
 

 

 

 

 

 

 

 

 

EXECUTIVE SUMMARY OF THE THESIS 

Real-time and high-quality video compression for telesurgery  

TESI MAGISTRALE IN BIOMEDICAL ENGINEERING – INGEGNERIA BIOMEDICA 

AUTHOR: MARTINA GOLINI 

ADVISOR: PROF. ELENA DE MOMI 

COADVISOR: IURI FROSIO, ALDO MARZULLO 

ACADEMIC YEAR: 2021-2022 
 

 

1. Introduction 

Nowadays the advances in 
telecommunication technologies and video 
compression systems have led to the 
development of new way to deliver high-
quality cares and new teaching strategies. 
Telementoring, telemedicine and telesurgery 
are the new frontiers of medicine, which 
enables for diagnosis and surgeries in 
different contexts, e.g., in disaster-affected 
and distant rural areas. In this scenario, an 
experienced surgeon/physician can offer a real 
time support to less-skilled colleagues; 
moreover, it can be performed a surgery from 
a remote position, and it is given the 
opportunity for students to watch and learn.  
The new realities of medicine address new 
challenges, since a big amount of data need to 
be stored and transmitted. Even though the 

leading standards for video compression, i.e., 
H.264/AVC and H.265/HEVC, are highly 
optimized and performing, the strict 
constrains required by these applications have 
brought to explore brand-new solutions either 
for the optimization of the traditional methods 
and to develop alternative strategies. In this 
perspective, Deep learning-based techniques 
have been exploited for the purpose since they 
can overcome the limitations of standard 
systems. Focusing on video transmission, it 
presents latency and bandwidth constrains to 
guarantee a real time application, together 
with the need to preserve the quality. In 
details, the threshold for real time application 
is set to 30ms for encoding/decoding time. In 
this work, it is proposed a computational 
friendly, deep learning-based scheme to 
jointly satisfy the request of low-latency and 
bandwidth and high-quality compression. 
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More in detail, it is implemented an 
autoencoder for the coding of the residual, i.e., 
the difference between the original frame and 
the compressed one, obtained by employing 
the H.264/AVC codec, since it has been 
demonstrated the leading standard in the 
surgical domain. The output of the neural 
network is eventually summed to the one of 
H.264/AVC for a better reconstruction of the 
images. The research focuses on Robotic 
Assisted Minimally Invasive Surgery 
(RAMIS), which is spreading among various 
surgical area [1] and requires for high-quality 
and low latency, to guarantee the stability of 
the system employed.  For the aim of the work, 
it is utilized 720p - thus HD resolution- 
Robotic Assisted Radical Prostatectomy 
(RARP) videos obtained from the Da Vinci 
robot, since RARP represents one of the most 
performed RAMIS operations. The scheme 
proposed shows to overcome H.264/AVC 
performances in a low bitrate scenario, 
allowing for high quality and real time 
applications, especially in all those contexts 
featuring a poor Internet connection.  

2. Related works 

Among the many traditional video codecs, 
H.264/AVC and H.265/HEVC are the most 
adopted and diffused. Both these codecs are 
based on the hybrid prediction/transform 
coding method, first proposed in 1979 [2]. 
Despite H.265/HEVC overcomes its 
predecessor in terms of performances, it is less 
hardware-friendly, thus H.264/AVC remains 
widely employed for many applications, 
including the surgical ones. Since both codecs 
utilize a block-based scheme, they are 
interested by block artifact and quality 
degradation due to the quantization process. 
For these reasons, DL-based codecs have 
started to be explored as a promising 
alternative. Researchers have exploited DL 
techniques either to design brand-new 
schemes and to optimize one of the main 
modules of the traditional codecs, i.e., intra-

prediction, inter-prediction, quantization, 
entropy coding and loop filtering [2]. Lu et. al 
[3] have developed a DL scheme which 
substitutes each module of H.264/AVC with a 
Convolutional Neural Network, achieving the 
state-of-art results at the time of publication. 
While this solution modifies the entire 
traditional pipeline, many others have 
focused only on one phase of the standard 
framework. Li et al.[4] have proposed a five 
layers CNN-based block up-sampling scheme 
to improve the intra prediction module. This 
scheme achieved an important reduction in 
terms of required bandwidth, but it requires a 
significantly higher encoding/decoding time 
than H.265/HEVC. Feng et. al [5] have built an 
enhancement module which operates before a 
super-resolution network to deal with 
sampling and compression artifacts 
separately. In[6] it is proposed a binary 
autoencoder to generate a binary code which 
is transmitted together with the frame data. 
On the decoder side, it is performed a residual 
correction of the image compressed by 
H.264/AVC. In the surgical domain the usage 
of DL-based techniques for video compression 
and transmission is poor documented. It has 
been demonstrated that the detection of 
clinically relevant spatio-temporal 
information can be exploited to save 
compression time. Therefore, CNN can be 
used for the recognition of the Regions Of 
Interest (ROI) [7].  
 
