
VBL_P
BL_Amean X X
VBL_Amean
VBL_Pmean
CT_N X
CT_A
CT_P
CT_CH_A
CT_CH_P
CT_MBG_A
CT_MBG_P
CT_MBG_O X X
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5.6 Experiment 6 - FLC for Milan dataset

In this first experiment we apply both the manual and the automated procedure to dataset
Milan .

5.6.1 Manual feature selection

The set of features provided by experts corresponds to column "Manual" of Table 5.7.
Below are reported the dendrogram ( Figure 5.19) and the knee elbow graph ( Figure 5.20)

related to this first part of Section 5.6. From the dendrogram, we can see the creation of
one big cluster, the green one. We decide to preserve this cluster and also the red and
azure ones. Since samples 7 and 74 are merged at a great distance, we decide to split the
cluster they form making them outliers. We remind that they correspond to NIL 8 “PARCO
SEMPIONE” and 75 “STEPHENSON”. This procedure results to make the n_clusters
parameter equal to 5. Even though we are again in the case where we have one cluster way
bigger than the others, we prefer to not split it to not create meaningless clusters. As we can
see in the WSS-BSS trend, we should have a lot of clusters before to have a good division.

7 74 57 43 23 30 12 27 44 47 40 48 52 34 41 2 32 4 21 3 56 18 10 9 19 22 24 25 1 6 50 67 51 55 59 49 5 26 37 60 36 58 42 66 33 39 28 61 85 46 31 38 81 17 29 13 0 20 64 14 76 65 79 16 45 8 35 83 68 11 15 63 78 82 69 80 62 77 54 70 86 71 75 53 72 73 84 87

Sample Index
0

2

4

6

8

10

12

Di
st

an
ce

Dendrogram for manually selected data

Figure 5.19: Dendrogram for clusters considering only manually selected data from Comune
di Milano
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Figure 5.20: BSS and WSS trend for clusters considering only manually selected data from
Comune di Milano

5.6.2 Automated feature selection

The set of features provided by the entropy-based algorithm corresponds to column "Auto-
mated" Table 5.7.

As we did for all the experiments before, we choose n_clusters according to the
dendrogram and the BSS/WSS trend. The first one is shown in Figure 5.21 while the latter
in Figure 5.22. Again, we can see that most of the NILs are grouping together. However,
since this time the knee elbow graph suggests 5 to be a good value for n_clusters, and
this is also coherent with the previous case, we choose to set n_clusters = 5. By doing so,
NIL 8 “PARCO SEMPIONE” and NIL 75 “STEPHENSON”, resulted to be and outliers.
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Figure 5.21: Dendrogram for clusters considering only automatically selected data from
Comune di Milano
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Figure 5.22: BSS and WSS trend for clusters considering automatically selected data from
Comune di Milano

5.6.3 Summary

In Table 5.7 we report the comparison between set of different features used. Once again,
the sets are disjoint. Moreover, in this experiment, even though the score is quite high
(i.e. 73,86) this is probably due to the fact that in both cases one big clusters is created.
However, even if the set of manually selected metrics presents a mix of features regarding



5.6. EXPERIMENT 6 - FLC FOR MILAN DATASET 65

quality of the aria, buildings energy consumption and structural characteristic, while the
one produced by the entropy-based algorithm contains only information regarding buildings,
the same outliers are individuated in both cases.
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Table 5.7: Features Milan

