
Politecnico di Milano

School of Industrial and Information Engineering
Master of Science in Computer Science and Engineering

Analyzing the Complexity of Mean-Volatility
Algorithms for Risk-Averse Reinforcement

Learning

Advisor: Prof. Marcello Restelli
Co-Advisor: Dott. Lorenzo Bisi

Thesis by:
Khaled Eldowa Matr. 940070

Academic Year 2020–2021





Abstract

The goal in the standard Reinforcement Learning problem is to find a policy that
optimizes the expected accumulated reward collected while interacting with the
environment. Such an objective, however, is not enough in a lot of real-life applica-
tions, like finance, where controlling the uncertainty of the outcome is imperative.
The mean-volatility objective penalizes, through a tunable parameter, policies
with high variance of the per-step reward. Unlike most risk-averse objectives,
which consider some statistical property of the accumulated reward, the mean-
volatility objective admits simple linear Bellman equations that resemble, up to
a reward transformation, those of the risk-neutral case. This potentially enables
adapting the large wealth of algorithms and results from the standard literature
to the risk-averse case. However, the difficulty with the aforementioned reward
transformation is that it requires knowing the expected accumulated reward of
the policy in question, a quantity that is usually unknown a priori. This work
focuses on policy evaluation and optimization algorithms for the mean-volatility
objective. More specifically, this thesis focuses on analyzing the sample complex-
ity of such algorithms compared to their risk-neutral counterparts, especially in
problems with large or continuous state and action spaces. We consider two differ-
ent approaches for policy evaluation: the direct method and the factored method.
Moreover, we analyze a full actor-critic algorithm adapted for the mean-volatility
objective. Experiments are then carried out to test these algorithms in a simple
environment that exhibits some trade-off between optimality, in expectation, and
uncertainty of outcome.

Keywords: Reinforcement Learning, Risk Aversion, Reward Volatility, Actor-Critic,
Finite-Sample Analysis.
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Introduction

The field of reinforcement learning [1] is concerned with how agents can learn to act
optimally in an unfamiliar environment via trial and error, aiming to maximize the
accumulated reward collected when interacting with the environment. Reinforcement
learning has enjoyed a lot of success in recent years; some illustrious achievements in-
clude mastering the game of Go [2] and playing Atari games [3]. Nonetheless, when
moving from the realm of games to the real world, reinforcement learning faces a num-
ber of extra challenges. One being the poor sample efficiency of a lot of reinforcement
learning methods, which can lead to prohibitively large costs in real-life applications.
Another problem is ensuring the safety of the agent and the environment during the
training phase, which is challenging mainly due to the exploratory nature of reinforce-
ment learning. Another crucial issue, which is the focus of this thesis, is the need to
control the risk resulting from the inherit stochasticity of the environment. In a lot
of real-life applications, like training an automatic trading agent or an autonomous
car, acting optimally in expectation, which is the standard objective in reinforcement
learning, is not enough without having safety guarantees, specially against rare but
catastrophic events.

Risk aversion has received some attention in the reinforcement learning literature. One
approach is to learn to avoid states linked to bad or catastrophic events [4], but the
prevailing paradigm is to modify the objective of the problem to include a notion that
quantifies risk. Examples of this include using the variance of the accumulated reward
[5] or its Conditional Value at Risk (CVaR) [6]. The main difficulty with modifying the
objective is that the standard tools of reinforcement learning are usually not applicable
anymore, and ad-hoc methods have to be devised. More recently, a new notion of risk,
dubbed the reward-volatility, has been proposed in [7]. The idea is to consider the
variance of the step-reward instead of the accumulated reward. This objective leads
to a simpler setting where adapting the standard risk-neutral tools is easier, while still
serving as a meaningful proxy for the variance of the accumulated reward.

Contributions

The contributions of this thesis are primarily theoretical. We focus on the mean-
volatility objective [7], which provides a trade-off, controlled via a tunable parameter,
between minimizing the reward-volatility and maximizing the expected value of the
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accumulated reward (also called the expected return). As we will see later, standard
reinforcement learning methods can be adapted for this new objective by transforming
the step-rewards. The required transformation, however, depends on the adopted pol-
icy (the way of acting in the environment) as it requires the knowledge of its expected
return, which usually needs to be estimated. The aim of this thesis is to understand the
cost incurred by having to estimate the expected return and the effect of its inaccuracy
on the performance of the algorithms. More specifically, we consider two approaches
for performing policy evaluation under the mean-volatility objective, and analyze their
sample complexity. The first of these approaches is called the direct method, in which
we attempt to adapt any specific policy evaluation algorithm to the mean-volatility ob-
jective using the aforementioned reward transformation. The other approach, called the
factored method, circumvents the need for performing a costly reward transformation;
it can use any risk-neutral policy evaluation algorithm in an off-the-shelf manner as
one part of the algorithm. Moreover, we perform finite-sample analysis of a complete
actor-critic algorithm adapted for the mean-volatility objective, and we compare it with
its risk-neutral counterpart.

Outline

The thesis is structured as follows:

• We start in Chapter 1, by a brief overview over the basic notions and algorithms
of reinforcement learning.

• In Chapter 2, we provide an overview of three (more) advanced topics in reinforce-
ment learning. The first being policy evaluation using function approximation,
the second is policy gradient methods, and third is the problem of risk-aversion.

• We then provide the problem formulation in Chapter 3, and introduce the main
methods to be analyzed in the rest of the thesis.

• In Chapter 4, we focus on the factored method, and provide a general scheme for
obtaining error bounds on the learned transformed value function.

• In Chapter 5, we provide finite sample analysis for a full actor-critic algorithm
where the critic uses the direct method. We also compare the performance of
both the critic and the actor with their risk-neutral counterparts.

• Lastly, in Chapter 6, we carry out simple experiments to assess the soundness
and performance of the considered methods.



Chapter 1

Reinforcement Learning I

Reinforcement learning (RL) is one of the three main sub-fields of machine learning
alongside supervised and unsupervised learning. It is concerned with the problem of an
agent learning to act optimally (in some sense) in a sequential decision making problem
in an environment that is usually stochastic and whose workings are generally not fully
known. Such an agent, thus, has to learn about the quality of the possible decisions by
interacting with the environment in a trial and error fashion. In this way, reinforcement
learning, out of all the flavors of artificial intelligence, is seemingly the one closest in
nature to the way that animals learn in the real world.

A reinforcement learning problem has three main components: the states, the actions,
and the goal. A state is a description of the environment at a certain time; it is the
context in which the agent makes its decisions. Taking actions is the way through which
the agent can affect the state of the environment. And naturally, the agent has a goal
related to the preferable way that the environment should be throughout the interaction
period. Goals in reinforcement learning are modelled via a reward function. Roughly
speaking, after every action taken by the agent in some state, a reward (a numerical
value) is presented to the agent. The agent’s goal is then to accumulate as much reward
as possible over the course of its interaction with the environment. A crucial thing to
point out here is that the quality of an action is not determined solely by the immediate
reward received after executing it, but it also depends on the quality of the resulting
state of the environment in terms of the possible sequences of rewards that can be
collected starting from that state.

In this chapter, the basic algorithms for reinforcement learning are briefly discussed.
First, Markov decision processes (MDPs) are introduced. They are the formal way that
a reinforcement learning problem is modelled. Second, a brief overview of dynamic
programming methods is provided. These are methods for achieving optimal control
provided that the model of the environment is known. Lastly, we see how these meth-
ods can be extended to the case where the environment’s model is not available and
learning by interacting with the environment is necessary. In this chapter we assume
that the state and action spaces are finite and small enough that the methods presented
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are tractable. Methods that are suitable for dealing with large or infinite state and
action spaces are presented in the next chapter. Unless otherwise stated, all the results
mentioned in this chapter are cited from [1].

1.1 Markov Decision Processes

A discrete-time MDP models a sequential decision making problem where at each time
step, an action is chosen and executed by an agent and accordingly a numerical reward
is revealed and the system (usually stochastically) transitions to a new state. A typical
Markov decision process can be represented by the quintuple 〈S,A, P,R, γ〉. Here S
is the (finite) set of possible states, and A is the (finite) set of possible actions. P :
S × A −→ P(S) defines a transition kernel that maps pairs of states and actions to
probability distributions over the possible next states, and P (st+1 = s′|st = s, at =
a) gives the probability of transitioning to state s′ in time step t + 1 after executing
action a in state s at time step t. Naturally, we make use of the assumption that the
process is Markovian, which means that P (st+1 = s′|st = s, at = a, st−1 = xt−1, at−1 =
yt−1, ..., s0 = x0, a0 = y0) = P (st+1 = s′|st = s, at = a). In other words, knowing the
last state and action, the distribution over the possible next states is independent of
the rest of the history. R : S × A −→ R is the reward function mapping pairs of states
and actions to a real number. The reward function can be stochastic, but it is assumed
here to be deterministic for simplicity. Also, Rt is taken to be the reward received in
time t after executing action at in state st. Finally, γ is the discount factor; it describes
how much we value future rewards compared to immediate rewards, but more on it in
a bit.

We can distinguish between two types of tasks: episodic tasks and continuing tasks.
Episodic tasks break naturally into sequences where the end of one does not affect how
the next starts. It could be that the task ends after a fixed number of times steps, or
there maybe a special terminal state upon reaching which the episode ends. In con-
tinuing tasks, on the other hand, the agent interacts with the environment indefinitely.
Episodic tasks can be seen as continuing tasks in which upon reaching a terminal state,
the environment gets stuck there indefinitely receiving a reward of zero regardless of the
executed action. A relevant quantity to introduce is the (discounted) return:

Gt :=

∞∑
k=0

γkRt+k. (1.1)

It is the discounted sum of rewards received starting from time t; it is one way of
describing the accumulated rewards from that time on. The discount factor γ can take
values in the interval [0, 1], unless the task is continuing, in which case it cannot be
1. In this way, for continuing tasks, the return is guaranteed to be finite as long as
the rewards are bounded in absolute value. Discounting the rewards thus provides a
mathematically convenient way of representing the accumulated rewards in the long run.
But, as mentioned before, it also signifies how much we value future rewards compared to
immediate ones, which can make it quite a relevant quantity in some applications.
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A policy describes a way of acting in the environment. In its most general notion, a
policy maps the history of states encountered so far to a probability distribution over
the actions to be executed in the present. An interesting class of policies (which we will
focus on) is the class of stationary (Markovian) policies that map the current state to a
distribution over the actions regardless of the history encountered so far and regardless
of which time steps we are at. Thus, a stationary policy is a mapping π : S −→ P(A),
and we denote by π(a|s) the probability of executing action a at state s. As a special
case, a deterministic stationary policy maps states to actions in a deterministic way.
In this case we (by overloading the notation) denote by π(s) the action that policy π
chooses at state s. Our ultimate goal is to find an optimal policy, but we need to first
define a notion of optimality. In other words, we need a way to compare and order
policies.

Suppose we adopt a certain policy π and we want to evaluate the quality of a certain
action that the policy chose in a certain state. We know that it is not enough to judge it
by the immediate reward received, we also need to assess the quality of the state that it
has taken us to. A natural way to define the value of a state (when executing a certain
policy π) is via the state-value function V π : S −→ R defined as follows:

V π(s) := Eπ[Gt|st = s] = Eπ

[ ∞∑
k=0

γkRt+k

∣∣∣∣st = s

]
. (1.2)

That is, the expected return when starting from state s and executing policy π onward.
It is easy to see that the value function conveniently admits a form of the Bellman
equation:

V π(s) = Eπ[Rt|st = s] + γEπ[V π(st+1)|st = s] (1.3)

=
∑
a∈A

π(a|s)R(s, a) + γ
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)V π(s′)

=
∑
a∈A

π(a|s)R(s, a) + γ
∑
s′∈S

P π(s′|s)V π(s′),

where P π(s′|s) is the probability of a one-step transition from state s to state s′ when
executing policy π. The Bellman equation above is quite vital for dynamic program-
ming (and reinforcement learning) algorithms; it asserts that the value of a state is the
expected value of the immediate reward plus the expected value of the value function
at the next state. Analogously, we can evaluate state-action pairs (when executing a
policy π) using the action value function Qπ : S ×A −→ R defined as follows:

Qπ(s, a) := Eπ[Gt|st = s, at = a] = Eπ

[ ∞∑
k=0

γkRt+k

∣∣∣∣st = s, at = a

]
.

Like the state-value function, the action-value function admits a Bellman equation:

Qπ(s, a) = R(s, a) + γ E[V π(st+1)|st = s, at = a]

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′) (1.4)
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= R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′).

We can use the state-value function to define a partial order over policies. Specifically,
for a pair of stationary policies π and π′, we can say that π ≥ π′ if and only if V π(s) ≥
V π′(s) ∀s ∈ S. With this notion, we can search for an optimal policy π∗ in the sense
that V π∗(s) = max

π
V π∗(s) ∀s ∈ S. Fortunately, at least one such policy exists. For

any such policy, we denote its state-value and action-value functions as V ∗ and Q∗

respectively. Note that given Q∗, we can find an optimal policy by constructing a policy
that is greedy with respect to Q∗, i.e. π∗(a|s) > 0 =⇒ Q∗(s, a) = max

a′∈A
Q∗(s, a′).

Such a policy can be made deterministic by choosing a single optimal action at each
state. This then means that there always exists a deterministic stationary policy that
is optimal. We can also find an optimal policy given only V ∗ and the reward function,
but it requires performing a one-step search (using (1.4)) at each state to determine the
optimal actions.

The Bellman equation for V ∗ can be written in a special way:

V ∗(s) = max
a∈A

Q∗(s, a)

= max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

]
.

And similarly for Q∗:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q∗(s′, a′).

Any of these two Bellman (optimality) equations define a system of non-linear equations
that in principle, and with perfect knowledge of the environment, can be solved to obtain
the (unique) optimal value function, and consequently, an optimal policy. However,
solving such systems in closed form is generally not possible, and an exhaustive search
is prohibitively expensive. One alternative is using dynamic programming methods.
These are iterative methods for solving Bellman equations more efficiently.

1.2 Dynamic Programming

In this section, dynamic programming methods for both policy evaluation and finding
an optimal policy are briefly described. Note that in this section, a perfect model of the
environment is assumed to be available.

1.2.1 Iterative Policy Evaluation

Let’s for now consider the problem of policy evaluation: given a policy π, we would like
to find its value function V π. Note that since we are working in a finite state space, a
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value function can be seen as a function from the state space to the real line or a vector
of size |S| (The cardinality of S) where each component denotes the value of a state.
Now define the Bellman operator T π : R|S| −→ R|S| such that:

(T πf)(s) =
∑
a∈A

π(a|s)R(s, a) + γ
∑
s′∈S

P π(s′|s)f(s′), (1.5)

where f is a generic value function that does not necessarily correspond to an actual
policy. Also, define (T π)kf as the recursive application of T π k times staring from f,
and ‖f‖∞ = max

s∈S
|f(s)| as the supremum norm of a value function f . T π enjoys some

interesting properties, some of which are summarized in the next proposition.

Proposition 1.1. [8] The Bellman operator T π defined above has the following prop-
erties:

(i) Monotonicity. For any value functions f and f ′ such that f(s) ≥ f ′(s)
∀s ∈ S, then

(T πf)(s) ≥ (T πf ′)(s) ∀s ∈ S.

(ii) Contraction. For any value functions f and f ′, we have that

‖T πf − T πf ′‖∞ ≤ γ‖f − f ′‖∞ ∀s ∈ S.

(iii) For any value function f ,

lim
k−→∞(T π)kf = V π.

Moreover, T πV π = V π and V π is the only solution to this equation.

Motivated by these properties, we can introduce the iterative policy evaluation algo-
rithm. In this algorithm, we start from an arbitrary value function f0 and obtain a
sequence of value functions {fk} by repeatedly applying T π, i.e. fk+1 = T πfk. This
sequence converges in the limit to the true value function V π, but in practice, the al-
gorithm is stopped when the iterations cease to produce significant (according to some
threshold) change. Note that a similar operator (and algorithm) can also be defined for
the action-value function Qπ.

1.2.2 Value Iteration

Shifting focus to the problem of finding an optimal policy (or its value function), we
can define an analogous operator T ∗ : R|S| −→ R|S| such that:

(T ∗f)(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)f(s′)

]
,

where f is again a generic value function that does not necessarily correspond to an
actual policy. Some of the key properties of T ∗ are summarized in the following propo-
sition.
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Proposition 1.2. [8] The Bellman operator T ∗ defined above has the following proper-
ties:

(i) Monotonicity. For any value functions f and f ′ such that f(s) ≥ f ′(s)
∀s ∈ S, then

(T ∗f)(s) ≥ (T ∗f ′)(s) ∀s ∈ S.

(ii) Contraction. For any value functions f and f ′, we have that

‖T ∗f − T ∗f ′‖∞ ≤ γ‖f − f ′‖∞ ∀s ∈ S.

(iii) For any value function f ,

lim
k−→∞(T ∗)kf = V ∗.

Moreover, T ∗V ∗ = V ∗ and V ∗ is the only solution to this equation.

(iv) Any stationary policy π is optimal if and only if

T πV ∗ = T ∗V ∗ = V ∗.

With these properties in mind, we can describe the value iteration algorithm. Starting
from an arbitrary value function f0, we produce a sequence of value functions {fk} by
repeatedly applying T ∗, i.e. fk+1 = T ∗fk. This sequence converges in the limit to the
optimal value function V ∗

1.2.3 Policy Iteration

Suppose we have a (deterministic) policy π whose value function V π (or Qπ) is available,
we would like to use this information to construct an improved policy π′. One way to
do this is by selecting π′ as a greedy policy with respect to V π (or Qπ). That is,
π′(s) = arg max

a∈A
Qπ(s, a) ∀s ∈ S, where V π can be used instead of Qπ at the cost of

performing a one-step search. The following policy improvement theorem asserts this
claim.

Theorem 1.1. [1] For a pair of deterministic policies π and π′ such that

Qπ(s, π′(s)) ≥ V π(s) ∀s ∈ S,

we have that

V π′(s) ≥ V π(s) ∀s ∈ S.

This result can also be generalized to stochastic policies. Note that the condition of
the theorem is satisfied if π′ is a greedy policy as described before. More importantly,
when there is no improvement, i.e. V π′(s) = V π(s) ∀s ∈ S, then it can be shown that
V π satisfies the Bellman optimality equations, which makes it an optimal policy.



1.3 Model-Free Prediction 9

The policy iteration algorithm makes use of these properties. It consists of two inter-
leaved stages applied repeatedly until we reach an optimal policy. The first stage is
policy evaluation: given a policy πk, we determine its value function V πk . The second
stage is policy improvement: given V πk , we determine πk+1 that is greedy with respect
to V πk , and thus is guaranteed to be at least as good as V πk . These two stages are
then repeated starting from the new policy, and so on until the policy improvement
step fails to improve the policy, which means that we have reached an optimal policy.
The produced sequence of policies convergence in a finite number of steps to an opti-
mal policy since our MDP admits a finite number of deterministic policies. If we use
iterative policy evaluation to find the value function, it might seem like an issue that it
only converges in the limit to the true value function. However, we need not obtain the
exact true value function at every iteration in order for the algorithm to converge to an
optimal policy. In fact, it’s sufficient that our value function estimate is moved towards
the true one, and thus the policy evaluation step can be truncated. One extreme way of
doing that is by applying only a single sweep of the iterative policy evaluation algorithm
between the policy improvement steps. Interestingly, this reduces the algorithm back to
value iteration. However, interleaving policy improvement steps with multiple sweeps
of the iterative policy evaluation algorithm can usually lead to faster convergence of the
(generalized) policy iteration algorithm.

1.3 Model-Free Prediction

We now return to the standard reinforcement learning setting in which the model of
the environment is not available but a simulator is. Model-free methods, as opposed to
model-based ones, do not use or attempt to learn an explicit model of the environment.
Instead, they try to solve the problem directly using data obtained while interacting
with the environment. In this section, we consider methods for model-free prediction,
i.e. policy evaluation. While in the next one, methods for model-free control, i.e.
attempting to approximate an optimal policy, are presented.

1.3.1 Monte-Carlo Methods

Given a stationary policy π, armed with a simulator, and tasked with finding V π(s) for
a certain state s, the simplest idea that comes to one’s mind is obtaining a number of
unbiased samples of the return starting from that state and averaging them. This is
particularly simple for episodic tasks; one can simulate a number of episodes while acting
with π, and for each encountered state, we can use the return starting from that point
till the end of the episode as an unbiased sample of the value function of that state. For
each state, these samples are independent as long as only the return from the first visit
to the state in each episode is used. This algorithm is known as the first-visit algorithm
as opposed to the every-visit algorithm where the return is used as a sample on every
visit to the state. For the first-visit algorithm, the estimated value of each state is an
empirical mean of i.i.d. (independent and identically distributed) realizations of the
true value function, and thus converges with probability 1 to the true value function in
the limit of infinite samples by virtue of the strong law of large numbers. The every-visit
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version can also be shown to converge to the true value function.

The discussed Monte-Carlo methods are certainly sound, but they have a number of
shortcomings. They are not immediately adaptable to continuing problems were the
notion of an episode is not naturally defined. They are not truly on-line methods in the
sense that they only learn from complete episodes, thus they do not learn concurrently
with the sampling process. Also, the return can have a high variance, specially for long
trajectories, which can lead to slow convergence. The temporal difference methods de-
scribed next use biased samples of the return, but overcome the mentioned shortcomings
of the Monte-Carlo methods.

1.3.2 Temporal Difference Methods

To put temporal difference methods in context, we can start from a convenient modifi-
cation of the every-visit Monte-Carlo algorithms. Denote by V our (running) estimate
of V π, and fix a state s ∈ S. Suppose that N(s) denotes the number of times we have
visited state s so far. This means that we have N(s) samples of the return starting from
s, which we denote by Gsi for i = 1, ..., N(s). The every-visit Monte-Carlo algorithm
would then determine V as the sample average of these returns:

V (s) =

∑N(s)
i=1 Gsi
N(s)

.

Instead of using (and storing) the whole batch, the sample average can be calculated
incrementally and updated for each state as soon as it is visited again. Suppose that for
every s ∈ S, V (s) (initialized as zero) is kept as the average of the samples of the return
starting from s that have been encountered so far. Now, suppose we have simulated a
new episode, we can update V (st) (where st is the state at time-step t) as follows:

V (st)←− V (st) +
1

N(s(t))
(Gt − V (st)),

where N(s) is incremented by one on every new visit to s. A more general version of
the previous update rule is:

V (st)←− V (st) + α(Gt − V (st)), (1.6)

where α is a step-size parameter that controls how much we ”forget” old samples,
which is of particular relevance in non-stationary problems. The update rule (1.6)
resembles a Robbins-Monro stochastic approximation method for solving the equations:
(the dependence on π is kept implicit)

V (s) = E[Gt|st = s]

for the unknowns V (s) for every state s [8]. Inspired by the Bellman equation for V π,
we can use E[Rt + γV π(st+1)|st = s] instead of E[Gt|st = s]. However, we cannot obtain
unbiased samples of E[Rt + γV π(st+1)] to use as targets in (1.6) instead of Gt since we
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do not know V π. One idea is to use our running estimate V instead of V π in the targets.
This gives rise to the following TD(0) update rule:

V (st)←− V (st) + α(Rt + γV (st+1)− V (st)). (1.7)

Such use of an estimate to learn another estimate is called bootstrapping, and it’s one
of the distinguishing features of temporal difference methods. We can also see that we
do not need to wait for episodes to end (the notion of an episode is actually irrelevant
here) to update our estimate; we can learn in a truly on-line and incremental fashion.
And although TD(0)’s targets are biased, they usually exhibit lower variance compared
to Monte-Carlo targets as they usually depend on a smaller number of random events.
TD(0) has been proven to converge to the true value function with probability 1 if
the step-size parameter, for each state, is reduced along the iterations according to the
following standard stochastic approximation conditions:

Condition 1.1. The sequence {αt} satisfies:

•
∑∞

t=0 αt =∞.

•
∑∞

t=0 α
2
t <∞.

Despite its use of bootstrapping, TD(0) is still a sound algorithm. In fact, it is known
to be usually more efficient than Monte-Carlo methods in practice. TD(0) is the sim-
plest temporal difference algorithm. There are other temporal difference algorithms
like n-step TD or TD(λ) that bridge the gap between TD(0) and Monte-Carlo algo-
rithms.

1.4 Model-Free Control

Now that we have discussed methods for policy evaluation that do not require a model
of the environment, we can attempt to use these methods to extend the general policy
iteration framework to the model-free case. Since we rely on interacting with the en-
vironment to learn in the model-free control problem, we need to distinguish between
two types of model-free control algorithms: on-policy control and off-policy control. In
on-policy algorithms, the policy that is used to interact with the environment is the
same as the one that is being evaluated or improved. Whereas in off-policy methods,
we are evaluating or improving a different policy than the one used to collect the data.
In the following, we briefly discuss a classic example of each type: SARSA for on-policy
control and Q-learning for off-policy control.

1.4.1 SARSA

When attempting to use the policy iteration framework in the model-free setting, we face
some immediate challenges. The first is that obtaining a greedy policy with respect to a
state-value function requires the knowledge of the environment’s model. This, however,
can be circumvented by learning the action-value function instead of the state-value
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function in the policy evaluation step. A more serious challenge concerns the issue of
sufficient exploration. If we do not encounter a certain state (or execute a certain action
in a certain state) often enough, we will not have enough information about it and will
not be able judge its value. To be able to properly evaluate (and consequently improve)
a policy, we need to ensure sufficient exploration of the state and action spaces. This
issue is most serious for deterministic greedy policies in the on-policy case since at each
state, all but one action are never chosen, and thus we will not be able to ever learn
their value. The off-policy control paradigm offers a natural way to deal with this issue.
However, in the on-policy case, we need a way to ensure sufficient exploration. One
such way is using ε-greedy policies instead of purely greedy ones. An ε-greedy policy
with respect to an action value function Q selects, at any state, the greedy action with
probability 1− ε and a random action with probability ε. In other words,

π(a|s) =

{
ε
|A| + 1− ε if a = arg maxa′∈AQ(s, a′)
ε
|A| otherwise

for every state s. An ε-greedy policy with respect to Q is said to be an ε-soft version of
the greedy policy with respect to Q. With an argument analogous to theorem (1.1), it
can be shown that for an ε-greedy policy π′ with respect to Qπ, V π′(s) ≥ V π(s) ∀s ∈ S
for any ε-soft policy π. Moreover, if we fail to obtain any improvement, then π is an
optimal policy among ε-soft policies.

