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Abstract

In the operational lifecycle of diverse items, ranging from consumer electronics to ad-
vanced aerospace components like aircraft and satellites, the ability to withstand various
environmental conditions and mechanical stresses is paramount. Therefore, during the
design and development phases of those items, proactive measures such as qualification
testing are taken to ensure the resilience and survivability of the items when faced with
challenges during their lifecycle. However, challenges arise when qualification loads differ
significantly from real-world operative loads, necessitating a robust metric to assess load
severity.

This is a collaborative thesis between Politecnico di Milano and Thales Alenia Space. It
addresses two primary objectives. Firstly, it undertakes a comprehensive evaluation of
existing methodologies employed to assess and compare load severities, which all applies
to Single Degree of Freedom (SDOF) system loads. These methodologies are scrutinized
for accuracy, computational efficiency, and potential for enhancement. Secondly, it intro-
duces a convenient approach for load severity comparison. This proposed methodology
transcends traditional techniques based on SDOF systems’ absolute acceleration and fo-
cuses instead on analyzing interface forces in response to a 6 Degree of Freedom (6DOF)
load.

Through this research, some insights are offered in order to assess and clarify the role
of a number of techniques used to quantify the mechanical load severity. The study
highlights the limitations of current severity assessment methods, particularly in complex
systems, justifying the need for more accurate approaches. The methodology proposed
in this work aims at enabling to perform the mechanical load severity comparison in case
of Multi Degree of Freedom (MDOF) loading. The latter MDOF loading severity com-
parison corresponds to a specific need in the aerospace field, where MDOF shakers are
entering the market for the qualification testing of space structures.

Keywords: Mechanical Load Severity Comparison, MDOF base excitations, 6DOF shak-
ers, 6DOF transient loading





Abstract in lingua italiana

Nel ciclo operativo di diversi oggetti, che vanno dall’elettronica di consumo a componenti
aerospaziali avanzati come aeromobili e satelliti, la capacità di resistere a varie condizioni
ambientali e sollecitazioni meccaniche è fondamentale. Pertanto, durante le fasi di proget-
tazione e sviluppo di tali oggetti, si adottano misure proattive come i test di qualificazione
per garantire la resilienza e la sopravvivenza degli oggetti quando devono affrontare sfide
nel corso del loro ciclo di vita. Tuttavia, emergono delle sfide quando i carichi di qualifi-
cazione differiscono in modo significativo dai carichi operativi del mondo reale, rendendo
necessaria una metrica robusta per valutare la gravità del carico.

Questa è una tesi collaborativa tra il Politecnico di Milano e Thales Alenia Space. Affronta
due obiettivi principali. In primo luogo, si effettua una valutazione delle metodologie es-
istenti impiegate per valutare e confrontare le severità dei carichi, tutte applicabili a
sistemi a 1 Grado di Libertà (1GDL). Queste metodologie vengono esaminate per accu-
ratezza, efficienza computazionale e potenziale per miglioramenti. In secondo luogo, si
introduce una metodologia conveniente per il confronto della severità di un carico definito
in più Gradi di Libertà (GDL). Nello specifico, il metodo proposto supera le tecniche
tradizionali basate sull’accelerazione assoluta dei sistemi a 1GDL e si concentra invece
sull’analisi delle forze di interfaccia in risposta a un carico a 6 Gradi di Libertà (6GDL).

Attraverso questa ricerca, si offrono informazioni e metodologie per migliorare la valu-
tazione della severità dei carichi. Questo sforzo rafforza alla fine l’affidabilità e la ro-
bustezza degli oggetti in una vasta gamma di applicazioni. Lo studio evidenzia i limiti dei
metodi attuali di valutazione della severità, in particolare nei sistemi complessi, giustifi-
cando la necessità di approcci più precisi. La metodologia proposta in questo lavoro mira
a consentire il confronto della gravità dei carichi meccanici in caso di carichi a Molti Gradi
di Libertà (MGDL). Quest’ultimo confronto della gravità dei carichi MGDL corrisponde a
una specifica esigenza nel campo aerospaziale, dove i sistemi di eccitazione MGDL stanno
entrando nel mercato per i test di qualificazione delle strutture spaziali.

Parole chiave: Confronto gravità carichi meccanici, Eccitazione di base MGDL, Vi-
bratori a 6GDL, Transitori a 6GDL
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1| Introduction

1.1. Motivation of the work

In the course of their operational lifespan, everyday items, ranging from mobile phones
and computers to wristwatches, cars, and even advanced aerospace components like air-
craft and satellites, are subjected to an array of environmental conditions. These condi-
tions encompass temperature fluctuations, humidity variations, and mechanical stresses.
Therefore, it is of paramount importance, during the design and development phases of
these items, to take proactive measures to ensure their resilience and survivability when
faced with the diverse challenges they may encounter over their lifecycle. One such crucial
measure is qualification testing.

Qualification testing serves as a pivotal step in the development process, verifying that
an item can endure and thrive in the anticipated operating conditions. However, certain
scenarios arise where the qualification load differs significantly from the operative load
that the item will experience in real-world use. This is where the concept of "severity"
comes into play, serving as a metric to quantitatively assess and compare the risk of failure
when subjected to various loads. In simpler terms, if the severity of load A surpasses that
of a different load B, it implies that the risk of failure for the item under load A is higher.
In the context of testing, it’s essential that the severity of the qualification load exceeds
that of the operative load to ensure robustness.

This thesis, conducted in collaboration with Thales Alenia Space, focuses on two primary
objectives:

1. Evaluation and Enhancement of Current Methodologies: The first objective
revolves around a comprehensive investigation of existing methodologies employed
for evaluating and comparing the severities of different mechanical loads. This
entails scrutinizing their accuracy, computational efficiency, and any possible areas
for improvement.

2. Alternative Approach for Load Severity Comparison: The second objective
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involves proposing an innovative approach for comparing the severity of Multi De-
gree of Freedom (MDOF) mechanical loads. Unlike traditional methods that rely on
the absolute acceleration of a Single Degree of Freedom (SDOF) system, this novel
approach hinges on analyzing the interface (IF) forces acting on a system subjected
to a 6 Degree of Freedom (6DOF) load.

Through the pursuit of these objectives, this research aims to contribute valuable insights
and methodologies to enhance the assessment of load severities, ultimately bolstering the
reliability and robustness of items across a spectrum of applications.

1.2. Literature review

Mechanical shocks and vibrations are pervasive in numerous engineering domains, includ-
ing aerospace, naval, and defense engineering. Their capacity to jeopardize the structural
integrity of systems has spurred a substantial body of research in this field. The litera-
ture pertinent to this thesis encompasses classical methodologies for assessing the sever-
ity of mechanical loads, including Shock Response Spectrum (SRS), Extreme Response
Spectrum (ERS), and Fatigue Damage Spectrum (FDS). It delves into their practical
applications, explores avenues for enhancing existing methodologies, and also delves into
contemporary research on multiaxial shakers.

1.2.1. SRS

The concept of SRS was first introduced by Biot in 1932 [9]. Several techniques have been
employed to evaluate the SRS. Craig [10] proposed numerical evaluation methods using
recursive formulas, which utilize second-order integration techniques to approximate the
excitation of a SDOF system through piecewise-constant or piecewise-linear interpola-
tion. Additionally, an average acceleration method has been suggested as an alternative
approach for determining the response of both linear and nonlinear systems. This method
involves approximating the derivatives appearing in the system equation of motion and
generating a step-by-step solution using time steps. However, these formulas were not
easily solvable using calculators, leading to the development of recursive filtering tech-
niques by Kelly-Richman [20]. Smallwood [29] further improved upon these techniques,
providing more accurate results at higher natural frequencies.
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1.2.2. ERS

Lalanne extensively studied the ERS [22]. His research started from analyzing the sta-
tistical properties of random vibrations in the time domain and the statistics of extreme
values. Lalanne established relationships that define the response of a SDOF linear sys-
tem to random vibrations, thus providing a clear definition of ERS. While the value of
a random vibration sample provides an overall understanding of the vibration’s sever-
ity, it is essential to determine the continuous frequency spectrum of the vibration to
comprehend its effects on a structure. This frequency analysis is performed using the
Power Spectral Density (PSD), which is an ideal tool for describing random vibrations.
Knowledge of the PSD alone allows for accessing the distribution of maxima in a random
signal without having to count individual peaks. This information is useful for pre-sizing
structures. Furthermore, the PSD is used to determine the response of a SDOF system,
which is necessary for calculating the Extreme Response of the given vibration.

1.2.3. FDS

Several studies indicate a relationship between stress, fatigue, and pseudo velocity (PV).
Gaberson [14] and Hunt [17] consider the stress mechanisms of longitudinal waves in rods
and transverse waves in beams, demonstrating that modal stress is only a function of
velocity and independent of frequency. However, when evaluating the FDS, stress related
to acceleration, as proposed by DiMaggio [12], and stress related to relative displacement,
as highlighted by Lalanne [23], are also taken into consideration. DiMaggio [12] pro-
posed a damage-based approach as an alternative to the traditional maximax analysis of
nonstationary flight data for space and launch vehicles (LVs). This approach avoids over-
estimating peak response and addresses the potential for fatigue failure of hardware. The
method employs an extended response spectrum analysis and includes amplitude-cycle
counts, resulting in a conservative, stationary test specification that envelopes the dam-
age potential of the nonstationary flight environment for both peak response and fatigue.
McNeill [24] discusses the evaluation of the FDS in both the time and frequency domains,
considering stress proportional to PV. His work shows that the two curves are equivalent.
McNeill also explores the concept of Fatigue Damage Equivalent Testing (FDET), which
utilizes the FDS as a measure of environment severity. FDET involves deriving a Gaus-
sian random test environment and duration that is fatigue equivalent to a non-stationary
environment described by an acceleration time history. The time history is typically ob-
tained through direct measurement of the environment. The purpose of McNeill’s paper
is to provide a unified theoretical framework for the FDS and FDET, introducing im-
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provements such as accounting for the PSD shape in the computation of the FDS in the
frequency domain and estimating the overall test duration in the FDET.

1.2.4. Practical use of the severity

Lalanne [23] addresses the use of severity and response spectrum to develop specifica-
tion, covering the ERS and FDS for sinusoidal and random vibrations. The extreme
response and fatigue damage spectra are defined for each type of stress, including sinu-
soidal vibrations, swept sine, shocks, and random vibrations. The process of establishing
a specification based on the equipment’s lifecycle profile is detailed, taking into account
the uncertainty factor, which involves uncertainties related to the dispersion of the real
environment and the mechanical strength. Additionally, the test factor, which depends on
the number of tests performed to demonstrate the equipment’s resistance, is considered.

