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Summary

In this thesis, we investigate the ability of an ensemble reservoir computing approach
based on an Echo State Network to predict the Dynamic Aperture, which is a
measure of the region of stable motion of a particle after a certain number of turns
in a circular collider. The approach has been tested first using Dynamic Aperture
data generated by a realistic model of the High-Luminosity LHC up to 105 particle
revolutions. Then, to pursue the analysis further, artificial Dynamic Aperture data
have been generated to a larger number of turns (i.e, 107) using the 4D Hénon Map,
a simplified model of a circular accelerator. The optimization of the Echo State
Network hyperparameters and the importance of the validation data have been
discussed. We show that the prediction errors of the proposed approach, when
supplied with relevant validation data, is in average lower than those obtained by
using analytical models based on the Nekhoroshev theorem.
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1 Introduction

In 1919, Ernest Rutherford discovered that nitrogen atoms could be split by
bombarding them with alpha particles (i.e, particles composed of two protons and
neutrons bound together) emitted by radioactive sources. This discovery may be
considered as the starting point of the development of more powerful machines used
to propel particles at higher intensity to study the atomic structure at smaller scales.
In 1929, Ernest Lawrence developed the first cyclotron used to accelerate particles
at higher energies than those produced by radioactive sources. In a cyclotron,
particles move along a spiral path guided by a magnetic field produced by the
magnets of the accelerators. Derived from the cyclotrons, the first synchrotrons were
introduced a few years later, with the main improvement that the magnetic field
evolved with time during the accelerating process of the particles [1]. Nowadays,
the most powerful circular collider is a synchrotron, the Large Hadron Collider
(LHC). In order to build such machines, design studies through tracking simulations
from realistic models of colliders are required [2]. For instance, tracking simulations
are performed to compute the Dynamic Aperture (DA) in order to study to effect
of the magnetic fields which can be responsible of the unstable motion of a particle
[3].
The DA represents a measure of the region of stable motion of a particle after
a certain number of turns in a circular accelerator. The possible sources of
unstable motions are magnetic fields and imperfections in the placement of elements
imperfections [3]. Typically, DA is used to define tolerances on magnetic field
quality and non-linear corrections schemes in the design phase of the accelerator,
as well as to verify the effect of corrections in existing machines. Currently, DA
estimation for high-energy hadron colliders such as the LHC is performed through
computer simulations, which are rather computationally intensive, in particular for
large number of revolutions in the accelerator (i.e, ≥106 turns) [4].
In the last decade, the use of neural networks has greatly increased in a large number
of research areas. For instance, neural networks are used for speech recognition [5]
or for the forecasting of wind power [6]. Among neural network techniques, the
most common architectures are feedforward [7], convolutional [8] and recurrent [9]

1



Introduction

neural networks. Feedforward neural networks are composed by neurons linked by
connections to other neurons only. They provide only input-output relationships
and can approximate very large classes of functions. Instead, recurrent neural
networks are composed by neurons linked by connections to themselves and to
other neurons. They preserve an internal state that is a nonlinear transform of the
input signal and can therefore be considered as dynamical systems.
Echo State Networks (ESN) are one of the classes of recurrent neural network
using the reservoir computing approach. This approach has the main advantage
of reducing significantly the computational time required by the training process,
which is performed to find the optimal parameters (called weights) of a neural
network. Indeed, the peculiarity of the ESN is that the training is performed usually
by linear regression [10] to compute the weights used to project the reservoir state
onto the output state, so that no back-propagation is needed. Back-propagation
[11] refers to the numerical procedure (usually based on the stochastic gradient
method) employed for the training of feedforward networks, which is responsible
of a major share of its computational cost. ESN has also been proved to be an
universal approximant of dynamical systems [12]. Thus, ESN is a natural candidate
for the prediction of DA for a large number of turns.
The thesis is organized as follows. In Chapter 2 we present some general concepts
about circular colliders and we identify the non linear imperfections that may cause
a reduction of the region of stable motion of particles. We introduce a definition
of the DA and the main equations used to compute it in the case of a 4D phase
space. We also recall the 4D Hénon Map used as an idealized model of accelerator
on which to test our prediction approach. Some analytical models taken from the
literature and used to extrapolate the DA are also introduced. Then, in Chapter 3,
we introduce the framework of the continuous time leaky ESN that will be used in
the thesis. We also discuss the Echo State Property (ESP) and review a sufficient
condition which can be applied in practice to satisfy it. Chapter 4 is devoted both
to the presentation of the different sets of DA data used to train and test the
proposed ensemble approach based on ESN and to the description of the simulation
setup employed in this thesis. In particular, we introduce the ensemble validation
procedure used to tune the model hyperparameters as well as the algorithm used
to perform the analysis. Finally, in Chapter 5, we present the results regarding
the ability of the proposed approach to predict the DA and discuss possible future
developments.
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2 Non Linear Imperfections in Circular
Colliders and Dynamic Aperture

We start this Chapter by introducing some considerations about non linear imper-
fections in circular colliders, which can be responsible of a reduction of the region
of stable motion of particles [3]. The size of this region is taken to be equal to
the DA. We then recall a DA definition proposed in Ref. [13] and introduce the
general equations used to estimate it, in the case of a 4D phase space. In particular,
we show how one can simplify the problem to considering a 2D case under some
assumptions. Finally, we introduce the 4D Hénon map used to generate cheaply
artificial DA data at a large number of turns, as well as scaling laws proposed in
Ref. [14] to forecast the time evolution of the DA.

2.1 Generalities
In this Section, the basic concepts concerning circular colliders are introduced, as
well as the magnetic field errors of accelerator magnets, which are the main sources
of non linear imperfections for high energy proton colliders [3]. The stability of the
colliders with respect to these imperfections must be addressed in order to both
assess the performance of the current colliders and to design the future ones.

2.1.1 Basic Concepts on Colliders
Particle accelerators are machines which propel charged particles to very high
speeds and energies using electromagnetic fields. In particular, a stream of particles
called beam travels through the accelerator, moving with a velocity close to the
light speed. Colliders are particle accelerators in which the collision of two opposing
particle beams occurs. The most famous collider is the Large Hadron Collider
(LHC), which was built by the European Organization for Nuclear Research (CERN)
[15] between 1998 and 2008 . Hadrons are subatomic particles such as the protons
and neutrons. The LHC is currently the largest (27 km) and highest energy circular
collider. An upgrade of the LHC, the High Luminosity LHC (HL-LHC), is a
challenging project scheduled for around 2025, whose main goal is to provide more
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accurate measurements of new particles and observe new processes occurring below
the current sensitivity level. Other smaller colliders exist, such as the Proton
Synchrotron (PS) and the Super Proton Synchrotron (SPS), which are currently
used to inject high intensity proton beams to the LHC. Eventually, the Future
Circular Collider (FCC) with a circumference of 100 km is a proposed post-LHC
collider whose goal is to push the energy and intensity frontiers of particle colliders
to reach collision energies of 100 Tera electronvolt (TeV). For comparison, the
LHC is currently able to reach collision energies of 14 TeV. Figure 2.1 shows a
comparison of the size of the different colliders.