The SARSA algorithm is a simple algorithm for on-policy control. It applies the frame-
work of generalized policy iteration (where we alternate between partial policy evalua-
tion and partial policy improvement) to the model-free control problem. It uses TD(0)
for policy evaluation, but for learning the action-value function instead of the state-
value function. The following update rule characterizes how TD(0) can be adapted for
learning the action-value function:

Q(st, at)←− Q(st, at) + α(Rt + γQ(st+1, at+1)−Q(st, at)). (1.8)

To use this update rule after executing action at in state st, we need to observe Rt,
the next state st+1, and decide on the next action at+1 according to the current policy.
While interacting with the environment, the SARSA1 algorithm applies the update rule
(1.8) for every executed action, and then updates the policy to be ε-greedy with respect
to the new estimate of the action-value function. We then execute the action that
was selected by the old policy and apply new updates to the action-value function and
the policy, and so on till convergence. Aside from the standard conditions (1.1) on the
sequence of step-size parameters, SARSA can be shown to converge to an optimal policy
as long as all state-action pairs are eventually visited an infinite number of times and
the policy converges in the limit to a greedy policy, which can be achieved by setting ε
as 1

t .

1The acronym SARSA comes from the quantities used in update rule (1.8): the current state,
the chosen action, the collected return, the next state, and the next chosen action.
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1.4.2 Q-learning

In the off-policy setting, the policy we are using to interact with the environment (called
the behavior policy) is different from the one we are attempting to evaluate or improve
(called the target policy). This can allow learning from past experiences or by observing
experts or other agents. Off-policy methods do not need to optimize ε-soft policies like
on-policy methods; we can behave using an exploratory policy but the target policy can
become an optimal one. The main challenge, however, is that the data collected is from
a different policy than the target one. For SARSA, the action at+1 in update rule (1.8)
is chosen by the behavior policy not the target one, thus we need a way to correct for
this distribution mismatch. The common way to deal with this mismatch is the use of
importance sampling. The Q-learning algorithm is an off-policy algorithm that does
not require the use importance sampling. Its update rule is similar to SARSA’s except
that it does not use at+1 in the TD(0) target, instead it uses the optimal (greedy) action
to execute in state st+1 according to our current estimate of the action-value function
Q. Its update rule is then:

Q(st, at)←− Q(st, at) + α(Rt + γmax
a

Q(st+1, a)−Q(st, at)).

The behavior policy is usually taken to be the ε-greedy one with respect to the current
estimate of Q, while the target policy is implicitly taken as the greedy one. Q-learning
has been shown to converge with probability 1 to the optimal action-value function
assuming that all state-action pairs continue to be updated, along with a variant of the
usual conditions on the sequence of step-size parameters.

The way that Q-learning directly approximates the optimal action-value function bears
a lot of resemblance to the value iteration algorithm that was discussed before. How-
ever, by looking at the Q-learning update rule, one can see the various adaptations
devised to deal with the challenges that we have faced when moving to the model-free
setting compared to the setting where dynamic programming methods are applicable.
One adaptation is approximating the action-value function instead of the state-value
function, so that we can obtain the greedy policy without knowledge of the model. An-
other adaptation concerns the use of only one sample of the next state (st+1) instead of
a weighted average over the possible next states like in the Bellman optimality operator.
Also, we update state-action pairs asynchronously as soon as they are visited by the
behavior policy, which we use to ensure sufficient exploration. And lastly, we perform
soft updates controlled by a step-size parameter to ensure convergence.
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Chapter 2

Reinforcement Learning II

The policy evaluation methods that were considered so far rely on a tabular represen-
tation of the state space, and thus cease to be practical for large state spaces. One
difficulty is the huge amount of storage required to keep track of the value of each state.
Another difficulty is the time and resources required to approximate the value of each
state accurately enough, which would require us, in simulation-based methods, to en-
counter each state (in an enormous state space) a sufficient number of times. In a lot
of interesting applications, the state space is infinite; either a countable set or a more
general case like a subset of a Euclidean space. In such cases, of course, tabular meth-
ods are not applicable. Moreover, when the action space is large or infinite, the policy
improvement methods that we have discussed are, in general, not practical anymore. A
third problem concerns the objective that we have adopted so far. In a lot of practical
applications, focusing solely on achieving high expected return is not adequate without
safety guarantees.

In this chapter, we go beyond the basic methods of the previous chapter and attempt
to address the three problems we have just highlighted. In particular, we start by
describing policy evaluation methods that use function approximation, which makes
them applicable to large or even infinite state spaces. We then discuss policy gradient
methods, which provide a different approach for the control problem that is suitable
when the action space is large. Moreover, these methods enjoy more robust convergence
properties in the function approximation setting compared to the value-based policy
improvement methods of the last chapter. Lastly, we shift our focus to the problem
of risk-aversion in reinforcement learning. We justify the need for adopting alternative
objectives in practical applications, and provide a brief overview of the relevant methods
in the literature.
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2.1 Function Approximation Methods for Policy

Evaluation

Before describing specific policy evaluation algorithms, we start with a brief discussion
on the function approximation paradigm. In general, what distinguishes function ap-
proximation methods from tabular ones is their ability to make general predictions from
limited knowledge. To this end, it is crucial to build a compact and mathematically
convenient representation of the state and/or action spaces. This is usually done via a
number of functions describing various features of the elements of the space. We would
generally expect it to be a good idea to make similar predictions for two elements with
similar (in some sense) features. A good feature representation thus conveys about an
element the relevant information for the problem at hand. For example, in the policy
evaluation problem, the feature representation of a state should describe aspects of a
state that are relevant for predicting the expected return from that state. Given such a
representation, we use function approximation methods to learn and approximate some
unknown function of the elements. This can be the action-value function for state-action
pairs, or a function mapping states to desired probability distributions over actions (i.e.
a desired policy).

The function approximation setting can generally be characterized by three major com-
ponents. The first being a function space (possessing convenient mathematical proper-
ties) in which we restrict our search. The second is a performance measure (or a loss
function) that guides the search (or optimization) process and provides a way to order
and compare candidate functions. Generally, we do no expect our class of functions to
contain the target function, and thus our goal reduces to finding the candidate within
our function space with the smallest loss (or highest performance). Since, in general,
we do have to settle for sub-optimal solutions, we can use the performance measure
to indicate what aspects of the performance are more important for us. For example,
we do not expect to obtain the true value function, but we can emphasize through the
loss function that we care more about reducing the prediction error at states that are
visited most often by the policy. As another example, when searching for an optimal
policy, we can express (through the performance measure) that we care more about the
performance of the policy at states that we are more likely to start an episode from.
The third component is the data we use to obtain information about the performance
of the candidate functions. They can be in the form of input-output examples of the
target function, but in reinforcement learning, they are usually less direct clues. We
would then use an adequate optimization procedure to automatically search for the best
(according to our performance measure) function in our function space using the data
that is available or being collected during the learning process.

This framework provides us freedom to manage the trade-off between the complexity of
the methods (depending on the richness of the features representation and the capacity
of the space of candidate functions) and the approximation error (that describes the
best that we can do). What has been described so far is akin to the usual problem
setting in the supervised learning field. However, in reinforcement learning, we face
a unique set of challenges. Usually, we are not readily provided with a dataset, in-
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stead, the sampling process is interleaved with and can be influenced by the learning
process. Also, as mentioned before, we often do not have readily available targets to
train the predictor, we may instead rely on bootstrapping. A related challenge is that of
non-stationarity that may arise when using bootstrapping or when the target function
changes, like in policy iteration methods. Another issue is the temporal dependence
between the collected data since they are usually obtained by interacting with the MDP
in a sequential manner.

In the following, we focus on function approximation methods for learning the state-
value function for a given stationary policy π. These methods are applicable for large or
infinite spaces. However, in this section we assume the state space is finite just so we can
adopt the more convenient matrix notation, specially that most of the relevant results in
the literature and presented in that format. In any case, extending the algorithms and
their results to more general state spaces should be straightforward, possibly requiring
some additional technical assumptions. In general, we consider functions of the form
V (s, ω) where s is a state and ω ∈ Rd is a parameter vector, and denote by Vω the
function over the states determined by the parameter vector ω (i.e. Vω(·) = V (·, ω)).
This ω could be the weights of a neural network that takes the state as an input and
outputs its value, or it could be the weight vector of a linear function outputting the
value of a state as the dot product of its feature vector with the weight vector. In
any case, and as discussed before, we need to define a loss function with which we
can evaluate the candidate functions. Suppose that our Markov chain (the MDP when
acting with policy π) has a stationary distribution µ(·) over the states, we can define
the following mean square value error [1]:

VE(ω) =
∑
s∈S

µ(s)[V π(s)− V (s, ω)]2.

The ideal goal will be to find a global minimum of VE, i.e. some ω∗ such that VE(ω∗) ≤
VE(ω) ∀ω ∈ Rd. However, in a lot of cases, finding a global minimum is generally not
possible, and we have to settle for a local minimum, i.e. some ω∗ such that VE(ω∗) ≤
VE(ω) for every ω in some neighbourhood of ω∗.

2.1.1 Stochastic Gradient Descent with Monte-Carlo Tar-
gets

Gradient descent is a simple method for finding a local minimum of a general differen-
tiable function. It is an iterative method producing a sequence of points {ωt} where each
point is obtained from the previous by moving along the direction of steepest descent
according to a step-size parameter. The direction of deepest descent of a function at
some point is the negative of the gradient of the function at that point. Applying this
to our case, an iteration of gradient descent can be written as:

ωt+1 := ωt − αt∇VE(ωt),

where {αt} is a sequence of step-size parameters. Stochastic gradient descent (SGD)
is a variant of this algorithm that, at each iteration, uses an unbiased estimate of the
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gradient instead of fully computing it. In our case, the expression of ∇VE(ω) is given
by:

∇VE(ω) = −2
∑
s∈S

µ(s)[V π(s)− V (s, ω)]∇V (s, ω),

which would require processing all the states. Suppose instead that the Markov chain
is at steady state, then we can use −2[V π(st)− V (st, ω)]∇V (st, ω) as an estimate of
the gradient, where st is the state encountered at some time t. This gives rise to the
following update rule:

ωt+1 := ωt + αt[V
π(st)− V (st, ωt)]∇V (st, ωt),

where the factor of 2 was subsumed into the learning rate. In our setting, we do not have
access to the true value function, but we can find unbiased estimates of it. As we did in
the tabular case, we can use the return Gt as an unbiased estimate of V π(st). Using such
an estimate in the gradient expression, we obtain the following SGD algorithm:

ωt+1 := ωt + αt[Gt − V (st, ωt)]∇V (st, ωt),

which converges to a local minimum of VE under the standard conditions (1.1) on the
sequence of step-size parameters [1].

2.1.2 Semi-Gradient TD(0)

The natural next step, analogous to what was done in the tabular setting, is to use
bootstrapping instead of using the full return Gt. Inspired by the TD(0) algorithm, we
can define the following algorithm:

ωt+1 := ωt + αt[Rt + γV (st+1, ωt)− V (st, ωt)]∇V (st, ωt). (2.1)

One immediate observation is that this algorithm is not a true gradient descent algo-
rithm since (Rt + γV (st+1, ωt)) is treated as a fixed target and its dependence on ωt is
ignored, thus the name semi-gradient TD(0). The use of bootstrapping is motivated,
as before, by the benefits it brings like increased efficiency, applicability to continuing
problems, and the ability to learn on-line. However, we have to wonder whether using
bootstrapping together with function approximation is still a sound approach. In other
words, does semi-gradient TD(0) converge? And if it does, what are the character-
istics of the point to which it converges? These questions can be answered for case
where V (·, ω) is a linear function of ω. In the following, the main insights concerning
this issue are presented for the linear function approximation case mainly following the
developments in [9]1.

We first need to introduce some preliminary concepts. Consider the basis functions
ϕi : S −→ R, i = 1, ..., d defined over the states, and define φ(.) := (ϕ1(.), ..., ϕd(.))

ᵀ as
the corresponding feature mapping. Furthermore, we assume that the basis functions
are all linearly independent. Keeping in mind the assumption that the state space is

1In [9], they analyzed the more general algorithm of TD(λ). The relevant results for this
work are simply obtained by setting λ as 0.
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finite, define Φ as a |S| × d matrix where each row is the feature vector of a state. Note
that we can think of any function over the states as a vector of length |S|. In the linear
function approximation case, we consider functions of the form V (., ω) = φ(.)ᵀω. In
other words, we restrict our search to the space Γ := {Φω : ω ∈ Rd}. Consider the
|S| × |S| diagonal matrix D with diagonal entries µ(.) for each state, and define the
inner product 〈x, y〉D := xᵀDy ∀x, y ∈ R|S| and its associated norm ‖.‖D :=

√
〈., .〉D.

We can then define the projection matrix Π := Φ(ΦᵀDΦ)−1ΦᵀD such that, given some
V ∈ R|S|, ΠV is the orthogonal projection of V (with respect to the inner product
〈x, y〉D) to Γ. Note that 〈V ′, V − ΠV 〉D = 0 ∀V ′ ∈ Γ (i.e. ΠV is D-orthogonal to Γ),
and ΠV = arg minV ′∈Γ ‖V − V ′‖D. Hence, ‖ΠV π − V π‖2D = minV ′∈Γ‖V ′ − V π‖2D =
minωVE(ω), which means that ΠV π is the best approximation of V π in Γ with respect
to the loss function VE.

Returning back to our problem, we can rewrite (2.1) for the linear case as:

ωt+1 := ωt + αt[Rt + γφ(st+1)ᵀωt − φ(st)
ᵀωt]φ(st). (2.2)

Define Xt as a shorthand notation for the tuple (st, rt, st+1), and then define g(ω,Xt) :=
[Rt + γφ(st+1)ᵀω − φ(st)

ᵀω]φ(st). We can thus rewrite (2.2) as ωt+1 := ωt+αtg(ωt, Xt).
The starting point to understanding the dynamics of the algorithm is to inspect its
expected behaviour when the system is in steady-state. That is, considering, for some
fixed ω, the quantity E[g(ω,Xt)] when the samples are generated according to the
stationary distribution of the Markov chain. Accordingly, we can study a deterministic
version of the algorithm:

ωt+1 := ωt + αt E[g(ωt, Xt)]. (2.3)

Under some technical assumptions, the convergence of (2.3) implies the convergence of
(2.2) [9]. Note that we can write E[g(ω,Xt)] in the following form:

E[g(ω,Xt)] = Aω + b, (2.4)

where A := E[φ(st)(γφ(st+1)ᵀ − φ(st)
ᵀ)] and b := E[φ(st)Rt]. This form does not give

much intuitive insight, but under appropriate conditions, the algorithm can be show
to converge if the matrix A is negative definite [9]. A more insightful relation is that

E[g(ω,Xt)] = ΦᵀD(T π(Φω)− Φω), (2.5)

where T π is the Bellman operator (defined in (1.5)) introduced in the previous chapter.
We can use this to interpret (2.3) as a gradient descent iteration that aims at minimizing
the loss function 1

2‖T
π(Φωt)− Φω‖2D, where ωt is fixed and ω is the variable. This can

be intuitively justified if we think of T π(Φωt) as a better estimate of V π than our
current estimate Φωt (remember from proposition (1.1-ii) that T π is a contraction in
the supremum norm with V π as its fixed point). The algorithm in (2.3) thus takes
our estimate one (small) step closer to that improved target (while still staying in Γ).
However, after every step, ω changes and we pursue a new target. Instead, we can
devise a more direct variant of the algorithm that, at each step, takes our estimate as
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close as it can get to the target at that step (i.e. the orthogonal projection of the target
to Γ). With Φωt written as Vt, we can describe such an algorithm as follows:

Vt+1 = ΠT π(Vt), (2.6)

where, again, its convergence properties are related to those of (2.3) [9]. This stripped
down version of the algorithm exposes the central contributor to the dynamics (and
convergence properties) of the algorithm: the ΠT π operator. It is, in fact, not difficult
to show that such an operator is a contraction in the ‖.‖D norm. Specializing Lemma
4 in [9] for the case of λ = 0, we get that for any V, V ′ ∈ R|S|,

‖T πV − T πV ′‖D ≤ γ‖V − V ′‖D,

which means that T π is a contraction in the ‖.‖D norm. As for Π, since 〈ΠV, V −ΠV 〉D =
0 for any V ∈ R|S|, then by the Pythagorean theorem,

‖V ‖2D = ‖ΠV ‖2D + ‖V −ΠV ‖2D.

If instead of V , we consider V − V ′ for any V, V ′ ∈ R|S|, then

‖ΠV −ΠV ′‖2D ≤ ‖V − V ′‖2D,

which means that Π is non-expansive in the ‖.‖D norm. Consequently, the operator
ΠT π is a contraction in the ‖.‖D norm, and thus, it has a unique fixed point that takes
the form Φω∗, where such ω∗ is unique since the basis functions are assumed to be
linearly independent.

The contraction property of ΠT π, along with the equivalence of (2.4) and (2.5), is
used in [9] to show that the matrix A is indeed negative definite. This is then used,
along with the standard conditions (1.1) on the step-size parameters and other technical
assumptions, to show that semi-gradient TD(0) converges with probability 1 to the
parameter vector ω∗ that uniquely satisfies Aω∗+b = 0 and is also the unique fixed point
of ΠT π. In [1], such point is named ωTD. The function defined by this parameter vector
has the property that if we apply the Bellman operator to it (which can generally takes
us outside Γ) and then project it back to Γ we recover the same function. This means
that T πVωTD − VωTD is D-orthogonal to Γ since its projection is the zero vector.

For a parameter vector ω, define the Bellman error vector δ̄ω ∈ R|S| as

δ̄ω := T πVω − Vω.

We can then conveniently tailor the following Mean Square Projected Bellman Error
loss function [1]:

PBE(ω) := ‖Πδ̄ω‖2D.

It can be easily seen that ωTD minimizes this loss function. Actually, it reduces it all the
way to zero. However, we naturally have to wonder how meaningful it is to minimize
such a function. More specifically, how does ωTD perform according to our original
performance metric VE? One intuitive insight is that since T π takes VωTD in a direction
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orthogonal to Γ, then if subsequent applications of T π (which should leads us in the
limit to V π) point in a similar direction, we would then expect that VωTD should not be
too far from ΠV π [10]. The following bound provides a more formal answer [9]2:

‖VωTD − V
π‖D ≤

1√
1− γ2

‖ΠV π − V π‖D.

In other words, VE(ωTD) ≤ 1
1−γ2 min

ω
VE(ω). While the point that semi-gradient TD(0)

converges to is generally different from the global minimum of VE (albeit at a bounded
distance from it), the Monte-Carlo algorithm described in the previous section does in
fact converge to the global minimum of VE (when considering linear function approxi-
mation). This, however, comes at the cost of higher variance and less efficiency.

2.1.3 Mini-Batch Sampling and the Sample Complexity of
Semi-Gradient TD(0)

In this section, we describe a simple variant of the semi-gradient TD(0) algorithm that
uses a mini-batch in the update instead of a single sample. Assuming the same linear
function approximation setting of the previous section, we can describe the mini-batch
variant (as used, for example, in [11]) with the following update rule:

ωi+1 := ωi + α
1

M

M−1∑
t=0

[Ri,t + γφ(si,t+1)ᵀωi − φ(si,t)
ᵀωi]φ(si,t), (2.7)

where M is the mini-batch size. The only difference here is that at each iteration, we
average the updates that would result from the next M interactions instead of using
only a single interaction to perform the update. Intuitively, this modification should
decrease the variance of the updates. In a way, it provides a middle ground between the
one-sample stochastic iterates in (2.2) and the expected steady-state iterates in (2.3).
To explain the justification for using it in [11], it is better to first highlight a few points
concerning the finite sample complexity of semi-gradient TD(0).

In the literature, there has been a relatively recent surge of interest in the finite sample
analysis of temporal difference methods with linear function approximation. A particu-
larly nice exposition of the subject is provided in [12]. There, they start with analyzing
the deterministic variant (2.3) aiming to bound the quantity ‖ω∗ − ωT ‖22 where ω∗ is
the TD fixed point (the one described in the previous section) and ωT is the estimate
obtained after T iterations of the algorithm. With ḡ(ωt) := E[g(ωt, Xt)], a starting
point for obtaining such a bound is the following decomposition:

‖ω∗ − ωt+1‖22 = ‖ω∗ − ωt − αḡ(ωt)‖22
= ‖ω∗ − ωt‖22 − 2α(ω∗ − ωt)ᵀḡ(ωt) + α2‖ḡ(ωt)‖22.

They proceed by bounding the second and the third terms above in terms of ‖ω∗−ωt‖22.
The resulting recursion allows for a simple bound implying a geometric convergence

2This bound was reported in a footnote in [9] as a tighter version of the bound in lemma 6
of the same paper.
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rate. When moving to the stochastic version (aiming to bound E
[
‖ω∗ − ωT ‖22

]
), two

extra sources of error emerge: the variance of the updates and the bias resulting from
the temporal dependence between the samples used across the iterations. The added
error cannot be reduced unless the step-size parameters decay over time, which affects
the convergence rate.

In [11], although their analysis proceeds in a slightly different manner, the use of mini-
batch updates provides a way to reduce the effects of the aforementioned sources of
error by increasing the batch size M . In this way, the iterates can get arbitrarily close,
in expectation, to the fixed point by increasing M while using a constant step-size
chosen independently of the accuracy requirement. Their analysis results in a sample
complexity that is O

(
ε−1 log

(
ε−1
))

for having that E
[
‖ω∗ − ωT ‖22

]
≤ ε, where the total

number of used samples is T ×M . They claim an improvement of O
(
log
(
ε−1
))

over
the best known complexity results in the literature at the time thanks to the use of
mini-batch updates. This, however, comes at the cost of having an extra parameter to
tune (namely M), and a slight betrayal of the on-line spirit of TD(0). Later on, we will
extend some of the work in [11] to a risk-averse setting.

2.1.4 Least-Squares Temporal Difference

Since we know a great deal about the temporal difference fixed point when using linear
function approximation, we can attempt to directly estimate it from data. This idea is
adopted by the Least-Squares Temporal Difference (LSTD) algorithm [13]3. We know
from the previous section that

AωTD + b = 0.

We can thus build the following estimates from all the samples encountered up to time
t:

Ât :=
t−1∑
k=0

φ(sk)(γφ(sk+1)ᵀ − φ(sk)
ᵀ)

b̂t :=

t−1∑
k=0

φ(sk)Rk.

We can then compute the following estimate of ωTD:

ωt := −Â−1
t b̂t, (2.8)

where Singular Value Decomposition (SVD) can be used to robustly invert Ât. Note
that we do not need to divide Ât and b̂t by t since the two factors would cancel out in
(2.8).

The main advantage of this algorithm is that it makes efficient use of samples [14]; it ex-
tracts more information from experience compared to semi-gradient methods. Another
advantage is that LSTD does not use a step-size parameter, which can require tedious

3LSTD was originally derived in [14] in a different manner.
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tuning in some problems. Its main drawback, however, is its computational complex-
ity: building the estimates has complexity that is O

(
d2
)

(where d is the dimensionality
of the weight vector) and the matrix inversion is generally of O

(
d3
)

complexity. It is

possible to build the inverse of Ât in an incremental way, thus requiring only O
(
d2
)

computations [1]. However, this is still more expensive than the O(d) per-step complex-
ity of semi-gradient methods. Another point is that in non-stationary problems (like
generalized policy iteration), LSTD weighs all the samples seen so far equally; it does
not ”forget” old samples. When LSTD is used in such problems, it is usually combined
with some forgetting mechanism playing a role not unlike that of the step-size parameter
[1].

2.1.5 Bellman Error Minimization

It is well-known that semi-gradient temporal difference can diverge when using non-
linear function approximation or under off-policy training [9]. True gradient descent
methods, however, have more robust convergence properties and would not suffer from
the mentioned divergence issues. In this section, we briefly describe one possible true
SGD method and discuss its shortcomings. The objective of this method concerns
the Bellman error vector (or the Bellman residual) δ̄ω that was defined before as δ̄ω :=
T πVω−Vω. In particular, we aim to minimize the Mean Squared Bellman Error [1]:

BE(ω) := ‖δ̄ω‖2D.

But, again, why is minimizing this loss function a good idea? The first reassuring thing
is that, at the very least, the true value function V π achieves zero loss since it is the
fixed point of T π. More importantly, we can motivate the pursuit of minimizing the
norm of the bellman residual by the following bound [15]:

‖V − V π‖∞ ≤
‖V − T πV ‖∞

1− γ
,

which asserts that the distance, in the supremum norm, between V (which is some
arbitrary value function) and V π can be bounded using the supremum norm of the
bellman residual of V .

An SGD iteration aiming to minimize BE(ω) can be written as:

ωt+1 := ωt + αt[E[Rt + γV (st+1, ωt)]− V (st, ωt)][∇V (st, ωt)− γ E[∇V (st+1, ωt)]].

Since we do not have access to the environment’s model, we have to use samples as
estimates to the expectations in the update rule. However, to get unbiased updates, we
must obtain two samples of st+1, which is unpractical in a lot of situations where we can
only interact with the environment in a sequential manner and do not have the ability
to reset the environment to any state of our choosing. If we only use a single sample
for st+1, then, in effect, the algorithm will pursue minimizing a different loss function
(named TDE in [1]) at which the true value function, in general, does not achieve zero
loss and is not necessarily its minimizer (even if the true value function is in the space
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of candidate functions). Another issue with Bellman residual minimization algorithms
is that they can be quite slow [16].

To conclude our discussion of the prediction problem, we can present the diagram in
figure (2.1), due to [1], as a summary of the main concepts we covered for the case
of linear function approximation (with a very slight difference in notation). In this
example, they consider an MDP of 3 states such that the 3D space in the figure contains
all possible value functions. They then consider a linear function approximation scheme
with a two dimensional weight vector ω. Hence, the 2D plane in the figure represents all
the value functions that can be represented as Vω. Starting from any value function in
the plane and applying repeatedly the Bellman operator T π (Named Bπ in the figure)
will lead us in the limit to the true value function V π. Projecting V π to the plane lands
us at the point ΠV π which minimizes VE in the plane. (Note that Monte-Carlo methods
converge to that point.) Alternatively, if we do a projection step after each application
of the Bellman operator, we converge to the TD fixed ωTD at which PBE is zero.
Represented also in the figure are the minimizers of BE and TDE in the plane.