Original Manual Less correlated Automated
avg(pm10_01) X X
avg(‘pm2.5_01‘) X
avg(no2_01) X X
sum(superf_utile_riscaldata) X X
sum(superf_utile_raffrescata)
sum(volume_lordo_riscaldato)
sum(volume_lordo_raffrescato)
sum(ep_gl_nren) X X
sum(ep_gl_ren) X
sum(emissioni_co2) X
sum(consumi_energia_elettrica)
sum(consumi_gas_naturale) X X
sum(superficie_disperdente)
avg(uomini) X
avg(donne)
avg(minori)
avg(famiglie)
avg(famiglie_unipersonali)
avg(stranieri)
avg(80_e_piu)
avg(80_e_piu_soli)
avg(65_e_piu)
avg(residenti_prima_cittadinanza)
avg(residenti_terza_cittadinanza)
avg(residenti_seconda_cittadinanza)
avg(scuola_primaria_numero) X
avg(scuola_infanzia_numero)
avg(scuola_secondaria_di_primo_grado)
avg(fermate_metro + fermate_linee) X X
avg(area_metri2) X X
avg(piste_ciclabili_m) X X
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5.7 Experiment 7 - FLC for indicators and metrics

In this first experiment we apply both the manual and the automated procedure to dataset
Indicators.

5.7.1 Manual feature selection

According to Section 5.1.1 and Section 5.2.1, the manually selected set of features provide
by experts includes:

• 8 indicators

• 6 metrics

From Figure 5.23 and Figure 5.24 is clear that a reasonable number of clusters is three.
We then set n_clusters equal to 3 and NIL 8 “PARCO SEMPIONE” reluts again to be
an outlier. Moreover, we notice the dendrogram to be very similar to the one obtained
in Section 5.1.2.
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Figure 5.23: Dendrogram for clusters considering only manually selected indicators and
metrics
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Figure 5.24: BSS and WSS trend for clusters considering only manually selected indicators
and metrics

5.7.2 Automated feature selection

According to Section 5.1.2 and Section 5.2.2, the automatically selected set of features
includes:

• 5 indicators

• 12 metrics

This time, both the dendrogram in Figure 5.25 and the BSS and WSS trend in Figure 5.26
suggest that there are more clusters in the dataset. We decide to set n_clusters = 9 since
this number corresponds both to a knee(elbow) in the wss(BSS) trend, and to a cut in the
dendrogram able to identify multiple clusters without create meaningless outliers.



5.7. EXPERIMENT 7 - FLC FOR INDICATORS AND METRICS 69

82 38 71 85 81 60 31 64 29 54 62 63 58 32 59 30 46 16 53 33 40 13 74 80 17 44 77 79 51 36 70 78 37 83 2 7 0 1 8 67 20 10 25 5 3 6 4 9 73 57 68 26 48 27 21 66 24 56 19 49 28 14 65 42 35 43 12 69 18 76 15 34 75 41 11 55 47 50 45 84 52 23 22 39 61 72

Sample Index
0

2

4

6

8

10

12

14
Di

st
an

ce
Dendrogram for automatically selected indicators and metrics 

Figure 5.25: Dendrogram for clusters considering only automatically selected indicators and
metrics
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Figure 5.26: BSS and WSS trend for clusters considering only automatically selected
indicators and metrics
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Chapter 6

Experiment comparison and
evaluation

We dedicate this chapter to compare the results we obtained to better understand the
conclusions we will draw from them. First of all, we will use different graphical method to
compare the results, focusing on how the clustering algorithm classify the same NILs in
the FLC phase. Lately, we will evalute all the results using the score variable and we will
comment also the results obtained in the SLC phase.

6.1 FLC results comparison

Having chosen a different number of clusters in each experiment makes hard to directly
compare the result. What we need to show is:

• Which are the NILs grouped together in each experiment;

• Which are the NILs grouped together in all the experiments;

• Evaluate result for each experiment.

For the firs two, we will use Table 6.1 and Table 6.2 to show the obtained results. The
columns of the table correspond to:

• A : Experiment 1 - manual feature selection results, n_clusters = 3;

• B : Experiment 1 - automated feature selection results, n_clusters = 4;

• C : Experiment2 - manual feature selection results, n_clusters = 4;

• D : Experiment 2 - automated feature selection results, n_clusters = 5;
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• E : Experiment 3 - manual feature selection results, n_clusters = 2;

• F : Experiment 3 - automated feature selection results, n_clusters = 2;

• G : Experiment 4 - manual feature selection results, n_clusters = 4;

• H : Experiment 5 - manual feature selection results, n_clusters = 4;

• I : Experiment 5 - automated features selection results, n_clusters = 4;

• L : Experiment 6 - manual feature selection results, n_clusters = 5;

• M : Experiment 6 - automated feature selection results, n_clusters = 4.