Figure 2.1: Picture of the different colliders (PS, SPS, LHC and FCC).

2.1.2 Magnetic Field Errors
In circular colliders, the sources of non linear imperfections can be many, in
particular related to the presence of magnetic field errors in accelerator magnets.
The magnetic field created by the magnets can be described in terms of an expansion
of the following kind [16], [17]:

By + iBx = Bref

∞∑
n=1

(bn + ian)
(

x + iy

Rref

)n−1
(2.1)

where By, Bx and Bref are the transverse magnetic field components and the
reference field, respectively and bn and an are the normal and the skew harmonics
component. The subscript n = 1 refers to dipole, n = 2 to a quadrupole and so on.

In fact, Eq.(2.1) is one possible representation of the magnetic field of the ac-
celerator element, which satisfies the Maxwell equations

div(B) = 0 rot(B) = 0.
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. In particular, the choice of using complex number is based on some computational
considerations.
In all dipole or quadrupole magnets, a certain number of higher harmonic compo-
nents (n > 2, i.e, sextupole, octupole...) are present. These harmonics are called
non linear imperfections [3]. The estimation of these imperfections is crucial, since
they can have a direct impact on the performance of the collider. Indeed, they
can be responsible of a reduction of the region of stable motion of particles in the
collider. Based on the experience of LHC, the multipole harmonics of the main
magnetic fields can be modelled as a sum of three contributions [18].

bn = bnS + ξU1.5bnU + ξRbnR (2.2)
an = anS + ξU1.5anU + ξRanR (2.3)

where ξU and ξR denote pseudo-random numbers with Gaussian distribution trun-
cated at 1.5 and 3 σ (i.e, standard deviation). The first one is the systematic
magnetic field error (bnS and anS), which depends on the design geometry, the
second one is the magnetic field error (bnU and anU) coming from the magnet
assembly and the last one is the random magnetic field error (bnR and anR), which
depends on the magnet.

2.2 Dynamic Aperture in a 4D Phase Space
We introduce the definition and estimation of the DA for a 4D phase space [13], and
how such estimation can be simplified in the case of a 2D scanning [19]. We work
in the 4D phase space because we are interested in defining the area of stability in
the plane transverse to the direction of motion. In fact, the effect of the coupling
between the longitudinal and transverse plane can be neglected [18] because static
magnetic fields have a small effect along the longitudinal axis. The computation
of the DA is useful since it can be seen both as a figure of merit to design future
colliders and as powerful indicator to assess the performance of the current colliders.
Indeed, the evaluation of DA allows to estimate an upper bound for the unwanted
non linear imperfections defined in Section 2.1.2.

2.2.1 Definition
We recall a definition proposed in [13] of the DA in the case of a 4D phase space
(x1, px1 , x2, px2), where px1 and px2 denote the momenta associated with x1 and x2
in the plane transverse to the longitudinal direction. The phase space is defined as
the space where all the possible states of a system (in position and momentum)
are represented. The estimation of the DA is associated to the computation of
the volume in phase space of the set of initial conditions that generates bounded
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orbits after N turns, or revolutions, in the collider. The volume of this set of initial
conditions in phase space whose associated orbits are bounded after N turns is
defined as: ∫∫∫

χ(x1, px1 , x2, px2) dx1 dpx1 dx2 dpx2 (2.4)

where χ(x1, px1 , x2, px2) denotes the characteristic function equal to 1 if the orbit
starting at (x1, x2) with momenta px1 , px2 is bounded and 0 if not.
We define the DA as the radius of the circle whose area is equal to the area of the
stability domain. The stability domain represents the area of the connected region
of initial conditions whose associated orbits are bounded after a given number of
turns N .

2.2.2 DA Estimation
We first consider the polar variables (r1, θ1, r2, θ2), where r1 and r2 are the radii
of polar coordinates in a four dimensional space, seen as a product of two two
dimensional spaces. We then replace r1 and r2 by the two dimensional polar
variables r cos(α) and r sin(α), so that we rewrite Eq. (2.4) as:∫ 2π

0

∫ 2π

0

∫ π/2

0

∫ ∞

0
χ(r, α, θ1, θ2)r3sin(α)cos(α) dr dα dθ1 dθ2 (2.5)

where r ∈ [0, ∞[, θ1, θ2 ∈ [0, 2π[ and α ∈ [0, π/2].

The volume of the connected stability domain is defined as:

Aα,θ,N = 1
8

∫ 2π

0

∫ 2π

0

∫ π/2

0
r(α, θ, N)4sin(2α) dα dθ1 dθ2 (2.6)

where θ = (θ1, θ2) and r(α, θ, N) denotes the largest value of r such that an orbit
starting at distance r from the axis is bounded after N turns.

Using Eq. (2.6), we can estimate the DA as function of the number of turns
N :

Dα,θ,N =
(2Aα,θ,N

π2

)1/4
. (2.7)

2.2.3 Dimensionality Reduction
It is possible to reduce the CPU time of the simulation by setting θ = 0, so
that the scanning of the initial particle amplitudes is only performed over r and
α. This is typically what can be done by using the SixTrack code, developed at
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CERN [20], which is optimized for long term tracking simulations of high energy
hadron accelerators. If this simplification is introduced, the volume of a connected
stability domain is redefined as:

Aα,N = 1
2

∫ π/2

0
r(α, N)2 dα, (2.8)

and the DA can be expressed as a function of the number of turns N :

Dα,N =
(4Aα,θ,N

π

)1/2
. (2.9)

However, in practice, taking the average of the stable radii is found to be a better
indicator, as reported for example in Ref. [21], so Eq. (2.9) can be simplified as
follow:

Dα,N = 2
π

∫ π/2

0
r(α, N) dα (2.10)

The approximate computation of Eq. (2.10) is straightforward and can be performed
for example by considering K steps in the angle α. Due to the normalization factor
in Eq. (2.10), this yields

Dα,N = 1
K

K∑
k=1

r(αk, N). (2.11)

Finally, a simplified formula for the numerical error of the estimation of DA after
N turns can can be obtained in Ref. [21]:

∆Dα,N ≈ ∆r

2 (2.12)

where ∆r is the step size in r.

