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Abstract

High Entropy Oxides (HEOs) are an emergent class of materials characterized by high
configurational disorder. The growing interest in these materials is motivated by their
unique properties, including low thermal conductivity, colossal dielectric constant and su-
perionic conductivity. This work proposes the very first study of the structural, electronic
and magnetic properties of prototypical HEOs based on resonant inelastic x-ray scat-
tering (RIXS). Specifically, rock-salt compounds Mg0.2Cu0.2Ni0.2Co0.2Zn0.2O (Mg-CNCZ)
and Cu0.25Ni0.25Co0.25Zn0.25O (CNCZ) have been tested. RIXS measurements have been
performed at the copper L3 absorption edge, at distinct scattering geometries and incident
photon polarization. Ligand field, including dd and charge-transfer, excitations evidence
a sizeable Jahn-Teller distortion of the CuO6 octahedra, which is larger for Mg-CNCZ
than for CNCZ, and allow us to estimate the energy gain associated to the distortion,
a missing information in the literature. The low-energy spectral region shows features,
which can likely be assigned to magnetic excitations. Our major clue is the observation
that the energy of the magnetic peak in Mg-CNCZ is lower than in CNCZ because of the
extra non-magnetic ion present in the lattice of the former, which reduces the effective
magnetic interaction strength: based on this argument, we can quantitatively explain the
relative energies of the magnetic peaks in the two systems and note that RIXS effectively
probes collective excitations that are coherently excited at multiple resonant sites. In
light of this, we could explain the momentum dependence of magnetic excitations within
the framework of a simple Heisenberg model with an effective antiferromagnetic coupling
of approximately 22 meV. This work demonstrates that RIXS provides a wealth of infor-
mation about the structural, electronic and magnetic properties of Mg-CNCZ and CNCZ,
and could possibly do the same for many other HEOs.





Sommario

Gli ossidi ad alta entropia (High Entropy Oxides, HEOs) sono una emergente classe di
materiali ad elevato disordine configurazionale. Il crescente interesse diffusosi nella co-
munità della scienza dei materiali è motivato dalle proprietà uniche di questi ossidi, tra
le quali citiamo bassa conduttività termica, costante dielettrica colossale e conduttività
superionica. Questo lavoro di tesi propone un innovativo studio sulle proprietà strutturali,
elettroniche e magnetiche di prototipici HEOs basato sulla tecnica resonant inelastic x-
ray scattering (RIXS). In particolare, abbiamo testato i composti a struttura rock-salt
Mg0.2Cu0.2Ni0.2Co0.2Zn0.2O (Mg-CNCZ) e Cu0.25Ni0.25Co0.25Zn0.25O (CNCZ). Le misure
RIXS sono state effettuate alla soglia L3 del rame, a diverse geometrie di scattering e
polarizzazione incidente. Le eccitazioni di campo ligante, incluse le dd e le eccitazioni
charge-transfer, evidenziano una considerevole distorsione di tipo Jahn-Teller delle unità
ottaedriche CuO6, che risulta maggiore nel composto Mg-CNCZ, e ci permettono di sti-
mare il guadagno energetico associato alla distorsione, un’informazione assente nella let-
teratura. La regione spettrale a bassa energia evidenzia picchi che possono essere asseg-
nati a eccitazioni magnetiche. La caratteristica principale è l’osservazione del fatto che
l’energia del picco magnetico in Mg-CNCZ è minore che in CNCZ, a causa della presenza
di un extra ione non magnetico nel reticolo, che riduce la forza dell’interazione magnetica
effettiva: sulla base di questa affermazione, possiamo spiegare quantitativamente le en-
ergie relative dei picchi magnetici nei due sistemi e notare che il RIXS sonda eccitazioni
collettive che sono eccitate coerentemente nei siti risonanti. Alla luce di questo, abbiamo
dato una spiegazione all’andamento delle eccitazioni magnetiche in funzione di variazioni
di momento trasferito nel contesto del modello di Heisenberg, con un effettivo accoppi-
amento antiferromagnetico di approssimativamente 22 meV. Questo lavoro dimostra che
il RIXS fornisce abbondanti informazioni sulle proprietà strutturali, elettroniche e mag-
netiche di Mg-CNCZ e CNCZ, e potrebbe eventualmente fare lo stesso per molti altri
HEOs.
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1| High Entropy Oxides

In the early 2000s the materials science community has explored a new class of multi-
element alloy systems called High Entropy Alloys (HEAs). This branch of research was
first introduced in 2004 by Yeh et al. [1] and Cantor et al. [2]. The term "high entropy" is
attributed by virtue of their many constituent elements: HEAs are syhtesized by mixing at
least five elements in roughly equimolar concentration. One might think that the resulting
high degree of configurational disorder would lead to the synthesis of multi-phase alloys,
which are complex materials with limited applications. Nevertheless, experiments show
that the high-entropy character is fundamental in the formation of a single-phase material
and is at the basis of its mechanism of stabilization.
In the following years the realm of high-entropy materials rapidly expanded including
novel and interesting families of compositionally complex compounds (Fig. 1.1).

Figure 1.1: A timeline of the synthesis of new high-entropy materials is proposed. The high
number of classes testifies the increasing interest in compositionally complex materials.
Adapted from B. L. Musicò et al. [3].

Among them, High Entropy Oxides (HEOs) appear to be very promising for a wide range
of applications and represent the main topic of this work. The first HEO was synthesized
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in 2015, when the multi-metal oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O was shown to stabilize in
a rock-salt single phase. Its properties will be better discussed in chapter 1.2. Actually,
over the years oxides with many other crystal structures have been synthesized, including
fluorite oxides (HEFOs) [4], perovskite oxides [5], spinel oxides [6] and many more [7].
Even though there is no clear and widely agreed definition of HEOs, it is still possible to
underline some of their main properties and remark important aspects [8]:

• they are single-phase crystalline materials where the high level of entropy is not
related to an atomic positional disorder (as it would be in amorphous materials):
entropy is primarily related to the random distribution of metallic cations of different
chemical species on the cation sub-lattice sites;

• in most of the cases, the single phase is observed only at sufficiently high tempera-
tures, while multiple phases are observed at low temperature conditions. A deeper
study of the transitions to single-phase states is provided in the following section
(1.1);

• another peculiar property of HEOs is the temperature-controlled reversibility of the
single-phase to multi-phase transition, evidence of the crucial role played by entropy
in the material stabilization [9–11].

In conclusion, we mention that there is a strong interest in studying this class of oxides.
Exciting properties and results were reported, including excellent strength and ductility
[12], colossal dielectric constant [13], room temperature superionic conductivity [14], which
can be tuned by controlling the phase stabilization process.
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1.1. The role of entropy in HEOs

The complete understanding of the entropy-driven stabilization of HEOs requires the in-
troduction of some thermodynamic arguments. The multi-phase to single-phase transition
occurs if the variation of Gibbs free energy ∆G associated to it is negative: ∆G < 0. We
recall that the Gibbs free energy G is a thermodynamic potential defined as

G = H − TS (1.1)

where T is the temperature of the thermodynamic system, H is the enthalpy and S the is
entropy. The free energy variation of the transition in HEOs must take into account both
an enthalpic and an entropic contribution. The enthalpic contribution is the enthalpy
of formation Hf , i.e., the variation of enthalpy caused by the formation of a compound
from its constituent elements. The variation of entropy is, instead attributed to the
compositional disorder associated to the random arrangement of metallic ions on the
cationic sub-lattice; it is denominated configurational entropy. From equation 1.1 we
obtain

∆G = ∆Hf − T∆Sconfig (1.2)

Equation 1.2 encompasses some approximations: in particular, we neglect the existence of
any kind of disorder within the oxygen sub-lattice (vacancies or other point defects), that
would have contributed with a further increase of the total entropy [15]; moreover other
entropy enhancements due to the local environment [8] - such as expansions and contrac-
tions of the oxygen sub-lattice, Jahn-Teller distortions, vacancies, interstitials or anti-site
defects - are not considered; finally, it is assumed that the synthesized HEO compound is
an ideal solid solution, so that further enthalpic contributions due to enthalpy of mixing
are neglected [10].
The configurational entropy of a metal oxide with N different metal cations can be eval-
uated as [7, 10, 15]

∆Sconfig = −R
N∑
i=1

χi lnχi (1.3)

where χi represents the molar fraction of the ith chemical species and R = 8.314 Jmol-1K-1

is the universal gas constant. In an equimolar system χi = 1/N and equation 1.3 can be
simplified to

∆Sconfig = R lnN (1.4)

It is clear that configurational entropy is an increasing function of the number N of
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constituent elements.

Figure 1.2: Configurational entropy dependence on number of components N and on their
molar fraction χi. For each number of cations, the value of Sconfig = R lnN at equimolar
cation ratios is reported.

According to this definition, attempts to distinguish HEOs from Medium Entropy Oxides
(MEOs) and Low Entropy Oxides (LEOs) were proposed [8, 16]. Oxides with a config-
urational entropy larger than 1.5R are classified as HEOs. According to equation 1.4,
at least 5 different metal constituents are required to achieve this level of disorder. An
oxide material satisfying the condition Sconfig ≤ 1.0R is instead classified as a LEO, while
if 1.0R ≤ Sconfig ≤ 1.5R the material is a MEO. Figure 1.2 shows how configurational
entropy depends on the number N and on the molar fraction χi of the constituent metal
cations. One can see that entropy is maximized at equimolar cation ratios.
Now that we have introduced the main terms of equation 1.2, we immediately understand
how configurational disorder and enthalpy of formation affect the multi-phase to single-
phase transition in HEOs. The analytical condition required to obtain the stabilization
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of the single phase in a high entropy material with generic molar cation ratios is

∆Hf < RT
N∑
i=1

χi lnχi (1.5)

and clarifies that a HEO is formed when the entropic contribution dominates the free en-
ergy landscape over ∆Hf . In this framework, the scientific community felt the necessity
to distinguish High Entropy Oxides from the so-called Entropy Stabilized Oxides (ESOs)
[7, 15, 17]. ESOs are a sub-class of HEOs identified by those materials having both a
positive enthalpy of formation and a sufficiently high configurational entropy, for which
the single-phase state is reached uniquely due to the entropic contribution. Instead, the
“high entropy” terminology in HEOs simply refers to the system with high configurational
entropy, but possibly with ∆Hf < 0.
Generally, temperature plays a crucial role in the single phase stabilization. For exam-
ple, rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O is formed solely at high temperatures, and this
is a common result among all ESOs. Equation 1.5 consistently clarifies that elevated
temperatures promote the multi-phase to single-phase transition, given that the entropic
term is proportional to T . Specifically, a critical temperature Tc may be associated to
the temperature required to satisfy the condition ∆Hf = Tc∆Sconfig. When T < Tc, the
single phase is not stable anymore and phase segregation is observed. People relies on
quenching procedures to kinetically freeze the single-phase state and prevent the system
from relaxing to the minimum of the free energy landscape, which corresponds to a multi-
phase system [8]. To summarize, we recall that the synthesis of HEOs requires a negative
variation of Gibbs free energy associated to the single-phase to multi-phase transition.
This is done by

• heating up the multi-phase system, therefore incrementing T∆Sconfig;

• increasing the total number of constituent metal cations N ;

• forcing equimolar cation ratios to maximize ∆Sconfig.
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1.2. (MgCoNiCuZn)O: the prototypical HEO

In 2015, Rost et al. [10] reported the synthesis of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (from now
on, Mg-CNCZ), a single-phase five-component HEO obtained from equimolar mixture
of MgO, CuO, ZnO, NiO and CoO. Here we discuss about some of the most relevant
properties of this prototypical compound.
As already mentioned, it exhibits a rock-salt structure: the crystal lattice is obtained from
the superposition of one FCC oxygen sub-lattice and one FCC metal cations sub-lattice.
A representation of the Mg-CNCZ crystal structure is proposed in Fig. 1.3.

Figure 1.3: Structure of a generic five-component rock-salt HEO. Differently coloured
octahedral cages highlight the randomness in the distribution of metal cations. Picture
taken from Solveig S. Aamlid et al. [8].

Metal cations are randomly and homogeneously distributed over the sub-lattice sites,
while locally they are surrounded by an octahedral cage of O2− ions. The reported lattice
parameter values span from 4.214 Å to 4.235 Å [13, 18, 19].
Regarding thermal properties, Mg-CNCZ exhibits a low thermal conductivity κ, in the
order of 3 Wm-1K-1 [20]. This is a common property to all members of the HEOs family.
Indeed, materials with high configurational entropy are characterized by an increased
density of phonon scattering centers, responsible for the large thermal resistance [21].
Consistently, all precursor oxides (CoO, CuO, MgO, NiO and ZnO) have a higher thermal
conductivity by at least one order of magnitude at room temperature (> 20 Wm-1K-1)
[22–26]. The thermal conductivity of Mg-CNCZ compares to that of amorphous materials
(around ∼ 1 Wm-1K-1 [27]), where the density of scattering centers is even larger. However,
they possess a much larger electrical conductivity (see below) which makes them optimal
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materials for thermoelectric applications. Interestingly, experiments show that adding
a cation species to Mg-CNCZ (such as Sc, Sb, Sn, Cr, Ge) leads to a reduction of the
thermal conductivity by a factor of 2 [20], hinting that configurational disorder may be
regarded as an additional tool to design their thermal properties.
Electrochemical Impedance Spectroscopy [28] studies on the temperature dependence of
electrical conductivity σm revealed that it increases with temperature [29], which is typical
of a thermally activated process, according to the following expression:

σm ∼ 1

T
e
− Ea

kBT , (1.6)

where kB is the Boltzmann constant, Ea is the polaron activation energy and T is the
temperature of the system. Experimental data are plotted on an Arrhenius plot in Fig.
1.4.

Figure 1.4: Electrical conductivity of Mg-CNCZ in logarithmic scale as a function of T−1

[29].

