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Abstract

This work includes an introduction to the problem of minimal hypersurfaces and the

mathematical tools needed to approach it, in the last chapter a �atness condition for

minimal stable hypersurfaces is proved and from the results in [2] an extension of [17,

Theorem 2] in the case of stability is presented. After an introduction to vector bun-

dles, sections, and the Laplacian operator on sections some well-known equalities and

inequalities are proved. Three di�erent mathematical descriptions of hypersurfaces are

then introduced, Caccioppoli sets, currents, and classical submanifolds, and the area func-

tional is de�ned for each description. Then the �rst variation is computed in the setting of

Caccioppoli sets. Then the second variation formula is fully computed in the case of sub-

manifolds embedded in general manifolds, as the stability will be studied in this setting.

The Bernstein Theorem, that is �atness of minimizing hypersurfaces in Rn+1 for n ≤ 6,

is proved using blow up and blow down methods. Stable minimal submanifolds are then

considered, the stability is related to the positivity of an operator of the form −∆ − V ,

the eigenvalue problem is hence studied and the Morse Index Theorem which states the

behavior of eigenvalues under contraction of the domain is presented. In order to have

the counter-example for the Bernstein Theorem also when only smooth competitors are

considered, it is important the smoothing of minimal cones. The smoothing of cones with

a singularity at the origin is found in [14] the result is presented and an outline of the

proof using minimizing currents is given. At last, it is proved that if the second form of a

minimal hypersurface in Rn+1 with n < 6 is bounded by the �rst eigenvalue of the Lapla-

cian |A|2(x) ≤ λ1(−∆) then the hypersurface is stable and �at. In conclusion from the

results in [2] is derived a theorem extending [17, Theorem 2] in the case of stability, with

which it is proved �atness of stable minimal hypersurfaces for n = 2 and as in [2] for n = 3.

Keywords: stable minimal hypersurfaces, rigidity, currents, bounded variation functions,

Morse index theorem, Schrödinger operator, Bernstein theorem, sets of �nite perimeter





Abstract in lingua italiana

Questo lavoro comprende una introduzione al problema delle ipersuper�ci minime e

agli strumenti matematici necessari a descriverle, nell'ultimo capitolo una condizione

a�nché una ipersuper�cie minima stabile sia piana è dimostrato, inoltre dai risultati

in [2] un'estensione di [17, Theorem 2] per la stabilità è presentato. Dopo una intro-

duzione ai vector bundles, sezioni, e l'operatore Laplaciano sulle sezioni alcune delle più

note uguaglianze e disuguaglianze sono dimostrate. Tre di�erenti descrizioni matematiche

di ipersuper�cie sono introdotte, insiemi di Caccioppoli, le correnti, e sotto varietà clas-

siche, inoltre viene introdotto il funzionale di area per ogni descrizione. La variazione

prima è calcolata nel caso di insiemi di Caccioppoli. La variazione seconda è poi calcolata

nel caso di sotto varietà immerse in varietà generiche, in quanto la stabilità verrà studiata

su varietà. Il teorema di Bernstein, cioè che ipersuper�ci minimizzanti in Rn+1 sono piane

per n ≤ 6, è dimostrato usando i metodi di blow up e blow down. Si passa quindi al

caso stabile, la condizione di stabilità è legata alla positività di un'operatore della forma

−∆ − V , è quindi studiato il problema agli autovalori e il teorema dell'indice di Morse,

il quale discute il comportamento degli autovalori quando il dominio è contratto, viene

presentato. Per avere il controesempio del teorema di Bernstein quando ipersuper�ci lisce

sono considerate, è importante lo smoothing di coni minimi. Questo risultato per coni

con singolarità nell'origine si trova in [14], viene quindi ripresentato e la dimostrazione

discussa. In �ne viene dimostrato che se la seconda forma di una ipersuper�cie minima in

Rn+1 con n < 6 è controllata dal primo autovalore del Laplaciano |A|2(x) ≤ λ1(−∆) allora

la ipersuper�cie è stabile e piana. Concludendo dai risultati in [2] è derivato un teorema

che estende [17, Theorem 2] nel caso della stabilità, con tale teorema viene dimostrato

che ipersuper�ci minime stabili sono piane per n = 2, e come in [2] anche per n = 3.

Keywords: ipersuper�ci minime stabili, rigidità, correnti, funzioni a variazione �nita,

teorema dell'indice di Morse, operatore di Schrödinger, teorema di Bernstein, sets di

perimetro �nito
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1| Introduction

The main goal of this thesis is to describe rigidity results for stable minimal hypersurfaces,

in the Euclidean space. This problem has attracted a lot of interest in the Geometric

Analysis community. In this chapter, three di�erent mathematical abstractions of the

concept of hypersurface will be introduced. The di�erent properties of these approaches

will be brie�y mentioned together with the pros and cons of each. Then the area functional

is introduced and the concepts of minimal, minimizing, and stable minimal hypersurfaces

are presented.

1.1. Mathematical Description of Hypersurfaces

It is sought a description of n-dimensional orientable hypersurfaces in Rn+k which enables

calculations and de�nition of functionals like the measure of area. A desired property

would also be that the space arising from such a description had a nice topology so the tools

of calculus of variations, like the direct method, may be used. The �rst thing that comes

to mind is to use the concept of manifolds and submanifolds. Hence an n-dimensional

orientable hypersurface would be identi�ed with a smooth manifold (M, g) embedded in

Rn+k where g is the metric induced by such embedding. With this description the concept

of an orientable hypersurface is easily extended on any smooth ambient space, in fact given

an (n+k)-manifold (N, h) then a smooth hypersurface in it can be described as (M, g) an

n-dimensional submanifold of N where g is the metric induced by the embedding. This

description is restricted to smooth hypersurfaces, hence excluding hypersurfaces with

edges and singularities. In order to extend the description to singular hypersurfaces it

must be introduced the concept of integer multiplicity currents, a subset of the dual space

of smooth di�erential n-forms in Rn+k. It will be only mentioned that they are in some

sense integer multiplicity varifolds equipped with an orientation, hence to each integer

multiplicity current, there corresponds a varifold. This description covers all orientable

hypersurfaces given by recti�able sets, that is subsets of Rn+k which are the union of

C1 hypersurfaces. With currents, the theory for non-�at ambient space is less natural

and is approached by considering an (n + k)-dimensional submanifold N in Rn+k′ and
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restricting the currents on it. The topology as dual space of a separable Banach space is

exceptional for compactness, and in fact, with this description, an existence result for the

area functional minimizer is achieved. In the case in which hypersurfaces of codimension

one in �at ambient space are considered the tool of sets of �nite perimeter can be used

to describe boundless hypersurfaces, also in this case the topology of bounded variation

function comes with good compactness properties, and in fact sets of �nite perimeter

coincide with codimension one currents that are the boundary of a set.

1.2. Minimal, Minimizing, and Stable Hypersurfaces

In all the descriptions of hypersurfaces presented above is possible to introduce the area

functional. In the case of a manifold M , it will be given by the volume form as

A(M) =

∫
M

ωg.

For current the dual norm of continuous di�erential form does the trick, notice that this

gives rise to a di�erent topology than the dual one, hence it is de�ned the mass of a

current T with respect to the compact set W as

MW (T ) = sup
|ω|≤1

supp(ω)∈W

T (ω)

which extend the concept of area. In the case of Caccioppoli sets the measure of area is

given by the perimeter of the set.

