
Executive Summary of the Thesis

Hierarchical classification model for content-based geolocation of
outdoor images with visual explanations

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Luca Loria

Advisor: Prof. Mark James Carman

Academic year: 2020-2021

1. Introduction
Human intervention on the planet has led to
an evident increase of natural disasters such as
hurricanes, floods, and landslides. With the ad-
vent of social media technologies, many people
are posting photos and pictures related to nat-
ural disasters, often taken from unknown and
untrusted sources.
By geolocating images, emergency services may
coordinate vehicles and people in order to tackle
natural disasters more promptly and effectively,
saving people lives and belongings. This work
aims to help them by exploiting geolocation fea-
tures from images.
Modern deep learning techniques and theories
have made this work possible thanks to the abil-
ity of performing content-based geolocation.
As a further refinement, as this work has to be
intended as a support to the geolocating opera-
tions, it provides the prediction of a set of pos-
sible world areas in which the image could have
been taken and a set of visual explanations, such
as saliency and interactive world maps.

2. Related Works
The image geolocation problem has started be-
coming interesting since the late 2000, with the
IM2GPS [2] work that started from a pure com-

puter vision approach, and then it evolved into
deep learning based techniques. In particular,
two main directions were followed for solving
this problem: the geolocation by classification
(GBC) approach and the image based localiza-
tion (IBL) approach.
The geolocation by classification (GBC) is
intended to treat the geolocation problem as a
classification task: they are based on the divi-
sion of the world map into a set of cells and
predicting the correct one. The pioneer works
exploiting this technique were PlaNet [8] and
the work of Müller-Budack et al. [4]. The lat-
ter also introduced the concept of hierarchical
classification that was the idea of classifying an
image on differently-grained world division and
combine the predicted probabilities in order to
extract the final confidence levels.
The image-based localization (IBL) is a
retrieval-based image localization technique that
is performed for estimating the geographical po-
sition of a query image by applying a similarity
measure that provide the nearest reference im-
ages from a precomputed database. The most
popular work exploiting the IBL is the Revis-
ited IM2GPS [7], that combines the IM2GPS
approach with modern deep learning techniques.
As far as this work is concerned, we decided to

1

Executive summary Luca Loria

focus on the GBC approach.

2.1. Cell Generation
Building an adaptive set of classes depending on
the dataset is crucial in the task definition and
in the model accuracy. With the term adaptive,
we intend to divide the world up in finer-grain
regions where the largest number of images are
taken, while it makes sense to keep vast areas
for those locations which do not have a sufficient
number of images coming from them. In the lit-
erature [4, 8], we found the Google S2 Geome-
try library [1] which enables us to deal with grid
building in an adaptive way. We took inspira-
tion from the [4] GitHub repository and modified
it in order to shape the results to the problem
structure. In order to keep the cell as balanced
as possible, we define two thresholds (tmin and
tmax) which are used in the cell generation al-
gorithm for limiting the number of images per
cell.

2.2. Visual Explanations
The visual explanations are tools used for refin-
ing the model predictions, in order to provide
a further insight to the users. In particular, we
took inspiration from the Grad-CAM [5] model
which uses the gradients of any target concept
flowing into the final convolutional layer to pro-
duce a saliency map, highlighting the most im-
portant pixels in the image for predicting the
output class through a saliency map.

3. Research Questions
In order to set a path for the current research
work, we define a list of questions that we ad-
dress in this thesis. In particular:

1. Is it possible to provide a deep learning
model which is able to geolocate any kind
of outdoor image from a worldwide perspec-
tive?

2. Is it possible to improve the performance of
an image geolocating model by adding the
hierarchical information of how the world
was divided up directly inside the model?

3. Can a deep learning model provide a signif-
icant visual explanation that could be used
to understand why the image has been pre-
dicted in such?

4. What is the best way to predict the location
information? How can we evaluate that the

model is predicting reasonable locations?

4. Approach and Model archi-
tectures

When dealing with the outdoor geolocation
problem, the first operation we perform is a set
of data augmentation techniques in order to ex-
ploit more information from the same training
data. Immediately after, we place as input of
the feature extractor a batch of 32 RGB resized
images (224,224,3). The output of this block
of the general scheme produces a volume of ex-
tracted image features shaped as (1280,1280,8).
As far as the Cell Classifier is concerned, we
decide to implement a baseline Fully-Connected
multi-class model and a very powerful set of cus-
tom neural networks. The latter embeds the hi-
erarchical information concerning the grid gen-
eration in order to refine the predictions of leaf
cells.

4.1. Hierarchical Models
The hierarchical model constitutes the core of
the novelties developed in this thesis work. Af-
ter creating a baseline fully-connected model for
classifying the encoded features coming from the
Feature Extractor, we want to find out whether
the model could perform even better by exploit-
ing the information coming from the hierarchical
cell generation. Our work aims to make use of
the grid generation knowledge, especially how
cells are generated from bigger cells and how
they are linked together: the hierarchical in-
formation is exploited directly inside the model
structure.

Figure 1: Visual representation of the model hi-
erarchy. From the left to right, the input image
divided in the RGB channel, the Feature ex-
tractor and the hierarchical cell representation
in terms of neurons. Blue neurons represent in-
termediate cells, while orange neurons represent
leaf cells.

2

Executive summary Luca Loria

As it is possible to deduce from Fig. 1, the aim
of our work is to create a hierarchical relation-
ship between cells of different size: this leads the
procedure to build a tree-like structure in which
deep cells are fractions of cells from upper levels.
In order to keep the hierarchical dependency
concept that we explained previously during
the models’ implementation, we transformed
the tree structure into a destination-oriented
directed acyclic graph (DODAG), expressed
through a set of connection matrices that are
used to express connections between neurons in
a fully-connected set of layers, which represent
the levels of the hierarchy.
The output encoding of the Feature Extraction
is firstly linearized into a vector-shaped tensor
and then fed into a Dense layer activated by
a ReLU function, with the purpose of prop-
erly combining the features. Immediately after
it, the hierarchical classification module takes
place. As a first operation, the Hierarchical Pre-
diction layers are defined: they consist of a set
of Dense layers in a number that is equivalent
to the number of hierarchy levels (depth). Their
main purpose is to predict the target cell of the
current (batch of) image at their corresponding
level of the hierarchy.
As the output of the Hierarchical Prediction lay-
ers are identified by tensors of values, it is pos-
sible to combine them using matrix operations.
According to this, we decided to multiply each
output of the previous layer by the correspond-
ing level’s binary_matrix.
After the matrix multiplication, the output ten-
sor will be shaped as the output of the model,
that is a set of Kmax_depth tensors with equal
size (number of leaf cells).
The final operation that needs to be performed
before the model prediction is the combination
of the latter tensors in order to result in a sin-
gle final output layer. In these terms, we define
several variants that produce a set of different
hierarchical models:
Product of the branch nodes’ probabilities
(HMC): computes the element-wise product be-
tween all the hierarchical prediction tensors.

Tensorout =

max_depth−1∏
i=lvl0

Tensorlvli (1)

All the elements of the same hierarchical tree

branch are multiplied together in order to dis-
criminate regions depending on their hierarchy.
Exponential sum of logarithms of the nodes’
probabilities (HMC-sol): each of the Hierar-
chical Prediction Tensors are passed through a
log function and then element-wise summed up
together. Finally, the output tensor is the expo-
nential of that sum.

Tensorout = e
∑max_depth−1

i=0 log(Tensorlvli) (2)

This implementation is intended to solve a preci-
sion issue caused by long multiplication chains of
decimal numbers (floating-point numbers which
are ≤ 1).
Smoothed sum of the branch nodes’ proba-
bilities (HMC-smooth): smooths each of the
Hierarchical Prediction Tensor by a power of
α which depends on the depth of the tensor
and compute the average of each branch, as ex-
pressed in the next formula.

∀k ∈ {0, . . . , leaf_size} : Tensoroutk =∑max_depth−1
i=0 Tensorlvli,k · αmax_depth−i−1∑bottom_lvl−1

j=0 α
bottom_lvl−j−1
k

(3)

This implementation gives more importance to
the probabilities at deep levels of the hierarchy.

5. Dataset
In the literature [3], it is possible to find only a
few datasets of geotagged pictures, mainly cir-
cumscribed to a specific area or a coerced task.
As the task requires us to cover a very broad
and heterogeneous set of images, we decided
to crawl ourselves a dataset on the Flickr plat-
form: we collected a vast set of outdoor hetero-
geneous places by exploiting the search function
offered by the Flickr API. We used terms re-
lated to urban (’city’, ’building’, ’street’, etc.)
and natural (’landscape’, ’mountain’, ’woods’,
etc.) scenes as well as words for specific ar-
eas of the world (’pyramid’, ’savanna’, ’tundra’,
etc.). In order to obtain the largest possible set
of outdoor images, we also exploited the PyDic-
tionary and GoSlate library in order to generate
respectively any possible English synonym and
translations in a set of given languages (Italian,

3

Executive summary Luca Loria

French, Spanish, Portuguese, German, Chinese
and Swedish). In the end we were able to col-
lect around one million geotagged outdoor im-
ages containing outdoor scenes of any possible
kind.

6. Experimental Results and
Evaluations

In this section, we discuss the experiments and
evaluations that were performed on the deep
learning models that we explained in the pre-
vious sections. In particular, we discuss how
we analyze the outdoor geolocation problem and
compare the model performance in different con-
ditions.

6.1. Experimental Setup
All the experiments we run share common set-
tings, and we are going to illustrate them in
this section. As far as the dataset is concerned,
all the outdoor geolocation models that we will
be dealing with are trained over the Flickr im-
ages that we personally crawled as thoroughly
explained in Chapter 5. In particular, we au-
tomatically split the one million image dataset
into two separated set: training (90%) and val-
idation (10%). The test set is extracted of-
fline. During the model training, we feed the
neural network with batches of 32 random im-
ages. The models optimize a SparseCategorical-
CrossEntropy loss function, exploiting the Adam
optimizer endowed with several regularization
functions. In order to compare different models,
we use different evaluation metrics, that are the
validation loss and accuracy and the Improve-
ment over Random (IoR) which is able to mea-
sure how many times the model is performing
better than the random prediction, as shown in
the next formula:

IoR =
Accuracyvalid
ProbRandom

(4)

The way the random classifier probability is
computed is a uniform probability distribution
over the target cells of the outdoor geolocation
problem (ProbRandom = 1

Nclasses
). This metric is

more significant than accuracy when the num-
ber of classes increases, as accuracy values are
shrunk to zero while the IoR is expressed in rea-
sonable values.

6.2. Experiments
In order to evaluate the best models and com-
pare different implementations, we run several
experiments that allow us to understand the
best settings for solving the outdoor geolocation
problem.
Experiment A - Model backbone: which
state-of-the-art CNN model could be the best
feature extractor for the Outdoor Geolocation
problem. The experiment runs on modern CNN
models (VGG19, ResNET152, EfficientNetB0
and EfficientNetB1) over the same classification
task. The results show that the EfficientNet
backbone outperforms all its competitors. In
particular, the Keras EfficientNetB1 [6] imple-
mentation showed by far the best performance
among the tested networks.
Experiment B - Number of Images: trend
of the Outdoor Geolocation Model performance
when increasing the number of images in the
training dataset. In order to have a sufficient
number of samples for analyzing the perfor-
mance trend, we choose to extract different num-
bers of training image (10,000 - 40,000 - 160,000
- 640,000) for the current experiment. By plot-
ting validation accuracy (and also IoR) versus
dataset size with logarithmic access shows a
steep slope except from a plateau in the mid-
dle segment. This behavior demonstrates that
the accuracy will not converge even after 640,000
images. For this reason, we can assume that in-
creasing the number of images will result in an
exponential increase up to a point until we see
decay after the base error rate in the validation
accuracy.
Experiment C - Number of Target Cells:
the effect that the number of target classes might
have on the Outdoor Geolocation problem. The
results show that when the number of cells is
low, the model seem to have a low IoR proba-
bly due to underfitting: the model is underesti-
mating the problem. On the other hand, when
the number of cells is high enough (over 50) the
model’s IoR starts dropping and the reason for
this can be found in the overfitting problem, as
there are not enough images for enabling the
model to be trained over that number of classes.
Experiment D - Hierarchical Model:
compare the hierarchical models’ performance
against a baseline non-hierarchical multi-class
model in terms of validation performance and

4

Executive summary Luca Loria

training time.

Model name Loss Accuracy IoR

MC 4.799 0.023 1.66

HMC 4.301 0.033 2.38

HMC-sol 4.104 0.032 2.23
HMC-smooth 3.980 0.031 2.23

Table 1: Models validation performance (loss
and accuracy) and IoR (Improvement over Ran-
dom).

Model name Time per epoch (s)

MC 9,256

HMC 10,253

HMC-sol 15,960
HMC-smooth 19,253

Table 2: Models’ time per Epoch expressed as
the average time that we measured throughout
the training.

As far as the validation performance is con-
cerned (Tab. 1), it is easy to denote how hi-
erarchical models outclass the non-hierarchical
one. However, this results must be correlated to
the time it takes to train each of the previously
enlisted models: the non-hierarchical model is
faster than its hierarchical counterparts, but
there is an exception: the HMC is only 1.09x
slower than the MC. These results demonstrate
that the HMC is better than any other analyzed
model, due to its training speed (very close to
the multi-class model) and validation accuracy.
Analysis A - Model Calibration: correct-
ness and calibration of the HMC model predic-
tion through traditional machine learning tech-
niques.

Figure 2: The calibration histogram plot for the
predicted confidence. The distance between the
two vertical lines represent how well calibrated
the model is.

Figure 3: The calibration plot for the outdoor
geolocation model. Black lines on top of bins
represent the accuracy for that specific bin. The
more they are aligned with the bisector, the bet-
ter the calibration is.

From the first two plots, it is possible to de-
duce that the model is well calibrated. In fact
bins of Fig. 3 are not distant from the bisector
of the Cartesian plane, while the Fig. 2 vertical
lines are almost aligned. This leads us to think
that the model uncertainty is reasonable, as the
predicted probabilities are very close to the ex-
pected probabilities of the same outcomes.
Analysis B - Visual Explanations: the HMC
model explainability features in generating vi-
sual explanations, in terms of saliency and vi-
sual world maps. With this analysis we want to
provide a better understanding of the model pre-
dictions: in this way, users are not only able to
understand exactly where the model predicted
the location of the image using a visual tool
(Visual World Map), but also which parts
of the picture were relevant for the prediction
(Grad-CAM).

Figure 4: Example of a Grad-CAM superimpo-
sition. On the left side, the original image. On
the right side, the Saliency map of the left im-
age.

5

Executive summary Luca Loria

Figure 5: Example of a visual interactive world
map.

7. Demonstration Website with
Visual Explanations

The main purpose of our demonstration web-
site is to test models on user-uploaded images or
randomly chosen images from our dataset. The
whole application has been developed using the
Flask framework and embeds the HMC and MC
models described in the previous chapters. The
two models are responsible for producing the
confidence levels for the cells of the world grid:
they do not only tell the best performance, but
produce a specific confidence value for each of
the cells. In this way, it is possible to produce in-
teractive world maps and compare their perfor-
mance. In the meantime, Grad-CAM is used
for computing the visual explanation (heatmap)
of the geolocation models. The combination of
visual features from heatmaps and prediction
maps that show which grid cells were closer to
the target, enables users to have a better under-
standing of how the task works and how close
the model came to predicting the correct loca-
tion.

8. Conclusions and Future Re-
search Directions

Through this thesis work, we provided answers
to a list of research questions that we posed in
the Section 3. In particular, we tried to deal
with the outdoor geolocation problem exploit-
ing a set of deep learning techniques that could
solve the problem without any additional infor-
mation beyond the image’s pixels. We are able
to say that we created a hierarchical deep learn-
ing model that is able to correctly geolocating
outdoor images with higher performance than its
multi-class counterpart (HMC has demonstrated

to be the best one). Through calibration, we
were able to demonstrate the correctness of the
predictions. Finally, we provided a set of visual
explanation tools by exploiting Grad-CAM and
an interactive world map that refine predictions
by providing further insights on the model be-
havior.

References
[1] Google. Google s2 geometry: spher-

ical geometry library for manipulating
geographic data. https://github.com/
google/s2geometry, 2021.

[2] James Hays and Alexei A. Efros. im2gps: es-
timating geographic information from a sin-
gle image. In Proceedings of the IEEE Conf.
on Computer Vision and Pattern Recogni-
tion (CVPR), 2008.

[3] Carlo Masone and Barbara Caputo. A sur-
vey on deep visual place recognition. IEEE
Access, 9:19516–19547, 2021.

[4] Eric Müller-Budack, Kader Pustu-Iren, and
Ralph Ewerth. Geolocation estimation of
photos using a hierarchical model and scene
classification. In ECCV (12), volume 11216
of Lecture Notes in Computer Science, pages
575–592. Springer, September 2018.

[5] Ramprasaath R. Selvaraju, Michael
Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep
networks via gradient-based localization.
In ICCV, pages 618–626. IEEE Computer
Society, 2017.

[6] Mingxing Tan and Quoc V. Le. Efficientnet:
Rethinking model scaling for convolutional
neural networks, 2020.

[7] Nam N. Vo, Nathan Jacobs, and James
Hays. Revisiting IM2GPS in the deep learn-
ing era. CoRR, abs/1705.04838, 2017.

[8] Tobias Weyand, Ilya Kostrikov, and James
Philbin. Planet - photo geolocation with
convolutional neural networks. In European
Conference on Computer Vision (ECCV),
2016.

6

https://github.com/google/s2geometry
https://github.com/google/s2geometry

Hierarchical classification model for
content-based geolocation of
outdoor images with visual
explanations

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Author: Luca Loria

Student ID: 944679
Advisor: Prof. Mark James Carman
Academic Year: 2020-21

i

Abstract

A common need shared across several fields of application is the demand for geolocating
outdoor images in order to understand where they were taken. This could be the case
of the interventions of emergency services: with the advent of social media technologies,
many people are posting photos and pictures related to natural disasters, often taken
from unknown and untrusted sources, that could lead rescuers to wrong locations. For
this reason, we create a collection of artificial intelligence models which are able to find
the correct location of an image. This is performed by splitting the world into a set of
regions, and finding the one in which such a picture comes from.

In order to boost the accuracy of these self-learning models, we design new models for the
hierarchical region classification task which directly encode the hierarchy of the regions
into the neural architecture, specifically the feedforward layers of the CNN-based clas-
sification network. Cells are generated following a hierarchical process, and the models
reflect the hierarchy by replicating the structure within the neural network. The use of
such knowledge in the network structure results in better predictions both in terms of
accuracy and calibration of the predicted confidence values. In order to prove the effec-
tiveness of the hierarchical structure, we evaluate the models that we create using machine
learning assessments that measure the quality and the calibration of the predictions. Fi-
nally, in order to provide users with a comprehensible prediction, we implement a set of
visual explanations that are correlated to the model output. In particular, we provide a
saliency map which evidence the pixels that were useful for the prediction and a world
map which shows an overlay of the cells, together with their confidence levels. From a
qualitative analysis, we are able to show how the saliency map is useful for highlighting
areas of the image that are helpful for the prediction (buildings, trees, etc.) and how the
world map can give hints on the true location of the image: if the model cannot predict
the exact location, this visual world map can provide an overview of where the most likely
regions are placed over the earth so that users can be helped in finding the correct location.