2.3 4D Hénon Map
The 4D Hénon Map is a well-known dynamical system that displays a rich dynamical
behaviour as presented in Ref. [14]. The model is defined as,


x

(n+1)
1

p(n+1)
x1

x
(n+1)
2

p(n+1)
x2

 = L



x
(n)
1

p(n)
x1 +

(
x

(n)
1

)2
−
(

x
(n)
2

)2
+ µ

((
x

(n)
1

)3
− 3

(
x

(n)
2

)2
x

(n)
1

)
x

(n)
2

p(n)
x2 − 2x

(n)
1 x

(n)
2 + µ

((
x

(n)
2

)3
− 3

(
x

(n)
1

)2
x

(n)
2

)


(2.13)
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where the upper script (n) denotes the discrete time and L is a matrix given by the
direct product of two 2D rotations R,

L =
(

R(w(n)
x1 ) 0

0 R(w(n)
x2 ).

)
(2.14)

Here the linear frequencies vary with the discrete time according to

w(n)
x1 = wx10

(
1 + ϵ

m∑
k=1

ϵkcos(Ωkn)
)

(2.15)

w(n)
x2 = wx20

(
1 + ϵ

m∑
k=1

ϵkcos(Ωkn)
)

(2.16)

where ϵ denotes the tune modulation and ϵk and Ωk are fixed according previous
studies on the SPS Ref. [14].

The 4D Hénon Map represents a simplified model of a circular accelerator. In
particular, it models the effects of a sextupole and octupole magnet on the particle
motion at each turn through the quadtratic and cubic non linear terms. Sextupole
and octupole magnets are composed respectively of six and eight magnetic poles
arranged in a configuration of alternating north and south poles around an axis.
Setting µ = 0 is equivalent to consider the sextupole effects only. The 4D Hénon
Map will be used here to generate cheaply DA data for large numbers of turns (i.e,
107 turns).

2.4 Scaling Laws
The estimation of the DA for a large number of turns can have a significant com-
putational cost. Thus, the development of cheaper models allowing to forecast
accurately the DA up to a large number of turns is a field of strong interest. We
present here some analytical models proposed in the literature, which are based on
the Nekhoroshev theorem, as introduced in Ref. [14]. In particular, these analytical
models have been benchmarked using numerical simulation of the 4D Hénon map
introduced in Section 2.3 as well as a realistic representation of the beam dynamics
in the LHC obtained using the SixTrack code.

A first analytical model for the description of the time evolution of the DA has
been proposed in the form of:

SL: DN = ρ∗
( κ

2e

)κ 1
ln(N)κ

(2.17)
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where ρ∗ and κ are fitting parameters.

Another version of the same model can be developed based on the Lambert function
W−1 as discussed in Ref. [14]. In this case, the proposed analytical model reads:

SL2: DN = ρ∗
1(

− 2eλW−1(− 1
2eλ

(ρ∗
6 )1/κ(8

7N)−1/(λκ))
)κ (2.18)

where the fitting parameters are ρ∗, κ and λ. However, in Ref. [14], it is suggested
to fix λ = 1/2.

For practical applications, the series expansion of W−1 can be used:

W−1(x) = ln(−x) − ln(−ln(−x)) +
∞∑

l=0

∞∑
m=1

clmln(−x)−l−mln(−ln(−x))m (2.19)

where

clm = (−1)l

m!

[
l + m
l + 1

]
(2.20)

and the symbol in square brackets represents a Stirling cycle number [22]. The
series expansion can be truncated at a certain finite order to retain only the lowest
order terms.
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3 Continuous Time Leaky Echo State
Network

In this Chapter, we present first some general concepts about ESN. Then, we
introduce the mathematical framework of the continuous time leaky ESN applied
for supervised learning tasks. Finally, we recall the definition of the Echo State
Property (ESP) and a sufficient condition to guarantee this property that can be
used in practice for applications of ESN.

3.1 Generalities

ESN are a type of Recurrent Neural Network using the Reservoir Computing
approach. In this type of neural networks, the data input is fed into connected
to a random and non trainable network, called the reservoir. This reservoir is
eventually connected via trainable weights to the ESN output. The use of ESN
for time series prediction has become widespread due to its cheap training process
and its remarkable performance in dynamical system modeling [23]. Contrary
to feedforward neural networks, ESN do not suffer from vanishing or exploding
gradients (caused by the fact that the neural networks parameters remain almost
constant or lead to numerical instabilities) that induce bad performance of the
training algorithm [24].

3.2 ESN definition

We introduce the definition of the continuous time leaky ESN as in Ref. [25].
We consider the case of networks with continuous time t, K inputs, Nr reservoir
neurons and L outputs. We define by u = u(t) ∈ RK and xtarget = xtarget(t) ∈ RL

the training input and target output of the ESN, respectively. The ESN output is
denoted by xout = xout(t) ∈ RL, while the internal reservoir activation state is given
by x = x(t) ∈ RNr , the input weight matrix W in ∈ MNr×K(R), the reservoir weight
matrix W ∈ MNr×Nr(R) and the output weight matrix W out ∈ ML×(Nr+K)(R). In

10



Continuous Time Leaky Echo State Network

this way, the continuous time dynamics of a leaky ESN is given by:

dx

dt
= 1

c
(−ax + f(W inu + Wx)) (3.1)

xout = g(W out[x; u]) (3.2)

where c is a global time constant, a the leaking rate, f a sigmoid function, g the
output activation function and [.;.] denotes vector concatenation.

Eq. (3.1) can be discretized in time e.g. by the explicit Euler method using
ktrain time steps of size ∆t. In this way, ktrain corresponds to the number of
training data. This yields the following discretized network update equation:

xk = F (xk−1, uk) =
(

1 − a
∆t

c

)
xk−1 + ∆t

c
f(W inuk + Wxk−1) (3.3)

xout
k = g(W out[xk; uk]) (3.4)

where xk denotes the update of the reservoir activation state at the discrete time k.

Remark 3.1 The leaking rate a of the reservoir nodes can be regarded as the speed
of the reservoir update dynamics.