The Summary is organized as follow: section 3 
presents the solution proposed for real time 
and high-quality video compression; section 4 
contains the results and the discussion; section 
5 is left for the conclusions.  

3. Binary Residual Neural 
Network for RARP video 
compression 

In the following section the structure of the 
scheme proposed, as well as the dataset 
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employed and the training process is 
described. 

3.1 The network architecture 

The scheme proposed (Figure 3.1.1) has been 
designed by Tsai et. al [6]. The input X has been 
compressed by H.264/AVC, to generate the 
output Y. The difference between the original 
frame and the coded one, i.e., the residual R, 
is compressed by a binary autoencoder. The 
output of the autoencoder R’ is eventually 
summed to Y, producing the final 
reconstructed frame. The autoencoder 
features three functions: an encoder E, a 
binarizer B and a decoder D. The first one 
extracts compact features representations, 
which are eventually sent to the binarizer. The 
encoder is composed by L 2D-convolutional 
layers, with equal number of channels C, 
characterized by a stride of 2, which performs 
the down-sampling. The binarizer maps each 
element ei received in the interval [-1,1] and 
discretize it to {−1, 1}, producing a binary 
output. To the purpose, it is employed two 
different functions, i.e., the activation function 
σ and the discretization function b: 
 

𝐵𝐵(𝑒𝑒𝑖𝑖) = 𝑏𝑏�𝜎𝜎(𝑒𝑒𝑖𝑖)�  (3. 1) 

For its superior performances, the hardthan is 
employed as binarization function:  
 

𝑏𝑏(𝑧𝑧) =  �
1,                     𝑖𝑖𝑖𝑖 𝑧𝑧 > 1

 𝑧𝑧,          𝑖𝑖𝑖𝑖 − 1 ≤ 𝑧𝑧 ≤ 1
−1,                    𝑖𝑖𝑖𝑖 𝑧𝑧 < 1

 (3. 2)  

 
With  𝑧𝑧 = 𝜎𝜎(𝑒𝑒𝑖𝑖). 

The binary output is sent to the decoder, 
which performs the up-sampling. The decoder 

consists of L 2D-convolutional layers, each 
one of them followed by a SubPixel, layer 
featuring an upscaling factor of 2; the 
convolution process and subpixeling are 
jointly employed for up-sampling. In this case, 
the number of channels used in the first two 
convolutional layers is equal to 4xC, due to the 
presence of the SubPixel layer. For the same 
reason a stride of 1 is employed. The last layer 
of the decoder, instead, presents 12 output 
channels C Both the encoder and the decoder 
present ReLu as activation function. An 
additional operation, i.e., batch-normalization 
with a momentum of 0.999 is also included to 
facilitate the learning process. The kernel size 
is set to 2 for the convolution operations 
during encoding, while is set to 1 for each 
convolutional layer of the decoder. The size of 
the binary map strictly depends upon the 
width W and the height H of the input image 
as well as on the number of channels C and the 
layers L which characterized the neural 
network. Specifically, the size is given by: 
 

𝑆𝑆 =
𝐶𝐶 × 𝑊𝑊 × 𝐻𝐻

22𝐿𝐿
   (3. 3) 

Intuitively, a deeper neural network 
corresponds to a smaller binary map, thus the 
compression task would be easier, while the 
training would be harder. Therefore, C and L 
needs to be carefully chosen to guarantee a 
good trade-off between these two processes. 
Based upon the studies developed by Tsai et.al 
[6], the number of channels C is set to 32, while 
the number of layers is set to 3. 