Figure 2.1: The geometry of linear value function approximation [1].

2.2 Policy Gradient Methods

We now shift our focus to the problem of approximating optimal policies. In principle,
the value function approximation schemes discussed in the previous section can be
utilized within the generalized policy iteration framework in various ways. Examples
of such methods in the literature include the fitted Q-iteration algorithm [17] and the
least squares policy iteration algorithm [10]. These methods, however, usually cease to
be practical when the action space is large or continuous since most of these methods,
one way or another, rely on searching for the best action to take in a state according
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to some estimate of the value function. Alternatively, we focus in this section on the
policy search framework, which can naturally handle large or continuous action spaces.
Differently from all the methods we considered so far (which are referred to as value-
based methods), policy search methods look for the optimal policy, according to some
performance measure, directly within the space of policies without necessarily relying
on an estimate of the value function, although they usually benefit from having such an
estimate [1].

In policy search methods, we restrict our search to a chosen class of parameterized
policies Π, such that π(.|s, θ) (or πθ(.|s)) denotes the probability mass (or density)
function of the action to be taken in state s, where θ ∈ Rdθ is a parameter vector
characterizing the policy. The chosen class of policies usually possesses convenient
mathematical properties, like π(.|s, θ) being continuously differentiable with respect to
θ for any state s and action a. For example, if we have a one-dimensional continuous
action space, we may consider π(.|s, θ) as the probability density function of a Gaussian
distribution whose parameters depend on the state s and the parameter vector θ. In
other words,

π(a|s, θ) =
1

σ(s, θ)
√

2π
exp

(
−(a− µ(s, θ))2

2σ(s, θ)2

)
,

where σ and µ are parameterized functions that define the standard deviation and the
mean of the distribution. Such functions can, for example, take the form of a neural
network having θ (or a portion of it) as its weights and the feature mapping of a state
as input.

To be more specific, we focus on policy gradient methods. Given a performance measure
J(θ), these methods attempt to find the optimal policy within Π by doing gradient ascent
on J(θ). In other words, they update the policy parameters as follows:

θt+1 := θt + αt∇θJ(θt), (2.9)

where as usual, we can replace ∇θJ(θt) by some unbiased estimate of it, thus performing
stochastic gradient ascent. Aside from being able to naturally handle large action spaces,
another advantage of policy gradient methods is that the action probabilities change
smoothly when updating the parameters compared to value-based methods where the
action probabilities can change abruptly with small change in the value function due
to the greedy action selection process. This allows policy gradient methods to have
stronger convergence guarantees [1]. One disadvantage of policy gradient methods is
that performing gradient ascent can get us stuck in poor local optima. However, it can
be argued that this problem can, in principle, be avoided by increasing exploration and
the representational power of the policy parameterization [18].

2.2.1 The Policy Gradient Theorem

In order to be able to use (2.9), we need to find an expression for the gradient of the
performance measure with respect to the policy parameters. In continuing discounted
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problems, the performance measure is usually defined as

J(θ) := E
s0∼µ0

at∼πθ(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
, (2.10)

where µ0 is the initial state distribution. The gradient of J(θ) is given by the policy
gradient theorem [19]:

∇θJ(θ) =
1

1− γ
E

s∼dµ0,πθ
(·)

a∼πθ(·|s)

[Qπθ(s, a)∇θ log πθ(a|s)], (2.11)

where dµ0,πθ is the discounted state distribution defined as:

dµ0,πθ(s) := (1− γ) E
s0∼µ0(·)

[ ∞∑
t=0

γtpπθ(s0
t−→ s)

]
, (2.12)

where pπ(s0
t−→ s) is the probability of ending up in s after t steps starting from s0

and executing policy πθ. Note that in (2.11), we do not have to compute the gradient
of any quantity that depends on the environment’s model. Also note that the form of
the policy gradient theorem is convenient for obtaining estimates of the gradient via
sampling. However, the states we encounter need to be sampled form the discounted
state distribution, which is not the distribution of states that results from interacting
naturally with the MDP using the policy. One way of forcing the encountered states
to obey the discounted state distribution is to interact normally with the MDP, but at
each step and with probability 1− γ, we truncate the episode and draw again from the
initial state distribution [18]. That is, we interact with a modified MDP having the
following transition kernel:

P̃ (·|s, a) = γP (·|s, a) + (1− γ)µ0(·),

where P is the transition kernel of the original MDP. A slightly less wasteful way is
to sample normally from the on-policy distribution but discount the gradient estimates
according to the time-step in which the sampled state-action pair was encountered
(see (2.13) for an example). An argument for this can be found in [18] for a similar
problem.

2.2.2 REINFORCE

The only missing piece now is the true action value function Qπθ , which we do not have
access to. As usual, the simplest way to deal with this is to use unbiased Monte-Carlo
estimates of the action-value function. This gives rise to the following algorithm:

θt+1 := θt + αtγ
tGt∇θ log πθt(at|st), (2.13)

where Gt is the return starting from time t. This is one form of the REINFORCE
algorithm [20]. Convergence of such an algorithm to a local optimum is assured under
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standard conditions on the reduction of the step-size parameters [1]. Being a Monte-
Carlo method, this algorithm is not directly applicable to continuing problems and
suffers from high variance. The latter problem can be partially mitigated by using
baselines. For any state-dependent baseline b : S −→ R, it can be shown that

E
a∼πθ(·|s)

[b(s)∇θ log πθ(a|s)] = 0. (2.14)

Knowing this, we can rewrite the gradient as follows:

∇θJ(θ) =
1

1− γ
E

s∼dµ0,πθ
(·)

a∼πθ(·|s)

[(Qπθ(s, a)− b(s))∇θ log πθ(a|s)], (2.15)

which means that subtracting a baseline from the action-value function does not bias
the gradient as long as the baseline does not depend on the actions. However, the choice
of the baseline can have an effect on the variance of the algorithm. In practice, a natural
choice for the baseline is an estimate for the state-value function [1]. This results in the
following algorithm:

θt+1 := θt + αtγ
t(Gt − Vωt(st))∇θ log πθt(at|st), (2.16)

where Vωt is an estimate (with current parameter vector ωt) of the state-value function
of πθt learned using any of the methods we described for policy evaluation with function
approximation. Note that the term Gt − Vωt(st) can be seen as an estimate of the
advantage function at (st, at), where the advantage function is defined as:

Aπ(s, a) := Qπ(s, a)− V π(s).

Thus, unlike in (2.13) where we move the parameters along the direction 4 of∇θ log πθ(a|s)
proportional to the value of the action, we now move proportional to the difference be-
tween the value of the action and the value of the state. The algorithm in (2.16) has
the same convergence guarantees of the plain REINFORCE algorithm, but it can learn
a lot faster in practice due to its lower variance.

2.2.3 Actor-Critic Methods

The natural next step is to replace the Monte-Carlo estimates of the action value func-
tion with some bootstrapped target. Since

Qπθ(s, a) = R(s, a) + γ E
s′∼P (·|s,a)

[
V πθ(s′)

]
,

we can use R(st, at) + γV πθ(st+1) as an unbiased estimate of Qπθ(st, at). But since we
do not have access to V πθ , we can substitute it with our estimate Vω that we are already
using as a baseline. The resulting algorithm takes the following form:

θt+1 := θt + αtγ
t(Rt + γVωt(st+1)− Vωt(st))∇θ log πθt(at|st). (2.17)

4Note that ∇θ log πθ(a|s) = ∇θπθ(a|s)
πθ(a|s) , where ∇θπθ(a|s) (referred to as the score function)

is the direction along which moving the policy parameters leads to the fastest increase in the
probability of taking action a at state s, and dividing by πθ(a|s) has the effect of not giving an
advantage to actions that are selected more often by πθ.
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At each step, we can wait until we have an accurate enough (in some sense) estimate
of the value function of the current policy before updating the policy using (2.17).
Alternatively, we can update ω once at each step (for example using semi-gradient
TD(0)) resulting in a two-timescale algorithm, where the policy should be updated
slower than our value function estimate to allow it to “track” the changing policy.

The algorithm in (2.17) is an instance of a general class of policy gradient methods known
as actor-critic methods. The critic in these methods is the value-function estimate as
it is used to evaluate (or criticize) the performance of the actor, which is the current
policy. Although these methods introduce bias due to the inaccuracy of the learned
value function, they typically have less variance than Monte-Carlo methods, and they
allow for on-line learning. Actor-critic methods can be considered, in some sense, as
the intersection of policy-based and value-based methods. Methods like (2.17) are also
referred to as advantage actor-critic (A2C) methods. This is because the term Rt +
γVωt(st+1)−Vωt(st) can be seen as an estimate of the advantage function at (st, at).

2.2.4 Compatible Function Approximation

The notion of compatible function approximation provides one way of using a critic
learned using function approximation without biasing the gradient estimates. Suppose
we want to learn an approximation for the advantage function Aπθ(s, a) using a function
fω(s, a) characterized by a parameter vector ω. It can be easily seen, as demonstrated
in [19], that if

∇ωfω(s, a) = ∇θ log πθ(a|s),

and
E

s∼dµ0,πθ
(·)

a∼πθ(·|s)

[(Aπθ(s, a)− fω(s, a))∇ωfω(s, a)] = 0,

then

∇θJ(θ) =
1

1− γ
E

s∼dµ0,πθ
(·)

a∼πθ(·|s)

[fω(s, a)∇θ log πθ(a|s)].

Which means that we can use fω instead of Aπθ without introducing any bias. We can
satisfy the stated conditions if we use a linear function fω(s, a) = φ(s, a)ᵀω, such that
the (policy-dependent) feature mapping φ(s, a) for a state-action pair is ∇θ log πθ(a|s),
and ω is chosen as to minimize the following loss function:

E
s∼dµ0,πθ

(·)
a∼πθ(·|s)

[
(Aπθ(s, a)− fω(s, a))2

]
.

We can then update the policy parameters according to

θt+1 := θt + αtγ
t∇θ log πθt(at|st)∇θ log πθt(at|st)ᵀωt.

The same argument also holds for learning the action-value function instead of the
advantage function. In fact, the same argument holds even when subtracting any state-
dependent baseline from the action-value function. However, the form suggested above
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for fω implies that Ea∼πθ(·|s)[fω(s, a)] = 0, which makes it most suitable for the learning
the advantage function since it can be easily seen that Ea∼πθ(·|s)[A

πθ(s, a)] = 0.

In practice, using compatible function approximation is not necessarily the best choice
to make in terms of efficiency. However, the resulting unbiasedness of the estimates
of the gradient allows us to inherit the convergence properties of stochastic gradient
ascent in a straightforward manner [19]. Moreover, compatible function approximation
plays a convenient role when used in natural policy gradient methods, which we discuss
next.

2.2.5 Natural Actor-Critic

Standard gradient ascent algorithms suffer from a number of problems; they can get
stuck in plateaus, and they can take over-aggressive steps on steep ridges. One attempt
towards mitigating some of these problems is the use of natural gradient methods [21]. In
reinforcement learning problems, these methods move the parameters along the direction
of steepest ascent according to the Fisher metric [22]. This way, we follow the direction
along which the performance increases the fastest when the divergence between the
distributions of possible trajectories induced by the old and the new policies is kept
sufficiently small [23]. This can lead to a more stable learning process compared to
standard gradient methods, in which the constraint is on the Euclidean distance between
the old and the new parameter vectors. For our setting, the natural gradient is given
by:

∇NG
θ J(θ) := F−1

θ ∇θJ(θ),

where Fθ is the Fisher information matrix defined as [22]:

Fθ = E
s∼dµ0,πθ

(·)
a∼πθ(·|s)

[∇θ log πθ(a|s)∇θ log πθ(a|s)ᵀ].

We can then update the policy according to:

θt+1 := θt + αtF
−1
θt
∇θJ(θt). (2.18)

The angle between the standard gradient and the natural one is never larger than
90 degrees, and thus the natural policy gradient algorithm can also be guaranteed
to converge to a local optimum [22]. In practice, F−1

θ is estimated using samples,
and we can use any of the methods discussed so far to obtain estimates of ∇θJ(θ).
Estimating the Fisher information matrix from samples can be expensive, but that
can be avoided when using a critic obeying the compatible function approximation
conditions. To see why, consider that when using compatible function approximation
with a linear architecture (as proposed in the previous subsection), the gradient can be
written as:

∇θJ(θ) =
1

1− γ
E

s∼dµ0,πθ
(·)

a∼πθ(·|s)

[∇θ log πθ(a|s)∇θ log πθ(a|s)ᵀ] ω

=
1

1− γ
Fθω.
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From that, it is easy to see that (2.18) reduces to:

θt+1 := θt + αtωt,

where ωt is the parameter vector for our compatible approximator of the advantage
function of πθt . Examples of practical natural actor-critic algorithms can be found in
[22] and [24].

2.3 Risk Aversion in Reinforcement Learning

The methods that we have considered so far strive to, one way or another, find a policy
that acts optimally in the sense that it achieves a high expected value of the return.
This notion of achieving high performance in expectation is indeed the adopted one
in the vast majority of the reinforcement learning literature, in all its diversity. It is
not hard to see, however, that adopting a policy that acts optimally in expectation is
not suitable for a lot of application domains since the policy can still lead the agent to
rare but catastrophic events. The most immediate examples of such domains are the
robotics and the financial domains. When applying reinforcement learning methods in
these domains, it is quite imperative to have additional guarantee on the safety of the
implemented policy.

We can distinguish between two notions of safety in reinforcement learning [25]. The first
one is related to the training process itself. In the cases where a simulation environment
is not available, the training process needs to be carried out in a high-stakes (physical
or virtual) environment where bad outcomes can have ramifications in the real world.
The difficulty of this problem is that reinforcement learning methods rely on extensive
exploration strategies, which undoubtedly can lead to undesirable outcomes. Some
approaches attempt to tackle this problem by imposing performance guarantees on the
policies obtained during training (e.g. [26] and [27]), while some approaches strive to
avoid states or transitions that can lead to damage via associating a safety function
to each state or transition (e.g. [28]). The second notion of safety, which is the focus
in this work, deals with the inherent uncertainty of the environment itself. That is, it
deals with the risk due to the stochasticity of the outcomes when interacting with an
MDP. Methods that attempt to deal with this kind of risk usually do so by modifying
the objective to include some notion related to risk. This is usually done by considering
some statistical property (e.g. the variance) of the return (other than its expected
value) to optimize. The challenge is how to extend the standard reinforcement learning
tools to deal with such modified objectives. In the following, we briefly mention a few
methods that incorporate risk into the objective.

2.3.1 Utility-Based Objectives

A simple way to incorporate risk is to use utility functions [29]. Roughly speaking, in-
stead of trying to maximize the expected value of a random variable, we try to maximize
the expected value of a transformation (the utility function) applied to the realizations
of our random variable. The main difficulty of this approach is that it is usually hard
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to specify a suitable utility function for the problem at hand [29]. The most common
utility function in reinforcement learning is the exponential utility applied to the return
(e.g. [30]). This performance measure usually takes the following form:

V =
1

β
log
(
E[eβR]

)
,

which the agents tries to maximize. Here R is the return, and β 6= 0 is a real parameter
used to express the risk sensitivity. Setting β < 0 encourages risk-averse behaviour,
while setting β > 0 encourages risk-seeking behaviour. When β approaches zero, the
agent becomes risk-neutral, and we recover the standard objective of maximizing the
expected reward. These insights are easily observed when writing the Taylor expansion
of V :

V = E[R] +
β

2
Var[R] +O(β2),

which shows that the way that the exponential utility controls risk-sensitivity is related
to the variance, which we consider next.

2.3.2 Variance-Related Objectives

Indeed, the variance is a very conceptually simple way to control risk. Smaller variance
leads to less variability of the outcomes, and hence more predictability. However, the
variance is usually not the most suitable risk measure to adopt. For once, it treats the
variability below the means equally with the variability above it. But in a maximization
problem, we are not usually concerned with the variability above the mean. Nonetheless,
the simplicity and interpretability of the variance has granted it a lot if attention in the
literature, dating back to early works like [31]. One can simply adopt the variance as
an objective function that is to be minimized. A more common approach is to use it
together with the standard expected return objective J in a mean-risk fashion. This
can take various forms [32]:

1. Maximize J such that Var[R] ≤ c.

2. Minimize Var[R] ≤ c such that J ≥ c.

3. Maximize the Sharpe Ratio: J√
Var[R]

.

4. Maximize J − c
√

Var[R].

Whichever variant one chooses to focus on, the involvement of the variance of the
return brings about some difficulties compared to the risk-neutral case. To see this, we
consider the problem of policy evaluation. Remember that the value function of a state
s is defined5 as the expected return when starting from s:

V (s) = E

[ ∞∑
t=0

γtR(st)

∣∣∣∣s0 = s

]
.

5Assuming the policy is fixed and omitted from the notation for clarity. Moreover, we write
the reward as a deterministic function of just the state for simplicity.



32 Reinforcement Learning II

Instead of the expected value, we are interested in the variance of the return starting
from s, which we denote by V ′(s). Most reinforcement learning methods are built upon
the dynamic programming paradigm, for which the simple linear form of the Bellman
equations of V is quite essential. The same, unfortunately, does not hold for the variance
[5]. Towards devising a practical approach for learning the variance, we can write V ′

as:
V ′(s) = V (2)(s)− V (s)2, (2.19)

where V (2)(s) is the second moment of the return starting from s. That is,

V (2)(s) = E

( ∞∑
t=0

γtR(st)

)2∣∣∣∣s0 = s

. (2.20)

While the Bellman equations for V take the following familiar form:

V (s) = R(s) + γ
∑
s′∈S

P (s′|s)V (s′),

similar equations for V (2) have been derived in [31] (see also [5]) as:

V (2)(s) = R(s)2 + 2γR(s)
∑
s′∈S

P (s′|s)V (s′) + γ2
∑
s′∈S

P (s′|s)V (2)(s′). (2.21)

The equations for V (2) resemble those of V if one would use a (policy-dependent) reward
transformation of the form R(s)2 +2γR(s)

∑
s′∈S P (s′|s)V (s′). The approach in [5] is to

use these equations to extend the theory and methodology of temporal difference learn-
ing using linear function approximation (see Subsection (2.1.2)) for the joint estimation
of V and V (2), which are then used to estimate V ′ via (2.19).

As for the control problem, it has been shown in [33] that the complexity of computing a
policy that maximizes the mean return under a variance constraint is NP-hard. However,
policy gradient algorithms that perform local optimization are still viable. In [32], policy
gradient algorithms are derived for some variance-related risk criteria in the episodic
case.

2.3.3 Other Risk Measures

As we pointed earlier, a drawback of the variance as a risk measure6 is that also penalizes
the variability above the mean, which is usually irrelevant in a maximization problem.
One alternative is the lower semi-deviation. For a random variable Z with finite pth

order moments, the pth order lower semi-deviation is defined as [29]:

σ−p [Z] :=
(
E
[
(E[Z]− Z)p+

])1/p
,

where, for a real function f , f+(x) = max(f(x), 0). In other words, we are only con-
cerned with the outcomes below the mean.

6A risk measure, in general, can be defined as a function that maps a random variable to the
extended real line R

⋃
{−∞,+∞}.
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Another alternative is the Conditional Value at Risk (CVaR). The α-quantile of a ran-
dom variable Z is defined as:

qα := {x : P (Z ≤ x) = α}.

The α-CVaR is then defined as [34]:

CVaRα(Z) := E[Z|Z ≤ qα].

In other words, it is the expected value of the worst α% of outcomes, which makes it
suitable for accounting for rare but catastrophic outcomes. Both the CVaR and the
lower semi-deviation belong to a wide class of risk measures known as coherent risk
measures [35]. This is a well-known class of risk measures in the financial domain,
which satisfies certain “rationality” properties. In [36], a policy gradient method is
proposed for the entire class of coherent risk measures.

2.3.4 Per-Step Reward Approaches

The last class of approaches that we discuss, which is of most relevance to this work, is
the class of approaches that are concerned with the distribution of the per-step reward
instead of the full return. The reward volatility introduced in [7] is concerned with the
variance of the per-step reward. We will discuss the reward volatility in detail in the next
chapter, where we formulate the problem to be solved in this work. For now, we highlight
that, compared to the return variance, the reward volatility admits simpler Bellman-
style equations, which makes adapting risk-neutral algorithms more straightforward.
Moreover, it is shown in [7] that minimizing the reward volatility can be seen as a
proxy for minimizing the return variance in the sense that low reward volatility imply
low return variance. And like the variance, we can define a mean volatility objective
that provides a way to manage the trade-off between maximizing the expected return
and minimizing the reward volatility. Lastly, we can mention [37] as an example of a
related approach. They consider also the mean volatility objective, and propose a block
cyclic coordinate ascent approach in which risk-neutral policy evaluation and control
algorithms can be used in an off-the-shelf manner. We will also see more of this approach
in the next chapter.
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Chapter 3

Problem Setting: The
Mean-Volatility Objective

The purpose of this chapter is to formulate the problem that is to be addressed in this
work. Firstly, we discuss in more detail the reward-volatility risk measure [7] and the re-
lated mean-volatility objective. We discuss how the reward-volatility compares to other
risk measures, and display some of its properties. We also discuss the issues that one
would face when attempting to adapt risk-neutral reinforcement learning algorithms to
optimize the mean-volatility objective. We then present a simple actor-only policy gra-
dient algorithm for optimizing the mean-volatility to serve as a starting point. Finally,
we outline two different methods for policy evaluation under the mean-volatility objec-
tive. In subsequent chapters, we carry out some theoretical analysis of these methods
culminating in the finite sample analysis of a complete actor-critic algorithm.

Unless otherwise stated, we assume that our MDP is characterized by the following
tuple: 〈S,A, P,R, γ, µ0〉. Here, S and A are the state and action spaces which we
just assume to be measurable sets. P , R, and γ are the transition kernel, reward
function, and discount factor defined analogously in Section 1.1, and µ0 is the initial
state distribution. We also assume that the reward function is uniformly bounded in
absolute value, which means that there is some value Rmax such that 1 |R(s, a)| ≤ Rmax

∀(s, a) ∈ S × A. When relevant, we assume, like in Section 2.2, that the policies we
consider are from a class Π of policies parameterized by a vector θ ∈ Rdθ , and πθ(a|s) is
continuously differentiable with respect to θ for any state-action pair. A bit differently
from Section 2.2, we define the (risk-neutral) objective as

Jπ := (1− γ) E
s0∼µ0

at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
. (3.1)

This definition differs from definition (2.10) by the normalization factor (1− γ), which

1Remember that the reward function is assumed, for simplicity, to be a deterministic function
of state-action pairs.
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ensures that Jπ belongs to the interval [−Rmax, Rmax]. Note that we drop the depen-
dence on θ from the notation whenever it is irrelevant or clear from the context.

3.1 Reward-Volatility

In the previous chapter, we considered the variance of the return as a simple measure of
uncertainty when interacting with an MDP. Since our risk-neutral performance measure
Jπ is the (normalized) expected value of the return when starting from the initial state
distribution, we can define the return variance as follows

σ2
π := E

s0∼µ0

at∼π(·|st)
st+1∼P (·|st,at)

( ∞∑
t=0

γtR(st, at)−
Jπ

1− γ

)2
. (3.2)

If we adopt such a risk measure, we would then look for policy that achieves optimal
σ2
π (i.e. low variance). Alternatively, as we discussed in the previous chapter, we can

construct a mean-variance performance measure that takes the form Jπ − λσ2
π, where

λ ≥ 0 is a parameter via which we can express how much we care about reducing the
variance compared to increasing the expected return. We know from our discussion in
the previous chapter that adapting value-based risk-neutral algorithms for optimizing
either σ2

π or Jπ − λσ2
π is not directly possible since the variance of the return starting

from a certain state lacks the simple linear Bellman equations of the risk-neutral setting.
Moreover, in policy-based methods, the policy gradients for these objectives do not take
the same simple form of (2.11) in the risk-neutral case [32].

In this thesis, we adopt the reward volatility introduced in [7] as our risk measure,
which is concerned with the variance of the per-step reward instead of the variance
of the return. Recalling the definition of the discounted state distribution dµ0,π(·) in
(2.12), we can rewrite (3.1) as:

Jπ = E
s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)]. (3.3)

That is, Jπ can be seen as the expected value of the step reward random variable where
the states are drawn from the discounted state distribution (which depends on the
policy) and the actions are drawn according to the policy. The reward volatility ν2

π is
the variance of this random variable. In other words,

ν2
π := E

s∼dµ0,π(·)
a∼π(·|s)

[
(R(s, a)− Jπ)2

]
. (3.4)

Whereas σ2
π is concerned with the variance of the accumulated reward regardless of the

fluctuations of the step rewards, ν2
π takes into account the variance of the intermediate

results, which can be relevant in some applications [7]. And while the reward volatility
does not convey information about the correlation between step rewards, the following
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bound (Lemma 1 in [7]) justifies its use as a proxy for the return variance:

σ2
π ≤

ν2
π

(1− γ)2
.

Which means that low reward volatility implies low return variance. Note that the
converse is generally not true.

Similar to Jπ, we can write ν2
π in an alternative form:

ν2
π = (1− γ) E

s0∼µ0

at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γt(R(st, at)− Jπ)2

]
.

Motivated by this, we can define the action-volatility function Xπ as:

Xπ(s, a) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γt(R(st, at)− Jπ)2

∣∣∣∣s0 = s, a0 = a

]

= (R(s, a)− Jπ)2 + γ E
s′∼P (·|s,a)
a′∼π(·|s′)

[
Xπ(s′, a′)

]
,

where the latter form is a Bellman equation akin to that of the action-value function in
the risk-neutral case. The difference here is that the rewards undergo a policy-dependent
transformation (R(s, a)− Jπ)2. Similarly, we can define the state-volatility function W π

as:

W π(s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γt(R(st, at)− Jπ)2

∣∣∣∣s0 = s

]
.

Similar to the mean-variance, we can define the mean-volatility performance mea-
sure:

ηπ = Jπ − λν2
π,

where λ ≥ 0 is again a parameter managing the trade-off between maximizing Jπ
and minimizing ν2

π. Accordingly, we can define the transformed state-value function
V λ
π (s) := V π(s) − λW π(s), and the transformed action-value function Qλπ(s, a) :=
Qπ(s, a)− λXπ(s, a). Note that these value functions also admit simple Bellman equa-
tions, unlike the mean-variance case. For example, we have that

V λ
π (s) = E

a∼π(·|s)

[
Rλπ(s, a)

]
+ γ E

s′∼Pπ(·|s)

[
V λ
π (s′)

]
,

where Rλπ(s, a) := R(s, a) − λ(R(s, a)− Jπ)2 can also be seen as a policy-dependent
reward transformation.