Different linear dependencies are observed in three temperature regimes. Since the slope
in an Arrhenius plot is related to the activation energy of the process, three distinct
activation energies are assigned: Ea(1) = 1.01 ± 0.01 eV is the activation energy of the
process in the low T regime, Ea(2) = 0.91± 0.03 eV is referred to a medium T regime and
Ea(3) = 0.62±0.03 eV is assigned to the activation energy in the high T regime. Balcerzak
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et al. suggest that the change of the slope is related to phase transformation processes
upon heating, such as phase segregation due to the low compatibility of Cu2+ and Zn2+

with other constituent elements. The authors also reported that σm was 8.0×10−2 Scm-1

at 1148 K, when Mg-CNCZ possesses a rock-salt single phase. This value is comparable
to the electrical conductivity of semiconductors, and it is several orders of magnitude
larger than conductivity in insulators; as a reference, at room temperature, the electrical
conductivity of Germanium is 2.2× 10−2 Scm-1 [30], while in insulating fused quartz it is
equal to 1.3× 10−16 Scm-1 [31].
As for comparison, we focused on the equimolar four-component oxide Co0.25Ni0.25Cu0.25Zn0.25O
(CNCZ): it is mostly equivalent to the parent compound Mg-CNCZ, where the individual
constituent MgO was removed from the mixing procedure.
Mg-CNCZ and CNCZ samples, studied in this work, have been synthesized by the group
of P. Ghigna at University of Pavia (Italy) with the Sol-Gel based Pechini method [32],
followed by thermal treatment at 1000°C and by quenching in air. Since the CNCZ sample
has less constituent elements than Mg-CNCZ, we expect the configurational disorder to be
smaller: indeed, from equation 1.4 one has that ∆Sconfig = R ln 5 = 1.61R for Mg-CNCZ
and ∆Sconfig = R ln 4 = 1.39R for CNCZ, as also reported in Fig. 1.2, which classifies
them as HEO and MEO, respectively.
MgO, CoO and NiO naturally adopt a rock-salt structure [33–37], while CuO and ZnO
exhibit tenorite and wurtzite structure, respectively [37–39], therefore contributing with a
positive enthalpic contribution to the variation of the Gibbs free energy in the transition
to the single-phase rock-salt structure. Indeed, for the purpose of adapting to an over-
all rock-salt structure, Cu and Zn atoms are forced to modify their local environment;
more precisely, interatomic Cu-O and Zn-O distances and bond directions are forced to
change, and this process demands a certain amount of energy. That said, a quantifica-
tion of the energy associated to the multi-phase to single-phase transition can be done
assuming that the variation of enthalpy in the CuOtenorite → CuOrock−salt transition and
in the ZnOwurtzite → ZnOrock−salt transition can be approximated by estimates of Gibbs
free energy variations [10], as in the following: according to Ref. [40] and Ref. [41],
∆Hf,CuO ≈ ∆GCuO = 22 kJmol-1 is the CuO transition free energy from tenorite to
rock-salt and ∆Hf,ZnO ≈ ∆GZnO = 25 kJmol-1 is the equivalent estimate for the ZnO
transition from wurtzite to rock-salt; the total variation of the Gibbs free energy during
the transition for Mg-CNCZ is

∆Hf,Mg−CNCZ = 0.2∆Hf,CuO + 0.2∆Hf,ZnO = 9.4 kJmol-1 (1.7)

where 0.2 = 1
5

accounts for the molar fraction of CuO and ZnO in the Mg-CNCZ sample.
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The same calculation can be applied to the four-component oxide, taking into account
that each of the parent oxides has a molar fraction equal to 0.25 = 1

4

∆Hf,CNCZ = 0.25∆Hf,CuO + 0.25∆Hf,ZnO = 11.75 kJmol-1. (1.8)

As expected, the enthalpy of formation is positive for both systems, and is larger for the
four-component oxide because there is a larger probability of finding an atomic site in the
metal cation sub-lattice occupied by Cu or Zn.
From these estimates, a quantitative prediction of the lower boundary to the transition
temperature Tc can be provided:

Tc,Mg−CNCZ >
0.2∆Hf,CuO + 0.2∆Hf,ZnO

R ln 5
= 429 °C

Tc,CNCZ >
0.25∆Hf,CuO + 0.25∆Hf,ZnO

R ln 4
= 746 °C

(1.9)

Due to the smaller number of constituents, the four-component oxide requires larger
temperatures to overcome the enthalpic cost of the structural transition compared to Mg-
CNCZ, in agreement with experimental observations. However, these calculations un-
derestimate the experimental critical temperatures, since Mg-CNCZ stabilizes in a single
phase at 875 °C and CNCZ is expected to require even higher temperatures [10]. Clearly,
the above thermodynamic arguments are approximate and further entropic and/or en-
thalpic terms must be included in this picture. The mismatch might be partially explained
by the fact that this simple model overestimates the configurational order attributed to
these materials [8]: indeed, configurational entropy suffers from reductions with respect
to the ideal scenario captured by equation 1.4. Specifically, clustering and short-range
ordering may be responsible for departures from an ideal random distribution of metal
cations throughout the crystal lattice, reducing configurational disorder. Clustering hap-
pens when cations of the same chemical species prefer to be surrounded by first-neighbours
either of different or same species, i.e., when a preferential short-range chemical bonding
is present. A 2-D simple model visualizing an example of clustering in a 2-components
metal oxide is shown in panel (b) of Fig. 1.5: the oxygen sub-lattice is represented by
the ordered arrangement of grey spheres; blue and light-blue spheres model metal cations
and complete the full rock-salt structure. Even though the disordered state corresponds
to a maximum of the configurational entropy, the clustered state might be close in energy
competition and be kinetically preferred during the quenching procedure. This is why
optimized quenching protocols play a major role in preventing the formation of clusters.
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Figure 1.5: (a) Perfect random distribution of metal cations in the metal FCC sub-lattice,
represented by blue and light-blue spheres. (b) Presence of clustering reduces the system
entropy. (c) Example of short-range order arising in the sample. Figure taken from Solveig
S. Aamlid et al. [8].

An example of clustering was observed on (Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)O2, an oxide with flu-
orite structure showing elemental segregation of Ce [17]. Panel (c) visualizes short-range
ordering on a nanometric length scale, which arises from electrostatic forces and disrupt
the ideal lattice disorder. Unfortunately, short-range ordered clusters are challenging to
observe [42, 43].
An additional element to be taken into account is the presence of a spontaneous local dis-
tortion of the octahedral unit, which reduces the symmetry of the HEO system, namely
Jahn-Teller effect. It splits degenerate states as a consequence of symmetry breaking,
increasing the degree of disorder associated to the compound. This effect will be deeply
discussed in section 2.1.1. It is not yet clear if Jahn-Teller distortions have a sizeable
influence on the critical temperature estimates and quantitative evaluations of its contri-
bution to the entropic and enthalpic terms are missing in the literature, despite a number
of paper report on its experimental observation. The primary aim of our work is to pro-
vide an estimate of the energy associated to the Jahn-Teller distortion in Mg-CNCZ and
CNCZ.
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1.3. Jahn-Teller distortions in Mg-CNCZ

At the beginning of section 1.2 we introduced that in the family of rock-salt HEOs the
local coordination leads to the formation of octahedral complexes, as depicted in Fig.
1.3. Consequently, we may expect that the local environment of metal cations in HEOs
undergoes Jahn-Teller (JT) distortions.
A number of articles among the HEO literature report both the theoretical prediction [44–
46] and the experimental observation [18, 19] of a certain degree of structural disorder,
which adds up to the intrinsic configurational disorder of these materials. Extended X-ray
Absorption Fine Structure (EXAFS) is a useful tool to verify the distortion of the local
atomic structure. Indeed, the peaks in Fourier-Transformed EXAFS spectra contain infor-
mation on the radial distribution of neighbours to the probed cation. Rost et al. [18] pub-
lished an analysis of EXAFS spectra retrieved from rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O,
as shown in Fig. 1.6. The Mg cation was omitted from the experiment "due to the
energetic limitations of the beamline".

Figure 1.6: k2χ(k) EXAFS functions for cations of NiO, CoO, CuO, and ZnO precursor
oxides are shown in panel (A). Panel (B) reports χ(R) i.e. the FT of the EXAFS function
[18].

χ(k) is the EXAFS signal properly treated, and its Fourier transform, χ(R), is the radial
distribution function. R is the radial distance from the probed ion, not to be confused
with the universal gas constant introduced in section 1.1. From χ(R) we observe that
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the second peak, referring to the radial position of the next nearest neighbours (cations),
is found at roughly 2.6 Å in all cases: the cation-cation distance distribution does not
depend on the particular cations involved and is centered at the same value because of
the cubic symmetry of the rock-salt structure. The first peak, instead, is a measure of
the metal-anion distance: it is broader and shifted towards smaller R for Cu than for
other cations. In essence, the EXAFS study reveal a near-ideal FCC cation sub-lattice
interpenetrated to a locally distorted anion sub-lattice, especially around Cu2+ sites. The
same group performed also a more quantitative analysis on EXAFS spectra by fitting
the two coordination shell peaks of the χ(R) function, retrieving estimates of cation-
oxygen distances. They report a Zn-O bond length of 2.078 ± 0.009 Å, a Co-O bond
length of 2.089 ± 0.009 Å and a Ni-O bond length of 2.084 ± 0.005 Å, found in an ideal
local octahedral environment. Furthermore, they obtained a bimodal distribution of Cu-
O legths: 4 in-plane Cu-O bonds of length 1.993 ± 0.007 Å and two out-of-plane Cu-O
bonds of length 2.22 ± 0.02 Å, consistently with a JT-like tetragonal elongation of the
octahedral complex.
Further evidences of structural distortion in HEOs come from other techniques, such as X-
ray Diffraction (XRD) or Electron Paramagnetic Resonance (EPR) studies [47]. Berardan
et al. exploited these techniques to prove that the amount of tetragonal distortion depends
on Cu stoichiometry in Mg-CNCZ. For the sake of brevity, we only report the XRD
patterns for 7 Mg-CNCZ samples with increasing Cu molar fraction (Fig. 1.7).

Figure 1.7: X-ray diffraction patterns for Mg1–xCo1–xNi1–xZn1–xCuxO, with x spanning
from 0.16 to 0.28 [47].
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The (111), (200) and (220) reflections show well defined peaks for a Cu molar fraction
smaller than 0.2. When x > 0.2, the (111) peak remains independent on the copper
fraction, while the (200) peak and the (220) suffer from a strong intensity reduction and
an evident broadening, revealing an increasing departure of the material from the ideal
rock-salt structure. The opportunity of tuning the degree of distortion by controlling the
Cu molar fraction becomes interesting if we consider that functional properties depend
on the crystal structure: the distortion can be engineered to optimize the resistivity and
the dielectric constant of these materials [47].
From the discussion above, it seems clear that Mg-CNCZ and possibly other HEOs are af-
fected by JT distortions. However, associated bond length variations are never translated
into corresponding energy changes that might have an impact on the thermodynamic con-
siderations we made before. In particular, JT distortions might diminish the enthalpy of
formation associated to the transition of CuO and ZnO from the tenorite and the wurtzite
to the rock-salt structure, as well as increase the configurational entropy associated to the
JT distortions along different axes. In this context, we believe that RIXS could give a use-
ful insight, because it directly measures the energies at play in locally-distorted octahedral
complexes.
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1.4. Magnetic properties of Mg-CNCZ

The strong interest in HEOs does not pertain only to structural or configurational disor-
der: in the recent past the scientific community focused its attention on the investigation
of the magnetic behaviour of this family of oxides, revealing some interesting properties.
Even though several studies on HEOs with a variety of crystalline structures are available
[48–50], we restrict our review on the prototypical Mg-CNCZ compound.
In 2019, Junjie Zhang et al. [51] reported the first use of neutron powder diffraction to ex-
plore the magnetic structure of the Mg-CNCZ oxide, together with other complementary
techniques (Inelastic Neutron Diffraction and measurements of heat capacity and mag-
netic susceptibility) with unexpected results. Indeed, intuitively, a structurally disordered
compound consisting of 40% of non-magnetic ions is expected to display a spin-glass state
[52]; nevertheless, this naive expectation was disproved by the experimental evidence of
long-range magnetic ordering with propagation vector (1

2
1
2
1
2
). The magnetic structure

is driven by the anti-ferromagnetic (AFM) couplings between (111) planes of the cation
sub-lattice, while magnetic moments in each (111) plane exhibit ferromagnetic ordering.
A visual representation of the magnetic structure is proposed in Fig. 1.8. The magnetic
structure is analogous to that of CoO [53] and NiO [54].

Figure 1.8: Magnetic structure of the Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O compound. The O2–

sub-lattice does not contribute to any magnetic property, since O2– ions are not magnetic.
(111) planes of the cation sub-lattice exhibit AFM coupling. In-plane spins, instead,
remain parallel [51].

The fact that Mg-CNCZ undergoes a transition to a long-range ordered magnetic phase
has been investigated theoretically: Zs. Rák and D.W. Brenner exploited first-principles
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methods in combination with Monte Carlo (MC) simulations [55] and reproduce the cor-
rect magnetic structure with average magnetic interactions between nearest neighbours
and next-nearest neighbours of 0.18 meV and -2.72 meV, respectively, where the negative
sign accounts for antiferromagnetic coupling. Magnetic susceptibility measurements and
temperature-dependent neutron diffraction patterns reveal a Néel temperature TN in the
110−120 K range [51, 56]. As shown in Fig. 1.9, we report the temperature dependence of
magnetic susceptibility for the 5-component compound measured by Zhang et al. A clear
cusp is observed at 113 K, suggesting the occurrence of a paramagnetic-antiferromagnetic
phase transition.

Figure 1.9: Magnetic susceptibility data as a function of temperature, in presence of a 0.1

T magnetic field. Measurements were performed in the cooling regime (FC-C) [51].