Variations of the hypersurface can be introduced through di�eomorphisms. In partic-

ular, a family ft : Rn+k → Rn+k of smooth compactly supported functions de�ned in

a neighborhood of the hypersurface and with f0 the identity, can be interpreted as a

transformation of the ambient space which induce also a deformation of the hypersur-

face. Denoting formally with St = ft(S) the hypersurface S variated through the family

ft = I + tX + o(t2) with X a smooth vector �eld, compact and null on ∂S, it will be

proved that
d

dt
A(St)|t=0 =

∫
S

div(X)

where this integral in the case of currents represents the duality of the varifold's measure

related to the current with the continuous function div(X), the same holds in the case of

a set of �nite perimeter with the measure associated with it. It is easily shown that the
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integral obtained can be used to extend the concept of mean curvature H speci�cally∫
S

div(X) = −
∫
S

⟨X,H⟩ ,

from which it may be asserted that a null value for the �rst variation of the area is achieved

in hypersurfaces with zero mean curvature. In an unhappy labeling choice, the stationary

hypersurfaces for the area functional are calledminimal, hence minimal hypersurfaces may

be non-stable, let alone achieve the minimum value for the functional. When indeed the

minimal value for the functional is achieved the hypersurface will be called minimizing.

The main result of this topic is Bernstein's Theorem, which states that an n-dimensional

hypersurface S without boundary and minimizing for any compact set in Rn+1 is a plane

for n ≤ 6. Then the minimizing Simons cone

CS = {x ∈ R8 : x21 + x22 + x23 + x24 = x25 + x26 + x27 + x28}

gives the counterexample for higher dimensions.

A natural generalization of the classical Bernstein problem is the stable Bernstein problem,

that is if it's true that given M ↪→ Rn+1 a complete, orientable, isometrically immersed,

stable minimal hypersurface of co-dimension one, then M is a hyperplane. In the case

n = 2 the (positive) answer was given in three di�erent papers, which appeared between

1979 and 1981 (see do Carmo and Peng [5], Fischer-Colbrie and Schoen [8] and Pogorelov

[16], while under the condition of controlled volume growth Schoen, Simon and Yau [17]).

Up until recently, without additional hypothesis, the remaining cases 3 ≤ n ≤ 6 were still

open, even if the study of minimal (in particular stable or in general with �nite index)

hypersurfaces immersed into a general Riemannian manifold (not only �at) is a very active

�eld and has attracted a lot of interest. Then, in 2021, Chodosh and Li [3] (see also [4])

proved the �atness of M for n = 3 and, soon after, Catino, Mastrolia and Roncoroni [2]

presented a completely di�erent proof for the same result.

The concept of stable hypersurfaces is introduced through the second variation of the area

functional, a minimal hypersurface S is stable if

d2

dt2
A(St)|t=0 ≥ 0.

For this part, codimension one and the submanifold approach will be considered, with

ambient space given by a general manifold. In such settings, the second variation of a
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minimal hypersurface takes the form

d2

dt2
A(St)|t=0 =

∫
S

|∇f |2 − (|A|2 +Ric(ν, ν))f 2

with A second fundamental form and Ric the Ricci tensor of the ambient manifold which is

calculated along the hypersurface's normal ν. Note how the second variation corresponds

to the energy of the operator

LS = −∆f − (|A|2 +Ric(ν, ν))f

and hence the stability condition corresponds to asking non-negative eigenvalues of such

operator. The spectrum of LS is countable and diverging to in�nity, furthermore from the

Morse Index Theorem, in the case of stable minimal hypersurfaces for any compact set

in Rn+1, the inequality for stability must be strict. It is then proved a result extensively

used when studying problems of this kind, that is the existence of a strictly positive

function u > 0 satisfying LS = 0. The existence of such function u is used in [2] to

show that the Bernstein theorem is extended to the stable case for n = 3, that is stable

minimal hypersurfaces with no boundary in R4 are hyperplanes, the same method is here

extended to n = 2. It is also proved a �atness result for n < 6 under the condition

|A|2(x) ≤ λ1(−∆) which, if shown to be true a priori for stable hypersurfaces, would close

the stable Bernstein problem apart from n = 6.
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2| Preliminaries

In the following will be introduced the concept of vector bundles and sections on them,

these are of relevance as the variation of a manifold may be described by a compact

section in the normal bundle. Following, it is constructed the Laplacian operator on

sections of vector bundles, necessary to have a clear view of the operator LS presented in

the introduction. Then some useful formulas for tensor �elds on submanifolds are proved.

A quick introduction to di�erential forms is made as they are at the basis of the de�nition

of currents.

2.1. Vector Bundles

Given a smooth manifold M it is possible to associate a real vector space to each point

of M , in particular given a p ∈ M there is Vp ∼= Rk a vector space associated with p.

As the name states the Vector Bundle V is the bundle of all such vector spaces, that is

V =
⋃

p∈M Vp, and each Vp is called the �ber of V in p. The dimension of the vector

spaces determines the rank, in the case above V is a k-rank vector bundle. Notice that

V ∼= M ×Rk, it is hence possible to construct an Atlas of coordinates system on V giving

it the structure of a manifold1. Now that an idea of what vector bundles are let's give a

rigorous de�nition.

De�nition 2.1 (Vector Bundle). A k-rank Vector Bundle is characterized by a manifold

M called the base space of the bundle, a manifold V called the total space of the bundle,

and a smooth surjective map π : V → M called the projection of the bundle, in relation

with one another in the following way:

� ∀p ∈M π(p)−1 =: Vp is a k-dimensional real vector space

� ∀p ∈ M ∃U ∋ p ∃ Φ : π(U)−1 → U × Rk such that πU : U × Rk → U the

1Making all these steps rigorous holds the Vector Bundle Chart Lemma which is in general introduced

after the rigorous de�nition of a Vector Bundle. Here it has been used before in order to give a more

intuitive and geometric notion for Vector Bundle.
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projection onto the �rst factor satis�es πU ◦ Φ = π. That is it is required ∀p the

existence of a neighborhood U and a di�eomorphism Φ such that the diagram below

commute.

π−1(U) U × Rk

U

Φ

π
πU

Furthermore ∀p ∈M Φ(p) is a linear isomorphism from Vp to {p} × Rk.

It is hence possible to construct the vector bundle arising from the tangent space TpM

of each point, from now on called TM . In the case of S being a submanifold of M for

each point p ∈ S ⊂ M the vector space TpM can be decomposed into tangential TpS

and normal NpS vector spaces of S. Speci�cally, TpS is given by span(dι̇p) with ι̇ the

immersion map, the normal space is simply the orthogonal space of the tangent one. The

de�nition of the normal bundle of a submanifold easily follows as NS =
⋃

p∈S NpS.
2

The concept of vector �elds may now be extended to vector bundles.

De�nition 2.2 (Section of a Vector Bundle). Let V be a vector bundle on M , a section

of V is a map (not necessarily continuous) σ : M → V such that σ ◦ π = IdM . That is

the only requirement is that σ(p) ∈ Vp, i.e. the image lies in the corresponding �ber. A

section is called smooth in the case σ is such, and the space of smooth sections over V is

identi�ed as X(V ).

M

V

π

Vp

p

f
ib
er

a
t
p

q

σ

section

A section of a vector bundle V corresponds to a vector �eld over M associated with V .

