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1. Introduction
In this thesis, we present a new class of deep neural net-
works in continuous time that can be used in different
learning tasks, from classification problems to control ap-
plications such as continuous-time system identification
and optimal control. The name of this architecture is: Re-
current Equilibrium Network Ordinary Differential Equa-
tions (REN-ODEs). This new class of neural networks
consists of nonlinear dynamical systems that assures con-
tractivity (a powerful form of stability) by design and can
also guarantee incremental integral quadratic constraints
(IQCs). IQCs are used to enforce properties of incremen-
tal dissipativity and passivity, as well as Lipschitz bounds.
These properties provide robustness to the model. With
this term, we mean a mitigation of the sensitivity of the
system’s outputs with respect to small perturbations in
the inputs. This feature is important in applications in
which signals are affected by noise (e.g., system identifi-
cation from real acquired data). Being contractive and
robust by design means that the N parameters, charac-
terizing a REN-ODE, are unconstrained. This property
makes possible, during the learning phase, to use uncon-

strained iterative first-order optimization methods such as
gradient descent (and its variations). The structure of
the class is inspired by the Recurrent Equilibrium Net-
works (RENs) [1], which, however, are formulated in dis-
crete time. Moreover, the REN-ODE’s architecture be-
longs to the family of Neural Ordinary Differential Equa-
tions (Neural-ODEs) [2] . As a result, REN-ODEs inherit
all the advantages of Neural-ODEs, including the possibil-
ity to use modern and sophisticated ODE solvers for the
evaluation of the model’s trajectories. Furthermore, latest
ODE solvers can provide high level of precision and adapt
the evaluation strategy on the fly to achieve the requested
level of accuracy. In this work, the properties of contrac-
tivity and robustness are validated on a nonlinear system
identification problem and an optimal control task. More-
over, we evaluate the performance of the REN-ODEs over
benchmark binary classification problems.

2. Preliminary Knowledge
Non-linear system analysis is still an open and hot topic
due to the complexity of the subject. Concepts as con-
tractivity, dissipativity and passivity are frequently used in
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this field. In this section, these definitions are provided.

Notation With xa(t), where x, a ∈ Rn, we denote the
state x at time t starting from the initial condition a at
time t0. A function is C1 if continuous and differentiable.
The finite 2-norm of the signal y from time t0 up to time
T is denoted as ∥y∥T , i.e.,

∥y∥T =
(∫ T

t0

|y(τ)|2dτ
)1/2

.

With X ≥ 0 and X ≤ 0 we denote that the generic square
matrix X is semi-positive definite and semi-negative def-
inite, respectively. Finally, 1(t) represents the unit-step
signal.

2.1. Contractivity

We consider a general deterministic dynamical system Σ

of the form:

Σ =

 ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(1)

where x ∈ X ⊆ Rn, y ∈ Y ⊆ Rp, u ∈ U ⊆ Rm are respec-
tively the system state, output and input. Furthermore,
f : X ×U → X and g : X ×U → Y are the state evolution
and output functions. The functions f and g are C1.

Definition 2.1 (Contracting System). A system Σ in the
form (1) is said to be contracting if for any two initial
conditions a,b∈ X , the state function xa(t) and xb(t) with
the same input function u(t) satisfy:

∥xa(t)− xb(t)∥ ≤ κe−c(t−t0)∥a− b∥, ∀t ≥ t0 (2)

for some c > 0 and κ > 0.

The Definition 2.1 can be interpreted as follows: a
contractive model is a model that "forgets" the initial
condition with a certain rate c. This property can be
useful especially in applications such as system identifica-
tion or state estimation (designing of a state observer), in
which the initial state can be affected by uncertainty.

2.2. Dissipativity

We define supply rate a function s(u(t), y(t)):

s : U × Y → R. (3)

Dissipativity, in many physical systems, may be roughly
interpreted as the way the system exchanges its internal
energy with the external through the inputs and outputs.