Keywords: outdoor geolocation, hierarchical classification, explainability, artificial in-
telligence, deep learning, calibration

Abstract in lingua italiana

Un’esigenza comune a più campi di applicazione è il bisogno di geolocalizzare le immagini
outdoor per capire dove sono state scattate. Potrebbe essere il caso degli interventi dei
servizi di emergenza: con l’avvento dei social media, molte persone pubblicano fotografie
e immagini relative a disastri naturali, spesso prese da fonti sconosciute e non attendibili,
che potrebbero portare i soccorritori a intervenire in luoghi sbagliati. Per questo mo-
tivo creiamo un set di modelli di intelligenza artificiale in grado di trovare la corretta
posizione di un’immagine. Ciò viene eseguito suddividendo il mondo in un insieme di
regioni e trovando quella da cui proviene tale immagine. Per aumentare l’accuratezza di
questi modelli di autoapprendimento, creiamo una serie di implementazioni che tengano
conto del suddetta distribuzione delle regioni, a partire dal loro processo di generazione:
le aree sono generate gerarchicamente e i modelli si avvalgono di queste informazioni. In-
fatti, riflettono le informazioni gerarchiche replicandone la struttura all’interno della rete
neurale. L’uso di informazioni gerarchiche nella struttura della rete porta a migliori pre-
visioni sia in termini di accuratezza che di calibrazione dei valori di confidenza predetti.
Al fine di dimostrare l’efficacia della struttura gerarchica, valutiamo i modelli che creiamo
utilizzando alcuni metodi di apprendimento automatico che misurano la qualità e la cali-
brazione delle previsioni. Infine, per fornire agli utenti una previsione più comprensibile,
implementiamo una serie di spiegazioni visive che sono correlate all’output del modello.
In particolare, forniamo una mappa di salienza che evidenzia i pixel utili per la previsione
e una mappa del mondo che mostra una sovrapposizione delle celle, insieme ai loro liv-
elli di confidenza. Da un’analisi qualitativa, siamo in grado di mostrare come la mappa
di salienza sia utile per evidenziare le aree dell’immagine utili per la previsione (edifici,
alberi, ecc.) e come la mappa del mondo possa dare indicazioni sulla vera localizzazione
dell’immagine: se il modello non può prevedere la posizione esatta, questa mappa può
fornire una panoramica di come sono distribuite le regioni più probabili, in modo che gli
utenti possano essere aiutati a trovare la coppia di coordinate corretta.

Parole chiave: geolocalizzazione all’aperto, classificazione gerarchica, spiegabilità (AI),
intelligenza artificiale, deep learning, calibrazione (AI)

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Goal . 1
1.2 Hierarchical approach . 2

2 Related Works 5
2.1 Background on Deep Learning . 5

2.1.1 Image Classification General Model Structure 5
2.1.2 Activation functions . 11

2.2 Geolocation problem . 12
2.2.1 IM2GPS . 13
2.2.2 Geolocation by Classification (GBC) 13
2.2.3 Image-Based Localization (IBL) . 16

2.3 Geolocation Task Configuration . 18
2.3.1 Cell Generation . 19

2.4 Visual Explanation . 21
2.4.1 Grad-CAM . 21

3 Research Questions 23

4 Approach and Model architectures 25
4.1 Basic Multi-Class Model . 26
4.2 Hierarchical Models . 27

4.2.1 Sparsely-connected Model Construction 29
4.2.2 Product of the branch nodes’ probabilities (HMC) 33

vi | Contents

4.2.3 Exponential sum of logarithms of the branch nodes’ probabilities
(HMC-sol) . 35

4.2.4 Smoothed sum of the branch nodes (HMC-smooth) 36

5 Dataset 39
5.1 Flickr dataset . 39

5.1.1 Statistics . 40
5.1.2 Hierarchical features . 42

6 Experimental Results and Evaluations 45
6.1 Experimental Setup . 45

6.1.1 Data . 45
6.1.2 Loss function and optimizer . 46
6.1.3 Regularization functions . 47
6.1.4 Evaluation Metrics . 49

6.2 Experiment A: Model Backbone . 51
6.2.1 Problem Description . 51
6.2.2 Method . 52
6.2.3 Results and Discussions . 52

6.3 Experiment B: Number of Training Images 53
6.3.1 Problem Description . 53
6.3.2 Method . 53
6.3.3 Results and Discussions . 54

6.4 Experiment C: Number of Target Cells . 56
6.4.1 Problem Description . 56
6.4.2 Method . 57
6.4.3 Results and Discussions . 57

6.5 Experiment D: Hierarchical Model . 60
6.5.1 Problem Description . 60
6.5.2 Method . 61
6.5.3 Results and Discussions . 61

6.6 Analysis A: Model Calibration . 62
6.6.1 Problem Description . 62
6.6.2 Method . 63
6.6.3 Results and Discussions . 63

6.7 Analysis B: Visual Explanations . 65
6.7.1 Problem Description . 66
6.7.2 Method . 66

6.7.3 Results and Discussions . 69

7 Demonstration Website with Visual Explanations 71
7.1 Metrics Section . 71
7.2 Geolocation Section . 73

8 Conclusions and Future Research Directions 77
8.1 Answering the Research Questions . 78
8.2 Future Research Directions . 79

Bibliography 83

A Google S2 Geometry Library 87

B EfficientNet 91
B.1 EfficientNet architecture . 92
B.2 EfficientNetV2 . 93

List of Figures 95

List of Tables 99

List of Symbols 101

Acknowledgements 103

1

1| Introduction

The introduction aims at illustrating the goal of the thesis and how a hierarchical approach
can be useful to enhance the accuracy of an image’s location prediction.

1.1. Goal

Human intervention on the planet has led to an evident increase of natural disasters
such as hurricanes, floods, and landslides. Some causes of these unforeseen events have
to be found in man-made buildings, infrastructures, and pollution processes. With the
advent of social media technologies, many people are posting photos and pictures related
to natural disasters, often taken from unknown and untrusted sources. Moreover, modern
social media are used to remove the GPS-related information on images due to privacy
issues. Here comes the need of emergency services to understand whether such images
belong to the natural disaster that is occurring on the cited locations or it concerns other
past events on different sites. By geolocating images, emergency services may coordinate
vehicles and people in order to tackle natural disasters more promptly and effectively,
saving people lives and belongings.

This thesis aims to help emergency services in tackling natural disasters by exploiting
geolocation features from images. An application based on the modern AI theory can
make use of features from images without any cues from the developers. In such a way,
an ML model can predict the exact location and a set of similar locations from which
the image could have been taken. Modern deep learning techniques and theories have
made this work possible thanks to the ability of performing content-based geolocation. In
particular, the DNN provides a layered structure that enables the geolocating task to be
tackled at several hierarchical levels (Continent, Wide-regions, Countries, Regions . . .).
A relatively small number of works have been developed for such tasks: the majority tries
to predict the exact location of an image without exploiting any hierarchical features or
restricts the space search either geographically or to a constrained set of images. Some
other works prefer to focus on a landmark-based approach, that are used for suggesting
facilities and services to users whenever the system recognizes a certain marker [30]. This

2 1| Introduction

Figure 1.1: On the left side, a cell covering the whole city of New York because of a low
number of images. On the right side, the only city of Manhattan divided up in many
subregions thanks to a high number of images in that area.

approach is not suitable for the worldwide geolocating task for natural disasters, as they
often happen to be in places which are not recognizable through well-known landmarks.

According to the Deep Learning theory, neural network-based classification approaches
tend to outperform regression-based approaches, so trying to guess directly a specific GPS
set of coordinates (latitude and longitude) is an incredibly difficult task. For this reason,
this work aims to instead divide the world up recursively in a set of cells that cover the
most densely populated areas of the planet and predict in which of these cells the image
under analysis was taken. Rather than a specific set of coordinates, providing a region
in which the picture was shot produces intrinsically an error, but as long as regions are
small, the prediction is still accurate.

1.2. Hierarchical approach

In order to comply with the task of geolocating an image on a specific part of the planet,
this work is able to divide up a specific section of the world in small areas, provided
that a high number of images comes from that region. The application we wish to create
will divide the world map hierarchically, in order to reach a certain balance of number

1| Introduction 3

Figure 1.2: Pont-Saint-Martin in the region of Val d’Aosta, Italy and Ponte di Rialto in
Venice. They both have an arch-shape due to the Roman heritage in architecture.

of images per region. For example, if the dataset includes a high number of images from
New York, this work is able to divide the city in very small regions, such as different parts
of Manhattan (Fig. 1.1).

Moreover, in order to perform an accurate prediction, the AI geolocating technique im-
plemented in this work is able to exploit relevant features from images that can be used
to discriminate certain parts of the world thanks to the shape of buildings, the type of
trees, the animals present, etc. Such features are often common even at country or conti-
nent level, thus this information can be exploited to discriminate all the cells from those
areas from other cells in different parts of the planet. For example, arch bridges are more
frequent in the areas colonized by the Roman Empire, therefore the Deep Learning model
can exploit such information in order to give more importance to cells belonging to such
areas e.g., Italy or France. This work has to be intended as a support to the geolocat-
ing operations, as it provides the prediction of a set of possible cells and a set of visual
explanations that identifies which areas of the image were relevant for the prediction. In
this thesis, we will combine the state-of-the-art algorithms for cell generation together
with deep learning techniques for image analysis and classification. The explanations will
exploit modern feature extractors with the visual explanatory models that are most used
in current deep learning applications.

2| Related Works

In this chapter, we review the most relevant works that helped us during the development
of the thesis. We analyze projects that aimed to solve the image geolocation problem
and papers that helped to understand the different tasks. Moreover, we discuss visual
explanation techniques and how they can be useful for improving the quality of a model
prediction.

2.1. Background on Deep Learning

This section aims to provide a solid background in the Deep Learning field. We describe
the basic and most general concepts related to image classification networks, such as the
major entities (layers, neurons) in neural networks and the most common structure for
solving image classification tasks.

2.1.1. Image Classification General Model Structure

Modern deep learning approaches are known for their excellent performance in the image
data-driven classification task. In particular, modern feature extractors based on convolu-
tional neural networks have proven to be very effective in well-known image classification
tasks, such as ImageNet [4]. The idea behind these models follows a general structure [8]
and we are illustrating it in this section.
If we are to represent a general structure for the most common image classification models,
we can refer to Fig. 2.1. This general scheme depicts two main building blocks:

• A Feature extractor, that is a convolutional neural network aimed to extract
relevant information from the image and encode them in a numerical representation
for the next step;

• A Fully-Connected classifier, that mixes up encoded image information (fea-
tures) in order to finalize the prediction.

Let us examine in depth this blocks and the theoretical models behind them.

6 2| Related Works

Figure 2.1: General structure subdivision in its two main parts. On the left, the Feature
extractor that includes Convolutions, Sampling, and Batch normalization. On the right,
a Classifier for predicting the output cells of the model. It includes a Global Pooling, a
set of Dense layers and some advanced mathematical functions.

Feature extractor (CNN)

The feature extractor model is the part of a deep learning model that is devoted to ma-
nipulate and extract relevant information from the input data in order to help the model
in predicting the target label. In particular, in visual deep learning models this module
consists in image-related manipulations in order to extract pixels, lines, patterns and fi-
nally objects that could be relevant for the correct prediction of the output class. In the
deep learning field, the state-of-the-art feature extractors are refinements of convolutional
neural networks. In order to understand how this kind of neural networks work, it is
necessary to explain what convolution is and how it is applied, in this case, to images:
the convolution is a mathematical operation between two functions f and g.

h(t) = (g ∗ f)(t) (2.1)

As an output, the convolution produces a function h that indicates how the function g
influences f. In deep learning nomenclature, f is called Input while g is called Kernel.
Finally, h can be referred to as Feature Map. Clear examples of this application can be
found in the signal analysis field, in which periodic functions have to be quantized with
a certain rate. In this case, this operation can be identified by indicating the signal as f

2| Related Works 7

and the quantizing (also called weighting) function as g:

h(t) =

∫
f(a) · g(t− a)da (2.2)

The output function h represents the convolution result of g over f . In this case, the
convolution has been expressed as an integral due to the continuous domain of f and g.
When the involved functions are defined over a discrete interval, it is necessary to replace
the integral with a summation over all the possible values of the domain. This kind of
convolution takes the name of discrete convolution.

h(t) =
∑
a

f(a) · g(t− a) (2.3)

In the computer vision field, convolution can be used to manipulate images and any
kind of multidimensional arrays (also known as tensors) in order to obtain a different
representation.
As we often deal with 3-dimensional images (RGB), it is necessary to define a multi-axis
convolution that takes into account all the dimensions of the input data. In means of
mathematical formulas, we can express the input as I(i, j, k) and the kernel as K(i, j, k)

and express the convolution of K over I as:

S(i, j, k) = (IK)(i, j, k) =
∑
m

∑
n

∑
p

I(m,n, p)K(i−m, j − n, k − p) (2.4)

The output function S(i, j, k) will still be an RGB image, but its pixel will be manipulated
as intended by the kernel K. The main goal of the convolution operation in CNNs is to
extract known patterns (thanks to the kernels) that are gradually built at each convo-
lution. In principle, the first operation may identify relevant points in the image. The
second one could mix these points so to obtain lines, the next one could pick out shapes,
then objects and so on as shown in 2.3.

In deep learning, the category of neural networks that makes use of convolution operations
(Fig. 2.2) are often referred to as Convolutional Neural Networks (CNN). In particular, the
CNNs are constituted by a set of Convolutional Layer in which the convolution operation
is applied over the input tensor (array) a number of times which equivalent to the number
of Kernels stored inside the layer.
A peculiarity of neural networks is that all the values of the kernels are trainable, that is to
say they change through time when training the model so to obtain better representation
of the tensors for the final prediction.

8 2| Related Works

Figure 2.2: Convolution operation picture taken from [1]. On the right-hand side of the
image, it is possible to see how each kernel applied on the input image (left) generates a
new representation of the output independently of the other kernels.

When dealing with image data, CNNs apply a set of operation that are not only devoted
to convolution, but also pooling (localized reduction of the input values through functions
as local averages, . . .) and non-linear activation functions.
In the end, the output of a CNN is a tensor which inherits all the transformations applied
throughout the model. The aim of this multidimensional array is to provide a set of values,
called features, that can help the model to predict the correct output labels in a more
precise way. For example, it could tell whether there are certain oddly shaped windows
or a specific kind of tree. This enables the next step to work on more refined information
that could be relevant for the final prediction. Every operation applied by the CNNs
over tensors results in a change of its shape. In principle, we can see a tensor flowing
through the model as a volume that changes in depth (channels) when a convolution is
applied (depthnew = Numkernels, as explained in Fig. 2.2) and changes in size when pooling
takes place (widthnew = widthold ÷ poolsize, the same holds for the height). Nowadays,
many feature extractors have been implemented for solving the most common image
classification problems. Some examples of the most advanced and performing state-of-
the-art feature extractors are VGG [23], ResNet [10], Inception [25] and EfficientNET [26].
Empirical experiments have evinced that modern CNNs perform brilliantly at classifying
images, thanks to a set of manipulations on the input image to obtain its most relevant
features for the output prediction (Fig. 2.3).

2| Related Works 9

Figure 2.3: CNN manipulation picture taken from [1]. It shows how the network gradually
extracts features from the image in order to provide relevant information for the next steps.

Global Pooling

As it is possible to deduce from Fig. 2.1, the output of the Feature Extractor is directly
piped to the Cell Classifier. In particular, the input to this module is represented by a
CNN volume of features represented by floating-point values. As deep learning classifiers
work with bidimensional data (batch, linearized feature array), the feature map (volume)
generated by the Feature Extractor needs to be flattened in a vector-styled representation.
This operation is performed as explained in Fig. 2.4 by the GlobalPooling function: de-
pending on the specific operator, this layer is responsible for reducing the dimension of the
input volume to its slices in order to obtain a single output slice in a vector-styled fashion.
Whenever features are ready for the Cell Classifier, they are fed into a Fully-Connected
set of layers.

Fully-Connected Classifier (FCNNs)

In this section we discuss the second part of the model structure which is responsible for
mixing up the feature flowing from the previous part (Feature Extractor).
Fully-Connected Neural Networks are the natural evolution of the old concept of Per-
ceptron. The latter computational block was constituted by a set of parameters (a bias
and a number of weights) and a step/sign function. In particular, the perceptron unit
is designed to mimic the behavior of the human brain’s neurons: they accumulate the
input values in a weighted sum (same as the electrical sources of the brain). Whenever
the summation goes beyond a given threshold (hj function, which could be either a sign
or a step function), the perceptron is activated and sends the output signal (weighted
sum) to the next units to which it is connected. Both weights and bias are trainable.
In particular, every perceptron performs a weighted sum of its input and submits it to a
linear activation function:

f(x) = W t ∗ x+ b (2.5)

10 2| Related Works

Figure 2.4: In the picture, it is possible to understand the global pooling operations of
linearizing the feature dimension.

and the result of f(x) is then submitted to the activation function hj:

output = hj(x|wj, b) (2.6)

The problem of such a unit was that it could learn only a limited set of functions (only
linear). With the advent of neural networks, perceptrons have been replaced by neurons
that are endowed with non-linear activation functions, such as the ReLU (continuous
approximation of the perceptron discrete function).

Neurons are grouped together inside Dense layers, which are identified by their parameters
(weights and biases). As far as the Dense layer is concerned, we can summarize its
functioning in the following expression:

h(x) = g(W t ∗ x+ b) (2.7)

g can represent the application of the non-linear function (most of the time a ReLU) to
an affine transformation of the input values (encoded linearized features).

In order to propagate information flowing through models, Dense layers are fully-connected,
therefore each neuron of a given layer X1 is connected to all the neurons of the next layer
X2. This allows to mix up the information thanks to the weighted sum of all inputs
coming from the previous set of neurons, in each neuron of the current layer.
The mesh-like connections are the reason behind the name Fully-Connected Neural Net-
works. Depending on the different non-linear activation function of the Dense layers,
they can assume different behaviors. For example, some could be designed to shape an
unknown function that the neural network wants to compute, while others could be used

2| Related Works 11

Figure 2.5: Fully-connected network structure from [19].

to compute the final probability values, also known as confidence levels.
In the image classification task, FCNNs are usually placed after the CNN in order to mix
up the extracted features and compute the final prediction.

2.1.2. Activation functions

The activation functions are the elements that trigger neurons whenever the information
feeds forward in neural networks: depending on the layers’ goal, engineers must know
which is the most suitable function for a certain type of operations. In this section, we
illustrate the state-of-the-art activation functions of neural network layers and show their
behaviors.

