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1. Introduction
The widespread adoption of new technologies re-
lated to the ecological and environmental tran-
sition is crucial in the context of the current cli-
mate emergency. However, as the acceptance
of new technologies is heavily influenced by the
traits of the individuals who will be using them,
understanding how adoption occurs is not triv-
ial. An important element of the environmen-
tal transition involves the mobility sector as it
is responsible for nearly 25% of Europe’s green-
house gas emissions [5]. Due to the difficulty
of overcoming cultural and mindset barriers to
foster the adoption of sustainable mobility so-
lutions, public incentives are crucial. Neverthe-
less, a wide and complete knowledge of individ-
ual characteristics affecting personal adoption
propensity must be pondered to design success-
ful government policies. Besides, it is important
to highlight that as the introduction of new tech-
nology has strong and ethical impacts, thus it
is essential to consider fairness and social jus-
tice directly in the designing of policy schemes.
This should be done in order to mitigate biases
that may result in special treatment for specific
groups or individuals.

1.1. Contributions
This work aims to propose a novel framework
to design policies to promote the adoption of
Car-sharing services. The framework exploits a
data-driven tool that defines individual inclina-
tion to the adoption of sharing mobility services
(the Sharing-DNA) and a multi-agent network.
In this way both data-driven individual charac-
teristics and social interactions are taken into
account. The agents’ features and the network
are built based on the data retrieved from the
EU survey on issues related to transport and mo-
bility [2], a survey that aimed at collecting data
on the mobility habits of European citizens, to-
gether with their socio-economic characteristics.
Using the irreversible cascade model to describe
the diffusion of the new technology through so-
cial contagion, we exploit an LQR formulation
to design policies aimed at minimizing a specific
cost function combing boosting effects with cost
saving. Specifically, three possible formulations
of the LQR problem are analyzed and compared.
Finally, this work tries to innovatively integrate
the concept of fairness in the problem formula-
tion by adding an additional component in the
LQR formulation. This allows us to evaluate
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social impact of the designed policies at design
time and not just in retrospect after service de-
ployment as canonically done in the literature.

2. State of the art and back-
ground

To start we have to cover the theoretical back-
ground for the work, including an overview of
the literature on Car-sharing adoption and atti-
tudes and an introduction to opinion dynamics
and the Linear Quadratic Regulator.

2.1. What affects the demand for car-
sharing services

Low awareness of their use, concerns about the
high cost of the service and the lack of consis-
tency in building charging infrastructure are the
most common barriers preventing the adoption
of sharing services [5]. Income is another signifi-
cant determinant, with those in the low-mid in-
come class being more likely to join car-sharing
programmes as well as people with higher edu-
cation levels [1].

2.2. Deterministic Irriversivle Cas-
cade Model

To model the adoption spread dynamics within
a network of users we will exploit state-of-the-
art tools from the theory of opinion dynamics.
In fact, this field of study focuses on how beliefs
and views evolve and spread over time within
a population. The specific method on which
we rely is the deterministic irreversible cascade
model. The latter operates in a network defined
as an undirected graph G = (V, E) where V are
nodes of the graph that represent the N agents
and E are the edges that establish the mutual
influence among them. Each individual is char-
acterized by a state variable evolving over time.
The state variables can assume binary values,
i.e. xv(t) ∈ (0, 1), indicating whether at time
t ∈ N0 the vth agent is an adopter (xv(t) = 1)
or not (xv(t) = 0). In this model when an agent
becomes an adopter remains so until the end of
the horizon. The evolution of each agent’s state
is described by the following equation:

xv(t+ 1) =


1, if xv(t) = 1 or

1
|Nv|

∑
w∈Nv

xw(t) ≥ αv

0, otherwise

(1)

where Nv is the neighbour of the v − th agent
and αv a thresholds characterizing every agent.
Hence, the adoption is driven by the relative
popularity of the technology among the neigh-
bours of each person.

2.3. Linear Quadratic Regulator
To design the optimal incentive policy and ap-
ply it in closed-loop, the tool used in this work
is the control algorithm of the Linear Quadratic
Regulator. This control technique optimizes the
performance of a given dynamic system com-
puting a feedback control law that minimizes a
quadratic cost function at each time step. The
latter in discrete time is expressed as:

J =

T−1∑
t=0

(Q(x(t)− x̄)2 +Ru(t)2) dt+Q(x(T )− x̄)2

(2)

where the first and the third term, multiplied
by their weight Q, are respectively the error be-
tween the current state of the system x(t) and
the desired state x̄ and between the terminal
state x(T ) and the target x̄. The second term,
multiplied by its weight R, accounts for the con-
trol input u(t).