Thus, it is intuitive how the concept of dissipativity is
important in control theory: under certain conditions of
controllability and reachability, the way the system stores
and expels energy, based on inputs and outputs, can pro-
vide information about the overall stability of the process.
At this point, we introduce the definition of a dissipative
system.

Definition 2.2 (Generally Dissipative System). Given a
supply rate s(), a system Σ in the form (1) is said to be
dissipative with respect to s() if there exists a function
S : X → R+, called storage function, such that for any
initial condition x(t0) ∈ X at any time t0, and for any
input u(·) ∈ U and the following inequality holds:

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(u(t), y(t))dt, ∀t1 ≥ t0 (4)

where the integral is assumed to be well defined for all
allowed u(·) ∈ U and y(·) ∈ Y.

If the function S(x(t)) is differentiable, (4) can be rewrit-
ten as:

d

dt

(
S(x(t))

)
≤ s

(
u(t), y(t)

)
. (5)

This is called differentiated dissipation inequality.

2.3. Incremental Dissipativity

At this point, it is possible to provide the notion of in-
cremental dissipativity, i.e., the study of the energy flow
between any two trajectories of the system, that may vari-
ate due to possible different initial conditions or sequence
of inputs. We can denote with:

∆y(t) = y(t)− ỹ(t) , ∆u(t) = u(t)− ũ(t) ,

∆x(t) = x(t)− x̃(t) , ∆v(t) = v(t)− ṽ(t) ,

(6)

(7)

the finite differences between the two possible trajectories
(x, u, y), (x̃, ũ, ỹ) of the system Σ.

Definition 2.3 (Incrementally Dissipative System).
Given a supply rate s(), a system Σ in the form (1) is
said to be incrementally dissipative with respect to s() if
there exists a storage function S : X → R+ such that for
any two possible trajectories (x, u, y), (x̃, ũ, ỹ) and:

S(∆x(t1)) ≤ S(∆x(t0)) +

∫ t1

t0

s(∆u(t),∆y(t))dt ,

∀t1 ≥ t0 (8)

where the integral is assumed to be well defined for all
allowed u(·) ∈ U and y(·) ∈ Y.
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2.4. Passivity

As an assumption, a necessary condition for a system to be
passive is that the input and output must have the same
dimensions, i.e., m ≡ p.

Definition 2.4 (Passive System). A system Σ in the form
(1) is said to be passive if it is dissipative with respect to
the supply rate s(u, y) = u⊤y.

Additionally, if Σ is dissipative to some particular classes
of s(), then Σ is:

• input strictly passive if

s(u, y) = u⊤y − ν∥u∥2 , ν > 0 (9)

• output strictly passive if

s(u, y) = u⊤y − ε∥y∥2 , ε > 0 (10)

2.5. Integral Quadratic Constraint (IQC)

Incremental integral quadratic constraints (IQCs) can be
seen as a definition of incremental dissipativity where the
supply rate takes this parametrized form:

s(∆u,∆y) =

[
∆y(t)

∆u(t)

]⊤ [
Q S⊤

S R

][
∆y(t)

∆u(t)

]
, (11)

with Q ∈ Rp×p, R ∈ Rm×m and S ∈ Rm×p.

Definition 2.5 (Incremental Integral Quadratic Con-
straint (IQC)). A system Σ in the form (1) is said to satisfy
the incremental integral quadratic constraints (IQCs) de-
fined by the matrices (Q,S,R) where 0 ≥ Q and R = RT

if it is incrementally dissipative with respect to the supply
rate in (11).

One of the main interesting applications of incremental
IQCs is the possibility to verify properties of the system
(such as dissipativity and passivity) just choosing proper
values of the fixed matrices (Q,S,R). Indeed, taking:
• Q = − 1

γ I,R = γI, S = 0 → the model satisfies an ℓ2

Lipschitz bound of γ:

∥y − ȳ∥t1 ≤ γ∥u− ū∥t1 , ∀t1 ≥ t0. (12)

• Q = 0, R = −2νI, S = I, ν ≥ 0 → the system is
incrementally input passive.

• Q = −2εI,R = 0, S = I, ε ≥ 0 → the system is
incrementally output passive.

3. REN-ODE Model
Our contribution in this work is the introduction of a new
deep neural network model: REN-ODE. REN-ODE shares

similar structure to the original REN [1]. The system
model is the following:ẋt

vt

yt

 =

A B1 B2

C1 D11 D12

C2 D21 D22


xt

wt

ut

 +

bxbv
by


wt = σ(vt)

(13)

(14)

where xt ∈ Rn, vt ∈ Rq, wt ∈ Rq, ut ∈ Rm and yt ∈ Rp

are respectively the state, the nonlinear output, the non-
linear input, the exogenous input and the linear output.
With σ(·) we denote a nonlinear function applied element-
wise called "activation function". Consider the finite dif-
ference between two possible trajectories (x,w, v, u) and
(x̄, w̄, v̄, ū) having different initial conditions and input
functions. At this point, the incremental form of the sys-
tem is: ∆ẋt

∆vt

∆yt

 =

A B1 B2

C1 D11 D12

C2 D21 D22


∆xt

∆wt

∆ut

 ,

∆wt = σ(vt +∆vt)− σ(vt).

(15)

(16)

In order to achieve properties of contractivity and robust-
ness later, some assumptions must be introduced.

Assumption 1 (Rate-Limited σ). The activation func-
tion σ(·) is piece-wise differentiable and slope-restricted in
[0, 1], i.e.,

0 ≤ σ(y)− σ(x)

y − x
≤ 1 , ∀x, y ∈ R , x ̸= y. (17)

The inequality (17) can be also rewritten for each jth chan-
nel as a conic combination with multipliers ξj > 0, result-
ing in an incremental IQC:

Γt =

[
∆vt

∆wt

]⊤ [
0 Λ

Λ −2Λ

][
∆vt

∆wt

]
≥ 0, ∀t ∈ R. (18)

where Λ = diag(ξ1, . . . , ξq). ∆vt and ∆wt represent the
difference between the two trajectories having (vt, wt) and
(v̄t, w̄t).
Well-Posedness An important point is to show that the
REN-ODE is well-posed, i.e., given any particular input
(x̄k, ūk, b̄v), a unique solution w̄k exists. In formula:

∀x̄k, ūk, b̄v then ∃! w̄k :

w̄k =σ
(
D11w̄k + C1x̄k +D12ūk + b̄v

)
.

(19)

It has been shown in [3] that if there exists a positive
definite diagonal matrix Λ such that:

2Λ− ΛD11 −D⊤
11Λ > 0, (20)
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then the problem in (14) is well-posed.

Acyclicity A subset of REN-ODEs are the acyclic REN-
ODEs. These models are characterized by the weight ma-
trix D11 constrained to be strictly lower triangular; it
means that the ith channel of v(k) with i ∈ [1, q] will de-
pend only by the channels from {1, . . . (i− 1)}. Assuming
an acyclic model allows to simplify the numerical calcula-
tion of the trajectories of the network.

4. Contracting and Robust

REN-ODEs
The main goal of this section is to obtain two uncon-
strained parametrizations (called direct parametrizations)
of REN-ODEs that are able to guarantee respectively con-
tractivity and robustness by design. Firstly, the necessary
conditions for contractivity and robustness of REN-ODEs
are provided here.

Theorem 4.1 (Contractive REN-ODE). A REN-ODE in
the form (13)-(14) is contracting if there exists a matrix
P > 0 and a diagonal matrix Λ > 0 such that[

−A⊤P − PA −C⊤
1 Λ− PB1

−ΛC1 −B⊤
1 P W

]
> 0, (21)

with

W = 2Λ− ΛD11 −D⊤
11Λ. (22)

The proof is reported in Appendix A.

Theorem 4.2 (Robust REN-ODE). A REN-ODE in the
form (13)-(14) is well-posed and satisfies the incremental
IQC described by (Q,S,R) if there exists a matrix P > 0

and a diagonal matrix Λ > 0 such that[
−A⊤P−PA −PB1−C⊤

1 Λ −PB2+C⊤
2 S⊤

−B⊤
1 P−ΛC1 W D⊤

21S
⊤−ΛD12

−B⊤
2 P+SC2 SD21−D⊤

12Λ R+SD22+D⊤
22S

⊤

]

+

[
C⊤

2

D⊤
21

D⊤
22

]
Q

[
C⊤

2

D⊤
21

D⊤
22

]⊤

> 0, (23)

with W given by (22).

The proof is reported in Appendix B.

4.1. Convex Parametrization

It is possible to notice that the matrix inequalities in (21),
(23) are not convex in their parameters (e.g., the presence
of the element A⊤P ). This detail would not make achiev-
able a direct parametrization later. For this reason, it is
important to rewrite the matrix inequalities in a convex
form with respect to their parameters.

Starting with (21), it is possible to cast it, under a suit-
able reformulation, as a linear one. To do so, we define the
following matrices:

U = C⊤
1 Λ , Y = PA , Z = PB1 (24)

with U ∈ Rn×q, Y ∈ Rn×n, Z ∈ Rn×q. Then (21) becomes:[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
> 0 (25)

Note that, now, the inequality (25) is linear and convex,
with the independent variables (U,W, Y, Z) as free/design
variables. We also want the matrix inequality (23) to be
convex in its parameters; to do so, we can define, the ma-
trices:

Ṽ = −PB2 + C⊤
2 S⊤ + C⊤

2 QD22 ,

T̃ = −ΛD12 +D⊤
21S

⊤ +D⊤
21QD22 ,

R = R+ SD22 +D⊤
22S

⊤ +D⊤
22QD22.

(26)

(27)

(28)

with Ṽ ∈ Rn×m, T̃ ∈ Rq×m,R ∈ Rm×m. It is easy to check
that, using (24), (26)-(28), (23) can be rearranged as:

 −Y ⊤ − Y −U − Z Ṽ
−U⊤ − Z⊤ W T̃

Ṽ⊤ T̃⊤ R

+

C⊤
2

D⊤
21

0

Q

C⊤
2

D⊤
21

0


⊤

> 0. (29)

At this point, using the Schur Complement, it is possible
to rewrite the inequality (29) as:

R > 0,[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
−

[
Ṽ
T̃

]
R−1

[
Ṽ
T̃

]⊤

+

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤

> 0.

(30)

(31)

However, if S is chosen as a zero matrix, then, given a
fixed value of R, solving (28) in D22 may return a complex
matrix as solution, not acceptable for real signals. For this
reason D22 must be chosen in such a way that, given any S

and any R, the (28) is valid, with D22 real. In Appendix C,
it is reported how to construct D22.

4.2. Direct Parametrization

Once the matrix inequalities (21), (23) have been cast in
a convex form in their parameters (i.e., (25), (29)), then
direct parametrization can be finally retrieved.

Convex Direct Parametrization The main principle
is to parameterize the leftside matrix from (21), as X⊤X+

ϵI, with X ∈ R(n+q)×(n+q) a free matrix variable and ϵ > 0
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and then retrieve all the parameters of the system. Denote
H ∈ R(n+q)×(n+q) the matrix:

H =

[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
=

[
H1 H2

H3 H4

]
. (32)

Then parameterizing it as H = X⊤X + ϵI, makes (21)
always true by construction. At this point, from (32), it is
easy to see that:

−Y ⊤ − Y = H11 , −U − Z = H12. (33)

From (33), Y can be parameterized as:

Y = −1

2
(H11 + Y1 − Y ⊤

1 ). (34)

where Y1 ∈ Rn×n is a free matrix that allows to obtain also
non-symmetric Y . Considering (33), it is possible to keep
one of the matrices (U,Z) free (e.g., U), and then obtain
the remaining one by the relation (33). In case U is chosen
freely, then:

Z = −H12 − U. (35)

If the system is acyclic, then D11 must be strictly lower
triangular, thus from H22:

H22 = W = 2Λ−D11 −D⊤
11, (36)

it is possible to obtain Λ from 1/2 of the main diagonal of W
and D11 from the strict lower triangular part of W . It must
be noted that the matrix P never appears by itself, thus it
does not need to be calculated from H. However, P must
be positive definite. In order to enforce this condition, P
can be built as follows:

P = P1P
⊤
1 + ϵI > 0 , ∀P1 ∈ Rn×n. (37)

where P1 is a generic free matrix and ϵ > 0.
From (33)-(37) the matrices A,B1, C1 can be retrieved.
The remaining parameters do not impact the contractivity
of the model and, thus, they can be considered free. In con-
clusion, to define a CREN-ODE, first one can set the free
parameters X,B2, C2, D12, D21, D22, bx, bv, by, P1, U and
Y1. Then, the remaining matrices are recovered using (33)-
(37). In order to update the parameters, it is possible to
use the most common unconstrained optimization meth-
ods such as gradient descent and its variations (e.g. SGD,
Adam). For a deeper review about the topic, the reader is
referred to [4].

Robust Direct Parametrization In the robust direct
parametrization, we can follow similar steps as in the con-
tractive case. We denote with d̃ = n + q +m. We call H
the matrix from (31) and we parameterize it with X and
ϵ (X,H ∈ Rd̃×d̃, ϵ > 0):

H =

[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
−

[
Ṽ
T̃

]
R−1

[
Ṽ
T̃

]⊤

+

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤

= X⊤X + ϵI.

(38)

(39)

At this point, if D22 is constructed as described in (53) and
assumed that Q < 0 and R = R⊤, then the inequalities
to prove robustness of REN-ODE (30), (31) are verified.
This means that, for any choice of the free parameters
(i.e. X, B2, C2, T, D21, X3, Y3, bx, bv, by, P1, U, Y1), then
the system always satisfies the incremental IQCs described
by (Q,S,R). Then, the remaining matrices are recovered
using (26)-(28), (33)-(37) and (50)-(53).

5. Subclass of Neural-ODEs
The class of neural networks that we propose in this thesis
(REN-ODE) belongs to the family of Neural-ODEs. In-
deed, the authors presented in [2] an innovative recurrent
neural network (RNN) in which the number of hidden lay-
ers is not specified; instead, a continuous number of layers
is considered, where the derivative of the hidden state is
parameterized using a neural network (Figure 1). Thanks
to that, the trajectories of the system can be obtained us-
ing modern ODE solvers, that can guarantee high level of
precision and adapt the evaluation strategy on the fly to
achieve the requested level of accuracy. Although ODE
solvers may involve complex calculations, it is possible to
show that, for training, it is possible to backpropagate in
a scalable way, without access to its internal operations.
This allows to implement also models with a high number
of parameters. For more details, the reader may refer to
[2].

6. Comments on REN-ODEs
In the main thesis, it has been proven that, differently from
the discrete-time REN [1], the direct parametrization for
robust REN-ODEs implies also contractivity. A scheme of
this is reported in Table 1. This is an important result:
given a robust (and contractive) RREN-ODE, if there ex-
ists a stable equilibrium point of the system for a given in-
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RNN Neural-ODE

Figure 1: Representations of an hidden-layer in a generic
RNN (left) and in a Neural-ODE (right). The unitary
delay is represented with z−1.

put, then, for any initial condition, the model will always
converge exponentially to the equilibrium while keeping
guarantees of incremental dissipativity. Additionally, this
incremental form of robustness also becomes valid for the
general form of the system, as shown in [5, Theorem 10].
This opens up to new possibilities: for example, if a passive
REN-ODE is used to control a passive system (through an
optimal policy) then, it can be proven that the overall
negative feedback interconnection is still passive (proof in
[6]). For instance, this property is considered in the opti-
mal control study case reported in Section 7.2, where the
multi-agent system to be controlled is passive.

Property CREN RREN CREN-ODE RREN-ODE

Contractivity ! ! !

Robustness ! !

Table 1: Properties of the different models.

7. Simulations & Results
We used REN-ODE in different fields of application: bi-
nary classification, system identification and optimal con-
trol. Initially, simulations to validate the properties of
contractivity and robustness will be reported. The imple-
mentation was carried out using Python as main program-
ming language. The main third-party libraries used for
REN-ODEs are: PyTorch for the neural network frame-
work; Torchdiffeq, developed by the authors of the Neural-
ODE architecture (it supports different integration meth-
ods such as Runge-Kutta of order 4 or 5 of Dormand-
Prince-Shampine).

7.1. Validation

Firstly, we simulate a CREN-ODE starting from two dif-
ferent initial conditions a, b ∈ Rn randomly drawn from a

normal distribution with zero mean and unitary variance.
The input is an unit step-signal. In Figure 2, it is clearly
visible how all the modules of the difference between the
two trajectories’ states are always lower (or equal) than
an exponential curve κe−ct|b− a|, with c, κ > 0. Thus,the
Definition 2.1 is validated. Moreover, we want to show that
RREN-ODE are able to guarantee properties of ℓ2 Lips-
chitz bounds. Given a value of γ (e.g., γ = 1), the simula-
tions are carried out picking a RREN-ODE, with free pa-
rameters drawn randomly from a normal distribution with
zero mean and variance σ2 = 0.01. Then, the model has
been simulated twice, using two different initial conditions
xu(t0), xv(t0) and two different generic inputs u(t), v(t):

u(t) = −2e−0.2t sin
(π
2
t+

π

3

)
1(t)

v(t) = 3e−0.3t cos
(
πt
)
1(t)

(40)

(41)

Afterwords, the finite l2-norms ∥u−v∥t and ∥yu−yv∥t are
computed. In Figure 3 it is shown that (12) is guaranteed.
Thus, the system is ℓ2 Lipschitz bounded.
Subsequently, we want to validate the property of passivity
for RREN-ODE. Given a prescribed form of passivity (e.g.,
output passivity with ε = 10) the system is simulated twice
using the input functions (40), (41). In Figure 4 it is shown
that the differentiated incremental form of the dissipation
inequality for a strictly output passive system is satisfied,
or, in other words:

V̇∆(t) < s(∆ut,∆yt) = ∆u⊤∆y − ε∥∆y∥2 , ∀t. (42)

0 2 4 6 8 10
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x(
t)

|xb
1 xa

1|
|xb

2 xa
2|

|xb
3 xa

3|
|xb

4 xa
4|

e ct|b a|

Figure 2: Plot of the module of the difference between two
evolution of a model (n = 4) starting from two different
initial conditions a, b. In violet, the curve e−ct|b− a|.

7.2. Study Cases

In order to show the potentiality of this new neural net-
work, REN-ODEs have been tested in different scenarios.
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Time

0.93
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0.96

0.97

0.98

0.99

1.00

||yu yv||t
||u v||t

Figure 3: Plots of the normalized finite l2-norm of the
difference between the outputs yu(t), yv(t) with γ = 1.

0 2 4 6 8 10
Time

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
V
s

Figure 4: Plots of the storage function V̇∆ and supply rate
s of strictly output passive EREN-ODE with ε = 10.

Binary Classification The first one is for binary clas-
sification of different benchmarks from the state-of-the-art
literature. The data sets have always two classification
labels {0, 1} and two features (x1, x2). The classification
is obtained in this way: the data-set has N points and
a time window Tend is chosen. For any ith point of the
data-set (xi

1, x
i
2), with i ∈ {1, N}, the sample is used as

initial condition for the evolution of the REN-ODE, done
up to time Tend; then the output y(Tend) is retrieved and
passed through a Sigmoid layer returning a (normalized)
value between 0 and 1. Finally, comparing this result with
a 0.5 threshold, the binary classification p is obtained. We
used for this task the Binary Classification Entropy (BCE)
as loss function. The model was able to achieve 100% of
accuracy on different types of data-sets. In Figure 5 are
reported two different benchmarks: "double_circles"(5a)
and "swiss_roll" (5b), in which the two colors stand for
the two different labels: {’0’,’1’}.

(a) (b)

Figure 5: Predictions of the REN-ODE (colors in the back-
ground) superimposed by the validation data called "dou-
ble_circles" (a) and "swiss_roll" (b).

Continuous-Time System Identification REN-ODE
has been tested for the system identification of a nonlinear
pendulum in free evolution. The main goal of the experi-
ment is to find a REN-ODE that is able to achieve a good
approximation of the real physical system, i.e., given the
same initial conditions, return the same outputs as the
measurements of the pendulum’s outputs. The pendulum
is governed by the following equation:

ℓα̈(t) + βα̇(t) + g sinα(t) = 0 (43)

where α is the angle of the pendulum with respect to the
vertical axis, β is the viscous damping coefficient, g is the
gravitational acceleration and ℓ is the length of the pendu-
lum. The measurements y(t) of the pendulum are the α(t)

and α̇(t), i.e., y(t) = [α(t) α̇(t)]⊤. We want the output
of the REN-ODE at each time instant to be as close as
possible to the measurements of the pendulum. In order
to do so, the loss function used for this task is the Mean
Squared Error(MSE):

L(y, ŷ) = MSE(y, ŷ) =
1

η

η∑
i=0

Tend∑
t=0

∥yi(t)− ŷi(t)∥2 (44)

where the loss is evaluated on a batch of η experiments
and y, ŷ are respectively the measured outputs vector and
the predicted one. In order to use REN-ODE for system
identification, the following strategy has been used: start-
ing from N random initial conditions on the angle α and
the velocity α̇, the N experiments of the mechanical sys-
tem are simulated from T0 up to time Tend; afterwards, η
values are used as initial conditions of the neural network
and then the model is let free to evolve up to the time
Tend. Finally, the estimated outputs are compared with
the previously simulated ones through the MSE loss func-
tion. In Figure 6 the trained model is tested comparing
the evolution of the pendulum’s states with the prediction

7
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of the REN-ODE, starting from an initial state condition
(α(0), α̇(0)) not used during the training phase.
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Figure 6: Validation of the REN-ODE, starting from an
initial condition (α(0), α̇(0)) not used during the training
phase. In blue the actual trajectories and red the predicted
one by the net.

Optimal Control The last considered use case of the
REN-ODE is the optimal control of a dynamical system
that consists of two robots that must reach two different
targets, while avoiding any kind of collision and obstacles
(4 "mountains"). Each robot has been modeled as a 2D
point mass, subject to drag forces (e.g., friction) with state
(pt, qt), where pt ∈ R2 and qt ∈ R2 represent the position
and speed, respectively. For each agent:[

ṗt

q̇t

]
=

[
qt

m−1(−C(qt)qt + Ft)

]
(45)

where m is the mass of the robot, Ft ∈ R2 is the force
control input and C : R2 → R is the drag-force, modeled
as: C(qt) = b1 + b2|qt|, with b1, b2 ∈ R1×2. The chosen
control policy for this experiment is:

Tend/Ts∑
k=0

ltraj(xtk , utk) + lca(xtk) + lobst(xtk) (46)

where: ltraj penalizes the robots if they are not in the
reference states and also minimizes the use of the inputs;
lobst "punishes" the robots if they move too close to the
obstacles (the 4 "mountains") using the sum of 4 normal
distribution functions with mean value in the peaks of the
objects; lca penalizes the robots if their distance is smaller
then a certain "safe value". The best result was obtained
by a RREN-ODE with guarantees of strictly input pas-
sivity (with ν = 0.01): in Figure 7 is reported one gen-
erated path for a random initial position of the robots.
This model was able to avoid collisions for all the different
combinations during the testing phase.

