
Executive Summary of the Thesis

Design Patterns and Anti-Patterns in Microservices Architecture: A
Classification Proposal and Study on Open Source Projects

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Ömer Esas

Advisor: Prof. Elisabetta Di Nitto

Academic year: 2021-2022

1. Introduction
As tech giants such as Amazon, Netflix and Uber
adopted microservices architecture successfully
in the past decade, there has been greater inter-
est from the academia and the industry towards
the microservices architecture and its principles.
The attempts to implement applications using
microservices architecture led to the emergence
of desirable and undesirable ways of solving com-
mon problems faced in distributed applications,
namely the design patterns and anti-patterns.
In this study, we aim to observe the way the
design patterns and anti-patterns are classified
in the literature, check if there exists a common
way of classification and propose our own taxon-
omy in case there is no consensus in the litera-
ture. Then, we select ten open source microser-
vice projects and manually inspect source code
to detect the design patterns and anti-patterns
of microservices architecture, in order to observe
the correlation between the "theory" in the lit-
erature and practical cases to some extent.
To the best of our knowledge, there are two
studies in the literature that are similar to our
work. The researchers of the first similar study
[1] inspect a set of thirty open source microser-
vice projects using automated tools that check
the dependency files and verify the use of the

pattern by checking the documentation of the
utilized framework. The researchers of the sec-
ond similar study [2] manually check sixty seven
projects to detect anti-patterns, which they dis-
cover as a result of their systematic literature re-
view for microservices anti-patterns. Our study
differs from the two studies in considering not
only design patterns or anti-patterns, but both
of these good and bad practices, in addition to
using only manual inspection on projects that
use many different technologies.

2. State of the Art
2.1. Design Patterns
Being a distributed system with unusual domain
design, microservices architecture comes with
some problems regarding various aspects in
software engineering. Thanks to the research
and past experiences of developers in microser-
vices area, it has been observed that there are
in fact a number of techniques that can be
embraced to solve the common issues faced in
microservice-based systems. These methods are
called "design patterns" of the microservices
architecture and can help software architects
and developers design and implement scalable,
fault-tolerant and performant microservices
applications. A few examples from the set of

1



Executive summary Ömer Esas

design patterns of microservices architecture
considered in this study are shortly described
below, which are obtained after reviewing
sources such as microservices patterns book [3],
Microsoft Cloud patterns website [4] and papers
that contain classifications of design patterns
[5][6][7][8][1][9].

• API Gateway: Using a intermediary ser-
vice between frontend and microservices to
route requests to specific microservices de-
pending on the request.

• Service Registry and Discovery: Having an
"address-book" in terms of host and port
numbers for microservices to let them locate
each other and make API calls.

• Asynchronous Messaging: Utilizing a
helper service to receive, temporarily store
(buffer) and distribute messages between
microservices.

• Command Query Responsibility Segrega-
tion (CQRS): Having multiple microservice
instances that solely focus on either "read"
or "write" tasks of the application.

• Event Sourcing: Embracing event-driven
communication, storing events in a event
store to persist data in a temporal way.

• Service Instance per Container: Creating
and deploying Docker containers per mi-
croservice.

• Health Check API: Implementing an ad-
ditional API endpoint in microservices to
check the status of instances periodically

• Distributed Tracing: Emitting metadata
from microservices about recent API calls,
to be received by a central service for com-
bining metadata to observe the "journey"
of an API call as a chain of different mi-
croservices.

2.2. Anti-Patterns
On the other hand, when utilized without a
proper understanding of its principles, microser-
vices architecture might result in numerous
issues, from poor performance and recurring
service failures to inefficient development and
maintenance efforts. Similarly, it has been
identified by researchers that there are a num-
ber of prevalent approaches that are adopted
by developers, which might cause issues in a
microservice-based system. These common

bad practices are called "anti-patterns" of
microservices architecture, and architects and
developers are advised to avoid implementing
these wrong or sub-optimal techniques and keep
in mind the key concepts of this architecture.
We briefly describe below some of the anti-
patterns considered during this study, which
are obtained from two papers [10][2].