ReLU

The ReLU (Rectified Linear Unit) is an activation functioned defined as the positive part
of its argument. It can be expressed as:

g(z) = max{0, z} (2.8)

In order to introduce the necessary non-linear behavior of fully-connected neural networks
layers, hidden layers use to be characterized by ReLU functions (Fig.2.6).
The main advantage of exploiting the ReLU function is that it is easy to optimize thanks

12 2| Related Works

Figure 2.6: Cartesian representation of the ReLU function1

to its similarity to linear units. Moreover, its derivatives remain large whenever the unit
is active (greater than zero) while it is zero in any other case, speeding up the gradient
computation and, subsequently, the neural network backpropagation.
Through the recent years, researchers have designed new variations of the ReLU func-

tions, such as the Leaky ReLU that avoids zero values that could affect the gradient
computation [6].

SoftMax

The SoftMax function is a differentiable function for representing probability over a dis-
crete variable with n possible values. If we consider the output of a linear layer z, the
softmax function can be expressed as:

softmax(z)i =
ezi∑n
j=1 e

zj
(2.9)

The main feature of this function is that it normalizes the output variable inside the
interval [0,1] and also biases the result towards the maximum value, in the sense that it
stirs the result as close to one as possible.

2.2. Geolocation problem

The image geolocation problem has started becoming interesting since the late 2000,
with the IM2GPS [9] work, and then it evolved into deep learning based techniques. In
particular, we will be showing that, after the research direction was started from a pure

1Source: https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

2| Related Works 13

Figure 2.7: From left to right: target, k-nn, three representations of the probability
distribution of the image over the world.

computer vision approach, two main directions were followed for solving this problem:
the geolocation by classification (GBC) approach and the image-based localization (IBL)
approach.

In this work, both approaches have been analyzed, but in the end, we decided to follow the
approach of geolocation as a classification task, especially taking cues from PlaNet [29]
and Müller-Budack et al. [17] hierarchical classification models.

2.2.1. IM2GPS

IM2GPS [9] was the first work that aimed to geolocate any type of image in any part
of the world. The authors started their work from the extraction of geolocation features
directly from the image and inspired all the future works that will be analyzed along this
section. The authors created a database of images taken from very significant parts of
the world and compared the incoming query images with such a repository. In particular,
they developed an algorithm for estimating a probability distribution over geographic
locations from an image using a purely data-driven scene matching approach. The scene
matcher algorithm is based on a set of computer vision techniques, such as color and
texture histograms (bins), Gist Descriptor and geometric context. At inference time, the
model is built to find the most similar images in the database compared to the query
with respect to the previously enlisted features in a k-Nearest Neighbour (k-NN) fashion.
This work shows that even a system only based on image retrieval (similarity) performs
far better than humans and any previously existing computer vision systems did in the
task of geolocating images without any cues but the pixels.

2.2.2. Geolocation by Classification (GBC)

Solving geolocation as a classification task has become more popular when deep learning
started to become powerful enough to outperform any machine learning model in the

14 2| Related Works

Figure 2.8: PlaNet examples of predictions on different pictures and locations.

classification task. Furthermore, the geolocation by classification techniques are based on
the division of the world map into a set of cells and predicting the correct one. Different
ways of dividing up the world map has been taken into account and the main ones are
discussed in this section.

PlaNet

PlaNet [29] is one of the first works that aims to perform image geolocation as a clas-
sification problem from a worldwide perspective. The majority of works that are to be
found in literature are restricted either by a specific set of images or a specific area, while
this work aims to be working without any specific constraint. In particular, the paper
aims to localize any type of photo taken at any location using just its pixels (Fig. 2.8).
The model was very innovative due to its data-driven nature, which allowed developers
to train an effective model without having any clue on the kind of images and features
the model was trained with. The authors took the world map and divided it into cells
using the S2 Google’s algorithm (Appendix A). In order to have balanced classes, a couple
of thresholds (minimum and maximum) for the number of images per cell are set. The
images are passed through a convolutional neural network based on Inception with batch
normalization. Such a model is trained using a custom training loss that is based on
the euclidean distance (in meters) between the centroid of the predicted cell and the real
coordinates of the image under analysis. As a further effort, the authors extended the
image geolocation task to photo albums, in order to show the location correlation between
images coming from the same set. LSTMs were used for this specific task with several
settings and configurations.

2| Related Works 15

The model for this advanced task is composed by the plain PlaNet model and an LSTM
unit that provides the recursive part. In order to obtain better performance, the authors
mainly worked on the LSTM sequence, making experiments on label offsets, repeated
sequences (first pass creates the representation, second pass makes the prediction) and a
bidirectional LSTM (capped at 25 images). The LSTM bidirectional setting showed im-
provements with respect to the plain PlaNet model, but it is meant for solving a different
problem (album correlation).

The results that the authors obtained were impressive for that time. The main reason for
such a performance can be found in the impressive amount of training data they crawled
(189 million images), even though the training phase took months.

Hierarchical Model and Scene Classification

The work of Müller-Budack et al. [17] aims to improve existing geolocation models by
exploiting a geographical subdivision of the world into cells and solving the problem as a
classification task and exploit hierarchical properties of the cell subdivision process. The
authors aim to generate a set of cell hierarchies exploiting the S2 algorithm: in particular,
they generated three different-grained subdivisions (coarse, middle, fine) by varying the
two thresholds set by the algorithm. After that, an algorithm is run over any image in
order to find the correspondence between the image coordinates and the corresponding cell
in each of the previously mentioned subdivisions. In the end, the algorithm discards all the
images for which the algorithm has not found a corresponding cell for each subdivision. In
order to get a higher prediction accuracy, they added a scene classification network at the
beginning of the model that is able to tell whether an image is indoor, urban, or natural.
The result is fed as an input to the geolocation estimator that fuses this information
together with the feature extractor. Whenever the preprocessing operations have been
performed, the model is responsible for predicting the cells of the respective groups and
multiplying them in order to get the final prediction (YOLO9000 [20] approach). By using
this multitasks approach they were able to outperform any current network, including the
older PlaNet and IM2GPS, even using a more restricted set of images. The performance
improvement can be found in the use of a more modern set of feature extractors (ResNet-
50) rather than older ones, an accurate and filtered dataset and the hierarchical model
which is able to exploit features at different granularity levels. For example, it is common
to find Pagodas in Asia and only the ones with wooden flat roofs are common in Japan:
in this way, the model can learn that Pagodas are Asian (coarse-grained subdivision) and,
more particularly, Japanese (mid-grained subdivision) and can restrict the search space
accordingly.

16 2| Related Works

Figure 2.9: Global pipeline of the Hierarchical model proposed by Müller-Budack et al [17].
From left to right: pre-processing, multi-grained predictions and scene classification, fea-
ture fusion and cell prediction.

2.2.3. Image-Based Localization (IBL)

The image-based localization (IBL) is a retrieval-based image localization technique that
is performed for estimating the geographical position of a query image by applying a sim-
ilarity measure that provide the nearest reference images from a precomputed database.
This approach forces models to have a very large number of images from different locations
around the world and keep them in a database for the inference.

IM2GPS Revisited

With this paper [28], the authors want to improve the old IM2GPS model [9] by exploiting
modern deep learning techniques. In particular, the goal is to estimate the geographic
location of a query image by applying kernel density estimation to the locations of its
nearest neighbors in the reference database. Differently from IM2GPS, the author’s ef-
fort focussed on using a deep learning model for feature extraction (classification loss at
training time) and use its result in order to define a DML for inference (image retrieval
at test time).

As far as the classification training is concerned, the researchers avoided using an image
density based method for splitting up the world into regions. Instead, they used to quan-
tize the world map by dividing either vertically or horizontally each of the cells, depending
on the size of the resulting cells (whichever side is bigger) until the number of images in
each cell is below a certain threshold timg or the physical area is smaller than another
threshold tarea. In order to look at the models’ behavior, they tried several partitioning

2| Related Works 17

Figure 2.10: Revisited IM2GPS procedure, from left to right.

settings by varying such verges. As far as inference time is concerned, predictions are cal-
culated by a k-nn density estimation based on a Gaussian kernel that takes into account
the label similarity (GPS distance) and also the query image and reference image features
(Fig. 2.10). By comparing the results that authors achieved by several models, the work
showed that classification-based networks work better than image retrieval ones. In fact,
this work outperforms the old IM2GPS but is not as good as PlaNet. If the performance
metric focussed on a fine-grain localization (street-level), the IBL approach seems to work
better than classification, but in any other case, the latter is better. Even considering the
spatial and time complexity, when performing classification, the model needs to keep only
the neural network (feature extraction and estimator) whereas the IBL needs to keep the
whole database of images in order to compute the k-nn similarity, together with a complex
k-d-tree data structure that is necessary to fasten the search. Also, the model needs a
massive number of examples, since it can’t generalize multiple objects in the image: for
example, an image contains a house roof seen often in Italy and a boat style from the
Southern regions, etc.

Self-supervising Fine-Grained Region Similarities for Large-Scale

Image Localization

This work [5] develops a technique that improves the similarity metric used in IBL in
order to find the most similar set of images from the model dataset in order to perform
geolocation. In particular, the authors tackle the problem of finding true positives over
a noisy GPS dataset: as a matter of fact, the fundamental challenge of image retrieval-
based methods is to discard all the similar-looking locations in a GPS-tagged dataset. The
goal of the authors is to find what they call Fine-Grained Region similarities, that are
correspondences between similar true positive pairs of images at the level of their regions
(top, left, bottom, right). In fact, image-level labels might not coincide with the region-
level labels: pairs of images that are found to be true positive pairs might have different
region-level labels. In order to find the fine-grained region similarities, the work defines a
self-supervised network that extracts possible true positive pairs and uses them in order

18 2| Related Works

Figure 2.11: (a): image classification with a single label all over the image; (b): image
classification with 4 split region labels and similarities.

to enhance the performance of the model in the next training iteration. In particular, the
model is composed of a backbone encoder (dense feature map) based on VGG-16 with
ReLU activation functions and a VLAD layer (aggregates into a compact feature vector).
In the meantime, the loss function is the combination of a hard-softmax loss LHARD and
a soft-softmax loss LSOFT . The first is evaluated on-the-fly by the network in order to
compute the image-to-region similarities for selecting the most difficult negative regions,
while the second is able to compute fine-grained similarities to encode more discriminative
local features for difficult positive regions from the network of the previous generation.
The performance of this work is remarkable, even though it is limited to the set of images
from the Pitts30k dataset, thus the problem is restricted geographically. In our opinion,
if the problem would require to be scaled on a worldwide perspective, it would get a
significant drop of performance, as the number and the heterogeneity of different locations
would grow too much to be handled by a similarity-based technique.

2.3. Geolocation Task Configuration

In order to work with deep learning models, it is necessary to select a machine learn-
ing task and configuration of the geolocation problem. In particular, it is necessary to
decide whether it is reasonable to investigate in order to directly predict an image pair
of coordinates or to treat the problem as a classification task over a finite set of regions
in a worldwide setting. The first approach implies to treat the problem as a multiple
linear regression task over latitude and longitude, as they range respectively as floating-
point numbers between [-180,+180] and [-90,+90]. The main difference between the two
approaches is that the first is more precise than the second, as the latter introduces an
intrinsic error due to the cell size: the model predicts the correct cell with a certain spatial
dimension and the image could be located anywhere inside this area. On the other hand,
predicting the exact coordinate through a regression task is far too difficult, especially
using deep learning approaches that deals with images. The second approach is the one
suggested by [9, 17, 29] and consists in dividing up the world in a finite set of regions.

2| Related Works 19

Figure 2.12: Pair of images from the city of Milan. They were taken from a distance of
less than 1 kilometer.

In these settings, deep learning models have to be trained in order to predict the correct
region in which the image falls into. This rationale leads the problem towards a multi-
label multi-class classification task. In particular, neural networks have proven to work
accurately with classification tasks, therefore the second approach has been preferred over
the first one.

2.3.1. Cell Generation

Geolocating outdoor images is a very difficult problem due to the heterogeneity and
diversity of photos within the same areas. In some cases, pictures may change a lot even
inside the same city: if we consider the city of Milan, it is common to find skyscrapers
and modern buildings in the Porta Garibaldi area, while the biggest Chinatown (via
Paolo Sarpi) is a few kilometers distant and accordingly every house and shop is different
(Fig. 2.12). If we had enough images from each of the Fig. 2.12 locations, a good idea
would be to define two separated cells for the different areas. Therefore, we think that
building an adaptive set of classes depending on the dataset is crucial in the task definition
and in the model accuracy. With the term adaptive, we intend to divide the world up

20 2| Related Works

in finer-grain regions where the largest number of images are taken, while it makes sense
to keep vast areas for those locations which do not have a sufficient number of images
coming from them.

Algorithm 1
Generate a set of cells starting from a dataset that only contains the association Image
name — (Latitude, Longitude)
Input: Dataset of images and coordinates, lvlstart, lvlend, tmax, tmin

Output: Hierarchical tree of cells, Cells information
1: Let lvlcurr = lvlstart.
2: Let Cells = []
3: while lvlcurr ≤ lvlend do
4: Let curr_lvl_cells = []
5: for cell in Cells do
6: if cell.images > tmax then
7: new_cells = GenerateCells(cell, lvlcurr)
8: curr_lvl_cells.add(new_cells)
9: end if

10: end for
11: Cells.add(new_cells)
12: lvlcurr+ = 1
13: end while
14: for cell in Cells do
15: if cell.images < tmin then
16: Cells.remove(cell)
17: end if
18: end for
19: return Cells

In order to shape the hierarchical world division for our task, we decided to change the
algorithm conditions to stop whenever the number of images of a specific cell would
be below a certain threshold tmax. In the literature [17, 29], we found the Google S2
Geometry library [7] which enables us to deal with grid building in an adaptive way.
More information can be found in Appendix A. Moreover, we decided to discard all those
cells that contained less than a tmin number of images in order to keep the cell as balanced
as possible (bounded between tmin and tmax). The procedure of generating the hierarchical
division of the world in a grid of cells can be described as in Alg. 1. We took inspiration
from the [17] GitHub repository and modified it in order to shape the results to the
problem structure. Once the cells have been defined, it is sufficient to assign them to
each of the dataset images in order to have the dataset ready for training and validation.
Whenever a new test set is introduced, it is sufficient to assign its images to the cells
generated for training.

2| Related Works 21

Figure 2.13: An example of the Grad-CAM [22] output on a classification task over the
ImageNet dataset.

2.4. Visual Explanation

In this section, we will discuss the work related to the visual explanation that helped
throughout the process of identifying the relevant areas of the images for the prediction.

2.4.1. Grad-CAM

The Gradient-weighted Class Activation Mapping (Grad-CAM) [22] uses the gradients of
any target concept flowing into the final convolutional layer to produce a saliency map,
highlighting the important pixels in the image for predicting the output class.
More in particular, this approach aims to produce a heatmap that identifies which are
the most important pixels that contributed to the final prediction of the deep CNN.
Thanks to their versatility, Grad-CAM can be used over CNN that covers many tasks,
such as CNN with fully-connected layers, with structured output and so on.

22 2| Related Works

The core idea behind Grad-CAM is that it uses the gradient information flowing into
the last convolutional layer of the CNN to assign importance values to each neuron for a
particular decision of interest. In the same work, the authors show a further variant of
the Grad-CAM that exploits the Guided backpropagation in order to visualize gradients
with respect to the image, where negative gradients are suppressed when backpropagating
through ReLU layers. In practice, it aims to capture pixels detected by neurons, not the
ones that suppress neurons (negative gradient).

The main feature that the authors wanted to bring is interpretability: when dealing
with deep neural networks, developers work in a black-box fashion, without really under-
standing what is happening inside the network when a prediction is made. Grad-CAM
provides a visual explanation of what is really happening at pixel-level. When AI proves
to be significantly better than humans, it can even be called machine teaching.

3| Research Questions

In this section, we pinpoint which are the research questions that we address in this thesis
work. In particular:

1. Is it possible to provide a deep learning model which is able to geolocate any kind
of outdoor image from a worldwide perspective?

2. Is it possible to improve the performance of an image geolocating model by adding
the hierarchical information of how the world was divided up directly inside the
model?

3. Can a deep learning model provide a significant visual explanation that could be
used to understand why the image has been predicted in such a location?

4. What is the best way to predict the location information? How can we evaluate
that the model is predicting reasonable locations?

We argue that exploiting modern feature extractors it is possible to obtain features that
are unique to certain locations, such as palms for coastal areas and certain jagged peaks
for young mountains, such as the Alps.

A certain number of works related to these questions have been explained in the previous
chapter, such as PlaNet [29], IM2GPS [9] and its new interpretation [28] and the Hierar-
chical Approach proposed by Müller-Budack et al. [17]. Although this works offer good
performance even at a fine-grained level, the image geolocation problem has not been
taken into account for the last three years. In particular, the research directions lead
toward a landmark-based kind of geolocation [30], without the possibility of geolocating
images taken in remote or unpopular places of the earth, such as small villages or forests,
where natural disasters and catastrophes are getting more frequent nowadays. The ad-
vantage of creating a deep learning model is that all of this information has not to be
explicitly clarified, as the model is able to get them from the feature extractor and mix
them up in the predictor layers.

As far as the second question is concerned, previous works [9, 17] tried to create a set

24 3| Research Questions

of possible grids of cells as an overlay to the world map and tried to predict in any of
these settings. At the end, the final prediction was the product of the cells’ confidence
that were overlapped in the same world region. Instead of following these approaches,
we argue that it would make a better fit to use a single hierarchical world grid of cells
and exploit the information of the cells hierarchical generation directly inside the deep
learning model: we think that predicting at each level of the hierarchy and mixing up all
the branches’ confidence would make a more accurate solution rather than having several
grids.

As a further refinement, this work aims to provide users with a demo that produces
predictions followed by a set of visual explanations coming directly from the model. In
the case of emergency services, providing evidence of the reasons behind a prediction may
clarify even further the prediction: by the means of a map with the most probable regions
it is possible to get the correct location even if the model failed to give the exact one.
Moreover, we assert that having a visual indication concerning which parts of the image
were relevant for the prediction may lead to a more accurate understanding of the real
geographical position of an image.

Finally, we want to demonstrate that the model we build is predicting reasonable results.
With this, we want to test the model calibration [2] and balancing with respect to the
number of samples in the target classes (grid cells).

4| Approach and Model

architectures

In this section, we analyze how we approached the outdoor image geolocation problem
detailed in the research questions. In particular, we describe the novelties that we in-
troduced in terms of the hierarchical model structure, that is to say including the cell
dependencies directly inside the deep learning model.

As an implementation of the Image Classification General Model Structure that we de-
scribed in the section 2.1.1, we discuss the models that we created for solving the outdoor
image geolocation problem. The first operation we perform is a set of data augmentation
techniques in order to exploit more information from the same training data. Immedi-
ately after, we place as input of the feature extractor a batch of 32 RGB resized images
(224,224,3). The output of this block of the general scheme produces a volume of ex-
tracted image features shaped as (1280,1280,8).
In order to select the best feature extractor for the outdoor image classification task, we
ran several experiments over different state-of-the-art convolutional neural networks and
analyzed their performance. Therefore, we empirically found that EfficientNET in the B1
implementation with pre-trained weight on the ImageNet task is the one that outperforms
the others in terms of training time and accuracy (Experiment A).