1.2.5. Improvements in the methods

When evaluating ERS and FDS, the input to the SDOF system is a PSD, and the output
is the root mean square of a quantity such as acceleration, PV, or relative displacement.
The methods mentioned above integrate the square of the transmissibility multiplied by
the input PSD and take the square root to evaluate the root mean square. An alter-
native method is the use of Lyapunov equations, which involve creating a shape filter
and connecting it to the SDOF system, as demonstrated by Wijker [31]. This alternative
approach could enhance the efficiency of numerical codes.

In [19], Tom Irvine utilized FDS to compare the effects of different PSD specification,
taking into account the varying durations of the specification. However, this comparison
focused on stress related to acceleration and did not explore whether similar results could
be achieved using a different approach. A comparison between two approaches, stress
related to acceleration and stress related to PV, can be found in [15], where Grillo reviewed
the approaches proposed by DiMaggio [12] and McNeill [24] for synthesizing equivalent
random vibration test specification. The results obtained using both methods were quite
similar, suggesting that the choice of approach may not significantly impact the outcomes
of a comparison between different PSD specification.

1.2.6. Multiaxial shakers

Multiaxial shakers made their debut in the automotive industry during the early 1970s,
as documented by Dodds [13]. Their utility then expanded to include the simulation of
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seismic loads induced by earthquakes [21]. However, the aerospace sector has been some-
what slower to embrace this technology due to its exceptionally stringent vibration testing
requirements and the need for sophisticated control systems when testing satellites. The
aerospace industry imposes the most rigorous vibration testing standards globally, neces-
sitating advanced control systems to ensure accurate reproduction of operational loads
and precise boundary conditions. To address these challenges and prevent undesirable
coupling between the shaker table and the Item Under Test (IUT), extensive research has
been conducted on Multiple-Input and Multiple-Output (MIMO) control systems. Key
contributions in this field include works by Peeters [28], De Bruyne [11], Ayres [8], Under-
wood [30] and Musella [26, 27]. These endeavors have paved the way for multiaxial shakers
to meet the exacting demands of aerospace vibration testing, ensuring the reliability and
structural integrity of critical components such as satellites.

1.3. Illustration of load severity comparison

To underscore the significance and practical utility of load severity comparison, an example
from the realm of space engineering is presented. During a spacecraft’s (SC) launch, it is
subjected to mechanical vibrations introduced by the LV through the LV-SC IF. These
vibrations emanate from various sources, including propulsion forces, aerodynamic forces,
and acoustic and shock loads. These mechanical vibrations can be categorized as follows:

• Sinusoidal vibrations, ranging from 5 to 100 Hz

• Random vibrations, spanning from 20 to 2000 Hz

• Shock loads, extending from 100 to 10000 Hz

Among the myriad sources of random vibrations, acoustic loads generated within the
fairing are particularly common. Their frequency range falls between 20 and 8000 Hz,
with specific interest limited to the 20 − 2000 Hz range, as frequencies beyond 2000 Hz
fall within the domain of shock loads.

Figure 1.1, which focuses on a mono-axial direction, shows the measurement of the Ac-
celeration Power Spectral Density (APSD) with a red dashed line, obtained from a unit
subjected to acoustic loads during a qualification test. The latter is compared to the
APSD of the unit’s qualification random profile, depicted with a black dashed line. The
measured APSD exhibits some peaks that exceed the unit’s qualification level, but as
the APSD is a density, it cannot provide insights into whether these peaks pose a prob-
lem or not. Consequently, the ERS, representing the severity of random loads, must be
calculated for both the measured APSD and the random qualification level.
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The figure also displays the severities of the APSD curves, which are given by the ERSs,
with continuous lines in the same color as their respective APSD. The ERS is given by
the acceleration which is exceeded only once over the duration of the random loading.
Narrow peaks in the APSD have a minimal impact on the severity. Nevertheless, there
remains a peak in the ERS of the measured data that exceeds the ERS of the qualification
profile. One might consider the need for delta qualification1 for the unit.

The figure further presents the sine qualification profile for the unit and the shock qual-
ification profile, each with its respective severity which is given by the SRS. For each
frequency f , the SRS is given by the maximum absolute acceleration calculated by apply-
ing a deterministic acceleration time history to a SDOF system with natural frequency
fn = f . The SRS of the sine profile is indeed is approximated by multiplying the sine’s
amplitude by the qualification factor Q, while the shock qualification’s severity is repre-
sented by the SRS of the shock itself. Notably, the ERS of the APSD for the measured
acoustic loads is enveloped by the SRS of the unit’s shock qualification profile. This is en-
couraging in order to believe that no damage nor degradations occurred after the acoustic
test.

This example vividly illustrates the value of being able to assess and compare the severity
of mechanical loads of diverse natures. Additionally, the fact that the SRS of the unit’s
shock qualification profile partially encompasses the ERS of the measured load underscores
the critical importance of accurate methodologies for evaluating severities.

1Delta qualification: qualification performed on an equipment which has undergone minor design
modifications or has been qualified to operate in environments less severe than those specified. (Source:
ECSS [3]).
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Figure 1.1: Example of mechanical load severity comparison application.
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2| Shock Response Spectrum

(SRS)

2.1. Overview

This chapter begins by delving into the world of engineering shocks. It defines what shocks
are and provides real-world examples to illustrate their significance across various engi-
neering domains. This foundational understanding sets the stage for a deeper exploration
of shock analysis and assessment.

The chapter introduces the SRS, a crucial tool for quantifying shock severity. This met-
ric helps engineers gauge the impact and potential consequences of shock events, aiding
informed decision-making in design and evaluation processes.

A significant portion of the chapter is dedicated to examining methodologies commonly
used in the industry to evaluate the SRS. These methodologies are analyzed in-depth,
highlighting their respective strengths and weaknesses. The chapter also provides a com-
parative assessment, addressing factors like accuracy and computational cost, empowering
readers to choose the most suitable approach for their specific shock analysis needs.

Practical application comes into play within the field of space engineering, where the
concept of the Equivalent Sine Input (ESI) takes center stage. A 2DOF mechanical
system serves as a case study to assess whether ESI effectively represents the severity of
Coupled Load Analysis (CLA). This application underscores the real-world importance of
SRS analysis, particularly in assessing and ensuring the structural integrity of satellites
and SC subjected to the rigors of space travel.

In summary, this chapter offers a comprehensive journey through the realm of shock
analysis. It provides readers with the knowledge and tools required to assess shock severity,
comprehend shock response spectra, and make informed decisions in engineering scenarios
where shocks play a crucial role.
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2.2. Shock

A shock is an abrupt and intense transient motion characterized by its high frequency
and amplitude. In the realm of engineering, mechanical shocks can manifest in various
scenarios, notably within aerospace [5] and defense [2] engineering. Although a shock may
not directly inflict damage upon the primary structure of a military aircraft or a satellite,
it poses a significant risk to electronic and optical components, potentially resulting in
partial or complete mission failure. Throughout the lifecycle of SC, they are exposed to
shocks originating from multiple sources. These include events such as the separation
of LV stages, the detachment of the SC from the final stage, engine burn-ups, and the
release of appendages. Furthermore, shocks can arise during transportation if the SC is
transported on a truck that encounters speed bumps or traverses railroad tracks at high
velocities.

2.3. Measure of a shock

To ensure the durability of designed components against mechanical shocks, it is imper-
ative to subject them to rigorous laboratory testing. However, accurately representing
shocks using a mathematical function proves exceedingly challenging. Consequently, en-
gineers require alternative tools to comprehend the impact of shocks on SC components.
In 1932, Biot [9] proposed a groundbreaking metric known as the SRS in his thesis, which
originally focused on studying the effects of earthquakes on buildings. This metric serves
as a means to quantify shock severity. Today, numerous shock design and test methods,
such as those outlined in ECSS and MIL standards [2, 5], rely on the SRS as a guid-
ing principle. The principle of the SRS extends beyond just measuring the severity of
shock-induced mechanical loads. It is a versatile concept that can be effectively employed
to assess the magnitude of transient mechanical forces, including those of middle to low
frequencies, as well as deterministic vibrations.

2.4. How to compute the SRS

Biot’s metric involves applying the load under consideration to a standardized mechanical
system. This system comprises a support structure and N linear SDOF mass-spring-
damper systems. Each system has a distinct stiffness (ki) but shares the same damping
coefficient. The next step involves evaluating the maximum absolute response quantity
of each system and plotting it against the corresponding natural frequencies. A visual
representation of this process can be found in Figure 2.1.
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Figure 2.1: Conceptual scheme for evaluating the SRS.

To obtain a specific vector of natural frequencies, the ki and mi pairs are adjusted ac-
cordingly. One commonly employed scheme, as used by Irvine [18], is a proportional
bandwidth such as 1/6. This means that a natural frequency is equal to the previous one
multiplied by 2

1
6 . In this scheme, the output response at a given frequency corresponds to

the exact value for that frequency, while the values between two consecutive frequencies
are interpolated. This interpolation allows for a smooth representation of the SRS across
the frequency range of interest. Additionally, the damping coefficient ci is chosen such
that the resulting quality factor Q = 10. This choice of Q is a convention used to enable
meaningful comparisons between the severities of different loads. It is crucial to note that
comparing response spectra evaluated with varying quality factors would lack significance
and would not yield valuable insights or conclusions. Therefore, standardizing the quality
factor at Q = 10 ensures a consistent basis for comparing different severities. Within the
aerospace industry, the absolute acceleration serves as the predominant output parameter
for evaluating shock response. It is important to note that the response can be either
positive or negative, but their magnitudes should be equal. This equality of positive and
negative responses ensures the accuracy and validity of the spectrum. When constructing
the SRS, the maximum absolute value is selected from the positive and negative responses.
This choice allows for capturing the most significant response magnitude, regardless of its
polarity. By considering the maximum absolute value, the SRS effectively represents the
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peak response experienced by the system, providing valuable insights into the severity of
the shock.

To derive the absolute acceleration of a SDOF system, consider the generic spring-mass-
damper system depicted in Figure 2.2.

k c

m

fn

b̈

u

r

Figure 2.2: Spring-mass-damper system.

The equation of motion can be written as

mü+ c(u̇− ḃ) + k(u− b) = 0 (2.1)

By introducing the relative displacement

r = u− b (2.2)

which denotes the displacement between the mass and the base, the equation can be
rearranged to express it in terms of the relative displacement

mr̈ + cṙ + kr = −b̈ (2.3)

Utilizing the definitions of the circular frequency ωn and the dimensionless damping ratio
ξ, equation 2.4 is obtained through rearrangement.

r̈ + 2ξωnṙ + ω2
nx = −b̈ (2.4)

2.4.1. Matlab integration

An effective and direct method to solve Equation 2.4 is to utilize a MATLAB built-
in function such as lsim. In this context, the solution - the relative displacement x -
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is the exact outcome. Upon multiplying the relative displacement by w2
n, the relative

acceleration or static acceleration ẍ can be obtained. By utilizing the relationship in
Equation 2.2, the absolute acceleration ü can then be derived.