Figure 3.1.1 The pipeline of the proposed method 
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3.1. The dataset 

For the aim of the work, five high-quality 
videos with the endoscopic view captured 
during RARP (1280 x 720) are downloaded 
from YouTube. The video duration ranges 
from 72 up to 100 minutes. The first video 
(Video A) is used for testing, while the other 
three (Video B, C, D, E) are used for training. 
To highlight the different phases of the 
procedure from each video, ten 40 seconds 
clips are selected. They include different 
anatomical sections, surgery instruments, 
levels of illumination and degrees of action 
performed in the surgery field. The clips 
extracted are eventually compressed and 
decompressed by using the H.264/AVC 
implementation provided by FFmpeg, with a 
particular focus on bandwidth and latency, 
both dependent on the bitrate and the preset 
selected. The FFmpeg preset represents the 
coding speed value, thus returns a certain 
compression ratio / frame quality / 
compression time. For the aim of the research, 
Ultrafast, Medium and Slow presets are 
employed. Compressing at different bitrate 
allows investigating the codec performance as 
a function of the transmission bandwidth. In 
this work the first evaluation is conducted 
employing three bitrate values, i.e., 1,2,5Mb. 
Thus, 9 bitrate/preset pairs are evaluated. A 
further configuration, i.e., 10Mb-Ultrafast, is 
eventually investigated based on the results 
obtained from the first analysis. From each 
videoclip one frame every ten is extracted, 
thus each testing dataset -one for each 
bitrate/preset pair is composed by 1216 
frames, while each training/validation dataset 
is formed by 4802 frames (70% training 
set/30% validation set). Both original and 
compressed frames are employed for the 
residual computation, which is coded by the 
autoencoder. 

3.2. Training the residual 
autoencoder 

The autoencoder is implemented in Python, 
using the PyTorch library. The training 
hyperparameters, i.e., learning rate η, batch 
size and number of epochs, are set 
respectively to 0.01, 5 and 50. Moreover, the 
learning rate is reduced by a factor of 0.5 every 
5 epochs; in fact, decreasing the learning rate 
during training can lead to improved accuracy 
and reduced overfitting of the model. It is 
used Mean Square Error (MSE) as loss 
function, while Adam is employed as 
optimizer. The training is performed by using 
the NVIDIA GeForce GTX 850M GP. 

4. Performance evaluation 

To assess the performances in terms of quality 
the Peak-To-Noise-Ratio (PSNR) and the 
Structural Similarity (SSIM) [8] are computed 
for both images obtained by H.264/AVC and 
by the scheme implemented, employing the 
original frames as ground truth. The metrics 
are reported in function of bit-per-pixel (BPP): 
 

𝐵𝐵𝐵𝐵𝐵𝐵 =  
80000 ×  𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒 (𝐾𝐾𝑏𝑏𝐾𝐾)

𝐻𝐻 ×𝑊𝑊 × 𝑖𝑖𝑓𝑓𝐾𝐾
 (4. 1) 

 
Moreover, it is measured the 
encoding/decoding time for both traditional 
and DL-based techniques to evaluate latency. 

4.1. Results 

In terms of quality the scheme proposed 
outperforms the traditional standard H.264 in 
a low bitrate scenario. 
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As (Figure 4.1) indicates, the mean PSNR value 
of each bitrate/preset pair is comprised 
between 30 dB and 38 dB for both H.264/AVC 
and the method proposed, except the one 
associated to the 1Mb-Ultrafast configuration 
for H.264/AVC. Since typical PSNR values for 
8-bit data range from 30 dB to 50 dB, it can be 
stated that the quality of the reconstruction 
performed by the scheme proposed is on 
average good (PSNR values > 30 dB) and 
better than the one achieved with H.264/AVC, 
except for the 5Mb-Medium/5Mb-Slow/10Mb-
Ultrafast pair, which is demonstrated to be 
equal. SSIM indicates the perceived quality of 
digital images and video. Its values range 
from 0 to 1, where 1 indicates the perfect 
structural similarity. Figure 4.1 demonstrates 
that the perceived quality is on average 
meaningly better for the frames reconstructed 
by the DL-based scheme for a bitrate equal to 
1 Mb and for the 2Mb-Ultrafast configuration, 

while is almost unnoticeable for higher bitrate, 
i.e., 2 Mb and 5 Mb. Moreover, the SSIM 
values related to 5Mb-Medium/5Mb-Slow 
pair indicates a slightly higher perceived 
quality for images compressed by the 
traditional codec. The perceived quality is 
high for frames reconstructed both by 
H.264/AVC and the scheme proposed; 
therefore, it can be visually noticed a 
difference in the images compressed by using 
the ultrafast preset. A further analysis to state 
the reliability of the results is conducted by 
employing the Mann-Whitney U test. It is 
demonstrated that there is a difference 
between the traditional and the proposed 
method for almost the entire bitrate/preset set, 
with an exception for the 5Mb-Medium/5Mb-
Slow/10Mb-Ultrafast pair, for which the p 
value is respectively 0.86, 0.90 and 0.79 and the 
null hypothesis is not rejected. 