Now we examine another phenomenological aspect concerning the magnetism of those
HEOs differing in the content of magnetic ions. The samples of our interest fall into this
category since they show a distinct magnetic ion fraction: 40% of cations in Mg-CNCZ
are non-magnetic, while the fraction decreases to 25% in CNCZ. Jimenez-Segura et al.
[56] published a direct comparison of magnetic susceptibility χ(T ) measured on a variety
of samples prepared with a variable content of magnetic ions. Samples were obtained by
replacing one magnetic (or non-magnetic) cation of the parent compound Mg-CNCZ with
a 1:1 mixture of non-magnetic monovalent and trivalent cations, such as Li+ and Ga3+.
All samples containing three magnetic cations display a distribution of Néel temperatures
in the 100−150 K range, in agreement with the Néel temperature of the parent compound.
HEO samples possessing only two magnetic ions exhibit a much smaller Néel temperature
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of about 25 K. This phenomenology captures the strengthening of long-range magnetic
ordering with increasing fraction of magnetic ions. The trend was predicted also by Monte
Carlo simulations [55], where the Néel temperature of the long-range magnetic phase was
calculated as a function of the molar fraction of the non-magnetic cations.

Figure 1.10: Simulated transition temperatures of the Mg-CNCZ compound as a function
of the fraction of non-magnetic cations. The red line highlights a linear relationship [55].

As depicted in Fig. 1.10, calculations led to a linear relationship between TN and the
magnetic ion content. Additionally, the computed linear dependence predicts that for a
fraction of non-magnetic cations larger than 84% the compound becomes a paramagnet.
We notice that the predicted Néel temperature for the equimolar cation ratio oxide (170
K) is 40% larger than the experimental value.
By virtue of this theoretical result, the ability to tune the phase transition temperature
by adjusting the fraction of magnetic cations turns into a concrete possibility.
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Scattering from Cu2+

The goal of this chapter is to provide the theoretical background to fully understand the
presentation and the discussion of the experimental results obtained performing Resonant
Inelastic X-ray Scattering on the HEO powder samples. The chapter is divided in 3
sections: at first, the electronic properties of Cu2+ and its octahedral environment will
be addressed; after that, an overview of the RIXS technique, together with cross section
calculations, is proposed; finally, a brief description of the employed experimental setup
is reported.

2.1. Electronic structure of Cu2+

In the following sections an introduction to some fundamental concepts regarding Crystal
Field theory, Jahn-Teller effects and Ligand Field theory is given, together with an expla-
nation of their importance in the framework of HEOs. In conclusion, a brief discussion
on spin-orbit coupling effects on 3d states will be reported. Since we performed RIXS
experiments at the Cu2+ L3 absorption edge, these theories will be presented with the aim
to specifically describe the electronic structure of the Cu2+ ion. It is known that Cu2+

cations in octahedral complexes have a 3d9 configuration [57], hence one electron is left
unpaired in the highest energy level; the electronic properties are well described by the
physics of a one-hole system and electron-electron interaction phenomena are neglected.

2.1.1. Crystal Field theory and Jahn-Teller effect

Crystal Field theory (CF) describes the breaking of degeneracies of electronic states due
to the electric field produced by the ligand ions. Typical systems properly modeled by
this theory are octahedral complexes of transition metals, where a transition metal cation
is surrounded by six anionic ligands at the vertices of an octahedron. The octahedral
symmetry splits the d orbitals of transition metals in two separate sets of degenerate
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levels, namely eg (dx2−y2 and d3z2−r2) and t2g (dxy, dxz and dyz) orbitals, that would be
fully degenerate in metal cations with spherical symmetry. On top of this, the system
may also suffer from a spontaneous mechanism known as Jahn-Teller (JT) effect, or Jahn-
Teller distortion, occurring in systems characterized by electronic degeneracy. The JT
effect consists in the removal of the electronic degeneracy as a direct consequence of a
symmetry-breaking local distortion, which provides a reduction of the overall energy. A
well studied example is the six-coordinated Cu2+ complex, where tetragonal compression
or elongation of the octahedral cage is responsible for further splitting both eg and t2g

states.

Figure 2.1: Electronic energy diagram of 3d orbitals in Cu2+ without distortion (Oh

symmetry) and with tetragonal elongation (D4h symmetry).

Figure 2.1 shows the electronic energy diagram in an octahedral complex. In absence of
distortion the symmetry is cubic: the cation and the ligands form a perfect octahedron
(Oh space group), since all cation-ligand interatomic distances are equivalent. As already
introduced, eg and t2g states show 4-fold and 6-fold degeneracy, respectively. If either com-
pression or elongation is present, the cubic symmetry is reduced to a tetragonal symmetry
(D4h space group). Assuming that elongation occurs along the z axis (as shown in Fig.
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2.1), the metal cation d3z2−r2 orbital undergoes a strong energy stabilization: a 3d electron
suffers from a smaller Coulomb repulsion when occupying the d3z2−r2 orbital rather than
orbitals laying on the xy plane, since along the z direction non-bonding electrons in the
apical anions are further away. The same rationale is used in case of a JT compression
and leads to an energy stabilization of the dx2−y2 state. This is the motivation under the
removal of degeneracy of eg states. Regarding t2g states, a similar result is expected. dxz
and dyz orbitals are energy-stabilized by tetragonal elongation and undergo splitting from
the dxy state. One can notice that dxz and dyz orbitals are degenerate even in tetragonal
symmetry. Looking at Fig. 2.1, we introduceDq, Ds andDt parameters: they are effective
crystal field parameters and are exploited to quantify the amount of tetragonal distortion.
Their values is determined by comparison with experimental results and strongly depend
on the material [58]. 10Dq provides the energy splitting between the eg levels and the t2g
levels. 2Ds−Dt and 2Ds+6Dt identify the position of dx2−y2 and d3z2−r2 with respect to
eg. Similarly 2Ds −Dt and Ds + 4Dt give the positions of dxy and dxz (dyz) orbitals with
respect to the t2g energy reference. Except for a common shift, d energy levels are given
by [59]

Ex2−y2 = 6Dq + 2Ds −Dt

E3z2−r2 = 6Dq − 2Ds − 6Dt

Exy = −4Dq + 2Ds −Dt

Exz = Eyz = −4Dq −Ds + 4Dt

(2.1)

such that
∆eg = Ex2−y2 − E3z2−r2 = 4Ds + 5Dt

∆t2g = Exy − Exz,yz = 3Ds − 5Dt.
(2.2)

2.1.2. Fundamentals of Ligand Field theory

The following section provides some fundamental concepts regarding Ligand Field (LF)
theory, which is instrumental in the interpretation of our experimental results. The LF
model applies the theory of molecular orbitals to transition metal complexes with the aim
to refine the CF picture of the electronic structure of the system. Indeed, while in CF
theory ligands are only responsible for the electrostatic forces that generate the crystal
field, LF theory takes into account the effects of possible hybridization of the ligand
orbitals with the transition metal orbitals. In octahedral complexes, the transition metal
d orbitals superimpose to the surrounding p orbitals of O2– ions placed at the vertices of
the octahedra. The resulting molecular orbitals are mathematically described by means
of linear combination of atomic Cu d and O p orbitals. In this picture, metal and ligand
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electrons are delocalized over the resulting molecular bonds.
The electronic energy diagram can be obtained by solving the eigenvalue equation for
the Hamiltonian HMO of the metal-O system. Assuming the simple case of a bi-atomic
molecule, the basis set is formed by 5 d orbitals (dx2−y2 , d3z2−r2 , dxy, dxz and dyz) and
3 ligand p orbitals (px, py and pz) and the corresponding Hilbert space is 8-dimensional.
Specifically, the Hamiltonian can be written as

HMO =



dx2−y2 d3z2−r2 dxy dxz dyz px py pz

Ex2−y2 0 0 0 0
√

3
2
tσ 0 0 dx2−y2

0 E3z2−r2 0 0 0 −1
2
tσ 0 0 d3z2−r2

0 0 Exy 0 0 0 tπ 0 dxy

0 0 0 Exz 0 0 0 tπ dxz

0 0 0 0 Eyz 0 0 0 dyz√
3
2
tσ −1

2
tσ 0 0 0 ∆ 0 0 px

0 0 tπ 0 0 0 ∆ 0 py

0 0 0 tπ 0 0 0 ∆ pz


Diagonal terms represent the expectation values of the energy of unperturbed atomic or-
bitals. This is why we found the expression of energy for d levels in the diagonal of the
5x5 sub-matrix (see equations 2.1 and 2.2). From now on, we will refer to this sub-matrix
as HCF . Instead, ∆ is the expectation value of the energy of p orbitals relative to the
energy of the hole ground state dx2−y2 , within the assumption that px, py and pz are de-
generate. Off-diagonal terms are the Slater-Koster overlap integrals t calculated between
any couple of atomic orbitals within the basis set. We must specify the meaning of σ and
π labels: they represent the character of the bond resulting from the superposition of p
and d orbitals. For instance, the off-diagonal term

√
3
2
tσ (1st row, 6th column) represents

the σ-like overlap integral between the transition metal dx2−y2 state and the oxygen px

state. The factor
√

3
2

accounts for the relative orientations of metal and ligand orbitals.
A detailed explanation can be found in Ref. [60].
In more realistic systems, such as octahedral cages in transition metal oxides, the cation
d orbitals superimpose to p orbitals of all 6 surrounding O2− anions. Consequently, an
extension of the previous picture must be introduced. The Hamiltonian of the whole
metal-oxide octahedral complex, named HMO6 , is a 23x23 matrix since the basis set con-
sists of 5 d orbitals and 18 p orbitals (3 for each anion). The full expression is reported in
Appendix A.3. The Hamiltonian includes the effects of JT distortion. Along the direction
of the apical ligands, orbital overlaps are either enhanced or weakened by compression or
elongation, respectively. As a consequence, we introduced distinct Slater-Koster overlap
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integrals, tσ,apical and tπ,apical, in the Hamiltonian entries involving p orbitals of the api-
cal anions. They are obtained by multiplying tσ and tπ by a factor F : F > 1 implies
tσ,apical(tπ,apical) > tσ(tπ) and describes the situation of compresses tetragonal distortion ,
while F < 1 implies tσ,apical(tπ,apical) < tσ(tπ) and describes elongated tetragonal distor-
tion.
By calculating the eigenvalues of HMO6 one is able to build the energy diagram of the
whole octahedral complex. Fig. 2.2 reports an example of calculated energies for hy-
bridized molecular states.

Figure 2.2: Calculated molecular energy levels of an octahedral complex system. The
color of each state is related to its symmetry character: red = d states, blue = p states,
shades of purple = linear combination of p and d states.

The effective crystal field parameters for transition metal d states were assumed to be
Dq = 0.1 eV, ∆eg = 0.5 eV and ∆t2g = 0.15 eV. Moreover, the energy difference ∆

between the 18-fold degenerate p states and the transition metal dx2−y2 state was set to
be -1 eV. Hybridized states are found in the central section of the picture. The five least
energetic levels are bonding states, while the five most energetic orbitals are anti-bonding
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states. 13 out of 18 anionic p states are not involved in any overlap mechanism and are
non-bonding states.
In principle, by optimizing the parameters to match experimental energies, one should
be able to retrieve a quantitative estimate of the CF and LF interactions. However,
in the present work we will extract quantitative CF parameters from the analysis of dd
excitations and use LF theory to qualitatively describe charge-transfer excitations.

2.1.3. The effect of spin-orbit coupling

A more refined description of the electronic properties of the transition metal should also
include the effects of spin-orbit coupling. In the following, we adopt the CF description
of Cu electronic states: the electronic properties of the Cu2+ ion are related solely to the
set of 3d states listed in Tab. 2.1, which are eigenstates of the CF Hamiltonian HCF .
Actually, in the presence of spin-orbit interaction, 3d states are not the eigenstates of
the system and spin is no longer a good quantum number. The Hamiltonian must be
corrected to include the spin-orbit interaction. We write

Htot = HCF +HSO, (2.3)

with

HSO = λ

[
(L+S− + L−S+)

2
+ LzSz

]
, (2.4)

where λ is the strength of the spin-orbit interaction, Lz and Sz are the z components
of the orbital angular momentum operator L and spin angular momentum operator S,
respectively, and L± and S± the corresponding ladder operators. If we rely on the matrix
formalism for the representation of the operators, the eigenvalue equation for Htot is
written as

HtotTSO = ΛTSO, (2.5)

where the new eigenvectors are the column vectors of TSO. The eigenvalues, instead, are
found on the diagonal of Λ. In 3d transition metal oxides the spin-orbit coupling (0.05
eV) is small compared to CF parameters (∼ 1 eV), and the effect of spin-orbit coupling
is negligible, except for degenerate states. Indeed, the degeneracy of dxz and dyz states is
removed and the final states are formed by their linear combination. We name them d−
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(lower in energy) and d+ (higher in energy), and they are written as

dxz,↓ − idyz,↑

dyz,↓ + idxz,↑

}
d−

dyz,↓ − idxz,↑

dxz,↓ + idyz,↑

}
d+

(2.6)
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2.2. Resonant Inelastic X-ray Scattering

In the present chapter a general review on Resonant Inelastic X-ray Scattering (RIXS)
is provided. We will present the properties of the technique and its main features, ac-
knowledging the reasons why RIXS is regarded as a powerful tool for the investigation
of the electronic, magnetic and structural properties of a large variety of materials, in-
cluding transition metal oxides. In the following, starting from the well-known Kramers-
Heisenberg equation, we present the relevant steps in the calculation of the scattering
cross section for a generic powder sample, in the framework of the single-ion model. In
conclusion, a brief description of the set-up of the experiment carried out at the European
Synchrotron Radiation Facility (ESRF) in Grenoble is reported.