For what concerns the colours:

• all the outliers are coloured in red;

• different shadow/colour are used to highlight different clusters trying to copy also
closeness between them;

• black is used to indicate we do not have data for that NIL.
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Table 6.1: Compared results FLC, 1

ID_NIL A B C D E F G H I L M
1 2 2 0 0 0 0 2 3 0 0 1
2 2 2 0 0 0 0 2 0 1 0 1
3 0 0 1 3 1 1 1 1 1 0 1
4 2 2 0 0 0 0 2 0 1 0 1
5 2 2 3 0 0 1 2 0 1 0 1
6 2 2 0 0 0 0 2 0 1 0 1
7 2 2 0 0 0 0 2 0 1 0 1
8 1 3 1 3 1 1 0 1 1 4 3
9 2 2 0 0 1 0 2 1 1 0 1

10 2 2 0 0 1 0 2 0 1 0 1
11 2 2 0 0 0 0 2 0 1 0 1
12 2 2 3 4 0 1 2 0 1 0 1
13 0 0 3 4 0 1 2 0 1 0 1
14 0 0 3 4 1 1 3 0 0 0 1
15 0 2 0 0 1 1 2 0 1 0 4
16 2 1 0 4 0 1 2 0 0 0 1
17 0 0 1 4 1 1 3 0 1 0 1
18 0 0 3 4 1 1 0 0 0 0 1
19 2 2 3 0 0 1 2 0 0 0 1
20 2 2 3 0 0 1 2 0 0 0 1
21 2 2 0 0 0 0 2 3 0 0 1
22 2 2 0 0 0 1 2 0 0 0 1
23 0 0 0 4 1 1 3 0 1 0 1
24 0 0 0 4 1 1 3 1 1 0 1
25 2 2 0 0 0 1 2 0 1 0 1
26 2 2 0 0 0 0 2 0 1 0 1
27 2 2 0 0 0 0 2 0 1 0 1
28 2 2 0 0 0 1 2 0 1 0 1
29 0 0 3 4 1 1 2 1 1 0 0
30 0 0 1 4 1 1 0 0 0 0 1
31 0 0 2 4 1 1 0 1 1 0 1
32 0 0 2 4 1 1 0 1 1 0 1
33 0 0 1 4 1 1 3 1 0 0 1
34 0 0 100 100 100 100 100 100 100 0 1
35 0 0 3 4 1 1 3 0 0 0 1
36 0 2 0 4 1 1 3 0 1 0 1
37 0 2 1 4 0 1 3 1 1 0 1
38 0 0 3 4 1 1 3 0 1 0 1
39 0 0 1 1 1 1 3 1 1 0 1
40 0 0 1 1 1 1 3 1 1 0 1
41 0 0 3 4 1 1 0 0 1 0 1
42 0 0 3 4 1 1 0 0 0 0 1
43 2 2 0 4 0 1 2 0 1 0 1
44 2 2 3 0 0 1 2 0 1 0 1
45 0 0 3 4 1 1 2 0 1 0 1