In the case where we are using parameterized policies (in the manner described in the
beginning of this chapter), the gradient of ηθ

2 with respect to θ was derived in [7] as:

∇θηθ = E
s∼dµ0,πθ

(·)
a∼πθ(·|s)

[
Qλπθ(s, a)∇θ log πθ(a|s)

]
. (3.5)

2We usually write ηθ instead of ηπθ for notational convenience.
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Note that this gradient has the same form as the risk-neutral policy gradient (2.11),
but here we have the transformed action-value function instead of the normal one. Also
note that as V λ

π is a function of only the states (and not the actions), it satisfies (2.14),
and hence can be used as a baseline in the mean-volatility gradient in the same manner
that we used baselines in the risk-neutral case (2.15). In other words,

∇θηθ = E
s∼dµ0,πθ

(·)
a∼πθ(·|s)

[
Aλπθ(s, a)∇θ log πθ(a|s)

]
,

where Aλπ(s, a) := Qλπ(s, a)− V λ
π (s) is the transformed advantage function.

It is clear now that by focusing on the variance of the per-step rewards instead of the
returns, the value functions and the policy gradient take convenient forms that are
very close to the risk-neutral case. However, adopting risk-neutral algorithms is still
not directly possible. For example, if we were to learn V λ

π , we would need to use the
reward transformation Rλπ. However, such transformation requires Jπ, which we do not
have access to. Moreover, once the policy is updated, a new transformation would be
required. Thus, the simplest way to adopt a risk-neutral policy gradient algorithm for
optimizing the mean-volatility is to estimate Jπ for the policy at the current iteration
and use it to transform the rewards that are used for policy evaluation or improvement.
One simple algorithm that follows this scheme is presented next.

3.2 A Monte-Carlo Mean-Volatility Policy Gra-

dient Algorithm

Similar to what was done in [7], we describe a simple actor-only policy gradient algorithm
for optimizing the mean-volatility. At each iteration, the algorithm uses a Monte-Carlo
simulation to obtain an estimate of the expected return Jπ for the current policy. More
specifically, the algorithm simulates L episodes each truncated at a fixed horizon of
TJ steps, and then averages the returns from these episodes. The pseudo-code for the
Monte-Carlo estimation of Jπ is provided in Algorithm 3.1.

Note that we normalize the returns using the (1−γ) factor in accordance with the way we
defined Jπ in (3.1). Also note that Ĵ is not necessarily an unbiased estimate of Jπ since
we are truncating the return samples. This (small) bias is precisely characterized in the
next chapter. Having obtained an estimate of Jπ, we use it to transform the rewards of
another trajectory and use them to calculate an estimate of the mean-volatility gradient
∇θηθ via a trajectory-wise version of (2.13) in the risk-neutral case. To derive this
version, we can use (3.5) and (2.12) to write:



3.2 A Monte-Carlo Mean-Volatility Policy Gradient Algorithm 39

Algorithm 3.1 Monte-Carlo-J
1: Input: π, γ, L, TJ
2: Initialize: G0, . . . , GL−1 = 0
3: for i = 0, . . . , L− 1 do
4: s0 ∼ µ0(·)
5: for t = 0, . . . , TJ − 1 do
6: at ∼ π(st), st+1 ∼ P (·|st, at)
7: Gi = Gi + γtR(st, at)
8: end for
9: end for

10: Ĵ = 1
L

∑L−1
i=0 (1− γ)Gi

11: Output: Ĵ

Algorithm 3.2 Monte-Carlo Mean-Volatility Policy Gradient Algorithm

1: Input: Policy Class πθ, λ, γ, L, TJ , T,N
2: Initialize: θ0

3: for i = 0, . . . , N − 1 do
4: Ĵi = Monte-Carlo-J(πθi , γ, L, TJ)

5: Define R̂λ
i (s, a) := R(s, a)− λ

(
R(s, a)− Ĵi

)2

6: Sample a trajectory τi := (si,0, ai,0, . . . , si,T−1, ai,T−1) using πθi .

7: θi+1 = θi + αi
∑T−1

t=0 γ
t∇θ log πθ(ai,t|si,t)

∑T−1
t′=t γ

t′−tR̂λ
i (si,t′ , ai,t′)

8: end for
9: Output: θN

∇θηθ = E
s∼dµ0,πθ

(·)
a∼πθ(·|s)

[
Qλπθ(s, a)∇θ log πθ(a|s)

]

= (1− γ) E
s0∼µ0(·)

[∫
S

∫
A

∞∑
t=0

γtpπθ(s0
t−→ s)πθ(a|s)Qλπθ(s, a)∇θ log πθ(a|s) da ds

]

= (1− γ) E
s0∼µ0(·)

[ ∞∑
t=0

∫
S

∫
A
pπθ(s0

t−→ s)πθ(a|s)γtQλπθ(s, a)∇θ log πθ(a|s) da ds

]

= (1− γ) E
s0∼µ0(·)

 ∞∑
t=0

E
st∼pπθ (s0

t−→·)
at∼π(·|st)

[
γtQλπθ(st, at)∇θ log πθ(at|st)

].
We use a simulated trajectory to obtain a sample of this form of the gradient, in which
we use the sampled (transformed) returns in place of Qλπθ . The pseudo-code of the full
algorithm is provided in Algorithm 3.2.

Although we are following a Monte-Carlo simulation approach, the gradient estimates
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in Algorithm 3.2 are biased due to multiple reasons. Firstly, we truncate the trajectories
at T steps, which can introduce bias if the MDP is not guaranteed to reach a terminal
state before then. Moreover, the transformed rewards are biased3 since we only have
one estimate of Jπ and it is involved in a squared term. Even if we have two independent
estimates of Jπ, the transformed rewards will still be biased if these estimates are biased.
One can go one step further and consider a variant (more similar to the actor-only
algorithm described in [7]) in which we estimate the gradient using the trajectories we
used to estimate Jπ. The policy update rule (at the kth iteration) for this variant can
be written as:

θk+1 = θk + αk
1

L

L−1∑
i=0

TJ−1∑
t=0

γt∇θ log πθ(ai,t|si,t)
T−1∑
t′=t

γt
′−tR̂λk(si,t′ , ai,t′).

Note that in this case the estimate of Jπ and the trajectories used to estimate the
gradient are no longer independent.

The main goal of this work is to understand the sample complexity of algorithms like
Algorithm 3.2 compared to their risk-neutral counterparts. This will involve under-
standing how the extra process of estimating Jπ affects sample complexity, having in
mind the biasedness and dependence issues that we have highlighted. Moreover, we
would, in practice, prefer an actor-critic version, where the transformed value function
is learned using function approximation. This, as we discussed before, reduces the vari-
ance and allows for on-line learning. In that case, we would also need to understand
how the inaccuracy of the learned reward transformation affects the prediction accuracy
of the critic.

Since the policy gradient for the mean-volatility (3.5) takes a form similar to that of
the policy gradient in the risk neutral case (2.11), the main distinguishing features of
mean-volatility algorithms will be in the policy evaluation phase. Thus, we focus first
on the analysis of the policy evaluation problem, and eventually return to the analysis
of a full actor-critic algorithm. The only approach we suggested till now for policy
evaluation4 is the one where we estimate the expected return Jπ and use it to transform
the rewards, which then enables us to use any standard policy evaluation method. We
can call this approach the direct method. The general scheme of the direct method is
summarized in Algorithm 3.3. This scheme can be combined with different sampling
strategies as discussed before. Namely, we can obtain two independent estimates of Jπ
to be used in the reward transformation, and we can also use for policy evaluation the
same data that was used to obtain Ĵ . In the next section, we describe another approach
for policy evaluation, which we call the factored method, where we do not use Ĵ in any
reward transformation.

3Note that the reward function is a deterministic function of state-action pairs; the stochas-
ticity considered here is due to the sampling process used to estimate Jπ.

4Although we did not use a critic in the presented algorithm, providing estimates of Qλπθ
at the encountered state-action pairs using sampled (transformed) returns could be seen as a
rudimentary form of policy evaluation.
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Algorithm 3.3 Mean-Volatility Policy Evaluation: The Direct Method

1: Input: a policy π, risk-aversion parameter λ, discount factor γ.
2: Obtain Ĵ as an estimate of Jπ.

3: Define the reward transformation R̂λ(s, a) := R(s, a)− λ
(
R(s, a)− Ĵ

)2

4: Obtain V̂ λ as an estimate of V λ
π using any algorithm for learning the risk-

neutral state-value function while transforming the rewards using R̂λ.
5: Output: V̂ λ

3.3 The Factored Method for Mean-Volatility

Policy Evaluation

Before describing the factored method, we briefly discuss an alternative method, which
we hinted at before, for optimizing the mean volatility. This method, introduced in
[37], is called Mean-Variance Policy Iteration (MVPI). We can start by recalling that
for a random variable X, V ar(X) = E[X2] − E[X]2. We can apply this for the reward
volatility term in the mean volatility objective, thus yielding:

ηπ = Jπ − λν2
π

= E
s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)]− λ E
s∼dµ0,π(·)
a∼π(·|s)

[
(R(s, a)− Jπ)2

]
= E

s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)]− λ E
s∼dµ0,π(·)
a∼π(·|s)

[
R(s, a)2

]
+ λ E

s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)]2.

They then use the Fenchel duality to write

ηπ = E
s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)]− λ E
s∼dµ0,π(·)
a∼π(·|s)

[
R(s, a)2

]
+ λmax

y

2 E
s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)]y − y2

.
Thus, they aim to obtain maxπ,y ηπ,y, where

ηπ,y := E
s∼dµ0,π(·)
a∼π(·|s)

[
R(s, a)− λR(s, a)2 + 2λR(s, a)y

]
− λy2.

To optimize this objective function, they propose a block cyclic coordinate ascent (BCCA)
approach, where they alternate between fixing either π or y and optimizing over the
other. When fixing π, the optimal choice for y is in fact Jπ, which still needs to be
estimated. On the other hand, when y is fixed, the optimal π is the solution to the risk-
neutral control problem with reward function R(s, a)−λR(s, a)2+2λR(s, a)y, where any
reinforcement learning algorithm can be used since this reward transformation is kept
fixed even when the policy gets updated during this policy optimization phase.

One of the merits of MVPI is that the term y2 (or J2) is not involved in the reward
transformation. We can attempt to perform a similar factorization for the transformed
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value function V λ
π . To this end, we can define dπ(·|s) as the discounted state distribution

when starting from state s. That is,

dπ(·|s) := (1− γ)
∞∑
t=0

γtpπθ(s
t−→ ·). (3.6)

We can then, analogous to (3.3), write V λ
π as:

V λ
π (s′) =

1

1− γ
E

s∼dπ(·|s′)
a∼π(·|s)

[
R(s, a)− λ(R(s, a)− Jπ)2

]

=
1

1− γ
E

s∼dπ(·|s′)
a∼π(·|s)

[R(s, a)]− λ

1− γ
E

s∼dπ(·|s′)
a∼π(·|s)

[
(R(s, a)− Jπ)2

]
.

Unfortunately, the second term, unlike the one in ηπ, is not a variance term since, in
general,

Jπ 6= E
s∼dπ(·|s′)
a∼π(·|s)

[R(s, a)].

This means that we cannot use the relation between the variance and the second mo-
ment. Still, we can factorize the squared term to obtain that

V λ
π (s′) =

1

1− γ
E

s∼dπ(·|s′)
a∼π(·|s)

[R(s, a)]− λ

1− γ
E

s∼dπ(·|s′)
a∼π(·|s)

[
R(s, a)2

]

+
2λJπ
1− γ

E
s∼dπ(·|s′)
a∼π(·|s)

[R(s, a)]− λJ2
π

1− γ
.

We can then use the definition of the state-value function V π in (1.2) and the definition
of dπ(·|s) in (3.6) to conclude that

V λ
π (s) = (1 + 2λJπ)V π(s)− λMπ(s)− λ

1− γ
J2
π , (3.7)

where we call Mπ : S −→ R the second moment value function5, which is defined as
follows:

Mπ(s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)
2

∣∣∣∣s0 = s

]
. (3.8)

Squaring the rewards can be seen as a deterministic (policy-independent) reward trans-
formation. Thus, Mπ can be learned by adapting any algorithm that can be used for
learning V π. Note also that any accuracy guarantees (e.g. finite-time bounds) on V π

can be adapted for Mπ; we would just need to consider that the range of values of the
step-rewards is different.

5It is the second moment of the step reward R(s′, a′) (where s′ ∼ dπ(·|s) and a′ ∼ π(·|s′)),
not of the return when starting from s.
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Algorithm 3.4 Mean-Volatility Policy Evaluation: The Factored Method

1: Input: a policy π, risk-aversion parameter λ, discount factor γ.
2: Obtain Ĵ as an estimate of Jπ.
3: Obtain V̂ as an estimate of V π using any algorithm for learning the risk-

neutral state-value function.
4: Obtain M̂ as an estimate of Mπ using any algorithm for learning the risk-

neutral state-value function while squaring the step rewards.
5: Set V̂ λ(s) = (1 + 2λĴ)V̂ (s)− λM̂(s)− λ

1−γ Ĵ
2 ∀s ∈ S.

6: Output: V̂ λ

In the factored method, we use (3.7) to estimate V λ
π . This means that we would need to

estimate V π, Mπ, and Jπ separately, and then combine them using (3.7) to obtain an
estimate of V λ

π . Note that this approach is not too different from the approach adopted
in [5] for estimating the variance of the reward to go. However, the algorithm in our
case is simpler. This is mainly because, although we still need to learn Jπ, we do not
use it (or the value function) in any reward transformation. In fact, the only reward
transformation required is the squaring of the rewards that we perform when estimating
Mπ. This transformation, however, is exact (it does not depend on any estimates) and
does not depend on the policy that is being evaluated. This is unlike the second moment
of the return (that we defined in (2.20)), which requires a reward transformation that,
in addition to the squared rewards, involves the risk-neutral value function of the policy
(see (2.21)), which introduces extra complications.

The general scheme of the factored approach is summarized in Algorithm 3.4. As in the
direct method, the choice of the sampling scheme is relevant since the multiplication
of estimates (as in Ĵ2 and the multiplication of Ĵ and V̂ ) can introduce bias if they
are learnt from the same data. We will see examples of this later on. One interesting
thing about the factored method is that we can derive generic error bounds on V̂ λ given
error bounds on M̂ and V̂ , regardless of what method was used to learn them. This is
indeed the subject of the next chapter. On the other hand, analyzing the direct method
depends on the used policy evaluation method. Later on, we will analyze a full actor-
critic algorithm that uses linear mini-batch TD(0) (see Subsection 2.1.3) as a critic that
learns the transformed value function using the direct method.
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Chapter 4

A General Error Bound for the
Factored Method

In this chapter, we derive a simple general bound on the prediction error of the learned
estimates of the transformed value function V λ

π when using the factored method (Al-
gorithm 3.4). The bound is general in the sense that it does not require a specific
method for learning the state-value function V π or the second moment value function
Mπ, it only requires that we are given error bounds (in a certain format) for the learned
estimates of the two functions. Throughout the chapter, we develop bounds on a num-
ber of quantities, and eventually combine them to obtain the full bound. We end the
chapter by providing an expanded form of the bound when V π and Mπ are learned
using least-squares temporal difference, where we use the finite-time bounds derived in
[38].

We assume that we are still operating in the MDP 〈S,A, P,R, γ, µ0〉 defined in beginning
of the previous chapter. Remember also our assumption that |R(s, a)| ≤ Rmax ∀(s, a) ∈
S ×A. Moreover, since we are focusing only on the policy evaluation problem, we shall
drop the dependence on π from the notation for clarity. This means that we will use
V λ, M , V , and J instead of V λ

π , Mπ, V π, and Jπ.

4.1 The Problem

As we discussed in the previous chapter, the idea of the factored method is to find
estimates of V , M , and J separately and combine them using (3.7) to form an estimate
of V λ. That is, if V̂ , M̂ , and Ĵ are our estimates of V , M , and J , then our estimate
V̂ λ of the transformed value function at any state s is defined according to:

V̂ λ(s) = (1 + 2λĴ)V̂ (s)− λM̂(s)− λ

1− γ
Ĵ2. (4.1)

In the following, we do not necessarily assume that Ĵ and V̂ are independent; our
analysis holds even if they are learned from the same data. Moreover, we assume that
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Ĵ is a Monte-Carlo estimate of J (see Algorithm 3.1), and we rely on only one such
estimate. In our analysis, we treat V̂ λ, M̂ , V̂ , and Ĵ as random variables, where their
stochasticity comes from the sampling processes that are used to learn them.

Our goal is to derive bounds on the error of V̂ λ. However, we first need to define a notion
of accuracy according to which we can evaluate our estimate. Suppose µ is a probability
measure over S and f is a bounded measurable function with S as its domain, we can
then define the following norm:

‖f‖2µ :=

∫
S
f(s)2µ(ds). (4.2)

Accordingly, our aim is to bound ‖V λ − V̂ λ‖µ, where µ is usually chosen to be the
stationary state distribution of the Markov chain (if it admits one). Moreover, for any
two functions of the states f1 and f2, we define the sum f1 + f2 as a function with the
obvious meaning that (f1 + f2)(s) := f1(s) + f2(s) for any s ∈ S. And for any a ∈ R,
(af1)(s) := af1(s) for any s ∈ S1.

A starting point is the following simple passage concerning the difference between V λ

and V̂ λ at some state s:

(V λ − V̂ λ)(s)

=
[
(1 + 2λJ)V (s)− (1 + 2λĴ)V̂ (s)

]
− λ

[
M(s)− M̂(s)

]
− λ

1− γ

[
J2 − Ĵ2

]
=
[
V (s)− V̂ (s)

]
+ 2λ

[
JV (s)− Ĵ V̂ (s)

]
+ λ

[
M̂(s)−M(s)

]
+

λ

1− γ

[
Ĵ2 − J2

]
=
(
V − V̂

)
(s) + 2λ

(
JV − Ĵ V̂

)
(s) + λ

(
M̂ −M

)
(s) +

λ

1− γ

(
Ĵ2 − J2

)
(s),

where
(
Ĵ2 − J2

)
(s) =

(
Ĵ2 − J2

)
∀s ∈ S. We can then write the following:

‖V λ − V̂ λ‖µ =

∥∥∥∥(V − V̂ )+ 2λ
(
JV − Ĵ V̂

)
+ λ

(
M̂ −M

)
+

λ

1− γ

(
Ĵ2 − J2

)∥∥∥∥
µ

≤ ‖V − V̂ ‖µ + 2λ‖JV − Ĵ V̂ ‖µ + λ‖M̂ −M‖µ +
λ

1− γ
|Ĵ2 − J2|, (4.3)

where we have applied the triangle inequality three times, and used the fact that ‖f‖µ =
|a| when f(s) = a ∀s ∈ S. This then reduces our task to bounding the four terms in
(4.3). We assume that we are already provided bounds on the first and the third terms
depending on the algorithms that were used to learn them. We will state this assumption
more explicitly later. We focus next on analyzing the second term.

4.2 Bounding the Cross Term

We focus now on the term ‖JV − Ĵ V̂ ‖µ. That is, we need to bound the ‖·‖µ norm of
the difference between the true value function V multiplied (at each state) by the true

1By combining the two rules, we get that (f1 + (−f2))(s) = f1(s) − f2(s) := (f1 − f2)(s)
∀s ∈ S.
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expected return J and our estimate of the value function V̂ multiplied by our estimate
of the expect return Ĵ . Without making any assumptions on the method via which
we learn V̂ or Ĵ , nor assuming that they are learned from different data, the following
lemma provides a bound on ‖JV − Ĵ V̂ ‖µ via an elementary decomposition.

Lemma 4.1. Assuming that ‖V̂ ‖µ ≤ Rmax
1−γ and that |Ĵ | ≤ Rmax, then the following

holds:

‖JV − Ĵ V̂ ‖µ ≤ Rmax

(
|J − Ĵ |
1− γ

+ ‖V − V̂ ‖µ

)
.

Proof.

‖JV − Ĵ V̂ ‖µ = ‖JV − ĴV + ĴV − Ĵ V̂ ‖µ
≤ ‖JV − ĴV ‖µ + ‖ĴV − Ĵ V̂ ‖µ
= |J − Ĵ | ‖V ‖µ + |Ĵ | ‖V − V̂ ‖µ

≤ |J − Ĵ | Rmax

1− γ
+ Rmax ‖V − V̂ ‖µ

= Rmax

(
|J − Ĵ |
1− γ

+ ‖V − V̂ ‖µ

)
,

where the first inequality is an application of the triangle inequality.

The assumptions made in the lemma are not restricting in any way. The assumption on
V̂ can be satisfied if |V̂ (s)| ≤ Rmax

1−γ ∀s ∈ S. Even if this does not hold, we can always

define a truncated version of V̂ defined as follows (∀s ∈ S):

Ṽ (s) =

{
V̂ (s) if |V̂ (s)| ≤ Rmax

1−γ ,

sign(V̂ (s))Rmax
1−γ otherwise.

We can then use Ṽ in place of V̂ without incurring any loss (according to ‖V −·‖µ or any
sensible notion of accuracy) since the true value function V satisfies |V (s)| ≤ Rmax

1−γ ∀s ∈
S. We can also make an analogous argument for Ĵ , but for our interest, it suffices to
see that |Ĵ | ≤ Rmax automatically holds if Ĵ is learnt using Algorithm 3.1.

Lemma 4.1 states that we can bound ‖JV − Ĵ V̂ ‖µ in terms of |J − Ĵ | and ‖V − V̂ ‖µ.
As we mentioned before, we will assume later that we have a certain form of bound on
‖V − V̂ ‖µ. For now, we will focus on bounding |J − Ĵ |, along with |Ĵ2− J2| from (4.3),
when Ĵ is learnt using Algorithm 3.1.

4.3 Analysing the Monte-Carlo Estimation of the

Expected Return

The basic idea of Algorithm 3.1 is to average the (normalized) returns from L simulated
trajectories each truncated at TJ steps. The goal in this section is to derive finite-time
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bounds on |J − Ĵ | and |Ĵ2 − J2|. That is, we want to bound these quantities in terms
of the number of simulated trajectories and the horizon length of the trajectories. We
can start by laying out a summary of all the relevant quantities for the analysis:

• L: number of simulated episodes.

• TJ : number of simulated steps in each episode.

• G0:TJ−1: a random variable representing the discounted sum of rewards from the
beginning of a trajectory up to time TJ − 1 multiplied by a factor of 1− γ. That
is:

G0:TJ−1 := (1− γ)

TJ−1∑
t=0

γtR(st, at).

We denote its expected value by

G0:TJ−1 := (1− γ) E
st+1∼P (·|st,at)

at∼π(·|st)

[
TJ−1∑
t=0

γtR(st, at)

∣∣∣∣s0 ∼ µ(·)

]
.

Note that we have that (with probability 1) |G0:TJ−1| ≤ (1− γTJ )Rmax ≤ Rmax.

• Gi : i = 0, . . . , L − 1: i.i.d.2 samples of G0:TJ−1 corresponding to each simulated
trajectory.

• ζi: ith central moment3 of G0:TJ−1.

• Ĵ = 1
L

∑L−1
i=0 Gi.

• GTJ :∞ : a random variable representing the discounted sum of rewards collected
starting from time TJ onward multiplied by a factor of γTJ (1− γ). That is:

GTJ :∞ := (1− γ)γTJ
∞∑
t=0

γtR(st+TJ , at+TJ ) = (1− γ)
∞∑

t=TJ

γtR(st, at).

Its expected value can then be defined as:

GTJ :∞ := (1− γ) E
st+1∼P (·|st,at)

at∼π(·|st)

 ∞∑
t=TJ

γtR(st, at)

∣∣∣∣sTJ ∼ ∫
S
pπ(s0

TJ−→ ·)µ(ds0)

 .
This way, we have that J = G0:TJ−1+GTJ :∞. Also note that |GTJ :∞| ≤ γTJRmax ≤
Rmax.

The following (basic) lemma provides upper bounds on the second, third, and fourth
central moments of G0:TJ−1. We will need these bounds later in our analysis.

2Short for independent and identically distributed.
3For a random variable X, its ith central moment is E

[
(X − E[X])

i
]
. Note that the second

central moment of X is its variance.
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Lemma 4.2. With ζi denoting the ith central moment of G0:TJ−1, we have

i. ζ2 ≤ R2
max.

ii. |ζ3| ≤ 4
√

3
9 R3

max ≤ R3
max.

iii. ζ4 ≤ 4
3R

4
max ≤ 2R4

max.

Proof. For a random variable X upper-bounded by M and lower bounded by m, with
µi denoting its ith central moment, we have by Popoviciu’s inequality that

µ2 ≤
(M −m)2

4
.

Thus, we have that

ζ2 ≤
(2Rmax)2

4
= R2

max,

since we can take M = Rmax and m = −Rmax, proving the first item. For the second
item we have from Theorem (2.3) in [39] that

|µ3| ≤
(M −m)3

6
√

3
.

Which means that in our case we shall have that

|ζ3| ≤
(2Rmax)3

6
√

3
=

8R3
max

6
√

3
=

4
√

3

9
R3
max ≤ R3

max.

Finally, for the third item, Theorem (2.1) in [39] states that

µ4 ≤
(M −m)4

12
.

And for us,

ζ4 ≤
(2Rmax)4

12
≤ 4

3
R4
max ≤ 2R4

max.

4.3.1 Bounding the Error on the Estimated Expected Re-
ward

One can notice from Algorithm 3.1 that Ĵ is not necessarily unbiased. Which means
that, in general, E[Ĵ ] 6= J . This is because we truncate the trajectories, and con-
sequently, our samples of the return are not unbiased. A generally more important
property of an estimator is consistency. A consistent estimator is an estimator that
(whatever the true value its trying to estimate is) can achieve any given level of accu-
racy with any given level of confidence provided that the number of samples is large
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enough [40]. We will indeed show that Ĵ , learned using Algorithm 3.1, enjoys this
property.

We can start with the following decomposition:

|J − Ĵ | = |J − E[Ĵ ] + E[Ĵ ]− Ĵ |
≤ |J − E[Ĵ ]|+ |Ĵ − E[Ĵ ]|. (4.4)

The first term in (4.4) represents the bias of Ĵ , which we can control by adjusting the
length of the trajectories as stated in the following simple lemma, which we will refer
to again in the future.

