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Abstract

Floods are disastrous natural severe weather events that cause large damage worldwide each year, induc-
ing loss of human lives, destruction of infrastructure and economical losses. Consequently, forecasting
this type of events through hydrological modelling is of great importance from a civil protection point
of view since it allows institutions to reduce the generated hydrological risk by means of early warning
systems. Nevertheless, ungauged basins where there is lack of direct measurements of meteorological in-
formation to force the models is one encountered problematic a�ecting the forecasts. In the present study
is evaluated the possibility of using meteorological predictions coming from MOLOCH model to force
the FEST-WB hydrological model to perform discharge forecasting. This, under the hypothesis that the
committed error of the prediction is negligible when using forecasts up to 24 h. The study is done in a
well-known area such as the Seveso-Olona-Lambro river basins located in northern Italy. Thus, the main
hydro-meteorological variables are analysed by carrying out a comparison between spatialized observed
meteorological data coming from ARPA and meteonetwork weather stations and meteorological pre-
dictions. Moreover, a sensitivity analysis following the one-factor-at-time methodology is accomplished
with the aim of de�ning which forcing mostly a�ects �owrate forecasts. It is shown that discreet corre-
spondence of information with an underestimation trend � particularly for large values - is veri�ed for
discharge at hourly and daily scale, and that underestimation of precipitation - especially in summer -
and overestimation of solar radiation are the main reasons of this. Hence, to improve the predictability
when coupling the two models, some actions should be evaluated to enhance the correspondence of the
meteorological forcings.
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Riassunto

Le inondazioni sono disastri naturali che causano una grande quantità di danni intorno tutto il mondo
ogni anno, inducendo perdite di vite umane, distruzione dell'infrastruttura e perdite economiche. Di
conseguenza, la previsione di questi tipi di eventi attraverso i modelli idrologici è di estrema importanza
da un punto di vista della protezione civile poiché permette alle istituzioni di ridurre il rischio idrologico
creato con l'utilizzo dei sistemi di allertamento. Tuttavia, i cosiddetti ungauged basins, cioè, i bacini
idrogra�ci ove esiste una mancanza di misure dirette d'informazione meteorologica per l'inizializzazione
dei modelli, è una problematica che in�uisce le previsioni. Nel presente studio viene valutata la possibilità
di usare le previsioni meteorologiche ottenute tramite il modello MOLOCH per inizializzare il modello
idrologico FEST-WB e così realizzare le previsioni di portata. Questo, ipotizzando che l'errore commesso
nella previsione di portata risulti essere trascurabile quando vengono utilizzate previsioni meteorologiche
�no alle prime 24 ore. Lo studio viene sviluppato in un'area ben conosciuta come i bacini dei �umi
Seveso-Olona-Lambro situati nel nord d'Italia. In tal modo, le principali variabili idro-meteorologiche
vengono analizzate svolgendo un confronto fra l'informazione meteorologica osservata e spazializzata,
ottenuta tramite le stazioni meteo di ARPA e meteonetwork, e quella prevista. Inoltre, viene eseguita
un'analisi di sensitività con l'utilizzo della metodologia �un fattore alla volta� (one-factor-at-time) con lo
scopo di de�nire quale delle forzanti in�uisce di più la previsione di portata. Viene evidenziato il fatto
che per le portate a scale oraria e giornaliera esiste una corrispondenza dell'informazione discreta con
una tendenza alla sottostima, in particolare per i valori elevati, e che la sottostima della precipitazione
(soprattutto in estate) e la sovrastima della radiazione solare sono le ragioni principali di questo com-
portamento. Pertanto, per migliorare la prevedibilità quando vengono accoppiati i modelli sopra citati,
azioni aggiuntive devono essere valutate per innalzare la corrispondenza delle forzanti meteorologiche.
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Resumen

Las inundaciones son desastres naturales que causan una gran cantidad de daño alrededor del mundo
cada año, induciendo pérdidas de vidas humanas, destrucción de infraestructura y pérdidas económicas.
En consecuencia, la predicción de este tipo de eventos a través de modelos hidrológicos es de suma
importancia desde el punto de vista de la protección civil ya que permite a las instituciones reducir el
riesgo hidrológico creado, por medio de sistemas de alerta temprana. Sin embargo, cuencas hidrográ�cas
sin instrumentación en las que existe una falta de mediciones directas de información meteorológica para
inicializar los modelos, es una problemática encontrada que afecta a las predicciones. En el presente
estudio se evalúa la posibilidad de usar predicciones meteorológicas obtenidas con el modelo MOLOCH
para inicializar el modelo hidrológico FEST-WB y así realizar predicciones de caudal. Lo anterior se
realiza hipotetizando que el error cometido en la predicción de caudal resulta ser insigni�cante cuando se
utilizan predicciones meteorológicas hasta las primeras 24 h. El estudio se realiza en un área ampliamente
estudiada como la cuenca de los ríos Seveso-Olona-Lambro localizados en el norte de Italia. De este
modo, las principales variables hidro-meteorológicas son analizadas llevando a cabo una comparación
entre información meteorológica observada y espacializada, obtenida a partir de las estaciones climáticas
de ARPA y meteonetwork, y las predicciones meteorológicas. Adicionalmente, se efectúa un análisis
de sensibilidad con la metodología �un factor a la vez� (one-factor-at-time) con el objetivo de de�nir
cuál de las forzantes afecta mayoritariamente las predicciones de caudal. Se evidencia que para los
caudales a escalas horaria y diaria existe una correspondencia de información discreta con una tendencia
a la subestimación, particularmente para valores elevados, y que, la subestimación de la precipitación
(especialmente en verano) y la sobreestimación de la radiación solar son las razones principales de este
comportamiento. Por consiguiente, para mejorar la predictibilidad cuando se acoplan los dos modelos
mencionados, acciones adicionales deben ser evaluadas para realzar la correspondencia de las forzantes
meteorológicas.
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Chapter 1

Introduction

1.1 State of the art

Floods are the most common and disastrous natural severe weather events, they induce large damage
in population, infrastructure, and generate economic losses. In 2020 it has been estimated that 1.47
billion people are exposed to intense �ood risk, being one third in poverty conditions [1]. Moreover,
from 1970 to 2012, the 79 % of the weather, climate and water-related disasters worldwide were storms
and �oods, causing around 1 million deaths and approximately US$ 2 trillion of economic losses [2].
Hence, forecasting �oods is of great interest since � under the civil protection framework � it allows us
to prevent the risk in a passive way, for example, with early alert systems. Consequently, hydrological
models forced with observed meteorological variables have been a tool to properly monitor discharges in
rivers where high risk of �ooding is present.

Nevertheless, problems a�ecting discharge prediction arise due to di�erent factors, for instance, lack
of observed hydro-meteorological information because of poor network of weather and hydrological sta-
tions, or short concentration times due to the characteristics of the basin � especially mountainous ones.
Therefore, coupling meteorological and hydrological models or using additional ways � besides direct
measurements � to monitor the meteorological variables that in�uence the discharge forecast, are topics
in which interest has been put on. For instance, in [3] were coupled a numerical weather prediction model
with a hydrological model to perform discharge forecasts. It was shown that the system was able to re-
produce hydrological processes and the �ood peaks during the calibration and validation period. It was
also noticed that errors in precipitation were noticeable for large thresholds of discharge, whilst for small
precipitations events the system had better performance. Similar procedures were performed by [4] and
[5] where di�erent �ood events were analysed when initializing a hydrological model with deterministic
and ensemble weather forecasts. Furthermore, information coming from multiple sources has also been
used. For example, in [6] a dataset given by multiple numerical weather predictions (NWPs) coming
from a global weather prediction system were used for �ood warning in a catchment. It was shown that
uncertainties propagate in the forecast chain and that NWPs did not properly represent spatial vari-
ability of precipitation. Additionally, a more recent example is given by [7] where �ood forecasting was
made by coupling a distributed hydrological model with a global ensemble precipitation data � which is
a project that collects forecast products from major forecast centres in the world.

With this, it is evident that further problems concerning the meteorological forcings of the hydrological
models exist, for instance, the presence of phenomena di�cult to forecast such as convective precipita-
tions which a�ect the discharge prediction, the existence of �ood events at the sub-daily scale [8], the
uncertainty propagation through the forecasting chain [9] [10], or the lack of information in the studied
areas. Consequently, their study has been of great importance to improve the performance on discharge
forecasts. Thus, in studies such as [11] it is said that the lack of rainfall and discharge information are
factors in�uencing the �ood forecasting. It was evaluated the in�uence of rainfall errors � in terms of
volume and duration - on the performance of a model calibrated with limited discharge data, and it was
shown that calibrating the model with a limited number of discharge events is useful to perform �ood
forecast with uncertain rainfall data. Moreover, volume rainfall errors a�ect the most the performance of
the model, and large volume and duration errors present at the same time create a compensation leading
to a good �ood prediction.
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In respect of the last factor in�uencing the discharge forecasts, it is, the lack of hydro-meteorological
information, studies such as [12] assessed the issue of de�ning the amount of discharge measurements
needed to properly parametrize a model providing discharges. On the other hand, usefulness of other
type of precipitation data such as remote measurements were evaluated in [13] from a water resources
perspective in which it was assessed the suitability of common precipitation products over two scarce,
complex mountainous terrains. Similar procedures were followed in [14] where di�erent precipitation
satellite products were used to force a physically-based distributed hydrological model, and it was found
that di�erent products have diverse qualities in terms of statistical indexes. Furthermore, other types of
methodologies such as regionalization are used to perform discharge forecasts in ungauged basins. For
instance, in [15] di�erent regionalization (of parameters involved in the hydrological modelling) method-
ologies are tested in a catchment situated in Norway. Finally, more recent studies such as [16] evaluated
the performance of di�erent reanalysis datasets, satellite product, and the Weather Research Forecasting
(WRF) to represent heavy rainfall over a region in Himalaya. This was done by comparing the datasets
with rain gauge data. Moreover, this information was used to initialize a hydrological model to assess
their ability to reproduce �oods in the area. It was found that the reanalyses perform unsatisfactorily,
that the variability in rainfall was evidenced in the modelled �oods and, the output obtained from WRF
model or TMPA (Multisatellite Precipitation Analysis) datasets could be used in the future to perform
�ood forecasting in early detection and warning.

Finally, making a further step and considering the above-described problematics, especially the one
concerning the in�uence of meteorological uncertainties into the hydrological simulations, some proce-
dures have been tested to perform a pre-processing or bias correction to the input data of the hydrological
models. For example, in the already mentioned study [9] location correction and bias adjustment of rain-
fall data was done by using a �best match� approach and applying a multiplicative factor, respectively.
In [17] general circulation model (GCM) daily rainfall simulations were transformed by applying a bias-
correction method which consists of two steps: frequency correction, and intensity correction. Moreover,
a multiplicative shift bias correction of the mean monthly values of rainfall was performed for compari-
son with the last methods. Additionally, to account for uncertainty in rainfall predictions due to model
errors, in [18] three di�erent multi-model post-processing methods of deterministic precipitation in order
to estimate the forecast rainfall probabilities were evaluated. In [19] the quality of precipitation and
stream�ow forecasts were assessed when applying bias-correction methods in the precipitation data at
seasonal scale. Furthermore, concerning meteorological variables, in [20] - under the framework of grass
growth management - it was performed a veri�cation of how accurate the European Centre for Medium-
Range Weather Forecasts (ECMWF) deterministic forecasts were. Di�erent variables were considered:
air and soil temperature and rainfall. Systematic biases were observed and corrected-bias methodologies
(seven methods) were applied in order to evaluate the improvement of the forecasts by re-assessing the
accuracy. Finally, in [21] a bias-correction method for precipitation considering orographic characteristics
was proposed. Additionally, to evaluate the robustness of the method, a cross-validation approach was
followed.
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1.2 Aims of the study

It has been shown that when performing discharge forecasts some problems a�ecting the results arise
due to di�erent factors, for instance, lack of direct meteorological information, di�culty in predicting
some types of phenomena, uncertainty propagation through the forecasting chain, the characteristics of
the catchment, the temporal scales at which the �oods may happen, and so on. In the present study is
of particular interest the problem related to the lack of hydro-meteorological information in river basins
when there exists the necessity of performing discharge forecasting. Consequently, and considering the
possibility of couple meteorological and hydrological models to predict �owrates, the following question
is asked: are direct measurements of meteorological variables necessary to perform �ood forecasts? Or
is it possible to use only meteorological forecasts as if they were observed data? And to this concern
it is made the hypothesis that the committed error in the discharge forecast is negligible when using
meteorological forecasts up to 24 hours so applicable �owrate prediction can be done in data scarce or
ungauged river basins.

Thus, following the state of the art above described, it becomes clear that some actions can be car-
ried out with the purpose of trying to overcome this di�culty and improve the discharge forecasts.
Particularly, one possible method could consider the following: a treatment of the available observed
data with the scope of homogenize it, the analysis of the forecasted information, the identi�cation of the
atmospheric variables that mostly a�ect the �owrate forecast, and �nally, the assessment of possible bias
correction methodologies applied in the already identi�ed variables. In the present study it is tried to
understand a �rst part of the problem consisting in the �rst three steps. Hence, three objectives are set:
�rst, homogenize and analyse observed hydro-meteorological information over the Seveso-Olona-Lambro
(SOL) river basins located in northern Italy; second, analyse the main hydro-meteorological variables, in
the area of study, between observed weather data coming from ARPA Lombardia (Lombardy Regional
Environmental Protection Agency) and meteonetwork (meteorological network) weather stations, and
MOLOCH meteorological model forecasts; and third, evaluate how much can we trust in meteorological
MOLOCH forecasts when used as input of FEST-WB hydrological model for discharge forecasting in
ungauged basins.