• Wrong Cut: Dividing application into tech-
nical layers or services, instead of business
capabilities and bounded contexts.

• Hardcoded Endpoints: Instead of using ser-
vice discovery, hardcoding the address (host
and port number) of a microservice.

• No API Gateway: Directly calling backend
microservices from the client without inter-
mediary service.

• Shared Persistence: Utilization of the same
database instance by multiple microser-
vices.

• No CI/CD Tools: Not making use of CI/CD
tools in shared repositories in a distributed
development context.

• No API Versioning: Not having version pre-
fixes inside the URLs of API definitions.

• Local Logging: Not aggregating logs of mi-
croservices in a central service, absence of
log aggregator pattern.

3. Research Methodology
As the goal of this study, we aimed to ob-
serve the classification regarding microservices
design patterns and anti-patterns in the litera-
ture, present one in case there is no consensus,
and check the presence of these patterns and
anti-patterns in popular open source projects.
Specifically, we established two research ques-
tions:
• RQ1: Is there a consistent categorization

or classification of design patterns and anti-
patterns of microservices architecture in the
academia? If not, what could be an alter-
native way to classify these design patterns
and anti-patterns?

• RQ2: Which of these design patterns and
anti-patterns exist in popular open source
microservices applications?

To answer first research question, the following
steps have been adopted.

2



Executive summary Ömer Esas

Querying digital libraries In order to find
out whether there exists a consistent classi-
fication of microservice design patterns and
anti-patterns, a literature review on digital li-
braries such as IEEE Explore, ACM Digital
Library, Springer, Scopus, and Google Scholar
has been carried out. The keywords used in
the search queries included "microservice pat-
tern", "microservice pattern classification", "mi-
croservice anti-pattern" and "microservice anti-
pattern classification".

Applying snowballing After initial review of
the studies found, few more studies have been
added through snowballing technique, and from
this extended set, the studies that do not contain
a classification or grouping of patterns and anti-
patterns have been eliminated.

Consulting systematic mapping studies
To be able to propose a classification of patterns
and anti-patterns on a sound basis, various per-
spectives through which microservices architec-
ture can be examined needed to be identified.
For this reason, the systematic mapping studies
found in the literature review process have been
consulted.

Developing classification proposal Con-
sidering the classifications found in the
literature and the findings resulted from papers
that conducted systematic mapping studies, a
classification proposal has been developed.

As for the second research question, the follow-
ing steps have been carried out.

Querying GitHub Open source repository
hosting service GitHub is queried with he key-
word pattern "microservice OR micro-service".
To find the most popular projects, the search
result is sorted using "most stars" option.

Selecting projects Ten microservice reposi-
tories that have the most number of stars are
selected. While doing so, the repositories that
contain libraries, frameworks or tool-kits have
been eliminated, in addition to the ones that
contain "microservice" keyword but rather im-
plemented using other architectures.

Excluding saga pattern and shared li-
braries anti-pattern Because of the techno-
logical heterogeneity among the set of projects,
two design patterns, namely "saga" and "shared
libraries" which require a competent under-
standing of the programming language being
used and a thorough comprehension of the busi-
ness logic are excluded from the list of patterns
and anti-patterns to be identified.

Detecting patterns and anti-patterns We
manually inspected the repositories and tried to
find any information on the repository page that
indicates the use of a particular pattern or anti-
pattern. We examined the source code, deploy-
ment files such as "docker-compose.yaml" and
dependency files such as "pom.xml" when avail-
able, and then tried to verify the use of a pattern
by consulting to the reference document of a li-
brary or framework at hand.