Lemma 4.3. The following holds when Ĵ is learned using Algorithm 3.1:

|J − E[Ĵ ]| ≤ γTJRmax.

Proof. Since Ĵ is a sample average of instances of G0:TJ−1, its expected value is the
same as that of G0:TJ−1, which is G0:TJ−1. Moreover, we remarked earlier that J =
G0:TJ−1 +GTJ :∞, this then means that

|J − E[Ĵ ]| = |J −G0:TJ−1| = |GTJ :∞| ≤ γTJRmax,

which concludes the proof.

The second term in (4.4) represent how far a sample average (as in Ĵ) is far from its
expected value. The following proposition bounds this term using a simple concentration
inequality, and combines that with the result in Lemma 4.3 to obtain the desired bound
on |J − Ĵ |.

Proposition 4.1. Assuming Ĵ is learned using Algorithm 3.1, we have, with probability
at least 1− δj, that

|J − Ĵ | ≤ Rmax

γTJ +

√√√√2 log
(

2
δj

)
L

 .

Proof. With X̄ denoting the empirical mean of n independent random variablesX1, . . . , Xn

each bounded by the interval [a, b], the Hoeffding inequality [41] states that4

P
(∣∣X̄ − E[X̄]

∣∣ ≥ t) ≤ 2 exp

(
−2n2t2

n(b− a)2

)
.

This translates in our case to

P
(∣∣∣Ĵ − E[Ĵ ]

∣∣∣ ≥ t) ≤ 2 exp

(
−2L2t2

L(Rmax − (−Rmax))2

)
= 2 exp

(
−Lt2

2R2
max

)
,

4Note that t here has nothing to do with time.
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which implies that ∣∣∣Ĵ − E[Ĵ ]
∣∣∣ ≤ Rmax

√√√√2 log
(

2
δj

)
L

holds with probability at least5 1−δj . Combining this with inequality (4.4) and Lemma
4.3, we can state, with probability at least 1− δj , that

|J − Ĵ | ≤ γTJRmax +Rmax

√√√√2 log
(

2
δj

)
L

= Rmax

γTJ +

√√√√2 log
(

2
δj

)
L

 ,

which is the required statement.

One can see now that we can achieve any level of accuracy (i.e. |J−Ĵ | ≤ ε for any ε > 0)
with any level of confidence (i.e. with probability at least 1− δj , for any δj ∈ (0, 1]) by
making L and TJ large enough. This makes Ĵ a consistent estimator.

4.3.2 Bounding the Error on the Estimated Squared Ex-
pected Reward

The next challenge is to bound the term |Ĵ2 − J2|, which appears in (4.3). This term
arises since there is a J2 term in (3.7) which we, as indicated in (4.1), estimate by
squaring our expected return estimator Ĵ . Similar to what we have done for Ĵ , we can
start with the following decomposition:

|J2 − Ĵ2| = |J2 − E[Ĵ2] + E[Ĵ2]− Ĵ2|
≤ |J2 − E[Ĵ2]|+ |E[Ĵ2]− Ĵ2|. (4.5)

Where the first term represents the bias of the estimator Ĵ2, and the second term
represents how far Ĵ2 is from its expected value. The following lemma provides a
bound on the first term.

Lemma 4.4. With Ĵ learned using Algorithm 3.1, we have that

|J2 − E[Ĵ2]| ≤ R2
max

(
2γTJ +

1

L

)
.

Proof. Recall that for a random variable X, Var(X) = E[X2] − E[X]2. Which means
that E[Ĵ2] = E[Ĵ ]2 + Var(Ĵ). Consequently,

|J2 − E[Ĵ2]| = |J2 − E[Ĵ ]2 + Var(Ĵ)|

5Note that 0 < δj ≤ 1.
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(1)
=

∣∣∣∣J2 − E[Ĵ ]2 +
ζ2

L

∣∣∣∣
≤ |J2 − E[Ĵ ]2|+ ζ2

L
(2)

≤ |J2 − E[Ĵ ]2|+ R2
max

L
,

where (1) holds since Ĵ is an empirical mean of L instances ofG0:TJ−1, and thus Var(Ĵ) =
Var(G0:TJ−1)

L = ζ2
L . The step labelled (2) then follows by Lemma 4.2.i. To proceed,

remember that E[Ĵ ] = G0:TJ−1, and that J = G0:TJ−1 +GTJ :∞. This means that

|J2 − E[Ĵ2]| ≤
∣∣∣(G0:TJ−1 +GTJ :∞)2 −G2

0:TJ−1

∣∣∣+
R2
max

L

=
∣∣GTJ :∞(2G0:TJ−1 +GTJ :∞)

∣∣+
R2
max

L

≤
∣∣GTJ :∞

∣∣(2∣∣G0:TJ−1

∣∣+
∣∣GTJ :∞

∣∣) +
R2
max

L

≤ γTJRmax
(
2(1− γTJ )Rmax + γTJRmax

)
+
R2
max

L

= γTJ (2− γTJ )R2
max +

R2
max

L

≤ 2γTJR2
max +

R2
max

L

= R2
max

(
2γTJ +

1

L

)
,

where we used in the second inequality the fact that |G0:TJ−1| ≤ (1 − γTJ )Rmax and
that |GTJ :∞| ≤ γTJRmax.

The previous lemma states that the bias of Ĵ2 depends on the bias of Ĵ (as in Lemma
4.3, but with a larger constant) and the variance of Ĵ , which can be reduced by using
more trajectories. We now turn to the second term in (4.5), which, as mentioned before,
conveys how far Ĵ2 is from its expected value. Unlike Ĵ , Ĵ2 is not an average (nor a sum)
of a number of independent random variables, and thus we cannot use the Hoeffding
inequality. However, we can use another concentration inequality called the Chebyshev
inequality. For a random variable X with mean µ and variance σ2, the Chebyshev
inequality [40] states that

P (|X − µ| ≥ c) ≤ σ2

c2
.

This can also be used to state, with probability at least 1− δ, that6

|X − µ| ≤
√
σ2

δ
.

6Note that 0 < δ ≤ 1.
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Applying this to our case, we can state, with probability at least 1− δj2 , that

|E[Ĵ2]− Ĵ2| ≤

√
Var(Ĵ2)

δj2
. (4.6)

But what can we say about the variance of Ĵ2? The following lemma provides one
answer.

Lemma 4.5. For a generic random variable X with mean E[X] and sample mean X̂ =
1
N

∑N
i=1Xi, where X1 . . . XN are i.i.d. copies of X, we have that

Var[X̂2] = 4E[X]2
µ2

N
+

2µ2
2 + 4µ3 E[X]

N2
+
µ4 − 3µ2

2

N3
,

where µi is X ′s ith central moment defined as: µi = E[(X − E[X])i].

Proof.

Var[X̂2] = E[X̂4]− E[X̂2]2

= E[X̂4]− (E[X]2 + Var[X̂])2

= E[X̂4]− E[X]4 − 2E[X]2Var[X̂]−Var[X̂]
2

= E[X̂4]− E[X]4 − 2E[X]2
Var[X]

N
− Var[X]2

N2

= E[X̂4]− E[X]4 − 2E[X]2
µ2

N
− µ2

2

N2

From [42], we have:

E[X̂4] = E[X]4 + 6E[X]2
µ2

N
+

3µ2
2 + 4µ3 E[X]

N2
+
µ4 − 3µ2

2

N3
.

The result follows by plugging this back in the previous equation.

The following proposition uses the lemma above, along with (4.5) and Lemma 4.4, to
derive the desired bound on |J2 − Ĵ2|.

Proposition 4.2. Assuming Ĵ is learned using Algorithm 3.1, we have, with probability
at least 1− δj2, that

|J2 − Ĵ2| ≤ 2R2
max

γTJ +

√√√√( 15
δj2

)
L

.
Proof. We can start by applying Lemma 4.5 to our case7:

Var(Ĵ2) = 4G
2
0:TJ−1

ζ2

L
+

2ζ2
2 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ2

2

L3
.

7Here X is G0:TJ−1, and X̂ is Ĵ .
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(1)

≤ 4G
2
0:TJ−1

ζ2

L
+

2ζ2
2 + 4|ζ3||G0:TJ−1|

L2
+
ζ4 + 3ζ2

2

L3
.

(2)

≤ 4R2
max

ζ2

L
+

2ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 + 3ζ2

2

L3
,

where we note in (1) that ζ2, ζ4, and L are non-negative. And (2) follows since
|G0:TJ−1| ≤ Rmax. We can then apply Lemma 4.2 on the central moments in the
last expression to get that

Var(Ĵ2) ≤ 4
R4
max

L
+

2R4
max + 4R4

max

L2
+

2R4
max + 3R4

max

L3

≤ R4
max

(
4

L
+

6

L2
+

5

L3

)
≤ 15R4

max

L
,

where the last inequality holds since L ≥ 1. We can then combine this with (4.6) to
get, with probability at least 1− δj2 , that

|E[Ĵ2]− Ĵ2| ≤

√
15R4

max

δj2L

≤ R2
max

√√√√( 15
δj2

)
L

.

Finally, we can combine this last result with inequality (4.5) and Lemma 4.4 to state,
with probability at least 1− δj2 , that

|J2 − Ĵ2| ≤ R2
max

(
2γTJ +

1

L

)
+R2

max

√√√√( 15
δj2

)
L

= R2
max

2γTJ +
1

L
+

√√√√( 15
δj2

)
L



≤ 2R2
max

γTJ +

√√√√( 15
δj2

)
L

,
where the last inequality holds since L ≥ 1 and 0 < δj2 ≤ 1.

Compared with the bound on Ĵ in Proposition 4.1, the main difference here is the
larger constant R2

max, and that this bound grows faster when increasing confidence (i.e.
decreasing δ) due to the use of Chebyshev’s inequality. More importantly Proposition
4.2 shows that Ĵ2 is also a consistent estimator since we can achieve any level of accuracy
with any level of confidence by sufficiently increasing L and TJ .
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4.4 The Full Bound

We can now put everything together to display the full bound. First we state our
assumption on the learned estimates for8 V and M .

Assumption 4.1. Let V̂ and M̂ be our learned estimates of V and M respectively, we
assume that we are provided the following bounds with adjustable confidence parameters:

• ‖V − V̂ ‖µ ≤ ξv(δv) with probability 1− δv, where 0 < δv ≤ 1.

• ‖M − M̂‖µ ≤ ξm(δm) with probability 1− δm, where 0 < δm ≤ 1.

Note that these bounds are written as functions of their confidence parameters, but they
could depend on other quantities that we already using. For example, they could depend
on TJ and L if V̂ and M̂ are learned from the same trajectories that were collected to
learn Ĵ . In its generality, the bound we provide in this section cannot be used to infer
the sample complexity of the entire algorithm, unless ξv and ξm are provided in an
explicit form that displays their dependence on the number of samples. We are now
ready to state the main result of this chapter.

Theorem 4.1. Suppose that Assumption 4.1 holds for our estimates V̂ and M̂ , and
that Ĵ is learned using Algorithm 3.1. If these estimates are used to learn V̂ λ using
(4.1), we then have, with probability at least 1− δ, that

‖V λ − V̂ λ‖µ ≤ (1 + 2λRmax)ξv

(
δ

4

)
+ λξm

(
δ

4

)
+

4λR2
max

1− γ

γTJ +

√(
60
δ

)
L

.
Proof. Starting from the bound in (4.3), we can apply Lemma 4.1 to get that

‖V λ − V̂ λ‖µ

≤ ‖V − V̂ ‖µ + 2λRmax

(
|J − Ĵ |
1− γ

+ ‖V − V̂ ‖µ

)
+ λ‖M̂ −M‖µ +

λ

1− γ
|Ĵ2 − J2|

= (1 + 2λRmax)‖V − V̂ ‖µ +
2λRmax

1− γ
|J − Ĵ |+ λ‖M̂ −M‖µ +

λ

1− γ
|Ĵ2 − J2|.

We can then use Assumption 4.1, Proposition 4.1, and Proposition 4.2 (while setting
δv = δm = δj = δj2 = δ

4) to conclude that the following holds with probability at least
1− δ:

‖V λ − V̂ λ‖µ ≤ (1 + 2λRmax)ξv

(
δ

4

)
+

2λR2
max

1− γ

γTJ +

√
2 log

(
8
δ

)
L


+ λξm

(
δ

4

)
+

2λR2
max

1− γ

γTJ +

√(
60
δ

)
L


8Remember that V is the state-value function, and M is the second moment value function

defined in (3.8).
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≤ (1 + 2λRmax)ξv

(
δ

4

)
+ λξm

(
δ

4

)
+

4λR2
max

1− γ

γTJ +

√(
60
δ

)
L

,
where the last inequality holds since 2 log

(
8
δ

)
≤ 60

δ for 0 < δ ≤ 1.

Next, we provide an example where we use least-squares temporal difference (introduced
in Subsection 2.1.4) to learn V̂ and M̂ , and we use the results in [38] to obtain explicit
forms for ξv and ξm.

4.5 An Application of the Bound When Using

LSTD

In [38], they provide finite sample analysis for a version of LSTD which they call pathwise
LSTD. We will use this method to learn V̂ and M̂ using the same trajectory, and we
will use Algorithm 3.1 to learn Ĵ independently. Although the bound of Theorem
4.1 does not assume that V̂ and M̂ are learned from different data, we will assume
so since the bounds in [38] do not extend naturally to the case where we use multiple
trajectories to learn the value function without having the bounds grow with the number
of trajectories, which is problematic since the number of trajectories is a parameter that
has to be increased to control the error on Ĵ and Ĵ2. Nonetheless, the algorithm we
provide serves as a simple case where can exemplify the use of Theorem 4.1. Moreover,
in [38], they provide two kinds of bounds on the accuracy of V̂ : an empirical bound and
a generalization bound. In the empirical bound, the distribution of states according to
which we evaluate V̂ is the empirical distribution of the sampled trajectory. Whereas
in the generalization bound, the stationary distribution of the Markov chain is used. In
the following, we will use the empirical bound due to its simplicity. We can, in fact,
use the generalization bound in exactly the same manner, but it contains a number of
extra terms and requires a number of extra conditions that will distract from the main
aim of the analysis.

Before describing our algorithm, we can provide some preliminaries adapted from [38].
Consider the basis functions ϕi : S −→ R, i = 1, . . . , d defined over the states, and
define φ(.) := (ϕ1(.), ..., ϕd(.))

ᵀ as the corresponding feature mapping. Furthermore,
we assume that the basis functions are all uniformly bound by B (i.e. |ϕi(s)| ≤ B
for i = 1, . . . , d and every s ∈ S). Suppose we sample a trajectory of N steps
(s1, a1, r1, . . . , sN , aN , rN ), let r ∈ RN and r2 ∈ RN be the vectors whose tth components
are rt and r2

t respectively. Moreover, for the same trajectory, define the features matrix
Φ := [φ(s1); . . . ;φ(sN )]. For a vector x ∈ RN , define the following norm:

‖x‖2N =
1

N

N∑
t=1

x2
t .

In the empirical bound of [38], they evaluate V̂ according to ‖V − V̂ ‖N . That is, we
are only interested in the accuracy of V̂ on the states of the trajectory each weighted
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Algorithm 4.1 Factored Mean-Volatility pathwise LSTD

1: Input: a policy π to be evaluated, feature Map φ(.), λ, γ, N , L, TJ .
2: Ĵ = Monte-Carlo-J(π, γ, L, TJ). (see Algorithm 3.1.)
3: Use π to sample a trajectory of N steps (s1, a1, r1, . . . , sN , aN , rN).
4: Build the features matrix Φ = [φ(s1); . . . ;φ(sN)].
5: Build the empirical transition matrix P̂ : P̂ij = I[j = i+ 1, j 6= N ].

6: Build matrix A = Φᵀ(I − γP̂ )Φ.
7: Build vector bv = Φᵀr.
8: Build vector bm = Φᵀr2.
9: Set α̂v = A+bv. (This way, V̂ (s) = φ(s)ᵀα̂v ∀s ∈ S.)

10: Set α̂m = A+bm. (This way, M̂(s) = φ(s)ᵀα̂m ∀s ∈ S.)
11: Set V̂ λ(s) = (1 + 2λĴ)φ(s)ᵀα̂v − λφ(s)ᵀα̂m − λ

1−γ Ĵ
2 ∀s ∈ S.

12: Output: V̂ λ

by the frequency with which it was encountered. Thus, our function space is effectively
the vector space FN := {Φα : α ∈ Rd}, which is a subset of RN . Accordingly, define the
operator Π̂ which performs orthogonal projection to FN according to the ‖.‖N norm.
That is, for a vector y ∈ RN , Π̂y = arg minz∈RN ‖y − z‖N . This way, Π̂V is the best
function that we would hope to find in FN . Lastly, we note that the policy under
evaluation is assumed to be deterministic in [38] for simplicity.

The pseudo-code of a factored mean-volatility policy evaluation algorithm that uses
pathwise LSTD for learning V̂ and M̂ is provided in Algorithm 4.1. Note that A+

denotes the Moore-Penrose pseudo-inverse of A, which is the same as A−1 whenever A
is invertible [38]. The following theorem uses the bounds in [38] and Theorem 4.1 to
derive an error bound on V̂ λ learned using Algorithm 4.1.

Theorem 4.2. Suppose V̂ λ is obtained using Algorithm 4.1. Then, with probability at
least 1− δ, we have that

‖V λ − V̂ λ‖µ ≤
1√

1− γ2

(
(1 + 2λRmax)‖V − Π̂V ‖N + λ‖M − Π̂M‖N

)
≤ (1 + 3λRmax)

[
γRmax

(1− γ)2
B

√
d

vN

(√
8log(8d/δ)

N
+

1

N

)]

+
4λR2

max

1− γ

γTJ +

√(
60
δ

)
L

,
where vN is the smallest strictly positive eigenvalue of the matrix 1

nΦᵀΦ.

Proof. For V̂ , which we learned using pathwise LSTD, the bound in [38] states, with
probability at least 1− δv, that

‖V − V̂ ‖N ≤
1√

1− γ2
‖V − Π̂V ‖N +

1

1− γ

[
γRmax

1− γ
B

√
d

vN

(√
8log(2d/δv)

N
+

1

N

)]
,
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where vN is the smallest strictly positive eigenvalue of the matrix 1
nΦᵀΦ. As for M̂ ,

as we remarked before, its analysis would be almost the same; we just have to replace
Rmax with R2

max. Thus, we have, with probability at least 1− δm, that

‖M−M̂‖N ≤
1√

1− γ2
‖M−Π̂M‖N +

1

1− γ

[
γR2

max

1− γ
B

√
d

vN

(√
8log(2d/δm)

N
+

1

N

)]
.

We can then simply set δv = δm = δ
4 and plug these bounds in the bound of Theorem

4.1 to get, with probability at least 1− δ, that

‖V λ − V̂ λ‖µ ≤
1√

1− γ2

(
(1 + 2λRmax)‖V − Π̂V ‖N + λ‖M − Π̂M‖N

)
≤ (1 + 3λRmax)

[
γRmax

(1− γ)2
B

√
d

vN

(√
8log(8d/δ)

N
+

1

N

)]

+
4λR2

max

1− γ

γTJ +

√(
60
δ

)
L

,
which is the desired statement.

The first term in the bound is the irreducible approximation error caused by the limited
representation power of the linear space we are using. The second term is the estimation
error on V̂ and M̂ , which can be reduced by increasing the length of the trajectory used
by LSTD. Finally, the last term is the error due to the inaccuracy of Ĵ and Ĵ2, which
can be reduced by increasing L and TJ in Algorithm 3.1. The bound in Theorem 4.2
implies that the sample complexity of the algorithm, for achieving ‖V λ− V̂ λ‖µ ≤ ε for a
sufficiently small ε with a fixed level of confidence, is LTJ +N = O(ε−2 log(ε−1)+ε−2) =
O(ε−2 log(ε−1)). This is compared to the O(ε−2) sample complexity for learning only
the risk-neutral value function V using pathwise LSTD. It would be interesting to see
if the complexity of Algorithm 4.1 can be improved if V̂ and M̂ are learned using
the same trajectories collected for estimating the expected return, but as remarked
before, the analysis in [38] does not seem to be naturally extendable to the case where
we use multiple trajectories without causing the bound to grow with the number of
trajectories.9

9Note that, with the same tools, we can propose a small variant of Algorithm 4.1 in which
the trajectory used to learn V̂ and M̂ is one of the trajectories used to learn Ĵ . This way, we
would replace N with TJ . This might seems like a sound idea since we are reusing samples.
However, this will have a negative effect on sample complexity since now the complexity will
be given by LTJ = O(ε−2ε−2) = O(ε−4) as this scheme causes the bound to contain a term of

order O(
√

1
TJ

), which dominates the γTJ term. This negative effect is not surprising since we

are forcing all the trajectories to be as long as the one we are using for LSTD. Alternatively, one
can adhere to the sampling scheme of the original algorithm, but also use the LSTD trajectory
as one of the trajectories used to estimate J. However, this does not seem to bring any significant
advantage in terms of sample efficiency.



Chapter 5

Analyzing a Mean-Volatility
Actor-Critic Algorithm

In this chapter, we provide finite sample analysis of a complete actor-critic algorithm
that aims to optimize the mean-volatility objective. More specifically, we adapt the
(risk-neutral) mini-batch actor-critic algorithm analyzed in [11] to our setting by firstly
estimating the expected return, and then using it to transform the rewards that are
used by the algorithm. This way, at each iteration of the actor-critic algorithm, we
perform policy evaluation using the mini-batch semi-gradient TD algorithm (described
in Subsection 2.1.3) while adapting it to the mean-volatility objective using the direct
method (See Algorithm 3.3). We will start by describing in more detail the algorithm
used in [11] and how we adapt it to our risk-averse setting. After presenting some pre-
liminaries, we proceed with the finite sample analysis of the critic, and finally conclude
with the analysis of the actor.

Throughout this chapter, we still adopt the MDP 〈S,A, P,R, γ, µ0〉 that we have used
in the last section. Moreover, we assume, like in Section 2.2, that the policies we
consider are from a class Π of policies parameterized by a vector θ ∈ Rdθ , and πθ(a|s) is
continuously differentiable with respect to θ for any state-action pair. Our aim is still
to find a policy πθ maximizing1 ηθ := Jθ−λν2

θ , where Jθ is the expected return (defined
in (3.1)), ν2

θ is the reward volatility (defined in (3.4)), and λ ≥ 0 is a parameter used
to control the trade-off between maximizing Jθ and minimizing ν2

θ . Remember also the
expression (or one form of it) for the gradient of the mean volatility with respect to the
parameters of the policy [7]:

∇θηθ = E
s∼dµ0,πθ

(·)
a∼πθ(·|s)

[
Aλπθ(s, a)∇θ log πθ(a|s)

]
, (5.1)

where Aλπ(s, a) := Qλπ(s, a) − V λ
π (s) is the transformed advantage function that we

introduced before, whereas V λ
π and Qλπ are, respectively, the transformed state-value

and action-value functions introduced in Section 3.1.

1Remember the convention of writing θ instead of πθ when the context is clear.
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Remember from our discussion in Section 2.2 that policy gradient methods aim to
optimize the policy by generating a sequence of parameter vectors {θt} each of which
is obtained from the previous by moving along the gradient of the objective function,
that is

θt+1 = θt + αt∇ηθt , (5.2)

where αt is the step size at step t. More specifically, we focus on actor-critic methods,
which are policy gradient methods that use a learned estimate of the value function that
is to be used in the policy gradient expression (e.g. Aλπ in (5.1)) at each iteration of the
algorithm. In the approach we consider in this chapter, we do not learn an estimate of
Aλπ directly. Rather, we learn an estimate of V λ

π and use it to form estimates of Aλπ at the
required state-action pairs (see (2.17) or (5.4) below for an example of this approach).
To this end, we consider a linear approximation scheme for V λ

π where candidate functions
belong to the function space {V λ

ω : ω ∈ Rdω and V λ
ω (.) = ωᵀφ(.)}, where ϕi : S −→ R, i =

1, . . . , dω. are basis functions defined over the states, and φ(.) := (ϕ1(.), . . . , ϕdω(.))ᵀ is
the corresponding feature mapping.

5.1 The Algorithm

In [11], they provide finite sample analysis for a (risk-neutral) actor-critic algorithm
that uses a linear TD(0) critic (which we investigated in some detail in 2.1.2). More
specifically, they use a mini-batch version of linear TD(0) (briefly discussed in Subsection
2.1.3) in which a mini-batch of samples is used to performs the updates: (recall from
(2.7))

ωi+1 := ωi + α
1

M

M−1∑
t=0

[Ri,t + γφ(si,t+1)ᵀωi − φ(si,t)
ᵀωi]φ(si,t),

this is opposed to using just a single sample (as in (2.2)). Their motivation for adopting
mini-batch updates is that the iterates can be driven arbitrarily close, in expectation,
to the TD fixed point by increasing the mini-batch size while using a fixed step-size.
Using this approach, they were able prove a better sample complexity than what was
available in the literature at the time (e.g. [12]). As for the actor, they adopt an A2C
approach while also using mini-batches to perform the updates. That is, they use a
mini-batch version of (2.17):

θt+1 = θt + α
1

B

B−1∑
i=0

(R(st,i, at,i) + γφ(st,i+1)ᵀωt − φ(st,i)
ᵀωt)∇θ log πθt(at,i|st,i). (5.3)

Recall from our discussion in Section 2.2 that, in practice, policy gradient methods use
a stochastic estimate of the gradient, which we obtain using samples collected while
interacting with the environment. In particular, we discussed two approaches to force
the sampled states to obey the discounted state distribution dµ0,πθ(·), which we recall
its definition from (2.12):

dµ0,πθ(s) := (1− γ) E
s0∼µ0(·)

[ ∞∑
t=0

γtpπθ(s0
t−→ s)

]
.
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The first approach is to interact with the environment normally (yielding samples drawn
from the on-policy distribution) while discounting the resulting gradient estimates de-
pending on the time-step at which each sample was encountered (see (2.13) for an
example). The other approach, which is adopted in [11], is to interact with a slightly
modified MDP characterized by the following transition kernel:

P̃ (·|s, a) = γP (·|s, a) + (1− γ)µ0(·),

where P is the transition kernel of the original MDP. That is, at each step, we sample
the next state according to the original kernel with probability γ, while we draw the next
state from the initial state distribution with probability 1−γ. In [11], at each iteration,
after having trained the critic, they interact with the modified kernel to obtain a mini-
batch of samples to be used to estimate the gradient. However, directly adopting this
approach leads to a subtle bias in their algorithm (and analysis). To see this, recall
from (2.17) the (single sample) A2C update:

θt+1 := θt + αtγ
t(Rt + γVωt(st+1)− Vωt(st))∇θ log πθt(at|st). (5.4)

Here, Rt + γVωt(st+1) − Vωt(st) is effectively a stochastic estimate of the advantage
function at (st, at), where Vωt(st) is our estimate (the critic) of the state-value function at
st, while Rt+γVωt(st+1) is an estimate of the action-value function at (st, at). Recalling
that Qπ(st, at) = R(st, at) + γ Est+1∼P (·|st,at)[V

π(st+1)], to yield unbiased estimates, the
next state (st+1) has to be properly sampled from P (·|st, at). However, in [11], they
(erroneously)2 use the sampled next state in the actor mini-batch, which is actually
sampled from the MDP with the modified kernel P̃ . To remedy this, we employ an
alternative sampling process, which allows us to both (1) sample st+1 (like in (5.4))
according to the original kernel, and (2) obtain an unbiased estimate of the gradient.
Consider two different random variables for the state, namely, st+1 and s′t+1, with
different distributions. The latter one is distributed according to the standard kernel,
s′t+1 ∼ P (·|st, at), while st+1 is sampled from the following variant of the modified kernel

P̃ (·|st, at, s′t+1) := γδs′t+1
(·) + (1− γ)µ0(·). That is, with probability γ, st+1 is the same

as s′t+1, and with probability 1− γ, st+1 is drawn from the initial state distribution. In
any case, s′t+1 is the one we use as the next state in the gradient estimate (5.3), whereas
st+1 is the state from which we resume sampling the rest of the actor mini-batch.