74 CHAPTER 6. EXPERIMENT COMPARISON AND EVALUATION

Table 6.2: Compared results FLC, 2

ID_NIL A B C D E F G H I L M
46 0 0 3 4 1 1 0 0 1 0 1
47 0 0 1 0 1 1 1 1 1 0 1
48 0 0 0 4 1 1 3 0 1 0 1
49 2 2 3 4 0 1 2 0 1 0 1
50 2 2 3 0 0 1 2 0 1 0 1
51 2 2 0 0 0 0 2 0 1 0 1
52 2 2 0 0 0 1 2 0 0 0 1
53 0 0 0 4 1 1 3 0 1 0 1
54 0 0 0 4 1 1 3 1 1 3 1
55 0 0 1 4 1 1 3 0 0 0 1
56 0 0 1 4 1 1 3 0 0 0 1
57 2 2 0 0 0 1 2 0 1 0 1
58 2 2 3 0 0 1 2 0 1 0 1
59 0 2 3 4 1 1 0 1 1 0 1
60 0 0 3 4 1 1 0 0 0 0 1
61 0 0 1 4 1 1 3 1 0 0 1
62 0 0 1 4 1 1 3 1 0 0 1
63 0 0 2 4 1 1 0 1 0 0 1
64 0 0 1 4 1 1 3 1 0 0 1
65 0 0 1 4 1 1 0 0 0 0 1
66 0 0 1 4 1 1 3 1 1 0 1
67 2 2 3 0 0 1 2 0 1 0 1
68 2 2 3 0 0 1 2 0 1 0 1
69 2 2 0 0 0 0 2 0 1 0 1
70 2 2 0 0 0 1 2 0 1 0 1
71 2 2 3 4 1 1 2 0 0 0 1
72 0 0 0 4 1 1 0 0 0 3 1
73 0 0 1 1 1 1 3 1 1 3 4
74 0 0 0 0 1 1 1 1 1 3 1
75 0 0 3 4 1 0 2 1 1 2 2
76 0 0 3 4 1 1 3 0 1 3 1
77 0 2 0 4 0 1 2 0 1 0 1
78 0 2 100 100 100 100 100 100 100 0 1
79 2 2 3 0 0 1 2 0 1 0 1
80 0 0 3 4 0 1 2 0 1 0 1
81 0 0 0 4 1 1 3 0 1 0 1
82 0 0 3 4 1 1 3 1 1 0 1
83 0 0 3 4 1 1 3 0 1 0 1
84 0 0 1 4 1 1 1 1 1 0 1
85 0 0 1 2 1 1 3 2 3 1 1
86 0 0 1 1 1 1 3 1 2 0 1
87 0 0 1 4 1 1 1 1 2 3 1
88 0 0 1 4 1 1 3 1 3 1 0



6.1. FLC RESULTS COMPARISON 75

Another way to compare results is to show the clusters directly on the map of Milan.
The following images represents all the obtained results. Colours are chosen with the same
criterion as for Table 6.1 and Table 6.2

(a) Manual (b) Automated

Figure 6.1: Results for Indicators dataset.

What emerges from this maps is that the two algorithms provide almost the same results.
Even though it seems indicators only highlight macro differences among NILs, the results
has been judged by the experts to be perfectly coherent with the way DOP families reflect
on NILs.

(a) Manual (b) Automated

Figure 6.2: Results for Metrics dataset.

In this case the two algorithms perform really differently. What emerges is that the



76 CHAPTER 6. EXPERIMENT COMPARISON AND EVALUATION

features selected manually are able to express finer differences, while the automated algorithm
only separates NILs from the centre from the more peripheral ones, and individuates small
groups very different from the others. This is probably due to the fact that in the manual
case we also select permeability metrics while in the automated one we mostly have porosity
related ones.

(a) Manual (b) Automated

Figure 6.3: Results for metrics related to porosity.

Probably because of the low number of clusters, the maps show a simple division between
NILs in the centre and the more peripheral ones. However, this a consistent result with
natures of porosity. Moreover, this result confirms the one showed in Figure 6.2(b) where
the metrics selected by the entropy-based algorithm are mostly related to porosity.

Figure 6.4: Results for metrics related to permeability.
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Once again, NILs of the centre are grouped together, and this perfectly reasonable.
Moreover, also this result confirms that adding permeability metrics as variables contributes
to create more clusters in the peripheral areas.