The present study is structured in the following way. First, the area of study description where the
main characteristics of the SOL river basins are given. Second, materials and methods, where the
meteorological and hydrological models, the observed and forecasted meteorological variables and its
treatment, the coupling strategy of both models, and the statistical analysis to be done are described.
Third, the results and discussion, in which a climatological characterization derived from the observed
data treatment, the comparison between observed and forecasted hydro-meteorological variables, and a
sensitivity analysis are presented. And �nally, the conclusions of the study.
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Chapter 2

Area of study

The area of interest in the present study contains the basins of Olona, Seveso and Lambro rivers, located
in the north of Milano city, in Lombardy region of Italy.

Figure 2.1: General location of the area of study

Within this ensemble of basins all water courses have a consolidated con�guration with a discharge
capacity progressively inferior from up to downstream, and all of them converge in the urban zone of
Milano. The principal water courses growing from the pre-Alps belt from east to west are: Vettabbia,
Redefossi, Lambro Meridionale, Olona, Bozzente, Lura, Guisa, Nirone, Pudiga, Garboger, Seveso, and
Lambro. Additionally, in this region are also present the North-West over�ow channel (Canale scolma-
tore di Nort-Ovest � CSNO) and the Olona deviation, both playing a role in the protection system of
Milano [22] [23] [24].

Concerning the di�erent characteristics of the studied area, it is important to notice that the Olona-
Seveso-Lambro basins are localized in Milano province and, consequently, in the Pianura Padana (Po
Valley). For instance, it is a rich-water territory sited in the threshold between the high and the low
Pianura Padana, characterized by important natural springs. From a lithological viewpoint, the north
zone is constituted by coarse materials - such as gravels � covered by an acidic clay soil not suitable
for crops, while in the central and south areas �ner materials are present � such as sands and silts.
Additionally, one relevant characteristic is that this is one of the most urbanized zones of Italy, especially
along Olona and Lambro rivers. Therefore, the agriculture is of interest only in the irrigation zones in
the western side of the region [24].
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With respect to the climate of the zone, in a further section of this document a characterization is made
based on available observed data. Nevertheless, it is possible to say that the climate is the one of Pianura
Padana and, consequently, of moderate continental type with warm summers and cold foggy winters.
However, continental climate is mitigated by the Alps which protect the area of study from the arrival of
cold air masses, while it feels the in�uence of the Mediterranean basin [23]. In the following paragraphs
each basin conforming the studied area is described.

2.1 Olona basin

Olona basin is in the western part of the studied region, it is contained in Italy and Switzerland with
a surface of 911 km2 of which 99 % is within Italian borders. Additionally, 11 % of the basin is moun-
tainous [25]. In respect of Olona river, it has di�erent sources, from which the main one is located at
approximately 1000 m a.s.l. in Rasa di Verese, and others in the hillsides of the pre-Alps in the northern
zone of Varese � a municipality in north-west of Lombardy region � such as Pinzella and Legnone moun-
tains. Moreover, another source is found in Valganna � a town city of Varese -, which gives rise to the
eastern reach of Olona River. Then, it �ows 60 km in south direction until reaching Milano city, and,
after trespassing the urban zone, it goes out with the name Lambro Meridionale which, in SantAngelo
Lodigiano municipiality �ows into Lambro river [26] [27].

Figure 2.2: Olona basin

It is possible to subdivide the catchment into two main zones: the mountainous and the plains. The for-
mer contains the region from the source of the river until Ponte Gurone. Here the water body has a �Y�
shape in which the western reach is characterized by a strong urbanization given by Varese and Induno
Olona municipalities. On the other hand, although some small urban areas are present, eastern reach
is mainly constituted by agricultural terrain and forests. Both reaches are merged in a point located at
Molini Trotti locality [25].

Concerning the prairie zone, it starts at Ponte Gurone and ends when it reaches Milano. Here, the
basin becomes narrow and long in north-south direction and, along the river there are urban areas al-
ternating with non-occupied zones by settlements, such as forests and agricultural terrain. The Olona
valley ends when the river crosses the Milano-Varese highway, after which the basin becomes �at and
the river enters into a highly urbanized zone, crossing Castellanza and Legnano municipalities. Then,
downstream there is once again alternation between agricultural regions and urban settlements until
reaching the limits of Rho municipality, in which there exists a deviation structure called �Olona 1�,
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trough which �oods are conducted into the North-West over�ow channel (Canale Scolmatore di Nort
Ovest � CSNO) [25] [26] [27]. Furthermore, in north of Milano it is located the Olona Deviation, �rst
thought with the scope of deviate Olona �oods being connected directly with CSNO. It conducts part
of the discharge collected in the CSNO into the Lambro Meridionale, downstream Milano city, having a
maximum capacity of 54m3/s. With this, the maximum capacity of Olona river is 58m3/s in the north
of Milano [26].

2.2 Seveso basin

Seveso torrent grows in Monte Pallanza at 490 m a.s.l. in the south of Como province. It trespasses
di�erent urban settlements located in Brianza - a region at the foot of the Alps between Milano and
Lake Como � for over 50km in south direction until Milano Niguarda, where it enters into Naviglio della
Martesana - the subsurface channels of Milano � localized in Milano downtown. Then, from the inner
channel network of the city it arrives at Lambro Settentrionale [28] [29] [30].

Figure 2.3: Seveso basin

The hydrographic basin can be subdivided into three main areas [30] [29] [28]:

� North Milano city, in which the septentrional zone has a leaf shape with a network constituted
by a tributary system with consecutive order, in Como province. Then, in Milano province zone,
the basin is narrow and long without main tributaries. Furthermore, within this area four sections
can be identi�ed: the natural Seveso, in the northern part starting from the source of Seveso
torrent until Lentate municipality where there is little urbanization and high slopes are present;
the natural Certesa, in the east of the last section, concerning Certesa torrent - which is the
main tributary of Seveso � starting from its source until Terrò torrent con�uence and with similar
characteristics as natural Seveso; the urban Certesa, which starts from the end of the last section
until the con�uence with Seveso, here the slopes are lower and there are large urban areas; �nally
the urban Seveso, starting from Lentate until the beginning of the subsurface network of Milano,
this zone is characterized by a �at surface and high urbanization.

� The trespassing of Milano city.

� The area downstream Milano where the torrent �ows in south-west direction until Lambro con�u-
ence.
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In respect of the entire Seveso basin with closure section at via Ornato, where the subsurface channel
network of Milano starts, the surface is 277 km2 from which 100 km2 belong to urban areas [29]. Ad-
ditionally, within the basin there are di�erent morphologic characteristics, generally speaking, one part
has its extension in mountainous areas with a maximum and minimum altitudes of 600 m a.s.l. and
200 m a.s.l., respectively, and an area of 155 km2 which also considers the surface of Certesa torrent
(62 km2). Another area develops in a prairie zone which substantially is found within Milano province
with altitudes between 135 m a.s.l. and 200 m a.s.l., and 175 km2 of extension [30] [28].

Concerning Certosa torrent basin, some problems of geomorphological instabilities are present and �ood
problems are common. The ground has low permeability in the surface while is highly permeable in lower
stratums. Additionally, in the natural regions above-described, a large part of the hydrographic network
remains dry when little precipitation is veri�ed. Nevertheless, Seveso torrent has a continuous �ux from
which a fraction is guaranteed by discharges coming from Carimate and Fino Mornasco puri�ers [30].
Finally, a relevant characteristic of the dynamics present in this torrent is that, in �ood conditions,
Seveso is partially deviated into the North-West over�ow channel (Canale Scolmatore di Nort Ovest �
CSNO) which is 34 km long and has a capacity of 30m3/s. It discharges water coming from Seveso in
Paderno Dugnano municipality, into the Olona Deviation and, in very extreme cases, into Ticino river
[29] [30].

2.3 Lambro basin

Lambro river grows with the name Lambrone at Triangolo Lariano in the pre-Alps localized in the south-
ern area of Como lake, in Magreglio municipality, with an altitude of 1300 m a.s.l.. It follows a path of
about 130 km in which, after crossing Milano city, it �ows into Po river at Senna Lodigiana municipality
[31] [23]. The basin has an entire surface of 1980 km2 (corresponding to 3 % of river Po's surface, the
largest river in Italy) from which only 5 % is mountainous. On the other hand, with closure section at
Redefossi deviation con�uence localized in the south of Milano city, the basin has 553 km2 from which
199 km2 belong to urban areas, while 354 km2 to extra-urban areas. Additionally, the catchment is
characterized by a complex jointed hydrographic network. The di�erent water courses, situated north
Milano city, �ow in north-south direction, and are interconnected by an arti�cial channel network made
with irrigation or �ood protection purposes [32] [31].

Concerning the path followed by the river, a �rst reach is developed in north-south direction until
Canzo municipality, then in east-west direction until Ponte Lambro, and once again in north-south di-
rection until its discharge into Pusiano lake. Thereafter, it continues in south direction until Villasanta,
before crossing Parco Monza, and �owing in the lowest part of a valley [31]. Going downstream, three
di�erent sections can be identi�ed: between Parco Monza and Sesto San Giovanni until the beginning
of Milano, where the course is characterized by meanders and is surrounded by urban and production
settlements that have subtracted area for river expansion. The second section downstream in the coun-
tryside east Milano, Lambro river �ows in a reach with a straight tendency, and contained with arti�cial
levees. Finally, in the section between the Redefossi deviation con�uence and Po river, where the Lambro
Meridionale �ows into Lambro Settentrionale [31] [27].
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Figure 2.4: Lambro basin

The basin can be subdivided in 4 zones [31]:

� Lake, upstream Pusiano lake, where many small water courses with torrential regime are present,
with high slopes. At the end of this zone the river has a smaller slope until its con�uence in Pusiano
lake. Furthermore, in this area it can also be included the basin correspondent to Alserio lake with
similar behaviour as Pusiano and sited in the west side of the catchment.

� Natural Lambro, between Pusiano lake and Villasanta municipality, characterized by high and
moderate slopes and reduced urbanization.

� Urban Lambro, between Monza municipality and south-east border of Milano city, until the con-
�uence with Redefossi deviation. The slopes are mild and there is a strong urbanization.

� Irrigation Lambro, between Redefossi deviation con�uence and Po river, it is constituted by a
plain where a large irrigation network is present. Within this zone there is the con�uence between
Lambro and Lambro Meridionale rivers.

Finally, it is important to notice that the �ux of the Lake zone section is in�uenced by the reservoir
dynamics � �lling and emptying � of Pusiano and Alserio lakes, since they have a surface of about 8km2.
Additionally, in the natural Lambro section, the discharge practically depends on the geomorphologic
characteristics of the basin, while urban Lambro zone is in�uenced principally by the discharge capacity
of the sewage system of the municipalities [31] [27].
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Chapter 3

Materials and methods

Once selected the area of interest di�erent activities were done to achieve the aims of the present study.
In the following sections are described the materials used to perform the correspondent analysis, such
as the meteorological and hydrological models, the available observed and forecasted data with their
correspondent given treatment and processing. Then, are also described the coupling strategy between
the models, the performed hydrological simulations, and �nally, the statistical analysis.

3.1 Meteorological model: MOLOCH

In the present study it was used the information obtained by a meteorological model capable of perform-
ing forecasts of the meteorological forcings in the studied area and in the studied period. Particularly,
MOLOCH model is chosen since it has high spatial resolution to better describe phenomena occurring in
the area, and because it is a model that has been adopted in Italy by di�erent agencies to perform real
time forecasting. Furthermore, there is availability of the forecast information in the studied period. In
the following paragraphs the model is described as shown in [33] and [34].

The model was developed at CNR-ISAC (National Research Council of Italy, Institute of Atmospheric
Sciences and Climate), it is implemented over Italy with a daily operational chain that also comprises
the hydrostatic model BOLAM, which initial conditions are derived from the analyses (00 UTC) and
forecasts of the Global Forecast System (GFS, NOAA/NCEP, USA) global model. Therefore, MOLOCH
model is normally nested (1-way) into the BOLAM runs performed at coarser resolution and initialized
with 3-h BOLAM forecast to avoid downscaling based on pure interpolation from the global model.

Concerning general characteristics of the model and its operability, it was written in Fortran 90, it
integrates non-hydrostatic, fully compressible equations for the atmosphere within a grid size of 1.25km,
60 atmospheric levels and 13 soil levels (the spatial resolution of the model has had two main improve-
ments, changing from 2.2 km to 1.55 km in March 2014, and from 1.55 km to 1.25 km in October 2016).
Additionally, it operates as short-range (12-48 h) weather forecasting model, starting the forecasts at
03:00 UTC of each day, and obtaining output �elds with hourly frequency.

Referring to the model dynamics, MOLOCH is a non-hydrostatic, fully compressible, convection resolv-
ing model which integrates a set of atmospheric equations of the prognostic variables pressure, absolute
temperature, speci�c humidity, horizontal and vertical components of wind velocity, turbulent kinetic
energy, and �ve water species: cloud water, cloud ice, rain, snow, graupel/hail. The variables are spa-
tially represented through latitude-longitude, optionally rotated, Arawaka C-grid, meaning that velocity
components are stored in the grid faces, while other quantities can be stored in the corners. Moreover,
for the integration � in spatial terms - it is employed a hybrid terrain-following vertical coordinates,
depending on air density, relaxing smoothly to horizontal surfaces at a higher elevation from the ground.
On the other hand, time integration is done with an implicit scheme for the vertical propagation of
sound waves, and explicit forward-backward, time-split scheme for the horizontal propagation of gravity
and sound waves. Furthermore, three-dimensional advection is computed using the Eulerian Weighted
Average Flux scheme, and horizontal second order di�usion and a small divergence damping are included
to prevent energy accumulation on the shorter space scales.