Note that the proposed sampling approach does not require a generative model (i.e. one
in which we can, at any time, sample (multiple) transitions from any state we want), it
only requires that we can halt the trajectory at any time and restart from the initial state
distribution. With the proposed modification, the analysis of [11] is largely unaffected,
we just need to account for the extra performed sampling when we consider the sample
complexity of the algorithm. For now, we will present the algorithm for which we will
extend the analysis in [11]. Aside from adopting the proposed new sampling scheme,
our algorithm differs from the one considered in [11] in that, at iteration, it learns an
estimate of the expected return of the current policy (using Algorithm 3.1) and uses it

2Note that the estimates of the advantage function are already biased due to the use of the
(usually) inaccurate estimate of the state-value function. However, this bias, unlike the one
caused by sampling from the wrong kernel, is actually accounted for in the analysis.
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Algorithm 5.1 Mini-batch Mean-Volatility Actor-Critic (Mini-batch MVAC)

1: Input: Policy Class πθ, Feature Map φ(.), µ0(.), α, β, λ, γ, L, TJ , Tc,M, T,B
2: Initialize: θ0

3: for t = 0, . . . , T − 1 do
4: if t = 0 then
5: sini ∼ µ0(.)
6: else
7: sini = st−1,B

8: end if
9: Estimating J: Ĵt = Monte-Carlo-J(πθt , γ, L, TJ) (see Algorithm 3.1.)

10: Critic update: ωt, st,0 = Mini-batch-MVTD(sini, θt, φ, γ, β, Tc,M, λ, Ĵt)
(see Algorithm 5.2.)

11: Actor mini-batch sampling:
12: for i = 0, . . . , B − 1 do
13: at,i ∼ πθ(st,i)
14: s′t,i+1 ∼ P (·|st,i, at,i)
15: st,i+1 ∼ P̃ (·|st,i, at,i, s′t,i+1)

16: δωt(st,i, at,i, s
′
t,i+1) = Rλ(st,i, at,i, Ĵt) + γφ(s′t,i+1)ᵀωt − φ(st,i)

ᵀωt
17: end for
18: Actor update: θt+1 = θt + α 1

B

∑B−1
i=0 δωt(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i)

19: end for
20: Output: θT̂ with T̂ chosen uniformly from {1, . . . , T}.

to transform the rewards used for training the critic (i.e. we use the direct method)
and the rewards used to form the estimates of the advantage function used in the actor
update. Before proceeding, we define following two functions:

Rλ(s, a, Ĵ) :=
[
R(s, a)− λ(R(s, a)− Ĵ)2

]
,

and

ψθ(s, a) := ∇ log πθ(a|s).

We refer to the latter as the score function of policy πθ. The pseudo-code of the full
algorithm is presented in Algorithm 5.1, and the critic sub-routine it uses is presented
in Algorithm 5.2.

To clarify the used parameters: T is the number of iterations of the full algorithm (i.e.
number of times we update the policy using gradient ascent), B is the size of the actor’s
mini-batch, Tc is the number of critic iterations (i.e. the number of semi-gradient TD
updates), M is the size of the critic’s mini-batch, and finally L and TJ are the usual
number of trajectories and horizon length used in Algorithm 3.1. Note that, at each
iteration, the proposed algorithm uses different samples for forming each of the expected
return estimate, the value function estimate, and the gradient estimate. In particular,
as in [11], the algorithm uses (aside from the trajectories collected by Algorithm 3.1)
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Algorithm 5.2 Mini-batch Mean-Volatility TD (Mini-batch MVTD)

1: Input: sini, θ, φ, γ, β, Tc,M, λ, Ĵ
2: Initialize: ω0

3: for k = 0, . . . , Tc − 1 do
4: if k = 0 then
5: sk,0 = sini

6: else
7: sk,0 = sk−1,M

8: end if
9: for j = 0, . . . ,M − 1 do

10: ak,j ∼ πθ(sk,j), sk,j+1 ∼ P (.|sk,j, ak,j)
11: δωk(sk,j, ak,j, sk,j+1) = Rλ(sk,j, ak,j, Ĵ) + γφ(sk,j+1)ᵀωk − φ(sk,j)

ᵀωk
12: end for
13: ωk+1 = ωk + β 1

M

∑M−1
j=0 δωk(sk,j, ak,j, sk,j+1)φ(sk,j)

14: end for
15: Output: ωTc , sk,M

a “single” sample path in the sense that the actor starts sampling from the last state
of the critic mini-batch, and vice versa. However, calling it a single sample path is not
very accurate since the actor samples from the modified kernel, which introduces the
possibility, at any step, of restarting the trajectory. Finally, we note that the motivation
for the output policy parameter vector to be randomly picked uniformly across all the
iterations is purely theoretical since, as we will discuss, our goal when analyzing the
algorithm is to show that, on average (across the iterations), the norm of the gradient
of the mean-volatility vanishes (i.e. we approach a stationary point) as the number of
used samples increases. In practice, one can estimate the performance of the obtained
policy at each iteration3, and output at the end the best encountered policy.

5.2 Preliminaries

We can start by making a number of technical assumptions (some are adapted from
[11]).

Assumption 5.1. ∀(s, a) ∈ S ×A

(i) |R(s, a)| ≤ Rmax.

(ii) πθ(a|s) is differentiable w.r.t. θ.

(iii) ∃ Cψ > 0 : ∀θ ‖ψθ(s, a)‖2 ≤ Cψ.

(iv) ∃ Lψ > 0 : ∀θ1, θ2 ‖ψθ1(s, a)− ψθ2(s, a)‖2 ≤ Lψ‖θ1 − θ2‖2.

3Which can be done, for example, by taking the trajectories already collected by Algorithm
3.1, transforming their rewards using Ĵ , and using them to obtain a Monte-Carlo estimate of
the mean-volatility.
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(v) ∃ Cπ > 0 : ∀θ1, θ2 ‖πθ1(.|s)− πθ2(.|s)‖TV ≤ Cπ‖θ1 − θ2‖2,

where, for a probability density function q(.), ‖q(.)‖TV := 1
2

∫
s|q(ds)|.

Assumptions 5.1.iii and 5.1.iv assert that, for any policy in our class of policies, the
score function is bounded and smooth, while assumption 5.1.v asserts that the chosen
class of policies is smooth in the described sense. Note that by Assumption 5.1.i and
the definition of Jπ in (3.1), ∀(s, a) ∈ S ×A and λ ≥ 0,∣∣R(s, a)− λ(R(s, a)− Jπ)2

∣∣ ≤ Rλ,max := Rmax + 4λR2
max.

In the following, we may refer to
[
R(s, a)− λ(R(s, a)− Jπ)2

]
as Rλπ(s, a). We also make

the following assumption on the basis functions and the feature mapping that we use
to learn V λ

π .

Assumption 5.2. ∃ Cφ > 0 : ∀s ∈ S ‖φ(s)‖2 ≤ Cφ. Furthermore, the basis functions
ϕi(·), i = 1, ..., dω are mutually linearly independent.

The following assumption serves to simplify the expressions of the bounds.

Assumption 5.3. W.L.O.G.

(i) Cψ = 1.

(ii) Cφ = 1.

The following is an assumption on the regularity of the MDP.

Assumption 5.4 (Uniform Ergodicity, Adapted from [11]). For any θ ∈ Rdθ , consider
the MDP with policy πθ and the transition kernel P (·|s, a) or P̃ (·|s, a) = γP (·|s, a)+(1−
γ)ξ(·), where ξ(·) can be µ0 or P (·|ŝ, â) for any (ŝ, â) ∈ S×A. Let µπθ be the stationary
state distribution of the MDP when acting with policy πθ. There exists constants κ > 0
and ρ ∈ (0, 1) such that

sup
s∈S
‖P(st ∈ ·|s0 = s)− µπθ(·)‖TV ≤ κρ

t, ∀t ≥ 0.

In Subsection 2.1.2, we discussed the semi-gradient TD(0) algorithm with linear function
approximation. In particular, we discussed its expected behaviour in steady state, and
characterized the point to which it converges. Since our critic is a mean-volatility
version of this algorithm (i.e. with transformed rewards Rλ(s, a, Ĵ), where Ĵ is our
learned estimate of the expected return of the policy under evaluation), we can define
similar quantities to those defined in the risk-neutral case. Given a policy πθ with
stationary state distribution µθ, consider the update rule of the critic parameters at the
ith iteration in the critic sub-routine:
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ωi+1 = ωi + β
1

M

M−1∑
t=0

δωi(si,t, ai,t, si,t+1)φ(si,t)

= ωi + β
1

M

M−1∑
t=0

[
Rλ(si,t, ai,t, Ĵ) + γφ(si,t+1)ᵀωi − φ(si,t)

ᵀωi

]
φ(si,t)

= ωi + β

(
1

M

M−1∑
t=0

[
φ(si,t)R

λ(si,t, ai,t, Ĵ)
]

+
1

M

M−1∑
t=0

[φ(si,t)(γφ(si,t+1)− φ(si,t))
ᵀ] ωi

)

Define bi,t(Ĵ) := φ(si,t)R
λ(si,t, ai,t, Ĵ), and Ai,t := φ(si,t)(γφ(si,t+1) − φ(si,t))

ᵀ. Cor-

respondingly, define b̂i(Ĵ) := 1
M

∑M−1
t=0 bi,t(Ĵ), and Âi := 1

M

∑M−1
t=0 Ai,t. Also, define

the shorthand function gi(ω, Ĵ) = b̂i(Ĵ) + Âi ω. We can thus rewrite the critic update
as

ωi+1 = ωi + β
(
b̂i(Ĵ) + Âi ωi

)
= ωi + βgi(ωi, Ĵ).

Similar to what we did in the risk-neutral case, we can describe a deterministic ver-
sion of the algorithm where we use the expected value of b̂ and Â when the MDP

has reached steady-state. To this end, we can define b(Ĵ) := Eµθ
[
φ(st)R

λ(st, at, Ĵ)
]
,

A := Eµθ [φ(st)(γφ(st+1)− φ(st))
ᵀ], and ḡ(ω, Ĵ) := b(Ĵ) + A ω. We can then write the

deterministic update rule as

ωi+1 = ωi + β
(
b(Ĵ) +A ωi

)
. (5.5)

For a fixed Ĵ , the policy evaluation problem at hand is not at all different from the risk-
neutral version, albeit with a modified reward function. This means that the results in
[9] about temporal difference learning with linear function approximation are applicable
in this case. Most notably, it means that the matrix A (which is independent of the
reward function) is negative definite, and the (unique) stationary point ω∗

Ĵ
of (5.5) (i.e.

Aω∗
Ĵ

+ b(Ĵ) = 0) is the fixed point of the projected Bellman equation (see (2.6)) on
the transformed value function. What we are actually interested in is describing the
convergence rate (in expectation)4 of the critic to ω∗J , where J is the true (normalized)
expected return of the policy under evaluation. More specifically, the goal is to bound
E
[
‖ωTc − ω∗J‖22

]
in terms of the number of used samples, where Tc is the number of

iterations of the critic. If we were provided with the real value of J , one could then
use it to transform the rewards, and in that case, we can directly inherit the results in
[11]. However, we do not have access to such value, and our only option is to use our

4The reason why we are deriving a bound in expectation is for the bound to be usable in the
analysis of the actor, as we will see later.
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Monte-Carlo estimate Ĵ in its place5. And therein lies the challenge of analyzing the
critic: understanding the effect of using Ĵ instead of J in the reward transformation.
Before we proceed, we just have to mention a few more technical points, starting with
the following assumption (which can be justified since we assumed, in Assumptions 5.1
and 5.2, that the feature mapping and the reward function are bounded).

Assumption 5.5. For any triple (si,t, ai,t, si,t+1) ∈ S × A × S and any Ĵ estimate
bounded, in absolute value, by Rmax, there exists real constants CA and Cb such that
‖Ai,t‖F ≤ CA and ‖bi,t(Ĵ)‖2 ≤ Cb, where ‖·‖F is the Frobenius norm6 of a matrix.

In [11], they state the following as a result7 of using bounded and independent features:
there exists a positive constant λA such that, for any ω ∈ Rdω , we have that

〈(ω − ω∗), A(ω − ω∗)〉 ≤ −λA
2
‖ω − ω∗‖22,

where ω∗ is the TD fixed point in the risk-neutral case. The stated inequality, in fact,
can be seen as general property of matrix A independently of ω∗ since any vector x ∈ Rdω
can be written as (x+ω∗)−ω∗. We can the restate this inequality in a more convenient
form for us: there exists a positive constant λA such that, for any ω ∈ Rdω and any
value of our (bounded) estimate Ĵ , we have that

〈(ω − ω∗
Ĵ
), A(ω − ω∗

Ĵ
)〉 ≤ −λA

2

∥∥∥ω − ω∗
Ĵ

∥∥∥2

2
.

Our assumptions should also guarantee that, for any Ĵ ≤ Rmax, ‖ω∗
Ĵ
‖2 is uniformly

upper bounded by some positive constant Cω. To see this, first note that ‖ω∗
Ĵ
‖2 =

‖A−1b(Ĵ)‖2. For an n×m matrix A, its spectral norm (or induced l2 norm) is defined

as ‖A‖2 = supx 6=0
‖Ax‖2
‖x‖2 . This means that ‖Ax‖2 ≤ ‖A‖2‖x‖2, for any vector x ∈ Rm.

For us, this means that ‖A−1b(Ĵ)‖2 ≤ ‖A−1‖2‖b(Ĵ)‖2 ≤ Cb
σ̄ := Cω, where we denote by

σ̄ the smallest singular value of A, and the last inequality follows by Assumption 5.5
and Lemma A.1.

As for the actor analysis, we are ideally interested in finding an optimal policy (i.e. a
parameter vector θ that maximizes8 η(θ)). However, since η(θ) is, in general, a non-
concave function of θ, we do not expect, in general, that we reach a global maximum
using a gradient ascent algorithm. Instead of a global optimum, we strive to reach a

stationary point of η(θ), and the goal of the analysis is thus to bound E
[∥∥∇η(θT̂ )

∥∥2

2

]
in terms of the number of used samples. Crucial to the analysis of the actor is for the
gradient of η(θ) to be Lipschitz continuous. That is, for any θ1, θ2 ∈ Rdθ , there exists a

5Note that Ĵ is not a fixed value, it is a random variable whose randomness comes from the
sampling process that is used to learn it.

6For an m×n matrix X, its Frobenius norm [43] is defined as ‖X‖F :=
√∑m

i=1

∑n
j=1|aij |2 =√∑min{m,n}

i=1 σ2
i (A), where σi(A) are the singular value of A.

7This can be seen as a consequence of Lemmas 1 and 3 in [12].
8η(θ) := ηθ.
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real constant Lη ≥ 0 such that

‖∇η(θ1)−∇η(θ2)‖2 ≤ Lη‖θ1 − θ2‖2.

In [11], they (instead of assuming it) prove that this property holds for Jθ given the
assumptions made so far. In Appendix B, we mirror their analysis for our case and
provide proof of the stated property for η, along with other intermediary results. Before
proceeding with the analysis of the critic and actor parts, we first need to adapt the
results from Section 4.3 to obtain bounds in expectation on Ĵ and Ĵ2.

5.3 Analyzing the Monte-Carlo Estimation of the

Expected Return

In Section 4.3, we derived probability bounds on |J − Ĵ | and |J2 − Ĵ2|, where J is
the (normalized) expected return of the policy under evaluation and Ĵ is the Monte-
Carlo estimate of J obtained using Algorithm 3.1. Unfortunately, these bounds are not
directly usable in the analysis to carried out in this chapter since we are deriving bounds
in expectation not in probability. In this section, we adapt the results from Section 4.3 to

bound the two quantities E
[(
J − Ĵ

)2
]

and E
[(
J2 − Ĵ2

)2
]
. The following proposition

provides the first bound. (Note that the proofs in this section rely on quantities defined
in Section 4.3, please refer to the summary at the beginning of that section.)

Proposition 5.1. Suppose, for a given policy, an estimate Ĵ is obtained using Algorithm
3.1, and that Assumption 5.1.i holds, then we have

E
[(
J − Ĵ

)2
]
≤ γ2TJR2

max +
R2

max

L
.

Proof. We begin with a bias-variance decomposition:

E
[(
J − Ĵ

)2
]

= E
[(
J − E[Ĵ ] + E[Ĵ ]− Ĵ

)2
]

= E
[
(J − E[Ĵ ])2

]
+ E

[(
E[Ĵ ]− Ĵ

)2
]

=
(
J − E[Ĵ ]

)2
+ V ar(Ĵ),

where the second equality holds since 2
(
J − E[Ĵ ]

)
E
[(

E[Ĵ ]− Ĵ
)]

= 0. For the bias

term, we know from Lemma 4.3 that∣∣∣J − E[Ĵ ]
∣∣∣ ≤ γTJRmax.

Thus,
(
J − E[Ĵ ]

)2
≤ γ2TJR2

max. As for the variance, since Ĵ is a sample mean of

G0, ..., GL−1, then V ar(Ĵ) = ζ2
L . Combining both terms and applying Lemma 4.2, we
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get

E
[(
J − Ĵ

)2
]
≤ γ2TJR2

max +
ζ2

L
≤ γ2TJR2

max +
R2

max

L
.

The next proposition provides a bound on the expected squared difference between Ĵ2

and J2.

Proposition 5.2. Suppose, for a given policy, an estimate Ĵ is obtained using Algorithm
3.1, and that Assumption 5.1.i holds, then we have

E
[(
J2 − Ĵ2

)2
]
≤ 4R4

maxγ
2TJ + 4R2

max

ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

≤ 4R4
maxγ

2TJ +R4
max

(
4

L
+

7

L2
+

5

L3

)
.

Proof. We, again, start with a bias-variance decomposition:

E
[(
J2 − Ĵ2

)2
]

= E
[(
J2 − E

[
Ĵ2
]

+ E
[
Ĵ2
]
− Ĵ2

)2
]

= E
[(
J2 − E

[
Ĵ2
])2
]

+ E
[(

E
[
Ĵ2
]
− Ĵ2

)2
]

=
(
J2 − E

[
Ĵ2
])2

+ V ar(Ĵ2).

For the bias term, similar to what we did in Lemma 4.4, we have that∣∣∣J2 − E[Ĵ2]
∣∣∣ =

∣∣∣∣J2 − E[Ĵ ]2 − ζ2

L

∣∣∣∣
≤
∣∣∣J2 − E[Ĵ ]2

∣∣∣+
ζ2

L

=
∣∣∣(G0:TJ−1 +GTJ :∞)2 −G2

0:TJ−1

∣∣∣+
ζ2

L

=
∣∣GTJ :∞(2G0:TJ−1 +GTJ :∞)

∣∣+
ζ2

L

≤ γTJRmax

(
2(1− γTJ )Rmax + γTJRmax

)
+
ζ2

L

= γTJ (2− γTJ )R2
max +

ζ2

L

≤ 2γTJR2
max +

ζ2

L
.

Thus, (
J2 − E

[
Ĵ2
])2
≤
(

2γTJR2
max +

ζ2

L

)2

= 4γ2TJR4
max + 4γTJR2

max

ζ2

L
+
ζ2

2

L2
.



5.4 Critic’s Analysis 69

For the variance, we apply Lemma 4.5:

V ar(Ĵ2) = 4G
2
0:TJ−1

ζ2

L
+

2ζ2
2 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ2

2

L3
.

Putting everything together, we have

E
[(
J2 − Ĵ2

)2
]

≤ 4γ2TJR4
max + 4γTJR2

max

ζ2

L
+
ζ2

2

L2

+ 4G
2
0:TJ−1

ζ2

L
+

2ζ2
2 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ2

2

L3

≤ 4γ2TJR4
max + 4(G

2
0:TJ−1 + γTJR2

max)
ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

≤ 4γ2TJR4
max + 4R2

max((1− γTJ )2 + γTJ )
ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

= 4γ2TJR4
max + 4R2

max(1 + γ2TJ − γTJ )
ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

≤ 4γ2TJR4
max + 4R2

max

ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3
.

Furthermore, we can apply Lemma 4.2 and get

E
[(
J2 − Ĵ2

)2
]
≤ 4γ2TJR4

max +
4R4

max

L
+

3R4
max + 4R4

max

L2
+

2R4
max + 3R4

max

L3

= 4γ2TJR4
max +

(
4

L
+

7

L2
+

5

L3

)
R4

max.

Compared to the bounds in Section 4.3, the bounds in this section are concerned with
the squares of the quantities |J − Ĵ | and |J2 − Ĵ2|. This explains the bigger constants
(e.g. R4

max instead of R2
max) present in the derived bounds.

5.4 Critic’s Analysis

In this section we derive the convergence rate of the critic (Algorithm 5.2) to the TD
fixed point ω∗J , where J is the true (normalized) expected return of the policy under
evaluation. In our proof, we will, naturally, use the critic bound of [11] for the risk-
neutral case9. We will not reiterate their proof here, but we can briefly mention the
main idea of their approach. Suppose we are at iteration t+ 1 of the critic’s algorithm,
they start by bounding10 E[‖ωt+1−ω∗‖22] in terms of the expected error at the previous
iteration (i.e. E[‖ωt − ω∗‖22]) and the expected11 value of the squared norm of the

9Note that the risk-neutral case is a special case of our setting when λ is set to zero.
10Note that opposite to [11], we use ω for the parameters of the critic and θ for the parameters

of the policy. This is done to keep the notation consistent with the previous chapters.
11Note that the performed updates are random due to the stochasticity of the sampling pro-

cess.
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difference between the performed update from ωt to ωt+1 and its expected value at
steady state. The latter quantity is then bounded in terms of the mixing properties of
the MDP (see Assumption 5.4), the mini-batch size M , and again, E[‖ωt − ω∗‖22]. By
recursively repeating the same analysis on E[‖ωt − ω∗‖22] and the resulting terms, they
obtain the following bound (under some conditions that we will mention later on the
mini-batch size and the step-size):

E[‖ωTc−ω∗‖22] ≤
(

1− λA
8
β

)Tc
‖ω0−ω∗‖22+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM
.

The first term, which depends on the initial value of the parameter vector, decays
geometrically with the number of iteration. The second term decays with a rate of 1

M ,
where M is the size of the mini-batch of samples used at each iteration. Note that the
step-size is kept constant across the iterations.

As we discussed before, for the reward transformation performed using any fixed esti-
mate Ĵ of the expected return, we can directly use the bound above to establish the
convergence rate to the TD fixed point under the this reward transformation (i.e. to
ω∗
Ĵ
). The next theorem uses this idea, along with (among other things) the bounds in

Section 5.3, to establish the convergence rate of the critic to the true fixed point ω∗J (i.e.

under the true reward transformation) when Ĵ is learned using Algorithm 3.1.

Theorem 5.1 (Critic’s Bound). Suppose Assumptions 5.1 to 5.5 hold, and suppose we
are given a policy πθ (with normalized expected return J) and risk parameter λ. Suppose
that a Monte-Carlo estimate Ĵ is obtained for πθ using Algorithm 3.1, and then plugged

into the Algorithm 5.2 which is run for Tc steps. Then, for M ≥
(

2
λA

+ 2β
)

192C2
A[1+(κ−1)ρ]

(1−ρ)λA

and β ≤ min
{

λA
8C2

A
, 4
λA

}
, we have that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖

2
2

(
1− λA

8
β

)Tc
+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
2

σ̄2

[
1 + 2

(
1− λA

8
β

)Tc]
ξJ ,

where ωĴTc is the parameter vector obtained after Tc iterations of the algorithm while

using Ĵ to perform the reward transformation, ξJ := 2λ2R4
max

(
8γ2TJ + 8

L + 7
L2 + 5

L3

)
,

σ̄ is the smallest singular value of the matrix A, and the expectation is over both the
Monte-Carlo estimation of Ĵ and the TD algorithm.

Proof. We begin by adding and subtracting ω∗
Ĵ
, which is the TD fixed point when using

Ĵ . Note that, at this point, ω∗
Ĵ

is a random variable due to its dependence on Ĵ .

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
= E

[∥∥∥ωĴTc − ω∗Ĵ + ω∗
Ĵ
− ω∗J

∥∥∥2

2

]
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≤ 2E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

]
+ 2E

[∥∥∥ω∗
Ĵ
− ω∗J

∥∥∥2

2

]
. (5.6)

where the inequality follows from Lemma A.2.ii. Focusing on the first term, we have

E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

]
= E

[
E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

∣∣∣∣Ĵ]]. (5.7)

For the inner expectation, as remarked before, we can apply the risk-neutral bound from

theorem 4 in [11]. Namely for M ≥
(

2
λA

+ 2β
)

192C2
A[1+(κ−1)ρ]

(1−ρ)λA
and β ≤ min

{
λA

8C2
A
, 4
λA

}
,

we have

E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

∣∣∣∣Ĵ]
≤
(

1− λA
8
β

)Tc∥∥∥ω0 − ω∗Ĵ
∥∥∥2

2
+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM
.