In order to link the Feature Extractor with the classifier, we needed to implement a
GlobalPooling function that could flatten the output volume produced by the first build-
ing block. After some empirical experiments, we discovered that the GlobalMaxPooling
operation performed better than other functions, such as GlobalAveragePooling and Flat-
tening.

26 4| Approach and Model architectures

Figure 4.1: In the picture, it is possible to observe the structure behind the basic multi-
class model in its layers structure. Green dots represent ReLU activated neurons, while
Orange dots represent SoftMax activated neurons.

As far as the last building block is concerned, we train a set of Cell Classifiers implement-
ing:

• a standard Fully-Connected multi-class model;

• a very powerful set of custom neural networks.

The latter embeds the hierarchical information concerning the grid generation in order to
refine the predictions of leaf cells. It is important to mention that all models have been
trained using the CategoricalCrossEntropy loss function (described in chapter 6). In the
next sections, we discuss all of our models in details.

4.1. Basic Multi-Class Model

The basic multi-class model is represented by a cell classifier based on the fully-connected
architecture explained in the section 2.1.2. In particular, this model aims to fully com-
bine features from the GlobalMaxPooling layer in order to obtain a correct and final
representation for the output layer of the neural network. This operation is necessary
for combining information flowing from the feature extractor in order to obtain a new
representation that is as close as possible to the output cell descriptions. As depicted
in Fig. 4.1, the features are combined inside a Dense Layer constituted of 1280 neurons.
This layer embeds a set of 1280 x 1280 weights that helps neurons to compute a weighted
sum of the inputs and apply a ReLU activation function. In particular, the model learns
a specific mixed feature description for each of the cells of the world grid and the output

4| Approach and Model architectures 27

of the above expression is the closest representation to the one used for predicting the
final grid cells. Whenever the outputs of the Dense Layer are ready, they are piped into
the last network layer, which is called Prediction Layer. In particular, it is characterized
by a number of neurons which is equivalent to the output classes of the task. In order to
provide a confidence as the output of the model, the Prediction layer embeds a SoftMax
activation function, that outputs a set of probability values associated to each of the leaf
cells of the problem.

In the end, the output values of the Prediction layer constitute the confidence level for
each of the output targets of the classification task, that are the cells of the grid-based
world division.

4.2. Hierarchical Models

The hierarchical model constitutes the core of the novelties developed in this thesis work.
After creating a naive fully-connected model for classifying the encoded features coming
from the Feature Extractor, we want to find out whether the model could perform even
better by exploiting the information coming from the hierarchical cell generation. Some
related works in the field of image geolocation tried to improve the model performance
by creating different kinds of features encoding [31, 32] and some others exploited some
computer vision and geometrical properties of the image [5, 21]. The main works using
these techniques happened to operate well only when restricting the field of application
only to certain categories of images (e.g. landmarks) or to specific areas, such as North
America or even specific cities. Whenever the scale of the geolocating task aims to get a
worldwide perspective, many of these models would perform worse than their constrained
settings, as encoding for small areas is easier to manage rather than a global representa-
tion. In order to enhance the model performance, the authors of [17] tried to generate
a certain number of grid-based cell divisions at different grain levels and combine them
together in order to obtain a hierarchical model. Although this latter model can be called
hierarchical, it does not really exploit all the embedded knowledge inside the cell genera-
tion procedure. Our work aims to make use of the grid generation knowledge, especially
how cells are generated from bigger cells and how they are linked together. In our case,
the hierarchical information is not only exploited in the inference phase, when predictions
from different levels of granularity of the world grid are combined, but directly inside the
model structure.

As it is possible to deduce from Fig. 4.2, the aim of our work is to create a hierarchical
relationship between cells of different size: this leads the procedure to build a tree-like

28 4| Approach and Model architectures

Figure 4.2: Visual representation of the model hierarchy. From the left to right, the
input image divided in the RGB channel, the Feature extractor and the hierarchical
cell representation in terms of neurons. Blue neurons represent intermediate cells, while
orange neurons represent leaf cells. The arrows stand for the dependencies between cells.

structure in which deep cells are fractions of cells from upper levels. Therefore, it is
possible to identify groups of cells that are generated from the same parent cell, and this
inevitably drive us towards a tree structure of cell dependencies.

In our case, we can represent the cell hierarchy using a tree-like structure, with a small
expedient: there is no single root of the tree structure. This is uniquely due to the Google
S2 Geometry library [7], that is responsible for generating cells: the procedure (Algorithm
1) starts from six different cells (projections of six cube faces on a unitary sphere, as
explained in Appendix A), therefore it produces six different root nodes entailing six
different trees. In order to keep the hierarchical dependency concept that we explained
previously during the models’ implementation, we transformed the tree structure into
a destination-oriented directed acyclic graph (DODAG), as explained in Fig. 4.3. This
structure enables us to express the dependencies between hierarchical cells through neural
network connections. In our implementation, we decided to adapt the fully-connected
neural network model to the hierarchical DODAG by switching off the connections that
were not present inside the graph. All the implementation details will be given in the

4| Approach and Model architectures 29

Figure 4.3: Hierarchy-level based visual representation of the model (DODAG). Blue
neurons represent intermediate cells, while orange neurons represent leaf cells. Every box
identifies a level of the hierarchy.

next section. It is for this reason that we decided to name these image geolocation models
as “sparsely-connected hierarchical models”.

4.2.1. Sparsely-connected Model Construction

In order to explain how the hierarchical model construction works, it is necessary to
recap how the process of generating cells works. As described in the Algorithm 19 and in
Appendix A, the procedure starts creating the first level cells (lvlstart) as projections of
the six faces of a cube on a unitary sphere. After this operation, it computes the number
of images per each cell and decides whether to split the cells even further, depending on
the threshold tmax. This step is repeated until convergence (the procedure reached the last
level of hierarchy lvlend). In the end, all those cells that contain a number of images that
are below a given threshold tmin are discarded for preserving the class balance. The output
of the Cell Generation procedure includes both information about the generated cells and
also any details related to the recursive formation of the world grid: whenever a cell
gets divided, this information is recorded as a link between it and its generated children.
Finally, a destination-oriented directed acyclic graph (DODAG) of cell dependencies is
produced by the algorithm in a linked list implementation. An important feature of this
graph is that for each cell (node) there is exactly one incoming arc (except for lvlstart

30 4| Approach and Model architectures

cells). This data structure is then piped in a .csv file directly into the hierarchical model
definition.

The previously described operations have to be intended as pre-processing operations that
are computed directly on the dataset in order to build up the problem structure. Once
the dependency graph of hierarchy has been created, in short DGH, it is possible to begin
with the hierarchical model construction. The procedure is described in the Algorithm 2.

Algorithm 2
Generates a set of binary matrices for building up the model structure
Input: hierarchy_graph
Output: binary_matrices
1: Let leaf_cells = hierarchy_graph.leaves
2: Let hierarchy_matrix = []
3: Let curr_branch = []
4: for cell in leaf_cells do
5: Let curr_cell = cell
6: Let lvl = current_cell.lvl
7: while lvl ≥ 0 do
8: Let curr_lvl_cells = hierarchy_graph[lvl]
9: Let parent_cell = curr_lvl_cells.children.contains(curr_cell.id) ▷ Traversing

the graph backwards. The exactly-one arc feature of the graph prevents having more
than one parent cell.

10: curr_branch.insert(index=0,parent_cell)
11: curr_cell = parent_cell
12: lvl = lvl - 1
13: end while
14: hierarchy_matrix = hierarchy_matrix ∪ curr_branch
15: curr_branch = []
16: end for
17:
18: Let lvls_size = []
19: for lvl in {hierarchy_graph.bottom_lvl, . . . ,−1} do
20: lvls_size.insert(index=0, hierarchy_tree[lvl].size)
21: end for
22:
23: Let ϵ = 10−2

24: Let binary_matrices = []
25: for i in {0,. . . ,bottom_lvl + 1} do
26: binary_matrices.append([])
27: end for

4| Approach and Model architectures 31

28: for branch in hierarchy_matrix do
29: for i in {0, . . . , lvls_size.length} do:

30: Let binary_array =
lvls_size[i]⋃

j=1

[ϵ]

31: if i < branch.length then
32: binary_array[branch[i]] = 1
33: end if
34: binary_matrices[i].append(binary_array)
35: end for
36: end for
37: binary_matrices = binary_matricesT

38: return binary_matrices

The main rationale behind the Algorithm 2 is to create a set of matrices that could be used
to build the connections between neurons in a fully-connected set of layers, mimicking a
sparsely-connected network. Starting from the hierarchy graph provided by the Algorithm
19, the latter procedure extracts the leaf cells, that are all elements of the graph that do
not have any outgoing arc (rows 1:3).

Successively, the algorithm extracts all the hierarchy graph branches starting from the
leaves and going backwards until the lvlstart cells. In particular, the graph is analyzed in
a bottom-up approach, analyzing the arcs in the opposite direction to discover the parent
of the current cell and rebuild the leaf cell hierarchies. It is important to underline the
fact that leaf cells do not have to be placed at the same hierarchical depth: the generating
process of the world grid may stop for some cells while continuing for others that happen
to have more than tmax images in them. In the end, the curr_branch list is produced for
each leaf cell, containing its hierarchical path up to one of the root cells, and it is merged
together with the other leaf branches inside the hierarchy_matrix (rows 4:16). At this
point the algorithm computes the number of cells for each level of the hierarchy and stores
the results in the lvls_size list (rows 18:21).

As for the last operation, the procedure prepares a set of empty matrices called bi-
nary_matrices that will be used as placeholders for the output matrices (rows 23:27).
When the algorithm builds the matrices (rows 28:36), it places ϵ in correspondence to the
links that have to be neglected inside the model structure, while putting 1 where the link
must remain active. Instead of using zero values as placeholders, we decided to use a small
number (ϵ = 10−2) due to a technical issue: after several attempts we discovered that the
deep neural networks would stop learning due to zero values (vanishing gradient descent),
thus we opted to replace them with a small number that could make the links negligible
with respect to the links identified by ones. Before returning the binary_matrices, they

32 4| Approach and Model architectures

Figure 4.4: Sparsely-Connected model structure. On the right of the dense layer, it is
possible to find a set of SoftMax layer that represent the Hierarchical Predictions, each
at a different level of the hierarchy

are transposed in order to match the dimensions of the neural network layers.

Whenever the binary_matrices are ready, we can start creating the Hierarchical Model.
As depicted in Fig. 4.4, the output encoding of the Feature Extraction is firstly linearized
into a vector-shaped tensor and then fed into a Dense layer activated by a ReLU function,
with the purpose of properly combining the features. Immediately after it, the hierarchical
classification module takes place. As it is built in the same way for each of the hierarchical
settings that we implemented, we will discuss it here. As a first operation, the Hierarchical
Prediction layers are defined: they consist of a set of Dense layers in a number that is
equivalent to the number of hierarchy levels (depth). Moreover, each of these layers
contain a number of neurons which is equivalent to the number of world grid cells in
that specific hierarchical level. These numbers can vary depending on the cell generation
procedure parameters (lvlstart, lvlend, tmin, tmax).

The main purpose of the Hierarchical Prediction layers is to predict the target cell of the
current (batch of) image at their corresponding level of the hierarchy (an example can be
found at Fig. 4.4). Because of their predicting nature, such Dense layers are activated by
SoftMax functions.

In order to combine the predictions at different hierarchical levels, the model exploits
the binary_matrices that we described before. The idea behind using this particular
form of representing the hierarchy through matrices is due to the tensor objects of neural
networks. Tensors are mathematical primitives that describe the relations between objects
inside a vector space. Some subsets of tensors are vectors and scalars. When applied into
the deep learning field, these objects can be easily used as synonyms of layers. Due to
their numerical nature, tensors can be represented in a matrix form, therefore they can

4| Approach and Model architectures 33

be used as operands in any matrix operation.

As the output of the Hierarchical Prediction layers are identified by tensors of values, it
is possible to combine them using matrix operations. According to this, we decided to
multiply each output of the previous layer by the corresponding level’s binary_matrix.
In particular, each of the binary_matrices presents a shape of [Nlvl_size, Mleaf_size] while
hierarchical prediction tensors are shaped as [1, Nlvl_size]. These sizes make it possible to
multiply the Tensors by the corresponding level’s binary_matrix in order to obtain a set
of Tensors shaped as [1, Mleaf_size]. In means of a mathematical formulation:

∀i ∈ {0, . . . , Kmax_depth} :

Tensor_outi = Tensor_ini × binary_matricesi
(4.1)

which is a tensor whose shape is derived as follows:

[1,Mleaf_size] = [1, Nlvl_size]× [Nlvl_size,Mleaf_size]

After the matrix multiplication, the output tensor will be shaped as the output of the
model, that is a set of Kmax_depth tensors with equal size (number of leaf cells).

The final operation that needs to be performed before the final prediction is the combina-
tion of the cell_hierarchy tensors in order to result in a single final output layer. In order
to experiment some possible variants of the hierarchical model, we decided to implement
three different hierarchical model structure that differ on the operation applied over the
set of cell_hierarchy tensors in order to combine them. In particular, we named them:

• Product of the branch nodes’ probabilities (HMC);

• Exponential sum of logarithms of the nodes’ probabilities (HMC-sol);

• Smoothed sum of the branch nodes’ probabilities (HMC-smooth).

In the next sections, we analyze their operations in details.

4.2.2. Product of the branch nodes’ probabilities (HMC)

In this section we discuss how the hierarchical prediction tensors are combined in order to
produce a final tensor to be used for the final prediction. In the latter layer descriptions,
we explained how we build the model’s intrinsic hierarchy of cells, and we derived a set of
Kmax_depth tensors shaped as [1,Mleaf_size]. Each of the neurons of this layer represents
one of the leaf cells (from 1 to Mleaf_size) that are to be intended as the classification

34 4| Approach and Model architectures

Figure 4.5: Product model structure. Each of the hierarchical prediction tensors are
multiplied together in order to produce the output layer prediction.

target. In order to combine these result, the "Product of the branch nodes’ probabilities",
as the name states, computes the following operation

Tensor_out = Tensorlvl0 · . . . · Tensorlvlmax_depth−1
(4.2)

which represents the element-wise product between all the hierarchical prediction tensors
(Fig. 4.5).

This operation is not only useful to correlate probabilities of the nodes belonging to
the same path from the root to the cell nodes, but also discriminating specific areas of
the world with respect to others: as making a prediction on a high level of the hierarchy
is by definition simpler than a deep level due to the number of cells of such layer, the
multiplication of the children of a high-level node can benefit of the high-level prediction.
For example, if we consider a high-level cell covering the Europe area, if it gets a high
probability out of its softmaxed neuron, the multiplication with its children will get a
boost benefit against cells whose parent cell is North America, that received a lower
score.

In order to find out the weakness of this version of the hierarchical model, we analyzed how
probability is propagated along the branches, and we found out that when the hierarchy
gets too deep, the leaf probabilities can reach very low numbers because of the chained
multiplication of nodes branch probabilities (floating-point numbers which are ≤ 1). This
problem may raise precision issues whenever numbers get too small, producing underflow

4| Approach and Model architectures 35

Figure 4.6: Exponential sum of logarithms model structure. Each of the hierarchical
prediction tensors are passed through a log function and then element-wise summed up
together. Finally, the output tensor is the exponential of that sum

of memory.

4.2.3. Exponential sum of logarithms of the branch nodes’ prob-

abilities (HMC-sol)

Underflow and precision issues can result in low performance or even in unfortunate
vanishing gradient descent: when computing the gradient of the output in order to perform
the neural network backpropagation, the model may obtain very small numbers that result
in shrinking the gradient to zero, thus preventing the model to update its weights (which
is equivalent to stop learning).

This version of the hierarchical model was designed specifically to tackle precision issues
that might result from having long chains of small number multiplications. In order to
work with bigger number, we thought to exploit one of the major logarithm property:

log(P0 · . . . PN) = log(P0) + . . .+ log(PN) (4.3)

Therefore, we thought of replacing the product between the hierarchical prediction tensors
with the sum of their natural logarithm, as in the following formula:

log(Tensor_out) = log(Tensorlvl0) + . . .+

log(Tensorlvlmax_depth−1
)

(4.4)

36 4| Approach and Model architectures

Finally, in order to obtain the same values as the product’s, we raised the sum of the
logarithm as the exponent of the Nepero number:

Tensor_out = e
∑max_depth−1

i=0 log(Tensorlvli) (4.5)

Although being more precise than the previous hierarchical model version, the current
model’s complex set of operations over the model tensors implies a longer training and
inference time than the HMC. This aspect will be thoroughly analyzed in the Experiment
D of section 6.

4.2.4. Smoothed sum of the branch nodes (HMC-smooth)

In order to create different versions of the hierarchical model, we analyzed other existing
hierarchical settings even different fields of application, and we discovered that it is fre-
quently used in the word generation domain. In particular, we designed a system that we
named HMC-smooth that we discuss in this section. The rationale behind this model is to
exploit the hierarchical properties of the world grid generation, giving more importance to
cells at deep levels of the hierarchy. Instead of discriminating cells in a certain large area
(e.g. Europe) against others through probability multiplications, we thought of averaging
the probabilities of branch nodes, giving more importance to nodes which are close to the
leaf. In order to obtain such a result, we decided to introduce a new hyperparameter α

that corresponds to the smoothing factor. This value is multiplied to the entries of each
of the leaf cells branches: starting from the leaf, alpha is multiplied to the corresponding
layer after being raised to the power of max_depth− i− 1. In this way, the powers of α
are used as weights in the weighted average of the branch nodes’ probabilities.

This model forced us to slightly modify the procedure of the binary_matrices generation,
due to the addition of the α parameter. As it is possible to deduce from Fig. 4.7, we want
to multiply each of the Hierarchical Prediction Tensor by a power of α as in the next
formula:

∀i ∈ {0, . . . ,max_depth− 1} :

Tensor_predi = Tensorlvli · αmax_depth−i−1
(4.6)

Now that the tensors have been smoothed, it is necessary to normalize them. This opera-
tion is necessary as different branches may have different length, thus it is also necessary
to compute the normalizing factor of each of the leaf cell branches. In order to obtain the
latter information, we decided to modify the Algorithm 2 so to compute the normalizing
factor (denominator) for each branch. Therefore, we added the following lines in the for

4| Approach and Model architectures 37

Figure 4.7: Smoothed hierarchical model structure. Each of the hierarchical prediction
tensors are multiplied by the corresponding value of alpha and then summed together. In
the end, a normalization operation is applied.

loop at line 4.

1: Let norm_factor = 0
2: for i in {0, . . . , lvl + 1} do
3: norm_factor = norm_factor + αbottom_lvl−i−1 ▷ bottom_lvl is the max hierarchy

depth level
4: end for
5: normalizing_factors.add(1 / norm_factor)

Once all the normalizing factors have been computed, it is possible to complete the
Smoothed hierarchical model by summing the Hierarchical Prediction tensors together
and apply an element-wise multiplication with the normalizing factors. In the end, if we
are to explain the whole model functioning in a single mathematical formula, we could
describe it as:

∀k ∈ {0, . . . , leaf_size} :

Tensor_outk =

∑max_depth−1
i=0 Tensorlvli,k · αmax_depth−i−1∑bottom_lvl−1

j=0 α
bottom_lvl−j−1
k

(4.7)

In this way, every leaf cell can be uniquely identified by the branch it belongs to in terms
of probabilities, smoothing and normalization factors.