9



Finally, concerning the model physics, the scheme has 4 components. First, the atmospheric radiation,
which is computed with a combined application of the Ritter and Geleyn, and the ECMWF schemes.
Second, the sub-grid turbulence parametrization, which uses a scheme based on a E-l, order 1.5 closure
theory, where turbulent kinetic energy (including advection) is evaluated. Third, the water cycle mi-
crophysics, based on a parametrization in which the spectral properties of hydrometeors are simulated
assuming a generalized gamma function distribution. And fourth, the soil model with vegetation, includ-
ing a soil model that uses 4-6 layers, whose depths increase moving downward. This model computes
surface energy, momentum, water and snow balances, heat and water vertical transfer, and vegetation
e�ects at the surface and the soil. It considers orography, the observed geographical distribution of
di�erent soil types and soil physical parameters. The soil model also includes treatment of water freezing
and melting processes within the ground. Additional comments concerning forecast information obtained
with MOLOCH model and the given use in the present study are done in further sections.

3.2 Hydrological model: FEST-WB

A hydrological model is an approximated mathematical representation of some physical processes in-
volved in the hydrological cycle. They are useful to estimate the discharge �owing into a water course
starting from meteorological variables.

According to di�erent characteristics that these models may have, some classi�cation is made. For
instance, depending on the type of equations used to estimate discharge, models are divided into two
categories: input-output and physically based. The former relates directly input and output variables
without describing the physical processes present in the hydrological cycle. Conversely, the latter kind
of models do through di�erential equations that assess mass balance and momentum, considering spatial
and temporal variations [35]. Another division of models is made in terms of how they do represent
the basin: lumped and distributed. The �rst one considers the basin as a unique element, which char-
acteristics are mean values for the whole area; consequently, these models only return the discharge at
the closure section of the watershed. Instead, distributed models represent the basin as a set of cells
in which the catchment is discretized, therefore, heterogeneity of properties characterizing the area is
considered. A further classi�cation takes into account the modelled events: �ood event and continuous
models. Flood event models estimate the discharge in a limited time when precipitation events that
create �oods are veri�ed. On the other hand, continuous models work even when there are no intense
precipitations and, consequently, in addition to model �ood events, they do model hydrological processes
that allow to reconstruct the hydrograph even for low discharges.

A physically based, distributed hydrological model developed in Italy at Politecnico di Milano named
FEST-WB, which acronym states for Flash-�ood Event-based Spatially-distributed rainfall-runo� Trans-
formation � Water Balance model, was used in the present study. It has as input the punctual hourly
measurements of the following meteorological forcings: solar radiation, air temperature, air relative hu-
midity, wind speed and precipitation. It also needs maps containing elevation, soil use and vegetation
information [36]. With this, the model evaluates the main processes of the hydrological cycle: evapotran-
spiration, in�ltration, surface runo�, �ow routing, subsurface �ow, and snow dynamics [37]. Particularly,
for the present study a discretization of 200m x 200m cells was set. Model structure is shown in Fig.
3.1:
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Figure 3.1: Diagram of FEST-WB processes [35]

Model's structure is divided into 5 main components described below [35] [38]:

� Flow paths and channel network de�nition: the �rst one is derived from the digital elevation model
by means of a least-cost path algorithm. In reference to hillslope and channel network, the constant
minimum support area concept is exploited; it is selected a minimum drainage area required to
de�ne a channel.

� Spatialization of site measured meteorological forcings: meaning the spatial interpolation of me-
teorological forcing measurements. In the present case it is used the inverse distance weighting
method � IDW. A key aspect when interpolating air temperature is its reduction with altitude; a
constant lapse rate of 0.0065 ◦C/m is used to adjust the values. Therefore, to interpolate air tem-
perature �rst it is necessary to report measured values to an altitude of reference by adjusting them
with the lapse rate, then spatial interpolation through IDW method is performed and, �nally, each
interpolated value is reported on the ground by adjusting them again [36]. Additionally, thermal
inversion phenomena are neglected. Last procedure can be seen in Fig. 3.2:

Figure 3.2: Interpolation process of temperature in FEST-WB [35]
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With respect to solar radiation, longwave net radiation is estimated as function of air temperature,
and shortwave net radiation is evaluated taking into account the e�ect of topography.

� Snowpack dynamics: considers the snow melt and the snow accumulation [37]. Precipitation P is
divided into liquid, Pl, and solid, Ps, as function of air temperature, Ta:

Pl = αPP
Ps = (1− αP )P

(3.1)

Where: 
αP = 0 ; Ta ≤ Tinf

αP = 1 ; Ta ≥ Tsup

αP =
Ta−Tinf

Tsup−Tinf
; Tinf ≤ Ta ≤ Tsup

(3.2)

Tinf and Tsup are threshold temperatures in which snow, precipitation, or a combination of both
can be veri�ed. In the present study they are such that both temperatures are 0 ◦C.

The degree day concept is used for the snow melt simulation. The melt rate Ms, in m/s, is
evaluated as:

Ms =

{
Cm(Ta − Tb) ; Ta > Tb

0 ; Ta ≤ Tb
(3.3)

Where Tb is a threshold temperature set as 0 ◦C in the current study, Cm is an empirical co-
e�cient function of meteorological and geographic location, usually ranging from 4.3x10−8 and
6.9x10−8 m◦C−1s−1 [35].

With respect to the movement of water over the surface when considering snow dynamics, it
is assumed that the terrain under the snow is frozen and, consequently, melted water is not allowed
to in�ltrate into the soil. Moreover, liquid precipitation and melted water is supposed to �ow fol-
lowing a reservoir routing scheme over the snowpack with a celerity of 1.67x10−3 m/s. This water
only becomes part of the in�ltration process when it reaches a location not covered by snow.

� Runo� computation: is performed in each cell of the domain. It is used the modi�ed SCS-CN
method extended for continuous simulations in which the potential maximum soil retention, S, is
updated in each cell at the beginning of a precipitation event as:

S = S1(1− ε) (3.4)

Where S1 is the maximum retention for dry conditions (AMC 1), ε is the degree of saturation
which depends on soil moisture:

ε =
θ − θres

θsat − θres
(3.5)

Where θres is linked to the residual soil humidity, θsat is the saturation soil moisture, and θ is the
soil moisture which dynamic is described by the water balance equation in a cell not covered by
snow [38]:

∂θ

∂t
=

1

Z
(Pl −R−D − ET ) (3.6)

Where Z is the soil depth, Pl the liquid precipitation, R is surface runo� �ux, D is drainage �ux,
and ET is the evapotranspiration rate. It is assumed that the soil moisture does not vary in time
in locations covered by snow.

In respect of the e�ective evapotranspiration, it is estimated as a fraction of the potential rate
of evapotranspiration, tuned by a function depending on soil moisture content. This potential
rate is evaluated by means of the Priestley-Taylor radiation-based equation, which is a simpli�ed
method of Penman-Monteith [39].
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� Overland and subsurface �ow routing: overland is made through the di�usion wave scheme based
on the Muskingum-Cunge method in its non-linear form with the time variable celerity. On the
other hand, the subsurface in the cells not covered by snow is obtained by means of the linear
reservoir routing scheme [38].

3.3 Observed weather data

Meteorological information contains the variables that are involved in the physical processes represented
in the hydrological model. Therefore, they are the input data of the model. In the present study it
has been used a database for the period 2003-2020 containing information at hourly resolution of the
following meteorological variables:

� Precipitation - P [mm]: representing the amount of water falling at a particular place and in a
period. One millimetre represents one litre of water falling over an area of one square metre. It
should consider the melted snow and the rainfall but, unfortunately, not all the rain gauges are
heated and, consequently, analyses were excluded when there was presence of snow cover.

� Temperature - T [◦C]: proportional to the average kinetic energy of the atoms and molecules of
which the air is made up of. It is relevant for the estimation of energy exchange between atmosphere
and earth's surface, for the snow melting, and for the estimation of evapotranspiration.

� Relative humidity - RH [%]: expressing how close the air is of being saturated with water vapour.
It has a strict relation with distribution and occurrence of precipitation, and it in�uences the
estimation of evapotranspiration.

� Solar radiation - SR [W/m2]: which represents the transfer of solar energy through electromagnetic
waves. In particular, it is used the incoming solar radiation downward � also called shortwave
radiation � which represents the incoming ultraviolet, visible, and a limited fraction of the infrared
energy. It is the input of energy in the earth-atmosphere energy balance and it is relevant in
estimating evapotranspiration and snow melting.

� Wind speed - W [m/s]: is the air in motion with respect to the earth's surface, it is the relation
between distance covered by air and the required time to cover that distance. Notice that, in the
present case, this variable do not in�uence the simulations since the potential evapotranspiration
is estimated through the Priestley-Taylor equation.

Data for Como, Lecco, Milano, Monza e Brianza, and Varese provinces, were collected from the Regional
Agency for Environmental Protection (ARPA - Agenzia Regionale per la Protezione Ambientale) database
from Lombardy region. Moreover, starting from year 2013, information from meteonetwork (MNW)
which is an open source database were data are collected by citizen scientists was included (for more
information about MNW the reader can refer to: https://www.meteonetwork.it/rete/). In the following
table the number of stations per variable are shown:

Table 3.1: Number of ARPA and MNW stations per variable.

Data P T RH SR W
ARPA 89 76 61 23 48
MNW 142 144 130 130 130
Total 231 220 191 153 178

It is important to highlight that series of data of a given station do not necessarily cover the whole
studied period (18 years), but they do cover some periods of time. Additionally, the information in the
database is reported in UTC + 0, while information from ARPA in UTC + 1 and MNW in UTC + 1 and
UTC + 2 in winter and summer, respectively. Thus, in the last case the information was homogenized
and then, all the download data was shifted by one hour in such a way that everything was reported in
UTC + 0. In Fig. 3.3 to Fig. 3.7 are shown the location of the stations in the studied region:
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Figure 3.3: Pluviometric stations

Figure 3.4: Thermometer stations

14



Figure 3.5: Hygrometer stations

Figure 3.6: Solar radiation stations
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Figure 3.7: Wind speed stations

3.4 Quality control

When measuring meteorological variables in-situ by means of the corresponding instrumentation, some
problems may arise leading to wrong data acquisition. Consequently, it is possible to perform a quality
control procedure with the scope of identify and substitute data that may have not physical meaning,
leading to better simulation results [36]. Then, by substituting manually this information, more accurate
results from the hydrological modelling are expected. In the present study values ful�lling the following
conditions were highlighted:

� Precipitation: negative values, hourly di�erence greater than 50mm, or values greater than 30mm.

� Temperature: values lesser than −15 ◦C, values greater than 40 ◦C, or hourly di�erence greater
than 8 ◦C.

� Relative humidity: values lesser than 10 %.

� Solar radiation: negative values, or values greater than 1200W/m2.

� Wind speed: values greater than 15m/s.

When identifying one of the above-described situations and when considering that there was not logical
explanation for that value, it was substituted with non-available data (−999.9). This, except for relative
humidity in which, if values lesser than 10 % followed a linear trend, then they were substituted with
10 % or not replaced if a logical explanation was found. Observed situations are described below:

� Increase of temperature greater than 8◦C and drop of relative humidity to values lesser than 10% at
the hourly scale, in similar date for several stations. In this case, values were not substituted since
this is probably due to the presence of föhn winds - coming from the Alps - which are katabatic
dry and warm winds that can increase temperature and reduce the relative humidity.

� Negative values of precipitation immediately after the same quantity but positive, for a given
station. In this case negative values were substituted with 0mm. This since some problems with
the instrumentation may lead to reporting negative values after reading precipitation in one hour.
It was decided to not substitute with non-available data (−999.9) in order to not to lose information
related to the intermittence of precipitation.
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� Wind speed larger than 300m/s were found in some stations, these were the only values that were
substituted with −999.9.

� Values barely exceeding the limits described. In this case the information was not substituted since
they did not a�ect the daily trend followed by each variable at hourly scale.

It is important to highlight that the quality control is not made by isolating each station, on the contrary,
analysis was performed by considering the context given by nearby stations of the selected variable and
the other variables.

3.5 Forecasted weather data

Forecasted MOLOCH weather data from year 2013 to 2020 is used in this study. Some procedures were
followed in order to create a unique �le before using the information as input of the hydrological model:

� Downloading from MOLOCH archive catalogue. It is obtained a .tgz �le for each day of the year
containing .grib2 �les for each hour of forecast made in Italy region. The �rst 24 h of forecast have
been taken, it is, from 04:00 UTC to 03:00 UTC of the next day.

� Post-processing of each �le to reduce their size and make it readable by FEST-WB. This is done
through Climate Data Operator � CDO program which allow us to merge �les, convert them into
netcdf �les, reduce the area of interest, calculate wind speed from u and v components, set time
references, remove x and y variables since latitude and longitude are already present, and remove all
variables not used in the hydrological simulation (see Appendix A - Post-processing of MOLOCH
data).

� Processing of missing data: in the downloaded �les it might happen that there is no information
of some days. Therefore, it was decided to use data from the available day immediately before
the missing date. These days were highlighted and omitted when performing the corresponding
analyses.