2.2.1. General properties

Resonant Inelastic X-ray Scattering is a photon in-photon out spectroscopic technique
able to probe elementary excitations in solid samples. It is a synchrotron-based technique:
synchrotron radiation sources are indispensable to provide monochromatic and collimated
x-ray light compatible with the RIXS scattering process. Nowadays several synchrotron
radiation facilities have running RIXS endstations, such as ESRF (France) [61], Swiss
Light Source (SLS, in Switzerland) [62], Diamond Light Source (DLS, in UK) [63], The
National Synchrotron Light Source II (Brookhaven National Laboratory, USA) [64] and
others.
RIXS is an example of light-matter interaction process: an incoming photon of energy
ℏωi, momentum ki and polarization state ϵi is scattered out by a solid sample towards an
arbitrary direction, acquiring - in the most general case - different energy ℏωf , momentum
kf and polarization state ϵf , that is the system might be left in an excited state. Indeed,
the relevant physics captured by RIXS is infered by inelastic features, those features
involving energy transfer from radiation to matter. Furthermore, RIXS is a resonant
technique: the incoming photon energy is selectively chosen to match one of the atomic
absorption edges of the probed atom, enhancing the probability of the scattering event.
Many other relevant characteristics of RIXS can be mentioned [58, 65]:

• due to conservation rules, the momentum change of the photon implies that mo-
mentum is also transferred to the sample:

ℏq = ℏki − ℏko (2.7)

q is the transferred momentum and is equal and opposite to the momentum change.
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As a consequence, the momentum dependence of any elementary excitation can
be measured, probing a variable portion of the 1st Brillouin Zone in the reciprocal
space;

• the neutrality of the sample is conserved during the RIXS process. Indeed, being
a photon in-photon out technique, no charge is expected to affect the overall sample
charge balance;

• the x-ray penetration depth depends strongly on the photon energy. Despite this,
RIXS is regarded as a bulk-sensitive technique: even in the soft x-ray spectral
range the penetration depth reaches a few µm. The resulting advantage is the
opportunity to explore the properties of a sample without worrying about the surface
degree of contamination;

• light-matter interaction is sufficiently strong to probe small samples, even thin
films. Big sample volumes are not a requirement of the technique;

• in-going photon energy tuning allows one to select the atomic species to probe, guar-
anteeing element selectivity. We only recall that all atomic absorption edges are
dependent on their chemical environment. Consequently, RIXS is able to discrim-
inate between chemically inequivalent atomic species i.e. with different oxidation
states or coordination symmetries.

One of the main concerns of RIXS has always been energy resolution. A huge resolving
power is required, due to the large difference between the energy scales of the source (keV)
and of the desired resolution (tens of meV). However, state-of-the-art RIXS instrumen-
tation has made a gigantic step forward: we mention the ID32 soft x-ray beamline at
ESRF, which is able to discriminate features less than 50 meV apart at the L3 absorption
edge of Cu (931 eV) by means of a resolving power up to 30000 [61]. A typical RIXS
spectrum is visualized in Fig. 2.3 for a generic condensed matter system. The spectrum
reports the detected x-ray scattering intensity as a function of the photon energy loss i.e.
energy transferred to the sample. The main inelastic features are found in an energy scale
which ranges from tens of meV (magnetic or phonon excitations) to tens of eV (charge-
transfer excitations). Charge-Transfer (CT) excitations involve the transfer of electrons
from one ion to another of different chemical species. To give an example, in transition
metal oxides the incoming photon provides sufficient energy to transfer an electron from
the probed metal cation to one of the O2– anions found in the local environment. The
required energy depends on the inter-ionic Coulomb repulsion.
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Figure 2.3: An exemplifying depiction of all accessible inelastic features in a RIXS exper-
iment [66].

In systems exhibiting an orbital degree of freedom, orbital excitations are observed. They
consist in tranfers of valence electrons between two orbitals of the same ion. In transition
metal oxides valence electrons are found in d orbitals, hence the label "dd excitations".
Therefore, in principle, a RIXS spectrum contains the information of the position of all
d energy levels. Via CF theory, we are able to predict the energy splitting between d

orbitals and, in turn, the energy positions of dd peaks: by comparing them with RIXS
spectra, we have access to electronic and structural properties of the sample, such as the
local symmetry of transition metal ions. Just by looking at dd excitations, it is possible to
infere the degree of tetragonal distortion in the ionic local environment, knowing that JT
effects affect the position of d levels (see paragraph 2.1.1). Relevant studies can be found
proving the reliability of the technique in probing the electronic structure of materials
[67–69].
The low energy part of the spectrum is dominated by magnons and phonons. Magnetic
peaks are found when probing compounds containing magnetic ions, so ions possessing
partially filled outer shells. Their magnetic moments interact with each other to realize an
ordered magnetic structure, whose collective excitations are magnons and can be probed
by RIXS. Since q-resolved measurements of any excitation are accessible, RIXS gives the
opportunity to measure magnonic dispersions for a variety of samples, such as transition
metal oxides or cuprate superconductors [54, 70, 71] and similarly for phonons, collective
excitations of the ions in the lattice.
We conclude by mentioning that RIXS detectors collect also scattered photons with zero
energy loss, leading to the formation of an elastic feature. The elastic peak is regarded as
a potential obstacle in the interpretation of RIXS spectra, since it is sometimes stronger
than the neighbouring low energy excitations. In this sense, the recent improvement in
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the instrumentation performance in terms of energy resolution was crucial in the discrim-
ination of low energy features from elastic peak tails.
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2.2.2. The RIXS process

The scattering process in a RIXS event is schematized in Fig. 2.4. An x-ray photon with
momentum ki and energy ℏωki

promotes a core electron to an empty state in the valence
band, leaving a hole in the core level. We recall that the probability of this event is
strongly enhanced by matching the energy of the in-going photon to the absorption edge
of the system. Since the core levels are not fully occupied, energy is not minimized and
this intermediate state is unstable: an electron (not necessarily the excited core electron)
relaxes from a valence band state - either above or below the Fermi level - to the core hole,
emitting a photon with momentum ko and energy ℏωko . The net result is the excitation
of an electron-hole pair in the valence band. The lifetime of the intermediate state is set
by radiative electron-hole recombination times (a few fs), while the energy E transferred
to the system i.e. the energy of the final state is determined by the difference between the
in-going photon energy ℏωki

and the out-going photon energy ℏωko , following the energy
conservation rule

E = ℏωki
− ℏωko . (2.8)

By virtue of the 2-steps nature of the process, RIXS is referred to as a second order
process.
Actually, what we have described is a process called direct RIXS, which is less complicated
than the counterpart indirect RIXS. Indirect RIXS will not be part of this thesis work.

Figure 2.4: Schematization of the two steps involved in the scattering process. The first
step consists of photon absorption leading to an unstable intermediate state, where the
the electronic excitation leaves a core hole behind. In the second step, the final state is
achieved by a valence electron-core hole recombination event.
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2.2.3. RIXS cross section in the single-ion model

The cross section for a RIXS event is calculated by means of the well-known Kramers-
Heisenberg equation [65]:

d2σ

dℏωdΩ
= r2em

2ω3
ko
ωki

∑
f

∣∣∣∣∣∑
n

⟨f |D†
o|n⟩⟨n|Di|g⟩

Eg + ℏωk − En + iΓn

∣∣∣∣∣
2

δ(Eg − Ef + ℏω) (2.9)

It is essentially the probability that an incoming x-ray photon with energy ℏωki
is scattered

to a state with energy ℏωko by one electron of the ionic species probed by the technique.
|g⟩ and |f⟩ are the electronic initial and final states of the material, respectively, while
|n⟩ labels all available intermediate states of the two-steps process. Eg, Ef and En repre-
sent their corresponding energies. Di and Do are the transition dipole operators for the
absorption step and the for the electron-hole relaxation step, respectively; they contain
all information on the scattering geometry and on the polarization states of the incoming
and out-going photons. Finally, the delta function ensures conservation of energy during
the scattering process. The equation is derived in the framework of time-dependent per-
turbation theory and on the hypothesis of electric dipole approximation. More details on
its derivation are found in Appendix A.1.
Luckily, the Kramers-Heisenberg formula can be largely simplified in the framework of
the single-ion model. The RIXS measurements we discuss in this work were exclusively
performed at the Cu L3 absorption edge. Therefore, among the five (four) distinct cations
in the HEO samples, we focus our attention on the Cu2+ local environment probed by the
technique. The electronic configuration of a Cu2+ ion is [Ar]3d9 and, in a D4h symmetry
(see Fig. 2.1), one hole is left in the most energetic 3dx2−y2 level. The electronic properties
of Cu2+ are thus equivalent to the properties of a Hydrogen-like atom described by the
wavefunction

ψ(r, θ, ϕ) = Rn,l(r)Yl,m(θ, ϕ), (2.10)

which is solution (in spherical coordinates) of the Schrödinger equation in the spherically
symmetric potential V = − 1

4πε0
Ze2

r
. Rn,l(r) is the radial part of the wavefunction labelled

by the principal quantum number n and by the angular momentum quantum number
l, while Yl,m(θ, ϕ) represents the spherical harmonic with l and with magnetic quantum
number m. In the following we will neglect the radial component since it is irrelevant
to the RIXS cross section calculation. These simplifications are crucial in the calculation
of the scattering cross section, that will be presented mostly along the lines of Moretti’s
work [58].
Before delving into this subject, we analyze the specific case of the scattering process at
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the L3 edge of Copper. An electron from the four-fold degenerate 2p 3
2

states is promoted
to the unoccupied 3dx2−y2 level upon photon absorption, leaving a core hole behind. The
electronic excitation can be interpreted as a one-hole promotion from the 3dx2−y2 ground
state to one of the 2p 3

2
levels. In any case, the intermediate state is always represented

by a fully occupied 3d shell and by a core hole in the 2p 3
2

levels. The second step of
the RIXS process consists in the radiative recombination of a 3d electron with the 2p 3

2

core hole. Consequently, a hole is left either in the ground state (3dx2−y2) or in a 3d

state with different symmetry and/or spin state. We recall that all core levels can host
2 electrons with opposite spin state in agreement with Pauli exclusion principle, hence
they are doubly degenerate. We assume, in the hole representation, a |3dx2−y2 , ↓⟩ ground
state, where arrows indicate the spin direction (↑ for spin up and ↓ for spin down). In this
hypothesis, a magnetic excitation (or spin-flip excitation) is interpreted as a scattering
process where a core hole transits from the ground state |3dx2−y2 , ↓⟩ to the excited state
|3dx2−y2 , ↑⟩, in systems where magnetic interactions are responsible for further splitting
the 3dx2−y2 level. Instead, the elastic scattering implies a |3dx2−y2 , ↓⟩ final state. All other
3d levels are the final states of local dd excitations.
We report here the expression of the matrix element for a given final state f , extracted
from the Kramers-Heisenberg equation (A.18):

d2σ

dℏωdΩ

∣∣∣∣
f

∝

∣∣∣∣∣∑
n

⟨f |D†
o|n⟩⟨n|Di|g⟩

∣∣∣∣∣
2

(2.11)

where we recall that |g⟩ and |f⟩ are the material ground state and final state, respectively,
and n runs over all possible intermediate states.
As we assumed, the hole ground state |g⟩ is |3dx2−y2 , ↓⟩, while |f⟩ is one of the 3d states.
The 3d orbitals wavefunctions can be expressed as a linear combination of spherical har-
monics with l = 2 and m = −2, ..., 2. Moreover, if we account for a generic spin direction
of the hole with respect to an arbitrary z quantization axis, we need to calculate the
eigenstates of the spin operator

σs(θs, ϕs) = (σx cosϕs + σy sinϕs) sin θs + σz cos θs (2.12)

where θs and ϕs define the spin direction and σx, σy and σz are Pauli matrices. The
eigenstates are found by solving

σs(θs, ϕs)

(
U±

D±

)
= ±1

(
U±

D±

)
. (2.13)
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U+ (U−) andD+ (D−) are the components of the eigenvector corresponding to the +1 (−1)
eigenvalue. Finally, the expressions of the resulting 10 3d orbitals can be calculated, and
are shown in table 2.1; they represent the available final states of the scattering process,
labelled with |f⟩ in the matrix element. Instead, 2p intermediate states are characterised
by a strong spin-orbit interaction, hence spin is not a good quantum number anymore.
Again, 2p 1

2
and 2p 3

2
wavefunctions can be written as linear combinations of spherical

harmonics (Tab. 2.2). In a RIXS process at the L3 absorption edge, only states with
m3/2 = −3

2
, ..., 3

2
are available as effective intermediate states. In the following we will

focus our attention exclusively on them. The matrix element is then rewritten as

d2σ

dℏωdΩ

∣∣∣∣
f

∝

∣∣∣∣∣∣
∑
m3/2

⟨f |D†
o|p 3

2
,m3/2

⟩⟨p 3
2
,m3/2

|Di|dx2−y2 , ↓⟩

∣∣∣∣∣∣
2

, (2.14)

|dx2−y2 , ↓⟩ | 1√
2

[
U−

(
Y ↑
2,2 + Y ↑

2,2

)
+D−

(
Y ↓
2,2 + Y ↓

2,2

)]
⟩

|dx2−y2 , ↑⟩ | 1√
2

[
U+

(
Y ↑
2,2 + Y ↑

2,2

)
+D+

(
Y ↓
2,2 + Y ↓

2,2

)]
⟩

|d3z2−r2 , ↓⟩ |U+Y
↑
20 +D+Y

↓
20⟩

|d3z2−r2 , ↑⟩ |U−Y
↑
20 +D−Y

↓
20⟩

|dxy, ↓⟩ | − i√
2

[
U+

(
Y ↑
2,2 − Y ↑

2,2

)
+D+

(
Y ↓
2,2 − Y ↓

2,2

)]
⟩

|dxy, ↑⟩ | − i√
2

[
U−

(
Y ↑
2,2 − Y ↑

2,2

)
+D−

(
Y ↓
2,2 − Y ↓

2,2

)]
⟩

|dxz, ↓⟩ | 1√
2

[
U+

(
Y ↑
2,1 − Y ↑

2,1

)
+D+

(
Y ↓
2,1 − Y ↓

2,1

)]
⟩

|dxz, ↑⟩ | 1√
2

[
U−

(
Y ↑
2,1 − Y ↑

2,1

)
+D−

(
Y ↓
2,1 − Y ↓

2,1

)]
⟩

|dyz, ↓⟩ | − i√
2

[
U+

(
Y ↑
2,1 + Y ↑

2,1

)
+D+

(
Y ↓
2,1 + Y ↓

2,1

)]
⟩

|dyz, ↑⟩ | − i√
2

[
U−

(
Y ↑
2,1 + Y ↑

2,1

)
+D−

(
Y ↓
2,1 + Y ↓

2,1

)]
⟩

Table 2.1: 3d states wavefunctions in the spherical harmonic basis.
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|p 3
2
, 3
2
⟩ |Y ↑