3. Dataset and network
3.1. Dataset
The EU survey on issues related to transport and
mobility [2] aimed at collecting data on mobility
habits as well as opinions on various policy issues
related to transportation, and additional info re-
lated to the socio-economic status of the respon-
dents. The survey involved 28 European coun-
tries and collected information from a sample of
1000 individuals in each country. Attributes can
be categorised into seven main groups includ-
ing biological information (Bio), family status
(Fam), geographic information (Geo), education
(Edu), profession (Prof), environmental sensi-
tivity (Env), and mobility habits (Mob). Among
these questions, the one saying Would subscribe
car sharing (if available) is here considered as
the "target" question, namely an indicator of
the actual individual inclinations towards Car-
sharing.
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3.2. Sharing-DNA
After reducing and cleaning the data by discard-
ing the uncertain answers to the target question,
these are used to retrieve the Sharing-DNA, i.e.
quantitative and compact representation of the
personal propensity to use a sharing service.
To do so, first, a classifier is built in order to
identify which socio-economic factors are most
strongly associated with people’s likelihood of
using shared mobility services. Using machine
learning algorithms, we select the set of features
that optimize the classification outcome. To do
so, an algorithm that quantifies the impact of
each feature on the model’s performance, i.e.
the Permutation Importance Algorithm, is used.
To the subset of selected features are attributed
seven indices imob, igeo, ienv, iedu, iprof , ibio and
ifam found as the likelihood of being an adopter
and of presenting a specific value for each of the
seven features. They indicate the propensity of
the user to buy an electric or hybrid electric ve-
hicle (imob), the individual’s country of origin
(igeo), how much the environmental issues worry
the user (ienv), the level of education of the indi-
vidual (iedu), the user’s employment (iprof ), the
age of the individual (ibio) and the user’s level
of income (ifam). Finally, the Sharing-DNA is
defined as the vector of these indices and can
be outlined through spider-plots where vertices
represent the value of the seven indices (closer to
1 for higher propensity, 0 otherwise). Thus the
area is linked to the individual inclination to-
wards the adoption of shared mobility services
(see Fig.1).

(a) (b)

Figure 1: Spider plots for reference individuals:
positively (1a) and negatively inclined (1b)

Finally, we can further compress the info con-
tained in the Sharing-DNA by computing the
Sharing index isha, calculated by as the normal-
ized average of the Sharing-DNA components.

3.3. User’ interaction network
Based on the processed survey data we are go-
ing to build two multi-agent networks. We focus
on two areas (Milan and Warsaw) and starting
from the available sample of respondents living
in these regions, for both networks we extract a
set of approximately 1000 individuals in order to
simplify the numerical analyses. In this proce-
dure, we ensure that the statistical composition
of the population is preserved, namely the pro-
portion of individuals living in central, suburban
or peripherical areas is maintained as well as the
proportion of the adopters/non-adopters. Each
agent in the network is characterized by an indi-
vidual resistance with respect to shared mobility
αv defined as αv = 1 − isha,v. Accordingly, the
information on the location of residence reported
in the survey it is possible to randomly associate
each individual with a geographical position in
an urban/suburban or peripheral region. More-
over, we decided to connect agents in the net-
work based on geographical proximity consider-
ing the users being the most influenced by those
near them, hence their representative examples.
Specifically exploiting information on personal
mobility habits, it is possible to identify the ge-
ographic region mostly frequented by each agent
and thus connect two agents if they move in simi-
lar areas, namely their influence regions overlap.
The two retrieved networks present (see Fig. 2)
have respectively 1005 and 1002 nodes, they are
almost fully connected and the early adopters
are 2.59% and 3.59% of their total nodes.

(a) (b)

Figure 2: Milan and Warsaw network.

To better focus the policy design, it is interesting
to group individuals in sets with a clusterization.
The results are reported in the spider-plots in
Fig.3 where vertices represent the average value
of a certain index with respect to all users be-
longing to the same class. From these results, we
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can clearly see that Warsaw (Fig.3b), contrary
to Milan (Fig.3a), presents more clearly separate
clusters.

(a) (b)

Figure 3: Milan and Warsaw clusters.

This outcome allows us to finally identify the low
(Class 1), the medium (Class 2), and the high
(Class 3) propensity groups.

4. Network evolution
Now that we have built the networks, we can
test their evolution, i.e. the spreading of the
adoption of Car-sharing services with or without
external intervention.

4.1. Free evolution
The first scenario that we test is the one of the
free-evolution of the adoption, i.e. without ex-
ternal incentives. To do so we have to consider
the model described by Eq. 1 and an initial set
of adopters, i.e. the users v that in the initial
time t=0 have the state xv(0) = 1. Considering
a time horizon of T=10 steps where each step
corresponds to 3 months, in this scenario, the
two networks don’t evolve. This is due to the
fact that the early adopters in the two networks
are not enough to trigger the spread of adoption.