5 classi non 4

(a) Manual

5 classi non 4

(b) Automated

Figure 6.5: Results for Attributes dataset.

From the images we have the prove that the two experiments preform really differently.
This would probably mean that the results are strictly related to the selected features which
do not correspond in the two cases.

(a) Manual (b) Automated

Figure 6.6: Results for Milan dataset.

Results for this experiment, as we already noticed, are not so relevant.
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6.2 FLC evaluation and output

After comparing clusters, in order to provide the needed outputes for the Second Level Clus-
tering , we now need to evaluate our results. In Chapter 4 we defined the comparison_matrix
and the score variable as the ways to compare results. In Table 6.3 we report scores for
all the datasets except the one related to permeability metrics, as we did not perform any
feature selection for them. In Section 6.2 instead, the values are compared using a bar plot.

Table 6.3: Comparison score

Dataset Score
Indicators 76.34091
Metrics 49.90698
Porosity 49.72093

Attributes 46.65116
Milan 73.86364
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Figure 6.7: score values comparison

The highest score is obtained for dataset Indicators . The one for Milan is also pretty
high but this is probably due to the fact that both in the Manual and, in the Automated
case, the algorithm simply individuates outliers. Repeating the experiments with other
numbers of clusters will of course provide other interesting results. Anyway, what is evident,
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and is important to us, is that we obtain good performances when we cluster using indicators
as features. This seems to be due to two main facts:

• Indicators are theoretically divided in DOP families and this division is preserved in
our original dataset. This means that we take into consideration different performance
aspects while clustering;

• Ability of the feature selection algorithm to pick indicators from different DOP families.

This makes indicators eligible as important dimension for the Second Level Clustering.
For what concerns distances along each dimension, we can extrapolate it looking at the
clusters results. Clusters are based on euclidean distances, so it more than reasonable to
approximate distances between elements with the distances between clusters. As we said,
colours in Table 6.1 and Table 6.2, and in the maps, are chosen to take into account the
distance between clusters. To represent distances between each NIL we used the euclideian
distance using as variables only the features selected.

6.3 SLC evaluation and output

In the previous section we justified the choice of indicators as important dimension. Even
though First Level Clustering performed badly on Metrics dataset, the second chosen
dimension is "metrics" itself. This is done according to the IMM procedure, since metrics
and indicators are at the same level of aggregation in the data flow Figure 2.5. However, we
can see in Table 6.4, that when we compute score to compare the two experiments, both
entirely and considering only the Manual or the Automated case, we have surprisingly good
values.

Table 6.4: Comparison score indicators and metrics

Compared Score
Exp_1 - Exp_2 35.59091

Exp_1.1 - Exp_2.1 47
Exp_1.2 - Exp_2.2 47

From Table 6.4, we can see that almost the 50% of NILs are always clustered in the
same way. This is a high percentage if we think the number of clusters (without considering
the outliers) is different in the two experiments. Coming to the results, even if we did not
highlight an evaluation subphase in SLC, we have performed the algorithm both with the
manually feature selected and the automated ones. In Figure 6.8 we report the obtained
results directly on the map.
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5 classi non 4

(a) Manual (b) Automated

Figure 6.8: SLC results for indicators and metrics.

From the image above and the previous ones, two important things emerge:

1. most of the NILs of the centre are always in the same cluster;

2. comparing the automated cases for Indicators, Metrics the one for indicators and
metrics together, it seems that the latter is a sort of sum the previous two.

Again, we can extract the distance between NILs from the distance between clusters
they are grouped in, but we we also show the distances heatmap both for the automated
and the manual case.
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Figure 6.9: Distances heatmap for indicators and metrics manually selected
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As shown in the legends, the darker the colour, the closer the two samples are to each
other. What emerges from these two heatmaps is that probably, NILs with similar ID_s
will be similar to each other, and therefore close to each other. In both figures, in fact, you
can see that the colour gradations follow a precise pattern, in particular they form squares.
What is even more important, though, is that, broadly speaking, the two maps are similar.
This means that even with differing features, the differences/similarity between elements
has been preserved.