4. Results
4.1. Classification of Patterns and

Anti-Patterns
As a result of the research process related to
the classification of microservices patterns and
anti-patterns in the literature, we found out
that there are three types of classifications for
design patterns and three types of categoriza-
tions for the anti-patterns, which result from
a set of nine studies and one book chapter
[5][6][7][8][1][9][11][2][12][10]. Therefore, we con-
cluded that there is no consensus in the lit-
erature regarding the classification of patterns
and anti-patterns of microservices architecture.
While developing the proposed classification,
we noticed that there are categories in the re-
viewed papers such as "design", "communica-
tion", "back-end", "coordination", "data" and
"architectural". We argued that one pattern or
anti-pattern that is placed in one of those cate-
gories in fact also affects or is affected from the
ones placed in other similar categories. As an
example, while the "hardcoded endpoints" anti-
pattern is placed under "implementation" cate-
gory in [2], the bad practice results from a lack
of service discovery mechanism in the architec-
ture of the application. We therefore combined
the patterns and anti-pattern that we think are
about the major design decision, i.e., architec-

3



Executive summary Ömer Esas

ture of the application into "architectural" cat-
egory. For the remaining ones, we realised that
they reflect the processes of deployment and
monitoring stages of a software development life-
cycle and they are about the decisions that affect
the most those stages. We then presented our
taxonomy proposal by suggesting to use "archi-
tectural", "deployment" and "monitoring & re-
liability" categories as shown in Table 1, Table 2
and Table 3 respectively.

Architectural
Patterns

Architectural
Anti-Patterns

API Gateway Wrong Cut
Service Mesh with

Sidecar Nano Microservice

Service Registry &
Discovery Mega Microservice

Backends for
Frontends ESB Usage

Asynchronous
Messaging Shared Libraries

Database per
Service

Hardcoded
Endpoints

Saga No API Gateway
API Composition Shared Persistence

CQRS

Event Sourcing

Table 1: Architectural patterns and anti-
patterns of microservices architecture

Deployment
Patterns

Deployment
Anti-Patterns

Service Instance per
Container No CI/CD

Service Instance per
VM

Multiple Service
Instances per Host

Serverless No API Versioning

Table 2: Deployment patterns and anti-patterns
of microservices architecture

Monitoring &
Reliability
Patterns

Monitoring &
Reliability

Anti-Patterns

Health Check No Health Check
Distributed Tracing Local Logging

Log Aggregator

Circuit Breaker

Table 3: Monitoring & reliability patterns and
anti-patterns of microservices architecture

4.2. Patterns and Anti-Patterns in
Microservice Projects

The set of examined projects is presented in Ta-
ble 4, with their names and number of GitHub
stars.

Repository Name #Stars

dotnet-
architecture/eShopOnContainers 20.3k

GoogleCloudPlatform/microservices-
demo 12k

sqshq/piggymetrics 11.5k
cer/event-sourcing-examples 2.9k

microservices-patterns/FTGO-
application 2.4k

vietnam-devs/coolstore-
microservices 2k

Crizstian/cinema-microservice 1.6k
asc-lab/dotnetcore-microservices-

poc 1.5k

elgris/microservice-app-example 1.4k
aspnetrun/run-aspnetcore-

microservices 1.1k

Table 4: List of examined projects

Next, starting from the first project on the list,
we examined repository page and source code
to detect the aforementioned patterns and anti-
patterns. To report the results, we first gave
a short summary of the application domain and
used technologies, indicated the presence of each
pattern and anti-pattern in a table and then ex-
plained each pattern and anti-pattern by refer-
ring to a particular file in the repository when
available.

4



Executive summary Ömer Esas

4.3. Discussion of Findings
As a result of the detection process to find
out which patterns and anti-patterns exists in
prominent open source projects, we also think
that it is a valuable effort to take a look at the to-
tal number of patterns and anti-patterns found
in the ten projects examined.

Design Pattern #

API Gateway 10
Service Mesh with Sidecar 3

Service Registry & Discovery 8
Backends for Frontends 1
Asynchronous Messaging 7

Database per Service 2
API Composition 2

CQRS 5
Event Sourcing 2

Service Instance per VM –
Service Instance per Container 10

Serverless –
Health Check 6

Distributed Tracing 5
Log Aggregator 3
Circuit Breaker 2

Table 5: Total number of design patterns in ex-
amined projects

As shown in Table 5, we see that the API gate-
way, service registry and discovery and asyn-
chronous messaging are the most widely used
architectural design patterns among the ten
projects. Next, we observe that using containers
is the preferred approach by far when compared
to virtual machine images and serverless deploy-
ment when it comes to deploying a microservice
application. As for the anti-patterns, we notice
in Table 6 that the most frequent anti-pattern
among the ten projects is the no API versioning
anti-pattern, possibly because the examined ap-
plications are not actual microservice products
that are maintained by a number of different de-
velopment teams, it might be deemed not nec-
essary by developers of examined repositories to

make use of API versioning practice.