4.2. Policy design: Scenario A
To boost the adoption throughout the networks,
we want now to design incentive policy schemes.
To this end, we have to consider the model in
Eq. 1, but now with time-varying thresholds. In
this way, we can treat the thresholds as directly
modifiable by external incentives. Accordingly,
the impact of a policy is taken into account by
considering threshold dynamics as follows:

αv(t+ 1) = αv(t) +Bvuv(t), t = 0, ..., T, v ∈ V,
(3)

where Bv ∈ R quantifies how much the v − th
agent is willing to accept the policy, thus indi-
cating the impact level of the policy uv ∈ R di-
rected to the v − th user. Moreover, to find the
optimal policy uv, we consider an LQR prob-
lem that minimizes the Eq. 2 where the tracking
objective is the difference between the Sharing
index isha,v(t) and its target īsha,v, i.e. 1 − ᾱv

where ᾱv is the average of early adopters be-
tween the neighbours of each user at time t=0.
The weights Q and R are here considered to
be Q=10 and R=1. For what concerns Bv,
the value is selected according to the cluster to
which the user belongs by dividing the interval
[0,1] in three ranges and then randomly extract-
ing the value Bv in the lower range if the vt user
is in Class 1, in the middle range if the vt user is
in Class 2 or in the highest range if the vt user is
in Class 3. The retrieved policy schemes make
the network evolve and reach full adoption at
time t=6, i.e. after 18 months from the start of
the simulation. As the network evolves the Shar-
ing indices of the users increase boosted by the
incentives, but for Milan, as can be evaluated
by the poorly separated clusters (see Fig.3a),
the users are all very similarly inclined towards
sharing mobility, and even if the initial Shar-
ing index values of users of different clusters are
slightly separate, they end up being all indiffer-
ently very high. On the other hand in Warsaw,
the values of the sharing index of users in class
1 (Fig.3b) are smaller in values from the initial
to the final step of the time. The resources allo-
cated are higher for Warsaw than for Milan (see
Table 1). In particular, the inputs given to the
Class 1 users of Warsaw are higher than all of
the other classes of both Warsaw and Milan.

4.3. Policy design: Scenario B
In Scenario B, we consider Eq. 2 with the track-
ing error being the difference between isha,v(t)
and its target īsha,v while the policy acts on
those features that are changeable, i.e. ienv,
imob, ifam . Bv, Q, R are chosen as in the pre-
vious scenario, but in this case, since the policy
acts on the vector iDNA,v(t), the Bv is a vec-
tor itself. In order for the network to evolve
in this case, since we act on only three out of
seven features, we decided to make the change-
able features weight more on the final output of
the Sharing index in accordance with the Permu-
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tation Importance algorithm discussed in Sec-
tion 3.2. The policy schemes obtained in this
way make the Warsaw network reach the full
adoption on t=6 while for Milan only at t=9.
The reason why this difference occurs can be
found in the different index igeo that charac-
terizes the two cities: for Milan, this value is
0.6653 while for Warsaw, it is a little bigger, i.e.
0.7418 and since the policy only acts on the three
changeable features of the DNA, the Milan’s val-
ues of the isha are inevitably smaller than those
of Warsaw. From the evolution of the Shar-
ing index over time we notice that Sharing in-
dices of the Class 1 users increase but remain in
any case distinctly lower than those of the other
classes, nevertheless, the individuals in the net-
work quickly become adopters. On the contrary,
the Sharing index of users in Milan has to reach
a high value in order for the corresponding node
to become an adopter. In fact, as can be seen in
Table 1, the final average value of Milan’s isha is
higher than that of Warsaw’s. Therefore we can
say that in Warsaw the adoption of people less
inclined to Car-sharing is driven particularly by
the relative popularity of the technology, while
in Milan it is mainly powered by the increase of
the personal isha.

4.4. Policy design: Scenario C
The Scenario C considers the Eq. 2 with the
tracking error being the difference between
iDNA,v(t) and its target īDNA,v while the pol-
icy act again on the iDNA,v(t). The target value
īDNA,v is the vector with elements all equal to
īsha,v. The policy schemes retrieved make the
network evolve and reach full adoption at time
t=6 for Warsaw and at t=7 for Milan. The way
that the Sharing index evolves over time is very
similar to that of the previous Scenario as well
as the allocation of the input (see Table 1).