1,1⟩

|p 3
2
, 1
2
⟩ |

√
2
3
Y ↑
1,0 +

√
1
3
Y ↓
1,1⟩

|p 3
2
,− 1

2
⟩ |

√
1
3
Y ↑
1,1

+
√

2
3
Y ↓
1,0⟩

|p 3
2
,− 3

2
⟩ |Y ↓

1,1
⟩

|p 1
2
, 1
2
⟩ | −

√
1
3
Y ↑
1,0 +

√
2
3
Y ↓
1,1⟩

|p 1
2
,− 1

2
⟩ | −

√
2
3
Y ↑
1,1

+
√

1
3
Y ↓
1,0⟩

Table 2.2: 2p 1
2
,m1/2

and 2p 3
2
,m3/2

states wavefunctions in the spherical harmonic basis.

where ⟨f | is the corresponding bra of one of the 3d wavefunctions reported in Tab. 2.1.
Up to now, the dependence of the RIXS process on the scattering geometry has not yet
been explicitly addressed. The scattering geometry affects the cross section calculations
through the polarization components of the photons, which in turn are found in the matrix
elements, as we will see later on. In order to explain how this relation works, we start
by defining the scattering geometry. The normalized wavevectors of the in-going and
out-going photons in spherical coordinates are

k̂i = sin θi cosϕix̂+ sin θi sinϕiŷ + cos θiẑ (2.15)

k̂o = sin θo cosϕox̂+ sin θo sinϕoŷ + cos θoẑ (2.16)

where θi (θo) and ϕi (ϕo) uniquely define the incident (scattered) direction in the sample
frame of reference. Usually, the components of the photon polarization are projected on
a 2-dimensional basis. The versors of the basis (or polarization versors) are chosen to be
parallel (π direction) and perpendicular (σ direction) to the scattering plane i.e. the plane
where k̂i and k̂o wavevectors lie. Figure 2.5 proposes an illustration of the geometry of
the RIXS process. The scattering plane is green-coloured: here the in-going wavevector
k̂i, the out-going wavevector k̂o and the π polarization direction lie. Consistently, the σ
polarization direction is represented orthogonal to π. The incident angle is θi, while the
out-going photon is collected at angle θout. 2θ (or tth) is the scattering angle. θ represents
the orientation of the in-going wavevector k̂i with respect to the sample surface. The angle
arising between y and ko − ki is named δ. It carries the information on the direction of
the transferred momentum q. Correspondingly, q∥ is the projection of q along the x axis.
While 2θ is independent from the sample orientation, θ, δ and ϕi,o vary upon sample
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rotation.

Figure 2.5: Oblique (a) and top (b) views of the scattering geometry. Angles ϕi and ϕo

are assumed to be null, hence the scattering plane is perpendicular to the sample surface.

Going back to the analytical description of polarization versors, we can define the in-going
polarization versors as

ϵ̂σi = k̂i × k̂o

ϵ̂πi = k̂i × ϵ̂σi ,
(2.17)

while the out-going polarization versors are written as

ϵ̂σo = ϵ̂σi

ϵ̂πo = k̂o × ϵ̂σo .
(2.18)

The components of the left-circular (L), right-circular (R) and linear (z) photon polar-
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ization along the σ direction are calculated exploiting the following scalar products:

Lσ
i(o) = ϵ̂σi(o) ·

[
x̂− iŷ√

2

]
Rσ

i(o) = −ϵ̂σi(o) ·
[
x̂+ iŷ√

2

]
zσi(o) = ϵ̂σi(o) · ẑ

(2.19)

Analogous equations can be written to calculate L, R and z components along the π
direction:

Lπ
i(o) = ϵ̂πi(o) ·

[
x̂− iŷ√

2

]
Rπ

i(o) = −ϵ̂πi(o) ·
[
x̂+ iŷ√

2

]
zπi(o) = ϵ̂πi(o) · ẑ

(2.20)

Now, all quantities required for the full characterization of the dipole transition operators
have been introduced. In the following the matrix formalism will be used. The matricial
form of the dipole transition operator in the spherical harmonics basis, Dsph, is



Y ↓
2,2 Y ↑

2,2 Y ↓
2,1 Y ↑

2,1 Y ↓
2,0 Y ↑

2,0 Y ↓
2,1

Y ↑
2,1

Y ↓
2,2

Y ↑
2,2

Y ↓
1,1 −

√
6L 0

√
3z 0 −

√
1R 0 0 0 0 0

Y ↑
1,1 0 −

√
6L 0

√
3z 0 −

√
1R 0 0 0 0

Y ↓
1,0 0 0 −

√
3L 0

√
4z 0 −

√
3R 0 0 0

Y ↑
1,0 0 0 0 −

√
3L 0

√
4z 0 −

√
3R 0 0

Y ↓
1,1

0 0 0 0 −
√
1L 0

√
3z 0 −

√
6R 0

Y ↑
1,1

0 0 0 0 0 −
√
1L 0

√
3z 0 −

√
6R


. (2.21)

Just to make an example, the matrix element in position (1, 1) was obtained solving the
integral ⟨Y ↓

1,1|Di|Y ↓
2,2⟩. Since we are interested in transitions involving 2p and 3d states, it

is useful to rewrite the operator in a cubic harmonics basis, as reported here:


dx2−y2 , ↓ . . . dyz, ↑

p 3
2
, 3
2

⟨p 3
2
, 3
2
|Di|dx2−y2 , ↓⟩ . . . ⟨p 3

2
, 3
2
|Di|dyz, ↑⟩

...
... . . . ...

p 1
2
,− 1

2
⟨p 1

2
,− 1

2
|Di|dx2−y2 , ↓⟩ . . . ⟨p 1

2
,− 1

2
|Di|dyz, ↑⟩

 (2.22)

By doing so, the resulting 6x10 matrix (from now on, Dcub) intrinsically contains the
matrix elements appearing in the Kramers-Heisenberg formula. Dcub is calculated from
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Dsph performing the basis transformation

Dcub = TpDsphT †
d , (2.23)

where Td is the transition matrix transforming a spherical harmonics basis with l = 2

into the 10-dimensional 3d orbitals basis (Tab. 2.1), while Tp is the transition matrix
from the spherical harmonics basis with l = 1 to the 6-dimensional 2p orbitals basis (Tab.
2.2). Td and Tp are reported in Appendix A.2. Actually, equation 2.23 allows to evaluate
only the matrix elements related to the absorption step of the RIXS process, involving
the promotion of the 3d core hole to the 2p shell. This is why we used the transition
operator from the initial state Di in 2.22. The matrix elements related to the second step
(electron-hole radiative recombination) are found by taking the conjugate transpose of
Dcub:

D†
cub = TdD†

sphT
†
p . (2.24)

The resulting 10x6 matrix is written in the form


p 3

2
, 3
2

. . . p 1
2
,− 1

2

dx2−y2 , ↓ ⟨dx2−y2 , ↓ |Do|p 3
2
, 3
2
⟩ . . . ⟨dx2−y2 , ↓ |Do|p 1

2
,− 1

2
⟩

...
... . . . ...

dyz, ↑ ⟨dyz, ↑ |Do|p 3
2
, 3
2
⟩ . . . ⟨dyz, ↑ |Do|p 1

2
,− 1

2
⟩

. (2.25)

In order to take into account the effect of spin-orbit coupling on d states, another basis
transformation is required. Indeed, as introduced in section 2.1.3, the eigenstates of the
Hamiltonian Htot = HCF+HSO are no longer the 3d states and writing the operators in the
cubic harmonics basis becomes meaningless. The new basis are the column vectors of TSO,
i.e., the eigenstates of Htot, obtained by solving the eigenvalue equation 2.5. Consequently,
the complete basis transformation to apply is encompassed by the following equation:

Dcub = TpDsphT †
d TSO. (2.26)

It provides the matrix elements of the absorption step in the new basis. Analogously, the
equation

D†
cub = T †

SOTdD†
sphT

†
p (2.27)

is valid for the core-hole relaxation step.
In conclusion, we underline that a correction to the scattering cross section formula we
derived must be made. Indeed, even though polarization-resolved RIXS of orbital and
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spin excitations at ESRF is possible [72], we didn’t measure the polarization of the out-
going photons. Consequently, an integration over the out-going polarization states has to
be included. If q and q′ label the in-going and out-going photon polarizations (σ or π),
respectively, the RIXS cross section formula is revisited as

d2σ

dℏωdΩ

∣∣∣∣
f

∝
∑
q′

∣∣∣∣∣∣
∑
m3/2

⟨f |D†
o,q′|p 3

2
,m3/2

⟩⟨p 3
2
,m3/2

|Di,q|dx2−y2 , ↓⟩

∣∣∣∣∣∣
2

. (2.28)

2.2.4. RIXS cross section for a powder sample

The scattering cross section we derived is suited for a single-crystal system, where the
incoming and scattered photon wavevectors have the same orientation with respect to any
octahedral units in Cu2+ lattice sites. Polycrystalline materials, such as powder samples,
are composed of many crystallites with several distinct orientations; the incoming x-ray
radiation impinges with different incident angles the local octahedral structures found
in distinct crystallites. Hence, an integration of the scattering cross section over all
crystallite orientations is required to take into account the polycrystalline nature of the
probed samples. For the sake of clarity we report the expressions for the in-going and
out-going normalized photon wavevectors:

k̂i = sin θi cosϕix̂+ sin θi sinϕiŷ + cos θiẑ (2.29)

k̂o = sin θo cosϕox̂+ sin θo sinϕoŷ + cos θoẑ (2.30)

recalling that θi(o) and ϕi(o) define the direction of the wavevectors in the sample refer-
ence system. In a single crystal all octahedral structures are equally oriented and the
{θi(o), ϕi(o)} set of angles can be exploited for any photon-ion scattering event. In a poly-
crystal, instead, this set must be re-defined for any single event. This problem is simplified
if we assume that octahedral units are randomly and homogeneously oriented in space.
On these premises, from a purely analytical perspective, the solution consists in perform-
ing an integration of the RIXS cross section over all space. Due to computational reasons,
we decided to perform a random sampling of the infinite available directions. The RIXS
cross section for a powder sample is then calculated as the spatial average over all sampled
orientations:

σpowder =
1

No

∑
k̂i,l,k̂o,l

d2σ

dℏωdΩ

(
k̂i,l, k̂o,l

)
(2.31)
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No represents the number of sampled orientations, while k̂i,l and k̂o,l are the in-going
and out-going wavevectors written in the lth octahedron reference system. k̂i,l (k̂o,l) is
calculated applying a proper rotation matrix to k̂i (k̂o):

k̂i,l = R(αl, βl, γl)k̂i (2.32)

k̂o,l = R(αl, βl, γl)k̂o (2.33)

R is expressed as a function of the Euler angles α, β and γ [73]. To implement the
randomic character of the sampling procedure, α and γ are chosen randomly in the range
[0, 2π], while β is chosen within the range [0, π]. The full expression of the matrix R for
the lth orientation is reported below:cosαl cos βl cosαl sin βl sin γl − sinαl cos γl cosαl sin βl cos γl + sinαl sin γl

sinαl cos βl sinαl sin βl sin γl + cosαl cos γl sinαl sin βl cos γl − cosαl sin γl

− sin βl cos βl sin γl cos βl cos γl

. (2.34)

Finally, figure 2.6 shows the calculated single-ion RIXS cross sections for powder samples,
at the Cu2+ L3 absorption edge, as a function of the 2θ angle. Each panel report the cross
section of the core hole transition from the ground state dx2−y2 , ↓ to the corresponding final
state indicated on the side (spin-up states on the left side, spin-down states on the right
side). Red lines are referred to processes involving photons with in-going σ polarization,
while black lines are referred to processes with in-going π polarization. In all cases,
consistently with equation 2.28, a summation over σ and π out-going photon polarizations
has been performed. We choose to represent the cross sections as a function of the angle
2θ since it is the only reasonable choice in case of powders. Indeed, when integrating
over spatial orientations, the cross sections lose their θ (and δ) dependence and they
would appear as constant quantities. The cross section of the elastic transition σx2−y2,↓

(|dx2−y2 , ↓⟩ → |dx2−y2 , ↓⟩, panel b) appears to be stronger than the spin-flip excitation
σx2−y2,↑ (|dx2−y2 , ↓⟩ → |dx2−y2 , ↑⟩, panel a), especially in case of in-going σ polarization.
Cross sections exhibit, in general, low 2θ and in-going polarization channel dependences.
Two exceptions are mentioned: the cross section of the transition to the |dxy, ↑⟩ state
(panel e) is affected by sizeable modulation upon variations of both 2θ and in-going
photon polarization; an analogous comment can be made to the cross section shown in
panel a, associated to the spin-flip excitation. In any case, residual modulations will be
exploited to associate the excitations to the distinguishable features of collected RIXS
spectra.
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Figure 2.6: Single-ion RIXS cross sections calculated for a powder sample, assuming
ϕi = ϕo = 0. The core-hole spin direction is assumed to be defined by θs = π

2
and ϕs =

π
4
.
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2.3. Experimental set-up

As previously mentioned, RIXS is a second order process, thus intrinsically inefficient. The
technique requires collimated x-ray beams with large brilliance, in order to provide high
output intensity and significant spectra. Hence, RIXS must be performed at extremely
brilliant light sources: nowadays either synchrotron radiation sources or Free-Electron
Lasers (FELs) constitutes valid solutions. Since we carried out the experiment at ESRF in
Grenoble, we will focus our attention on the general properties of a synchrotron radiation
source. Subsequently, the ID32 beamline at ESRF will be briefly described.