5| Dataset

In this section we discuss which data has been used to train and evaluate the models and
the hierarchical dependency that is possible to deduce directly from data.

The goal of this work is to geolocate outdoor images of any kind (urban, natural and so on).
Moreover, the outdoor geolocation involves an intrinsic heterogeneity problem: as places
looks very diverse between different areas of the world (class-level heterogeneity), so do
pictures coming from the same specific region: for example, if we take into consideration
the Ligurian region in Italy, it is possible to find photos of the port area of Genova but
also pictures that might depict the Appenini landscape of the backcountry. Moreover,
pictures of houses in coastal cities, such as Rapallo, look very different from countryside
barns (Fig. 5.1). In the literature [14], it is possible to find only a few datasets of geotagged
pictures, mainly circumscribed to a specific area or a coerced task. As the task requires
us to cover a very broad and heterogeneous set of images, we decided to crawl ourselves
a dataset on the Flickr platform.

5.1. Flickr dataset

In order to tackle a worldwide geolocation problem, it is necessary to collect a very large
set of images. In order to get a perfect prediction of any outdoor image, we would need to
collect a photo for every possible location of the world. As this is not possible, we collected
a vast set of outdoor heterogeneous places by exploiting the search function offered by the
Flickr API. In fact, we decided to query for a collection of terms that can include several
and remote parts of the world as well as cities and countrysides in an outdoor setting.
For example, we used urban words as ’city’, ’building’, ’street’, ’monument’, ’parkway’,
’fountain’, ’architecture’ and ’skyscraper’ as well as natural ones such as ’countryside’,
’landscape’, ’mountain’, ’woods’, ’forest’, ’river’, ’lake’, ’camping’, ’beach’ and so on.
We also included words for specific areas of the world, such as ’pyramid’, ’savanna’,
’tundra’, ’volcano’, ’fjord’, ‘pagoda’ and specific natural events such as ’typhoon’, ‘flood’
and ‘earthquake’. In order to obtain the largest possible set of outdoor images, we also
exploited the PyDictionary and GoSlate library in order to generate respectively any

40 5| Dataset

Figure 5.1: Heterogeneity of images coming from the Ligurian region (Italy).

possible English synonym and translations in a set of given languages (Italian, French,
Spanish, Portuguese, German, Chinese and Swedish).

After a preprocessing cleaning of the corrupted, duplicated and wrongly sized images, we
have been able to collect about one million geotagged outdoor images containing outdoor
scenes of any possible kind. In particular, we were able to collect information about
latitude, longitude and tags for each of the images that passed through the preprocessing
operations.

5.1.1. Statistics

In order to understand how the data we collected is distributed, we performed some
computations in order to retrieve statistics.
As a first operation, we decided to work on the image tags. In particular, we grouped them
under two main categories: urban and natural. Results can be found in the Table 5.1.

5| Dataset 41

Figure 5.2: An example of eight outdoor images coming from the Flickr dataset we crawled
for training and testing. In particular, these images are used for the testing phase.

Type Number of images

Natural 476,960

Urban 493,605

Total 970,565

Table 5.1: Image tags type and distribution.

In the end, we put an example of how data is distributed in a possible setting of the
world grid, more specifically with 72 cells containing between 3000 and 30000 images
each (Tab. 5.2). In particular, we counted the number of grid’s cells and images in each
continent.

42 5| Dataset

Continent Number of cells Number of images

Africa 2 22,163

Americas 35 440,200

Antarctica 1 6,663

Asia 5 52,050

Australia 2 21,575

Europe 27 378,424

Total 72 926,053

Table 5.2: Image location distribution.

The number of total images differs from the previous table because of the preprocessing
operations that we discussed in the Section 2.3.

This statistical analysis allows us to understand where data is located in order to know
where to crawl new images. In the case in which we would like to cover more uncovered
sections of the Earth, we could look for tags or queries that are associated to those specific
areas of the planet.

5.1.2. Hierarchical features

In order to understand how the problem could have been faced, we decided to analyze
some sample images in the Flickr dataset that we described previously.

From a qualitative analysis, we found that pictures of the same areas share common
features. For example, it is possible to find similar road signs in almost any part of
North America (USA). The same holds for road signs pictures coming from Europe (more
particularly in Italy). In fact, from the Fig. 5.3, it is possible to deduce that American
road signs use to have a specific font, shape and size, while Italian signs are different.

Moreover, all the indicator signs are green, while speed limit signs are white, while Euro-
pean signs tend to have a different font from American’s and different colors, which relate
to the indicated content inside the sign itself.

This was just an example to show how discriminative features could be: if one of our
model would be able to extract the road sign features, it could immediately detect that
the picture was taken in America, thus it could give more relevance to all the American
cells, discriminating other world location areas. Any kind of object, shape or line could be
unique to specific areas of the world, both at continent, country and even city or sub-city

5| Dataset 43

Figure 5.3: On the left side, there are four Italian road sign pictures, whereas on the right
side there are four American road sign images.

level. Therefore, it is possible to find a discriminative feature at any depth of the hierarchy,
and this can be an outstanding improvement in terms of classification performance.

For this reason, we decide to make use of the hierarchical information about features, and
we introduce this knowledge directly inside our hierarchical models. A huge impact that
deep learning models make in this field of application is that they can automatically de-
termine and find features without any cues from developers: therefore, the discriminative
information from the road sign example that we previously described (font, color, shape
and so on) are automatically learned by the model that autonomously creates an internal
representation and is able to detect them inside any picture.

6| Experimental Results and

Evaluations

In this section, we discuss the experiments and evaluations that were performed on the
deep learning models that we explained in the previous sections. In particular, we discuss
how we analyze the outdoor geolocation problem and compare the model performance
in different conditions. In order to provide a structured approach, we decide to follow a
common pattern for all experiments and analyses:

• Problem description: which problem is going to be analyzed, which models will
be involved and what we want to prove with the experiment;

• Method: how we study the problem and how we face it;

• Results and Discussions: what comes out from the experiment and what we can
deduce and considerate from the results.

6.1. Experimental Setup

As a further notice, it is important to underline some general information that is com-
mon in every all the experiments we illustrate. In particular, we exploit a single server
machine endowed with two Graphic Processing Units with the following characteristics:
an Nvidia RTX 2080 Ti, that was used mainly to train the outdoor geolocation mod-
els and a secondary Nvidia RTX 2070 that was mainly used for inference and running
demonstrations.

6.1.1. Data

As far as the dataset is concerned, all the outdoor geolocation models that we will be
dealing with are trained over the Flickr images that we personally crawled as thoroughly
explained in Chapter 5. In particular, we automatically split the one million image dataset
into two separated set: training (90%) and validation (10%). The test set is extracted

46 6| Experimental Results and Evaluations

offline.

During the model training, we feed the neural network with batches of 32 random images.
In order to generate the batch, we define a Data Generator which is responsible for
randomly picking the desired number of images and apply a set of random transformation
(data augmentation).

Data Augmentation

In order to provide more training data to the model, we implement a set of operations that
manipulate the images of our dataset. With a probability draw of 50%, the DataGenerator
decides whether to apply one of the following transformation to a certain image:

• Rotate: rotates the image of a multiple of 90 degrees;

• Flip: randomly flips the image over the horizontal and vertical axes;

• ColorAugmentation: changes image brightness, contrast and saturation.

All these operations have been performed over vectorized images using the TensorFlow
built-in functions.

6.1.2. Loss function and optimizer

When dealing with the training of the models we illustrate, we opted to use the Sparse-
CategoricalCrossEntropy, a loss function that represents the state-of-the-art loss in the
classification task. In particular, in its Sparse configuration, this loss function enables
designers to specify each target class as an integer value (from 0 to Nclasses−1). As far as
the outdoor geolocation task is concerned, the integer values represent a numbering of the
leaf cells we predict as class targets. In mathematical terms, the CategoricalCrossEntropy
can be expressed as:

CCE(x, y) = −
Nclasses∑

i=0

yi ∗ log(xi) (6.1)

where xi represents the model prediction and yi stands for the ground truth label for a
specific input image.

In order to compile the models for training, we have to define which optimizer could
be the best fit for the training loss we previously described. The state-of-the-art in
the deep learning field offers the possibility to choose within a broad number of pre-
implemented optimizers, such as AdaGrad, AdaDelta, RMSprop, SGD and so on. After

6| Experimental Results and Evaluations 47

several attempts, we found the Adam function as the best optimizer for the outdoor
geolocation task. The Adam optimizer is a stochastic gradient descent method that is
based on adaptive estimation of first-order and second-order moments. Moreover, it is
computationally efficient and requires little memory, which makes it very good for large
and complex models [12].

6.1.3. Regularization functions

Deep learning models are subjected to the overfitting phenomenon: this circumstance
happens when the neural network learns all the embedded information in the training set
up to a certain level that does not allow it to generalize new images. In order to recognize
and tackle this problem, we applied cross-validation techniques, and we found out that
this phenomenon started to happen after a few epochs. For this reason, we decide to
introduce some regularization functions that enables us to control the pace of learning of
the model so to avoid the model overfitting. In order to cope with this model training
issue, we decide to employ a set of functions that could help the neural networks to speed
up and enhance the training procedure.

Early Stopping

The goal of the Early Stopping [3] is to find the optimal number of epochs for training
before overfitting. The deep learning training is performed by submitting the whole
dataset to the model as many times as it needs in order to learn the correct classification
of all the images. Every round in which this operation is called epoch. When the training
phase takes too few epochs, the model is not able to learn enough information on the
dataset, therefore it requires a larger number of dataset submissions. On the other hand,
if the dataset is set forth too many times, the model will be overfitting, which means that
it will learn the training set so accurately that it will not be able to generalize to different
images. The solution to this tuning is the Early Stopping, an overfitting prevention
technique that stops the training after a number of consecutive epochs (patience) in
which a specified learning parameter is not improving. In our implementation, we set the
"Validation Loss" as the learning parameter, with patience of 3 epochs.

Reduce LR on plateau

The Adaptive Learning Rate is a special callback function which aims to adapt the learn-
ing rate of the model to its learning curve. In the ReduceLROnPlateau implementation,
this function aims to gradually reduce the learning rate whenever a monitored learning

48 6| Experimental Results and Evaluations

Figure 6.1: An oddly shaped function with a various number of minima.1

parameter will sit inside a restricted set of values (thresholds). Therefore, after express-
ing the monitored parameter, the patience and the reducing factor the algorithm will be
able to adapt the learning rate in order to follow the optimal learning curve. The ratio-
nale behind this function can be identified in the following description: machine learning
problems are optimization problems in which models aim to find the absolute minimum
of a loss functions. As deep learning problems are identified by very complex and oddly
shaped loss functions, they could be endowed with many local minima that could mislead
the optimization algorithm when finding the real absolute minimum. In particular, opti-
mizers follow the loss gradient descent at a given pace which is dictated by the learning
rate. If this rate happens to trap the optimizer inside a local minimum, it will not be able
to escape the concave pits of the function as the gradient descent will bounce between
the two sides of the minimum. Therefore, the model will be unable to find the absolute
minimum. By modifying the value of the learning rate, the deep learning model is able
to avoid this issue.

As far as our geolocation models are concerned, we set the Validation Loss as the moni-
tored parameter, patience = 3 and factor = 0.2.

Dropout

The Dropout [24] is a deep learning technique that enables engineers to switch off certain
neurons during the training phase with a given probability, thus preventing the model
overfitting. This procedure is able to slow down the pace of learning of a layer’s neurons
by creating binary masks that are applied to the immediately previous layer which switch
off the neurons corresponding to zero values. In our implementation, we placed a Dropout

1Source: https://www.allaboutcircuits.com/technical-articles/understanding-local-
minima-in-neural-network-training/

https://www.allaboutcircuits.com/technical-articles/understanding-local-minima-in-neural-network-training/
https://www.allaboutcircuits.com/technical-articles/understanding-local-minima-in-neural-network-training/

6| Experimental Results and Evaluations 49

layer immediately after the first Dense layer of the Cell classifier, with a probability of
switching off neurons of 0.5. Moreover, the EfficientNet implementation that we are
exploiting throughout this section’s experiments has a tunable Dropout setting (some
Dropout layers are placed inside the feature extractor architecture) and we set it at 0.4
probability.

Weight Decay

The Weight Decay (also known as Ridge Regression) is an overfitting prevention technique
that aims to penalize complexity: the aim of this technique is to include the number
of parameters of a certain model (or layer) directly inside the loss function, in order to
penalize models with many trainable weights. This procedure goes along with the learning
rate and has proven to prevent overfitting and improve generalization [13]. Moreover, this
function is tunable through a λ parameter, that represents the discriminating factor of
the model complexity.

wnew = argminw

N∑
n=1

(tn − g(xn|w)) + λ ∗
Q∑

q=1

(wq)
2 (6.2)

The first summation represent the model fitting, while the second is the regularization
part that is responsible for balancing the fitting of the training set (overfitting prevention).

The optimal λ value can be found through a standard grid search technique. For this
particular set of experiments, we set it to 10−5.

Checkpoint callback

This callback is way simpler than the previous ones: its only purpose is to save the model
checkpoints after each iteration, so to either saving the history of the model weights
evolution during the training phase or the best model weights so far. In our setting, we
decided to keep only the best weights in terms of validation loss performance.

6.1.4. Evaluation Metrics

In order to compare the models’ performance within the experiments, we need to define
a set of quantitative evaluation metrics: they are meant to analyze how the model would
behave when generalizing to new images with respect to a random classifier (Improvement
over Random) and to compare each other’s performance on the same task (Validation
performance). We do not use other traditional machine learning evaluation metrics, such

50 6| Experimental Results and Evaluations

as Recall or Macro Average, as regions are relatively balanced in terms of number of
samples thanks to the cell generation algorithm.

Validation Loss and Accuracy

A good practice that engineers do when training a machine learning model is to evaluate
the generalization performance after every epoch of training. This operation allows us to
measure the learning trend of the model on a different set of data that was not submitted
to the neural network training. For this reason, we compute the following pair of metrics:

• The Validation Loss;

• The Validation Accuracy.

As far as the Validation Loss is concerned, by exploiting the same loss function we use for
training, we compute the SparseCategoricalCrossEntropy over a separated set of images
(Validation set). This procedure mimics the behavior of the true model performance on
unknown data. Moreover, the validation loss is able to tell us additional information
on the model learning procedure. In particular, if the training loss gets lower than the
validation loss, it means that the model is overfitting: the model learns the training
dataset features too much, and it is not able to generalize to new images (in this case
represented by the validation set). As far as the Validation accuracy is concerned, we
compute the ratio of correctly classified images of the validation set.

Improvement over Random (IoR)

By far, the outdoor image classification task that we create involves numerous target
cells. This leads the model accuracy implicitly to drop to small floating-point values as
soon as the number of target cells start to grow. After a certain target cells, it gets
really difficult to understand what the accuracy stands for and even more to compare
different model values. In order to make results more interpretable, we design a new
evaluation metric that is able to compare the model accuracy with a random classifier
over the same classification task. Hence, we introduced the IoR. The IoR acronym stands
for Improvement over Random and represents how many times the model is performing
better than the random prediction, as shown in the next formula:

IoR =
Accuracyvalid
ProbRandom

(6.3)

The way the random classifier probability is computed is a uniform probability distribution
over the target cells of the outdoor geolocation problem (ProbRandom = 1

Nclasses
).

6| Experimental Results and Evaluations 51

6.2. Experiment A: Model Backbone

As the first experiment, we want to investigate which state-of-the-art CNN model could
be the best feature extractor for the Outdoor Geolocation problem. For this reason, we
compare a set of well-known encoders over the same task, and we analyze their perfor-
mance.

6.2.1. Problem Description

This experiment aims to analyze the training and validation performance of different
settings of the feature extractor part of the outdoor geolocation model. In particular, we
compare the same cell classifier (Multi-Class classifier) with different feature encoders. In
particular:

• EfficientNetB0;

• EfficientNetB1;

• VGG19;

• ResNet152;

In order to show the magnitude of the backbone models, we provide a table (Tab. 6.1)
that illustrates the number of parameter and layers of each of the previously mentioned
models.

Backbone Name # Layers # Parameters

VGG19 26 143,667,240

ResNet152 152 60,419,944

EfficientNetB0 237 5,330,571

EfficientNetB1 253 7,856,239

Table 6.1: Feature extractor layers and number of parameters.

The goal of this experiment is to find the best feature encoder/extractor for the outdoor
geolocation model. This definition is not only applied to the classification performance,
such as loss and accuracy, but also related to the training time and the number of epochs
to converge.

52 6| Experimental Results and Evaluations

6.2.2. Method

In order to compare the performance of the feature extractor we enlisted previously, we
decided to keep the same cell classifier, which was a non-hierarchical multi-class classifier.
Moreover, all the feature extractors that we test have been kept completely frozen for all
the experiments. Therefore, no encoding layers have been trained. The classification task
solved by all models was performed over 99 classes, with a single softmax layer after the
GlobalMaxPooling of the feature extractors.

6.2.3. Results and Discussions

In this section, we show a comparison between the model performance over the same
classification task. In particular, we analyze the validation loss, accuracy and IoR. It
is important to notice that all the feature extractors have been kept untrained through-
out the training phase: all the layers were initialized with their pre-trained version of
ImageNet [4], and kept frozen for the whole duration of the training.

Backbone Name Validation Loss Validation Accuracy IoR

VGG19 6.985 0.015 1.485

ResNet152 6.324 0.020 1.980

EfficientNetB0 5.158 0.023 2.277

EfficientNetB1 4.607 0.026 2.574

Table 6.2: Feature extractor validation performance.

This experiment demonstrates that the EfficientNet feature extractor was the most adapt
for the image outdoor geolocation problem among the state-of-the-art CNN encoders.
From the Tab. 6.2, it is possible to deduce how the EfficientNet backbone outperforms all
its competitors. In particular, the Keras EfficientNetB1 implementation showed by far the
best performance among the tested networks. Although more complex implementations
such as EfficentNetB4 and EfficentNetB7 have been tested, the EfficientNetB1 demon-
strates to outperform its counterparts. In some cases, the network was too complex that
it was not even able to reduce the training loss (not learning), thus we decided to avoid
showing such a performance.

6| Experimental Results and Evaluations 53

6.3. Experiment B: Number of Training Images

Now that the best model encoder has been identified, we move on to study the Outdoor
Geolocation problem more in details. The current experiment is intended to study the
trend of the Outdoor Geolocation Model performance when increasing the number of
images in the training dataset. Such an experiment helps us in understanding whether
the number of images that we are submitting to the model training are sufficient and if
there is still a performance growth margin.