Additional to these procedures, it must be highlighted that � as stated in Section 3.1 � MOLOCH model
has had two spatial resolution changes within the period of interest. Consequently, a re-grid operation
from 2013 to October 2016 (when the last change of resolution happened) was performed with the aim
of representing the information with 1.25 km of spatial resolution. Then, after merging the data of each
day, a unique netcdf �le was obtained, making the forecasted information readable by FEST-WB.

3.6 Coupling strategy and hydrological simulations

The forecasting system applied in the present study consists in initializing the hydrological FEST-WB
model with forecasted forcing variables obtained from the MOLOCH meteorological model. For instance,
forecasted meteorological variables (solar radiation, temperature, relative humidity, precipitation, and
wind speed) at hourly scale from 04:00 UTC of one day to 03:00 UTC of the next day are used as input
in FEST-WB model in order to forecast hydrological quantities such as potential evapotranspiration, soil
moisture, and discharge. Concerning the hydrological simulations, the following were done:

� Simulation initialized with observed weather data in the period 2003 to 2020. This allows us to
create the reference benchmark with which perform further analysis. Moreover, since the hydro-
logical model executes the spatialization of the observed information from the di�erent weather
stations, it is possible to characterize our studied region from a meteorological and climatological
point of view.

� Simulation initialized with forecasted weather data for each day of the overlapping period between
observed and forecasted information, it is, from January 2013 to December 2020. This is done in
order to perform a comparison in terms of the hydro-meteorological variables between simulations
initialized with observed and forecasted weather data.
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� With the aim of identify which of the four meteorological forcings (temperature, solar radiation,
relative humidity, and precipitation) in�uences the most the results given by the hydrological model,
it is performed a sensitivity analysis. For instance, the one-factor-at-time (OAT) methodology [40]
[41] was used, it is, performing hydrological simulations forced with all 3 observed input and 1
forecasted data input. Consequently, 4 simulations were done from 2013 to 2020, and afterwards,
a statistically-based analysis is executed.

3.7 Statistical analysis

Some statistical indexes are assessed to evaluate how much the forecasted hydro-meteorological variables
di�er from the observed/simulated ones. In the following paragraphs are explained the statistical tools
used to appropriately compare simulations forced with observed and forecasted data, and to perform the
climatological characterization of the area of study.

In �rst place, statistical indexes evaluating the average error between forecasted and observed data,
such as the mean error (ME), the mean absolute error (MAE), and the root mean square error (RMSE)
are used. Expressions to estimate them are as follows:

ME =
1

N

N∑
i=1

(Fi −Oi) (3.7)

MAE =
1

N

N∑
i=1

|Fi −Oi| (3.8)

RMSE =

√√√√ 1

N

N∑
i=1

(Fi −Oi)2 (3.9)

In which N is the number of elements in the sample, and Fi and Oi are the i-th forecasted and observed
values, respectively.

Concerning the characteristics of these indexes [42], all of them have a best score of 0. The ME represents
the average forecast error, and in consequence, it indicates the direction of the estimation, it is, whether
there is an average under or overestimation. Additionally, it ranges from −∞ to ∞, it does not represent
the magnitude of the error, and it is possible to obtain the best score when there exist compensating
errors, meaning that it is an index that do not measure the correspondence between forecast and obser-
vations. The MAE and RMSE do represent the average magnitude forecast error, they range from 0 to
∞, and they do not indicate the direction of the estimation. Moreover, the RMSE is greatly in�uenced
by large errors; therefore, it is a proper index when big di�erences between observed and forecasted data
are unfavourable.

In second place, linear regressions and assessment of the coe�cient of determination R2 are used when
comparing the information. The regression is executed following the least squares methodology, in which
the sum of the square of the residuals is minimized. On the other hand, the coe�cient of determination
expresses how close the data is to a straight line when represented in a scatter plot, it is, it expresses
the correspondence between observed and forecasted data. It has a range between 0 � which represents
a useless regression � and 1 � which represents a perfect regression. The coe�cient of determination is
evaluated as [43]:

R2 =
SSR

SST
(3.10)

Where both the total sum of squares SST and the regression sum of squares SSR represent the sum of
squared deviations of observed or regression predicted values around their mean:

SST =

N∑
i=1

(yi − y)2 (3.11)
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SSR =

N∑
i=1

[ŷ(xi)− y]2 (3.12)

In which yi and ŷ(xi) are the i-th observed and regression predicted values, respectively, and y is the
mean of the observation values.

In third place, one way to verify the forecasts is through plots that allow us to identify the corre-
spondence with observed values. For example, scatter plots - in which the observed/simulated data is
plotted against the forecasts - are a good way to have a visual hint of accurate forecasts if data points are
aligned to the diagonal. Moreover, scatter plots between observed/simulated and its di�erence with the
forecasts � the errors - are useful to identify some possible relationships such as over or underestimation.
Additionally, bar plots expressing the percentage in which the ME or the MAE are within a range � bins
of the errors � are useful to identify how big are the usual errors committed by the forecasts. Finally,
bar plots expressing the number of times an observed/simulated and forecasted variables overpassed a
threshold are applicable when trying to identify over or underestimation tendencies.

One further comment concerning the present study is that to properly manage the obtained infor-
mation from the hydrological simulations, especially for the comparison and sensitivity analyses, three
considerations were taken: �rst, since MOLOCH forecasts are given at UTC + 0 and ARPA and MNW
information at UTC + 1, a shift in time of forecasts is necessary to set all information at UTC + 0,
second, the missing days - previously identi�ed from the forecast dataset � were removed from the series
to be analysed, and third, it was only considered the profound �owrate when the snow coverage was
greater than 0.1 %. Additionally, graphs were made with Matlab software.
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Chapter 4

Results and discussion

In this chapter is presented the climatological characterization of the area of study in which a tempo-
ral analysis of the regionalized hydro-meteorological variables is performed. Then, it is discussed the
comparison between the observed and forecasted data from FEST-WB simulations initialized with the
observed dataset and MOLOCH forecasts in the period from 2013 to 2020, this with the aim of evalu-
ate the performance of the meteorological model. Finally, the sensitivity analysis, performed with the
one-factor-at-time (OAT) methodology, is shown with the scope of de�ning which one of the forecasted
meteorological variables in�uences the most the simulated hydrological variables � especially the �owrate
� when compared with the observed results.

4.1 Climatological characterization

With the observed meteorological information from the stations described in section 3.3 and considering
that one of the processes performed by FEST-WB model is the spatialization of the information, it
is possible to perform a climatological characterization of the studied area. Therefore, analyses were
performed using spatialized information for the period 2003 to 2020, particularly, for the Seveso-Olona-
Lambro (SOL) river basins in the case of the climatological characterization, and for the Seveso River
with closure at Bovisio-Masciago in the case of the discharge analysis. In Fig. 4.1 is represented the
studied region.

Figure 4.1: Studied region
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In the following are described some results of temporal analysis for the meteorological forcing variables
(precipitation, temperature, relative humidity, solar radiation, and wind speed) additional to the soil
moisture and potential evapotranspiration. Then, some relations between the behaviour of the variables
are highlighted to complete the characterization. Finally, temporal analysis is also performed for the
simulated discharge at Bovisio station, which has been chosen since upstream that section there are no
hydraulic works (in particular, as above-described, the over�ow channel CSNO) and, consequently, it is
possible to observe an undisturbed behaviour of the basin (although large urbanization is present in the
area).

4.1.1 Temperature

This variable is the measure of the average kinetic energy of particles and molecules composing the air.
Therefore, it is a parameter of the thermal state of the matter. It presents variability in terms of altitude
and seasonality. The latter being a proper characteristic of middle latitude regions. The annual mean
temperature distribution is shown in Fig. 4.2. It is observed a range of 2.0 ◦C with temperatures varying
from 12.0 ◦C to 14.0 ◦C. The mean temperature in the studied period corresponds to 13.2 ◦C. Moreover,
it is observed an increasing trend of temperature with a rate of 0.08 ◦C/year. Related to this, it is
possible to observe that from year 2014, annual mean temperature has always been above the mean in
the studied period.
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Figure 4.2: Annual mean temperature
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Figure 4.3: Monthly mean temperature
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With respect to monthly variations, in Fig. 4.3 we can observe the absolute maximum, maximum mean,
mean, minimum mean, and absolute minimum monthly temperatures. From this, it is possible to see the
seasonality of this physical quantity, with a warm period from June to August and a cold period from
December to February. Maximum absolute temperature is veri�ed in August with 37.1 ◦C. Conversely,
minimum absolute temperature is −12.1 ◦C in February. The annual range of temperature, it is, the
di�erence of average temperature in the warmest and coldest months, is 21.1◦C; being the coldest month
January with a mean temperature of 2.9 ◦C and the warmest month July with 24.0 ◦C.

Concerning the absolute maximum and minimum temperatures per day, in Fig. 4.4 and Fig. 4.5
are shown the correspondent values per month in the studied period. With this, it is again possible to
observe the seasonality of the temperature. We observe that from mid of November to mid of March the
minimum temperatures are consistently below 0.0 ◦C. Then it starts increasing until it is consistently
above 10.0 ◦C from June to September. Similar comments can be made for the maximum temperature,
being lesser than 20.0 ◦C in the period from November to February, and greater than 30.0 ◦C from the
end of May to mid of September. One additional consideration is that the highest temperature is veri�ed
on August 11th (2003) with 37.1 ◦C and the lowest temperature on February 6th (2012) with −12.1 ◦C.
Finally, it must be remembered that the values presented in this paragraph are absolute and at the basin
scale; it is, they cover the entire area of study since spatialization has been performed.
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Figure 4.4: Maximum and minimum temperatures per day (Jan-Jun)
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Figure 4.5: Maximum and minimum temperatures per day (Jul-Dec)
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4.1.2 Solar radiation

Incoming solar radiation represents the transfer of solar energy by means of electromagnetic waves. It is
related to evapotranspiration, snow melting, and it represents the input of energy in the earth-atmosphere
energy balance. Particularly, it is used the incoming solar radiation downward, also called shortwave
radiation. Annual maximum radiation is shown in Fig. 4.6 for the studied period. It varies between
911W/m2 to 1000W/m2, with a mean value of 951W/m2. With respect to its trend, it is maintained
practically constant along the years since the rate of variation is 0.12W/m2. However, form year 2011
it is possible to observe a decreasing trend.
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Figure 4.6: Annual maximum radiation
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Figure 4.7: Monthly maximum radiation

With respect to the maximum, mean, and minimum monthly solar radiation in Fig. 4.7, again it
is evident the seasonal nature of this quantity. Greater values are veri�ed in the warm season with
maximum mean in June (934 W/m2). Conversely, lower values in the colder season with minimum in
December (362W/m2). The annual range, for instance, 572W/m2. This trend is due to the tilting of
the earth on its axis, making that � in the north hemisphere � mid latitudes receive more incoming solar
radiation in June, while less radiation in December. This behaviour is also evident in Fig. 4.8 to Fig.
4.10 in which the maximum radiation per day in the studied period is drawn. Particularly, on Fig. 4.10
we can see the variation day by day, but also the overall trend in the entire year, again, following the
above-described behaviour.
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MAX RADIATION PER DAY (2003-2020)
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Figure 4.8: Maximum radiation per day (Jan-Jun)
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Figure 4.9: Maximum radiation per day (Jul-Dec)
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Figure 4.10: Maximum radiation per day
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4.1.3 Relative humidity

Relative humidity is a measure of how close the air is of being saturated with water vapour. Conse-
quently, it has a strict relation with distribution and occurrence of precipitation, and it is involved in
evapotranspiration process. The annual mean humidity in the studied period is shown in Fig. 4.11. We
observe a range of variation of approximately 67% to 77%, with a mean of 71%. Values oscillate around
the mean and, therefore, the increasing trend has a rate of 0.17 %/year. These values allow us to say
that the studied region tends to be more humid than dry, proper characteristic of northern Italy inland
zones.
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Figure 4.11: Annual mean relative humidity
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Figure 4.12: Monthly relative humidity

In respect of the monthly variations, in Fig. 4.12 are shown the absolute maximum, maximum mean,
mean, minimum mean, and absolute minimum monthly relative humidity. We can observe that for the
coldest period of the year humidity is larger than in the warmest period. The range of the mean value is
24% with a minimum of 60% in July and a maximum of 84% in November. From this, it is possible to
see that mean humidity varies in a range of high values and, therefore, in the studied region are expected
humid summers and foggy winters. Absolute minimum humidity values vary between 9 % to 18 % and
are veri�ed � as stated in previous sections � due to the presence of dry winds coming from the Alps.
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Concerning maximum, mean, and minimum humidity at daily scale per month, we can see in Fig.
4.13 and Fig. 4.14, the trend in the studied period. In this case it is also possible to observe the seasonal
behaviour of this variable. Greater values in the colder season and lower values in the warmer period. It
is important to highlight that this trend is veri�ed since cold air masses need less water vapour to reach
saturation, while the opposite happens for warm temperatures. Referring to maximum humidity, it is
seen that values are all near to 100 %, meaning saturation of the air.
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Figure 4.13: Mean, maximum, and minimum relative humidities per day (Jan-Jun)
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Figure 4.14: Mean, maximum, and minimum relative humidities per day (Jul-Dec)
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4.1.4 Precipitation

Represents the amount of water that falls and arrives at the earth's surface in a particular place and
in a period. It is a meteorological variable that presents huge spatial and temporal variation. In Fig.
4.15 is shown the annual precipitation in the studied period. The mean is 1200mm and it is observed
an increasing trend along the years with a rate of 14.2 mm/year. It is remarkable that the mean is a
value which represents the average between a greater amount of precipitation in the mountainous zone
of the area of study and the smaller amount of precipitation in the plain zone. Concerning maximum
annual precipitation at daily and hourly scales in the period 2003-2020, in Fig. 4.16 we observe a mean of
60.4mm and 13.7mm, respectively. Their trends are practically constant along the years. Additionally,
maximum daily precipitation ranges from 44.1 mm to 95.6 mm and, at hourly scale from 9.3 mm to
19.7mm.
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Figure 4.15: Annual precipitation
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Figure 4.16: Maximum annual precipitation

In respect of monthly distribution in Fig. 4.17 are represented the maximum, mean, and minimum pre-
cipitations. A bi-modal behaviour is evident with two precipitation periods, one with larger precipitation
heights at Autumn, and the other one at Spring. The annual range of precipitation is 101.4mm, being
January the month with the lowest mean precipitation (57.4mm) and November the one with the highest
(158.8mm).
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Figure 4.17: Monthly precipitation

A relevant comment is that, referring to minimum precipitation, values in the warm season of the year
� from May to September � are greater than the ones in the colder season. This, meaning that, al-
though Summer do not present the highest mean monthly precipitation - it does not belong to one of
the precipitation periods -, minimum heights are larger during this season. This can be seen from Fig.
4.17, in which the trends of mean and minimum monthly precipitations are out of phase. In reference to
maximum heights, it is evident that the maximum is veri�ed in November with 427.9mm. Additionally,
it is relevant that maximum value of July, which do not belong to one of the precipitation periods, is
similar to the ones veri�ed in April and May. This relies in the fact that in Summer season stormy events
are common at the end of the days.