2.4.2. Craig’s recurrence formulas

An alternative technique involves utilizing the recurrence formulas outlined in Craig [10].
This approach relies on a piecewise-linear interpolation of both the forcing acceleration
and the exact solution. The recurrence formulas for the underdamped SDOF system are
expressed as follows:

ui+1 = Api +Bpi+1 + Cui +Du̇i

u̇i+1 = A′pi +B′pi+1 + C ′ui +D′u̇i

(2.5)

(2.6)

where p = −b̈ and the coefficients can be found in Appendix A.1.

2.4.3. Smallwood’s recursive formula

The Smallwood’s recursive formula for simulating the SDOF system is based on a digital
recursive filter. The output of the filter represents the response of the SDOF system.
Smallwood’s technique is an improvement over the Kelly-Richman method and incorpo-
rates a ramp invariant technique. The recursive formula can be expressed as follows:

üi = b0 p̈i + b1 p̈i−1 + b2 p̈i−2 − a1 üi−1 − a2 üi−2 (2.7)

where p = −b̈ and the coefficients can be found in Appendix A.2.

This technique provides a computationally efficient way to simulate the response of the
SDOF system.

2.5. Comparing methodologies for SRS analysis

In this section, we present a comprehensive comparison of three distinct methodologies
employed for SRS analysis. The objective is to elucidate the differences and nuances
among these methods. For the comparison, a set of SDOF systems was subjected to a
unitary step function, assuming an infinite quality factor (Q) corresponding to ξ = 0.
This choice is motivated by the well-known fact that the maximum absolute response of
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an undamped SDOF system to a unitary step function is 2. A total time span of 0.7
seconds was considered for the unitary step.

The SRS assessment was performed by selecting natural frequencies for the array of SDOF
systems, starting from 1 Hz and progressively increasing with a proportional bandwidth
of 1/96, culminating at a final frequency of 1

dt8
, which is the sampling frequency divided

by 8. Two separate analyses were carried out: one utilizing a time step of 10−4s and
another employing a finer time step of 10−5s to discern the impact of time step choice on
the computational cost across methodologies.

The comparison’s graphical representation for the 10−4s time step can be observed in
Figure 2.3. Analysis reveals that both the lsim integration and the Craig recurrence for-
mulas yield exact solutions. Conversely, Smallwood’s recursive formula approach exhibits
deviation from the exact solution as natural frequencies increase. This discrepancy arises
from Smallwood’s algorithm assuming zero initial conditions, effectively treating the first
input value of the unitary step as 0.

The relative error between the three algorithms and the analytical solution, which is 2,
is shown in Figure 2.4. Notably, at 1250 Hz, the relative error stands at around 1.3%,
a significant deviation for comparison purposes. A potential solution to mitigate this
issue involves reducing the time step to 10−5s, thereby allowing a maximum SDOF array
frequency of 12500 Hz. This refinement is evident in Figures 2.5 and 2.6, effectively reduc-
ing the error. However, this refinement comes at the expense of increased computational
demands when evaluating the SRS.

Furthermore, a detailed examination of the computational costs associated with each
methodology is provided in Tables 2.1, 2.2. These costs are normalized with respect to
lsim integration. Smallwood’s recursive formula stands out as the most computationally
efficient option. Additionally, it’s important to highlight the influence of time step on
the relative computational costs of the Craig and Smallwood methods. As the time step
is reduced, the ratio between the computational cost of the Craig method compared to
the Smallwood method experiences a noticeable increase. This dynamic sheds light on
the intricate relationship between time discretization and the computational efficiency
trade-offs inherent in these methodologies.
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Table 2.1: Computational cost of the different methods, normalized with respect to the
lsim integration. Time step = 10−4s.

Method Computational Cost

lsim 1

Craig 0.070
Smallwood 0.026

Table 2.2: Computational cost of the different methods, normalized with respect to the
lsim integration. Time step = 10−5s.

Method Computational Cost

lsim 1

Craig 0.118
Smallwood 0.041
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Figure 2.3: Comparison of methodologies for SRS analysis. Time step = 10−4s.

Figure 2.4: Relative error compared to the analytical solution. Time step = 10−4s.
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Figure 2.5: Comparison of methodologies for SRS analysis. Time step = 10−5s.

Figure 2.6: Relative error compared to the analytical solution. Time step = 10−5s.
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2.6. SRS applications in space engineering

Satellite structures undergo rigorous testing to ensure their robustness in the face of
challenging mission conditions. These evaluations often involve subjecting the satellites
to qualification tests, which simulate the mechanical stresses experienced during a mission.
These tests are pivotal in verifying whether a satellite can withstand the demands of its
operational environment.

One of the primary tools used for such testing is the shaker. Shakers are designed to
replicate real-world conditions by applying controlled vibrations and forces to the satel-
lite structures. Within the context of the space industry, electrodynamic and hydraulic
shakers are commonly utilized for these tests. It’s crucial to highlight that current shaker
systems still face limitations in effectively replicating a 6DOF transient load. Therefore,
to comprehensively replicate the complex load conditions encountered in space missions,
multiple mono-axial excitation runs are often performed.

These excitation runs employ a sinusoidal sweep technique, where the frequency of exci-
tation increases gradually over time. This sweep function is defined by the equation:

asw(t) = sin

(
2π

60f0
Keln(2)

(
2(Ke/60)t − 1

))
(2.8)

Here, Ke represents the sine sweep rate, typically set at 2 octaves per minute for qualifi-
cation tests and 4 octaves per minute for acceptance tests.

Notably, sine vibration tests performed during shaker tests represent a critical phase
in a satellite’s development life cycle. The qualification levels for these excitations are
outlined in Launch Vehicle User’s Manuals (LVUMs), which serve as guiding documents
for conducting these tests. An example of such qualification levels is presented in Table
2.3.
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Table 2.3: Vega-C Sinusoidal vibration test levels for single launch configuration [6].

Sine Frequency Range [Hz] Qualification Levels (0-peak)

Longitudinal
1-5 10 mm

5-35 1.00 g

35-110 1.25 g

Lateral
1-5 10 mm

5-30 1.00 g

30-110 0.625 g

During the course of these sweep tests, the frequencies encountered inevitably coincide
with the resonant frequencies of the satellite structure. However, these resonances are
not representative of mission conditions due to their transient nature. To address this,
a process known as notching is employed to ensure that the input test levels align with
actual mission conditions.

Primary notching involves adjusting the input levels within frequency ranges where the
force or moment at the LV-SC IF might exceed mission-experienced levels. This informa-
tion is derived from Quasi-Static Loads (QSLs) as specified in LVUMs. However, in cases
where payload or instrument accelerations during testing surpass their qualified limits, a
secondary notching process is implemented. Care must be taken to ensure that secondary
notching does not interfere with the primary notching, as it could potentially lead to an
underestimation of the satellite’s ability to withstand mission conditions.

A key parameter in this process is the ESI, as defined by ECSS [4].

"Let us consider a SDOF system having a natural frequency fk and being excited at the
base with a transient acceleration ü(t) . The equivalent sine input ESI(f ∗) at a generic
frequency f ∗, ü(t) , can be defined as the amplitude of the sinusoidal acceleration at
the base, with an excitation frequency equal to f ∗, which makes the SDOF system with
natural frequency fk = f ∗ reach, at steady-state condition, the acceleration amplitude
SRS(f ∗) which is the SRS of ü(t) at the frequency f ∗."

In this context, the transient load ü(t) (in this thesis b̈(t)) is derived from the LV-SC
CLA, a dynamic analysis meticulously executed by the launch authority. The primary
objective of this analysis is to simulate the entirety of the flight events, comprehensively
evaluating whether the SC aligns with the stringent requirements outlined in the LVUMs.
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The ESI, acting as a representative indicator of the severity encapsulated within the CLA,
assumes a pivotal role in guiding the secondary notching process. This critical parameter
establishes a lower threshold that guarantees the satellite’s instruments and equipment
experience accelerations that are, at the very least, on par with those projected during
the actual mission.

The steps to retrieve the ESI are:

1. Perform a transient analysis for each frequency in the range f ∈ [1 − 110] Hz for
the SDOF system.

2. Calculate the SRS curve by determining the maximum absolute response (acceler-
ation ü) for each frequency:

SRS(f) = max
t

∥ü(t, f)∥ (2.9)

3. Compute the ESI curve by dividing SRS by
√
Q2 + 1, where Q =

1

2ξ
represents

the quality factor indicating the system’s amplification when subjected to unit base
motion, and ξ is the modal damping ratio. For this context, Q is set at Q = 25,
corresponding to a damping ratio ξ = 2%. For high Q values,

√
Q2 + 1 ≈ Q.

ESI =
SRS√
Q2 + 1

(2.10)

A simulated axial-symmetric satellite model was constructed using FEMAP. Subsequently,
predictions for sine tests and critical load analyses (CLA) were conducted utilizing MSC
Nastran. Figure 2.7 provides insight into the prediction results of the sine test, illustrating
the input profile, SC IF lateral moment (MY ), and payload acceleration. As depicted in
Figure 2.7b, the input level from LVUM results in an SC IF lateral moment exceeding
the value derived from QSLs. Consequently, the input level is notched (red curve). Even
after primary notching, as seen in Figure 2.7c, payload acceleration remains higher than its
qualification level, necessitating secondary notching (yellow curve). The ESI (gray curve)
in Figure 2.7a functions as a lower bound for secondary notching. Should the notch for
secondary notching fall below the ESI curve, payload acceleration during testing would
be lower than that during the CLA.
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(a) Sine X: Input profile. (b) Sine X: SC IF lateral moment MY .

(c) Sine X: PL acceleration.

Figure 2.7: Sine X test prediction results.
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2.7. ESI for a 2DOF system

To assess the applicability and accuracy of the ESI concept, a MATLAB-based 2DOF
system was meticulously developed. This analysis serves as an essential validation step,
aiming to ascertain whether the ESI effectively captures the true severity of the CLA.
The study encompasses both a modal analysis and a transient analysis. To extend the
study’s relevance, a parametric analysis was conducted, systematically varying system
parameters to examine their influence on the obtained outcomes.

Consider the 2DOF system depicted in Figure 2.8, which offers insight into the dynamic
interaction between various components:

k1 c1

m1

k2 c2

m2

b̈

u1

u2

Figure 2.8: 2DOF Spring-mass-damper system.