Note that ‖ω0 − ω∗Ĵ‖
2
2 is only part that depends on Ĵ in the previous bound. Plugging

back in (5.7), we get that

E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

]
≤
(

1− λA
8
β

)Tc
E
[∥∥∥ω0 − ω∗Ĵ

∥∥∥2

2

]
+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

≤
(

1− λA
8
β

)Tc
E
[∥∥∥ω0 − ω∗J + ω∗J − ω∗Ĵ

∥∥∥2

2

]
+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

≤ 2

(
1− λA

8
β

)Tc
‖ω0 − ω∗J‖

2
2 +

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+ 2

(
1− λA

8
β

)Tc
E
[∥∥∥ω∗

Ĵ
− ω∗J

∥∥∥2

2

]
,

where the last inequality again follows from Lemma A.2.ii. Plugging back in (5.6), we
get that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4

(
1− λA

8
β

)Tc
‖ω0 − ω∗J‖

2
2 +

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+

[
2 + 4

(
1− λA

8
β

)Tc]
E
[∥∥∥ω∗

Ĵ
− ω∗J

∥∥∥2

2

]
.

(5.8)

Thus, we only need to bound E
[∥∥∥ω∗

Ĵ
− ω∗J

∥∥∥2

2

]
. We proceed as follows:

E
[∥∥∥ω∗

Ĵ
− ω∗J

∥∥∥2

2

]
= E

[∥∥∥A−1b(J)−A−1b(Ĵ)
∥∥∥2

2

]
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= E
[∥∥∥A−1

(
b(J)− b(Ĵ)

)∥∥∥2

2

]
≤ 1

σ̄2
E
[∥∥∥b(J)− b(Ĵ)

∥∥∥2

2

]
, (5.9)

where σ̄ is the smallest singular value of A, and the last inequality holds since, as
demonstrated before, for an m× n matrix X and a vector y ∈ Rn, ‖Xy‖22 ≤ ‖X‖

2
2‖y‖

2
2,

where ‖X‖2 is the spectral norm of X. Furthermore, we used that, by Lemma A.1,∥∥A−1
∥∥

2
= 1

σ̄ . Moving on, recall that µθ is the stationary distribution of the MDP when
using policy πθ. We then have that

E
[∥∥∥b(J)− b(Ĵ)

∥∥∥]2

2

= E

[∥∥∥∥Eµθ[φ(st)R
λ(st, at, J)

]
− E
µθ

[
φ(st)R

λ(st, at, Ĵ)
]∥∥∥∥2

2

]

= E

[∥∥∥∥Eµθ[φ(st)
(
Rλ(st, at, J)−Rλ(st, at, Ĵ)

)]∥∥∥∥2

2

]

= E

[∥∥∥∥Eµθ[φ(st)
(

2λR(st, at)
(
J − Ĵ

)
+ λ

(
Ĵ2 − J2

))]∥∥∥∥2

2

]

= E

[∥∥∥∥2λ
(
J − Ĵ

)
E
µθ

[φ(st)R(st, at)] + λ
(
Ĵ2 − J2

)
E
µθ

[φ(st)]

∥∥∥∥2

2

]

≤ E

[
2

∥∥∥∥2λ
(
J − Ĵ

)
E
µθ

[φ(st)R(st, at)]

∥∥∥∥2

2

+ 2

∥∥∥∥λ(Ĵ2 − J2
)
E
µθ

[φ(st)]

∥∥∥∥2

2

]

= 8λ2 E

[(
J − Ĵ

)2
∥∥∥∥Eµθ[φ(st)R(st, at)]

∥∥∥∥2

2

]
+ 2λ2 E

[(
Ĵ2 − J2

)2
∥∥∥∥Eµθ[φ(st)]

∥∥∥∥2

2

]

≤ 8λ2R2
max E

[(
J − Ĵ

)2
]

+ 2λ2 E
[(
Ĵ2 − J2

)2
]
, (5.10)

where the first inequality follows from Lemma A.2, and the last inequality follows (keep-
ing in mind Assumptions 5.1.i, 5.2, and 5.3) since∥∥∥∥Eµθ[φ(st)R(st, at)]

∥∥∥∥2

2

≤ E
µθ

[
‖φ(st)R(st, at)‖22

]
≤ R2

max,

and ∥∥∥∥Eµθ[φ(st)]

∥∥∥∥2

2

≤ E
µθ

[
‖φ(st)‖22

]
≤ 1.

Now, we can plug the results of Propositions 5.1 and 5.2 in inequality (5.10) to get

E
[∥∥∥b(J)− b(Ĵ)

∥∥∥]2

2
≤ 8λ2R2

max E
[(
J − Ĵ

)2
]

+ 2λ2 E
[(
Ĵ2 − J2

)2
]

≤ 8λ2R2
max

(
γ2TJR2

max +
R2

max

L

)
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+ 2λ2

(
4γ2TJR4

max +

(
4

L
+

7

L2
+

5

L3

)
R4

max

)
= 8λ2γ2TJR4

max +
8λ2

L
R4

max

+ 8λ2γ2TJR4
max + 2λ2

(
4

L
+

7

L2
+

5

L3

)
R4

max

= 16λ2γ2TJR4
max + 2λ2

(
8

L
+

7

L2
+

5

L3

)
R4

max.

Plugging back in (5.9), we get

E
[∥∥∥ω∗

Ĵ
− ω∗J

∥∥∥2

2

]
≤ 2λ2

σ̄2

(
8γ2TJR4

max +

(
8

L
+

7

L2
+

5

L3

)
R4

max

)
=
ξJ
σ̄2
,

where ξJ := 2λ2R4
max

(
8γ2TJ + 8

L + 7
L2 + 5

L3

)
. We can now plug back the last result into

(5.8) to get

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖

2
2

(
1− λA

8
β

)Tc
+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
2

σ̄2

[
1 + 2

(
1− λA

8
β

)Tc]
ξJ .

Note that the first two terms of the bound are (up to constants) the risk-neutral bound
of [11]. The third term contains ξJ , which quantifies the inaccuracy of Ĵ , and decays by
increasing L and TJ . By further inspecting the third term, we can see that ξJ appears
once on its own and once multiplied by a term that decays as the number of iterations
of the critic increase. Another important thing to notice is that our assumption that
Ĵ is learned using different samples than the ones collected by the critic is crucial for
directly using the bound of [11] when fixing Ĵ (as in 5.7). This is because otherwise,
the distribution of the performed updates of the critic differs when knowing Ĵ , and
the analysis of [11] is no longer applicable. The following corollary provides a detailed
derivation of the sample complexity of the critic.

Corollary 5.1.1 (Critic’s Complexity). Suppose we are again in the same setting of
Theorem 5.1, and suppose the assumptions mentioned therein hold. Then, for a suffi-

ciently small ε > 0, if β ≤ min
{

λA
8C2

A
, 4
λA

}
, TJ ≥

log

(
192λ2R4

max
εσ̄2

)
2(1−γ) , and L ≥ 576λ2R4

max
εσ̄2 ,

Tc ≥
8 log

(
24
ε ‖ω0−ω∗J‖

2

2

)
λAβ

, M ≥
(

2
λA

+ 2β
)

2304(C2
AC

2
ω+C2

b )[1+(κ−1)ρ]

(1−ρ)λAε
, then

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ ε,
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and the total sample complexity is

TcM + LTJ = O
(
ε−1 log

(
ε−1
))
.

Proof. By expanding and rearranging the bound in Theorem 5.1, we have that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖

2
2

(
1− λA

8
β

)Tc
+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
32λ2R4

max

σ̄2
γ2TJ

+
4λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
+

64λ2R4
max

σ̄2
γ2TJ

(
1− λA

8
β

)Tc
+

8λ2R4
max

σ̄2

(
8

L
+

7

L2
+

5

L3

)(
1− λA

8
β

)Tc
.

Note that
(

1− λA
8 β
)Tc
≤ e−

λA
8
βTc . This holds since (1− x) ≤ e−x, and if x ≤ 1, then

(1−x)r ≤ e−rx for r ≥ 0. The claim then follows since β < 8
λA

and Tc ≥ 0. By a similar

argument, γ2TJ = (1− (1− γ))2TJ ≤ e−2(1−γ)TJ . Plugging back these bounds, we get

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖

2
2 e
−λA

8
βTc

+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
32λ2R4

max

σ̄2
e−2(1−γ)TJ

+
4λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
+

64λ2R4
max

σ̄2
e−2(1−γ)TJ e−

λA
8
βTc

+
8λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
e−

λA
8
βTc .

To bound the whole expression by ε, we can bound each of the six terms by ε
6 . This

can be achieved for each term if

Term 1

Tc ≥
8 log

(
24
ε ‖ω0 − ω∗J‖

2
2

)
λAβ
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Term 2

M ≥
(

2

λA
+ 2β

)
2304(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAε

Term 3

TJ ≥
log
(

192λ2R4
max

εσ̄2

)
2(1− γ)

Term 4

L ≥ max

{
576λ2R4

max

εσ̄2
,

√
504λ2R4

max

εσ̄2
,

3

√
360λ2R4

max

εσ̄2

}

Term 5

Tc ≥
8 log

(√
6√
ε

)
λAβ

, TJ ≥
log
(

64
√

6λ2R4
max√

εσ̄2

)
2(1− γ)

Term 6

Tc ≥
8log

(√
6√
ε

)
λAβ

, L ≥ max

192
√

6λ2R4
max√

εσ̄2
,

√
168
√

6λ2R4
max√

εσ̄2
,

3

√
120
√

6λ2R4
max√

εσ̄2


Note that there are multiple conditions on some parameters. However, if ε is sufficiently

small, it is enough that Tc ≥
8 log

(
24
ε ‖ω0−ω∗J‖

2

2

)
λAβ

, M ≥
(

2
λA

+ 2β
)

2304(C2
AC

2
ω+C2

b )[1+(κ−1)ρ]

(1−ρ)λAε
,

TJ ≥
log

(
192λ2R4

max
εσ̄2

)
2(1−γ) , and L ≥ 576λ2R4

max
εσ̄2 . Thus, the sample complexity is given by

TcM + LTJ = O
(

1

ε
log

(
1

ε

))
+O

(
1

ε
log

(
1

ε

))
= O

(
1

ε
log

(
1

ε

))
.

The previous corollary essentially implies that the sample complexity of our risk-averse
critic is not worsened compared to its risk-neutral counterpart, even though we are using
an extra batch of samples to estimate the expected return. It is an interesting direction
to investigate how the complexity will be affected if the mini-batch TD procedure used
the same batch of data that was used to estimate the expected return.

5.5 Actor’s Analysis

In this section, we move over to analyzing the actor procedure in Algorithm 5.1. Since
the actor relies on the critic for the estimation of the gradient, the convergence of
the actor to a stationary point of ηθ naturally relies on the accuracy of the critic.
Undoubtedly then, the results of the previous section will be utilized in the analysis of
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the actor. However, the analysis of the last section was only concerned with how far the
critic was from the TD fixed point. We will thus need an additional notion to describe
the approximation error incurred due to not only using a linear function, but also for
using the semi-gradient TD algorithm, whose fixed point is, in general, different from
the best approximation in our space of candidate function (as discussed in Subsection
2.1.2). Thus, we define the following quantity

ξappr := max
θ∈Rdθ

E
s∼dµ0,πθ

(·)

[∣∣∣V λ
πθ

(s)− φ(s)ᵀω∗Jθ

∣∣∣2],
which represents, for the worst possible policy, the mean squared error, over the dis-
counted state distribution, between the true transformed value function and the ap-
proximated transformed value function at the TD fixed point.

Remember that our aim is to bound E
[∥∥∇η(θT̂ )

∥∥2

2

]
. To do this, we will extend the

analysis in [11] to our risk-averse case. We first define the following quantities, which
will help us in the analysis:

• the TD-error12 δω(s, a, s′) = Rλ(s, a, J) + γφ(s′)>ω − φ(s)>ω which employs the
exact expected return J ;

• the approximated TD-error δ̂ω(s, a, s′) = Rλ(s, a, Ĵ) + γφ(s′)>ω − φ(s)>ω which
employs, instead, the the Monte-Carlo current estimate of the expected return Ĵ ;

• vt(ω, θ) = 1
B

∑B−1
i=0 δω(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i), which would have been the es-

timated gradient at time t (using a critic with parameters ω) if we had access to
the true Jθ;

• v̂t(ω, θ) = 1
B

∑B−1
i=0 δ̂ω(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i), which is the estimated gradient

at time t (using a critic with parameters ω) based on Ĵ ;

• Aω(s, a) = Es′∼P (·|s,a)[δω(s, a, s′)], which is the expected value of the TD-error δω
at a given state-action pair when the next state is sampled from the transition
kernel of the original MDP;

• g(ω, θ) = Es∼dµ0,πθ
(·)

a∼πθ(·|s)
[Aω(s, a)ψθ(s, a)], which is the expectation of the estimated

gradient when using a critic with parameter vector ω.

Next, we prove two propositions, which will be combined to bound the expectation on
the gradient norm.

Proposition 5.3. Suppose Assumptions 5.1 to 5.5 hold, then:(α
2
− 2Lηα

2
)
‖∇η(θt)‖22 ≤ η(θt+1)− η(θt) +

(α
2

+ 2Lηα
2
)
‖v̂t(ωt, θt)−∇η(θt)‖22.

12Note that the δω(s, a, s′) and δ̂ω(s, a, s′) do depend on the current policy since they depend
on its expected return, or an estimate of it. However, we do not explicitly express this dependence
as to not burden the notation since it is usually clear from the context.
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Proof. By applying the Mean-Value Theorem, for some 0 ≤ ∆ ≤ 1 there is some
θ̃ = ∆θt + (1−∆)θt+1 such that:

η(θt+1) = η(θt) + (θt+1 − θt)>∇η(θ̃) = η(θt) + (θt+1 − θt)>∇η(θ̃)± (θt+1 − θt)>∇η(θt)

= η(θt) + (θt+1 − θt)>
(
∇η(θ̃)−∇η(θt)

)
+ (θt+1 − θt)>∇η(θt).

By using Cauchy-Schwarz we also have:

(θt+1 − θt)>
(
∇η(θ̃)−∇η(θt)

)
≥ −‖θt+1 − θt‖2‖∇η(θ̃)−∇η(θt)‖2

≥ −Lη‖θt+1 − θt‖2‖θ̃ − θt‖2
≥ −Lη‖θt+1 − θt‖22

where we also used that the gradient of η is Lipschitz (Lemma B.4).

We exploit this relationship in the previous equation, together with the definition of the
policy parameters update:

η(θt+1) ≥ η(θt)− Lη‖θt+1 − θt‖22 + (θt+1 − θt)>∇η(θt)

= η(θt)− α2Lη‖v̂t(ωt, θt)‖22 + αv̂t(ωt, θt)
>∇η(θt)

= η(θt)− α2Lη‖v̂t(ωt, θt)±∇η(θt)‖22 + α〈v̂t(ωt, θt)±∇η(θt),∇η(θt)〉
(1)

≥ η(θt)− 2α2Lη‖∇η(θt)‖22 − 2α2Lη‖v̂t(ωt, θt)−∇η(θt)‖22+

+ α‖∇η(θt)‖22 + α〈v̂t(ωt, θt)−∇η(θt),∇η(θt)〉
(2)

≥ η(θt)− 2α2Lη‖∇η(θt)‖22 − 2α2Lη‖v̂t(ωt, θt)−∇η(θt)‖22+

+ α‖∇η(θt)‖22 −
α

2
‖v̂t(ωt, θt)−∇η(θt)‖22 −

α

2
‖∇η(θt)‖22,

where in the last two steps we used, respectively, Lemma A.2.ii and Lemma A.2.i in (1)
and (2). By re-ordering terms we obtain the desired result.

The last term in the bound of the last proposition represents how far the estimated
gradient is from the true one. Mirroring [11], the next proposition bounds the expected
value of this quantity.

Proposition 5.4. Suppose Assumptions 5.1 to 5.5 hold, and let Ft be the filtration on
the samples up to iteration t:

E
[
‖v̂t(ωt, θt)−∇η(θt)‖22|Ft

]
≤

24(Rλ,max + 2Cω)2[1 + (k − 1)ρ]

B(1− ρ)

+ 48λ2R2
max E

[
|J − Ĵ |2|Ft

]
+ 12λ2 E

[
|Ĵ2 − J2|2|Ft

]
+ 24‖ω∗Jt − ωt‖

2
2 + 12 ξappr,

where Jt is short for Jπθt , and ω∗Jt is the TD fixed point for the transformed value
function of policy πθt.
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Proof. Consider ‖v̂t(ωt, θt)−∇η(θt)‖22, we can decompose it in the following way (fol-
lowed by an application of Lemma A.2.ii):

‖v̂t(ωt, θt)−∇η(θt)‖22
=
∥∥v̂t(ωt, θt)± vt(ω∗Jt , θt)± g(ω∗Jt , θt)−∇η(θt)

∥∥2

2

≤ 3
∥∥v̂t(ωt, θt)− vt(ω∗Jt , θt)∥∥2

2︸ ︷︷ ︸
(a)

+3
∥∥vt(ω∗Jt , θt)− g(ω∗Jt , θt)

∥∥2

2
+ 3

∥∥g(ω∗Jt , θt)−∇η(θt)
∥∥2

2︸ ︷︷ ︸
(b)

.

(5.11)

We now focus on (a):∥∥v̂t(ωt, θt)− vt(ω∗Jt , θt)∥∥2

2

=

∥∥∥∥∥ 1

B

B−1∑
i=0

ψθt(st,i, at,i)
[
δ̂ωt(st,i, at,i, s

′
t,i+1)− δω∗Jt (st,i, at,i, s

′
t,i+1)

]∥∥∥∥∥
2

2

≤ 1

B

B−1∑
i=0

‖ψθt(st,i, at,i)‖
2
2︸ ︷︷ ︸

≤Cψ=1

∣∣∣δ̂ωt(st,i, at,i, s′t,i+1)− δω∗Jt (st,i, at,i, s
′
t,i+1)

∣∣∣2

≤ 1

B

B−1∑
i=0

∣∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J) + γ
(
φ(s′t,i+1)>ωt − φ(s′t,i+1)>ω∗Jt

)
+

+
(
φ(st,i)

>ω∗Jt − φ(st,i)
>ωt

) ∣∣∣∣2
(1)

≤ 1

B

B−1∑
i=0

2
∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J)

∣∣∣2 + 2
∣∣∣(γφ(s′t,i+1)− φ(st,i))

>(ωt − ω∗Jt)
∣∣∣2

(2)

≤ 1

B

B−1∑
i=0

2
∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J)

∣∣∣2 + 8
∥∥ω∗Jt − ωt∥∥2

2

(3)
=

1

B

B−1∑
i=0

2λ2
∣∣∣2R(st,i, at,i)(J − Ĵ) + Ĵ2 − J2

∣∣∣2 + 8
∥∥ω∗Jt − ωt∥∥2

2

(4)

≤16λ2R2
max|J − Ĵ |2 + 4λ2|Ĵ2 − J2|2 + 8‖ω∗Jt − ωt‖

2
2.

where (1) is an application of Lemma A.2.ii, (2) is due to Cauchy–Schwarz, Lemma
A.2.ii, and Assumption 5.3.ii, (3) to definition of Rλ, and in (4) Lemma A.2.ii is applied
again.

We can then exploit results from Theorem 5 in [11], to bound (b) as:∥∥g(ω∗Jt , θt)−∇η(θt)
∥∥2

2
≤ 4ξappr.

Substituting back to inequality (5.11) and taking the expectation w.r.t. the filtration
Ft, we get:

E
[
‖v̂t(ωt, θt)−∇η(θt)‖22|Ft

]
≤ 3E

[
‖vt(ω∗, θt)− g(ω∗, θt)‖22|Ft

]
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+ 48λ2R2
max E

[
|J − Ĵ |2|Ft

]
+ 12λ2 E

[
|Ĵ2 − J2|2|Ft

]
+ 24‖ω∗Jt − ωt‖

2
2 + 12 ξappr.

To bound the conditional expectation on the RHS, we follow again the proof in [11] to
have:

E
[
‖vt(ω∗, θt)− g(ω∗, θt)‖22|Ft

]
≤

8(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
. (5.12)

Theorem 5.2 (Actor’s Bound). Suppose Assumptions 5.1 to 5.5 hold and let α = 1
8Lη

,
then we have:

E
[∥∥∇η(θT̂ )

∥∥2

2

]
≤

64LηRλ,max

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[‖ω∗Jt − ωt‖

2
2]

T
+ 36ξappr,

where

ξdistr :=
72(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
.

Proof. Taking the conditioned expectation on the result of Proposition 5.3 and plugging
what we obtained with Proposition 5.4 we obtain the following:(α

2
− 2Lηα

2
)
E
[
‖∇η(θt)‖22|Ft

]
≤ E [η(θt+1)| Ft]]− η(θt) +

(α
2

+ 2Lηα
2
)[24(Rλ,max + 2Cω)2[1 + (k − 1)ρ]

B(1− ρ)
+

+ 48λ2R2
max E

[
|J − Ĵ |2|Ft

]
+ 12λ2 E

[
|Ĵ2 − J2|2|Ft

]
+ 24‖ω∗Jt − ωt‖

2
2 + 12 ξappr

]
≤ E [η(θt+1)| Ft]]− η(θt) +

(α
2

+ 2Lηα
2
)[24(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
+

+ 48λ2R2
max

(
γ2TJR2

max +
R2

max

L

)
+ 12λ2

(
4γ2TJR4

max +

(
4

L
+

7

L2
+

5

L3

)
R4

max

)
+

+ 24‖ω∗Jt − ωt‖
2
2 + 12 ξappr

]
,

We let α = 1
8Lη

and we multiply both sides by 32Lη to get:

E
[
‖∇η(θt)‖22|Ft

]
≤ 32Lη (E [η(θt+1)|Ft]]− η(θt)) + ξdistr + 18ξJ

+ 72‖ω∗Jt − ωt‖
2
2 + 36ξappr,

with

ξdistr :=
72(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
,
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which bounds the variance of the mini-batch estimate of the gradient if the critic was
at the TD fixed point, while ξJ , the error arising from the expected return estimation,
has been already defined in Theorem 5.1.

We take the expectation w.r.t. Ft to both sides to yield:

E
[
‖∇η(θt)‖22

]
≤ 32Lη(E [η(θt+1)]− E [η(θt)]) + ξdistr + 18ξJ

+ 72E[‖ω∗Jt − ωt‖
2
2] + 36ξappr.

Taking the summation of the last result over t = 0, . . . , T − 1 and dividing both sides
by T gives:

E
[∥∥∇η(θT̂ )

∥∥2

2

]
=

1

T

T−1∑
t=0

E
[
‖∇η(θt)‖22

]
≤ 32Lη

E [η(θT )]− η(θ0)

T
+ ξdistr + 18ξJ

+ 72

∑T−1
t=0 E[‖ω∗Jt − ωt‖

2
2]

T
+ 36ξappr

≤
64LηRλ,max

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[‖ω∗Jt − ωt‖

2
2]

T
+ 36ξappr.

The bound in Theorem 5.2 is made up of five terms. The first is an error term that decays
as the number of actor iterations increases. The second term represents, as mentioned
before, the error due to the variance of the mini-batch estimate of the gradient if the
critic was at the TD fixed point, and it decays by increasing the mini-batch size. The
third term represents the error due to the inaccuracy of the estimated expected return
(Ĵ), and it decays by increasing L and TJ . The fourth term is the average (across
iterations) of how far we expect the critic to be from the TD fixed point. Lastly, the
fifth term is the only irreducible one as it expresses the approximation error due to
using temporal difference with linear function approximation in the critic. Compared
to the bound in [11], our bound assumes a similar form (albeit some of the quantities
are naturally defined differently in our setting), except for the addition of the ξJ term.
The following corollary derives the sample complexity of Algorithm 5.1.

Corollary 5.2.1 (Actor’s Complexity). Suppose we are in the same setting of Theo-
rem 5.2, and assume that the parameters used in the critic are conditioned as to make

E
[∥∥ωt − ω∗Jt∥∥2

2

]
≤ ε

360 for all t = 0, . . . , T − 1. Then, if additionally

• T ≥ 320Lη(Rmax+4λR2
max)

ε ,

• B ≥ 360((Rmax+4λR2
max)+2Cω)2(1+(k−1)ρ)
(1−ρ)ε ,

• TJ ≥
log

(
1440λ2R4

max
ε

)
2(1−γ) ,
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• L ≥ 3600λ2R4
max

ε ,

we have that
E
[∥∥∇η(ωT̂ )

∥∥2

2

]
≤ ε+O(ξappr),

with the total sample complexity given by:

T ((2− γ)B +MTc + LTJ) = O
(
ε−2 log

(
ε−1
))
.

Proof. In order to compute the different contributions to sample complexity, we will
split the error bound obtained in Theorem 5.2 in its components. We then bound the
components in the following way:

• 64Lη(Rmax+4λR2
max)

T ≤ ε1,

• 72(Rmax+4λR2
max+2Cω)2(1+(k−1)ρ)
B(1−ρ) ≤ ε2,

• 288λ2R4
maxγ

2TJ ≤ 288λ2R4
maxe

−2(1−γ)TJ ≤ ε3,

• 36λ2R4
max( 8

L + 7
L2 + 5

L3 )
L>1
≤ 36λ2R4

max(20
L ) ≤ ε4,

• 72

∑T−1
t=0 E[‖ω∗Jt−ωt‖

2
2]

T ≤ ε5,

where we have split 18ξJ in two parts, and we have ignored the approximation error
ξappr, which cannot be reduced with more samples. We set, then, each εi to ε

5 . Rear-
ranging terms in each inequality, we obtain then, by the conditions on the parameters
indicated in the statement13, the desired error. In order to obtain it, the following
sample complexity is needed:

T ((2−γ)B+MTc+LTJ) = O
(

1

ε

(
1

ε
+

1

ε
log

(
1

ε

)
+

1

ε
log

(
1

ε

)))
= O

(
ε−2 log

(
ε−1
))

where the (2 − γ) extra factor is due to the actor sampling process, which needs to
sample twice at each restart, which can happen at each step with probability 1− γ.