Table 1: Scenario A vs. Scenario B vs. Scenario
C

A B C
M W M W M W

erT 0.0083 0.0164 0.0600 0.0506 0.0117 0.0144
is,T 0.9304 0.9489 0.9159 0.9151 0.9558 0.9510
utot 0.7471 0.8729 1.3385 1.6676 1.5618 1.8735
t100 6 6 9 6 7 6

erT is the mean final tracking error, is,T is the mean
final Sharing index, utot is the total average allocated
input and t100 is the time needed to the 100% adoption

4.5. Policy design: fair LQR
We now want to include a concept of fairness
in the formulation of the LQR problem in order
to avoid getting an unfair resource allocation.
In order to do so we have to first formalize the
concept of fairness, a not-so-trivial task. In the
majority of cases, fairness is defined as the equal
consideration of all people, however, in this case,
we consider the concept of equity (see Fig. 4).

(a)

(b)
Figure 4: Equality vs. equity. From Design in
Tech Report 2019 [3]

.

Equity takes into account the fact that each per-
son’s circumstances are unique and provides the
precise resources and opportunities required to
achieve equality [4]. Based on this, we formalise
this concept with the minimization of the dif-
ference between each person’s distance from the
respective target and the mean of the others’
distances from their target, as follows:

min
∑
p∈P

[
(xp − x̄p)−

1

N

∑
b∈P, with b ̸=p

(xb − x̄b)

]
, (4)

where xp is the state of the p − th person of a
group P of N people and x̄p is its target. The eq-
uity factor outlines as in Eq. 4 can now be added
in the formulation of Scenario C by considering
the additional element in such a way that it has
the form of a tracking error objective where the
actual state is the tracking error and the target
is the mean of the other tracking errors at time
t. The fair policy scheme is designed with Q =
10, R = 1 and different tunings of the weight of
the equity factor W, i.e W=1 and W=10. To
fully analyze how the concept of fairness influ-
ences the adoption process it is best to work with
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clearly separated clusters, hence with the War-
saw network. The evolution of the W=1 and the
W=10 case are very different from each other,
for the first one the full adoption is reached at
t=8, while in the second case, the spreading only
starts at t=9. Taking under consideration also
the outcomes of Scenario C, we noted that, be-
sides the fact that the evolution gets slower, as
the weight W gets higher, the users’ value of
the Sharing index and the altered features ap-
proaches each other more over time. Moreover,
with the increase of W also the resources allo-
cated to the Class 1 users rise. That being said,
now we want to find a way to quantitatively as-
sess the fairness level of policy schemes present.
To do that, we define the equity index Ie ∈ [0, 1]
as follows:

E(t) =
1

N

∑
v∈V

∣∣∣∣∣
∣∣∣∣∣ev(t)− 1

N

∑
w∈V

ew(t)

∣∣∣∣∣
∣∣∣∣∣
2

Ie(t) = e−E(t)

(5a)

(5b)

with Eq. (5a) be the average deviation of the
tracking errors with respect to their mean. The
evolution of the Index of equity (Eq. (5b)) of
Scenario C, fair LQR with W=1 and fair LQR
with W=10 is figured in Fig. 5 and in accordance
with the analysis carried out in this section, we
can see that the higher the value of W, the closer
the Index of equity gets to its maximum possible
values, i.e equal to 1.

Figure 5: Index of equity, Scenario C vs W=1
vs W=10

5. Concluding remarks
In this work, we introduced a network-based
framework to analyze the adoption process of
Car-sharing services and to design policies that
will help to boost the widespread of this technol-
ogy. The framework offers a basis for formulat-
ing policies targeted at boosting the number of

individuals who choose to use sharing mobility
by exploiting data-driven studies on the factors
that impact the adoption. After proposing dif-
ferent control formulations that differ in how the
policy schemes act, we have seen that what in-
fluences the adoption is the composition of the
network and the characteristics of the user that
belongs to it. We have then provided a prelim-
inary attempt to explicitly account for fairness
in the design process. To this end, we have for-
mulated a fair LQR that takes individual perfor-
mance into consideration while fostering equity
among a group of agents. By means of the com-
parison of the results obtained with non-fair and
fair control problems, we have highlighted how
fairness affects both individual performance and
the general allocation of the control resources
available. In general, it can be said that stronger
agents in the group suffer from a little loss in
tracking performance, however, the group as a
whole exhibits a more balanced behaviour at the
end of the timeframe taken into consideration.
Nevertheless, the research conducted has a sig-
nificant limitation. In fact, in the process of
policy design, we have considered unlimited re-
sources. Therefore, future work needs to exam-
ine the effect of the limitation of resources in
relation to the concept of fairness in such a way
that the developed policies are more robust and
realistic. To do this, we aim at exploiting the
MPC framework fo policy design.
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