Bi-modal behaviour is also evident in Fig. 4.18 representing the mean number of wet days per month in
the studied period. A wet day is de�ned as a day in which precipitation height is larger or equal than
1mm. Again, larger values occur in the rainy seasons, with a maximum of 12 days in May followed by
11 days in June and November. Moreover, the mean number of days with rain is at least 6 days for any
month, being this value the one for January.
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Figure 4.18: Mean number of wet days per month
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Additional to the previous information, the daily occurrences of precipitation (considering values greater
than 1 mm) and the maximum hourly precipitation per month at the daily scale, from 2003 to 2020,
were estimated (Fig. 4.19 to Fig. 4.22). On �rst place, concerning the occurrences, we can observe that
months in which the 50% threshold is overpassed are April to July and, November and December, which
is in concordance to the bi-model regime already identi�ed in the previous paragraphs. No precipitation
occurrence was veri�ed on January 24th and September 20th. Additionally, we can observe that in Win-
ter the daily occurrences are lower, indicating that one characteristic of this season is that it is dry in
terms of precipitation. On second place, concerning the maximum hourly precipitation, it is evident that
higher values are veri�ed in Summer. This is, once again, related to the stormy events that occur in this
period of the year. The maximum value happened on July 7th 2009 with a precipitation of 19.7mm. On
the other hand, in Winter season values rarely overpass 6mm, which con�rms that one characteristic of
this period of the year is that it is dry from the precipitation point of view.
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Figure 4.19: Daily occurrences of precipitation per month (Jan-Jun)
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Figure 4.20: Daily occurrences of precipitation per month (Jul-Dec)
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MAX HOURLY PRECIPITATION PER DAY (2003-2020)
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Figure 4.21: Daily occurrences of precipitation per month (Jan-Jun)
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Figure 4.22: Daily occurrences of precipitation per month (Jul-Dec)
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4.1.5 Wind speed

Represents the horizontal moving of the air, being the relation between covered distance and time needed
to cover that distance. It is a variable that strongly in�uences the rate of evapotranspiration. In Fig.
4.23 and Fig. 4.24 are represented the hourly maximum, mean, and minimum wind speeds per day in
the studied period. Values range from 0.1 m/s to 9.7 m/s, while mean values vary from 0.9 m/s to
2.0m/s increasing from February and then decreasing from September. Meaning that wind speed has a
moderate seasonality along the year.
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Figure 4.23: Hourly mean, maximum, and minimum wind speed per day (Jan-Jul)
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Figure 4.24: Hourly mean, maximum, and minimum wind speed per day (Jul-Dec)
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4.1.6 Potential evapotranspiration (PET)

Evapotranspiration considers two phenomena that occurs at the surface: evaporation and transpiration.
The former concerning the transformation of water in liquid state into gas state at surfaces such as
soil, rivers, lakes, and wetted vegetation. The transpiration also considers the transformation from
liquid to gas, but of the water contained in vegetation. Potential evapotranspiration represents the
evapotranspiration that would happen if there were no restrictions on the available water. It is a quantity
a�ected by temperature, solar radiation, and wind speed. Annual PET is presented on Fig. 4.25, values
range from 510mm to 622mm with a mean of 569mm. It is also observed an increasing trend along the
years with a rate of 2.7mm/year.
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Figure 4.25: Annual PET

In Fig. 4.26 is shown the maximum, mean, and minimum PET in the studied period. Greater values
are present � in concordance with solar radiation and temperature � in the warm season of the year; this
because higher temperatures and greater radiations provoke a higher potentiality of evaporating water
from the surface. On the other hand, smaller values of PET are present in the cold season. Moreover,
the range of this quantity is 100mm with maximum mean value in July (103mm) and minimum mean
value in December (3mm).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

0

20

40

60

80

100

120

P
E

T
 [
m

m
]

MONTHLY PET (2003-2020)

Max

Mean

Min

Figure 4.26: Monthly PET
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Concerning the daily maximum of PET, on Fig. 4.27 and Fig. 4.28 it is possible to observe the trend.
Once again, in this type of plots it is evident the seasonal nature of the quantity. Maximum is veri�ed
on 19th June with a value of 5mm, while the lowest maximum PET is seen on 5th December with 0.2mm.
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Figure 4.27: Maximum daily PET (Jan-Jun)
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Figure 4.28: Maximum daily PET (Jul-Dec)
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4.1.7 Soil moisture

Is the quantity of water contained in the soil expressed � from volumetric point of view - as ratio
between the water volume in the soil and the total volume which considers liquid, solid and gas phases.
Consequently, it is a dimensionless quantity that varies from 0 � meaning dry soil � to the porosity at
saturation; being the porosity the fraction of void space into the soil. This is a relevant parameter in
the in�ltration process, and it is related to evapotranspiration and precipitation. Moreover, it must be
mentioned that CN conditions are unchanged in this study since no signi�cant di�erences have been
found during the last 20 years, whilst great increase of urbanization was present from 1954 to 2000. The
annual mean trend in the studied period in Fig. 4.29 shows a variation between 14.0 % to 16.7 % with
a mean value of 15.3%. The linear trend shown expresses an increasing tendency which however is very
small, this since it has a rate of 0.04%/year. Consequently, it can be said that annual mean soil moisture
is basically constant along the years.
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Figure 4.29: Annual mean soil moisture

In respect of the absolute maximum, maximum mean, mean, minimum mean, and absolute minimum
monthly soil moisture in the studied period shown in Fig. 4.30, it is possible to observe that lower and
high values are present in the warm and cold seasons, respectively. The annual range is about 7.2 %,
with the lowest and highest mean being 11.9 % and 19.1 %, veri�ed in July and November, respectively.
Moreover, absolute minimum and maximum are within the band of 6.0 % to 28.6 %.
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Figure 4.30: Monthly soil moisture
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Maximum and minimum soil moisture per day in the studied period is shown in Fig. 4.31 and Fig. 4.32.
It is also possible to observe the behaviour linked to the seasonality present in the variables that in�uence
the water content of the soil. Maximum value occurs the 16th of November (28.6 %) and minimum the
23rd of July (6.0 %).
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Figure 4.31: Maximum and minimum soil moisture per day (Jan-Jun)
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Figure 4.32: Maximum and minimum soil moisture per day (Jul-Dec)
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4.1.8 Characterization overview

Once each variable has been described through the temporal analysis, it is plausible to give an overall
description of the studied region from the meteorological and climatological viewpoint. SOL basin is lo-
cated in Northern Italy and, consequently, is characterized by seasonality of the meteorological variables.
Incoming solar radiation, as well as temperature, present larger values from June to August, and lower
values from December to February; corresponding to Summer and Winter. This makes relative humidity
to have the opposite behaviour, since greater temperatures lead the air to be warmer, and therefore, it
is less easy to be saturated. Nevertheless, relative humidity has large values along the year, leading to
humid summers and foggy winters. In respect of precipitation, a bi-modal behaviour is present in the
region, with two precipitation periods, one with larger precipitation heights at Autumn, and the other
one at Spring. Maximum hourly precipitations are veri�ed in Summer, principally due to stormy events
occurring at the end of the days. Finally, concerning wind speed, a moderate seasonality is observed
along the year, with values increasing from February and decreasing from September. Moreover, the
presence of dry winds coming from the Alps (föhn winds) make the relative humidity to drop to very
low values, while increasing the temperature.

Potential evapotranspiration follows the same trend as temperature and incoming solar radiation. Expla-
nation is that larger radiation leads to larger temperatures of the air, which at the same time makes the
relative humidity to be lower. Consequently, rate of potential evapotranspiration is expected to be larger
since air can hold more water vapour before getting saturated. Opposite case during the colder period,
in which temperature is closer to the dewpoint, relative humidity is larger, and air cannot store too much
water vapour, leading to condensation. It is also important to notice that the moderate seasonality of
wind speed do not strongly a�ect this variable, whilst the factors above-described do. Concerning soil
moisture, it is mainly a�ected by precipitation and potential evapotranspiration. The observed trend is
that it is higher during the cold season, in which low precipitations and low potential evapotranspira-
tion are veri�ed. On the other hand, during warm season, relative low precipitation � not belonging to
rainy periods of the bi-modal behaviour - and high potential evapotranspiration are present. Thus, it is
clear the direct relation of evapotranspiration and soil moisture during the no-rainy periods of the year
(Summer, and Winter).

4.1.9 Discharge at Bovisio

Boviso station has been chosen to make the discharge analysis since no hydraulic works are present
upstream, allowing us to see the natural behaviour of the basin. Simulated hydrographs with FEST-WB
hydrological model were obtained for each year of the studied period (Fig. 4.33). They have also been
plotted thresholds of 25 m3/s, 35 m3/s (which is the �rst warning threshold) and 45 m3/s, since they
allow us to de�ne how many times they have been overpassed and, consequently, understand how much
possible the observation of an inundation event is.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Day

0

10

20

30

40

50

60

70

Q
 [

m
3
/s

]

HYDROGRAPH

Q

Q=45m
3
/s

Q=35m
3
/s

Q=25m
3
/s

Figure 4.33: Hydrograph (2003-2020)
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In Fig. 4.34 is shown the maximum �owrate at daily scale per year. The mean value is 45.6m3/s, and
it is observed a decreasing trend with a rate of −0.26 m3/s/year. Maximum �owrate was 63.4 m3/s
in the year 2014, which � as described before � also correspond to the year with the maximum annual
precipitation, and maximum annual precipitation at daily scale. On the other hand, the lowest maximum
�owrate is 30.5m3/s veri�ed in 2019 which, however, do not correspond to the year with the minimum
annual precipitation.
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Figure 4.34: Maximum �owrate per year at daily scale

In respect of threshold overpassing, in Fig. 4.35 to Fig. 4.37 are represented the number of days per year
in which �owrate has been larger than the threshold. As expected, the number of days decreases when
increasing the �owrate to be surpassed. Mean values are 6.6 days, 2.6 days, and 0.7 days, for 25, 35 and
45 m3/s, respectively. All three graphs show a decreasing trend along the years with a decreasing rate
when the threshold is larger. Additionally, the 25m3/s �owrate was overpassed at least 2 days in each
year belonging to the studied period, the maximum was observed in 2010 with 21 days. For 35m3/s, 16
out of 18 years have at least 1 day in which the threshold was surpassed, the maximum was also veri�ed
in 2010 with 11 days. Finally, for the highest �owrate � 45 m3/s -, only in eight years the limit was
exceeded, and the maximum number of days is 3 for 2009 and 2014.
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Figure 4.35: Number of days with Q > 25m3/s
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Figure 4.36: Number of days with Q > 35m3/s
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Figure 4.37: Number of days with Q > 45m3/s
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4.2 Observed vs MOLOCH comparison

From the results of the hydrological simulations forced with observed weather data coming from ARPA
and MNW weather stations, and MOLOCH meteorological model forecasts in the period 2013 to 2020, it
is possible to perform a comparison of the hydro-meteorological variables in order to evaluate the perfor-
mance of MOLOCH model. In the following subsections are shown the results of the comparison of the
meteorological forcings (temperature, solar radiation, relative humidity, wind speed, and precipitation)
and the simulated hydrological variables (soil moisture, potential evapotranspiration, and discharge), in
terms of the statistical tools and indexes described in Section 3.7. Furthermore, this is done at an hourly
and daily scale, and considering daily maxima and minima. Additionally, comparison at seasonal scale
is also performed for solar radiation, precipitation and discharge. Then, at the end, further comments
concerning the comparison and the used forecasted data from MOLOCH are done.

4.2.1 Temperature

From Fig. 4.38 to Fig. 4.41 are shown the scatter plots comparing observed and forecasted hourly,
mean daily, daily minimum and daily maximum temperature data. It is possible to observe a very good
agreement between both datasets, re�ected by means of the coe�cient of determination which is larger
or equal than 0.96 in all four �gures. Nevertheless, by observing the sign of the mean error, the linear
regression under the diagonal in the left-hand scatter plot, and the larger amount of data points under
the 0 value in the right-hand scatter plot, it is clear that MOLOCH model consistently underestimates
the temperature. Moreover, for the hourly and daily scale, from the statistical indexes which give some
feedback about the error committed by MOLOCH model, it can be said that � on average- it is not large
and the magnitude of the error decreases when averaging the temperature over each day.