This last result shows that, for the whole actor-critic algorithm, the sample complexity
is still not worsened compared to the risk-neutral version. As remarked before, an
interesting direction would be to explore the effects on sample complexity resulting
from adapting different sampling schemes designed to, one way or another, reuse samples
across the different modules of the algorithm.

13And the conditions adapted from Corollary 5.1.1 needed to make E[‖ωt − ω∗Jt‖
2
2] ≤ ε

360
(instead of just ε) for all t = 0, . . . , T − 1.
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Chapter 6

Experiments

In this chapter, we apply some of the proposed algorithms to a simple environment with
the purpose of illustrating the soundness and the performance of the algorithms. The
environment we consider is a chain walk with a reward structure that leads to a trade-
off between optimality in expectation and the variance of the rewards. The purpose of
using this environment is to test both our policy evaluation methods and our actor-critic
algorithm.

The considered chain walk consists of 15 states. At any state, the agent can choose to
move to either the left or the right. With probability 0.85, the agent moves according
to its will (except at the edges, where the state does not change if the agent attempts
to move outside the chain), and with probability 0.15, the agents moves in the opposite
direction. The received reward at each step is a deterministic function of the state.
Figure 6.1 shows a schematic representation of the environment, where the reward asso-
ciated to each state is indicated. This MDP is intended to be executed in a continuing

Figure 6.1: The risky chain walk environment.

manner, not in an episodic one. The central region is intended to be the preferable one
for a risk-neutral agent since the central state gives off a large reward of 10, even though
it surrounded by states that give a reward of -4. The regions a little bit off the center
are in some sense similar to the central region, however they exhibit less variability
between the high reward of 7 and the surrounding rewards of -3 and -4. The extreme
ends of the chain exhibit the least variability of the rewards, although the rewards in
these region are only negative. The initial state distribution µ0 is uniform over the
states. In the following, we will illustrate the performance of our actor critic algorithm
at different values of lambda. Moreover, for a chosen policy (picked during the training
process) at each value of lambda, we illustrate the performance of our policy evaluation
methods.
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6.1 Policy Optimization

We will test our actor-critic algorithm (Algorithm 5.1) in the environment at three
different value of lambda to illustrate the performance at different levels of risk aversion.
Namely we consider lambda = 0, 0.05, 0.07. We will use softmax policies, where the
weight of each action is a linear function of the state. The features we use for the
states are Gaussian radial basis functions with 3 means spread uniformly over the state
space, and a width of 6. The critic is naturally learned according to Algorithm 5.2,
and it uses the same features as the ones used by the policy. We also note that the
learning processes of the expected return, the critic, and the actor all use their own
batch of samples. The following is a summary of the parameters of the problem and
the algorithm:

• Discount factor: γ = 0.9.

• Number of trajectories for estimating J : L = 70.

• Lengths of the trajectories for estimating J : TJ = 70.

• Critic batch size: M = 10.

• Number of critic iterations: Tc = 50.

• Critic step-size: β = 0.1

• Actor batch size: B = 30.

• Number of actor iterations: T = 150.

• Actor step-size: α = 0.05

Risk-Neutral Objective (λ = 0)

At λ = 0, we seek a policy that maximizes J , regardless of the effect on the reward
volatility. Figure 6.2 shows the performance of the actor-critic algorithm in the risk-
neutral case, average over 10 runs. The first figure on the left shows the progress of the
(un-normalized) J when the samples increase (i.e. with more iterations). The second
and the third figures represent, respectively, the progress of the reward volatility and the
mean volatility across the iterations. As expected, the performance (i.e. J) increases as
we use more samples, but this comes at the cost of also increasing the reward volatility.
Note that since λ = 0, the mean volatility is the same as J , however the difference in
scale is because the mean volatility is normalized, while the values we plot for J are
not. We will see an example of how risk-neutral policies act in the next section.

Risk-Averse Objective (λ = 0.05)

We know move to a risk-averse objective by setting λ = 0.05. Figure 6.3 shows the
performance of the actor-critic algorithm for this case, also averaged over 10 runs. We
can see from the figure that the algorithm still achieves higher values of J as the samples
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Figure 6.2: Performance of the actor-critic algorithm in the risky chain walk
environment at λ = 0.

Figure 6.3: Performance of the actor-critic algorithm in the risky chain walk
environment at λ = 0.05.

increase. However, it does not reach the same level of performance of the risk-neutral
version, but it achieves lower reward volatility. We will also show how such policies
act in the environment in the next section. One can notice from the rightmost figure
that the learning progress of the mean volatility is noisier than that of the previous
case.

Risk-Averse Objective (λ = 0.07)

We now increase the value of λ to 0.07, which should increase its sensitivity to risk.
Figure 6.4 shows the performance of the algorithm at this level of risk-aversion, again
averaged over 10 runs. We can see that at this level of risk-aversion, the behaviour
changes dramatically. The algorithm seems to be ready to make big sacrifices on the
expected return for the purpose of keeping the volatility low enough. We also see that
the learning progress of the mean volatility is even noisier than the previous case.

6.2 Policy Evaluation

We now turn to the policy evaluation problem. Here we fix a policy, and attempt to learn
its transformed value function. The nice thing about the risky chain walk environment
is that it is easy to obtain the true value function in closed form. This way, we can assess
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Figure 6.4: Performance of the actor-critic algorithm in the risky chain walk
environment at λ = 0.07.

the learned estimates by comparing them with the true values. For the performance
measure, we use the root mean square error between the learned value function and the
true one, evaluated according to the stationary distribution of the policy. That is, we
consider a performance measure of this form (for the transformed value function):

‖V λ − V̂ λ‖µπ ,

where µπ is the stationary distribution of the policy under evaluation (this kind of norm
was defined in (4.2)). In the following, we adopt LSTD as our policy evaluation method,
both for the direct method (Algorithm 3.3) and the factored one (Algorithm 4.1). The
features we use are also Gaussian radial basis functions like the ones we described in
the previous section, but we use 6 means instead of 3. Also in this section, we use
independent sampling for each of the involved estimates, expect for V and M which are
learned using the same trajectory in Algorithm 4.1. We will consider 3 example policies
that were obtained from the training processes of the last section. These policies are
not optimal, they are specifically chosen to be somewhat exploratory as to facilitate
the presentation of the learning progress. In any case, these policies still convey the
expected behaviour under the considered levels of risk-aversion.

Risk-Neutral Case (λ = 0)

As in the last section, we start with the risk-neutral case. To gain a sense of the
behaviour of the selected policy, Figure 6.5 shows its stationary distribution. We can
see that the policy spends most of its time at the central region, specifically at the
central state, which provides the highest reward.

Since λ = 0, the transformed value function is the same as the normal one, and our
task here is the same as in the risk-neutral policy evaluation case. Figure 6.6 shows
the performance, averaged over 30 runs, of LSTD for this problem. The diagram on
the left shows the progress of the learned value function. The blue function is the true
value function, while the dashed black one is the projection of the true value function
to our space of value functions using the norm induced by the stationary distribution.
In other words, the dashed black function is the best that we can achieve according
to the adopted performance measure. The other functions are the learned ones, which
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Figure 6.5: The stationary distribution of a risk-neutral policy in the risky chain
walk environment.

range from bright green (earliest iterations) to bright red (latest iterations). One can
notice that the prediction accuracy at the extreme states is quite poor. However, since
these states are seldom visited by the policy, and we are evaluating the prediction error
over the stationary distribution, the effect of these states on the performance measure
is quite limited, as evidenced by the projected function itself making poor predictions
at theses states. The diagram on the right shows how the error is reduced by increasing
the length of the (single) trajectory used to learn the value function. The dashed black
line represents the error achieved by the projected function.

Figure 6.6: The performance of risk-neutral policy evaluation using LSTD in the
risky chain walk environment.

Risk-Averse Case (λ = 0.05)

We now move over to the risk-averse case with λ = 0.05. We again consider a policy
obtained during the training process of the actor-critic algorithm in this setting. Figure
6.7 shows the stationary distribution of the chosen policy. We can see that using this
policy, the agent spends the most time in the region around state 10 (which provides a
reward of 7) in which the reward variability is less than the central region. With the
purpose of estimating the transformed value function, we use Algorithm 4.1, and report
its performance, averaged over 20 runs, in Figure 6.8. The reported figure uses the
same notation as the one described for Figure 6.6. It reports the progress of the learned
estimates compared to the true and the projected versions for the value function, the
second moment function, and the transformed value function. Additionally, it shows
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Figure 6.7: The stationary distribution of a risk-averse policy (λ = 0.05) in the
risky chain walk environment.

how the estimation error of each of these functions reduces when the number of samples
increases. Similar figures are also reported for the estimation of the expected return. In
particular, the figure in the left at the third row shows, in black, the estimates of J over
the iterations, and the true value is reported by the horizontal blue line. The figure on
its right shows how the error (measured as the absolute value of the difference between
the true J and the estimated one) decreases as the number of samples increases. We
note here that the length of the trajectories used to estimate J is fixed at 100. Which
means that the only way we increase the number of samples for estimating J is by using
more trajectories. For completeness, we also report in Figure 6.9 the performance,
averaged over 20 runs, when using LSTD to learn the transformed value function using
the direct method (i.e. the scheme in Algorithm 3.3), although no significant difference
in performance is observed.

Risk-Averse Case (λ = 0.07)

Finally, we consider the risk-averse case with λ = 0.07. Considering again a policy
obtained during the training process of the actor-critic algorithm at λ = 0.07, we report
its stationary distribution in Figure 6.10. We can see that, as suggested by the findings of
the previous section, the policy causes the agent (at the cost of receiving mostly negative
rewards) to escape to the extreme ends of the chain, where the reward variability is low.
We report in figure 6.11 the performance, averaged over 30 runs, of Algorithm 4.1 when
used to estimate the transformed value function of the policy in question.
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Figure 6.8: The performance of risk-averse (λ = 0.05) policy evaluation using
Algorithm 4.1 in the risky chain walk environment.

Figure 6.9: The performance of risk-averse (λ = 0.05) policy evaluation using
LSTD with the direct method in the risky chain walk environment.
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Figure 6.10: The stationary distribution of a risk-averse policy (λ = 0.07) in the
risky chain walk environment.

Figure 6.11: The performance of risk-averse (λ = 0.07) policy evaluation using
Algorithm 4.1 in the risky chain walk environment.



Conclusions

In this thesis, the focus was on analyzing the sample complexity of some risk-averse
reinforcement learning algorithms. In particular, we adopted the mean volatility [7] ob-
jective, through which we aim to achieve an adequate balance between maximizing the
standard objective of the expected return and minimizing the reward volatility, which
is the variance of the per-step reward. We considered two different methods for policy
evaluation when adopting the mean volatility objective (i.e. for estimating the trans-
formed value function): the factored method (Algorithm 3.4) and the direct method
(Algorithm 3.3), both of which involve an initial step where we estimate the expected
return of the policy under evaluation (Algorithm 3.1). While the direct method uses this
estimate of the expected return to perform a reward transformation and proceeds as in
the risk-neutral setting, the factored method relies on factorizing the transformed value
function into a number of terms (Namely: the value function V , the second moment
value function M , and the expected return J) that are estimated separately, without
the need to involve the estimated expected return in any reward transformation. We
have seen in Chapter 4 that the factored method allowed us to derive a general tem-
plate for bounding the error on the estimated transformed value function using the error
bounds on the estimates of the terms in its factorization. This allowed us to study the
effect of the estimation error of the expected return (and its square) on the accuracy
of the transformed value function estimate, regardless of the methods we used to esti-
mate V and M . We have then exemplified the use of this template by providing a full
finite-time bound for the factored mean-volatility LSTD algorithm (Algorithm 4.1). A
similar general template is not provided for the direct method since the effect of the er-
ror in the estimate of the expected return on the accuracy of the estimated transformed
value function depends on the adopted risk-neutral policy evaluation method. We then
provided finite-sample analysis for a full actor-critic algorithm (Algorithm 5.1) for opti-
mizing the mean volatility, where the critic (Algorithm 5.2) used the direct method to
estimate the transformed value function. Finally, we tested the proposed algorithms in
a simple chain walk environment to assess their soundness and performance.

One of the main goals of the analysis of any of the mentioned algorithms was to un-
derstand how their sample complexity compares to their risk-neutral counterparts. In
particular, we have seen in the algorithms we analyzed that when the expected return is
estimated using its own batch of data, the sample complexity of the algorithm compared
to its risk-neutral counterpart is worsened only if the sample complexity (in the relevant
sense) of the estimation of the expected reward and its square is worse than that of the
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risk-neutral algorithm. This indeed was the case for the factored mean-volatility LSTD
algorithm, while we were able to achieve the same complexity for the actor-critic algo-
rithm. We have also focused on reusing samples when possible, and understanding the
effect of doing so. In particular, our analysis of the factored method did not prohibit
us from estimating multiple terms using the same data.

Future Work

There are multiple directions for future work, some of which we summarize below:

• One direction is to understand the effect of estimating the expected return and
the transformed value function in the direct method using the same data. For
example, we can study the effect of doing so on our actor-critic algorithm. Al-
though, we have shown that the complexity is not worsened, we still need an extra
batch of samples for estimating J . Thus, it would be interesting to understand
the effect reusing these samples for training the critic or the actor.

• Another direction is to extend the analysis to more advanced methods. In partic-
ular, our use of a simple linear TD critic and a plain actor-critic approach limits
the applicability of the algorithm. Possible extensions include using the natural
actor-critic approach or using more advanced critics that use, for example, neural
networks or regression trees.

• Off-policy approaches are particularly appealing for real-life applications since
they can improve sample efficiency and can limit the exposure of the agent to the
environment during the training phase when a simulated environment is not avail-
able. Thus, extending our analysis to the off-policy setting is another interesting
direction.

• Lastly, we can also consider extending the analysis to other risk measures like
the semi-deviation or the CVaR, which are usually more suitable choices than the
variance as we have discussed before.
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[25] Javier Garćıa, Fern, and o Fernández. A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research, 16(42):1437–1480, 2015.

[26] Sham Kakade and John Langford. Approximately optimal approximate reinforce-
ment learning. In Proceedings of the Nineteenth International Conference on Ma-
chine Learning, ICML ’02, page 267–274, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[27] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1889–1897, Lille, France, 07–09
Jul 2015. PMLR.

[28] Clement Gehring and Doina Precup. Smart exploration in reinforcement learning
using absolute temporal difference errors. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, page
1037–1044, Richland, SC, 2013. International Foundation for Autonomous Agents
and Multiagent Systems.

[29] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on
Stochastic Programming: Modeling and Theory, Second Edition. Society for Indus-
trial and Applied Mathematics, USA, 2014.

[30] Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, and Qiaomin Xie. Risk-
sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret. In
NeurIPS, 2020.

[31] Matthew J. Sobel. The variance of discounted markov decision processes. Journal
of Applied Probability, 19(4):794–802, 1982.

[32] Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance
related risk criteria. In Proceedings of the 29th International Coference on Interna-
tional Conference on Machine Learning, ICML’12, page 1651–1658, Madison, WI,
USA, 2012. Omnipress.

[33] Shie Mannor and John N. Tsitsiklis. Mean-variance optimization in markov decision
processes. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, page 177–184, Madison, WI, USA,
2011. Omnipress.

[34] Aviv Tamar. Risk-sensitive and efficient reinforcement learning algorithms, 2015.

[35] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent
measures of risk. Mathematical Finance, 9(3):203–228, 1999.

[36] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Pol-
icy gradient for coherent risk measures. In C. Cortes, N. Lawrence, D. Lee,



96 BIBLIOGRAPHY

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.

[37] Shangtong Zhang, Bo Liu, and Shimon Whiteson. Mean-variance policy iteration
for risk-averse reinforcement learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(12):10905–10913, May 2021.

[38] Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample
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Appendix A

Auxiliary Lemmas

Lemma A.1. Suppose A is an n× n invertible matrix, then∥∥A−1
∥∥

2
=

1

mini σi
,

where, for a matrix, ‖·‖2 denotes its spectral norm, and σi is the ith singular value of
A.

Proof. (The following proof is due to [44].) By Theorem 4.3 in [45], we have that

min
i
σi = inf

x6=0

‖Ax‖2
‖x‖2

.

And since A is invertible, mini σi > 0. We then have that

1

mini σi
= sup

x 6=0

‖x‖2
‖Ax‖2

= sup
A−1y 6=0

‖A−1y‖2
‖y‖2

= sup
y 6=0

‖A−1y‖2
‖y‖2

= ‖A−1‖2,

where we have made the substitution Ax = y and utilized the fact that A−1y = 0 iff
y = 0 since A is invertible.

Lemma A.2. Consider d real valued vectors a1, . . . , ad ∈ Rn, we have that:

(i) ∀i, j ∈ {1, . . . , d} : |〈ai, bj〉| ≤ 1
2

(
‖ai‖22 + ‖bi‖22

)
.

(ii)
∥∥∥∑d

i=1 ai

∥∥∥2

2
≤ d

∑d
i=1 ‖ai‖

2
2
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Proof. For any i, j we have:

‖ai + aj‖22 = ‖ai‖22+‖aj‖22+2〈ai, aj〉 ≥ 0, and ‖ai − aj‖22 = ‖ai‖22+‖aj‖22−2〈ai, aj〉 ≥ 0,

hence, trivially:

−1

2
‖ai‖22 −

1

2
‖aj‖22 ≤ 〈ai, aj〉, and

1

2
‖ai‖22 +

1

2
‖aj‖22 ≥ 〈ai, aj〉,

which proves (i).

By repeatedly applying (i) to the cross-terms of
∥∥∥∑d

i=1 ai

∥∥∥2

2
, we obtain:

∥∥∥∥∥
d∑
i=1

ai

∥∥∥∥∥
2

2

=

d∑
i=1

‖ai‖22 + 2

d∑
i>j

〈ai, aj〉 ≤
d∑
i=1

‖ai‖22 +

d∑
i>j

(
‖ai‖22 + ‖aj‖22

)
= d

d∑
i=1

‖ai‖22,

since each index is counted d− 1 times in the summation.



Appendix B

Smoothness Proofs

Lemma B.1. Suppose Assumptions 5.1 and 5.4 hold, then ∀ θ1, θ2 ∈ Rdθ , we have

‖dI,θ1(., .)− dI,θ2(., .)‖TV ≤ Cd‖θ1 − θ2‖2,

where Cd := Cπ

(
1 + dlogρκ−1e+ 1

1−ρ

)
, and dI,θ(s, a) := dI,θ(s)π(a|s), where dI,θ(·) is

the (normalized) discounted state distribution when using policy πθ and starting from
I(·), which is an initialization distribution over the states; it can be taken as µ0(.) (the
initial state distribution) or P (.|s′, a′) for any fixed state-action pair (s′, a′).

Proof. See Lemma 3 in [11].

Lemma B.2. Suppose Assumptions 5.1 and 5.4 hold, then ∀ θ1, θ2 ∈ Rdθ , we have

|Jθ1 − Jθ2 | ≤ LJ‖θ1 − θ2‖2,

where LJ := 2Rmax(Cd + Cπ).

Proof.

|Jθ1 − Jθ2 |

=

∣∣∣∣(1− γ)

∫
s
(Vθ1(s)− Vθ2(s))µ(ds)

∣∣∣∣
≤ (1− γ)

∫
s
|Vθ1(s)− Vθ2(s)|µ(ds)

≤ (1− γ)

∫
s

∣∣∣∣∫
a
Qθ1(a, s)πθ1(da|s)−

∫
a
Qθ2(a, s)πθ2(da|s)

∣∣∣∣µ(ds)

≤ (1− γ)

∫
s

∣∣∣∣∫
a
Qθ1(a, s)πθ1(da|s)±

∫
a
Qθ2(a, s)πθ1(da|s)−

∫
a
Qθ2(a, s)πθ2(da|s)

∣∣∣∣µ(ds)

≤ (1− γ)

∫
s

∫
a
|(Qθ1(a, s)−Qθ2(a, s))|πθ1(da|s)µ(ds)
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+ (1− γ)

∫
s

∫
a
|Qθ2(a, s)| |πθ1(da|s)− πθ2(da|s)|µ(ds)

By Lemma 4 in [11], |Qθ1(s, a)−Qθ2(s, a)| ≤ 2RmaxCd
1−γ ‖θ1− θ2‖2 ∀ (s, a) ∈ S ×A. Using

this, and assumption 5.1.v, we have that

|Jθ1 − Jθ2 |

≤ 2RmaxCd‖θ1 − θ2‖2 +Rmax

∫
s

∫
a
|πθ1(da|s)− πθ2(da|s)|µ(ds)

≤ 2RmaxCd‖θ1 − θ2‖2 + 2RmaxCπ‖θ1 − θ2‖2
= 2Rmax(Cd + Cπ)‖θ1 − θ2‖2

Lemma B.3. Suppose Assumptions 5.1 and 5.4 hold, then ∀ θ1, θ2 ∈ Rdθ and ∀ (s, a) ∈
S ×A, we have ∣∣∣Qλθ1(s, a)−Qλθ2(s, a)

∣∣∣ ≤ LQλ‖θ1 − θ2‖2,

where LQλ :=
2CdRλ,max+4λLJRmax

1−γ = 2CdRmax+8λR2
max(2Cd+Cπ)

1−γ , and λ ≥ 0.

Proof. By definition,

Qλθ (s, a) =
1

1− γ
E

s′∼dθ(·|s,a)
a′∼πθ(·|s′)

[
Rλθ (s, a)

]

=
1

1− γ

∫
s′

∫
a′
Rλθ (s′, a′)dθ(ds

′|s, a)πθ(da
′|s′)

=
1

1− γ

∫
(s′,a′)

Rλθ (s′, a′)dθ(ds
′, da′|s, a),

where dθ(s
′, a′|s, a) := dθ(s

′|s, a)πθ(a
′|s′), and dθ(·|s, a) is the (normalized) discounted

state distribution when using policy πθ after taking action a in state s. We then have
that

(1− γ)
∣∣∣Qλθ1(s, a)−Qλθ2(s, a)

∣∣∣
=

∣∣∣∣∣
∫

(s′,a′)

[
Rλθ1(s′, a′)dθ1(ds′, da′|s, a)−Rλθ2(s′, a′)dθ2(ds′, da′|s, a)

]∣∣∣∣∣
=

∣∣∣∣∣
∫

(s′,a′)

[
Rλθ1(s′, a′)dθ1(ds′, da′|s, a)±Rλθ1(s′, a′)dθ2(ds′, da′|s, a)−Rλθ2(s′, a′)dθ2(ds′, da′|s, a)

]∣∣∣∣∣
=

∣∣∣∣∣
∫

(s′,a′)
Rλθ1(s′, a′)(dθ1(ds′, da′|s, a)− dθ2(ds′, da′|s, a))

∣∣∣∣∣
+

∣∣∣∣∣
∫

(s′,a′)
(Rλθ1(s′, a′)−Rλθ2(s′, a′))dθ2(ds′, da′|s, a)

∣∣∣∣∣
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≤
∫

(s′,a′)

∣∣∣Rλθ1(s′, a′)
∣∣∣ ∣∣dθ1(ds′, da′|s, a)− dθ2(ds′, da′|s, a)

∣∣
+

∫
(s′,a′)

∣∣∣Rλθ1(s′, a′)−Rλθ2(s′, a′)
∣∣∣ dθ2(ds′, da′|s, a)

≤ Rλ,max

∫
(s′,a′)

∣∣dθ1(ds′, da′|s, a)− dθ2(ds′, da′|s, a)
∣∣

+

∫
(s′,a′)

∣∣2λR(s′, a′)(Jθ1 − Jθ2)− λ(J2
θ1 − J

2
θ2)
∣∣ dθ2(ds′, da′|s, a)

≤ 2CdRλ,max‖θ1 − θ2‖2

+

∫
(s′,a′)

∣∣2λR(s′, a′)(Jθ1 − Jθ2)− λ(Jθ1 + Jθ2)(Jθ1 − Jθ2)
∣∣ dθ2(ds′, da′|s, a)

≤ 2CdRλ,max‖θ1 − θ2‖2

+

∫
(s′,a′)

∣∣λ(2R(s′, a′)− (Jθ1 + Jθ2))
∣∣ |Jθ1 − Jθ2 | dθ2(ds′, da′|s, a)

≤ 2CdRλ,max‖θ1 − θ2‖2 + 4λRmax|Jθ1 − Jθ2 |
≤ 2CdRλ,max‖θ1 − θ2‖2 + 4λLJRmax‖θ1 − θ2‖2
= (2CdRλ,max + 4λLJRmax) ‖θ1 − θ2‖2
= (2CdRmax + 8λR2

max(2Cd + Cπ)) ‖θ1 − θ2‖2.

Lemma B.4. Suppose Assumptions 5.1 and 5.4 hold, then ∀ θ1, θ2, we have

‖∇ηθ1 −∇ηθ2‖2 ≤ Lη‖θ1 − θ2‖2,

where Lη :=
2Rλ,maxCψCd

1−γ + CψLQλ +
Rλ,maxLψ

1−γ , and λ ≥ 0.

Proof.

‖∇ηθ1 −∇ηθ2‖2

=

∥∥∥∥∥
∫

(s,a)

[
ψθ1(s, a)Qλθ1(s, a)dµ,θ1(ds, da)− ψθ2(s, a)Qλθ2(s, a)dµ,θ2(ds, da)

]∥∥∥∥∥
2

≤
∫

(s,a)

∥∥∥Qλθ1(s, a)ψθ1(s, a)
∥∥∥

2
|dµ,θ1(ds, da)− dµ,θ2(ds, da)|

+

∫
(s,a)

∣∣∣Qλθ1(s, a)−Qλθ2(s, a)
∣∣∣‖ψθ1(s, a)‖2 dµ,θ2(ds, da)

+

∫
(s,a)

∣∣∣Qλθ2(s, a)
∣∣∣‖ψθ1(s, a)− ψθ2(s, a)‖2 dµ,θ2(ds, da)

≤
2Rλ,maxCψCd

1− γ
‖θ1 − θ2‖2 + CψLQλ‖θ1 − θ2‖2 +

Rλ,maxLψ
1− γ

‖θ1 − θ2‖2

=

(
2Rλ,maxCψCd

1− γ
+ CψLQλ +

Rλ,maxLψ
1− γ

)
‖θ1 − θ2‖2,
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where the last inequality follows from Assumption 5.1, Lemma B.1, and Lemma B.3.
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