Posing V = TM a section is just the usual concept of a tangential vector �eld. Less

trivial examples in the embedded case S ↪→ M are normal vector �elds, that is sections

of V = NS, and also V = TM
∣∣
S
whose sections are vector �elds on S with values in the

2An abuse of notation by not di�erentiating between S and its embedding has been used in order to

convey more clearly the concept.
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tangent space of M .

A vector bundle in which each �ber is equipped with an inner product ⟨·, ·⟩V and a

compatible connection ∇, takes the name Riemannian vector bundle. By compatible

connection it is meant that the connection satis�es for any p ∈M :

∀x ∈ TpM ∀ψ, ϕ ∈ X(V ) x(⟨ψp, ϕp⟩) = ⟨∇xψ, ϕp⟩+ ⟨ψp,∇xϕ⟩

The exact notation should be (∇xϕ)p but given that from x ∈ TpM the point of calculation

is clear it is dropped in the notation of the connection. To understand what kind of object

∇ is consider �xing ψ ∈ X(V ) and a point p so:

(∇(·)ψ)p ∈ L(TpM,Vp) (2.1)

hence considering the section as input

(∇(·))p : X(V ) → L(TpM,Vp)

at last introducing the vector bundle L(TM, V ) =
⋃

p∈M L(TM, V )p =
⋃

p∈M L(TMp, Vp)

is obtained

∇(·) : X(V ) → X(L(TM, V ))

Being a derivation, a further property that a connection must satisfy is the product rule,

that is given f ∈ C∞(M) and ψ ∈ X(V ):

∇(fψ) = df(·)ψ + f∇ψ

this is the most general way to treat the connection.

De�nition 2.3 (Riemannian Vector Bundle). A vector bundle in which each �ber is

equipped with an inner product ⟨·, ·⟩ and there exists a connection

∇ : X(V ) → X(L(TM, V ))

satisfying

∀p ∈M ∀x ∈ TpM ∀ψ, ϕ ∈ X(V ) x(⟨ψp, ϕp⟩) = ⟨∇xψ, ϕp⟩+ ⟨ψp,∇xϕ⟩

and

∀f ∈ C∞(M) ∀ψ ∈ X(V ) ∇(fψ) = df(·)ψ + f∇ψ
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is called Riemannian vector bundle.

Given that∇ψ ∈ X(L(TM, V )) for ψ ∈ X(V ), are now introduced the natural scalar prod-

uct and connection on L(⊗mTM, V ). Let s, r ∈ L(⊗mTM, V )p, choosing a coordinates

system {ei} in TpM the scalar product is given by:

⟨s, r⟩ = gi1j1 · · · gimjm ⟨s(ei1 , ..., eim), r(ej1 , ..., ejm)⟩ (2.2)

where the scalar product on the right is evidently in V .

The connection will have the form

∇ : X(L(⊗mTM, V )) → X(L(TM,L(⊗mTM, V ))) ≡ X(L(⊗m+1TM, V ))

and letting H ∈ X(L(⊗mTM, V )), x ∈ TpM and Yi ∈ X(TM) the connection in p is

de�ned as3:

∇x(H)(Y1, ..., Ym) = ∇x(H(Y1, ..., Ym))−
∑
i

H(Y1, ...,∇xYi, ..., Ym) (2.3)

It is important to notice that the dependence on Yi is actually only on (Yi)p, just passing

in coordinates makes this clear. The two de�nitions are in line with the ones for tensors,

which are indeed retrieved by posing V = R. An interesting way to see the de�nition of

connection is to notice that it is in fact the product rule for the connection in V , in fact

by rearranging the terms:

∇x(H(Y1, ..., Ym)) = ∇x(H)(Y1, ..., Ym) +
∑
i

H(Y1, ...,∇xYi, ..., Ym) (2.4)

and this is precisely how the derivative of a linear function is expected to behave, in fact

by passing to coordinates it is evident that de�ning the connection in this way means

precisely asking for the product rule to hold.

3The symbol ∇x is used unchanged to indicate connections in di�erent spaces because the argument

speci�es unambiguously the space on which the connection operates.
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2.2. Hessian

It has been presented the Riemannian structure for the vector bundle L(TM, V ) in which

∇ψ with ψ ∈ V lies. Applying the connection in L(TM, V ) on ∇ψ holds:

∇(∇ψ) : X(TM) → X(L(TM, V ))

∇x(∇ψ)(Y ) = ∇x(∇Y ψ)−∇∇xY ψ

(2.5)

(2.6)

again the dependence on Y is limited to Yp = y. It can hence be de�ned in a straightfor-

ward way as a bilinear form ∇x,y(ψ) := ∇x(∇ψ)(y) which is the Hessian of ψ evaluated

along x and y.

De�nition 2.4 (Hessian of Sections). Let ψ ∈ X(V ) then the Hessian is the bilinear form

obtained by iterative application of the connection �rst in V then in L(TM, V ) holding

∇2ψ = ∇·,·ψ ∈ L(TM ⊗ TM, V )

∇X,Y ψ = ∇X(∇Y ψ)−∇∇XY ψ

(2.7)

(2.8)

where X, Y ∈ X(TM).

The de�nition of Laplacian of sections is now trivial

De�nition 2.5 (Laplacian of Sections). Let ψ ∈ X(V ) then the Laplacian ∆ψ ∈ X(V ) is

given by the trace of the Hessian

∆ : X(V ) → X(V )

(∆ψ)p = Tr(∇2ψ)p = gij∇ei,ejψ

(2.9)

(2.10)

where it has been introduce a basis {ei} for TpM .

Also, for the Laplacian on sections of vector bundles holds a result analogous to the Green

formula

Proposition 2.1. Let ψ, φ ∈ V (M) if either M has no boundary or ψ and φ vanish on

it then ∫
M

⟨∆ψ, φ⟩ =
∫
M

⟨∆φ, ψ⟩ = −
∫
M

⟨∇φ,∇ψ⟩ (2.11)

implying that the Laplacian is a symmetric and negative operator in the sections.

Proof. To simplify the calculations notice that taking a parallel orthonormal frame {Ei}
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satisfying ∇Ei
Ej = 0 in p for any i, j then (2.8) loses the second term on the right-hand

side hence

⟨∆ψ, φ⟩ =
∑
i

⟨∇Ei
∇Ei

ψ, φ⟩ =
∑
i

∇Ei
⟨∇Ei

ψ, φ⟩ − ⟨∇Ei
ψ,∇Ei

φ⟩ (2.12)

by (2.2) with the orthonormal frame the second term corresponds with −⟨∇ψ,∇φ⟩ while
the �rst is the codi�erential of the one form ω = ⟨∇(·)ψ, φ⟩ hence for Stokes Theorem∫

M

⟨∆ψ, φ⟩ = −
∫
M

⟨∇ψ,∇φ⟩+
∫
∂M

ω∗ (2.13)

but by hypothesis, ω∗ is null at the boundary.