In the case of a linear readout (i.e, g is the identity function), we can rewrite
Eq. 3.3 in matrix notation as:

Xout = W outX (3.5)

where Xout ∈ RL×ktrain contains the L ESN outputs at every time step k =
1, ..., ktrain and where X ∈ M(Nr+K)×ktrain

(R) contains the concatenation of the
training input and reservoir activation state at every k = 1, ..., ktrain:

X =
(

u1 · · · uktrain

x2 · · · xktrain+1

)
(3.6)

Finding the optimal output weight matrix W out that minimizes the square error
between xout and xtarget is done by solving the following minimization problem:

W out = argmin J(W out) = argmin 1
L

L∑
i=1

( T∑
k=1

(xout
ik − xtarget

ik )2 + β∥wout
i ∥2

)
(3.7)

where J denotes the cost function that we want to minimize and ∥wout
i ∥ the Eu-

clidean norm of the ith row of W out.
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The solution of the minimization problem stated in Eq.(3.7) can be found ef-
ficiently using linear regression with Tikhonov (or ridge) regularization [26]:

W out = X targetXT (XXT + βI)−1 (3.8)

where .T denotes the transpose, I ∈ M(Nr+K)×(Nr+K)(R) the identity matrix and
X target ∈ ML×ktrain

(R) the output target matrix which contains the L ESN target
outputs at every time step k.

Remark 3.2 Using the regularization parameter β allows to get a compromise
between having a small training error and small output weights [27]. In other words,
it prevents from overfitting. Also, it may be used to prevent numerical instabilities
occurring in the inversion of XXT .

The learning is performed on the so called training set, which contains ktrain

training data. A sketch of the training phase of the ESN is provided in Figure 3.1.

Figure 3.1: Sketch of the training procedure for the leaky ESN. The size of the
matrices have been selected arbitrarily. E denotes the square error between xout

k

and xtarget
k , k = 1, ..., ktrain.

After the training, the ESN is usually validated using kval new data and tested
using ktest data. The validation and test procedures are detailed in Chapter 4.
Also, as stated in Eq. (3.7), only the output weight matrix W out is trained, while
the input and reservoir matrices W in and W are generated randomly, as explained
in detail in Chapter 4.

3.3 The Echo State Property
An important prerequisite for the output-only training described in the previous
section is the so called Echo State Property (ESP), which guarantees that initial
conditions have an effect that vanishes over time. We use the work in Ref. [28] to
recall the definition of the ESP and a new sufficient condition that can be used in
practice. Satisfying the ESP allows to guarantee that the reservoir activation state
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xk−1 is uniquely determined by any left-infinite input sequence ..., uk−2, uk−1. In
order to define the ESP, we require the compactness condition, that is, we assume
that the states and the inputs belong to compact sets X ∈ RNr , U ∈ RK and that
F (xk−1, uk) ∈ X and uk−1 ∈ U , ∀k ∈ Z.

Remark 3.3 In practice, the ESN inputs will always be bounded so that the
compactness of U is guaranteed. Also, in the case of bounded sigmoid functions f
such as tanh, the state space X is compact too.

We now define U−∞ := {u−∞ = (..., u−1, u0) | uk ∈ U ∀k ∈ Z} and X−∞ :=
{x−∞ = (..., x−1, x0) | xk ∈ X ∀k ∈ Z} which are the sets of infinite left input and
reservoir activation state sequences.

Definition 3.1 (ESP). A network F : X × U → X (with the compactness condi-
tion) has the Echo State Property with respect to U if for any left input sequence
u−∞ ∈ U−∞ and any two state sequences x−∞, y−∞ ∈ X−∞ compatible with u−∞

(i.e, xk = F (xk−1, uk), ∀k ≤ 0), it holds that for all k ≥ 0, ∥xk − yk∥ ≤ δk, where δk

denotes a small value.

For practical applications, Definition 3.1 is not really useful. Thus, we intro-
duce the following Theorem 3.1 that should be used in practice. It provides a
sufficient condition for satisfying the ESP in the case of the leaky ESN:

Theorem 3.1 (Sufficient condition of the ESP). If the spectral radius of the
matrix

W̃ = ∆t

c
|W | +

(
1 − a

∆t

c

)
I

is smaller than 1, i.e. ρ(W̃ ) < 1, then the leaky ESN with f = tanh has the ESP
for all inputs.

This condition is only sufficient but not necessary. In other words, setting ρ(W̃ ) ≥ 1
does not necessarily lead to bad performance of the leaky ESN.
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4 Dynamic Aperture Data and
Simulation Setup

This Chapter is dedicated to the introduction of the different sets of Dynamic
Aperture data used in the thesis, as well as to the validation and testing procedure
used for our proposed predictive approach based on ESN.

4.1 The Dynamic Aperture Data
This first Section is dedicated to the presentation of the two datasets used to test
our predictive approach. The first consists of data obtained from a full numerical
simulation of the HL-LHC, while the second is a more extended dataset, generated
using the 4D Hénon map introduced in Section 2.3. In particular, we present how
we split our two DA datasets into a training set, a validation set and a test set.

4.1.1 The DA Datasets
HL-LHC dataset The first dataset of DA values has been generated using a
realistic model of the HL-LHC [3]. The DA is estimated using Eq. (2.11) based on
the output of the SixTrack code [20]. Also, the associated DA discretization error
∆Dα,N is estimated using Eq. (2.12). These data are grouped into 60 datasets
(called seeds). Each seed corresponds to a proper machine configuration, which
is defined by different randomly distributed magnetic field errors bnR and anR as
presented in Eq. (2.2). The tracking has been performed up to N = 105 turns,
where Kr=14 radii r and Kα=11 angles α have been scanned. The DA data
corresponding to all the 60 seeds are plotted in Figure 4.1.
Since the discrete time ESN defined in Eq.(3.3) uses a constant time step, the data
are considered as the values of a piecewise constant function of time, so as to allow
for use of the data at all the discrete time levels used by the ESN. The graphs of
the 60 piecewise constant functions defined by the seeds are shown in Figure 4.2
and contain 103 data points.
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Dynamic Aperture Data and Simulation Setup

Figure 4.1: Graphs of the 60 seeds containing the original DA data of the HL-LHC
realistic model. The size of the white black squares corresponds to the associated
DA error ∆Dα,N .

Figure 4.2: Graphs of the 60 piecewise constant functions defined by the seeds of
the original DA data of the HL-LHC realistic model.

4D Hénon Map dataset The second dataset is obtained by a simulation of the
4D Hénon Map system introduced in Section 2.3. The tracking has been performed
up to N = 107 turns for 20 different values of the modulation amplitude ϵ and 3
different values of µ to generate a total of 60 different cases. We varied ϵ between
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5.10−4 and 1.10−2 for µ = 0 , µ = 0.2 and µ = - 0.2. The DA is computed using the
same equations introduced in Section 2.2. Also, we decided to use the same grid
for the scan of the radii and angles to the HL-LHC case, so that we have scanned
through Kα=11 angles and Kr=14 radii. As previously, we built 60 piecewise
constant functions based on 103 data points. In Appendix B, we show the DA
where the scan has been performed for larger number of angles Kα and radii Kr.