2.3.1. Synchrotron radiation source

It is known that, when charged particles are accelerated, they emit electromagnetic radi-
ation. Synchrotrons produce collimated and extremely brilliant radiation exploiting the
acceleration of relativistic electrons. At ESRF, high-energy electrons are emitted by an
electron gun and are accelerated by a linear accelerator (Linac) until they travel at rel-
ativistic speed, so that the wavelengths of the emitted photons fall in the x-ray spectral
region. Subsequently, electrons are injected into a booster synchrotron, a ring-shaped
structure exploited to increase electron energies up to 6 GeV. Finally, electrons travel
into the storage ring. The storage ring is 844 meters long and electrons are kept under
ultra-high vacuum conditions (about 10-9 mbar). The operational ring current is main-
tained constant at 200 mA by periodic injection of electrons. A schematic representation
of the ESRF facility is proposed in Fig. 2.7. The beamlines are the paths connecting the
storage ring to the experimental end-stations. They are cylindrical metal pipes, under
ultra-high vacuum, responsible for the travelling of photons emitted from the storage ring
to the physical places where experiments are taken. Throughout the whole ring, bending
magnets and insertion devices (IDs) are implemented. They are systems of magnets re-
quired to bend the electron trajectory and produce light emission. Specifically, bending
magnets are electromagnets able to generate a strong constant magnetic field towards
a direction perpendicular to the storage ring. Each time an electron passes through a
magnet, it is forced to change direction and to follow a circular orbit. Moreover, electrons
suffer from energy loss in the form of electromagnetic radiation - called synchrotron light
- directed tangentially to the electron orbit and towards the beamlines. The collimated
beam is cone-shaped and the width θlc of the emitted light-cone is

θlc ∝
1

γ
, (2.35)



40 2| Resonant Inelastic X-ray Scattering from Cu2+

where γ = 1√
1− v2

c2

is the relativistic Lorentz factor. Thus, electrons with very high speed

will produce a more collimated photon beam.
Undulators consist in a set of bending magnets with alternating polarity. When electrons
are injected in an undulator, they are forced to follow an oscillating trajectory. At each
curve, x-ray radiation is produced and the interaction between x-ray beams from distinct
curved result in constructuve interference. If N is the number of periods, the emitted
radiation is N2 times more intense than the radiation emitted by bending magnets.
Finally, focusing magnets are exploited to keep the electron beam collimated so that it
follows the correct orbital trajectory.

Figure 2.7: Model of the European Synchrotron Radiation Facility. Figure adapted from
[74].
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2.3.2. ID32 RIXS beamline at ESRF

The ID32 beamline at ESRF [61] hosts both a RIXS end-station and an X-ray Magnetic
Circular Dichroism (XMCD) end-station. As a consequence, a proper optical system able
to provide soft x-rays at both end-stations is required (Fig. 2.8).

Figure 2.8: ID32 beamline optics [75].

Since the beamline is 100-120 meters long, a system of mirrors is required to keep the
beam collimated and focused on the sample. The refocusing optics, found just before
the end of the beamline, guarantees a 4×60 µm2 (vertical × horizontal) beam-size at the
sample. The beamline was chosen to be long for essentially two reasons: to allow for the
implementation of a large spectrometer (later introduced) and to ensure the separation
of the RIXS and XMCD branches. A deflecting mirror can deviate the photon flux to-
wards the XMCD end-station. Since RIXS is a photon-hungry technique, the beamline is
equipped with three undulators: one of them is 2.5 meters long (HU88B), others are 1.6
meters long (HU88A and HU88C). The emitted light spans within the 400 eV - 1600 eV
energy range. Moreover, undulators provide horizontal linear, vertical linear and circu-
larly polarized light; this is strictly necessary to perform polarized-dependent experiments
both at the RIXS branch and at the XMCD branch. The beamline is also equipped with
a variable line spacing (VLS) plane grating monochromator [76], with the aim to achieve
the highest possible energy resolution.
The sample is located on a ultra-high vacuum-compatible diffractometer, kept inside a
sample storage chamber. The diffractometer is exploited to control the scattering geome-
try, while keeping the incoming beam at the center of rotation of the sample. Specifically,
it can translate the sample with respect to the centre of rotation towards three mutu-
ally perpendicular directions x, y and z. It also guarantees four rotational operations.
The diffractometer is equipped with a liquid He cryostat, allowing for low-temperature
measurements. The minimum temperature achieved by the system is 15 K; in these con-
ditions, the He consumption reaches 0.17 Lmin-1. The final stage of the beamline is the
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ERIXS spectrometer, responsible for the measurement of the spectral components of the
scattered light. A picture of the spectrometer is reported in Fig. 2.9, together with the
schematic of its optical layout (Fig. 2.10). It has an 11 meters moving arm capable of
rotating over a 100 degrees angular range, which enables light detection with scattering
angle 2θ within the 50-150 degrees interval. The spectrometer arm features a collimating
mirror (CM in Fig. 2.10), two gratings (G1 and G2) to disperse scattered photons on the
CCD detector and a polarimeter to measure the out-going photon polarization. In the
high-resolution mode, the beamline-spectrometer combined energy resolution at the Cu
L3 edge reaches 31 meV.

Figure 2.9: Picture showing the ERIXS spectrometer and the sample storage chamber.
The main components of the system are indicated [61].
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Figure 2.10: Optical layout of the ERIXS spectrometer [61].
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3| Ligand field and magnetic
excitations in Mg-CNCZ and
CNCZ

In the present chapter we report the results of a set of RIXS experiments carried out
on both Mg-CNCZ and CNCZ HEOs samples. Performing quantitative and qualitative
analysis of the spectra, we will extract relevant information about their structure and their
magnetic properties. Before that, a preliminary analysis - based on X-ray Absorption
Spectroscopy (XAS) - was complemented to RIXS experiments to check the valence of
the ions in the samples by comparison with benchmark spectra. Then, RIXS experiments
took place. Five RIXS spectra were collected from each sample with the idea to probe
distinct scattering geometries and polarization channels. All tested configurations are
listed in table 3.1.

2θ [deg] Polarization
145 π

110 π

90 π, σ
70 π

Table 3.1: Tested RIXS configurations on Mg-CNCZ and CNCZ.

To reach the correct geometries, the spectrometer arm was made to rotate over the 2θ
degree of freedom, while in-going polarization channels were set by acting on the undu-
lators phase. The experiments didn’t make use of the beamline polarimeter, hence the
output intensity encompasses both σ and π polarized light.
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3.1. Preliminary XAS analysis

As a preliminary work, XAS measurements were performed on Mg-CNCZ and CNCZ HEO
samples in Total Electron Yield (TEY) mode. We focused our attention on the analysis
of transition metals with partially filled shells: we probed the L2 and L3 absorption
edges of Cu, Ni and Co by properly tuning the incoming photon energy. Moreover, a
XAS measurement at the K edge of O was also collected. Results are reported in Fig.
3.1. The Cu XAS spectra, shown in the upper panel, are peculiar to divalent Cu2+

ions [77, 78], consistently with the expected 3d9 configuration of Cu in rock-salt HEOs.
Two prominent features are easily observed at 931 eV and at 950.5 eV, related to L3

and L2 edges, respectively. As expected, multiplet splitting is also observed in Ni XAS
spectra: 2p 3

2
and 2p 1

2
peaks are visible at about 853 eV and 871 eV. The depicted satellite

features are interpreted as absorption events from hybridized ligand field states [79] and
the spectral profile follows the trend observed in XAS experiments on divalent Ni ions
[80]. Analogous considerations can be done regarding Co and O ions: Co spectra show
unambiguous similarities to CoO XAS spectra, where Co is divalent [81, 82], while the
absorption features at the K edge of O are comparable to those present in XAS spectra
of 3d monoxides (such as CoO or NiO) [83].
Being an absorption technique, XAS should be able, in principle, to probe the energy of
transition metal d states, extracting information on the crystal field on par with RIXS.
Actually, the technique suffers from two fundamental issues:

• occupied states are invisible to XAS. Indeed, upon photon absorption, the excited
electron transits necessarily to one of the unoccupied transition metal 3d states,
while occupied states are strictly forbidden by Pauli exclusion principle. In the
most striking case of Cu2+, XAS is able to probe the dx2−y2 state uniquely, being it
the only empty state in the d shell;

• even assuming the probeability of each state, XAS would suffer from core-hole life-
time broadening. Indeed, in an x-ray absorption process the excited state is highly
unstable, being significantly more energetic (in the order of keV) than the ground
state of the system. Correspondingly, the electron-hole recombination time is dra-
matically small and absorption features on XAS spectra would be characterized by
∼300 meV FWHM.

That said, XAS proves to be ineffective at measuring the HEO crystal field. To pursue
this goal, RIXS experiment were carried out and their results will be presented in the
next section.
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Figure 3.1: Experimental x-ray absorption spectra of Cu, Ni, Co and O in Mg-CNCZ and
CNCZ samples.
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3.2. dd and Charge-Transfer features

When we introduced Ligand Field theory, we highlighted that a detailed description of
the electronic properties of transition metals should take into consideration not only the
crystal field acting on 3d orbitals, but also their superposition with the surrounding O 2p
orbitals. This information is contained in the orbital excitations found in RIXS spectra,
which will be analyzed throughout this section. Orbital features of Mg-CNCZ and CNCZ
will be compared with the aim to check and interpret possible structural differences.
Before that, let us analyse one of the collected spectra.

Figure 3.2: Experimental RIXS spectrum collected at 2θ = 110°, with π in-going photon
polarization. The main features are labelled.

Fig. 3.2 reports the RIXS spectrum collected at 2θ = 110 with π in-going polarization
channel. At a first glance, four main features are identified. A strong elastic peak domi-
nates the low-energy region, while a smaller peak arises at about 0.1 eV and is partially
covered by the elastic tail. Its origin is magnetic and will be discussed in the next section.
Two broader features are found roughly from 0.5 eV to 2 eV and are attributed to dd
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excitations. Specifically, the pronounced peak at ∼ 1 eV is attributed to the transition
from the dx2−y2 to the d3z2−r2 state, as one can infer by comparison with well-known
RIXS spectra at the Cu L3 edge in copper oxides, although its position is usually higher
in energy [84]. The wide feature around 1.5 eV incorporates all other dd-related peaks.
Finally, the weak and broad non-zero intensity found at high energy loss (above 2 eV)
is attributed to CT excitations. To learn more about the HEOs crystal field, we first
concentrate on dd excitations.

Figure 3.3: Normalized dd excitations in Mg-CNCZ and CNCZ samples. Panels a and
c compare spectra taken at distinct scattering angles, while panels b and d highlight the
polarization dependence at constant 2θ.

Collected spectra are organized in Fig. 3.3 to highlight dd excitations dependencies on
the scattering angle and on the in-going photon polarization. In the spectra collected
from Mg-CNCZ and CNCZ at distinct scattering angles (panel a and c) little variations
in shape and intensity are observed: the main peak is characterized by a small, but clear
decrease of intensity, while a high energy shoulder grows with larger scattering angles.
Similar, but more pronounced effects are observed when switching the incident photon
polarization (panel b and d).
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Interestingly, an inspection of the d3z2−r2 peak position reveals important differences be-
tween the RIXS spectra of the two samples at all scattering angles, as shown in Fig.
3.4.

Figure 3.4: Normalized dd excitations for all scattering configurations. A direct compar-
ison shows a small energy shift between Mg-CNCZ and CNCZ d3z2−r2 peaks.

It is evident that d3z2−r2 peaks from CNCZ spectra are blue-shifted with respect to d3z2−r2

peaks in Mg-CNCZ spectra. Moreover, a smaller blue-shift involves also the more energetic
dd feature. This is a common result to all spectra, regardless of the scattering angle
or polarization channel. From CF theory, we know that the position of 3d levels is
directly related to the local coordination of the probed Cu2+ ion: the energy difference
between dx2−y2 and d3z2−r2 states represents a measure of the local JT tetragonal distortion
affecting octahedral units. Therefore, two important conclusions are drawn:

1. both Mg-CNCZ and CNCZ samples suffer from tetragonal distortion,
since d3z2−r2 states are roughly 1 eV more energetic than the core-hole ground state
dx2−y2 (elastic peak);

2. CNCZ octahedral units are more distorted than Mg-CNCZ units, since
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d3z2−r2 states in CNCZ are blue-shifted with respect to Mg-CNCZ d3z2−r2 states.

These are qualitative considerations. In order to provide a quantitative estimate of the
JT distortion a curve fitting procedure has been made and is here reported.

Figure 3.5: Global fit to dd excitations. The blue small peaks included in the bottom of
the panels have the purpose to indicate the positions of Gaussian functions.

We have fitted dd excitations including simultaneously RIXS spectra at all experimen-
tal configurations, using four Gaussian functions to reproduce d3z2−r2 , dxy, d+ and d−
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contributions. The analysis on the polarization and scattering angle dependencies, com-
bined with the results of calculated cross sections (Fig. 2.6), has been exploited to assign
experimental features to specific dd transitions. The relative intensity of the Gaussian
functions was forced to be proportional to the RIXS cross sections we presented in section
2.2.4. In total, the spectra have been fitted using six parameters corresponding to the
energy and FWHMs of dd excitations. Results are shown in Fig. 3.5, where the global
fits faithfully reproduce the dd features. The energy of d states extracted by the fit are
listed in Tab. 3.2. The quantity ∆dd is the difference between the energies of d3z2−r2 in
CNCZ and Mg-CNCZ.