This discussion on vector bundles encloses also the cases of Tensor Bundles, Vector Fields,

and Co-Vector Fields, it is enough to pose V = R, and up to raising the indices all these

cases are covered. From the de�nition in (2.3) it is obtained a product rule for the tensor

product. In fact, given T and F two tensor �elds and representing with v, w the respective

inputs and∇v,∇w the sum of the connection applied once for every respective input, then

∇x(T ⊗ F )(v, w) = x(T (v)F (w))− T (∇xv)F (w)− T (v)F (∇xw) =

= ∇xT ⊗ F (v, w) + T ⊗∇xF (v, w)
(2.14)

Furthermore, if the Levi Civita connection is used in TM then the metric tensor has a

null covariant derivative, implying that the connection commute with the trace

∇xg(v, w) = x(g(v, w))− g(∇xv, w)− g(v,∇xw) = 0 (2.15)

Hence it is retrieved the unique covariant derivative for tensors presented in [13].

Hessian Commutation

Being known that, for smooth scalar functions in �at space, the Hessian is symmetric,

it is spontaneous the question of how the Hessian commutes in the curved case and on

vectors, co-vectors, and tensors. The results of these commutations are known as Ricci

Identities.

Starting with u ∈ C∞(M) and using the torsion-free property of the Levi-Civita connec-

tion:
∇x,y(u)−∇y,x(u) = ∇x(∇yu)−∇∇xY u−∇y(∇xu) +∇∇yXu =

x(y(u))− y(x(u))−∇xY (u) +∇yX(u) = [x, y](u)− [x, y](u) = 0
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as expected the Hessian of a scalar function commute. Going forward calculations in

coordinates will be used for clarity, the notation used is:

∇j,i(·) = (·),ij (2.16)

notice that the order is inverted, as after the comma the derivation coordinates are in

the order of execution. Furthermore the notation (·),i identi�es the connection as element

of L(TM, ·). With this notation, the commutation of the Hessian for scalar functions

becomes:

u,ij − u,ji = 0 (2.17)

For vector �elds V ∈ X(TM) the commutation gives the de�nition of curvature tensor:

∇x,y(V )−∇x,y(V ) = ∇x(∇yV )−∇y(∇xV )−∇[x,y]V = R(x, y)V (2.18)

which in coordinates notation becomes

V k
,ij − V k

,ji = −R k
ijm V m (2.19)

the minus sign in the coordinates formula is due to the fact that, between the two nota-

tions, the order of derivatives is inverted. Hence to keep the same order of i and j in the

curvature tensor the two indices have been swapped and being R minor antisymmetric a

negative is added.

The case of covectors is the more contrived because the connection in the dual space

is again de�ned by Formula(2.3) and must hence be used twice together also with its

reordering Formula(2.4), so for α ∈ T ∗M and z ∈ TpM :

∇x,y(α)(z) = x(∇y(α)(z))−∇∇xY (α)(z)−∇y(α)(∇xz) =

x(y(α(z))− α(∇yZ))−∇xY (α(z)) + α(∇∇xYZ)−∇y(α)(∇xz) =

xy(α(z))−∇x(α)(∇yZ)− α(∇x∇yZ)−∇xY (α(z)) + α(∇∇xYZ)−∇y(α)(∇xz)

now inverting the role of x and y and subtracting from the above, most term cancels out

and it is obtained:
∇x,y(α)(z)−∇y,x(α)(z) = −α(R(x, y)Z)

αk,ij − αk,ji = αmR
m

ijk

The formula found so far will be used to �nd the commutation formula for general tensors.

Formula (2.3) applied to the connection in the tensor bundle V becomes for any T ∈ X(V ):

∇x,yT = ∇x(∇yT )−∇∇xyT
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Furthermore from the product rule with the tensor product it is a matter of calculations

to show that:

∇x,y(T ⊗ F )−∇y,x(T ⊗ F ) = (∇x,y −∇y,x)(T )⊗ F + T ⊗ (∇x,y −∇y,x)(F )

Hence representing a
(
k
l

)
-tensor as V1 ⊗ · · · ⊗ Vk ⊗ ω1 ⊗ · · · ⊗ ωl it holds:

∇x,yT −∇y,xT = R(x, y)V1 ⊗ · · · ⊗ ωl + ...+ V1 ⊗ · · · ⊗ (−R(x, y) ∗ ω1)⊗ · · ·ωl + ...

where R(x, y) ∗ ω is the 1-form de�ned by (R(x, y) ∗ ω)(z) = ω(R(x, y)Z). Written in

coordinates

T i1...ik
j1...jk,pq

− T i1...ik
j1...jk,qp

= −R i1
pqm Tm...ik

j1...jk
− ...+R m

pqj1
T i1...ik
m...jk

+ ... (2.20)

This concludes the discussion on the Hessian commutativity.

2.3. Second Fundamental Form

Let S ↪→M be a submanifold of M . It has already been discussed how TpM can be split

into TpS and NpS, hence for X, Y ∈ X(TM) and p ∈ S

∇M
X (Y )p = (∇M

X (Y )p)
⊤ + (∇M

X (Y )p)
⊥ (2.21)

which is the decomposition into TpS component and NpS component. When the two

sections X, Y are taken such that they have only the TpS component for any p ∈ M

then (2.21) does not depend on the values of X, Y outside of S and it can be shown that

(∇M
X (Y )|S)⊤ is the unique Levi-Civita connection consistent with the induced metric. The

second term in (2.21) is the so-called second fundamental form.

De�nition 2.6 (Second Fundamental Form). Let S ↪→ M be a submanifold of M , then

the mapping A : X(TS)× X(TS) → X(NS) de�ned as:

A(X, Y ) = (∇M
X Y |S)⊥ (2.22)

is a bilinear form and called second fundamental form.

The de�nition is well-posed as the following properties show

� A(X, Y ) = A(Y,X) in fact A(X, Y )−A(Y,X) = [X, Y ]⊥ = 0 because [X, Y ] ∈ TS.

� Thanks to the linearity of ∇M
(·) the map A is linear in the �rst argument. Symmetry
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implies linearity also on the second argument, proving bilinearity of A.

� Dependence only on Xp and Yp, proved in an analogous fashion of bilinearity, the

dependence on just Xp is induced by the ∇M , symmetry provides the conclusion also

for the second argument.

After this discussion (2.21) for X, Y ∈ X(TS) can be rewritten as

∇M
X Y = ∇XY + A(X, Y ) (2.23)

From the second fundamental form, two other objects are derived. First a bilinear form

with values in the real numbers AN(X, Y ) : X(TS) × X(TS) → C∞(S) with N ∈ NS

de�ned as

AN(X, Y ) = ⟨A(X, Y ), N⟩ (2.24)

and the linear operator associated to this bilinear form WN : X(TM) → X(TM) that is

⟨WN(X), Y ⟩ = AN(X, Y ) = ⟨A(X, Y ), N⟩ (2.25)

which is called Wirtinger operator. This operator is easily characterized, in fact

0 = X(⟨Y,N⟩) = ⟨∇M
X Y,N⟩+ ⟨Y,∇M

XN⟩ (2.26)

holding

WN(X) = −(∇XN)⊤ (2.27)

notice that ∇XN is orthogonal to N hence in codimension one the projection can be

omitted, in fact, 1 = ⟨N,N⟩ hence 0 = X(⟨N,N⟩) = 2 ⟨∇XN,N⟩. Also in the case of

co-dimension one, beingM orientable, the distinction between A and AN vanishes as NM

is identi�able with M × R.