Concerning the mean error, the trend of the forecasts can also be observed in Fig. 4.42 and Fig. 4.43.
In both cases it is seen a left-shifted distribution meaning underestimation. At hourly scale, the mean
error is mainly found within the range of −3 ◦C to −1 ◦C, followed by the range −1 ◦C to 1 ◦C which is
the one containing the best score of the index. Similarly at daily scale, the mean error is mainly found
within −2.5 ◦C to −0.5 ◦C, also, the percentages of the ranges containing positive values of temperature
are very small, meaning that overestimation happens but with less frequency. Finally, these values tell
us that, although underestimation is observed, the errors do not have a large magnitude and are usually
concentrated in the left side of the best score.
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Figure 4.38: Hourly temperature
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MEAN DAILY TEMPERATURE
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Figure 4.39: Mean daily temperature

DAILY MINIMUM TEMPERATURE
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Figure 4.40: Daily minimum temperature

DAILY MAXIMUM TEMPERATURE
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Figure 4.41: Daily maximum temperature
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ERROR WITHIN RANGES - HOURLY TEMPERATURE
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Figure 4.42: Error within ranges - Hourly temperature
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Figure 4.43: Error within ranges - Mean daily temperature

4.2.2 Solar radiation

Considerations must be taken concerning solar radiation, particularly, in the MNW dataset the solar
radiation from 18:00 to 7:00 of the next day is discarded in order to homogenize the information since
some measure problems were identi�ed among the weather stations. This a�ects the spatialized observed
information for the reason that, especially in summer, after 18:00 there is still incoming solar radiation
which however is not considered. Consequently, in addition to the hydrological simulation from 2013 to
2020, two other situations were deemed: �rst, �ltering the results of the simulation from 8:00 to 17:00 in
each day, and second, a further simulation for the same period of time but considering ARPA observed
dataset only. The following graphs (Fig. 4.44 to Fig. 4.46) represent the hourly, mean daily, and daily
maximum solar radiation for the three above-described situations:
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HOURLY SOLAR RADIATION
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Figure 4.44: Hourly solar radiation

HOURLY SOLAR RADIATION (FILTERED FROM 8:00 TO 17:00)
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Figure 4.45: Hourly solar radiation - �ltered

HOURLY SOLAR RADIATION (ARPA ONLY)
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Figure 4.46: Hourly solar radiation - only ARPA
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For the hourly solar radiation, observing the coe�cient of determination, a good agreement between
forecasted and observed data is evidenced, also, it is veri�ed a tendency of overestimation and underes-
timation for low and high values, respectively. The mean error and the magnitude of the average error
are small compared with the order of magnitude of the solar radiation values.

In respect of the three situations, in the �ltered dataset there is a loss of correspondence since the R2

coe�cient is reduced up to 0.7. On the other hand, the simulation containing only ARPA information
has the largest value of R2 (0.83) and the lowest ME, MAE, and RMSE; the mean error can be explained
due to the fact that the point in which the tendency passes from over to underestimation is found around
500 W/m2 which is the central value of the data and, therefore, errors with di�erent directions of the
estimation compensate each other, the additional indexes are not too di�erent when compared with all
observed dataset simulation, meaning that � overall � the predictability and the magnitude of the average
error do not improve greatly when considering only ARPA information.
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Figure 4.47: Daily mean solar radiation

MEAN DAILY SOLAR RADIATION (FILTERED FROM 8:00 TO 17:00)
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Figure 4.48: Daily mean solar radiation - �ltered
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MEAN DAILY SOLAR RADIATION (ARPA ONLY)
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Figure 4.49: Daily mean solar radiation - only ARPA

In the case of mean daily solar radiation (Fig. 4.47 to Fig. 4.49), it is observed a good agreement with
a coe�cient of determination equal to 0.92 in all three cases, there is a tendency to overestimate, and
the statistical indexes show low values compared with the order of magnitude of the variable. When
comparing the three situations, similar comments to the hourly based case can be made: the simulation
considering only ARPA information evidences lower mean error and magnitude of the mean error which,
however, are not too di�erent in comparison to the simulation forced with the entire dataset.
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Figure 4.50: Daily maximum solar radiation
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DAILY MAXIMUM SOLAR RADIATION (FILTERED FROM 8:00 TO 17:00)
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Figure 4.51: Daily maximum solar radiation - �ltered

DAILY MAXIMUM SOLAR RADIATION (ARPA ONLY)
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Figure 4.52: Daily maximum solar radiation - only ARPA

Concerning the daily maximum solar radiation (Fig. 4.50 to Fig. 4.52), the R2 coe�cient is around 0.89
which means a good agreement between the data, there is an overestimation trend which is reduced when
increasing the values of the solar radiation where underestimation is also veri�ed, additionally, the ME,
MAE, and RMSE are low. Only ARPA simulation has lower mean error and magnitude of the average
error, but the lowest coe�cient of determination, whilst the other two cases are practically the same;
this happens because maximum solar radiation is observed in the central hours of the day and, therefore,
the �ltering of the data does not in�uence the results.

An additional analysis that can be made is at the seasonal scale since solar radiation forecasts, es-
pecially for low values, might be a�ected by the presence of fog in the cold period of the year. Thus, in
Fig. 4.53 and Fig. 4.54 are shown the hourly solar radiation discretized by season when using the entire
dataset (from 2013 to 2020 including ARPA and MNW data):
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HOURLY SOLAR RADIATION PER SEASON
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Figure 4.53: Hourly solar radiation per season: observed vs forecasted
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Figure 4.54: Hourly solar radiation per season: observed vs observed-forecasted

It is observed the under and overestimation trend for large and low values, respectively, for the four
seasons. The ME, MAE, and RMSE are low when compared to the order of magnitude of the observed
and forecasted values. Additionally, the correspondence of information is good and similar in spring,
summer, and autumn, while the coe�cient of determination is reduced in winter. This behaviour, as
commented before, could be explained by the fact that forecasts are in�uenced by the presence of fog.
The mean daily solar radiation are represented in Fig. 4.55 and Fig. 4.56.
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MEAN DAILY SOLAR RADIATION PER SEASON
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Figure 4.55: Mean daily solar radiation per season: observed vs forecasted
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Figure 4.56: Mean daily solar radiation per season: observed vs observed-forecasted

In this case the correspondence of values in winter improves, while for summer decreases up to 0.77.
Additionally, it is still clear the overestimation tendency for low observed values, which becomes more
evident again in summer. On the other hand, improved behaviour is veri�ed for spring and autumn.
Finally, the daily maximum solar radiation are shown in Fig. 4.57 and Fig. 4.58.
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DAILY MAXIMUM SOLAR RADIATION PER SEASON
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Figure 4.57: Daily maximum solar radiation per season: observed vs forecasted
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Figure 4.58: Daily maximum solar radiation per season: observed vs observed-forecasted

It is observed a decrease of the correspondence to a discreet value in the case of summer, while in winter
there is a similar value of the R2 coe�cient when compared to the last two cases. Moreover, in spring
a loss of correspondence is veri�ed, while autumn remains with a good behaviour. Again, it is clear the
overestimation trend when low values of incoming solar radiation are observed.

4.2.3 Relative humidity

From Fig. 4.59 to Fig. 4.62 are presented the scatter plots of hourly, mean daily, daily maximum and
minimum relative humidity.
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Figure 4.59: Hourly relative humidity

MEAN DAILY RELATIVE HUMIDITY
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Figure 4.60: Mean daily relative humidity
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Figure 4.61: Daily minimum relative humidity
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DAILY MAXIMUM RELATIVE HUMIDITY
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Figure 4.62: Daily maximum relative humidity

In all four cases there is a large overestimation tendency when low values of relative humidity are ob-
served, while an underestimation trend for large values of the variable. The correspondence between
observed and forecasted information is not particularly high since the coe�cient of determination is 0.64
at hourly scale, then the predictability increases at a mean daily scale and in terms of daily minimum,
with 0. 76 and 0.74, respectively, and �nally, concerning the daily maximum the correspondence is very
low with a value of 0.42. Moreover, in terms of the average error and its magnitude, it can be said that
they are � overall � one order of magnitude smaller than the lowest admissible value of relative humidity
(10 %).

It is important to highlight that this kind of behaviour was not expected for this variable and, therefore,
it was decided to perform the same comparison when forcing the hydrological simulation with ARPA
dataset only; this since, in general terms, it is a more homogeneous network of weather stations, con-
sidering that the MNW is a citizen scientists network in which the stations have di�erent brands, and
are located in di�erent climatological zones (urban, sub-urban, rural, roof, etc.) and at di�erent heights
from the ground (often di�erent from 2 metres). The results are presented in Fig. 4.63 to Fig. 4.66,
where it is possible to observe a very small improvement of the correspondence between observed and
forecasted relative humidity. Nevertheless, the great overestimation trend when low values of the variable
are veri�ed still remains, and the ME, MAE, and RMSE indexes get slightly worse than in the previous
case.
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Figure 4.63: Hourly relative humidity - only ARPA
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MEAN DAILY RELATIVE HUMIDITY (ARPA ONLY)
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Figure 4.64: Mean daily relative humidity - only ARPA
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Figure 4.65: Daily minimum relative humidity - only ARPA
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Figure 4.66: Daily maximum relative humidity - only ARPA
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4.2.4 Wind speed

Scatter plots of wind speed are shown in Fig. 4.67 to Fig. 4.71. In the hourly based case there exists
a very poor correspondence of the data since the R2 coe�cient is equal to 0.38, it is also observed an
overestimation tendency especially for small values, which is also veri�ed in Fig. 4.71 where a right-
shifted distribution is evident, with the mean error mainly found in the range −0.5 m/s to 1.5 m/s.
Concerning the daily mean and the daily maximum, it is again observed an overestimation trend which
grows when increasing the wind speed values. There is better predictability of the data with a coe�cient
of determination equal to 0.56 in both cases, which is still low. Additionally, larger values of ME, MAE,
and RMSE indexes are veri�ed in the daily maximum case. Finally, over and underestimation for low
and high values, respectively, are observed for the daily minimum wind speed, where there exists a very
poor correspondence between observed and forecasted data. It is important to mention that weather
stations acquiring wind speed information are not consistently at 10m from the ground � elevation at
which the MOLOCH forecasts are reported -, and therefore, comparison of the data may not be accurate.
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Figure 4.67: Hourly wind speed
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Figure 4.68: Mean daily wind speed
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DAILY MINIMUM WIND SPEED
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Figure 4.69: Daily minimum wind speed
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Figure 4.70: Daily maximum wind speed
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Figure 4.71: Error within ranges - Hourly wind speed

53



4.2.5 Precipitation

The daily and daily maximum precipitation are represented in Fig. 4.72 and Fig. 4.73, respectively.

DAILY PRECIPITATION

0 20 40 60 80 100 120

Observed [mm]

0

20

40

60

80

100

120

F
o
re

c
a
s
te

d
 [
m

m
]

y = 0.79x + 0.27

Mean error = -0.48 mm

MAE = 1.83 mm

RMSE = 4.66 mm

R
2
 = 0.7

0 20 40 60 80 100 120

Observed [mm]

-60

-40

-20

0

20

40

60

F
o
re

c
a
s
te

d
 -

 O
b
s
e
rv

e
d
 [
m

m
]

Figure 4.72: Daily precipitation
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Figure 4.73: Daily maximum precipitation

In the �rst case there is a good correspondence (R2 = 0.70) with an underestimation trend, especially
for high precipitations, and an overestimation for very small values. The magnitude of the average error
is less than 2mm while the average error is near 0.5mm. On the other hand, for the daily maximum,
there is a loss in the correspondence since the coe�cient of determination drops to 0.51, while the trend
follows the same behaviour as the daily precipitation, it is, over and underestimation for low and high
precipitations, respectively.