Anti-Pattern #

Wrong Cut –
Nano Microservice –
Mega Microservice –

ESB Usage –
Hardcoded Endpoints 5

No API Gateway –
Shared Persistence 6

No CI/CD 5
Multiple Service Instances per Host –

No API Versioning 8
No Health Check 4

Local Logging 7

Table 6: Total number of anti-patterns in exam-
ined projects

Coming to the architectural anti-patterns, we
observe that the design principles of microser-
vice architectures are well digested by the prac-
titioners. The microservices are designed around
business capabilities in a balanced way and the
principle of "smart endpoints, dumb pipes" is
put into practice in those designs.

5. Conclusions
With this study, we investigated the literature
about classifications regarding microservice pat-
terns and anti-patterns, and observed that there
are a number of different categorizations. By
taking into account the way these studies catego-
rize the patterns and anti-patterns and by con-
structing our own argumentation, we presented
our taxonomy proposal by suggesting to utilize
"architectural", "deployment" and "monitoring
& reliability" categories, in order to provide a
simple and valid structure in terms of classifi-
cation for patterns and anti-patterns. Further-
more, we manually inspected ten open source
microservice projects to see if those patterns
and anti-patterns are actually present in im-
plemented microservice architectures. By in-
specting the total number of patterns and anti-
patterns, we observed the imbalance in fre-

5



Executive summary Ömer Esas

quency of patterns and anti-patterns and dis-
cussed the probable reasons.
Regarding the possible future work, by inspect-
ing more open source projects, the ability to
generalise the result might be increased, and fo-
cusing on projects that make use of the same
framework and the same technologies, a precise
and thorough understanding of the implemented
business logic could be achieved, enabling more
observations about patterns and anti-patterns
related to the logic of the application.

References
[1] G. Márquez and H. Astudillo. Actual use

of architectural patterns in microservices-
based open source projects. In APSEC
2018.

[2] R. Tighilt et al. On the study of microser-
vices antipatterns: A catalog proposal. In
Proceedings of the European Conference on
Pattern Languages of Programs 2020.

[3] C. Richardson. Microservice Patterns.
Manning Publications Co., 2019.

[4] Microsoft Docs. Cloud design patterns,
2022. URL https://docs.microsoft.
com/en-us/azure/architecture/
patterns/.

[5] D. Taibi, V. Lenarduzzi, and C. Pahl. Ar-
chitectural patterns for microservices: A
systematic mapping study. In CLOSER
2018.

[6] I. K. Aksakalli et al. Deployment and com-
munication patterns in microservice archi-
tectures: A systematic literature review.
Journal of Systems and Software, 180, 2021.

[7] J. A. Valdivia et al. Patterns related to mi-
croservice architecture: a multivocal liter-
ature review. Programming and Computer
Software, 46, 2020.

[8] G. Márquez, M. M. Villegas, and H. As-
tudillo. A pattern language for scalable
microservices-based systems. ECSA ’18,
2018.

[9] J. A. Valdivia, X. Limón, and K. Cortes-
Verdin. Quality attributes in patterns re-
lated to microservice architecture: a sys-

tematic literature review. In CONISOFT
2019.

[10] T. Schirgi and E. Brenner. Quality assur-
ance for microservice architectures. In IC-
SESS 2021.

[11] D. Taibi, V. Lenarduzzi, and C. Pahl.
Microservices Anti-patterns: A Taxonomy.
Springer International Publishing, Cham,
2020.

[12] J. Bogner et al. Towards a collaborative
repository for the documentation of service-
based antipatterns and bad smells. In
ICSA-C 2019.

6

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/

	Introduction
	State of the Art
	Design Patterns
	Anti-Patterns

	Research Methodology
	Results
	Classification of Patterns and Anti-Patterns
	Patterns and Anti-Patterns in Microservice Projects
	Discussion of Findings

	Conclusions