2.4. Main equations and inequalities

In the following are recalled some useful formulas in Riemannian Geometry which are

going to be used frequently. In particular are presented and proved: the Bochner formula,

the Gauss equation, the Codazzi equation, the improved Kato inequality, the Simons'

equality and the Simon's inequality. With M will be identi�ed a Riemannian manifold.
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Theorem 2.1 (Bochner Formula). Let u ∈ C∞(M) then

1

2
∆(|∇u|2) = |∇2u|2 + ⟨∇(∆u),∇u⟩+Rc(∇u,∇u) (2.28)

Proof. let us proceed in coordinates, furthermore, it is clearer if the metric is not written

(being in no way relevant for calculation):

1

2
(u,iu,i),kk = (u,iku,i),k = u,ikku,i + u,iku,ik

= u,kiku,i + |∇2u|2 = u,kkiu,i +R m
ikk u,mu,i + |∇2u|2

(2.29)

in the �rst and second equalities trace commutativity with the connection and product

rule for tensor product has been used; the third equality is the de�nition of metric in

tensor space and the commutation of scalar function's Hessian; the fourth is the Hessian

commutation formula of 1-form. The symmetries of curvature tensor give that R m
ikk =

Rim (disregarding again the metric tensor), achieving the thesis.

The following results are regarding embedded submanifolds. So S ↪→M will be equipped

with the induced metric, furthermore, the objects in M will be denoted with a tilde.

When a connection in NS is needed it will be used the one given by (∇̃|S)⊥.

Theorem 2.2 (Gauss Equation). The relation between the ambient and the submanifold

curvatures is given by Gauss Equation, so for all W,X, Y, Z ∈ X(TS):

Rm(W,X, Y, Z) = R̃m(W,X, Y, Z) + ⟨A(W,Z), A(X, Y )⟩ − ⟨A(W,Y ), A(X,Z)⟩ (2.30)

Proof. Using (2.23)

R̃m(W,X, Y, Z) = ⟨∇̃W ∇̃XY − ∇̃X∇̃WY − ∇̃[W,X]Y, Z⟩ =

⟨∇̃W (∇XY + A(X, Y ))− ∇̃X(∇WY + A(W,Y ))− ∇̃[W,X]Y, Z⟩

Notice that

⟨∇̃WA(X, Y ), Z⟩ = ⟨−WA(X,Y )(W ), Z⟩ = −⟨A(X, Y ), A(W,Z)⟩ (2.31)

hence

⟨∇̃W (∇XY )− ∇̃X(∇WY )− ∇̃[W,X]Y, Z⟩ − ⟨A(X, Y ), A(W,Z)⟩+ ⟨A(W,Y ), A(X,Z)⟩
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which is the thesis because ⟨∇̃X(·), Z⟩ = ⟨∇X(·), Z⟩ with Z ∈ X(TS).

Theorem 2.3 (Codazzi Equation). For all W,X, Y ∈ X(TS) it holds

(R̃(W,X)Y )⊥ = (∇WA)(X, Y )− (∇XA)(W,Y ) (2.32)

Proof. Proved by considering the product with any N ∈ NM :

R̃m(W,X, Y,N) = ⟨∇̃W ∇̃XY − ∇̃X∇̃WY − ∇̃[W,X]Y,N⟩ =

⟨∇̃W (∇XY + A(X, Y ))− ∇̃X(∇WY + A(W,Y ))− ∇̃[W,X]Y,N⟩

Notice that ⟨∇̃WA(X, Y ), N⟩ = ⟨∇WA(X, Y ), N⟩ connection inNM and ⟨∇̃W (∇XY ), N⟩ =
⟨A(W,∇XY ), N⟩

⟨A(W,∇XY ) +∇WA(X, Y )− A(X,∇WY )−∇XA(W,Y )− A([W,X], Y ), N⟩

from Formula(2.4)

⟨(∇WA)(X, Y )− (∇XA)(W,Y ) + A(∇WX, Y )− A(∇XW,Y )− A([W,X], Y ), N⟩

and A(∇WX, Y )− A(∇XW,Y )− A([W,X], Y ) = 0 gives the thesis.

Notice that in a �at ambient space, the Codazzi equation states the full symmetry of the

tensor hij,k where hij = A(ei, ej). Two symmetric tensors with such full symmetries are

called Codazzi tensors.

The next results are set in a �at ambient space and for co-dimension one.

Theorem 2.4 (Improved Kato inequality). Given b a symmetric, Codazzi, trace-free ten-

sor in S ↪→ Rn+1 submanifold of co-dimension one then:

|∇|b||2 ≤ n

n+ 2
|∇b|2 (2.33)

furthermore the constant is optimal.

Proof. From chain rule

∇|b| = 1

2|b|
∇(|b|2) (2.34)
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hence it will be proved
1

4
|∇(|b|2)|2 ≤ n

n+ 2
|b|2|∇b|2 (2.35)

passing now to coordinates that diagonalize b, considering the left hand side:

|∇(|b|2)|2 = (bijbij),k(bpqbpq),k = 2bij,kbij2bpq,kbpq = 4
∑
k

(∑
i

bii,kbii

)2

(2.36)

considering the right-hand side, thanks to Codazzi and symmetry the indices may com-

mute:

|∇b|2 = bij,kbij,k =
∑
k

bkk,k
2 +

∑
k,i̸=k

(
bik,k

2 + bki,k
2 + bkk,i

2
)
+
∑
i ̸=k ̸=j

bij,k
2 (2.37)

basically, it has been separated the sum in three parts: the one in which all the indices

coincide; the second where two indices coincide; and at last when no indices coincide.

Hence Inequality(2.35) is satis�ed if:

∑
k

(∑
i

bii,kbii

)2

≤ n

n+ 2
bii

2
∑
k

(
bkk,k

2 + 3
∑
i ̸=k

bii,k
2

)
(2.38)

naming bii = xi and bii,k = yi, notice free trace implies
∑
yi =

∑
xi = 0, the inequality

would be achieved if, for every k:

n+ 2

n
≤

∑
x2i

(
y2k + 3

∑
i ̸=k y

2
i

)
(
∑
yixi)

2∑
yi = 0 =⇒ y2k =

(∑
i ̸=k

yi

)2

≤ (n− 1)
∑
i ̸=k

y2i

(2.39)

(2.40)

where the last inequality is Jensen applied to x2.

Now separating 3
∑

i ̸=k y
2
i = (3−t)

∑
i ̸=k y

2
i +t

∑
i ̸=k y

2
i choosing t =

n+2
n

holds 3−t = 2n−1
n

hence from the Jensen inequality

n+ 2

n

∑
x2i
∑
y2i

(
∑
yixi)

2 ≤

∑
xi

(
y2k + 3

∑
i ̸=k y

2
i

)
(
∑
yixi)

2 (2.41)

and Cauchy Schwarz conclude the proof (
∑
yixi)

2 ≤
∑
x2i
∑
y2i .

Theorem 2.5 (Simons' Equality). If S is a minimal hypersurface then the second form
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is a trace-free Codazzi tensor and satis�es:

1

2
∆|A|2 + |A|4 = |∇A|2 (2.42)

Proof.
1

2
∆|A|2 = 1

2
(hijhij),kk = hij,kkhij + hij,khij,k (2.43)

and if hij,kk = −(hpqhpq)hij the thesis holds:

1

2
∆|A|2 = −(hpqhpq)hijhij + hij,khij,k = −|A|4 + |∇A| (2.44)

using Codazzi (full symmetry of hij,k) and the commutativity of the Hessian for tensors:

hij,kk = hik,jk = hik,kj +R m
jki hmk +R m

jkk him (2.45)

Using Gauss Equation Rjkim = hjmhki−hjihkm and using coordinates that diagonalize h:

hij,kk = hkk,ij + (hjkhki − hjihkk)hkk + (hjmhkk − hjkhkm)hmi (2.46)

using hii = 0

hij,kk = hjkhkihkk − hjihkk
2 − hjkhkmhmi (2.47)

but hjkhkmhmi = hjkhkkhki hence it remains only

hij,kk = −hjihkk2 (2.48)

which is what was left to prove written in diagonal coordinates.