Figure 4.2 The plots show a comparison between the codec standard H.264 and the proposed scheme in terms of 
quality. Both PSNR (right) and SSIM (left) are expressed in function of the bitrate. 

Figure 4.1 The plots report a comparison between the performances in terms of encoding/decoding time of H.264 and of 
the scheme implemented, for each configuration. The purple line represents the threshold for real time applications. 
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Time presents a superior limit, as low latency 
is requested to guarantee real time 
applications. More in detail, the threshold is 
set to 33,3ms (30 Hz) per frame, for both 
encoding and decoding time. In (Figure 4.2) the 
threshold is indicated by the purple line. 
Traditionally, the time requested for the 
encoding process is significantly higher than 
the one addressed to the decoding one. 
However, the method implemented shows 
opposite results, since the decoder is more 
computational demanding. As for the 10Mb-
Ultrafast pair, the encoding/decoding time 
remains lower than 30ms. 

4.2. Discussion 

Analyzing the mean values obtained both for 
PSNR and SSIM for each clip, which present a 
common trend, it is observed that significantly 
lower values are always obtained for clip 5 
and clip 7 thus it is conducted a frame-by-
frame evaluation. it can be stated that the deep 
learning-based scheme performs lower 
quality compression where significantly fast 
movements are present. To select the most 
suitable bitrate/preset pair, it needs to be 
considered the encoding/decoding time, since 
the latency of the video feedback highly limits 
telesurgery applications. It needs to be 
highlighted that the delay between the 
movement performed by the surgeon through 
the master console and its visualization on the 
video screen it is composed by the sum of 
latency due to the video codec and the one 
associated to the transmission signal which 
allows the motion. In literature is found 330ms 
to be the maximum value recommended for 
telesurgery, where the latency associated to 
the video codec it is 70ms (encoding + 
transmission + decoding) [9]. Based on this, it 
is selected 1Mb-Slow, 2Mb-Medium and 
10Mb-Ultrafast as they represent the best 
quality-time trade-off for that bitrate value. 

The most suitable bitrate/preset pair results 
1Mb-Slow for it achieve the highest perceived 
quality, while not overcoming the time 
threshold. The configurations chosen are able 
to transmit 30 frame per second, even if in 
some cases the sum between encoding and 
decoding time overcomes the threshold. The 
real time application remains possible 
assuming that both encoder and decoder are 
working at maximum 33,3ms each - without 
considering the transmission time - since 
encoder and decoder run on different devices. 
It is worth noticing that the scheme proposed 
is not developed for speed compression, while 
H.264/AVC is highly optimized for the 
purpose. Besides, it is used a low-performing 
GPU, thus the computation could be 
accelerated employing a better one. It is also to 
be considered that the dataset is downloaded 
from YouTube, thus videos have been 
previously compressed. It is clear that the 
implemented method may be widely 
optimized to achieve better performances 
both in terms of quality and speed. 

5. Conclusions 

This work presents a computational-friendly 
solution for surgical video compression which 
is capable to jointly enhance the compression 
quality and work under low-latency 
constrains in a low bitrate scenario. In other 
words, this scheme offers the possibility to 
obtain good compression quality of high-
resolution videos in a low-bandwidth domain, 
which is useful in all those contexts that 
feature a non-fast internet connection, e.g., 
developing Countries and rural areas. The 
quality guaranteed is high, thus it allows for 
the detection of every detail in the surgical 
area in different situations, e.g., bleeding and 
smoking. Even though the reconstruction of 
really fast movement is more difficult, the 
quality perceived do not compromise the 
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result of the surgery. The solution proposed 
allows for remote surgery in which the 
distance between the surgeon and the patient 
could be of more than 14 000 km, since latency 
can remain considerably under 70ms. The 
method implemented can be widely modified 
to become a powerful tool for telemedicine, 
telementoring and remote surgery 
applications. In fact, further optimizations 
could make the network more performant, 
especially in terms of speed. Moreover, many 
surgical procedures exploit stereo-images to 
enable 3D perception. Even though the 
transmission is more complex, it could be 
leveraged the redundancy between the left 
and right images to develop highly 
performant solutions among different field 
other than the surgical domain, such as virtual 
reality and videogames. The progress in 
compression systems may lead to the 
spreading of tele-health, which can have a 
strong impact on the quality of life and may 
improve the learning process of medicine 
students. 
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