Chapter 7

Limitations and future works

The main limitation of this work is related to the lack of data. Having only 88 samples
makes the results sensible to outliers. Both when looking for important features and while
clustering, the presence of NILs showing unusual behaviours deeply influences the results,
making it difficult to discover patters at a finer level. By considering a higher number of
samples, future works could limit this effect; alternatively, if not bound by the need not to
lose any sample, they could try to eliminate outliers. To increase the number of samples,
futures works can:

• define a finer granularity for Milan or another city;

• compare more cities at the same time, defining the same granularity for all of them.

On the other hand, even if we have lots of features, another limitation is related to the
poor variety of them. Both metrics and attributes are mostly related to porosity, and this
makes it impossible to analyse different aspects of the built environment. In addition, the
quality of the data retrieved from Comune di Milano is really poor. The Aria dataset, for
example, was generated interpolating data from only seven ARPA (Azienda Regionale per
la Protezione Ambientale) stations, spreading the results on different NILs. This makes the
reliability of the data really low, also considering that air quality is not only due to agents
strictly related to the city, and can be influenced by external factors. To better account for
variety, future works can:

• add more features to try to capture more Dimensions ;

• looking for features related to the same Dimension that can be categorized, and choose
a representative number for each category.

This last observation finds its reason in the results obtained for the Indicators dataset.
This is indeed the only dataset in which we have found a categorization of the features
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through the DOP families, and it was also the dataset where we obtained the best results.
Moreover, regardless the results, another proof of the need for variety in features is that
the entropy-based algorithm selected indicators from different families. Concluding, a last
limitation is probably related to the nature of NILs themselves. The division does not always
reflect the actual territorial characteristics. A proof of this is the new division carried out in
March 2020 by Comune di Milano. The comparison with this new structure could be an
interesting starting point for future analyses.



Chapter 8

Conclusions

In this work we presented SIMBA, a systematic clustering – based methodology to support
built environment analysis. SIMBA is a support tool for architects and urban planners in
understanding and analysing urban environments and the relationships between their parts.
In particular, it is designed to improve the Investigation phase of IMM, a methodology
developed at the Department of Architecture, Built Environment and Construction Engineer
of Politecnico di Milano. By looking at the different clusters obtained and the selected
features, it is possible to identify both how the different Dimensions , which can be
conceptually associated to the Key Categories of IMM, interact with each other, and
also to compare different units. In order to prove the effectiveness of SIMBA we have
reported the results obtained by applying the methodology to the city of Milan, looking for
clustering it in NILs, neighborhoods in which the city has been divided according to mainly
socio-demographic and cultural criteria. The results confirmed the capability of clustering
algorithms to represent conceptual distances between elements. This can be used by the
scholars of the subject to calculate these distances and to avoid basing their analyses on
their personal observations only. Moreover, SIMBA allows to select a manageable number
of features that have been proven to be also descriptive for the built environment. The six
metrics selected for each KC in IMM, nonetheless, were chosen without a systematic and
objective procedure. By looking at the clusters results it is also possible to observe how
the different dimensions interact with each other, to analyse the effects of their different
combinations on the results and to idetify which ones influence them most. Together with
these two big improvements for IMM, another interesting result provided by SIMBA is the
proof, even if with some limits, of a correspondence between performances and structural
patterns, emerged while we comparing our experiments. Summarizing, the results obtained
by using SIMBA are:

Summarizing, the results obtained by using SIMBA are:

• a selection of reasonable but also representative number of features when investigating
the built environment;
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• experimental evidence of correspondence between the structural shape of the city and
performance patterns;

• a systematic methodology to measure distance between elements, needed when com-
paring different built environment;and

• explicable results of the interaction between the different components of the city.
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