4.1.2 Training, Validation and Test data
The training set is used to train the ESN and find the optimal output weight matrix
Wout using the ridge regression procedure presented in Eq.(3.8). The validation set
is used to find the best hyperparameters, according to an ensemble procedure that
will be explained in greater detail in Section 4.2. Finally, the test set is used to
demonstrate the predictive capability of the ESN approach on data that was not
used previously in the training or validation processes.

HL-LHC dataset For each seed, we use the first ktrain = 400 data points (i.e,
from 10 to 4.104 turns) to train the ESN. Then, we use the next kval = 100 data
points (i.e, from 4.104 to 5.104 turns) for the validation. The remaining 500 data
points (i.e, from 5.104 to 1.105 turns) are used to test our predictive approach. In
other words, the number of test data is ktest = 500. A picture of the DA data used
to train and test can be see in Figure 4.3.

Figure 4.3: Splitting of the 60 seeds into a training, validation and test set.

4D Hénon Map dataset As for the HL-LHC case, we use the DA data from 10
to 5.104 turns to train and validate our approach. However, since we generated
DA until a longer number of turns, we decide to test our predictive approach from
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5.104 to 1.107 turns. A picture of the DA data used to train and test can be seen
in Figure 4.4.

Figure 4.4: Splitting of the 60 cases into a training and test set.

4.2 Simulation Setup
We present the simulation setup used to train and test an ensemble predictive
approach based on ESN inspired by [6] and [29]. We first describe the validation
procedure used to tune the hyperparameters required for the complete definition of
the ESN. Then, we introduce the test procedure performed to assess the predictive
ability of the proposed approach.

4.2.1 Validation Procedure
The proposed validation procedure used to tune the hyperparameters of our ESN
model can be described as follows. After defining what is an hyperparameter, we
perform a short sensitivity analysis using the HL-LHC dataset in order to study
the ESN sensitivity with respect to its hyperparameters. In other words, we try to
understand which hyperparamters may be fixed and which must be tuned. Based
on this sensitivity analysis, we finally present the ensemble validation procedure
used to tune only the most sensitive hyperparameters.

4.2.1.1 Generalities
Hyperparameters are parameters that we need to fix to complete the definition of
a predictive model. The performance of the model depends strongly on the choice
of their values. In Chapter 3, we have already introduced several hyperparameters
such as the leaking rate a, the regularization parameter β, the reservoir size Nr
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and the spectral radius ρ of W̃ . In particular, we show how ρ can can be fixed
using Algorithm 1. Other hyperparameters can be introduced in the current model,
such as the sparsity ratio s of W (i.e, the fraction of 0 elements in W ), the choice
of the sigmoid function f or the burn-in BI as in Ref. [30] which correspond to the
number of time step of the input data we want to discard. In the case of models
with a large number of hyperparameters, such as the ESN, it is essential to study
the sensitivity of the results with respect to these hyperparameters, in order to
understand if we may fix their values or if they have to be tuned. If this happens,
the computational cost of the validation procedure can be significantly reduced.

4.2.1.2 Sensitivity Analysis
As explained previously, we want to fix as much as possible the hyperparameters
required by the ESN approach in order to save some computational time during
the ensemble validation procedure that will be detailed in the next section. Some
of them can already be fixed for mathematical consideration. Indeed, to satisfy the
sufficient condition for the ESP introduced in Section 3.3, we fix the spectral radius
ρ(W̃ ) = 0.99. Furthermore, we fix the sigmoid function f = tanh, the leaking rate
a = 1,and ∆t

c
= 0.01.

For the other hyperparameters (i.e, reservoir size Nr, burn-in BI, regularization
parameter β), we perform a sensitivity analysis to study their effects on the results
of the ESN predictions. We compute the mean, minimum and maximum of the
Relative Root Mean Square Error (RRMSE) in the test set RRMSEtest over the 60
seeds of the HL-LHC realistic model and for different values of Nr, BI and β. The
RRMSE in % between the output of our approach xout and the target xtest target in
the test set is defined as [31]:

RRMSEtest = 100

√√√√∑ktest
k=1 (xout

k − xtest target
k )2∑ktest

k=1 (xtest target
k )2

(4.1)

where ktest is the number of test data.

The plots are shown in Figure 4.5. Clearly, we observe that the mean RRMSEtest
mean

of the RRMSEtest over the 60 seeds vary the most with respect to the regularization
β. Instead, the mean of the RRMSEtest remains almost constant with respect to
the burn-in BI and reservoir size Nr. In other words, our ESN model is not very
sensitive with respect to these hyperparameters, so that we may fix them without
a significant impact on the performance of the ESN. Thus, we decide to fix BI = 0
and Nr = 50 for any input. For such a small reservoir, we set the sparsity ratio
s = 0, so that all the elements of W are non null.

Remark 4.1 Sparsity is usually required for large reservoirs (Nr > 103) to reduce
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the computational cost of the training and simulation phase. In our case, since
we use a small reservoir of size Nr = 50, there is no strong motivation to use
sparse matrices. However, it is important to notice that the proposed approach is
implemented so as to deal also with sparse matrices if required.

a) a) Nr = 50, β = 1e-2 b) b) BI = 0, β = 1e-2

b) BI = 0, Nr = 50

Figure 4.5: Mean, Minimum and Maximum of the RRMSE in the test set over
the 60 seeds of the HL-LHC realistic model for different Nr, BI and β

To sum up, the only hyperparameter that must be tuned for any input is the
regularisation parameter β. The tuning is performed using the ensemble validation
approach proposed in the next section, inspired by [6] and [29].

In Table 4.1, we summarise the values of all the hyperparameters fixed for any
ESN input.
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N s ρ α BI f ∆t
c

50 0 0.99 0.01 0 tanh 0.01

Table 4.1: Fixed Hyperparameters

Another important element that we still have not considered is the random gen-
eration of the input and internal weight matrices W in and W . This is done by
sampling their elements from a uniform pseudo-random distribution on (0,1) and
scaling them into the interval (-0.5,0.5) to have negative elements as well. In
addition, the spectral radius of W̃ is fixed to 0.99 for all the generations, in order to
satisfy the ESP. The generation procedure of W in and W is detailed in Algorithm
1.