Notably, while the current analysis focuses on longitudinal displacements, the principles
outlined remain applicable when dealing with lateral displacements as well. The subscripts
1 and 2 represent a SC and a telescope (TS), respectively.

It’s important to highlight that the base of the system corresponds to the connection
point between the LV and the SC, commonly referred to as the LV-SC IF. This IF plays
a pivotal role in transmitting dynamic loads from the LV to the SC structure.

The system’s stiffness and damping coefficients (ki and ci) are computed based on the
respective masses and natural frequencies of SC and TS:

ki = mi(2πfi)
2 (2.11)
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ci = ξ · 2
√
kimi (2.12)

where ξ = 1
2Q

, and the quality factor (Q) is set to 25.

The dynamic behavior of the 2DOF system can be represented by a set of equations of
motion, conveniently organized in matrix form as presented in Equation 2.15:

m2 0 0

0 m1 0

0 0 0



ü2

ü1

b̈

+

 c2 −c2 0

−c2 c1 + c2 −c1
0 −c1 c1



u̇2

u̇1

ḃ

+

k2 −k2 0

k2 k1 + k2 −k1
0 −k1 k1



u2

u1

b

 =


0

0

FB

 (2.13)

This equation encapsulates the dynamic interactions between the masses, springs, and
dampers within the system. Here, m1 and m2 denote the masses, k1 and k2 are the spring
constants, and c1 and c2 represent the damping coefficients. The acceleration b̈ is the base
excitation applied to the system.

Moreover, the equation can be reformulated in a block matrix format, highlighting the
internal DOFs (denoted by I) and the boundary DOF (denoted by B):

[
M

II
M IB

MT
IB MBB

]{
üI

üB

}
+

[
C
II

CIB

CT
IB CBB

]{
u̇I

u̇B

}
+

[
K
II

KIB

KT
IB KBB

]{
uI

uB

}
=

{
0

FB

}
(2.14)

Where üB = b̈. Reordering the terms the first equation yields:

M
II
üI + C

II
u̇I +K

II
u̇I = −M IBüB − CIBu̇B −KIBuB (2.15)

This rearrangement isolates the contributions of internal DOFs (üI and u̇I) and boundary
DOFs (üB, u̇B, and uB), providing a clearer insight into the system’s dynamic interactions.

The study of the 2DOF system involves a comprehensive investigation through two dis-
tinct yet interrelated analyses: a modal analysis and a transient analysis. These analyses
provide valuable insights into the system’s behavior under varying conditions. The an-
alytical process is succinctly depicted in Figure 2.9, showcasing the sequence of steps
involved in both analyses.
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Time history FRA

SRS

ESI Resp. amplitude

×

aTS(f), aSC(f)

Time history

LTI

üTS(t),üSC(t)

Figure 2.9: Analyses workflow: modal analysis (left) and transient analysis (right).

2.7.1. Transient analysis

The transient analysis of the 2DOF system offers a comprehensive insight into its behav-
ior when subjected to real-world transient events. In this analysis, the system’s base is
subjected to the acceleration time history retrieved from the CLA, reflecting actual dy-
namic conditions. The primary objectives of this analysis are to calculate the acceleration
time histories of both the SC and the TS masses, determine their maximum values, and
subsequently compare these results with those obtained from the modal analysis. This
comparison serves as a critical assessment of the system’s transient response and natural
behavior.

The governing Equation 2.15 is conveniently transformed into state-space form to facilitate
the analysis:
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˙̄x =

[
0 I

−M−1

II
K
II

−M−1

II
C
II

]
x̄+

[
I 0

0 −M−1

II

]{
0

F

}
(2.16)

ȳ =

 0 I

−M−1

II
K
II

−M−1

II
C
II

I 0

x+
I 0

0 −M−1

II

0 0

{
0

F

}
(2.17)

In these equations, F = −M IBüB − CIBu̇B − KIBuB, where üB represents the known
acceleration time history from the CLA. By integrating this time history using the MAT-
LAB function cumtrapz, the values of u̇B and uB can be obtained. The system’s response
is then determined using the MATLAB function lsim.

2.7.2. Modal analysis

The modal analysis serves as a representative simulation of satellite tests conducted on
a shaker, which are crucial to understanding the system’s response to various vibrational
loads. This analysis involves a Frequency Response Analysis, where the frequency range
of 5 − 110,Hz is meticulously chosen. The base of the 2DOF system is subjected to a
unitary acceleration excitation, enabling an exploration of the system’s behavior across
the chosen frequency spectrum.

The governing Equation 2.15 can be transformed into the frequency domain to facilitate
the modal analysis:

−M
II
ω2uI + C

II
jωuI +K

II
uI = +M IBω

2uB − CIBjωuB −KIBuB (2.18)

By setting −ω2uB = 1, the 2DOF system is subjected to a unitary acceleration in the
frequency domain. This procedure allows the acceleration of the two masses to manifest as
the transmissibility, offering insight into how each mass responds at different frequencies.

For each mass, the magnitude of the response acceleration is plotted against its corre-
sponding frequency within the chosen frequency range. This representation provides a
comprehensive understanding of the system’s frequency-dependent behavior.

In continuation, the Structural Response Spectrum (SRS) of the acceleration time history
utilized to drive the base of the 2DOF system in the transient analysis is computed.
Furthermore, the ESI is evaluated through Equation 2.10. The ESI serves as a crucial
metric that quantifies the severity of the CLA.
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Then, the SRS of acceleration time history used to enforce the base of the 2DOF system
in the transient analysis is computed, the ESI is evaluated through Equation 2.10.

Finally, the plot derived from the Frequency Response Analysis (FRA) is scaled by the
ESI.

2.8. Results

The masses and the first longitudinal frequencies of the 2DOF system were deliberately
selected to match those of the SC and the TS modeled in FEMAP. Figure 2.10 visually
presents the outcome of the transient analysis, offering an insight into how the system
amplifies the base acceleration. This amplification translates to a higher acceleration
experienced by both the SC and the TS masses. Notably, this analysis was verified by
imposing a unitary step function on the 2DOF system, with the damping ratio (ξ) set to
0. The validation process confirmed that the maximum absolute acceleration of the TS
was indeed 2.

The modal analysis, depicted in Figure 2.11, provides further valuable insights. The
frequencies of the observed peaks, specifically 55.60,Hz and 93.23,Hz, correspond har-
moniously to the first longitudinal natural frequencies of the SC and the TS respectively.
This harmonization signifies the accuracy and relevance of the modal analysis in capturing
the dynamic behavior of the system.

A tabulated summary of the maximum absolute accelerations attained from both analyses
is presented in Table 2.4. This table serves as a valuable comparison, highlighting the
differences in acceleration between the transient and modal analyses.

Table 2.4: Maximum absolute acceleration in g of the 2DOF system.

Transient Modal

SC 11.12 11.85

TS 16.55 17.84

The results underscore the nuanced variations between the modal and transient ap-
proaches. The modal analysis, which leverages the ESI, yields slightly higher acceleration
values for both the SC and TS masses. Specifically, the acceleration of the SC is elevated
by approximately 6.56%, while the acceleration of the TS is augmented by approximately
7.79%.
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In order to gain a deeper understanding of the system’s behavior and its sensitivity to
various parameters, a parametric analysis was conducted. This analysis involved system-
atically varying the masses and frequency values of the 2DOF system to assess how the
results might change and how these changes are influenced by the system’s parameters.
The aim was to explore the impact of parameter variations on the differences between the
modal and transient analysis results.

To facilitate this analysis, the parameters of the system were chosen to be as generalized
and realistic as possible. While values for m1, f1, and Q were kept constant, m2 and f2

were allowed to vary. The collected data is summarized in Table 2.5.

Table 2.5: Data for the parametric analysis.

Element Value

m1 1000kg

f1 20Hz

Q 25

m2 1− 1000kg

f2 1− 100Hz

To ensure the independence of results from the specific acceleration time history used,
a deliberate choice was made to employ a unitary step function. This strategic decision
was grounded in the realization that the enforcing acceleration used in the previous anal-
ysis was accurately acquired through MSC Nastran. Notably, this Nastran simulation
featured a satellite embodying the exact parameters of the 2DOF system in the previous
investigation.

The results of the parametric analysis were visualized through both 3D and 2D plots.
Figures 2.12 and 2.14 provide contour plots illustrating the maximum absolute response
difference between the modal analysis (governed by the ESI) and the transient analysis
(representative of the CLA) for the TS and SC respectively. These contours vary as func-
tions of the ratios f2

f1
and m2

m1
. Evidently, there exist distinct regions where the differences

are notably high.

To offer a more focused perspective, 2D plots extracted from the contours were generated.
Figures 2.13 and 2.15 elucidate that as the mass ratio m2

m1
increases – indicating a situation

where the TS mass is substantial and non-negligible – and as the frequency ratio f2
f1

decreases – signifying proximity of the first longitudinal natural frequencies of the TS and
SC – the maximum acceleration values differ significantly between the modal and transient
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analyses. This divergence highlights that the ESI doesn’t precisely capture the severity
of the CLA, resulting in a more conservative secondary notching effect. Consequently,
this conservative approach can lead to an increase in satellite weight and subsequently its
cost.
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Figure 2.10: Transient analysis of the 2DOF system.

Figure 2.11: Frequency Response Analysis of the 2DOF system, scaled with ESI.
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Figure 2.12: Maximal m2 absolute response difference between ESI and CLA inputs, 3D.

Figure 2.13: Maximal m2 absolute response difference between ESI and CLA inputs, 2D.
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Figure 2.14: Maximal m1 absolute response difference between ESI and CLA inputs, 3D.

Figure 2.15: Maximal m1 absolute response difference between ESI and CLA inputs, 2D.
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(ERS)

3.1. Overview

This chapter commences with an introduction to random vibrations and their practical
relevance in engineering. Real-world examples are provided to illustrate the impact of
random vibrations on engineering systems.

Following this introduction, a fundamental metric used to quantify the severity of random
vibrations is discussed, offering a basis for understanding their effects on structures and
systems.

The process of obtaining the ERS, a critical tool for assessing the extreme responses of
systems subjected to random vibrations, is then explained in detail.

The conventional industry methodology for ERS evaluation is explored, outlining its key
aspects and limitations.

An alternative approach to ERS evaluation is subsequently introduced, with a focus on
highlighting its potential advantages and applications.

To conclude the chapter, a comparison of the accuracy and computational costs of the
two methodologies is presented, providing readers with practical insights for selecting the
most suitable approach in the context of random vibrations and ERS evaluation.