6.3.1. Problem Description

The need for improving the model performance is crucial in the outdoor geolocation
problem. A classifier which is able to detect the correct location of an image, it’s the key
in order to produce a good model for this task. From the theory of deep learning, we know
that increasing the number of samples in the training dataset leads to better results up to
a certain asymptote, that is set intrinsically in the problem description. For this reason,
we wanted to create an experiment that is able to show how the performance trend of
an outdoor geolocation model can be related to the number of training images that are
used for training it. The model used for this experiment is a Multi-class classifier, with
learning rate set at 10−3 and a number of epochs set to 10.

The goal of this experiment is to prove that the performance trend of an outdoor geolo-
cation model is positive and increases its slope when the number of images grows. In
particular, we want to see if the trend tends to keep the same slant, or it will converge at
a certain point.

6.3.2. Method

Concerning the current experiment methodology and approach, we formulated the prob-
lem by defining the constant parameters for the Cell generation algorithm (Alg.1) as
tmin = 2000 tmax = 20000. This setting produced 89 classes, and the outdoor geolocation
model has been shaped accordingly (89 softmax neurons for the final layer). In order to
study the previously explained trend, we extract a fixed number of images from the Flickr
Dataset. In particular, in an effort to keep a balanced set of classes, we drew the same
amount of images from each of the 89 target cells, and we filled the remaining slots with
randomly drawn images.

Nimages_per_class = round(
Nimages_needed

Nclasses

) (6.4)

54 6| Experimental Results and Evaluations

6.3.3. Results and Discussions

In order to have a sufficient number of samples for analyzing the performance trend, we
choose to extract different numbers of training image (10,000 - 40,000 - 160,000 - 640,000)
for the current experiment. As a further analysis, we also want to include the IoR -
Improvement over Random - of the current tests (random guess = 0.0112). The results
can be found in the following table.

Images Validation Loss Validation Accuracy IoR

10,000 12.429 0.006 0.534

40,000 6.170 0.009 0.828

160,000 5.762 0.011 0.935

640,000 5.283 0.019 1.655

Table 6.3: Validation performance and IoR (Improvement over Random) of the non-
hierarchical model to vary the number of target classes.

Figure 6.2: Validation Loss trend of the model related to the number of images, in a
logarithmic scale.

6| Experimental Results and Evaluations 55

Figure 6.3: Validation Accuracy trend of the model related to the number of images, in a
logarithmic scale.

Figure 6.4: IoR (Improvement over Random) trend of the model related to the number
of images, in a logarithmic scale.

56 6| Experimental Results and Evaluations

From the previous results, we are able to answer the questions that we posed in the
problem description and goal section of this experiment: as Fig. 6.3 shows, plotting
validation accuracy versus dataset size with logarithmic access shows a steep slope except
from a plateau in the middle segment. This behavior demonstrates that the accuracy will
not converge even after 640,000 images. For this reason, we can assume that increasing the
number of images will result an exponential increase up to a point until we see decay after
the base error rate in the validation accuracy (the curve show in Fig. 6.3 is logarithmic,
thus linear trends are actually exponential in the linear plane).

In the meantime, Fig. 6.2 shows how the validation loss starts steeply decreasing until
converging in a plateau after around 50,000 training images. This result seems to prove
that the validation loss will not improve much further with an increase in the number of
images, even though small decrease in validation loss is associated to large improvements
in the validation accuracy.

Finally, Tab. 6.3 shows that the IoR metric improves a lot when the number of image
is increasing (Fig. 6.4): especially from 160,000 to 640,000 images, the IoR is almost
doubled, and this trend seems to behave accordingly with more pictures.

6.4. Experiment C: Number of Target Cells

From the previous experiment, we were able to see that increasing the number of images
is a good way of improving the model performance. Now, we want to investigate the
effect that the number of target classes might have on the Outdoor Geolocation problem.
In particular, experiment C is intended to study the trends of the Outdoor Geolocation
Model performance increasing the number of leaf cells (target labels).

6.4.1. Problem Description

This experiment aims to analyze the models’ behavior when varying the number of classes
in the classification task: all the tests will be performed over the same Multi-class classifier
of the previous experiment, which will only be adapted for classifying over the specific
number of target classes (leaf cells). Finally, we used the same settings as Experiment
B’s, except from the number of epochs, which was set to 5.

The goal of this experiment is to prove that the model will produce similar relative
performance with respect to the random prediction. In details, we want to show the
performance trend rather than single value, as we believe that classification tasks with a
lot of classes will not worsen the performance when compared to the random prediction.

6| Experimental Results and Evaluations 57

6.4.2. Method

In order to run the following experiment, we needed to create several world-grid configu-
rations. This was achieved by varying the tmin and tmax threshold parameters in the cell
generation algorithm (Algorithm 1). In particular, we defined the following settings:

Classes tmin tmax # Images (%)

4 80,000 350,000 72.6

14 25,000 100,000 87.4

50 5,000 40,000 93.9

110 3,000 15,000 87.7

Table 6.4: Cell generation algorithm parameters and the percentage of images involved.

We would like to remember that the total number of images in our Flickr Dataset is
970565 and the percentages inside the table are related to this number.

6.4.3. Results and Discussions

The results we achieved with the previously enlisted settings can be found in the next
table.

Classes Validation Loss Validation Accuracy

4 1.554 0.278

14 2.936 0.091

50 4.926 0.031

110 5.537 0.013

Table 6.5: Validation performance of the non-hierarchical model, increasing the number
of target classes.

58 6| Experimental Results and Evaluations

Figure 6.5: Validation Loss trend of the model related to the number of classes, in a
logarithmic scale.

Figure 6.6: Validation Accuracy trend of the model related to the number of classes, in a
logarithmic scale.

6| Experimental Results and Evaluations 59

Classes Random probability IoR

4 0.250 1.11

14 0.071 1.28

50 0.020 1.57
110 0.009 1.38

Table 6.6: Random probability and IoR of the non-hierarchical model to vary the number
of target classes.

Figure 6.7: IoR (Improvement over Random) trend of the model related to the number
of classes, in a logarithmic scale.

From the previous results, we are able to analyze the behavior of the model in the image
outdoor geolocation problem by varying the number of target classes (leaf cells). In
particular, Tab. 6.5 and Fig. 6.6 and Fig. 6.5 show the model validation performance: the
trends that are visible in the figures in a logarithmic scale (base 4) show a reasonable drop
of the validation accuracy and a significant increase of the validation loss. The trends are
linear for the central sections and get on a plateau when reaching the highest number of
classes: this demonstrates that after a certain number of targets, the model performance
will stop dropping steeply, but they will remain constant around the same values.

As far as the IoR metric is concerned, the Tab. 6.6 shows how the performance is kept
almost stable for all the given configurations. When the number of cells is low, the
model seem to have a low IoR probably due to underfitting: the model is underestimating
the problem. On the other hand, when the number of cells is high enough (over 50)
the model’s IoR starts dropping and the reason for this can be found in the overfitting

60 6| Experimental Results and Evaluations

problem, as there are not enough images for enabling the model to be trained over that
number of classes. Hence, the model cannot learn better than it is doing, unless the
number of training images would be increased. An important aspect that needs to be
highlighted is due to the IoR (Fig. 6.7) related to the percentage of images involved:
when the training image number increases, so the IoR does. One conjecture that we make
is that by increasing the number of images allows the outdoor geolocation model to learn
better features, as we deduced from the previous experiment.

6.5. Experiment D: Hierarchical Model

Now that the Outdoor Geolocation problem has been analyzed, we want to compare the
hierarchical models’ performance against a baseline non-hierarchical multi-class model:
we will compare them in terms of validation performance and training time. From an
engineering point of view, the latter is important to determine whether the model perfor-
mance variation is worth the time it takes to train the models.

6.5.1. Problem Description

In the Experiment D, we want to compare the performance between a standard non-
hierarchical multi-class model against the performance we obtain following our novel ap-
proach. With performance, we do not only include accuracy and loss but also the training
time. The list of the models that will be compared is:

• Multi-Class (MC) classifier;

• Hierarchical Multi-Class (HMC) classifier;

• Hierarchical Multi-class with sum-of-logarithms (HMC-sol) classifier;

• Hierarchical Multi-class with smoothing of probabilities (HMC-smooth) classifier.

The structure each of these models can be found in section 4.2.

The goal of the current experiment is to prove that hierarchical geolocation models can be
more powerful than standard fully-connected models. The aim is to compare the results
of each of the models over the test set, and also to see how much impact the hierarchical
geolocation approach shows in terms of training and inference time.

6| Experimental Results and Evaluations 61

6.5.2. Method

In order to compare the previously explained performance indicators, we decided to run
each model singularly in their best possible settings. The best hyperparameter configu-
ration can be found in Tab. 6.7.

Model name Learning Rate Epochs Smoothing (α) Time per Epoch (s)

MC 10−4 4 - 9,256

HMC 10−2 5 - 10,253

HMC-sol 10−4 10 - 15,960

HMC-smooth 10−6 4 0.9 19,253

Table 6.7: Models’ best settings in terms of hyperparameters. The number of epochs
is determined by the Early Stopping. The Time per Epoch is the average time that we
measured throughout the training.

For comparing the models, we run an experiment for each of them by training over the
whole dataset with the same TensorFlow seed(42) so to obtain reproducible results.

6.5.3. Results and Discussions

In this section, we provide the comparison of the model results over the same dataset.

Model name Validation Loss Validation Accuracy IoR

MC 4.799 0.023 1.66

HMC 4.301 0.033 2.38

HMC-sol 4.104 0.032 2.23

HMC-smooth 3.980 0.031 2.23

Table 6.8: Models validation performance and IoR (Improvement over Random).

From the previous results, it is possible to deduce several considerations. As far as the
validation performance is concerned (Tab. 6.8), it is easy to denote how hierarchical
models outclass the non-hierarchical one: both in terms of validation loss and accuracy,
the performance of the hierarchical model is a noticeable improvement from the MC. In
particular, the HMC-smooth model shows the best performance in terms of validation
loss, while the HMC stands out as far as the validation accuracy is concerned. However,

62 6| Experimental Results and Evaluations

this results must be correlated to the time it takes to train each of the previously enlisted
models. In particular, it is easy to see how the non-hierarchical model is faster than its
hierarchical counterparts, especially concerning models with complex operations (HMC-
sol, HMC-smooth). In fact, the HMC-smooth takes on average more than twice the
training time than the MC, but there is an exception: the HMC is only 1.09x slower than
the MC.

These results demonstrate that the HMC is better than any other analyzed model, due
to its training speed (very close to the multi-class model) and validation accuracy.

6.6. Analysis A: Model Calibration

From the previous experiment, we were able to find which model is the best among the
one we proposed (HMC). With this analysis, we want to investigate the correctness and
calibration of its prediction through traditional machine learning techniques. Moreover,
we are also going to look at the Confusion Matrix for further evaluations.

6.6.1. Problem Description

In order to measure the quality of the predictions provided by a certain machine learn-
ing model, it is necessary to compare the confidence scores it produced with the actual
outcome probabilities of the target classes. Moreover, we would like to check whether the
model could be biased towards the prediction of a particular set of target cells. This can
be checked through a confusion matrix.

Calibration Metric

The calibration metric is a model evaluation measure that enables engineers to understand
how well uncertainty is being measured by the model. In other terms, this evaluation
metric is able to determine whether a model’s predicted probabilities of outcomes reflect
true probabilities of those outcomes [2, 18].

Confusion Matrix

The confusion matrix is a visual representation of the comparison between the predicted
classes of a test dataset and the corresponding ground truth labels. In order to produce
such a result, we set the true class on the ordinate axis and the predicted class on the
abscissa axis: if the confusion matrix shows high numbers on the diagonal and low numbers
elsewhere, it means that the model is predicting correctly almost all images. In other cases,

6| Experimental Results and Evaluations 63

when a specific column or row shows high values, it means that the model is trying to
predict that class more frequently than necessary.

With this analysis, we want to test our deep learning models in order to check if they are
either under confident or overconfident in their prediction, entailing an unbalance between
the predicted probability and the accuracy of the classifier on such predictions. Moreover,
we want to check for unbalanced predictions that can be biased towards a subset of output
classes.

6.6.2. Method

In order to measure uncertainty, we employ some specific diagrams that are able to plot the
comparison between the confidence values of the model predictions against the expected
accuracy of the same model on the same test images. Moreover, we plot the histogram
bars of the predicted confidence with respect to the number of images for the same levels.
In the end, we show the confusion matrix of the outdoor geolocation model, in order to
check whether some target cells are predicted more predominantly than others, maybe
due to class unbalance.

6.6.3. Results and Discussions

In this experiment, we produced three different plots:

• In the first plot (Fig. 6.8), the calibration matrix is shown. It is provided through a
reliability diagram, in which we set the number of bins at 20. The plot is provided
by the work of [11]. The ECE stands for Expected Calibration Error and indicates
a summary of the plot discrepancy between the two axis. In other words, it’s a
measurement of the gaps across all bins, weighed by the number of examples in
each bin;

• The second plot (Fig. 6.9) represents the histogram bars for the predicted confidence
with respect to the number of examples for each level. The dashed line is the average
confidence, while the full-line stands for the accuracy. The closer they are, the better
the model is calibrated;

• The last plot (Fig. 6.10) represents the confusion matrix for the outdoor geolocation
model. The colors represent the values of each of the matrix cells: bright colors stand
for high values, while dark colors indicate low values.

64 6| Experimental Results and Evaluations

Figure 6.8: The calibration plot for the outdoor geolocation model. Black lines on top
of bins represent the accuracy for that specific bin. The more they are aligned with the
bisector, the better the calibration is.

Figure 6.9: The calibration histogram plot for the predicted confidence. The distance
between the two vertical lines represent how well calibrated the model is.

6| Experimental Results and Evaluations 65

Figure 6.10: Confusion matrix for the outdoor geolocation model. Light color on the
diagonal indicates that the model is predicting classes in a correct way.

From the first two plots, it is possible to deduce that the model is well calibrated. In fact
bins of Fig. 6.8 are not distant from the bisector of the Cartesian plane, while the Fig. 6.9
vertical lines are almost aligned. This leads us to think that the model uncertainty is
reasonable, as the predicted probabilities are very close to the expected probabilities of
the same outcomes.

Moreover, the third plot is able to tell us that in general the model is not biased towards
a specific subset of target cells. Only in the case of classes 4, 6, 48 and 49, the model
seems to show a prevalence of prediction errors: this could easily be due to the fact that
the outdoor geolocation model tries to locate images that it is not able to place in those
areas. A possible solution could be easily identified, as in Experiment B: submit more
images into the training phase.

6.7. Analysis B: Visual Explanations

After evaluating the HMC model calibration, we want to test its explainability features
in generating visual explanations, in terms of saliency and visual world maps.

66 6| Experimental Results and Evaluations

6.7.1. Problem Description

Although the image outdoor geolocation models are able to provide a prediction of the
correct location of a given picture with a certain accuracy, users would not be able to
understand much from the target label and the confidence level. For this reason, we want
to introduce a more detailed approach that is able to explain what and how the model
predicts.

With this analysis we want to provide a better understanding of the model predictions:
in this way, users are not only able to understand exactly where the model predicted
the location of the image using a visual tool, but also which parts of the picture were
relevant for the prediction. In these terms, we provide a qualitative analysis of the visual
explanations, correlated with some image and map examples.

6.7.2. Method

In order to provide a visual explanation of the outdoor geolocation prediction, we imple-
mented two different procedures:

1. Grad-CAM model applied to the feature extractor;

2. Visual World Map with cell representations.

Grad-CAM

Firstly, we decided to employ the Grad-CAM model from [22]. In order to visualize the
channels influence, we activated the Grad-CAM on the last convolutional layer (top_conv)
of the EfficientNet feature extractor. Once the results are generated, they are encoded
in an activation map. In order to show the Saliency Map of the prediction, we applied
a grayscale color map to the activation’s. Subsequently, we superimposed the colored
map over the original image with a transparency multiplier of 0.4, therefore we obtain the
Saliency Map of the prediction.

6| Experimental Results and Evaluations 67

Figure 6.11: Example 1 of a Grad-CAM superimposition. On the left side, the original
image. On the right side, the Saliency map of the left image.

Figure 6.12: Example 2 of a Grad-CAM superimposition. On the left side, the original
image. On the right side, the Saliency map of the left image.

68 6| Experimental Results and Evaluations

Visual World Map

As a further explanation, we want to show a visual representation of the cell predictions
that could be more intuitive for the end user. For this reason, we decide to implement a
visual world interactive map, over which all the model’s target cells are depicted: once the
image outdoor geolocation model produces its prediction, it provides a set of confidence
values. Each of the entries of such a set can be identified as the probability of an image
of falling into a location of the corresponding cell. As this could not be very intuitive at a
first glance, we wanted to make a visual representation of the confidence levels. In order to
accomplish such task, we superimposed the cells over the world map with a transparency
level which is proportional to the probability predicted for the same cells. In particular,
if a cell confidence is below 0.05 it will not be drawn. On the other hand, if it reaches
above 0.8 probability, it will be capped at such level. After this preprocessing operations,
we multiply each confidence by 5 in order to make cells more visible.

Figure 6.13: Example 1 of a visual interactive world map.

6| Experimental Results and Evaluations 69

Figure 6.14: Example 2 of a visual interactive world map.

6.7.3. Results and Discussions

The qualitative analysis of the visual explanation has been performed over the Hierarchical
model (HMC) that we illustrated in the Experiment D. By providing visual explanation
to the outdoor geolocation models, users are enabled to understand better the outdoor
geolocation problem. In fact, they are able to detect:

• Where pictures were taken with a visual tool;

• The confidence level that the model is giving to such a prediction;

• The cells with similar level to the top prediction: in this case, if the model failed to
get the exact model location, users could identify the correct one among the highest
probability cells;

• What drove the models’ prediction from the image: which areas were considered as
the most relevant, and so on.

As far as the last point is concerned, from qualitative experiments, we are able to under-
stand that the model can focus on specific objects, such as lighthouses, and associate this
information to all the cells that could have such objects, as coastal regions.

70 6| Experimental Results and Evaluations

In the end, visual explanations have proven to give a more complete understanding of
the model predictions: even if the model fails to correctly geolocate outdoor images, it
provides enough information in order to obtain the correct location: by looking at all the
cells with a high alpha values (opaque), users can see which areas are the most likely to
be the target of the classification, even though the model has not been able to find the
correct one.

7| Demonstration Website with

Visual Explanations

In this section we discuss the demonstration website that we developed in order to show
the concrete functioning and explanations of our models. In particular, we will show how
the website is structured and how the model computes all the information concerning the
image predictions.

The main purpose of the demonstration website (Fig. 7.1) is to illustrate the outdoor image
geolocation problem and a working model that is able to detect image location in real
time. The whole application has been developed using the Flask framework and embeds
the HMC and MC models described in the previous chapters. The website structure is
constituted by two main sections that we called:

• Metrics section;

• Geolocation section.