Algorithm 1 Generation

Input: ρ spectral radius of W̃ (fixed to 0.99), K input size, Nr reservoir size
Output: W in input weight matrix, W reservoir weight matrix
Step 1: Random intialization
W in

i,j ∼ U(0,1) - 0.5 , i = 1, ..., Nr, j = 1, ..., K
Wi,j ∼ U(0,1) - 0.5 , i, j = 1, ..., Nr

Step 2: Rescaling
ρrand = Spectral radius of ∆t

c
|W | + (1-a∆t

c
)I

W = W ρ/ρrand

Because the generation is random, an ensemble validation approach is then neces-
sary.

4.2.1.3 An Ensemble Validation Approach
We present the validation procedure based on an ensemble approach used to deal
with the randomness in the initialisation of the input and reservoir weight matrices
W in and W . Algorithm 2 presents the pseudo code of the validation procedure.
In the validation approach, we compute the Mean Square Error (MSE) in the
validation set MSEval of our ESN based predictive approach for NW different pairs
of (W in,W ) and Nβ different regularization parameters β. Then, we compute βval

the β which minimizes in average (i.e, over the NW pairs of (W in,W ) ) the MSEval.
Finally, βval is used to evaluate our approach for new data.
The target validation data xval target which contain the kval validation data can be
obtained either from the actual data, by using the piecewise functions introduced
previously, or by fitting the data with the scaling law introduced in Section 2.4. We
denote by ESN the validation approach using only the piecewise constant input
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functions built from the original data and by ESN-SL the validation approach
using the output of the fitted scaling law presented in Eq.(2.17) (SL) as validation
data. The other scaling law presented in Eq.(2.18) (SL2) gave comparable results
to the SL, so for simplicity of the formula, we decided to use only the SL. The
comparison of the two scaling laws SL and SL2 is presented in the Appendix A.

Algorithm 2 Validation

Input: βvector vector of regularization parameters β of length Nβ, NW random
different pairs of (W in,W ), xtrain target training target data, xval target validation
target data, u input data, H set of all the fixed hyperparameters

Output: βval ∈ βvector which minimize in average the MSE in the validation set
MSEval

Step 1: Store the MSE in the validation set in M ∈ MNβ×NW
(R)

for i = 1 to Nβ do
for j = 1 to NW do

W out = Training(u, xtrain target, H, (W in, W )j, βi, where = training set)
xout = Prediction(H, (W in, W )j, W out, where = validation set)
Mi,j = MSE(xout,xval target) = 1

n

∑kval
i=1 (xout

i − xval target
i )2

end
end
where W out is the output weight matrix found by ridge regression and xout is the
predicted output of our approach

Step 2: Compute vector of mean mmean over the rows of M

mmean = [ mβ1
mean , ..., mβ

Nβ

mean]T

where mβi

mean is the mean of the i − th row of M .

Step 3: Compute the minimum and select βval

βval = argmin
βi

mβi

mean

Remark 4.2 We did not detail the functions Training() and Prediction() since
they use exactly the same equations presented in Section 3.2
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We tried out our validation method with βvector = [1e − 4, 2e − 4, 3e − 4, 1e − 3, 2e −
3, 3e − 3, 1e − 2, 2e − 2, 3e − 2] vector of regularization parameters β of length
Nβ = 9

4.2.2 Test Procedure
We end this chapter with the description of the testing procedure presented in
Algorithm 3, also based on an ensemble method, used to assess the predictive
capabilities of our two approaches (i.e, ESN and ESN-SL).

Algorithm 3 Test

Set of Fixed Hyperparameters H : Nr = 50, a = 0.01, ρ(W̃ ) = 0.99, s = 0, f
= tanh, BI = 0

Input: βval = Validation output, NW = 100 number of different pairs of (W in,W ),
xtrain target training target data of size ktrain, xtest target test target data of size ktest,
u input data

Output: xout
mean mean of the predicted outputs, RRMSEtest between xout

mean and
xtest target

Step 1: Generation of (W in,W )
(W in,W )i = Generation(ρ(W̃ ), Nr), i = 1, ..., NW

Step 2: Predict in the test set and store in p ∈ RNW

for j = 1 to NW do
W out = Training(u, xtrain target, H, (W in, W )j, βval, where = training set)
xout = Prediction(H, (W in, W )j, W out, where = test set)
pj = xout

end

Step 3: Average over the predictions p
xout

mean = mean(p)

Step 4: RRMSE
RRMSEtest = RRMSE(xout

mean, xtest target)
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5 Results and Discussions

In this last Chapter, we present the DA predictions obtained with the two ap-
proaches denoted previously by ESN and ESN-SL. In particular, we compare these
approaches with the fitted scaling law SL presented in Eq.(2.17) and used in [14].
We recall that ESN denotes the mean prediction xout

mean over NW = 100 predictions
using piecewise constant functions built from a given dataset as validation data,
whereas ESN-SL denotes the mean prediction xout

mean over NW = 100 predictions
using the fitted scaling law SL as validation data. The training data of the ESN
and ESN-SL are the same, only the validation data differ. The hyperparameters
used, the validation and testing methods are those previously introduced in Section
4.2. We test the proposed approaches both with the HL-LHC and 4D Hénon Map
datasets presented in Section 4.1.1

5.1 DA Predictions of the HL-LHC dataset
We start this first Section by presenting the results regarding the abilities of the
ESN-SL, ESN and SL to forecast the DA of the HL-LHC realistic model. First,
we plot the values of βval found in our validation procedure for all seeds. Then, we
show for each approach the best and worst seed predictions. Finally, we plot the
predictions, with their RRMSE in the test set, over the 60 seeds.

5.1.1 Validation output
Before testing our approaches, it is necessary to apply our validation procedure,
described in Algorithm 2, in order to find the βval minimizing the MSE on the
validation set. Thus, in Figure 5.1, we plot the distribution of the βval found in
the validation process. As we can see, due to the different validation datasets, the
values of βval found by ESN and ESN-SL differ slightly. Once the βval value
has been computed for each of the 60 seeds, we can test our approaches using
Algorithm 3 and plot the predicted DA.
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Figure 5.1: Distribution of the βval over the 60 seeds for the ESN-SL and ESN.