Theorem 2.6 (Simons' Inequality). The improved Kato inequality together with Simons'

Equality holds the so-called Simons' Inequality

|A|∆|A|+ |A|4 ≥ 2

n
|∇|A||2 (2.49)

Proof. Applying Kato inequality to the right-hand side of Simons' Equality

|∇|A||2 ≥ n+ 2

n
|∇|A||2 (2.50)
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to alleviate the notation consider f = |A|, then

1

2
∆(f 2) =

1

2
(f 2),jj =

1

2
(2ff,j ),j =

∑
j

(f,j )
2 + ff,jj (2.51)

which inserted into Simons's equality together with the bound given by Kato holds the

result.

2.5. Di�erential Forms

Another fundamental vector bundle on a manifold M is generated by the space of k-

covectors in TpM denoted
∧k(T ∗

pM), in the case of real manifolds they can be identi�ed

with fully antisymmetric covariant tensors. In this case, the operation corresponding to

the tensor product is the wedge product ∧ which is obtained by antisymmetrization of

the tensor product, so for ω a k-covector and η an l-covector ω∧η ∈
∧(k+l)(T ∗

pM). Hence

as for tensors, a basis can be introduced starting from a dual basis of the tangent space

{ϵi} and ω ∈
∧k(T ∗

pM) can be represented as

ω =
∑
α∈I

aαϵ
α (2.52)

where I = {(i1, i2, ..., ik) ∈ Nk : 1 ≤ i1 < i2 < ... < ik ≤ n}, ϵα = ϵi1 ∧ ... ∧ ϵik and aα ∈ R
∀α ∈ I. Einstein convention can be used also with multi-indices holding ω = aαϵ

α. A

scalar product in
∧k(T ∗

pM) is induced by requiring the basis {ϵα} to be orthonormal

whenever {ϵi} are orthonormal. The same discussion can be done for k-vectors which

corresponds to antisymmetric contravariant tensors, this space is denoted
∧k(TpM). It is

easy to see that k-vectors and k-covectors are dual to each other. Having a vector space

de�ned on each p ∈ M a vector bundle can be generated through the union, the bundle

of k-covectors is
∧k(T ∗M) and smooth sections on it are called di�erential k-forms and

denoted with Ωk(M) = X(
∧k(T ∗M)). Two operations on Ωk(M) are needed for later

discussions and are introduced here. The exterior derivative introduces a di�erentiation

in Ωk(M).

De�nition 2.7 (Exterior Derivative). Let {xi} be a coordinate system in M then { ∂
∂xi}

de�nes a basis in TM and {dxi} a basis in T ∗M , the exterior derivative of ω ∈ Ωk(M)

is then de�ned as

dω =
∑
α∈I

∂aα
∂xi

dxi ∧ dxα (2.53)
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where it is used Einstein convention over i. Notice that for every i and j �xed

∂2aα
∂xixj

dxi ∧ dxj = − ∂2aα
∂xjxi

dxj ∧ dxi (2.54)

implying

ddω = 0 (2.55)

The second operation is the pullback which is simply induced by the pullback of one form.

De�nition 2.8 (Di�erential Forms Pullback). Let M and N be two manifolds and f :

M → N a smooth mapping between them. Consider the coordinates {yi} in N and

aαdy
α = ω ∈ Ωk(N) then the pullback f#ω ∈ Ωk(M) is given by

f#ω =
∑
α∈I

aα ◦ f dyi1(df(·)) ∧ ... ∧ dyik(df(·)) (2.56)

notice that in the case in which N =M and ω is multiple of the volume form

dyi1(df(·)) ∧ ... ∧ dyik(df(·)) = det(f)dyi1 ∧ ... ∧ dyik

For the de�nition of currents it is necessary a set of sections smaller than Ωk(M), that

is the space of smooth k-forms with compact support in U ⊂ M open, this new space

of sections in
∧k(T ∗M) will be denoted Dn(U). In coordinates a section ω ∈ Dn(U) is

characterized as

ω =
∑
α∈I

aαϵ
α where aα ∈ C∞

c (U) ∀α ∈ I (2.57)

This space of sections is equipped with a topology that extends the one of smooth functions

with compact support.

De�nition 2.9 (Topology of Dn(U)). Let ω(k) ∈ Dn(U) be a sequence in Dn(U) then

ω(k) → ω ⇐⇒
∃K ⋐ U : spt(a(k)α ) ⊂ K ∀α, k

Dβa(k)α → Dβaα uniformly ∀α, β
(2.58)

where β is a multi-index of any order.

This concludes all the notions of di�erential forms necessary to introduce the currents.
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3| Hypersurfaces

This chapter aims to introduce the di�erent descriptions of hypersurfaces, in particular,

to present the concept of currents and how they can describe hypersurfaces and the family

of Caccioppoli sets whose boundaries de�ne a hypersurface. The case of submanifold will

not be discussed, it is evident that the embedding induces a metric from which a volume

form is de�ned giving the area functional, and all the tools presented in the preliminaries

can be used to analyze them.

3.1. Introduction to Currents

The main reference of this introduction is �Lectures on Geometric measure Theory� by

Simon Leon [18]. Let us consider the setting of n-dimensional hypersurfaces in Rn+k. The

goal is to generalize the concept of smooth manifolds to describe a much greater set of

embedded hypersurfaces with singularities. At the basis of this theory lies the concept of

countably n-recti�able sets.

De�nition 3.1 (Countably n-recti�able set). A set M ⊂ Rn+k is countably n-recti�able

if there exists a countable family of Lipschitz functions Fj : Rn → Rn+k, j ∈ N, such that

Hn

(
M
∖⋃

j∈N

Fj(Rn)

)
= 0, (3.1)

where H denotes the Hausdor� measure.

Thanks to the approximation of Lipschitz functions through C1 functions an analogous

de�nition of countably n-recti�able set is

Hn

(
M
∖⋃

j∈N

Nj

)
= 0, (3.2)

where Nj is a countable family of C1 n-dimensional submanifolds. of Rn+k.

This new tool enables the description of immersed hypersurfaces with singularities while
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maintaining the properties of C1 submanifolds Hn-almost everywhere. In fact, an impor-

tant characterization of countably n-recti�able sets is through approximate tangent space

which is now de�ned

De�nition 3.2 (Tangent space). Let M ⊂ Rn+k be an Hn-measurable set, with Hn(M ∩
K) < ∞ ∀K ⋐ Rn+k, considering the homothety ηx,λ(y) = (x − y)/λ, the n-dimensional

subspace P ⊂ Rn+k such that

lim
λ→0

∫
ηx,λ(M)

f(y) dHn(y) =

∫
P

f(y) dHn(y) ∀f ∈ C0
c (Rn+k) (3.3)

is called the approximate tangent space for M ar x ∈ Rn+k.