Mg-CNCZ CNCZ ∆dd [eV]
E3z2−r2 [eV] 0.96 1.08 0.12
Exy [eV] 1.39 1.42 0.03
E− [eV] 1.60 1.64 0.04
E+ [eV] 1.65 1.69 0.04

Table 3.2: Energy of d states extracted from the global fitting procedure.

From the curve-fitting procedure we estimate that d3z2−r2 peak in CNCZ is blue-shifted
by 0.12 eV with respect to Mg-CNCZ. A smaller shift is also observed for the dxy, d− and
d+ peaks.
In order to provide a complete description of the electronic excitations in RIXS spectra,
we report here a qualitative analysis of CT excitations, based on LF theory. As seen from
Fig. 3.6, where the RIXS intensity has been normalized to their area, CT excitations are
very weak compared to dd excitations, although they extend in a larger energy range,
roughly from 2.1 eV to 8 eV. RIXS spectra show little variations upon changes of scat-
tering geometry and incident photon polarization. Visible differences can be found by
comparing experimental results from the two samples (Fig. 3.7). The CT broad peak at
approximately 2.5 eV in CNCZ is shifted towards higher energies in Mg-CNCZ. Moreover,
the feature spanning from 5 eV to 7 eV is weaker in CNCZ than in Mg-CNCZ.
In LF theory electronic states have both a p-like and a d-like character, i.e., they are
hybridized molecular states and RIXS excitations are interpreted as transitions from the
bonding ground state to either anti-bonding states or other bonding states. Specifically,
transitions to other bonding states represent dd excitations, while transitions to anti-
bonding states represent CT excitations.
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Figure 3.6: CT excitations in Mg-CNCZO (upper panel) and CNCZ (lower panel).

It is of common knowledge that the energy difference between bonding states and anti-
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bonding states is roughly proportional to overlap integrals, since the strength of the
overlap is a measure of the bonding states stabilization. That said, the blue-shift of the
d3z2−r2 and the red-shift of the CT feature in CNCZ could arise from an energy difference
between bonding and anti-bonding states involving apical oxygens smaller than in Mg-
CNCZ.

Figure 3.7: Comparison of normalized CT excitations in Mg-CNCZ and CNCZ, for all
experimental configurations.

Consequently, in CNCZ the overlap integrals involving 2p orbitals of apical O2– ions and
the 3d3z2−r2 orbital of Cu should be smaller than in Mg-CNCZ, consistent with a larger
JT distortion.
As a final remark on CT excitations, we note that their intensity is much smaller than
in cuprates. Indeed, while the intensity of CT excitations is a good fraction of that of dd
excitations in cuprates [58], they are almost invisible in HEOs. Given that CT excitations
are attributed to the d-like character of anti-bonding states, it can be concluded that Mg-
CNCZ and CNCZ are characterized by a smaller covalent character than cuprates.
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3.3. Magnetic excitations

The present section focuses on the analysis of the low-energy feature found in RIXS spectra
at roughly 0.1 eV. We anticipate that, given that the low-energy region of RIXS spec-
tra of cuprates is characterized by magnon-related peaks, and that Mg-CNCZ exhibits
anti-ferromagnetic order, we interpret the low-energy feature as a sign of the presence
of magnetic excitations. In other words, the peak arises from a spin-flip excitation and
involves the dx2−y2,↓ → dx2−y2,↑ transition. Hence, the position of the peak is character-
istic of the magnon energy, i.e., the energy required to flip one spin in the long-range
magnetically ordered background.

3.3.1. Analysis of the magnetic peak

Fig. 3.8 shows a comparison of magnetic features in our HEOs samples for all experimental
configurations. The most relevant experimental observation is that the energy of the
magnetic feature is systematically larger in CNCZ than in Mg-CNCZ.

Figure 3.8: Comparison between magnetic excitations in HEO samples.
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To quantify this observation, we have fitted the low-energy region of the spectra to two
Gaussian functions, whose parameters are left free. Results of the fitting procedure are
shown in Fig. 3.9, and the extracted parameters are listed in table 3.3, where Esf

Mg−CNCZ

and Esf
CNCZ are the magnetic excitation energies of Mg-CNCZ and CNCZ, respectively.

Figure 3.9: Analytical fits to the low-energy region for Mg-CNCZ spectra (panel a) and
CNCZ spectra (panel b).

Esf
Mg−CNCZ [meV] Esf

CNCZ [meV] Esf
Mg−CNCZ/E

sf
CNCZ

2θ = 145°, π 67 88 0.76
2θ = 110°, π 79 104 0.76
2θ = 90°, π 79 105 0.75
2θ = 90°, σ 59 72 0.82
2θ = 70°, π 72 97 0.74

Table 3.3: Spin-flip excitation energies obtained by fitting the elastic and the magnetic
peaks. The magnetic energy ratio Esf

Mg−CNCZ/E
sf
CNCZ is also reported.



3| Ligand field and magnetic excitations in Mg-CNCZ and CNCZ 57

The table shows that the magnetic excitation energy is systematically higher in CNCZ
than in Mg-CNCZ. Moreover, their ratio is roughly independent on the experimental
geometry or incident photon polarization and averages to 0.77, i.e., close to 4/5. The
sizeable variations of the magnetic energy upon changes in the scattering angle is better
appreciated in Fig. 3.10 and is suggestive of a momentum dependence of the magnetic
excitation.

Figure 3.10: Magnetic dispersion in Mg-CNCZ (blue markers) and CNCZ (orange mark-
ers) samples. The trend is highlighted by dashed lines.

The dispersion is shown for π in-going photon polarization, where measurements at dis-
tinct scattering angles are available. As observed, the magnon dispersion is clear and is
similar for both samples.
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3.3.2. Nature of the magnetic excitation

The magnetic peak shift observed in Fig. 3.8 can be interpreted as it follows. Since in
CNCZ the Mg non-magnetic ion is missing, the average spin momentum is larger than
in Mg-CNCZ, and so are the strength of the exchange interaction acting on spins and
the energy required to flip one spin. This interpretation is supported by quantitative
arguments based on the electronic configurations and the magnetic moments of the ions
present in Mg-CNCZ and CNCZ, reported in table 3.4.

Electronic configuration S

Mg2+ [Ne] 0
Co2+ [Ar]3d7 3

2

Ni2+ [Ar]3d8 1
Cu2+ [Ar]3d9 1

2

Zn2+ [Ar]3d10 0

Table 3.4: Electronic configuration and corresponding spin of divalent ions in Mg-CNCZ
and CNCZ HEOs. We clarify that the spin of the Co ion (3

2
) is assumed in the high-spin

configuration.

Indeed, interestingly, the energy ratio Esf
Mg−CNCZ/E

sf
Mg−CNCZ comes very close to the ratio

of the average spin values of the magnetic ions in Mg-CNCZ and CNCZ, respectively:

SMg−CNCZ

SCNCZ

≃
Esf

Mg−CNCZ

Esf
Mg−CNCZ

≃ 4

5
(3.1)

where
SMg−CNCZ =

SCu + SCo + SNi + SZn + SMg

5
=

3

5

SMg−CNCZ =
SCu + SCo + SNi + SZn

4
=

3

4

(3.2)

In order to further test the validity of this interpretation, we report here a more rigorous
analysis. In a crystalline material, the magnetic energy is described by the Heisenberg
Hamiltonian, which accounts for the interactions between all pairs of atoms:

Hm = −
∑
(i,j)

Ji,jSi · Sj (3.3)

where Si, Sj and Ji,j are the spin momenta and the exchange parameter of the (i, j)
pair of atoms. The explicit calculation of the exchange energy in HEOs is not straight-
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forward, since one needs to account for the random distribution of both magnetic and
non-magnetic ions over the magnetic lattice. Moreover, the chemical selectivity of RIXS
contrasts with its ability to probe collective excitations in a highly chemically-disordered
system and complicates the interpretation of the RIXS process. Here we consider two
conceptually distinct scenarios:

Figure 3.11: Schematics of the distribution of magnetic ions over the cationic sub-lattice
in the two mentioned scenarios. Statistical weights are also reported for both HEOs.
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1st scenario: here we assume that magnetic excitations involve spins of Cu2+ ions only,
because of the intrinsic chemical selectivity of the RIXS process. In this case, we limit to
consider the Cu2+ local environment to calculate the spin-flip energy. Specifically, since
we address interactions mediated by oxygen ions, we refer to the 6 next-nearest neighbours
in the cationic sub-lattice (upper panel of Fig. 3.11), which are randomly occupied by
any of the ions available in the given sample, with equal probability. Hence, the energy
of magnetic interaction between Cu2+ and one of the surrounding ions is evaluated as the
average of the interaction energies between Cu2+ and each of the ions. The average is
weighted by the probability pi of occupation of one neighbouring lattice site by an ion
of the species i, with spin Si. Then, to account for all neighbouring ions, a factor 6 is
included. One obtains

Esf = 6

[
2SCu

N∑
i

piJCu,iSi

]
, (3.4)

N is the number of species in the sample, while JCu,i is the exchange parameter of the
interaction between Cu2+ and species i. In Mg-CNCZ, pi = 0.2 for all N = 5 available
ionic species, while in CNCZ N = 4 and, correspondingly, pi = 0.25. Hence, equation 3.7
develops differently for each sample:

Esf
Mg−CNCZ = 6 [2 · 0.2SCu(JCu,CuSCu + JCu,CoSCo + JCu,NiSNi)]

Esf
Mg−CNCZ = 6 [2 · 0.25SCu(JCu,CuSCu + JCu,CoSCo + JCu,NiSNi)]

(3.5)

We note that all above terms involve Cu2+ ions, in agreement with the assumption that
the spin wave propagates over Cu2+ sites only. Finally, the ratio between excitation
energies is

Esf
Mg−CNCZ

Esf
CNCZ

=
0.2SCu(JCu,CuSCu + JCu,CoSCo + JCu,NiSNi)

0.25SCu(JCu,CuSCu + JCu,CoSCo + JCu,NiSNi)
=

4

5
, (3.6)

which correctly reproduce the experimental observation.

2nd scenario: here we assume that magnetic excitation involve the spins of all magnetic
ions, because of the intrinsic collective nature of magnons. The site that we conceptually
identified as the one hosting the spin flip is now hosting any of the N available ions, with
equal probability. The lower panel of Fig. 3.11 depicts the described framework, where
Sj is the spin of species j occupying the central site. By changing species, N distinct
configurations can be identified. Thus, equation 3.7 must be further averaged over these
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configurations:

Esf = 6

[
2

N∑
j

pjSj

N∑
i

piJj,iSi

]
(3.7)

Once again, the average is weighted by the probability pj that the central site is occupied
by species j. Developing the summation for Mg-CNCZ and CNCZ, respectively, one
obtains

Esf
Mg−CNCZ = 6{2 · 0.2[0.2SCu(JCu−CuSCu + JCu−CoSCo + JCu−NiSNi) + ...

...+ 0.2SNi(JNi−CuSCu + JNi−CoSCo + JNi−NiSNi)]}

Esf
CNCZ = 6{2 · 0.25[0.25SCu(JCu−CuSCu + JCu−CoSCo + JCu−NiSNi) + ...

...+ 0.25SNi(JNi−CuSCu + JNi−CoSCo + JNi−NiSNi)]}

(3.8)

Performing the ratio all terms cancel out, apart from the statistical weights:

Esf
Mg−CNCZ

Esf
CNCZ

=

(
4

5

)2

(3.9)

According to our derivations, we conclude that the first scenario seems to be the correct
one, i.e., the energy of the spin wave is that of the magnetic excitation involving Cu2+

ions only. This might be due to the coherence of the RIXS process that effectively probes
only the chemical species at resonance.

3.3.3. Study of the magnon dispersion

The study here proposed aims at predicting the observed magnetic dispersion by including
the magnetic structure factor into calculated scattering cross sections. In this way, an
estimate of the average exchange parameter J is given within the hypothesis of coherent
magnon excitation over Cu sites only. The magnetic structure factor, named Sm, includes
the dependence on the transferred momentum q into the calculation of the intensity I of
the magnetic excitation. In particular, one can write

I(q, E) ∝ Sm(q, E)σx2−y2,↑, (3.10)

where we recall that σx2−y2,↑ represents the cross section of the spin-flip excitation.
Sm(q, E) has been calculated adapting the work by Hutching and Samuelsen [85] to
HEO powders. We anticipate that the structure factor is derived in the assumption that
a unique exchange energy is associated to the magnetic interaction, mediated by O, be-
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tween Cu and the magnetic ions:

JCu−CuSCu = JCu−CoSCo = JCu−NiSNi = JS̄ (3.11)

That said, Sm(q, E) can be written as

Sm(q, E) =
A(q, E)−B(q, E)√
A(q, E)2 −B(q, E)2

, (3.12)

where A and B are q-dependent parameters proportional to J :

A(q, E) = 6J

B(q, E) = 2JC(q, E)

C = cos aqx + cos aqy + cos aqz

(3.13)

a is the crystal lattice parameter, while qx, qy and qz are the projections of q on the
sample frame of reference.
The q-dependence of the magnon energy is instead implemented by means of the following
dispersion relation, which makes use of the same A and B parameters above defined:

ℏω(q) = SCuS
√
A(q, E)2 −B(q, E)2 (3.14)

S is the average spin of the magnetic ions, equal to 0.3 in Mg-CNCZ and to 0.375 in
CNCZ.
Now we have all the tools to simulate the HEOs magnon dispersion. The idea is to leave J
as a free parameter, with the aim to match the simulated dispersion to the experimental
data shown in Fig. 3.10. The results of the calculated dispersion are visualized in Fig.
3.12, together with reported experimental points (diamond markers), both for Mg-CNCZ
and CNCZ. Simulations appear to well reproduce the experimental trend. The average
exchange parameter is estimated to be approximately 22 meV, that is an order of mag-
nitude larger than theoretical estimates [55]. However, this discrepancy may be related
to the element selectivity of the RIXS technique: while the proposed theoretical work
estimates J as an average of the exchange parameters associated to interactions involv-
ing any couple of magnetic ions (JCu−Cu, JCu−Co, JCu−Ni, JCo−Ni, JCo−Co and JNi−Ni),
we likely measure an exchange parameter averaged uniquely over interactions involving
copper ions, the species at resonance. This possibility calls for further investigations in
the future: RIXS measurements at other absorption edges could be performed to check
the possible dependence of the measured J on the particular probed ion.
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Figure 3.12: Simulated magnon dispersion in Mg-CNCZ (upper panel) and CNCZ (lower
panel). The colour scale represents the value of Sm(q, E)σx2−y2,↑.
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4| Conclusions and Perspectives