3.2. Random vibration

Random vibration is characterized by its non-deterministic nature, meaning that its fu-
ture behavior cannot be precisely predicted. As a result, quantifying and understanding
random vibrations necessitates a statistical approach since it would require an infinite
number of measurements to fully capture its characteristics. Within the context of SC,
random loads can arise from both mechanical and acoustic sources. Mechanical random
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loads manifest as vibrations transmitted from the LV to the SC through the adapter.
These vibrations can be generated by combustion processes or turbulent boundary layers.
While they may not pose critical design conditions for the primary structure of the SC,
they significantly impact the instruments and electronic components. Acoustic loads, on
the other hand, arise as pressure fluctuations with a random nature. These loads originate
from sound pressure within the fairing. Acoustic loads primarily affect lightweight com-
ponents with larger surface areas, such as external panels, antenna reflectors, and solar
panels of the SC. In both cases, the random nature of these vibrations and acoustic loads
underscores the need for a statistical approach to their characterization and analysis in
the design and evaluation of SC systems.

3.3. Measure of random vibration

To conduct random testing, it is necessary to define a random test spectrum. Random
vibrations are characterized by their PSD, which represents the distribution of power
across different frequencies. In analogy with the SRS, the severity of the input PSD can
be visualized using a curve. This curve, known as the ERS, illustrates the magnitude
of the response for different frequencies. The ERS allows for a comparative analysis of
the severity of random vibrations in relation to other loads, such as shocks. By plotting
the ERS, engineers can gain insights into the potential maximum responses expected
under random vibration conditions. This aids in the evaluation, design, and validation
of systems subjected to random vibrations, enabling engineers to assess the structural
integrity and performance of components and ensure they can withstand the expected
dynamic loads.

3.4. How to compute the ERS

In analogy with the SRS, the computation of the ERS involves applying the PSD under
consideration to a standardized mechanical system. This system consists in a support
structure and in an array of N linear SDOF mass-spring-damper systems. Each system
has a distinct stiffness ki but shares the same damping coefficient. The next step involves
evaluating the Root Mean Square (RMS) of the output of each system and plotting it
against the corresponding natural frequencies. A visual representation of this process can
be found in Figure 3.1.
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Figure 3.1: Conceptual scheme for evaluating the ERS.

As previously mentioned, the input to the mechanical system is a random vibration ex-
pressed through its PSD. This PSD can originate from real-world environmental condi-
tions or be synthesized based on specified requirements. Evaluating the PSD from a time
domain signal is beyond the scope of this thesis, but relevant techniques can be found in
references [22, 31]. To characterize the output of the mechanical system, the acceleration
RMS is commonly used, however it represents a mean value and not the largest peak. To
further characterize the output, the acceleration RMS needs to be multiplied by the factor√

2 ln (fT ) (sourced from Lalanne [23]), where T represents the duration of the random
excitation. This way, the ERS is the acceleration which is only exceeded once over the
duration of the random loading. The complete expression for the ERS can be found in
equation 3.1.

ERS(f) = ürms
√

2 ln (fT ) (3.1)

To derive the acceleration RMS of a SDOF system, consider the generic spring-mass-
damper system depicted in Figure 3.2.
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Figure 3.2: Spring-mass-damper system.

3.4.1. Integral of the transmissibility approach

The output acceleration RMS can be evaluated using the following formula:

ürms =

√∫
f_range

|SDOF_TR(f)|2 · APSD(f) df (3.2)

Where SDOF_TR represents the transmissibility of the SDOF system and can be ex-
pressed as:

SDOF_TR(f) =
1 + 2iξ( f

fn
)

1− ( f
fn
)2 + 2iξ( f

fn
)

(3.3)

This method involves evaluating the integral for each natural frequency. Consequently,
when the number of natural frequencies is high to achieve high accuracy, the computa-
tional cost will also be significant.

3.4.2. Lyapunov approach

Alternatively, there is another method to compute the acceleration RMS that is more
computationally efficient. It is based on the Lyapunov equation, written as

Ā σ2
x̄x̄ + σ2

x̄x̄ Ā
T
+ B̄WB̄

T
= 0 (3.4)

Here, Ā and B̄ are the state matrix and input matrix of the state space realization of
the linear time-invariant system, respectively. W is the two-sided PSD of the white noise
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input, and σ2
x̄x̄ is the variance of the state, which is the unknown term of the equation.

Solving the Lyapunov equation allows obtaining the variance of the state when the input
is white noise. The variance of the output is then related to the variance of the state
through Equation 3.5:

σ2
ȳȳ = C̄ σ2

x̄x̄ C̄
T (3.5)

For the specific case under consideration:

Ā =

[
0 1

−ω2
n −2ξωn

]
; B̄ =

[
0

−1

]
; C̄ =

[
−ω2

n −2ξωn

]
(3.6)

The Lyapunov equation can be solved, resulting in:

σ2
xx =

[
W

4ξω3
n

0

0 W
4ξωn

]
(3.7)

The variance of the output is then given by:

σ2
ȳȳ =

W2πf

4ξ
(1 + 4ξ2) (3.8)

This equation can be further expressed as:

σ2
ȳȳ =

W0πf

4ξ
(1 + 4ξ2) (3.9)

Where W0 represents the one-sided PSD associated with the white noise of the base
acceleration. In the case of small damping, the equation can be approximated as:

σ2
ȳȳ ≈

W0πf

4ξ
(3.10)

This is commonly known as the Miles’ equation.

In general, the acceleration in the input is not a white noise, and directly applying the
Lyapunov equation may not be feasible. However, this problem can be addressed by
introducing a shape filter in series with the linear time-invariant system. The purpose
of this shape filter is to account for the non-constant acceleration PSD. It is crucial to
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design the shape filter as a stable system to avoid introducing instability in the overall
system and changing the dynamic of the system. The shape filter acts as an imaginary
block, taking white noise as its input and producing the PSD of the base excitation as its
output. A graphical representation can be found in Figure 3.3.

Hf (jω) Ā , B̄ , C̄

Shape filter SDOF system

W APSD ȳ

Figure 3.3: Block diagram: series connection between the shape filter and SDOF system.

Where Hf (jω) represents the transfer function of the shape filter. The acceleration PSD
in the output of the filter can be evaluated using the following formula:

APSD(ω) = |Hf (jω)|2 W (3.11)

Assuming a unitary PSD of the white noise, the magnitude of the transfer function of the
filter can be obtained as:

|Hf (jω)| =
√
APSD(ω) (3.12)

Once the transfer function of the filter is known, it allows us to derive the state space
representation of the filter and, consequently, the augmented system. The state matrix
and input matrix used in the Lyapunov equation correspond to those associated with the
augmented system.

3.5. Case study and comparison between the method-

ologies

In this section, a comprehensive case study is presented, involving a meticulous com-
parison of two distinct methodologies. The focal point of this analysis revolves around
the qualification levels commonly employed within the space industry for SC units. For
reference, relevant data is included in Table 3.1.
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Table 3.1: SC unit random qualification levels, sourced from [1].

⊥ MOUNTING PLANE (OP)
RANGE (Hz) LEVEL

m ≤ 50 kg

ON EXTERNAL
PANELS

2.5 min
duration

20 ÷ 100
100 ÷ 300
300 ÷ 2000

+3 dB/oct
0.12 g2

Hz

mkg+20kg

mkg+1kg

-5 dB/oct
Global: to be calculated from the above APSD

ON INTERNAL
PANELS

2.5 min
duration

20 ÷ 100
100 ÷ 300
300 ÷ 2000

+3 dB/oct
0.05 g2

Hz

mkg+20kg

mkg+1kg

-5 dB/oct
Global: to be calculated from the above APSD

m > 50 kg -
2.5 min
duration

20 ÷ 110
110 ÷ 700
700 ÷ 2000

+3 dB/oct
0.09 g2

Hz

-5 dB/oct
Global: 11.14 gRMS

Now, let’s dissect the table itself. It provides a detailed breakdown of qualification levels
based on the equipment’s mass (m) and its location, whether it’s positioned on external or
internal panels. Furthermore, it specifies the duration of 2.5 minutes and the frequency
range in Hz for each qualification level. Notably, it also presents the associated level
values, showcasing the sensitivity of the equipment to vibrations with a slope represented
as "+3 dB/oct" for the rising part and "-5 dB/oct" for the declining portion.

Moving forward, the case study involves placing equipment with a mass of 40 kg on
an external panel. The equipment’s vertical axis is assumed to be perpendicular to the
mounting plane. Additionally, a 3-minute duration is considered for the analysis. This
particular duration is a common industry practice, known for its conservative approach.
These assumptions lead to the specification illustrated in Figure 3.4. Notably, within this
specification, the flat value is identified as 0.1756 g2

Hz
.

The study proceeds with a thorough examination of the RMS, calculated using the clas-
sical methodology. Subsequently, this data is employed to compute the ERS. To validate
these findings, a comparison is conducted against the ERS obtained using SinePost, a
widely utilized software tool at Thales Alenia Space. The comparison results are graphi-
cally represented in Figure 3.5.

An interesting revelation emerges from this comparison: the ERS evaluated using the
classical methodology aligns perfectly with the ERS derived from SinePost. This outcome
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aligns with industry norms, as the classical methodology is the preferred approach within
the space industry.

The case study undergoes an intriguing transformation as we delve into the evaluation of
the ERS using the Lyapunov approach. The initial step entails constructing a shape filter,
with filter coefficients obtained through the MATLAB function invfreqs. This function
derives transfer function coefficients based on frequency response data. To complete the
filter’s characterization, both magnitude and phase information are essential, with the
phase estimation relying on the Bode gain-phase relation (this process is further detailed
in Appendix B.1).

The filter’s order is determined through a trial and error approach, resulting in a 12th

order for the denominator and an 11th order for the numerator. The resulting filter is
expressed as the following transfer function.

Hf (s) =
(s+ 8064)(s+ 153.9)(s+ 2.149)

(s+ 1.04e04)(s+ 1538)(s+ 560.5)(s+ 37.8)
×

× (s2 + 969s+ 3.041e06)(s2 + 172.7s+ 6.82e07)

(s2 + 865.8s+ 3.18e06)(s2 + 172.9s+ 6.82e07)
×

× (s2 + 91.53s+ 1.295e08)(s2 + 3.059e04s+ 3.975e09)

(s2 + 91.57s+ 1.295e08)(s2 + 1341s+ 2.945e09)
(3.13)

A comprehensive analysis comparing the square of the magnitude response of the filter
to the APSD specification is depicted in Figure 3.6. This crucial comparison unveils the
correspondence between the filter’s behavior and the specific requirements outlined in the
APSD specification.