The underestimation tendency given by the meteorological model can also be observed in Fig. 4.74
where are represented the number of days in which a threshold has been overpassed in the case of ob-
served and forecasted datasets. It can be seen the underestimation for the �rst �ve thresholds, and some
overestimation for the last two, which however, are not common situations if we take into account that
we are considering an 8-year studied period.
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Figure 4.74: Number of days with precipitation greater than a threshold

The absolute error within ranges is shown in Fig. 4.75 where it is possible to observe that the error
mainly ranges from 0mm to 5mm, meaning that the model do not perfectly predicts the observations,
but the committed errors are � in the majority � low. This, bearing in mind that within the �rst
range of absolute error are also the days without precipitation, which are more easily predictable and,
consequently, increases the percentage of this range shown in the �gure.
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Figure 4.75: Error within ranges - Mean daily precipitation

Additionally, as stated at the beginning of the chapter, the same charts were obtained at a seasonal scale
by considering winter from December to February, spring from March to May, summer from June to
August, and autumn from September to November. This with the aim of verifying whether MOLOCH
model behaves the same along the year or, conversely, its performance changes. Daily precipitation
results are shown in Fig. 4.76 and Fig. 4.77:
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DAILY PRECIPITATION PER SEASON
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Figure 4.76: Daily precipitation per season: observed vs forecasted
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Figure 4.77: Daily precipitation per season: observed vs observed-forecasted

It is clear that the predictability is larger � when compared to the entire dataset � in winter, spring
and autumn, whilst it gets worst in summer. The average error and its magnitude are better in winter
and have a similar behaviour in spring and autumn, whereas in summer are found the largest values.
Moreover, the underestimation tendency for large values of precipitation still remains, increasing in the
following order: winter, spring, autumn, and summer, in correspondence with ME values. These results,
especially in summer, can be explained by understanding the precipitation dynamics along the year
described in the climatological characterization performed in the previous section. It has been demon-
strated that the area of study has a bi-modal regime of precipitation with rainy periods in spring and
autumn where a similar behaviour is present in the scatter plots, in winter less precipitation is veri�ed
and, consequently, it is expectable the forecast to be more accurate, and �nally, in summer convective
precipitations with very high intensities at the end of the day are common. The latter strongly in�uences
the correspondence of values in summer since it is a type of phenomenon di�cult to predict.
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In the case of daily maximum precipitation, the behaviour is very similar but with less correspondence
of the observed and forecasted values. Results are shown in Fig. 4.78 and Fig. 4.79.
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Figure 4.78: Daily maximum precipitation per season: observed vs forecasted
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Figure 4.79: Daily maximum precipitation per season: observed vs observed-forecasted

Concerning the exceeding of a threshold (Fig. 4.80), the strong underestimation is evident in summer,
whereas good accordance is veri�ed in the other seasons with a slight overestimation in the smallest
thresholds. Finally, the mean absolute error in all four seasons mainly ranges from 0mm to 5mm ( Fig.
4.81) and same comments as in the entire dataset apply.
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Figure 4.80: Number of days with precipitation greater than a threshold per season
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Figure 4.81: Error within ranges - Mean daily precipitation per season
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4.2.6 Soil moisture

In respect of the simulated hydrological variables, soil moisture comparison has been also performed at
hourly and daily scale, including daily maximum and minimum (Fig. 4.82 to Fig. 4.85). This, bearing
in mind that comparison is assessed between simulated data from forecasted and observed information,
and not between simulated data from observed information and the direct MOLOCH soil moisture fore-
cast. It can be seen that the coe�cient of determination indicates a good agreement of the data and is
practically the same in all four cases, the same happens for ME, MAE, and RMSE indexes. It is also
evident that there is a consistent underestimation trend which may be explained by the underestimation
of precipitation that MOLOCH models presents. Nevertheless, the reasons why this behaviour is veri�ed
are illustrated in the performed sensitivity analysis. Furthermore, it must be taken into account that in
the present study are compared the simulated soil moisture when the hydrological model is forced with
observed and forecasted data. This, in spite of the fact that MOLOCH model performs soil moisture
forecasts too.
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Figure 4.82: Hourly soil moisture
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Figure 4.83: Mean daily soil moisture
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DAILY MINIMUM SOIL MOISTURE
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Figure 4.84: Daily minimum soil moisture
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Figure 4.85: Daily maximum soil moisture
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4.2.7 Potential evapotranspiration

In the case of potential evapotranspiration, the daily and daily maximum where considered (Fig. 4.86
and Fig. 4.87). It is clear that a strong overestimation by part of the forecast is veri�ed, whilst a good
agreement with the linear regression is observed (R2 larger or equal than 0.9 in both cases). Indeed,
the statistical indexes are large when compared with the order of magnitude of the potential evapotran-
spiration observed values � represented in the axis of the graphs. Further comments are given in the
sensitivity analysis.
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Figure 4.86: Daily potential evapotranspiration
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Figure 4.87: Daily maximum potential evapotranspiration
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4.2.8 Discharge

The discharge at Bovisio station has also been considered. The hourly, mean daily and daily maximum
are presented in Fig. 4.88 to Fig. 4.90. It can be seen that the correspondence of the data is su�cient at
hourly scale and in terms of daily maximum, while it increases to a discreet value in the mean daily case.
The related error indexes are similar at hourly and daily scales, but they increase in magnitude when
considering the maximum values. Additionally, there is an underestimation trend especially for large
discharges. This leads to big di�erences between the observation and forecasts, described � particularly
- by the large RMSE in the daily maximum chart. The latter may be explained by the fact that �owrate
is strongly conditioned by the amount of precipitation which � as already seen � is also underestimated
for large values (a more extensive analysis is given in the sensitivity analysis).
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Figure 4.88: Hourly �owrate
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Figure 4.89: Mean daily �owrate
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DAILY MAXIMUM FLOWRATE - BOVISIO

0 20 40 60 80 100 120

Simulated [m
3
/s]

0

20

40

60

80

100

120

F
o
re

c
a
s
te

d
 [
m

3
/s

]

y = 0.71x + 0.69

Mean error = -1.38 m
3
/s

MAE = 3.62 m
3
/s

RMSE = 7.71 m
3
/s

R
2
 = 0.57

0 20 40 60 80 100 120

Simulated [m
3
/s]

-80

-60

-40

-20

0

20

40

60

80

F
o
re

c
a
s
te

d
 -

 O
b
s
e
rv

e
d
 [
m

3
/s

]

Figure 4.90: Daily maximum �owrate

Concerning the overpassing of a threshold, in Fig. 4.91 are presented the number of days in which the
�owrate is greater or equal than the discharges related to usual alert values. It can be seen the underesti-
mation of the �owrate in all three thresholds, with the reduction of the number of days which is coherent
with the frequency with which discharges of that magnitude are veri�ed. Additionally, it is not observed
a particular trend of the di�erence between observed and forecasted number of days when increasing the
threshold, this since the forecasts represent 78.2 %, 67.6 %, and 76.0 % of the observed values for each
threshold in ascendent order.
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Figure 4.91: Number of days with �owrate greater than a threshold

Flowrates greater than 25m3/s were also considered (Fig. 4.92), nevertheless, it is veri�ed a very bad
agreement of the data and very high errors. Hence, it is again shown that correspondence of data is low
when considering large discharges and an underestimation tendency is observed.
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Figure 4.92: Daily maximum �owrate (Q ≥ 25m3/s)

Furthermore, plots were obtained at a seasonal scale (Fig. 4.93 to Fig. 4.99) where a behaviour similar
to the one of precipitation is observed. Thus, the predictability of �owrate in winter is better than in
the other seasons, followed by spring and autumn � with similar coe�cients of determination -, and
�nally summer where the agreement is very low. Additionally, the underestimation tendency for hourly,
mean daily, and daily maximum remains in all seasons, and � in general � errors are lower in winter �
characterized for low precipitation heights - and spring � rainy period with less precipitation -, followed
by spring � rainy period with larger precipitation -, and �nally summer where � as already stated � con-
vective precipitation phenomena a�ect the forecasts. Finally, concerning the surpassing of thresholds,
there exists underestimation in all seasons, especially in summer.
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Figure 4.93: Hourly �owrate per season: simulated vs forecasted
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Figure 4.94: Hourly �owrate per season: simulated vs forecasted-simulated
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Figure 4.95: Mean daily �owrate per season: simulated vs forecasted
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Figure 4.96: Mean daily �owrate per season: simulated vs forecasted-simulated
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Figure 4.97: Daily maximum �owrate per season: simulated vs forecasted
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DAILY MAXIMUM FLOWRATE PER SEASON - BOVISIO
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Figure 4.98: Daily maximum �owrate per season: simulated vs forecasted-simulated
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Figure 4.99: Number of days with �owrate greater than a threshold per season

4.2.9 Comparison overview

Once the comparison is performed for each variable, an overview of the performance of MOLOCH fore-
casts can be done. Concerning the meteorological variables, it has been shown that there is a very
good agreement between forecasted and observed temperature, with an underestimation tendency by
MOLOCH. Furthermore, there exists a good agreement of hourly, mean daily, and daily maximum solar
radiation. In the �rst and third cases an overestimation and underestimation for low and high values
is veri�ed, respectively. On the other hand, in the second case an overestimation tendency is evident.
Additionally, it has been shown that better statistical indexes are obtained when considering the simu-
lation forced with the ARPA dataset only, which however, are not too di�erent from the results when
considering the entire dataset and, consequently, it does not reveal a great improvement of the pre-
dictability of solar radiation. Finally, at the seasonal scale, the lowest correspondence of information is
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veri�ed in winter in the hourly solar radiation, which may be a sign that the presence of fog a�ects the
forecasts, especially for low values. Nevertheless, for mean daily and daily maximum solar radiation,
it is summer where the coe�cient of determination shows the lowest values and a clear overestimation
trend for low values is veri�ed. Also, the correspondence of the relative humidity data is not very high,
and a large overestimation tendency is observed when low values are veri�ed. Moreover, there is not
a great improvement of the performance of the forecasts when compared with just the ARPA dataset.
In addition, very low correspondence is veri�ed for the wind speed variable. Overestimation is present
in mean daily and daily maximum, and for low values when considering the hourly scale and the daily
minimum where, at the same time, it is evidenced an underestimation trend for high wind velocity data.
Furthermore, it must be taken into account that the present results may be a�ected by the heterogeneity
of the measurement instruments' location, since MOLOCH forecasts are all reported at 10m of elevation
from the ground. Therefore, it could be evaluated the possibility of applying a scale factor correction
to the observed dataset according to the wind logarithmic equation to perform a better comparison. In
any case, it must be remembered that wind speed values did not in�uence the results of the hydrological
quantities since the potential evapotranspiration is assessed through Priestley-Taylor equation which
does not consider the wind velocity component. In respect of precipitation, there exists an acceptable
agreement of the forecasted and observed data. There is an overestimation trend especially for large val-
ues of precipitation, while small underestimations are present for small precipitation heights; the latter
may be caused by instrumentation errors. Concerning the seasonal scale, the prediction of this variable is
strongly a�ected by convective precipitation events in summer which reduce greatly the correspondence
of data, increasing the underestimation tendency.

Regarding the hydrological variables it has been shown that in the case of soil moisture and poten-
tial evapotranspiration there exists a good correspondence of the information. Nevertheless, for the
former it is observed a consistent underestimation, while for the latter it can be said that MOLOCH
model strongly overestimates the data. Finally, a discreet agreement of the information is present in
the mean daily discharge while a su�cient correspondence at the hourly scale is veri�ed. There is an
underestimation trend particularly high for large discharges, that may be explained by the observed
behaviour of precipitation. Moreover, at the seasonal scale it is evident that the forecasts in summer
fail in describing the observed data, while predictability gets better in autumn, spring, and especially in
winter.

4.2.10 Additional comparisons

In the last subsections comparison between observed and forecasted data for the period from 2013 to
2020 and for every hydro-meteorological variable has been done. However, two further considerations
can be made with the aim of improve the way in which the data is contrasted. In �rst place, it must be
considered the fact that when performing forecasts there is an adjustment period in which the obtained
results are not reliable. Thus, bearing in mind that MOLOCH forecasts have been taken from 04:00
UTC to 03:00 UTC of the next day, it is plausible to drop the �rst three hours of forecast related to the
model spin-up and compare information from 07:00 UTC to 03:00 UTC of the next day. In second place,
MOLOCH model was subjected to an upgrading and improvements, above all to terrain scheme, from
December 2018, reason why the comparison could show better results if contrast of data is performed
for the last two years of the studied period, it is, for 2019 and 2020. In the following charts (Fig. 4.100
to Fig. 4.114) results for hourly and daily scale of all variables are shown for the entire dataset (case A),
the �ltered one from 7 am to 3 am of the next day (case B), and the �ltered for 2019 to 2020 (case C).
Additional comments are also made.

Hourly temperature (Fig. 4.100) is still cold bias, there is an improvement of correspondence in C,
whilst the ME, MAE, and RMSE get slightly worse when compared with A. Moreover, similar behaviour
is observed for the mean daily temperature (Fig. 4.101), with the di�erence that no improvement in
terms of R2 coe�cient is veri�ed.
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HOURLY TEMPERATURE
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(b) Filtered from 7 am to 3 am
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.100: Hourly temperature with di�erent dataset comparison
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MEAN DAILY TEMPERATURE
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.101: Mean daily temperature with di�erent dataset comparison
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Hourly solar radiation (Fig. 4.102) shows an overestimation and an underestimation for low and large
values, respectively. The coe�cient of determination decreases from A to B, and from B to C. On
the other hand, mean daily solar radiation (Fig. 4.103) presents the already described overestimation
trend, and the correspondence gets better in C case. Moreover, the statistical indexes remain small in
comparison with the order of magnitude of the values for both hourly and mean daily solar radiation.
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.102: Hourly solar radiation with di�erent dataset comparison