7.1. Metrics Section

The metrics section is meant to show the best model performance and the image outdoor
geolocation task. As it is possible to deduce from the Fig. 7.2, the introduction explains
how the model works in terms of target cells and their visual representation. On the
left-hand side, we created an interactive world map exploiting the Folium library [15].
On the interactive map, it is possible to move around locations and see where the target
cells are placed on the Earth surface. In particular, the 4 vertices of the 2-D projected
cells uniquely identify their trapezoidal shape, even though a correct representation would
depict borders as curves (more precisely geodesics) on a spherical surface (details can be
found in Appendix A). Moreover, it is possible to identify the centroids of each cell, which
are an arithmetic average of the latitude and longitude information of the cell’s training
images. When the mouse points over a specific region, the world map shows a tooltip

72 7| Demonstration Website with Visual Explanations

Figure 7.1: Introductory section to the demonstration website.

containing some additional information related to the hovered area:

• the prediction ID;

• the number of images contained inside the cell’s boundaries;

• the hierarchy level of the cell: this might change between cells, because in some
areas there could be less training images than others. More information about the
cell generation algorithm can be found at the Algorithm 19.

On the other hand, the right-hand side of this section contains the information on the
current best model performance. In particular, we decided to indicate

• the geolocation problem parameters (72 cells, between 3000 and 30000 training
images per cell);

• the test performance on our test set, including information regarding the top-1, top-5
and top-10 correct predictions in percentage of the total number of test images;

• The numerical validation performance, in terms of validation error and accuracy
(parameters that are used for compiling the model for training).

7| Demonstration Website with Visual Explanations 73

Figure 7.2: Metrics section of the demonstration website.

7.2. Geolocation Section

The geolocation section is the core of our demonstration website. In fact, it is possible
to directly test models on user-uploaded images or randomly chosen images from our
dataset. As shown in Fig. 7.3, at the top of the screen the website provides two tabs for
starting the model prediction: the left button allows users to test the image prediction
on a random image taken from our test set, while the right form allows users to manually
upload an image that they would like to be predicted.

Once one of the above-mentioned buttons have been pressed, the model runs in the
background, computing several pieces of information that will be shown at the end of the
operations. In particular, the web server that hosts the demonstration website is running
in background two different deep learning models:

• The hierarchical geolocation model HMC, used for computing the geolocation pre-
diction. It is the best model we obtained in order to perform geolocation;

• The MC model, used as a baseline comparison for the HMC.

The two models are responsible for producing the confidence levels for the cells of the
world grid. They do not only tell the best performance, but produce a specific probability
value for each of the cells. In this way, it is possible to compare their performance. In the
meantime, Grad-CAM is used for computing the visual explanation of the geolocation

74 7| Demonstration Website with Visual Explanations

Figure 7.3: Geolocation section of the demonstration website.

models: it is able to produce a heatmap of the last convolutional layer of the Hierarchical
geolocation model and apply it on a lower alpha-level over the input image. In the end,
as the output of the prediction computation process, the web server produces for the two
geolocation models:

• an array of confidence levels, that will be used for computing the prediction
map;

• a Grad-CAM image, that contains the overlay heatmap of the last convolutional
layer of the outdoor geolocation model;

• the ground-truth information, included the cell-names and the confidence level

7| Demonstration Website with Visual Explanations 75

for such cell;

• the visual world map, which is an interactive map similar to the one used in the
Metric section. This map shows all the predicted cells above a 0.05 confidence level.
For each cell, they are drawn on the map on an alpha-level which is proportional to
the confidence level of the same cell.

The main purpose of the demonstration of this work is to show the model performance
but also a set of visual explanations of the outdoor image geolocation prediction. In
particular, we were able to create a Grad-CAM operation on the geolocation model that
highlights which parts of the image were useful for the current prediction. With heatmaps,
we are able to understand how the model extracts features and which parts of the image
are more relevant for the final prediction, even if neural networks work in a black-box
setting. Moreover, interactive maps allow users to get a better feel for how the model
predicted the final location and which areas happen to be most similar to the target in
terms of features. We also applied a reverse-geocoding of the centroids of each cell in
order to obtain names for cells (e.g. "London", "New Zealand") to provide a more user-
friendly visualization of the cells. In particular, we exploited the information related to the
"Region-name","Sub-country-name" and "Country-name" [16]. Finally, the combination
of visual features from heatmaps and prediction maps that show which grid cells were
closer to the target, enables users to have a better understanding of how the task works
and how close the model came to predicting the correct location.

8| Conclusions and Future

Research Directions

In this final section we provide an answer to the research questions we posed in Chapter 3,
based on the approach we followed and the experimental results we achieved. Moreover,
we discuss the possible future direction in this research field, especially focussing on the
possible improvements of our models and different task approaches.

Through this thesis work, we provided answers to a list of research questions that we
posed in the Chapter 3. In particular, we tried to deal with the outdoor geolocation
problem exploiting a set of deep learning techniques that could solve the problem without
any additional information beyond the image’s pixels. Firstly, we investigated the state-
of-the-art in the deep learning field, including different model structures, modern feature
extractors and related works that tried to solve similar problems to the one we posed and
analyzed. In this direction, we found that several research papers illustrate some solutions
to the image geolocation problem, working on a limited set of categories of images [30]
or constrained regions of the world [21]. Some other works, such as PlaNet [29] and
IM2GPS [9] were amongst the first in tackling the problem on a worldwide scale and
opened the research direction in the image geolocation field. After that, the work of
[17] introduced the concept of hierarchy related to the world division on a grid of cells
and transforming the geolocation problem into a classification task. We took inspiration
from all the work we cited in the Chapter 2 in order to create an innovative approach
for the outdoor image classification over the grid of cells, that we described thoroughly
in Chapter 4. The main novelty that we introduced is related to the exploitation of
the hierarchical knowledge of the cell generation directly inside the deep learning model
structure. Successively, inside the Chapter 5 we describe the dataset we used for training
our models and the way we collected it. We provide some insights on the dataset statistics
and image relationships (hierarchical feature similarities). Once everything was set up for
the training of the models, we ran a set of experiments on the models in order to compare
them and get insights on their behaviors and performance. The analysis of Chapter 6

78 8| Conclusions and Future Research Directions

shows relevant information on the outdoor geolocation models and allows us to draw some
conclusions: the Hierarchical Multi-class(HMC) classifier based on the product operation
is able to outperform baseline multi-class image classifiers and other hierarchical variants
(HMC-sol, HMC-smooth). As far as the model explainability is concerned, we were able
to make use of state-of-the-art technologies, such as the Grad-CAM [22] and other visual
tool [15] in order to produce relevant visual explanations that we were able to show
through the demonstration website described in chapter 7.

8.1. Answering the Research Questions

In this section we provide an answer to the research questions that we posed in Chapter
3. Firstly, we want to express them again here and provide an answer for each of them.

1. Is it possible to provide a deep learning model which is able to geolocate any kind
of outdoor image from a worldwide perspective?

2. Is it possible to improve the performance of an image geolocating model by adding
the hierarchical information of how the world was divided up directly inside the
model?

3. Can a deep learning model provide a significant visual explanation that could be
used to understand why the image has been predicted in such a location?

4. What is the best way to predict the location information? How can we evaluate
that the model is predicting reasonable locations?

As far as the first question is concerned, we can answer positively: in order to analyze the
problem from a worldwide perspective, we decided to crawl a relevant dataset that could
cover any region of the world, even the wildest and least explored, by exploiting the Flickr
platform. In Chapter 5, we explain thoroughly how we collected such data and how we
preprocessed it. Furthermore, we exploited the Google S2 Geometry library[7] in order to
create a set of cells that could cover almost the whole world surface. For this reason, we
were able to train a deep learning model on a set of class that could cover the whole world.

In order to answer the second question, we took inspiration from the work of [17]: the
authors were able to create a hierarchical model exploiting a set of different world-grids
on different granularity levels and fusing the predictions of the cells in each of the different
settings. Instead of exploiting this kind of hierarchy, we decided to exploit a single world-
grid division and to shape the deep learning model around it (as described in Chapter

8| Conclusions and Future Research Directions 79

4). Once the model structure has been defined, we ran a set of experiments in order to
compare different hierarchical models and baselines. In particular, the Experiment D is
able to tell us that each of the different hierarchical models that we developed outperforms
the baseline (non-hierarchical). Moreover, we can say that the HMC model is the best
performing one, both in terms of validation performance and training time: it takes only
1.09x the training time of the baseline multi-class (MC) classifier in order to be trained.

Once the model performance questions have been answered, it is time to reply to the
third question: state-of-the-art visual explanation techniques involve mainly the use of
activation map-based techniques. In this direction, we decided to exploit Grad-CAM and
visual tools in order to provide visual explanations. Through the qualitative results of the
Analysis B, we are able to provide more information on the model prediction: the saliency
map is able to tell which pixels were relevant for the final prediction and the visual world
map is able to show all the different region confidence levels in order to provide a set of
possible locations in which the image could have been taken. From a qualitative point of
view, we are able to say that the visual explanation tools that we developed produce a
clearer and more understandable explanation of the model prediction.

Finally, we provide an answer to the fourth question. In order to obtain a reasonable
prediction, we think that the model should be well calibrated and produce balanced
results. Therefore, we wanted to analyze the best model we obtained (HMC) in order
to measure its calibration and the goodness of its predictions. In the Analysis A, we
analyzed the HMC model in terms of calibration and confusion matrices. The results
show that such a model is well calibrated, and the confusion matrix is reasonable. In
these terms, we can say that the approach we followed is good at predicting reasonable
location information, and we were able to evaluate it through confusion matrices and
calibration plots.

8.2. Future Research Directions

The results that we achieved are to be intended as a starting point for the outdoor image
geolocation problem. In fact, we were able to improve a baseline model performance, but
there is still margin to improve the model performance and to introduce new visual tools
for improving the model explainability. In this section, we want to illustrate a list of
possible future research directions that could be followed after this thesis work.

• Object Detection and Textual Explanations: the current thesis work mainly
focuses on the geolocation problem, with a further development on visual expla-
nations. In order to provide a better understanding of the model predictions, we

80 8| Conclusions and Future Research Directions

think that we could provide additional information rather than the saliency and
visual world map. In fact, the next works could focus on the object detection inside
the scene: for example, a neural network could be trained in order to acknowledge
the presence of certain types of trees or buildings, recognize where they are located
and show users their position on a superimposed image. This could help both the
understanding of the model prediction, but also it could be integrated inside the
geolocation classifier: the information related to the detected object could be useful
also for the final prediction, either with self-learned (deep learning techniques) or
predefined rules. Moreover, we think that the object detection could be integrated
with a system based on text generation in order to provide Textual Explanations
together with Visual Explanations. A system based on text generation could help
users to improve their experience, as words could provide insights on the prediction
that are not recognizable through visualization;

• World Cell Preservation: the cell generation algorithm is based on two different
thresholds, which we named as tmax and tmin, that are respectively used for deciding
whether to split a certain cell any further and to drop a cell in the case it has a low
number of samples. This definitely provides a good setting for the model training, as
classes are balanced and the training is performed accordingly. Inevitably with this
implementation, a set of world regions remain uncovered by the problem solution.
In order to prevent the region drop, the cell generation algorithm must be modified:
some possible implementation that we thought are for example to avoid splitting
into four sub-cells every time the split operation is required, but instead decide to
divide either vertically or horizontally depending on the sample distribution. This
operation could be performed by a stochastic version of the cell generation algorithm
that works similarly to tree learning algorithms such as regression/decision trees;

• Investigating IoR: in this thesis work, we define a new evaluation metric for
self-learning systems which we named as Improvement over Random (IoR). As we
thoroughly explained in section 6.1.4, the IoR is computed as the ratio between
the model accuracy and the random prediction. As for the current implementation,
we decided to use a uniform probability distribution as the random probability,
therefore it is computed as 1

Nclasses
. This is for sure a valid implementation, but

we think that other possible random probability configurations could be tried to
improve the soundness of the evaluation metric. Some different random models
could be:

– Largest target class prediction: compute the random probability as if we had
a model that always predicts the target class that has the largest amount of

8| Conclusions and Future Research Directions 81

training data;

– Gini Index : use a more accurate version of the random prediction, which
depends also on the number of samples for each target class.

• Visual World Map improvements: as for the current implementation, the
demonstration website provides a visual world map for each prediction. On the
map, users can see where the regions are located (in a trapezoidal shape) over the
world map layout and the confidence level that the model assigned to each of the
cells. In this direction, some possible improvements can be made.

– Draw cells as if they were on a sphere: in fact, the cell generation process per-
formed through the Google S2 Geometry library, generates cells on a sphere
and only afterwards it projects them on a surface. This procedure could def-
initely give more detailed information on the grid cells, avoiding for example
overlapping regions.

– Investigation on different shading scale for the world cells: the current color
shading for the cell drawing depends only on their confidence level; the con-
fidence level is wrapped inside a pair of thresholds of color transparency and
the shading is only proportional to the confidence. In order to make the shad-
ing scale more accurate, we think that including the image density of the cells
inside the transparency formula would provide a better visualization.

• Hierarchy-based confusion matrix: the current ordering of classes is based on
the cell generation algorithm. In particular, when the procedure decides to split
a cell, it generates four new sub-cells and puts them in the first positions of the
target cell list without taking into account the neighboring property of the world
regions. In this way, when we generate the confusion matrix for the model we
train, we are not provided with any kind of correlation within cells: we argue that
with a reasonable cell numeration, we could group neighbor regions and see their
correlation on matrices which are able to express the dependencies among the target
classes. We could see groups of cells that are highly dependent one to another and
see their hierarchical correlation (which provides further insights on the geolocation
problem).

83

Bibliography

[1] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology
(ICET), pages 1–6, 2017. doi: 10.1109/ICEngTechnol.2017.8308186.

[2] A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. Calibration of
Machine Learning Models, pages 128–146. Handbook of Research on Machine Learn-
ing Applications and Trends: Algorithms, Methods, and Techniques. IGI Global,
Hershey, PA, USA, 2010. ISBN 9781605667669. doi: 10.4018/978-1-60566-766-
9.ch006. URL https://services.igi-global.com/resolvedoi/resolve.aspx?

doi=10.4018/978-1-60566-766-9.ch006.

[3] R. Caruana, S. Lawrence, and L. Giles. Overfitting in neural nets: Backpropaga-
tion, conjugate gradient, and early stopping. In Proceedings of the 13th International
Conference on Neural Information Processing Systems, NIPS’00, page 381–387, Cam-
bridge, MA, USA, 2000. MIT Press.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[5] Y. Ge, H. Wang, F. Zhu, R. Zhao, and H. Li. Self-supervising fine-grained region
similarities for large-scale image localization. In A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, editors, Computer Vision – ECCV 2020, pages 369–386, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-58548-8.

[6] I. J. Goodfellow, Y. Bengio, and A. Courville. Deep learning. http://www.

deeplearningbook.org, 2016.

[7] Google. Google s2 geometry: spherical geometry library for manipulating geographic
data. https://github.com/google/s2geometry, 2021.

[8] T. Guo, J. Dong, H. Li, and Y. Gao. Simple convolutional neural network on image
classification. In 2017 IEEE 2nd International Conference on Big Data Analysis
(ICBDA), pages 721–724, 2017. doi: 10.1109/ICBDA.2017.8078730.

https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch006
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch006
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/google/s2geometry

84 | Bibliography

[9] J. Hays and A. A. Efros. im2gps: estimating geographic information from a single im-
age. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2008.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,
2015.

[11] M. Hollemans. Reliability diagrams. https://github.com/hollance/

reliability-diagrams, 2021.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[13] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In
Proceedings of the 4th International Conference on Neural Information Processing
Systems, NIPS’91, page 950–957, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc. ISBN 1558602224.

[14] C. Masone and B. Caputo. A survey on deep visual place recognition. IEEE Access,
9:19516–19547, 2021. doi: 10.1109/ACCESS.2021.3054937.

[15] MIT License. Folium: python library for plotting python data on leaflet.js maps.
https://github.com/python-visualization/folium, 2021.

[16] MIT License. Geopy: Python library for several popular geocoding web services.
https://github.com/google/s2geometry, 2021.

[17] E. Müller-Budack, K. Pustu-Iren, and R. Ewerth. Geolocation estima-
tion of photos using a hierarchical model and scene classification. In
ECCV (12), volume 11216 of Lecture Notes in Computer Science, pages
575–592. Springer, Sept. 2018. doi: https://doi.org/10.1007/978-3-030-01258-
8_35. URL http://openaccess.thecvf.com/content_ECCV_2018/html/Eric_

Muller-Budack_Geolocation_Estimation_of_ECCV_2018_paper.html.

[18] J. Nixon, M. Dusenberry, G. Jerfel, T. Nguyen, J. Liu, L. Zhang, and D. Tran.
Measuring calibration in deep learning, 2020.

[19] C. Pelletier, G. Webb, and F. Petitjean. Temporal convolutional neural network for
the classification of satellite image time series. Remote Sensing, 11:523, 03 2019. doi:
10.3390/rs11050523.

[20] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger, 2016.

[21] T. Salem, S. Workman, and N. Jacobs. Learning a dynamic map of visual appearance.
CoRR, abs/2012.14885, 2020. URL https://arxiv.org/abs/2012.14885.

https://github.com/hollance/reliability-diagrams
https://github.com/hollance/reliability-diagrams
https://github.com/python-visualization/folium
https://github.com/google/s2geometry
http://openaccess.thecvf.com/content_ECCV_2018/html/Eric_Muller-Budack_Geolocation_Estimation_of_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Eric_Muller-Budack_Geolocation_Estimation_of_ECCV_2018_paper.html
https://arxiv.org/abs/2012.14885

8| BIBLIOGRAPHY 85

[22] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
cam: Visual explanations from deep networks via gradient-based localization. In
ICCV, pages 618–626. IEEE Computer Society, 2017. ISBN 978-1-5386-1032-9. URL
http://dblp.uni-trier.de/db/conf/iccv/iccv2017.html#SelvarajuCDVPB17.

[23] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929–1958, Jan. 2014. ISSN 1532-4435.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions, 2014.

[26] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks, 2020.

[27] M. Tan and Q. V. Le. Efficientnetv2: Smaller models and faster training, 2021.

[28] N. N. Vo, N. Jacobs, and J. Hays. Revisiting IM2GPS in the deep learning era.
CoRR, abs/1705.04838, 2017. URL http://arxiv.org/abs/1705.04838.

[29] T. Weyand, I. Kostrikov, and J. Philbin. Planet - photo geolocation with convo-
lutional neural networks. In European Conference on Computer Vision (ECCV),
2016.

[30] T. Weyand, A. Araujo, B. Cao, and J. Sim. Google landmarks dataset v2 - a large-
scale benchmark for instance-level recognition and retrieval, 2020.

[31] L. Yan, Y. Cui, Y. Chen, and D. Liu. Hierarchical attention fusion for geo-
localization, 02 2021.

[32] Y. Yin, Y. Zhang, Z. Liu, S. Wang, R. R. Shah, and R. Zimmermann. Gps2vec:
Pre-trained semantic embeddings for worldwide gps coordinates. IEEE Transactions
on Multimedia, pages 1–1, 2021. doi: 10.1109/TMM.2021.3060951.

http://dblp.uni-trier.de/db/conf/iccv/iccv2017.html#SelvarajuCDVPB17
http://arxiv.org/abs/1705.04838

A| Google S2 Geometry Library

This appendix is devoted to the description of the Google S2 Geometry library[7] that we
used for generating the grid-based hierarchical world division.