Once the transfer function of the filter is determined, the next step involves constructing
the state-space realization of the filter. Subsequently, this allows for the development
of the state-space realization of the entire system, which includes the filter. With this
augmented system in place, the Lyapunov equation is applied to derive essential insights.
Specifically, the equation is employed to obtain the variance of the output acceleration, a
fundamental metric in our analysis. The square root of this variance serves as the RMS
value, which is a pivotal element required for evaluating the ERS.

To validate the results obtained through the Lyapunov approach, a comparative analysis
against SinePost is carried out, and the results are visually presented in Figure 3.7. The
curve derived using the Lyapunov approach demonstrates remarkable alignment with the
benchmark solution. However, it’s worth noting some minor deviations at 100 Hz and 300
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Hz, primarily attributed to the filter’s inherent limitations in accurately approximating
the sharp variations present in the APSD specification.

Furthermore, substantial differences in the curve become apparent at the extremities,
specifically around 20 Hz and after 1400 Hz. This deviation arises from SinePost’s integral,
which accounts for the finite domain of the Acceleration Power Spectral Density (APSD).
This leads to distinct results in these frequency ranges, further demonstrated in Figure
3.8, which quantifies the relative error between the Lyapunov method and the SinePost
solution.

Finally, the computational costs of the two methodologies are assessed. To provide a
comprehensive view of the Lyapunov methodology’s computational efficiency, the costs
are broken down into three scenarios:

• Case A, where the filter and its state-space realization are assumed as given, and
computational costs are evaluated solely for the loop over the natural frequencies.

• Case B, where the coefficients of the filter are considered as given, and the compu-
tational cost accounts for the loop over the natural frequencies of the SDOF system
and the construction of the state-space realization of the filter.

• Case C, where the entire filter is treated as unknown, and the computational cost
encompasses the loop over the natural frequencies of the SDOF system, along with
the design of the filter, including phase estimation and coefficient estimation.

The results, summarized in Table 3.2, demonstrate that the Lyapunov method is more
computationally efficient when looping over natural frequencies and when filter coefficients
are known. However, it becomes slower than the classical methodology when accounting
for the entire filter design process in the computational cost. Thus, the recommendation is
to adopt the Lyapunov methodology if the specification and filter were already given, such
as through a standard or a LVUM. This approach proves advantageous when evaluating
and comparing numerous specifications, offering significant computational efficiency.
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Figure 3.4: APSD specification.

Figure 3.5: ERS: validation of the classical methodology against SinePost.
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Figure 3.6: Comparison between the APSD and the filter response squared.

Figure 3.7: ERS: comparison of the Lyapunov methodology against SinePost.
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Figure 3.8: Relative error between the Lyapunov methodology and SinePost.

Table 3.2: Computational cost of the different methods, normalized with respect to the
classical methodology.

Method Computational Cost

Classical methodology 1

Case A 0.159
Case B 0.260
Case C 1.313
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(FDS)

4.1. Overview

This chapter commences by providing an essential understanding of fatigue behavior in
engineering, emphasizing its practical significance. It introduces the S-N curve, a pivotal
concept in fatigue analysis. Furthermore, the chapter introduces the FDS as a vital metric
for assessing the fatigue damage of structural components.

The chapter proceeds to explore two distinct methodologies for computing the FDS. It
highlights that whether using random vibration data in the time domain or its PSD, both
approaches yield identical results, a fact substantiated by McNeill [24].

Finally, the chapter conducts a comprehensive case study focusing on two APSD spec-
ifications. Here, the FDSs are computed by considering stress proportional to pseudo
velocity (PV), relative displacement (RD), and absolute acceleration (AA). Importantly,
the analysis reveals that the choice of approach for evaluating the FDS, for comparison
purposes, does not significantly impact the resulting conclusions.

4.2. Fatigue behavior

Structures can compromise their integrity during service even when subjected to cyclic
loading, even if stresses remain below the ultimate static strength. This phenomenon is
known as fatigue.

When a mechanical system undergoes a high number of load cycles, it gradually diminishes
its mechanical properties, including its strength. This can lead to structural failure oc-
curring earlier than expected. The fatigue phenomenon is effectively captured by Whöler
curves or S-N curves. An illustrative example of an S-N curve is provided in Figure 4.1,
where Sa signifies the fixed maximum amplitude of the load, and N denotes the num-
ber of cycles until failure. The Basquin law, expressed as SαaN = const, is employed to
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characterize fatigue behavior, where α is dependent on the material’s properties. In the
aerospace realm, both planes and military aircraft experience load cycles during activities
such as taxiing and ground-air-ground maneuvers. Similarly, SC are subjected to load
cycles during transportation, shaker testing, and while within the LV.

Figure 4.1: Example of an S-N curve.

While SRS and ERS are valuable tools for assessing a structure’s peak response to shocks
or mechanical vibrations, they lack insights into the resulting structural damage. The
FDS, an extension of the ERS, quantifies fatigue damage based on the SDOF system’s
frequency. This framework enables the comparison of APSD specifications with varying
durations. The FDS has proven useful in appraising the fatigue potential of different
shakers, as demonstrated in the work by Henderson [16], and in contrasting existing
specifications with new ones.

4.3. How to compute the FDS

The assessment of the FDS varies depending on whether the acceleration is presented
as a time history or represented via its PSD. In either scenario, akin to the approach
used for SRS and ERS, the acceleration is imposed at the base of an array of SDOF
systems. The provided formulation accounts for stress in each SDOF system, and this
stress is proportionate to the PV, as indicated by the researches conducted by Hunt and
Gaberson [14, 17]. However, in alternative studies, stress has been approached in different
ways. For instance, Lalanne [23] has considered stress as proportional to RD, while Di



4| Fatigue Damage Spectrum (FDS) 47

Maggio [12] has linked stress to AA.

4.3.1. Base acceleration expressed as a time history

When the base acceleration is provided as a time history, the process of assessing the FDS
can be condensed into three essential steps:

1. Calculation of PV: Begin by calculating the PV for each individual SDOF system.

2. Cycle Counting: Utilize a dedicated counting cycle algorithm to quantify the
occurrence of cycles.

3. Damage Computation: Apply the Basquin law and the Palmgreen-Miner rule to
compute the extent of damage.

The PV of a SDOF system is determined using a filtering technique, similar to the one
employed for SRS. This technique utilizes a recursive formula, sourced from McNeill [24],
which is provided below:

pv(k) = b0a(k) + b1a(k − 1) + b2a(k − 2)− a1pv(k − 1)− a2pv(k − 2) (4.1)

The coefficients required for this computation can be found in Appendix C.1.

Once the PV is known as a function of time, cycle counting can be conducted. A prevalent
method for this purpose is the Rainflow cycle counting, which is elaborated in [7].

Damage assessment is achieved using the Palmgreen-Miner rule, as depicted in Equation
4.2:

D =
∑
i

ni
Ni

(4.2)

Here, ni represents the measured cycles with stress amplitude Si, and Ni is the number
of cycles with stress amplitude Si causing failure. By leveraging the Basquin law, one can
deduce Ni = cS−b

i . Substituting this into the Palmgreen-Miner rule yields the damage
expression:

D =
kα

c

∑
i

niPV
b
i (4.3)

In this equation, Si is replaced with kPVi, where k is a constant of proportionality.
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4.3.2. Base acceleration expressed through its PSD

When the base acceleration is expressed in terms of its PSD, the estimation of fatigue
damage can be conducted using Equation 4.4, as referenced from [16, 24].

D =
fnT

c
kα

[√
2σpv

]α
Γ
(
1 +

α

2

)
(4.4)

In this equation, Γ signifies the gamma function, where Γ(x) = (x− 1)!, and σpv denotes
the RMS of the PV.

To compute the RMS of the PV, the integral Equation 3.2 can be employed. However, this
time, instead of utilizing the transmissibility which establishes the connection between the
output acceleration and the input acceleration, the PV Transmissibility should be used,
denoted as SDOF_PV_TR, representing the relationship between the output PV and
the input AA.

To derive this relationship, the transmissibility in Equation 3.3 can be manipulated. Begin
by subtracting 1. Then, multiply by − 1

ω2 to acquire the relationship between the output
RD and the input AA. This resultant relationship, termed RD Transmissibility, noted as
SDOF_RD_TR, can be expressed as:

SDOF_RD_TR(f) =
( f
fn
)2

1 + 2iξ f
fn

− ( f
fn
)2

· (− 1

w2
) (4.5)

By multiplying the expression 4.5 by wn, the relationship between the output PV and the
input AA can be derived, termed the PV Transmissibility, denoted as SDOF_PV_TR(f):

SDOF_PV_TR(f) = −
1

2πfn

1 + 2iξ f
fn

− ( f
fn
)2

(4.6)

The RMS can alternatively be determined by utilizing the Lyapunov approach elaborated
upon in Section 3.4. Subsequent to evaluating the RMS, it can be inserted into Equation
4.4 to derive the cumulative damage. Modifying σpv with the RMS of another parameter,
such as AA or RD, will result in the consideration of stress proportionality with those
specific quantities.
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4.4. Case study and comparison

The provided data for the case study are sourced from Irvine [19]. Let’s consider a compo-
nent that has undergone testing with a specific specification A. Now, a new specification
B is introduced, and the goal is to ascertain whether the component needs to be tested
anew with the new specification. The details of specifications A and B are outlined in
Tables 4.1 and 4.2, respectively. An illustrative representation of both specifications is
depicted in Figure 4.2.

Table 4.1: Specification A PSD.

Frequency [Hz] APSD [g2/Hz]

15 0.04

47.26 0.159
300 0.260
1000 1.313
2000 0.118

Global: 25 gRMS, 1 hour/axis

Table 4.2: Specification B PSD.

Frequency [Hz] APSD [g2/Hz]

10 0.04

40 0.04
2000 0.006

Global: 4.6 gRMS, 5 hours/axis

Upon analyzing the graphical representation of both specifications, it’s evident that
APSDA ≥ APSDB. It might seem that the severity of A is consistently greater than
or equal to the severity of B, possibly indicating that retesting isn’t necessary.

To comprehensively compare the severities of the two specifications, the analysis is con-
ducted under three cases:

i Stress proportional to PV

ii Stress proportional to AA

iii Stress proportional to RD
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The corresponding graph depicting these three cases can be observed in Figure 4.3. The
observed trend reveals that, across all three cases, the severities of the two specifications
intersect. This suggests that the component should indeed be subjected to testing with
the new specification (B). This phenomenon can be explained by recognizing that APSD
is a density measure, and as such, it shouldn’t be employed for direct comparison between
different loads. Furthermore, it’s noteworthy that the crossing frequency appears similar
across the three cases.