Inspired by the growing interest in the family of HEOs, and motivated by the reliability
of the RIXS technique on the study of transition metal oxides, we have performed RIXS
measurements on two prototypical rock-salt HEOs, Mg-CNCZ and CNCZ, at the L3 ab-
sorption edge of Cu2+. By doing so, RIXS has been demonstrated, for the very first time,
to be a powerful tool for probing their structural, electronic and magnetic properties.
By analyzing dd and charge-transfer excitations, we have established with certainty that
CuO6 octahedral units in Mg-CNCZ and CNCZ suffer from sizeable Jahn-Teller distor-
tions. The possibility of a distortion that lowers the local symmetry of Cu2+ sites from
cubic to tetragonal was already observed from the refinement of the crystal structure in
both samples, but a precise estimate of the energy associated to it could not be made.
Here, we provide a direct measurement of the energy associated to the JT instability
for both Mg-CNCZ (0.96) and CNCZ (1.08 eV). Moreover, the investigation of the low-
energy spectral region has revealed that the relative energies of the magnetic peaks in
the two systems is 4

5
, coinciding to the ratio between the average spin values of available

elemental species in Mg-CNCZ and CNCZ: indeed, the extra non-magnetic ion found in
the five-component HEO reduces the effective magnetic interaction, thus decreasing the
spin-flip excitation energy. Within the framework of the Heisenberg model, and assum-
ing that RIXS coherently excites spin waves at resonant sites only, we have developed a
more formal derivation of the factor 4

5
, reproducing the experimental evidence. Finally,

we have explained the momentum dependence of the magnetic excitations by including
the magnetic structure factor Sm(q, E) in the calculations for the magnetic excitation
intensity, together with a proper expression for the energy dispersion relation ℏω(q). By
doing so, we have quantified the effective anti-ferromagnetic coupling J to approximately
22 meV. A more solid interpretation of the magnetic behaviour of HEOs, however, calls
for further investigations. To test the validity of our interpretation of the RIXS process
on these magnetically disordered materials it could be interesting to perform RIXS at the
absorption edges of other elemental species. In addition, temperature-dependent mea-
surements could be relevant to improve our understanding of their magnetic properties.
In conclusion, we have demonstrated that RIXS is capable of providing a plenitude of
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novel information about prototypical Mg-CNCZ and CNCZ compounds, and we believe
that it can be a relevant technique also for studying other related compounds, with the
aim to fully explore the emergent realm of HEOs.
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A.1. Kramers-Heisenberg equation

Here the Kramers-Heisenberg equation is derived, following the most relevant steps of the
theoretical work by Ament [65]. The interaction between the scattering x-rays and the
solid sample is described by quantum electrodynamics (QED). To simplify the theoretical
treatment, we work under two relevant assumptions:

• the Hamiltonian of the whole system is derived in the low-energy approximation of
QED: the electrons interacting with the quantized electromagnetic field describing
scattering x-ray photons are assumed to be non-relativistic electrons i.e. electrons
moving at speeds much smaller than the speed of light c;

• the electromagnetic fields involved in the light-matter interaction event are much
smaller than the mass m of the electron. If A(r, t) is the vector potential of the
electromagnetic field and Φ is the scalar potential, the following relations must be
satisfied:

e|A(r, t)|
2mc

≪ 1 (A.1)

eΦ

2mc2
≪ 1 (A.2)

In this framework, the Hamiltonian describing the interaction of N electrons with the
electromagnetic field is

H =
N∑
j=1

[pj + eA(rj)]2

2m
−

N∑
j=1

eΦ(rj)−
eℏ
2mc

N∑
j=1

σj · ∇ × A(r)+

+
N∑
j=1

eℏ
2(2mc)2

σj · {E(rj)× [pj + eA(rj)]− [pj + eA(rj)]× E(rj)}+

+
N∑
j=1

eℏ2ρ(rj)
8(mc)2ϵ0

+

∫
dk
∑
ϵ

ℏωk

(
c†ϵ,kcϵ,k +

1

2

)
(A.3)
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where σj and pj are the Pauli matrices and the momentum operator of the jth electron at
site j, E(rj) = −∇ϕ(r)− ∂A(r)

∂t
is the electric field, c†ϵ,k is the creation operator of a photon

with wavevector k and polarization state ϵ and cϵ,k is the corresponding annihilation op-
erator. ε0 is the permittivity of free space. The first term of H is the kinetic energy of the
N electrons in presence of an electromagnetic field. The second term denotes the potential
energy of the system, while the third term describes Zeeman splitting in the presence of
a magnetic field B(r) = ∇ × A(r). The effect of spin-orbit coupling is encompassed in
the fourth term. The fifth term is called Darwin term and is a correction term acting on
s states only. Finally, the last term describes the energy of the electromagnetic field as
sum of all photon modes (k, ϵ).
At this point it is useful to highlight that equation A.3 can be reformulated by gathering
all terms in 3 contributions:

H = Hel +Hph +H′ (A.4)

Hel contains all terms describing the energy of electrons, Hph gathers terms related solely
to the energy of the radiation field and H′ is the electron-photon interaction Hamiltonian.
In the context of perturbation theory, H′ represents a perturbing term to the system of
non-interacting electrons and photons, described by the Hamiltonian H0 = Hel + Hph.
The eigenstates of Hph are single-photon states identified by momentum, energy and
polarization state. If the initial and final eigenstates of the scattered photon are |ki, ϵi⟩
and |ko, ϵo⟩, respectively, the following eigenvalue equations are satisfied:

Hph|ki, ϵi⟩ = ℏωki
|ki, ϵi⟩ (A.5)

Hph|ko, ϵo⟩ = ℏωko |ko, ϵo⟩ (A.6)

The energy and the momentum of the photon are linked by the simple relation ωki
= c|ki|.

As a result of the scattering process the solid transits from an initial state |i⟩ with energy
Ei to a final state |f⟩ with energy Ef . |i⟩ and |f⟩ are both eigenfunctions of Hel:

Hel|i⟩ = Ei|i⟩ (A.7)

Hel|f⟩ = Ef |f⟩ (A.8)

Since H0 contains only non-interacting terms, the eigenstates of the unperturbed Hamil-
tonian H0 are obtained simply by multiplying eigenstates of Hel to eigenstates of Hph.
Moreover, eigenvalues are obtained by summing eigenvalues of Hel to eigenvalues of Hph.
That said, we have all ingredients to fully characterize the initial and final states of the pro-
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cess: the system transits from the ground state |a⟩ = |i;ki, ϵi⟩ with energy Ea = Ei+ℏωki

to the final state |b⟩ = |f ;ko, ϵo⟩ with energy Eb = Ef + ℏωko . The relations shown here-
under are fullfilled:

H0|a⟩ = Ea|a⟩ (A.9)

H0|b⟩ = Eb|b⟩ (A.10)

To calculate the scattering cross section we rely on perturbation theory: the transition
rate w for RIXS processes is given by second order Fermi’s Golden Rule:

w =
2π

ℏ
∑
b

∣∣∣∣∣⟨b|H′|a⟩+
∑
n

⟨b|H′|n⟩⟨n|H′|a⟩
Ea − En

∣∣∣∣∣
2

δ(Eb − Ea) (A.11)

n is an index running on the intermediate states of a second order process, such as RIXS,
that are eigenstates of the unperturbed Hamiltonian H0. The nth intermediate state has
energy En and the Dirac delta δ(Eb −Ea) ensures conservation of energy. While the first
order amplitude yields non-resonant scattering processes, the second order amplitude is a
resonant term; it dominates the first order amplitude when Ea ≃ En, a condition that is
achieved when the incoming photon energy matches one of the material absorption edges.
At this point it is useful to recall that the vector potential A(r) can be developed as sum
of single mode vector potentials:

A(r) =
∫
dk
∑
ϵ

Aϵ,k(r) (A.12)

where

Aϵ,k(r) =
√

ℏ
2V ε0ωk

ϵ
(
cϵ,ke

ik·r + c†ϵ,ke
−ik·r

)
(A.13)

V denotes the volume of the system. We underline that Aϵ,k(r) is proportional to cϵ,k and
c†ϵ,k: all terms of H′ that are quadratic in A(r) contribute only to the first order amplitude
of equation A.11, since they include terms proportional to c†ϵ,kcϵ,k and cϵ,kc

†
ϵ,k. In other

words, terms quadratic in A(r) give rise to non-resonant processes, such as non-resonant
inelastic scattering or Bragg x-ray diffraction. Since RIXS is a second order process, in
the following we exclusively focus on the terms linear in A(r), which instead contribute to
the second order amplitude and lead to resonant processes. The first order amplitude is
neglected, being dominated by the second order term in the resonance condition intrinsic
to the RIXS technique. Furthermore, off-resonance processes contributing to the second
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order term are ignored [86]. If we neglect spin-orbit coupling, and choosing the Coulomb
gauge so that ∇ · A(r) = 0, the perturbation Hamiltonian becomes

H′ ≃ − e

mc

∑
j

A(rj) · pj −
eℏ
mc

∑
j

σj · ∇ × A(rj) (A.14)

In a RIXS experiment exploiting soft x-rays we can assume to work in the dipole ap-
proximation limit. The wavelength of the electromagnetic field is much larger than the
typical spatial extension of atomic wavefunctions (k · r ≪ 1) and eik·r is assumed to be
approximately constant and equal to 1. Under this assumption, replacing H′ in equation
A.11 leads to the following expression of the second order amplitude:

e2ℏ
2m2V ε0

√
ωki

ωko

∑
n

N∑
j,j′

⟨f |ϵ∗o · pj′ |n⟩⟨n|ϵi · pj|g⟩
Eg + ℏωki

− En + iΓn

(A.15)

The imaginary term iΓn is introduced to account for the finite lifetime of the core holes
generated in the intermediate states. Usually the transition operators in a RIXS process
are rewritten exploiting the definitions

Di =
1

imωk

N∑
j

eik·rjϵ · pj (A.16)

and

Do =
1

imωk

N∑
j′

eik·rj′ϵ · pj′ (A.17)

To calculate the double differential cross section d2σ
dℏωdΩ , the transition rate w is multiplied

by the density of photon states in the solid angle ρph and is divided by the photon flux
Φ: d2σ

dℏωdΩ =
wρph
Φ

[87]. Replacing the expressions A.15, A.16 and A.17 in equation A.11 we
finally obtain the Kramers-Heisenberg equation

d2σ

dℏωdΩ
= r2em

2ω3
ko
ωki

∑
f

∣∣∣∣∣∑
n

⟨f |D†
o|n⟩⟨n|Di|g⟩

Eg + ℏωk − En + iΓn

∣∣∣∣∣
2

δ(Eg − Ef + ℏω) (A.18)

used to calculate the RIXS cross section. re = e2

4πε0mc2
is the classical electron radius. The

formula can be generalized accounting for the statistical distribution of electrons at finite
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temperature T :

d2σ

dℏωdΩ
∝
∑
i,f

1

Z
e−Ei/kBT

∣∣∣∣∣∑
n

⟨f |D†
o|n⟩⟨n|Di|g⟩

Eg + ℏωk − En + iΓn

∣∣∣∣∣
2

δ(Eg − Ef + ℏω) (A.19)

where kB is the Boltzmann constant and Z is the partition function.
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A.2. Basis transformation matrices

We report here the matrices Td and Tp. They perform a basis transformation from the
spherical harmonics basis to the cubic harmonics basis. The full expression of Td is



Y ↓
2,2 Y ↑

2,2 Y ↓
2,1 Y ↑

2,1 Y ↓
2,0 Y ↑

2,0 Y ↓
2,1

Y ↑
2,1

Y ↓
2,2

Y ↑
2,2

d↓x2−y2
1
2U−

1
2D− 0 0 0 0 0 0 1

2U−
1
2D−

d↑x2−y2
1
2U+

1
2D+ 0 0 0 0 0 0 1

2U+
1
2D+

d↓3z2−r2 0 0 0 0 U+ D+ 0 0 0 0

d↑3z2−r2 0 0 0 0 U− D− 0 0 0 0

d↓xy − i
2U+ − i

2D+ 0 0 0 0 0 0 i
2U+

i
2D+

d↑xy − i
2U− − i

2D− 0 0 0 0 0 0 i
2U−

i
2D−

d↓xz 0 0 1
2U+

1
2D+ 0 0 − 1

2U+ − 1
2D+ 0 0

d↑xz 0 0 1
2U−

1
2D− 0 0 − 1

2U− − 1
2D− 0 0

d↓yz 0 0 − i
2U+ − i

2D+ 0 0 − i
2U+ − i

2D+ 0 0

d↑yz 0 0 − i
2U− − i

2D− 0 0 − i
2U− − i

2D− 0 0


while Tp is



Y ↓
1,1 Y ↑

1,1 Y ↓
1,0 Y ↑

1,1 Y ↓
1,1

Y ↑
1,1

p 3
2
, 3
2

1 0 0 0 0 0

p 3
2
, 1
2

0
√

1
3

√
2
3

0 0 0

p 3
2
, 1
2

0 0 0
√

2
3

√
1
3

0

p 3
2
, 3
2

0 0 0 0 0 1

p 1
2
, 1
2

0
√

2
3

−
√

1
3

0 0 0

p 1
2
, 1
2

0 0 0
√

1
3

−
√

2
3

0


.
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A.3. HMO6 Hamiltonian

The 23×23 Hamiltonian describing the CuO6 octahedral system is here reported.
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