The Google S2 Geometry is a library for spherical geometry that aims to have the same
robustness, flexibility, and performance. Instead of its main competitors, S2 enables
developers to work in a three-dimensional setting (sphere) which fits almost perfectly with
the planet Earth geometry. Thanks to its spatial indexing technique, this library enables
a very high-performance set of operations over a single space of coordinates (latitude and
longitude), especially efficient query operations for finding neighboring regions, measuring
distances, computing centroids and so on. In particular, this work exploits the hierarchical
world division framework offered by the S2 library, that is intended to work as follows:

1. Consider a cube as for the top level of the hierarchy and take its six faces separately;

2. Project each of its six faces on a unitary sphere, creating six level-0 cells;

3. each of the previous cells is divided further in four equal cells;

4. recursively apply point 3. until a certain stop condition is reached.

The hierarchical procedure can range from level 0 up to level 30, creating at maximum
6 ∗ 430 cells (if plotted on the Earth surface, they correspond to 1 cm2).

Every cell is uniquely identified by a hexadecimal ID together with a set of 4 geodesics,
which are lines on the spherical three-dimensional space. For this reason, when we try to
depict a cell on a flat screen map, it happens to seem spherical too. By exploiting the
LatLong class of the S2 Geometry library, we are able to extract additional information
from the cell definition. In our case, as we want to depict the cells on a flat map, we can
extrapolate the four points that represent the vertices of the cell. Unfortunately, having
only this latter information does not provide us enough information to show the curved
borders of cells (sphere cells), therefore when we try to draw them on a flat map, we
approximate such borders as straight segments between the vertices.

The cell indexing follows the S2 space-filling curve in a fractal shape. In particular, six

88 A| Google S2 Geometry Library

Figure A.1: An example of a recursive hierarchy of cell generation from the cube projection
until depth 5.1

Hilbert curves linked together to form a single continuous loop over the entire sphere.
The Hilbert curve is a surjective mathematical function that maps

f : [0, 1] → [0, 1]× [0, 1]

to visit every point of the codomain. By composing the S2 space-filling curve, the authors
obtain a function

g : [0, 1]6 → S2

which is constructed by mapping 6 copies of the Hilbert curve to the 6 faces of a unit cube,
reflecting and rotating the curves as necessary so that they link together seamlessly into
a continuous loop. Finally, the cube is mapped to the unit sphere using a transformation
that minimizes distortion.

Figure A.2: Flattened representation of the fractal of six Hilbertian curves projected on
the six faces of a cube 2

1Source: https://s2geometry.io/devguide/s2cell_hierarchy
2Source: https://s2geometry.io/devguide/img/s2cell_global.jpg

https://s2geometry.io/devguide/s2cell_hierarchy
https://s2geometry.io/devguide/img/s2cell_global.jpg

A| Google S2 Geometry Library 89

Figure A.3: Fractal of six Hilbertian curves that wraps around the world surface in order
to fully cover it.3

The numbering of the cells follow this set of curves so to have cells with similar hexadecimal
IDs one close to the other, enabling the library to speed up the process of finding neighbor
cells. Exploiting this feature, the S2 Geometry library enables to group close cells in order
to create S2CellUnions, that are collection of cells that can be used to approximate oddly
shaped regions on the unitary sphere. In the case in which cells that share the same
parent are grouped under the same CellUnion, the library will tend to normalize their
coordinate representation by replacing them directly with the common parent cell.

3Source: https://s2geometry.io/devguide/img/s2curve-small.gif

https://s2geometry.io/devguide/img/s2curve-small.gif

B| EfficientNet

In this section we are going to describe one of the most performing architecture for feature
extraction in the state-of-the-art. EfficientNet[26] is not only good at doing its job, but
it also makes it extremely faster than any other existing model.

For modern feature extracting models, Convolutional Neural Networks are a de-facto
standard in the field of deep learning. Many authors proposed different models[23][10][25]
throughout the past years, with the main purpose of improving the model performance
in terms of loss and accuracy. A careful analysis conducted by the authors of [26] showed
that all the state-of-the-art feature extractor puts as an objective function the purpose of
improving one of the next three model parameters:

1. Depth: most common way of improving deep neural networks. The rationale be-
hind deepening deep learning models can be found in thinking that models can
capture richer and more complex features while generalizing well on new tasks.
This is partially true, as deep models also bring the vanishing gradient problem,
preventing too complex network to learn as the gradient propagation gets gradually
shrunk towards zero;

2. Width: often used for small-sized models, wider neural networks tend to capture
more fine-grained features and be easier to train. Having very large but shallow
models bring them to lose high level features;

3. Resolution: some neural networks try to increase the input image resolution in
order to retrieve potentially more fine-grained patterns, but this has shown little to
no improvements in terms of model accuracy.

The idea behind the EfficientNet architecture is to improve the previous three parameters
all together, as it has been proven that they are not independent. Therefore, the authors
thought to create a compound scaling method that exploits a parameter ϕ to uniformly
scaling depth, width, and resolution.

After a set of empirical experiments in a grid search, the authors found the best settings
for the model training. The more important feature of this procedure is that it seems

92 B| EfficientNet

Figure B.1: Global architecture of EfficientNet in its B0 implementation.1

that FLOPS are strictly correlated with the three parameters of the grid search. In
particular, FLOPS are linear with the depth and increase in a quadratic way with width
and resolution. With this intuition, the authors aimed to create a model that not only
focuses on improving accuracy, but also the FLOPS required to compute such a task.
Therefore, they set a search space in the domain

ACC(m)× [
FLOPS(m)

T
]ω (B.1)

Note that T and m stand for target FLOPS and model, while w is an empirical parameter
set to ω = −0.07

B.1. EfficientNet architecture

The EfficientNet architecture has been created gradually to improve the model perfor-
mance through an increase of the model’s parameters.

The model is represented by a set of MBConv building blocks with squeeze-and-excitation
optimization. The MBConv is also known as mobile inverted bottleneck convolution[mobilenetv2-
paper]. MBConv are Inverted Residual convolutional blocks, which adopt the narrow −→
wide −→ narrow approach, hence the inversion. Firstly, it widens the input with a 1x1
convolution, then it uses a 3x3 depthwise convolution (which greatly reduces the number
of parameters), then the block uses a 1x1 convolution to reduce the number of channels
so input and output can be added. In terms of neural layers, MBConv is contituted of
two rounds of:

• Convolution;

• BatchNormalization;

• ReLU6 activation;

• DepthwiseConvolution.
1https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

B| EfficientNet 93

Figure B.2: On the left-hand side, the EfficientNet MBConv, while on the right-hand side
the EfficientNetV2 FusedMBConv improvement

Those layers are followed by an Add Layer which sums the input of the block together
with the output of the previous steps.

Several building blocks are combined in order to form the EfficientNet implementation
(in Fig. B.1, the EfficientNetB0 structure is shown).

The authors created eight different settings (EfficientNetB0 - B7) and the most complex
one showed the best performance in the ImageNet task over all the state-of-the-art deep
learning models.

B.2. EfficientNetV2

Together with the advent of tensor unit accelerators, researchers have found the possibil-
ity of implementing even further the EfficientNet performance [27]. In particular, they
designed a new residual convolutional block, called FusedMBconv, which is an updated
version of MBconv described in the previous section.

Differently from the previous implementation, FusedMBConv (Fig. B.2) replaces the
initial widening of the 1x1 convolution of MBconv and directly pipes the input channels
into the 3x3 convolutional layer. This change has shown greater performance on server

94 B| EfficientNet

accelerators. Moreover, when performing progressive learning, the network grows together
with the image size: at every learning step, the initial stages are enlarged by adding new
neural layers able to cope with the larger images. As a further detail, EfficientNetV2 is
provided with regularization adaptation. In fact, at early stages, the model is subjected
to weaker regularization which gets stronger when the image size increases.

Finally, EfficientNetV2 is a major update of the older version, specifically in terms of
training FLOPS (server accelerator boosting) and model parameters (FusedMBConv is
shallower than MBConv).

95

List of Figures

1.1 On the left side, a cell covering the whole city of New York because of a low
number of images. On the right side, the only city of Manhattan divided
up in many subregions thanks to a high number of images in that area. . . 2

1.2 Pont-Saint-Martin in the region of Val d’Aosta, Italy and Ponte di Rialto
in Venice. They both have an arch-shape due to the Roman heritage in
architecture. 3

2.1 General structure subdivision in its two main parts. On the left, the Feature
extractor that includes Convolutions, Sampling, and Batch normalization.
On the right, a Classifier for predicting the output cells of the model.
It includes a Global Pooling, a set of Dense layers and some advanced
mathematical functions. 6

2.2 Convolution operation picture taken from [1]. On the right-hand side of
the image, it is possible to see how each kernel applied on the input image
(left) generates a new representation of the output independently of the
other kernels. 8

2.3 CNN manipulation picture taken from [1]. It shows how the network grad-
ually extracts features from the image in order to provide relevant infor-
mation for the next steps. 9

2.4 In the picture, it is possible to understand the global pooling operations of
linearizing the feature dimension. 10

2.5 Fully-connected network structure from [19]. 11
2.6 Cartesian representation of the ReLU function2 12
2.7 From left to right: target, k-nn, three representations of the probability

distribution of the image over the world. 13
2.8 PlaNet examples of predictions on different pictures and locations. 14
2.9 Global pipeline of the Hierarchical model proposed by Müller-Budack et

al [17]. From left to right: pre-processing, multi-grained predictions and
scene classification, feature fusion and cell prediction. 16

2.10 Revisited IM2GPS procedure, from left to right. 17

96 | List of Figures

2.11 (a): image classification with a single label all over the image; (b): image
classification with 4 split region labels and similarities. 18

2.12 Pair of images from the city of Milan. They were taken from a distance of
less than 1 kilometer. 19

2.13 An example of the Grad-CAM [22] output on a classification task over the
ImageNet dataset. 21

4.1 In the picture, it is possible to observe the structure behind the basic multi-
class model in its layers structure. Green dots represent ReLU activated
neurons, while Orange dots represent SoftMax activated neurons. 26

4.2 Visual representation of the model hierarchy. From the left to right, the
input image divided in the RGB channel, the Feature extractor and the
hierarchical cell representation in terms of neurons. Blue neurons represent
intermediate cells, while orange neurons represent leaf cells. The arrows
stand for the dependencies between cells. 28

4.3 Hierarchy-level based visual representation of the model (DODAG). Blue
neurons represent intermediate cells, while orange neurons represent leaf
cells. Every box identifies a level of the hierarchy. 29

4.4 Sparsely-Connected model structure. On the right of the dense layer, it
is possible to find a set of SoftMax layer that represent the Hierarchical
Predictions, each at a different level of the hierarchy 32

4.5 Product model structure. Each of the hierarchical prediction tensors are
multiplied together in order to produce the output layer prediction. 34

4.6 Exponential sum of logarithms model structure. Each of the hierarchical
prediction tensors are passed through a log function and then element-wise
summed up together. Finally, the output tensor is the exponential of that
sum . 35

4.7 Smoothed hierarchical model structure. Each of the hierarchical predic-
tion tensors are multiplied by the corresponding value of alpha and then
summed together. In the end, a normalization operation is applied. 37

5.1 Heterogeneity of images coming from the Ligurian region (Italy). 40
5.2 An example of eight outdoor images coming from the Flickr dataset we

crawled for training and testing. In particular, these images are used for
the testing phase. 41

5.3 On the left side, there are four Italian road sign pictures, whereas on the
right side there are four American road sign images. 43

| List of Figures 97

6.1 An oddly shaped function with a various number of minima.3 48
6.2 Validation Loss trend of the model related to the number of images, in a

logarithmic scale. 54
6.3 Validation Accuracy trend of the model related to the number of images,

in a logarithmic scale. 55
6.4 IoR (Improvement over Random) trend of the model related to the number

of images, in a logarithmic scale. 55
6.5 Validation Loss trend of the model related to the number of classes, in a

logarithmic scale. 58
6.6 Validation Accuracy trend of the model related to the number of classes,

in a logarithmic scale. 58
6.7 IoR (Improvement over Random) trend of the model related to the number

of classes, in a logarithmic scale. 59
6.8 The calibration plot for the outdoor geolocation model. Black lines on top

of bins represent the accuracy for that specific bin. The more they are
aligned with the bisector, the better the calibration is. 64

6.9 The calibration histogram plot for the predicted confidence. The distance
between the two vertical lines represent how well calibrated the model is. . 64

6.10 Confusion matrix for the outdoor geolocation model. Light color on the
diagonal indicates that the model is predicting classes in a correct way. . . 65

6.11 Example 1 of a Grad-CAM superimposition. On the left side, the original
image. On the right side, the Saliency map of the left image. 67

6.12 Example 2 of a Grad-CAM superimposition. On the left side, the original
image. On the right side, the Saliency map of the left image. 67

6.13 Example 1 of a visual interactive world map. 68
6.14 Example 2 of a visual interactive world map. 69

7.1 Introductory section to the demonstration website. 72
7.2 Metrics section of the demonstration website. 73
7.3 Geolocation section of the demonstration website. 74

A.1 An example of a recursive hierarchy of cell generation from the cube pro-
jection until depth 5.4 . 88

A.2 Flattened representation of the fractal of six Hilbertian curves projected
on the six faces of a cube 5 . 88

A.3 Fractal of six Hilbertian curves that wraps around the world surface in
order to fully cover it.6 . 89

98 | List of Figures

B.1 Global architecture of EfficientNet in its B0 implementation.7 92
B.2 On the left-hand side, the EfficientNet MBConv, while on the right-hand

side the EfficientNetV2 FusedMBConv improvement 93

99

List of Tables

5.1 Image tags type and distribution. 41
5.2 Image location distribution. 42

6.1 Feature extractor layers and number of parameters. 51
6.2 Feature extractor validation performance. 52
6.3 Validation performance and IoR (Improvement over Random) of the non-

hierarchical model to vary the number of target classes. 54
6.4 Cell generation algorithm parameters and the percentage of images involved. 57
6.5 Validation performance of the non-hierarchical model, increasing the num-

ber of target classes. 57
6.6 Random probability and IoR of the non-hierarchical model to vary the

number of target classes. 59
6.7 Models’ best settings in terms of hyperparameters. The number of epochs

is determined by the Early Stopping. The Time per Epoch is the average
time that we measured throughout the training. 61

6.8 Models validation performance and IoR (Improvement over Random). . . . 61

101

List of Symbols

Acronym Description

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

LSTM Long-Short Term Memory

FCNN Fully-Connected Neural Network

ReLU Rectified Linear Unit

RGB Red-Green-Blue

GBC Geolocation by Classification

IBL Image-Based Localization

DML Data Manipulation Language

GPS Global Positioning System

V LAD Vector of Locally Aggregated Descriptor

Grad− CAM Gradient-weighted Class Activation Mapping

DODAG Destination Oriented Directed Acyclic Graph

DGH Dependency Graph of Hierarchy

API Application Programming Interface

CCE Categorical Cross Entropy

SGD Stocastic Gradient Descent

LR Learning Rate

ES Early Stopping

102 | List of Symbols

Acronym Description

IoR Improvement over Random

MC Multi-Class

HMC Hierarchical Multi-Class

HMC − sol Hierarchical Multi-class with sum-of-logarithms

HMC − smooth Hierarchical Multi-class with smoothing of probabilities

ECE Expected Calibration Error

FLOPS FLoating-point Operations per Second

MBConv MobileNet convolution

103

Acknowledgements

Now that my academic path comes to an end, it is time to thank all the people that
helped and supported me along the way. In the first place, I would like to thank my
thesis advisor, Professor Mark James Carman, one of the most passionate person that I
was lucky enough to work with: among all professors along my academic career, he has
been the most wise and helpful. I could see his passion and pride in every meeting we had:
the way he works drives you to do the same, giving you inspiration and transmitting the
passion for the research. He also made me consider starting a PhD and I will probably
think about it for the next call.

Also, I want to thank my parents Luigi and Laura and all of my family, which never stop
believing in me and supporting me in all of my decisions and I want to apologize with
them for all the times that they had to bear my university anxieties.

I cannot forget to mention my group of historical and true friends, Albe, Manuel, Andre,
Paga, Pansus, Davide and Yuri which helped me to detach from the difficult and stressing
time I had at university, letting myself go and enjoying very good times. Also, I want
to thank my friends at Polimi, Ema, Andrea, Ivan, Umbe, PC, Cristian and Aba, which
company made lessons and study hours always enjoyable and funny.

I want to dedicate a few lines also to thank a very special person: my friend and mentor
David Tagart Del Re. He is a very special man, one of a rare kind that is always ready
to help you when you are in need. He aims at improving you, as a professional but
especially as a person. With his lifelong mission of helping people to reach their dreams,
he contributed in shaping the person I am today and I will never be grateful enough for
what he did for me.

Finally, I want to thank all the people that I did not mention but have been part of this
magnificent journey. Now I am ready to continue pursuing my dreams and once they will
be reached, I will set a higher score as I am always aiming for the best.

	Introduction
	Related Works
	Cell Generation
	Visual Explanations

	Research Questions
	Approach and Model architectures
	Hierarchical Models

	Dataset
	Experimental Results and Evaluations
	Experimental Setup
	Experiments

	Demonstration Website with Visual Explanations
	Conclusions and Future Research Directions
	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Goal
	Hierarchical approach

	Related Works
	Background on Deep Learning
	Image Classification General Model Structure
	Activation functions

	Geolocation problem
	IM2GPS
	Geolocation by Classification (GBC)
	Image-Based Localization (IBL)

	Geolocation Task Configuration
	Cell Generation

	Visual Explanation
	Grad-CAM

	Research Questions
	Approach and Model architectures
	Basic Multi-Class Model
	Hierarchical Models
	Sparsely-connected Model Construction
	Product of the branch nodes' probabilities (HMC)
	Exponential sum of logarithms of the branch nodes' probabilities (HMC-sol)
	Smoothed sum of the branch nodes (HMC-smooth)

	Dataset
	Flickr dataset
	Statistics
	Hierarchical features

	Experimental Results and Evaluations
	Experimental Setup
	Data
	Loss function and optimizer
	Regularization functions
	Evaluation Metrics

	Experiment A: Model Backbone
	Problem Description
	Method
	Results and Discussions

	Experiment B: Number of Training Images
	Problem Description
	Method
	Results and Discussions

	Experiment C: Number of Target Cells
	Problem Description
	Method
	Results and Discussions

	Experiment D: Hierarchical Model
	Problem Description
	Method
	Results and Discussions

	Analysis A: Model Calibration
	Problem Description
	Method
	Results and Discussions

	Analysis B: Visual Explanations
	Problem Description
	Method
	Results and Discussions

	Demonstration Website with Visual Explanations
	Metrics Section
	Geolocation Section

	Conclusions and Future Research Directions
	Answering the Research Questions
	Future Research Directions

	Bibliography
	Google S2 Geometry Library
	EfficientNet
	EfficientNet architecture
	EfficientNetV2

	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements