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

Figure 7: Path generated by the trained RREN-ODE
strictly input passive with ν = 0.01 starting from a ran-
dom initial position of the robots.

8. Conclusions
Thanks to their flexibility, REN-ODEs can be used in dif-
ferent tasks in the control field. In this work, we have
tested our new architecture, using it to identify the model
of a nonlinear pendulum with different integration meth-
ods. Additionally, CREN-ODEs have been used in binary
classification benchmarks from literature, obtaining great
results. Finally, we implemented a RREN-ODE in a multi
agent control scenario, where it was used as a regulator in
order to be optimal with respect to a given policy func-
tion. RREN-ODE was able to achieve good performances,
while trying to avoid obstacles and collisions between the
agents. The guarantees of contractivity and robustness
of this new class of neural networks, opens up the pos-
sibility in which REN-ODE’s properties will be exploited,
such as modeling of more challenging and complex systems
like reaction-diffusion systems [1] or continuous normaliz-
ing flows [2]. Furthermore, future works will regard the
use of REN-ODEs in distributed and decentralized cases,
in which large-scale systems will be considered.
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A. Proof of Theorem 4.1
Proof. We can define a function V∆(t) as:

V∆(t) = ∆x⊤
t P∆xt. (47)

Then, by left-multiplying and right-multiplying the in-
equality (21) with [∆x⊤

t ∆w⊤
t ] and

[
∆xt

∆wt

]
respectively, it

is possible to show that the following inequality is true:

V̇∆(t) < −Γt ≤ 0. (48)

Since V∆(t) is a quadratic form in the vector [∆x⊤
t ∆w⊤

t ]
⊤

then it follows that, there exists a value α > 0 such that
V̇∆(t) ≤ −αV∆(t). This means that, according to Lya-
punov exponential stability theorem, the incremental sys-
tem is (globally) exponentially stable, and the system is
contractive.

B. Proof of Theorem 4.2
Proof. Considering the same function V∆ as in (47), by
left-multiplying and right-multiplying the inequality (23)
with [∆x⊤

t ∆w⊤
t ∆u⊤

t ] and [∆x⊤
t ∆w⊤

t ∆u⊤
t ]

⊤ respectively, it
is possible to show that the following inequality holds true:

V̇∆(t)− [∆y⊤
t ∆u⊤

t ]
[
Q S⊤

S R

][
∆yt

∆ut

]
< −Γt ≤ 0 (49)

That is the differentiated dissipation inequality with re-
spect to the storage function V∆, given the supply rate
s(∆u,∆y) as in (11). Thus, the system satisfies the incre-
mental IQCs, as per Definition 2.5.

C. How construct D22 in

RREN-ODEs
We want to obtain a real D22 that guarantees that
(30) holds true for any value of R. We denote s =

max(p,m) ; X3, Y3 ∈ Rs×s and:

M = X⊤
3 X3 + Y3 − Y ⊤

3 + ϵI,

Z =
[
(I −M)(I +M)−1

]
p×m

.

(50)

(51)

where ϵ > 0 and [V ]p×m indicates the block matrix with
the first p rows and m columns of a matrix V . Assuming
Q < 0 and R = R⊤(always verified in the special choices
reported in Section 2.5), Q and R can be factorized as:

L⊤
QLQ = −Q , L⊤

RLR = R− SQ−1S⊤, (52)

and finally:

D22 = −Q−1S⊤ + L−1
Q ZLR. (53)

Constructing D22 as (53), it guarantees the inequality (30)
always holds, for any choice of the IQC matrices, even for
a null matrix S.
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