5.1.2 Best and worst seed predictions
In this section, we focus only on the best and worst seed predictions of the ESN-
SL and ESN. In Figures 5.2-5.4, we plot the xout

mean of the best and worst seed
predictions of the ESN-SL and ESN and compare them with the SL prediction.
We also show the distribution of the NW = 100 predictions pj associated to the NW

pairs of (W in, W )j, j = 1, ..., NW at the end of the test set (i.e, N = 105 turns).
As we can observe, the best and worst seed predictions differ for the ESN-SL and
ESN approaches. Also, the worst predictions of the ESN-SL and ESN are better
than the SL prediction.

a)
a) ESN-SL xout

mean

b)
b) Empirical distribution of NW

predictions at N = 105

Figure 5.2: xout
mean of the ESN-SL prediction for the best (53th) seed with the

distribution of its NW = 100 predictions at N = 105 turns and comparison with
SL.
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a)
a) ESN-SL xout

mean

b)
b) Empirical distribution of NW

predictions at N = 105

Figure 5.3: xout
mean ESN-SL prediction of the worst (24th) seed with the dis-

tribution of its NW = 100 predictions at N = 105 turns and comparison with
SL.

a)
a) Best ESN xout

mean

b)
b) Empirical distribution of NW

predictions at N = 105

a)
a) Worst ESN xout

mean

b)
b) Empirical distribution of NW

predictions at N = 105

Figure 5.4: xout
mean of the ESN prediction for the best (25th) and worst (35th) seed

with the distribution of its NW = 100 predictions at N = 105 turns and comparison
with SL.
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5.1.3 60 seed predictions
We show in Figure 5.5 the overlapped predictions of the 60 seeds, in order to show
that all the predictions fit well in general with the test data.

a) a) ESN-SL predictions xout
mean b) b) ESN predictions xout

mean

b) b) SL predictions

Figure 5.5: ESN-SL, ESN and SL predictions for the 60 seeds.

Also, in Figure 5.6, we plot the predicted DA values of our three approaches at the
beginning (N = 5.104 turns) and end (N = 105 turns) of the test set and compare
them with the HL-LHC data. We observe that the DA data predicted at N = 5.104

and N = 1.105 with the ESN-SL fit globally slightly better than the ones obtained
with the ESN or SL.
For a more detailed analysis, we plot the distribution of the RRMSE in the test set
over the 60 seeds in Figure 5.7. We can clearly see that the maximal RRMSE is
lower with the ESN-SL and ESN approaches than with the SL. Also, we notice
that the ESN-SL approach predict more seeds with lower RRMSE than the ESN.
In Table 5.1, we summarise the maximum and mean RRMSE over the 60 seeds for
the three approaches.
On average, the RRMSE of the ESN-SL is 10% better than the ESN and 5%
better than SL with a maximal RRMSE 27% lower than the one of the SL. It seems
that using validation data generated by the fitted scaling law allows to improve
the prediction by finding more relevant βval with respect to the piecewise constant
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inputs built based on the original data.

a)
a) N = 5.104

b)
b) N = 105

a)
a) N = 5.104

b)
b) N = 105

a)
a) N = 5.104

b)
b) N = 105

Figure 5.6: Predictions xout
mean for the 60 seeds at N = 5.104 turns and N = 105

turns for the ESN-SL, ESN and SL.

In Table 5.2, we compare the CPU time required by the three approaches. It is
clear that the scaling law is much less time consuming. However, the training
time and test time of the ESN-SL and ESN remain very low and the CPU time
required by the ESN approaches is mainly due to the ensemble validation approach,
which requires the scan over the NW = 100 different (W in, W ) in order to produce
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100 differents predictions for each of the 60 seeds. On one hand, validating over
a single reservoir realization, as common in earlier literature on RC approaches,
could allow to reduce substantially the CPU time required training, validation
and test of the ESN-SL and ESN, while providing a prediction that would be on
average still superior to that of the SL approach. On the other hand, however, the
ensemble validation approaches can be easily parallelized. Furthermore, ensemble
approaches provide the complete probability distribution of DA values over the
whole ensemble, thus allowing for a more robust quantification of the uncertainties
involved in these estimates.

a) a) Comparison ESN-SL and SL b) b) Comparison ESN and SL

Figure 5.7: Distribution of the RRMSE in the test set RRMSEtest over the 60
seeds for the ESN-SL, ESN and SL.

RRMSEtest max (%) RRMSEtest mean (%)
ESN-SL 1.30 0.40

ESN 1.22 0.44
SL 1.76 0.42

Table 5.1: Performance of the ESN-SL and SL for the prediction of DA over the
60 seeds.

Training time Validation time Test time
ESN-SL 3 55 4

ESN 3 55 4
SL 2.10−3 X 6.10−5

Table 5.2: CPU time (s) of the ESN-SL, ESN-SL and SL approaches
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5.2 DA Predictions of the 4D Hénon Map dataset
This Section is dedicated to the presentation of the results regarding the forecasting
of the DA for the dataset produced with the 4D Hénon Map. In particular, our
aim is to reproduce results similar to those found with the HL-LHC dataset using
a longer dataset. As in the previous section, we start by plotting the βval found
by our validation procedure for all cases. Then, we show the best and worst case
predictions for each approach and we plot the predictions, with their RRMSE in
the test set, over the 60 cases.

5.2.1 Validation output
The prediction in the test set requires the knowledge of the βval. Thus, in Figure
5.8, we plot the distribution of the βval found in the validation process. The values
of the βval found by ESN and ESN-SL differ from each other much more than
with the HL-LHC dataset. As a consequence, we can expect much more significant
differences between the accuracy of the ESN and ESN-SL predictions.

Figure 5.8: Distribution of the βval over the 60 cases for the ESN-SL and ESN.

5.2.2 Best and worst case predictions
We also start by looking only at the best and worst case predictions of the ESN-
SL and ESN. In Figures 5.9-5.11, we plot the xout

mean of the best and worst case
predictions of ESN-SL and compare with that obtained by the SL. For ESN-SL
and ESN, we also show the distribution of the NW = 100 predictions at N = 107

turns (end of the test set). Here, we notice that the best case (41th) prediction is
identical for the two approaches. However, the worst case prediction obtained by
the ESN-SL is much better than the one of the ESN.
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a)
a) Best ESN-SL xout

mean

b)
b) Empirical distribution of NW

predictions at N = 107

a)
a) Worst ESN-SL xout

mean

b)
b) Empirical distribution of NW

predictions at N = 107

Figure 5.9: xout
mean of the best (41th) and worst (31th) case prediction of the

ESN-SL with the distribution of its NW = 100 predictions at N = 107 turns and
comparison with SL.

a)
a) ESN xout

mean

b)
b) Empirical distribution of NW

predictions at N = 107

Figure 5.10: xout
mean of the ESN best (41-th) case prediction with the distribution

of its NW = 100 predictions at N = 107 turns and comparison with SL.
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a)
a) ESN xout

mean

b)
b) Empirical distribution of NW

predictions at N = 105

Figure 5.11: xout
mean of the ESN worst (47-th) case prediction with the distribution

of its NW = 100 predictions at N = 107 turns and comparison with SL.