Notice that P is unique if it exists, and will be denoted as TxM . The characterization

mentioned above follows

Theorem 3.1. Let M ⊂ Rn+k be a Hn-measurable set with Hn(M∩K) <∞ ∀K ⋐ Rn+k.

ThenM is countably n-recti�able i� the approximate tangent space TxM exists for Hn-a.e.

x ∈M .

Also, a di�erential structure can be extended to n-recti�able sets through the approxi-

mating C1 manifolds Nj.

Currents

The currents are used to introduce a topology on the recti�able sets.

De�nition 3.3 (Currents). Consider U ⊂ Rn+k open and Dn(U) the space of C∞
c (U)

sections of the vector bundle
∧n(T ∗Rn+k) as introduced in the previous chapter. Then

elements of the dual of Dn(U) are called currents and will be denoted with Dn(U).

Let us introduce the concept of support of a current, for T ∈ Dn(U) it is identi�ed by

spt(T ) and de�ned as the relatively closed subset of U given by the complement of the

union of open sets W for which T (ω) = 0 ∀ω with support in W

spt(T ) = U ∼
⋃

W. (3.4)

The space of currents is incredibly huge, being an extension of classical distributions, and

for it to be useful some restrictions must be introduced. Notice that D0(U) identi�es the

classical distributions, furthermore the structure theorem of distributions is valid also for

currents and the concept of order can be thence extended. In fact from [6, 4.1.1] for each
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T ∈ Dn(U) and each K ⋐ U it must exist C ∈ R and m ∈ N positive such that

T (ω) ≤ C
∑
β≤m

sup
x∈K

⟨Dβω(x), Dβω(x)⟩1/2 ∀ω ∈ Dn(U) (3.5)

where with Dβω is identi�ed the k-form given by Dβaαdx
α. The order of the current is

hence the smaller value for m which is independent of K, if non-existent the order is said

to be in�nite. Currents of order zero with n ≥ 1 can be interpreted as a generalization

of n-dimensional oriented submanifolds M ⊂ U with �nite Hn measure. Indeed each

n-dimensional oriented submanifold M with orientation ξ = τ1 ∧ ... ∧ τn where {τi} is an

orthonormal basis of TxM has an associated current [[M ]] de�ned as follows

[[M ]](ω) =

∫
M

⟨ω, ξ⟩ dHn, ω ∈ Dn(U). (3.6)

Leveraging this relation with classical submanifold Stokes' Theorem is used to extend the

de�nition of boundary. For any n-dimensional smooth oriented and compact submanifold

M with smooth boundary and any ω di�erential (n− 1)-form on it, then∫
M

dω =

∫
∂M

ω (3.7)

hence in analogy, for any T ∈ Dn(U) it is de�ned its boundary ∂T ∈ Dn−1(U) as

∂T (ω) = T (dω) ∀ω ∈ Dn−1(U) (3.8)

with ∂T = 0 when n = 0. Notice that ∂2T = T (ddω) = 0.

In the same fashion the measure of a submanifold is extended to the currents, in fact for

M submanifold its measure coincides with∫
M

dHn = sup
|ω|≤1

ω∈Dn(U)

[[M ]](ω) (3.9)

where |ω| = supx ⟨ω, ω⟩
1/2. So it is de�ned the massMW (T ) of the current T with respect

to the compact set W ⋐ U as

MW (T ) = sup
|ω|≤1

ω∈Dn(U)
supp(ω)∈W

T (ω) (3.10)

it is of relevance to notice how the requirement MW (T ) < ∞, ∀W ⋐ U relates with the
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requirement of a distribution to be of zeroth order, in fact, MW (T ) is the smaller value of

C so that (3.5) holds with m = 0. Finite mass currents are dual to the C0
c (U) di�erential

n-forms, as they cannot depend on the derivatives otherwise they would not have bounded

mass. Hence the general Riesz Theorem [18, Theorem 4.1] holds

Lemma 3.1. Let T ∈ Dn(Rn+k) such that MW (T ) < ∞ ∀W ⋐ Rn+k then there exist a

Radon measure µT : B(Rn+k) → R and a µT -measurable function T⃗ : Rn+k →
∧n(T ∗Rn+k)

such that

T (ω) =

∫
Rn+k

⟨ω(x), T⃗ (x)⟩ dµT (x) (3.11)

Furthermore, the space of C0
c (U) di�erential n-forms is a separable Banach space when

endowed with the norm |ω| = supx ⟨ω, ω⟩
1/2, that is the same norm with which the mass

is previously de�ned. Hence the space of currents with bounded mass is the dual space

of a separable Banach space, on which Banach-Alaoglu holds giving

Theorem 3.2 (Compactness of �nite mass currents). Let T (k) be a sequence in Dn(U)

such that MW < C, ∀W ⋐ U for some C ∈ R then for Banach-Alaoglu there exist

T ∈ Dn(U) such that

T (k) ⇀ T (3.12)

where the weak topology on the space of currents is considered

T (k) ⇀ T ⇐⇒ T (k)(ω) → T (ω) ∀ω ∈ Dn(U) (3.13)

The lower semi-continuity of the mass with respect to the weak topology is trivial in fact

T (ω) = lim
k
T (k)(ω) ≤ lim inf

k
sup
|ξ|≤1

ξ∈Dn(U)
supp(ξ)∈W

T (ξ) = lim inf
k

MW (T (k)) ∀ω ∈ Dn(U) (3.14)

and by taking the supremum over ω the lower semi-continuity is achieved. Another

tool that will be used in the following is the push-forward of a current, the de�nition

is trivially the application of the pull-back to the input, but in order to maintain the

compactness of the support some complications are necessary. Given a smooth map

f : U ⊂ Rn+k → V ⊂ Rn+k′ such that f |spt(T ) is proper that is f−1(K)∩ spt(T ) ⋐ U when

K ⋐ V (as otherwise, the pull-back wouldn't have compact support) then

f#T (ω) = T (ζf#ω) ∀ω ∈ Dn(V ) (3.15)
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where ζ any C∞
c (U) such that ζ = 1 in spt(T ) ∩ spt(f#ω). The introduction of ζ is

necessary to have ζf#ω ∈ Dn(U) when k′ < k. So in the case in which k′ = k the

function ζ can be removed.

Let us now restrict further the set of currents considered

De�nition 3.4 (Integer multiplicity recti�able n-currents). Let T ∈ Dn(U), if there exist

an n-recti�able subset M ⊂ U , a positive integer-valued Hn-integrable function θ(x), and

an Hn-measurable function ξ : M →
∧

n(Rn+k) such that for Hn almost everywhere

ξ(x) = τ1 ∧ ... ∧ τn with {τi} orthonormal basis for TxM , and

T (ω) =

∫
M

⟨ω(x), ξ(x)⟩ θ(x) dHn(x) (3.16)

then T is called integer multiplicity recti�able n-current, or simply integer multiplicity

current. The notation T = τ(M, θ, ξ) may be used, from which is evident that these types

of currents have an associated integer n-varifold V = v(M, θ) on which they introduce an

orientation.

These currents achieve the goal of introducing a topology into the n-recti�able sets, while

also taking into account a possible folding of the manifold through the multiplicity func-

tion. Most importantly the subset of integer multiplicity currents is closed with respect

to the weak topology as the following compactness theorem states.

Theorem 3.3 (Federer-Fleming. Compactness of integer multiplicity currents).