71



MEAN DAILY SOLAR RADIATION
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.103: Mean daily solar radiation with di�erent dataset comparison
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Correspondence is improved in hourly relative humidity case (Fig. 4.104). The trend of large overes-
timations when low values of the variable are veri�ed is still present in all cases and, particularly in
C, overestimation is also veri�ed for larger values when compared with A and B. Moreover, statistical
indexes are practically the same. Conversely, mean daily relative humidity (Fig. 4.105) predictability
gets worse from A to B to C, the trend is the same as in the hourly based case, and statistical indexes
are similar.
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.104: Hourly relative humidity with di�erent dataset comparison
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.105: Mean daily relative humidity with di�erent dataset comparison
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In hourly wind speed case (Fig. 4.106) it can be seen an improvement in the R2 coe�cient which,
however, is very low. The trend also changes from over and underestimation for low and high values -
respectively � in A, to a slight overestimation in B, to a consistent overestimation in C. On the other
hand, the correspondence largely improves in case C for mean daily wind speed (Fig. 4.107), passing
from R2 values of 0.56 and 0.57 (in A and B, respectively) to 0.73. Moreover, the overestimation trend
still remains, and it gets more evident in C. Nevertheless, it must be remembered that elevation of
anemometers a�ects the observed information, and a correction coe�cient could be evaluated.
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.106: Hourly wind speed with di�erent dataset comparison
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.107: Mean daily wind speed with di�erent dataset comparison
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Underestimation tendency is present in all three cases for daily precipitation (Fig. 4.108). However, the
coe�cient of determination gets worse from A to B, and then improves to the largest value (0.75) in C
case. Moreover, statistical indexes display the same behaviour.
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.108: Daily precipitation with di�erent dataset comparison
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For the hourly soil moisture case (Fig. 4.109) a very slight improvement of the predictability is observed
in C, while the ME, MAE, and RMSE are the same in all cases. The consistent underestimation remains
too. Additionally, the exact same behaviour is veri�ed for the mean daily case (Fig. 4.110).
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.109: Hourly soil moisture with di�erent dataset comparison
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.110: Mean daily soil moisture with di�erent dataset comparison
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For both hourly and mean daily potential evapotranspiration (Fig. 4.111 and Fig. 4.112) it is observed
that the strong overestimation is still present in all cases, and the coe�cient of determination improves
by one percentual point in C.
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.111: Hourly potential evapotranspiration with di�erent dataset comparison
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Figure 4.112: Mean daily potential evapotranspiration with di�erent dataset comparison
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Finally, for the hourly discharge (Fig. 4.113) the agreement improves from A to B to C, but values of R2

are still discreet. On the other hand, in terms of mean daily discharge (Fig. 4.114) the correspondence
is equal in A and B cases (0.66), while it considerably improves to 0.74 when considering only 2019 and
2020. It is also evident that for hourly and mean daily discharges the underestimation trend � especially
for large values � is still present.
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.113: Hourly discharge at Bovisio with di�erent dataset comparison
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(c) Filtered from 7 am to 3 am (2019-2020)

Figure 4.114: Mean daily discharge at Bovisio with di�erent dataset comparison
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Hence, as a brief overview it can be said that the agreement improves in most of the cases when using
the �ltered dataset for 2019 to 2020, being the exception the hourly solar radiation and the mean daily
relative humidity. Furthermore, the over or underestimation trends are conserved in all but hourly wind
speed cases. Finally, it should be considered that for C case there is less amount of data analysed and,
consequently, results may not be as robust as the ones shown for 2013 to 2020 period.

4.3 Sensitivity analysis

To de�ne which one of the meteorological forcings in�uences the most the simulated hydrological vari-
ables (soil moisture, potential evapotranspiration, and discharge), as already mentioned, it is performed
a sensitivity analysis by means of the one-factor-at-time (OAT) methodology [40] [41]. In the following
charts (Fig. 4.115 to Fig. 4.122) are presented four scatter plots for each hydrological variable at daily
scale, each one representing the results of the simulation obtained by forcing the model with observed
data except for the variable in the title (which is the one forecasted by MOLOCH). Notice that wind
speed is not considered since it does not in�uences the estimation of the hydrological quantities in the
present study.

In �rst place, it can be seen that soil moisture (Fig. 4.115 and Fig. 4.116) is a�ected by solar ra-
diation and, mainly, by precipitation forecasts. This, due to the fact that the coe�cient of determination
drops to 0.92 and 0.85 in the solar radiation and precipitation cases, respectively. Thus, this combined ef-
fect makes the forecast to have the behaviour shown in Fig. 4.83 in the last section, where the R2 is 0.82.
On the other hand, for temperature and relative humidity are obtained perfect forecasts of the variable.
Hence, bearing in mind that the soil moisture is dynamically described by the water balance equation in
FEST-WB model (Equation 3.6), which depends on precipitation, surface runo� and drainage �uxes, and
evapotranspiration � which at the same time is strictly dependent on the potential evapotranspiration -,
it is clear why forecasts of precipitation a�ects the soil moisture variable. Additionally, solar radiation
is also present in Priestley-Taylor equation for the estimation of potential evapotranspiration and, as
consequence, it also a�ects soil moisture forecasts.
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Figure 4.115: Mean daily soil moisture simulated vs forecasted sensitivity analysis
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Figure 4.116: Mean daily soil moisture simulated vs forecasted-simulated sensitivity analysis

Results of potential evapotranspiration are shown in Fig. 4.117 and Fig. 4.118. It can be seen that,
e�ectively, the solar radiation strongly in�uences the potential evapotranspiration while the additional
meteorological forcings do not. Consequently, the overestimation trend veri�ed for the solar radiation
leads to the behaviour described in Fig. 4.86 where a strong overestimation is evident.
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Figure 4.117: Mean daily potential evapotranspiration simulated vs forecasted sensitivity analysis
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Figure 4.118: Mean daily potential evapotranspiration simulated vs forecasted-simulated sensitivity anal-
ysis

Concerning the discharge at Bovisio station, results are shown from Fig. 4.119 to Fig. 4.122. It is evident
that the precipitation strongly in�uences the discharge forecasts leading to the underestimation observed
in Fig. 4.89, while with the other meteorological forcings are obtained practically perfect forecasts. This
results are also evident when considering discharges greater or equal than 25m3/s (Fig. 4.121 and Fig.
4.122), where the coe�cient of determination decreases to 0.16 when the model is forced with forecasted
precipitation.
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Figure 4.119: Mean daily discharge at Bovisio simulated vs forecasted sensitivity analysis
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Figure 4.120: Mean daily discharge at Bovisio simulated vs forecasted-simulated sensitivity analysis
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Figure 4.121: Mean daily discharge at Bovisio (Q ≥ 25m3/s) simulated vs forecasted sensitivity analysis
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Figure 4.122: Mean daily discharge at Bovisio (Q ≥ 25m3/s) simulated vs forecasted-simulated sensitivity
analysis

With this analysis, it can be said that solar radiation and precipitation are the variables in�uencing the
most the prediction of the hydrological variables. Thus, the principal errors committed by MOLOCH
model are the underestimation of precipitation � especially for large observed values � and the overesti-
mation of solar radiation � which depends on the cloudiness index and the coverage -, which lead to the
underestimation of the soil moisture, the strong overestimation of the potential evapotranspiration, and
most important, to the underestimation of the discharge.
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Chapter 5

Conclusions

In the present study a comparison analysis between observed weather data and MOLOCH forecasts,
and between simulated hydrological variables obtained when forcing FEST-WB model with observed
and forecasted meteorological information were performed. Concerning the meteorological variables, it
was found good agreement with respect to a linear regression for temperature and solar radiation, while
relative humidity of the air and precipitation have a discreet correspondence, and wind speed presents
high dispersion at the hourly scale and su�cient agreement at daily scale. The solar radiation was also
analysed by seasons and the lower correspondence of data was veri�ed in winter in the hourly case, which
may be explained by the presence of fog in the cold periods a�ecting the forecasts, however, in the mean
daily and daily maximum cases the lowest agreement was present for summer with an overestimation
for low observed values. Moreover, daily precipitation was also analysed at the seasonal scale, and it
was found poor predictability in summer where convective precipitation is common. Conversely, better
results were veri�ed for spring and autumn � which are the rainy periods of the year corresponding to
frontal episodes � and especially in winter where less precipitation is present. In respect of the simulated
hydrological variables, good correspondence was veri�ed for soil moisture and potential evapotranspira-
tion, while discreet and su�cient agreement is present in daily and hourly �owrates, respectively. In
addition, analysis at seasonal scale of discharge was also performed and it was found similar behaviour
as the one of precipitation. Furthermore, comparison was also made with di�erent forecasted datasets:
the complete one, �ltered from 07:00 am to 03:00 am of the next day, and �ltered for the period 2019 to
2020. It was found that the agreement slightly improved in the last case, but it must be considered that
less information is contained in that dataset.

Additionally, to evaluate the performance of MOLOCH model when using its forecasts as input of FEST-
WB model to simulate discharges, the one-factor-at-time (OAT) methodology was applied. It was shown
that solar radiation and precipitation in�uence the most the simulation of hydrological variables and,
for instance, strong overestimation of potential evapotranspiration and underestimation of soil moisture
and especially of discharge are observed.

Thus, bearing in mind that the present study is particularly interested in discharge forecasting for
ungauged basins using forecasted meteorological information as input of a hydrological model, it can be
concluded that � in the area of study - the underestimation of precipitation � especially large in summer
� and the overestimation of solar radiation with respect to their observed values given by MOLOCH
model, are the main reasons why discreet correspondence with an underestimation trend of discharge is
veri�ed. Nevertheless, it must be highlighted the good performance in terms of temperature and relative
humidity, and the fact that, although solar radiation in�uences the discharge forecasting, it shows a high
level of correspondence of the information. Therefore, it can be said that taking the �rst 24 hours of
forecasts given by MOLOCH leads to a discharge estimation that is not su�ciently accurate, since the
error committed � speci�cally for large �owrates - is not negligible. However, this does not mean that
MOLOCH model is not suitable for the given task, instead, it must be remembered that it is a high
spatial detail meteorological model with the scope of represent the convective phenomena.

Further comments are that it is worth to remember that wind speed did not a�ect the simulation of
hydrological variables in the present study, and that problems concerning the positioning of measuring
instruments could be considered by the estimation of a correction factor function of the wind logarithmic
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equation. Furthermore, MOLOCH has its own forecast of soil moisture so comparison could be accom-
plished with simulations coming directly from observed weather data. In addition, it must be noticed
that the area of study has a surface smaller than 2000 km2 and, as a consequence, the possibility that
MOLOCH meteorological forecasts may show better performance when compared with observed data in
basins with di�erent sizes should be evaluated. Finally, the present study considered only the Seveso-
Olona-Lambro river basins in the period 2013 to 2020 which is characterized for the presence of urban
areas, a mountainous part and a plain, therefore, further studies in basins with di�erent characteristics
� for example where snow dynamics play an important role � could be considered in order to clarify the
robustness of the results here presented.

Finally, in respect of future developments, from a hydrological and civil protection point of view, ac-
tions should be evaluated in order to improve the predictability - especially for precipitation - by part
of the meteorological model, or for example, by processing the forecasted data with some suitable bias
correction methodologies before using it to force the FEST-WB hydrological model.
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Appendix A - Post-processing of

MOLOCH data

To create a unique homogeneous �le readable by FEST-WB model a post-processing of the downloaded
information was performed by means of the Climate Data Operator (CDO) program. In the following is
presented a Bash script example for processing information of MOLOCH forecasts in which the following
operations are made:

� Merging of grib2 �les.

� Converting grib2 �les into netcdf.

� Reduce the area of interest by selecting a grib box with speci�c coordinates.

� Calculate wind speed for u and v components.

� Set time references.

� Remove x and y variables since latitude and longitude are already present in the netcdf �le.

� Remove variables that are not used in the hydrological simulation.

#!/ bin /bash

#Merge a l l g r ib2 f i l e s in one s i n g l e f i l e
cdo cat * . g r ib2 un i c o_ f i l e . g r ib2

#Convert g r ib2 f i l e i n to ne tcd f f i l e
wgrib2 un i c o_ f i l e . g r ib2 =netcd f un i c o_ f i l e . nc

#Se l e c t t h i s g r ib box with these coo rd ina t e s
cdo s e l l on l a tbox ,8 , 12 , 44 , 47 un i c o_ f i l e . nc r i t a g l i o . nc

#Calcu la te the wind speed f o r u and v components
ncap2 =O =s "windspeed=sq r t (UGRD_10maboveground^2+VGRD_10maboveground^2)"

r i t a g l i o . nc r i t ag l i o_ven to . nc

#Set the time r e f e r e n c e s
ncap2 =O =s " time@units=\" seconds s i n c e 1970=01=01 00 : 00 : 00\ ""

r i t ag l i o_ven to . nc moloch_time . nc

#Remove x and y va r i ab l e s , s i n c e l a t i t u d i n e and long i tude in fo rmat ion are
a l r eady pre sent in the netcd f f i l e

ncks =C =O =x =v x , y moloch_time . nc moloch_allvar . nc

#Remove a l l the v a r i a b l e s we do not use f o r hyd r o l o g i c a l s imu la t i on s
cdo delname ,ASNOW_surface , PRMSL_surface , PRMSL_meansealevel , TCDC_surface ,

WEASD_surface , UGRD_50maboveground ,UGRD_80maboveground ,
UGRD_100maboveground ,VGRD_50maboveground ,VGRD_80maboveground ,
VGRD_100maboveground , LAPR_surface , DPT_2maboveground ,
TSOIL_0D03underground moloch_allvar . nc moloch_netcdf_"$data_0b" 03 . nc
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List of abbreviations

AMC Antecedent Moisture Condition
ARPA Regional Environmental Protection Agency
BOLAM Meteorological model developed at CNR-ISAC
CDO Climate Data Operator
CNR-ISAC National Research Council of Italy - Institute of Atmospheric Sciences and

Climate
CSNO North-West Over�ow Channel (Canale Scolmatore di Nort-Ovest)
ECMWF European Centre for Medium-Range Weather Forecasts
FEST-WB Flash-�ood Event-based Spatially-distributed rainfall-runo� Transformation -

Water Balance model
GCM Global Circulation Model
GFS Global Forecast System
IDW Inverse Distance Weighting
MAE Mean absolute error
ME Mean error
MNW Meteorological Network
MOLOCH Meteorological model developed at CNR-ISAC
m a.s.l. Metres above sea level
NCEP National Centers of Environmental Prediction
NOAA National Oceanic and Atmospheric Administration
NWPs Numerical Weather Predictions
OAT One-factor-at-time
PET Potential evapotranspiration
RMSE Root mean square error
SCS-CN Soil Conservation Service - Curve Number
SOL Seveso-Olona-Lambro
TMPA Multisatellite Precipitation Analysis
UTC Universal Time Coordinated
WRF Weather Research Forecasting
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