It’s important to clarify that while the crossing frequency seems the same, it’s not precisely
so. Specifically, the crossing frequency for stress proportional to PV and RD is 71.6 Hz,
while for stress proportional to AA, it’s 71.5 Hz. This discrepancy can be understood
in light of the fact that PV and RD both pertain to the relative motion of the SDOF,
whereas AA relates to the AA of the mass. The proximity of the crossing frequency in the
AA case to the other cases can be attributed to the relatively much greater magnitude of
the mass’s response compared to the base motion, which is assumed negligible.

In summary, the choice of approach for evaluating the FDS for comparison purposes
doesn’t significantly impact the conclusions drawn, as they all lead to the same conclusion.
This is substantiated in studies like Grillo [15] and Minderhoud [25], which demonstrate
that different approaches yield consistent results when synthesizing the specification using
FDS.
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Figure 4.2: PSD specifications.

Figure 4.3: Comparison of the comparison between FDS evaluated considering the stress
proportional to PV, RD and AA.
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mechanical severity comparison

5.1. Overview

This chapter delves into the crucial concept of assessing mechanical severity in scenarios
involving 6DOF enforced accelerations. The narrative begins by elucidating the necessity
of adopting a 6DOF approach when calculating and comparing severities arising from
different loads. This approach extends beyond the simplified SDOF framework, providing
a more comprehensive perspective.

The journey commences with the development of a novel criterion explicitly designed
for 6DOF systems. This criterion hinges on the forces at the IF and their pivotal role
in characterizing the severity of 6DOF enforced accelerations. It recognizes that, unlike
SDOF cases, 6DOF systems demand a more intricate framework that accounts for both
translational and rotational dynamics.

In the subsequent section, the intricacies of evaluating IF forces are explored. This process
is pivotal for understanding how forces manifest in 6DOF systems and their contribution
to overall mechanical severity. Various methodologies and techniques are presented to
enable a robust assessment of forces at the interface.

To solidify the concepts introduced in this chapter, a comprehensive case study involving
a SC mounted on a LV is presented. This real-world scenario embodies the complexities
of 6DOF systems subjected to dynamic loading conditions. The force-based approach for
mechanical severity comparison is showcased, demonstrating its practical applicability.

In the final segment of this chapter, the force-based approach is validated by comparing
it against results obtained from a Finite Element (FE) analysis performed with MSC
Nastran. This validation process ensures the reliability and accuracy of the proposed
methodology in practical engineering scenarios.
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5.2. Need of a 6DOF approach

As previously discussed in Section 2.6, structural qualification dynamic tests for the low-
frequency range are typically conducted on monoaxial shakers, with each axis tested
individually using a sine sweep. However, real-life operational loads are often multiaxial
in nature. Take, for instance, the load at the LV-SC IF, which exhibits multiaxial char-
acteristics. When qualification tests are performed on monoaxial shakers, they tend to
employ significantly more conservative qualification levels for each axis compared to the
severity calculated from the actual operative load projected along that same axis. This
conservative approach compensates for the fact that the testing is conducted one axis at
a time.

While a 6DOF shaker could theoretically replicate the 6DOF qualification profile by
applying a Qualification Factor of Safety (FoS) to the operative load profile, practical
limitations prevent exact replication. Consequently, a method is required to evaluate the
severities of both the qualification profile and the operative load profile. Additionally, a
criterion for comparison is needed to ensure that the qualification load’s severity exceeds
that associated with the operative load.

The existing criterion states that if the severity of load A is greater than that of load B,
the risk of structural failure when subjected to load A is higher. However, it’s important
to note that this criterion primarily relies on SDOF systems for evaluating load severity.
This criterion is particularly effective when the internal structural mode shapes exhibit
minimal coupling. In simpler terms, it works best when the modal frequencies of the
entire structure and its individual sub-components do not closely coincide.

5.3. Criterion for comparing different severities

In the realm of vibration analysis, comparing different severities is a fundamental aspect
of assessing structural responses. Traditionally, in the SDOF scenario, the severity of a
base-enforced acceleration is quantified by the maximum absolute acceleration experienced
by the SDOF system’s mass. This acceleration effectively represents the internal forces
acting on the system.

However, the situation becomes more intricate when transitioning to the context of 6DOF
systems. In this scenario, the absolute acceleration can accurately represent translational
forces but falls short in capturing moments since these depend on the structure’s inertia.
Consequently, when evaluating the severity of a 6DOF enforced acceleration, the rigid
body mass matrix comes into play. The traditional criterion for severity comparison must
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be reformulated to account for these nuanced considerations, emphasizing the forces at
the IF rather than the absolute acceleration of the mass.

To formulate an appropriate criterion, two distinct cases are proposed. First, scenarios
where base rotational accelerations can be considered negligible compared to translational
ones are examined. In such cases, the criterion can be expressed as follows:

For two 3DOF base-enforced translational accelerations, denoted as A and B, the me-
chanical severity of A surpasses that of B if the following conditions are met:

|FA
x (f̄)|max > |FB

x (f̄)|max
|FA
y (f̄)|max > |FB

y (f̄)|max
|FA
z (f̄)|max > |FB

z (f̄)|max

(5.1)

(5.2)

(5.3)

Here, F represents the forces at the interface, and f̄ denotes the frequencies considered.

This criterion reveals an interesting analogy to the SDOF severity criterion. In situations
where rotations at the base are negligible, it’s akin to considering an SDOF system for
each of the three translational directions. In such cases, the criterion can potentially be
formulated in terms of accelerations instead of forces, with the mass acting as the only
scaling factor.

Conversely, when rotations at the base are not negligible, and the base-enforced acceler-
ation exhibits 6DOFs, the criterion evolves to accommodate these complexities. For two
6DOF base-enforced translational accelerations, A and B, the mechanical severity of A
outweighs that of B if the following conditions are met:

|FA
x (f)|max > |FB

x (f)|max
|FA
y (f)|max > |FB

y (f)|max
|FA
z (f)|max > |FB

z (f)|max
|MA

x (f)|max > |MB
x (f)|max

|MA
y (f)|max > |MB

y (f)|max
|MA

z (f)|max > |MB
z (f)|max

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

Once again, F and M represent the forces and the moments at the interface, respectively;
instead f indicates the vector of the first natural frequencies for each DOF of the system.

Further customizations of the above conditions could be put in place in specific cases,
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for example comparing separately the maximum and the minimum values instead of con-
sidering the absolute ones, which could be useful to be consistent with respect to some
buckling phenomena or, more broadly, to account for nonlinearities.

This refined criterion accounts for the multidimensional nature of 6DOF base-enforced
accelerations, offering a robust framework for assessing and comparing structural severities
in complex vibration scenarios.

5.4. Formulation of the approach

Consider a mass that can freely rotate and translate, exhibiting 6 degrees of freedom, en-
compassing three translational and three rotational movements. The governing equation
for this system, known as the Rigid Body Motion (RBM) equation, is expressed as:

F IN =M ü (5.10)

In this equation, F IN represents the vector of inertial forces and moments, M denotes
the mass matrix, and ü signifies the acceleration vector.

Expanding Equation 5.10 reveals:



Fx

Fy

Fz

Mx

My

Mz


IN

=



m 0 0 0 mgz −mgy
0 m 0 −mgz 0 mgx

0 0 m mgy −mgx 0

0 −mgz mgy Ixx −Ixy −Ixz
mgz 0 −mgx −Ixy Iyy −Iyz
−mgy mgx 0 −Ixz −Iyz Izz


=



ẍ

ÿ

z̈

θ̈

ϕ̈

ψ̈


(5.11)

Here, m represents the mass of the structure, while gi denotes the coordinates of the
center of mass of the structure with respect to the base IF, and Iij signifies the moments
of inertia of the structure concerning the base IF. The rotations around the x, y, and z

axes are represented as θ, ϕ, and ψ, respectively.

This mass is connected to a base through 6 springs and 6 dampers, each corresponding
to a DOF. The forces pertaining to elasticity and damping concerning a fixed base can
be defined as:

FEL = Ku (5.12)
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Or, in an expanded form:



Fx

Fy

Fz

Mx

My

Mz


EL

=



kxx 0 0 0 0 0

0 kyy 0 0 0 0

0 0 kzz 0 0 0

0 0 0 kθθ 0 0

0 0 0 0 kϕϕ 0

0 0 0 0 0 kψψ


=



x

y

z

θ

ϕ

ψ


(5.13)

and

FDMP = C u̇ (5.14)

or in an expanded form:



Fx

Fy

Fz

Mx

My

Mz


DMP

=



cxx cxy cxz cxθ cxϕ cxψ

cyx cyy cyz cyθ cyϕ cyψ

czx czy czz czθ czϕ czψ

cθx cθy cθz cθθ cθϕ cθψ

cϕx cϕy cϕz cϕθ cϕϕ cϕψ

cψx cψy cψz cψθ cψϕ cψψ


=



ẋ

ẏ

ż

θ̇

ϕ̇

ψ̇


(5.15)

The equation of motion for the entire system can be expressed as:

M ü+ C ṙ +Kr = 0 (5.16)

Here, r = u− b represents the relative displacement between the mass and the base. This
equation can be reformulated as follows:

M r̈ + C ṙ +Kr = −Mb (5.17)

To solve this equation, the modal approach can be employed. Assuming small damping,
the natural frequencies and mode shapes of the mass structure can be obtained by solving
the following eigenvalue problem:
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(
K − ω2

iM
)
Ri = 0 (5.18)

Once the eigenvector matrix R is available, the displacement vector can be expressed as
r = Rrg, where rg represents the vector of generalized displacements. Substituting this
expression into Equation 5.17, we derive:

MRr̈g + CRṙg +KRrg = −Mb (5.19)

By projecting this equation onto the modal space with a premultiplication by RT

g
, we

obtain:

M
g
r̈g + C

g
ṙg +K

g
rg = −RTMb (5.20)

In this equation, M
g
= RTMR, C

g
= RT CR, and K

g
= RTKR. Due to the orthogonal-

ity property of R, matrices M
g
, C

g
, and K

g
are diagonal, leading to a decoupled system.

The state-space form of the system can be written similarly to Subsection 2.7.1, and it
can be solved using the MATLAB function lsim.

Once rg and ṙg are obtained, r and ṙ can be found using the eigenvectors matrix R, and
the force at the base IF can be computed as follows:

F IF = Kr + C ṙ (5.21)

Matrices K and M are required to solve the generalized eigenvalue problem. M can be
extracted from the 3D model of the SC, while an approach for obtaining K is presented
here. A FE modal analysis can be performed to determine the first natural frequency of
the SC for each degree of freedom. These frequencies can be used to compute an initial
guess for the diagonal values of the matrix K, which can be obtained through Equation
5.22:

kguess = diag(M)⊙ (2πf)2 (5.22)

In this equation, kguess represents the initial guess vector for the diagonal of K, and f

is the vector containing the natural frequencies obtained from the FE modal analysis.
Subsequently, the eigenvalue problem can be solved to obtain the natural frequencies
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and mode shapes for all 6 DOFs. The sum of the squares of the differences between the
obtained natural frequencies and the known ones can be minimized using the MATLAB
function lsqnonlin.