5.2.3 60 cases predictions

We plot in Figure 5.12 the predictions obtained by the three approaches for all the
60 cases.

a)
a) ESN-SL predictions xout

mean

b)
b) ESN predictions xout

mean

b)
b) SL predictions

Figure 5.12: Predictions of the 60 cases for the ESN-SL, ESN and SL
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Also, in Figures 5.13-5.15, we plot the predicted DA values of our three approaches
at the beginning (N = 5.104 turns) and end (N = 107 turns) of the test set and
compare them with the Hénon map data. We observe again that the DA prediction
with the ESN-SL at N = 5.104 and N = 1.107 fit globally better than those
obtained with the ESN or SL.

a) a) N = 5.104 b) b) N = 107

Figure 5.13: Predictions xout
mean for the 60 cases at N = 5.104 turns and N = 107

turns for the ESN-SL.

a) a) N = 5.104 b) b) N = 107

Figure 5.14: ESN predictions xout
mean for the 60 cases at N = 5.104 turns and N

= 107 turns .
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a) a) N = 5.104 b) b) N = 107

Figure 5.15: SL predictions for the 60 cases at N = 5.104 turns and N = 107

turns.

To compare more in detail the three approaches, we plot the distribution of the
RRMSE in the test set over the 60 cases in Figure 5.16. We can clearly see that the
RRMSE obtained are larger than in the HL-LHC case for all the three approaches.
This is mainly due to the fact that we predict until a larger number of turns. In
Table 5.3, we summarise the maximum and mean RRMSE over the 60 cases for
the three approaches.

a) a) Comparison ESN-SL and SL b) b) Comparison ESN and SL

Figure 5.16: Distribution of the RRMSE in the test set RRMSEtest over the 60
cases for the ESN-SL, ESN and SL

On average, the RRMSE of the ESN-SL prediction is 23% better than the SL and
21% better than the ESN. Also, its maximal RRMSE is almost 50% lower than
the one of the SL. In conclusion, the results on the longer Hénon map dataset seem
to be coherent with those obtained on the HL-LHC data, since also in this case,
the ESN-SL performs in average better than the ESN and SL. In other words,
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using validation data generated by the fitted scaling law seems to be beneficial for
the quality of the prediction.

RRMSEtest max RRMSEtest mean
ESN-SL 3.01 1.53

ESN 4.74 1.93
SL 5.85 1.98

Table 5.3: Performance of the ESN-SL and SL for the prediction of DA over the
60 cases.

Since each of the 60 cases contain the same number of DA data points to the 60
seeds of the HL-LHC, the CPU time of the three approaches is the same to the
one reported in Table 5.2.
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6 Conclusion

In this thesis, we have developed an ensemble prediction approach for the DA of a
circular collider based on ESN. In particular, we have implemented the ESN-SL
model using the fitted scaling law as validation data. We showed that the model
allowed to improve on average the accuracy of the predictions given by the scaling
law SL both for the HL-LHC realistic and the 4D Hénon Map simplified model.
Also, for both applications, the maximal RRMSE of the ESN-SL was lower than
the one of the SL showing a coherent results for the two different datasets. Through
a sensitivity analysis and for some mathematical considerations mainly related
to the ESP, we showed that most of the hyperparameters of our approach could
be fixed so that only the β regularization hyperparameter had to be tuned. The
computational cost of the proposed process is much higher than that of the scaling
law fitting, mainly because of the validation procedure. However, the ensemble
validation approaches can be easily parallelized and ensemble approaches also
provide an estimate of the complete probability distribution of DA values over the
whole ensemble. This allows for a more robust quantification of the uncertainties
involved in these estimates. Eventually, even if the improvement of the predictions
given by the ESN-SL with respect to the SL is not so significant, further works
can be developed in order to improve the results. For instance, implementing a
multiple reservoirs ESN could help to increase to accuracy of the predictions.
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A Scaling Laws Comparisons

This first appendix is dedicated to the comparison of the scaling laws SL presented
in Eq.(2.17) and SL2 presented in Eq.(2.18) in their abilities to forecast the DA.

A.1 HL-LHC dataset
We start the comparison the the HL-LHC dataset presented in detail in Chapter 4.
In Figure A.1, we compare the distribution of the fitting parameter κ and ρ∗ found
by least square method using the training and validation data. In other words, the
fitting is performed from 10 to 5.104 turns.

a) a) κ b) b) ρ∗

Figure A.1: Distribution of the fitting parameter κ and ρ∗ over the 60 seeds for
SL and SL2

Eventually, in Figure A.2, we compare the RRMSE in the test set over the 60 seeds.
The test set contains the remaining DA data from 5.104 to 105 turns. As we can
observe, the two scaling laws perform similarly for the extrapolation of DA.
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Figure A.2: Distribution of the RRMSE in the test set for SL and SL2 over the
60 seeds

A.2 4D Hénon Map dataset
We use now the 4D Hénon Map dataset presented in detail in Chapter 4. In Figure
A.3, we compare the distribution of the fitting parameter κ and ρ∗ found by least
square method using the training and validation data. In other words, the fitting
is performed from 10 to 5.104 turns.

a) a) κ b) b) ρ∗

Figure A.3: Distribution of the fitting parameter κ and ρ∗ over the 60 cases for
SL and SL2

Eventually, in Figure A.4, we compare the RRMSE in the test set over the 60 cases.
The test set contains the remaining DA data points from 5.104 to 107 turns. As
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previously, we find that the two scaling laws perform similarly for the extrapolation
of DA.

Figure A.4: Distribution of the RRMSE in the test set for SL and SL2 over the
60 cases
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B Rough test of convergence of the 4D
Hénon Map

In this second appendix, we perform a rough test of convergence for one arbitrary
case (ϵ = 30, µ = 0.2) of the 4D Hénon Map. In this way, the estimation of the
DA is done for different number of angle Kα and radius Kr until N = 107 turns.
We compare the results with our Ref values (i.e, Kα = 11 and Kr = 14) used in
the report. In Figure B.1, we plot the assoaciated stability domains whereas in
Figure B.2, the corresponding estimation of the DA.

a)
a) Ref

b)
b) Kr=Kα = 30

b)
b) Kr=Kα = 120

b)
b) Kr=Kα = 210

Figure B.1: Stability domain of the 4D Hénon Map for different number of angle
Kα and radius Kr.
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Rough test of convergence of the 4D Hénon Map

As we can observe, the DA, estimated using the Ref values did not fully converge.
However, we want to mention that the choice of taking Kα=11 and Kr=14 was
only motivated to scan the angles and radii on the same grid to the one of the
HL-LHC realistic model.

Figure B.2: DA evaluated for different number of angle Kα and radius Kr.
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