5.5. Approximation made and applicability domain

of the approach

The approach illustrated in Section 5.3 aims at approximating the base IF forces and
moments occurring in case of MDOF enforced dynamic excitation to the base of the
structure. The solution is found by referring to a fictitious system having only six main
global modes (three translational and three rotational), considered with the corresponding
damping. Moreover, the rigid body mass matrix is directly used as the relation between
base acceleration and rotations and IF forces and moments. The above fictitious system
provides a simplified approximation of the global behavior of the real one and, as such,
should not be suitable to estimate the magnitude of the structure base IF forces and
moments. Conversely, it can be more reliable in order to perform the severity comparison
of different MDOF IF loads, just in terms of relative quantities. For example, this comes
to be quite useful when assessing if a shaker MDOF qualification test run is more severe
than the expected maximal operative loads, considered with appropriate margins. The
advantages of the proposed methodology is that no dedicated transient dynamic analysis
involving the entire structure is required to make the MDOF severity comparison, while
only its rigid body mass matrix and the main six natural frequencies are required. The
same approach could be exploited to MDOF random and fatigue damage domains.

5.6. Case study and comparative analysis: MATLAB

vs. MSC Nastran

To validate the approach and explore its real-world implications, a MATLAB code was
implemented for evaluating the severities of a 6DOF base-enforced acceleration and com-
paring them, following the methodology outlined in Section 5.5.

The case study revolves around a SC mounted on a LV, with the load at the SC base
transmitted through an adapter. The provided rigid body mass matrix is as follows:
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M =



9.787e+02 2.193e−17 −3.375e−17 −6.904e−17 9.120e+02 −7.788e−01

2.193e−17 9.787e+02 −1.862e−16 −9.120e+02 4.863e−16 9.825e+00

−3.375e−17 −1.862e−16 9.787e+02 7.788e−01 −9.825e+00 −1.048e−16

−6.904e−17 −9.120e+02 7.788e−01 1.792e+03 −1.835e+01 −3.993e+00

9.120e+02 4.863e−16 −9.825e+00 −1.835e+01 1.785e+03 −3.674e+00

−7.788e−01 9.825e+00 −1.048e−16 −3.993e+00 −3.674e+00 6.834e+02


(5.23)

To calculate the first natural frequencies for each DOF, a FE modal analysis was per-
formed. These frequencies were organized as:

fFEM =
{
1e+05 1e+05 63.791 22.889 22.726 54.614

}T
(5.24)

These frequencies corresponded to DOFs ordered as
{
x y z θ ϕ ψ

}
. Notably, fx

and fy were set to 1e+05 due to the stiff connection between the SC and the adapter
through an RBE2 element.

The base-enforced acceleration for the study was derived from a LV-SC CLA. Two key
scenarios were considered:

1. 3DOF Case: Only the translational components of the base acceleration were
considered, representing tests performed with shakers on one axis at a time.

2. 6DOF Case: All components of the base acceleration were considered, representing
a comprehensive scenario similar to a full CLA.

In both cases, the forces and moments at the IF were evaluated using both MATLAB and
a FE analysis performed in MSC Nastran.

Figure 5.1 presents the results obtained from the analyses, focusing on Fz, Mx and My

as they represent the most significant and severe loading conditions. In both analyses, it
was observed that the forces at the IF for the 3DOF case exceeded those for the 6DOF
case. This finding indicates that when conducting SC tests on a shaker axis by axis, the
severity of the load is not representative of the true 6DOF scenario. Consequently, the
SC may be subjected to overtesting. In this example, this does not hold true for the force
Fz because its characteristics are unique, stemming from the structure’s rigid body mass
matrix. The associated terms for other translations and rotations are several orders of
magnitude lower than that for translation in the z direction.
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The validation of the force severity approach is critical. While the results for Fz and Mx

align closely with those obtained from MSC Nastran, there is a notable discrepancy in
the case of My. This discrepancy can be attributed to the underlying assumptions of the
MATLAB-based force severity approach. In this approach, the dynamics of the SC are
approximated, as discussed in Subsection 5.5, using only the first natural frequency in
each axis. In contrast, by inspecting the MSC Nastran analysis, it is evident that the Tx
component of the enforced acceleration, responsible for exciting My, has a frequency that
corresponds to the second mode, which is at approximately 40,Hz.

The severity comparison is performed through the ratio between the force or moment
calculated for the load case 1 and the force or moment calculated for the load case 2.
As a criterion, positive and negative values are treated separately and the maximum of
the two ratios is thus retained. In Figure 5.2, each bar provides the result of the severity
comparison performed. It becomes evident that the force severity comparison approach
provides a good approximation of the real severity comparison. Consequently, the force
severity approach serves as a valuable tool for comparing different severities, as the result
of the comparison does not depend on the magnitude of the forces at the IF. Additionally,
it offers the advantage of not necessitating a full transient FE analysis, as it only requires
the SC’s rigid body mass matrix and its first natural frequencies.
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Figure 5.1: IF forces for the 3DOF and 6DOF cases evaluated through MATLAB and
MSC Nastran.

Figure 5.2: Histogram representing the largest ratios of the IF forces for the 3DOF and
6DOF cases.
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developments

In the course of this thesis, various facets of prevailing methodologies for assessing and con-
trasting diverse mechanical load severities have undergone thorough examination, leading
to the proposal of several enhancements.

For the ERS, a convenient approach for evaluating the root mean square has been intro-
duced. This alternative methodology has the potential to reduce computational costs in
certain scenarios, making it a promising addition to the toolbox of severity assessment
techniques.

Regarding the FDS, an essential observation emerged. The evaluation of the FDS for
comparison purposes is fundamentally independent of the specific stress quantity chosen
for proportionality. This insight highlights the versatility and robustness of the FDS,
underlining its utility in assessing fatigue-related severities across various contexts.

The most compelling findings, however, center around the SRS. In-depth exploration of
a 2DOF system, as detailed in Section 2.7, has demonstrated a critical limitation in the
prevailing metrics for evaluating the severity of mechanical loads in terms of local accel-
erations of the structures considered. These metrics, primarily founded on the responses
of SDOF systems, tend to lose accuracy as systems grow more complex. This finding,
coupled with the expanding body of research on 6DOF shakers, provides a compelling
rationale for a more rigorous and consistent discussion about the limitations of the me-
chanical load severity (which should not be intended independently of the structure) and
give the reason for the development of a more precise methodology for mechanical sever-
ity comparison, as delineated in Chapter 5. The proposed methodology has shown the
capability to approximate real-world scenarios of MDOF base excitation, as evidenced by
its performance when compared to Finite Element (FE) results from an actual aerospace
case.

Further research could follow this work. More specifically, opportunities abound for val-
idating the proposed approach across additional diverse case studies, including random
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vibrations and fatigue evaluation when 6DOF loads are addressed to.

This research represents a step toward bridging the gap between theory and practice in
the realm of mechanical load severity comparison, offering a starting point upon which
future advancements can be built.
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A.1. Coefficients of the Craig’s recurrence formulas

A =
1

ω2
nωddt

{
e−β dt

[(
ω2
d − β2

ω2
n

− βdt

)
sinωddt−

(
2ωdβ

ω2
n

+ ωddt

)
cosωddt

]
+

2βωd
ω2
n

}
B =

1

ω2
nωddt

[
e−β dt

(
−ω

2
d − β2

ω2
n

sinωddt+
2ωdβ

ω2
n

cosωddt

)
+ ωddt−

2βωd
ω2
n

]
C = e−β dt

(
cosωddt+

β

ωd
sinωddt

)
D =

1

ωd
e−β dt sinωddt

A′ =
1

ω2
nωddt

{
e−β dt

[(
β + ω2

ndt
)
sinωddt+ ωd cosωddt

]
− ωd

}
B′ =

1

ω2
nωddt

[
−e−β dt (β sinωddt+ ωd cosωddt) + ωd

]
C ′ = −ω

2
n

ωd
e−β dt sinωddt

D′ = e−β dt
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cosωddt−

β
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sinωddt

)

where β = ξωn.
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A.2. Coefficients of the Smallwood’s recursive for-

mula

a1 = −2C ; a2 = E2

b0 = 1− S ′ ; b1 = 2(S ′ − C) ; b2 = E2 − S ′

ωd = ωn
√

1− ξ2

E = e−ξωndt ; K = ωddt ; C = E cosK ; S = E sinK ; S ′ =
S

K
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B.1. Bode gain-phase relation

The MATLAB function invfreqs plays a pivotal role in our analysis, and it demands access
to both the magnitude and phase information of the frequency response of the shape filter
to derive its coefficients. We’ve already established how to obtain the magnitude of the
response from the APSD using Equation B.1.

|Hf (jω)| =
√
APSD(ω) (B.1)

However, a missing piece of the puzzle is the phase information. To bridge this gap, we
employ the Bode gain-phase relation, a fundamental relationship that links the natural
logarithm of the magnitude of the frequency response to the phase angle of the frequency
response. This relation is expressed as follows:

∠ [H(jω)] = −H{log (|H(jω)|)} (B.2)

Here, ∠ [H(jω)] represents the phase angle of the frequency response at a given frequency
ω. The term H denotes the Hilbert transform, a mathematical operation that plays a
pivotal role in extracting phase information from the magnitude response.

The Hilbert transform is mathematically defined as:

H(x(t)) =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (B.3)

This operation effectively extracts the phase information required to complete the fre-
quency response characterization, enabling us to utilize the invfreqs function and derive
the coefficients of the shape filter.
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C.1. Coefficients of the pseudo velocity recursive for-

mula

a0 = 1 ; a1 = −2C ; a2 = E2

b0 =
1

Tsω2
n

[
2ξ(C − 1) +

(2ξ2 − 1)√
1− ξ2

+ Tsωn

]

b1 =
1

Tsω2
n

[
−2CTs + 2ξ(1− E2)− 2(2ξ2 − 1)S√

(1− ξ2

]

b2 =
1

Tsω2
n

[
E2(Tsωn + 2ξ)− 2ξC − (2ξ2 − 1)S√

1− ξ2

]
E = e−ξωnt ; K = Tsωd ; C = E cosK ; S = E sinK

wd = wn
√

1− ξ2
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