Let T (k) ∈ Dn(Rn+k) be a sequence of integer multiplicity currents such that

MW (T (k)) +MW (∂T (k)) ≤ C ∀W ⋐ Rn+k (3.17)

with C ∈ R. Then there exists an integer multiplicity current T ∈ Dn(Rn+k) such that

T (k) ⇀ T (3.18)

up to subsequences.

This result together with mass lower semicontinuity holds by application of the direct

method the existence of a minimal integer multiplicity current for any integer multiplicity

boundary.

Theorem 3.4 (Existence of Minimizing Current). Given S ∈ Dn−1(Rn+k) integer mul-

tiplicity with compact support and ∂S = 0. Then there is a compact minimizing integer
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multiplicity current T ∈ Dn(Rn+k) with ∂T = S and M(T ) ≤ M(R) for any R integer

multiplicity such that ∂R = S.

Proof. The proof is the application of the direct method as mentioned above. The com-

petitor's space is not empty given that there is at least the cone generated by S, and

the minimizer will stay in any ball containing S given that the projection on such balls

reduces the mass.

These minimal currents will be the last topic of this introduction.

De�nition 3.5 (Area Minimizing Currents). An integer multiplicity current T in U is

minimizing with respect to a set A if

MW (T ) ≤MW (S) ∀S int. mult. s.t. ∂S = ∂T and spt(S − T ) ⊂ A ∩W (3.19)

is satis�ed for any compact W ⋐ U .

Note that even if not explicitly stated in the name, minimizing currents regards only

integer multiplicity currents.

Amazingly enough, there is a compactness result for minimizing currents

Theorem 3.5 (Compactness of Minimizing currents). Let T (k) be a sequence of minimiz-

ing currents such that

MW (T (k)) +MW (∂T (k)) ≤ C ∀W ⋐ Rn+k (3.20)

with C ∈ R. Then up to subsequence, the limit integral current T is minimizing and

µ
(k)
T → µT (3.21)

in the Radon measure sense.

Notice that in the case in which the currents considered are of the form Tj = ∂[[Ej]]

it is enough a bound on the mass, without the one on the boundary's mass. At last,

let us introduce the concept of singular set of a current T . The singular set sing(T ) is

given by those points x ∈ supp(T ) for which it does not exist a neighborhood W so that

W ∩ supp(T ) is a C2 connected n-manifold.

The next topic is a way of representing currents of the type T = ∂[[E]] in a di�erent way

using Bounded Variation Functions.
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3.2. BV functions and Cacciopoli sets

Functions of bounded variation are of great importance when free boundary problems are

studied, for the description of n-dimensional hypersurfaces in Rn+1 just a small set of BV

functions will be considered.

De�nition 3.6 (Functions of Bounded Variation). A function f ∈ L1(Ω) is of bounded

variation f ∈ BV (Ω) if the distributional derivative is a vector-valued Radon measure,

that is Df ∈ M(Ω):

BV (Ω) = {f ∈ L1(Ω) : Df ∈ M(Ω)} (3.22)

The space of bounded variation functions is endowed with the norm

||f ||BV = |f |L1(Ω) + |Df |(Ω) (3.23)

where |Df |(Ω) is the total variation of the measure Df given by

|Df |(Ω) = sup
ϕ∈C1

c (Ω)
|ϕ|≤1

∫
Ω

⟨ϕ,Df⟩ dx = sup
ϕ∈C1

c (Ω)
|ϕ|≤1

∫
Ω

div(ϕ)fdx (3.24)

where the second equality comes from the de�nition of weak derivative. With the norm

(3.23) the space of BV functions is a Banach space, but the most relevant thing for the

calculus of variations is that it happens to be the dual of a separable Banach space.

Theorem 3.6. Let Ω ⊂ Rm open, the space BV (Ω) is isomorphic to the dual of the

quotient X/Y with X = [C0
c (Ω)]

m+1 and Y the closure in X of

E = {(ϕ, ϕ̃) ∈ X : ϕ = div(ϕ̃)} (3.25)

The proof is given by showing that the map T : BV (Ω) → X∗ given by

Tu = (uLm, Du) (3.26)

is an isomorphism with (X/Y )∗. It is hence clear that E comes from ker(Tu), and with

further considerations, the proof is achieved. To arrive at a nice compactness result

the last ingredient is a Sobolev-type embedding theorem for BV (Ω), in particular, the
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statement needed is that

BV (Ω) ⊂ Lp(Ω) 1 ≤ p < 1∗ =
n

n− 1
with compact embeddings (3.27)

under enough regularity of Ω. It can be now stated the compactness result

Theorem 3.7 (Compactness in BV (Ω)). Let Ω Lipschitz and {fn} ∈ BV (Ω) bounded

||fn||BV < M then there exist a function f ∈ BV (Ω) such that

fn
L1

−→ f and Df ⇀ Dfn (3.28)

Proof. The result with weak convergence in L1(Ω) is given by Banach-Alaoglu theorem

being BV (Ω) a dual space, from the compactness embedding in L1(Ω) the weak conver-

gence is actually strong.

In the space of bounded variation functions three di�erent convergence can be considered.

All have strong convergence in L1 and they di�erentiate regarding the convergence of the

derivative as follows

Dfn ⇀ Df weak convergence

|Dfn|(Ω) → |Df |(Ω) intermediate convergence

Dfn → Df strong convergence

(3.29)

(3.30)

(3.31)

the strong convergence would block approximation by smooth functions due to the ex-

cessively strong requirement, as an example δ1/n doesn't converge strongly to δ0. On the

other hand, the weak convergence wouldn't preserve the total variation, in fact, it holds

a lower semicontinuity result for the total variation∫
udivϕ = lim

n

∫
undivϕ ≤ lim inf

n
sup
ϕ

∫
undivϕ (3.32)

which by taking the supremum over ϕ holds lower semicontinuity. Notice that this lower

semicontinuity result holds also when only strong L1 convergence is assumed. With the

intermediate convergence, BV functions can be approximated by smooth functions while

maintaining the total variation, this will be of use in the following. Now that BV functions

have been properly introduced the Caccioppoli sets or sets of �nite perimeter are easily

de�ned

De�nition 3.7 (Caccioppoli Sets). Let E be a Borel set in Rm, then the perimeter with
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respect to an open set Ω ⊂ Rm is de�ned as

P (E,Ω) = |DψE|(Ω) (3.33)

where ψE is the characteristic function of the set E. Then if P (E,Ω) < ∞ for any open

and bounded Ω, or analogously ψE ∈ BV (Ω), the set E is a Caccioppoli set (or set of

�nite perimeter).

The perimeter di�ers from the Hausdor� measure of the boundary Hm−1(∂E ∩ Ω) =

|∂E ∩ Ω| but among the sets with the same characteristic function it can always be

chosen one for which equality holds. In fact, this asymmetry arises from the fact that

BV functions as a subset of L1 are de�ned almost everywhere, this is not so for sets.

A counterexample is obtained just by removing all points with rational components to

the set, this holds an in�nite Hm−1 measure for the boundary. To solve this problem is

generally introduced the concept of reduced boundary

De�nition 3.8 (Reduced Boundary). Let E ⊂ Ω be a set of �nite perimeter then the

reduced boundary ∂∗E is given by the x ∈ Ω satisfying:

|DψE|(Br(x)) > 0 ∀r > 0

νE(x) = lim
r→0

DψE(Br(x))

|DψE|(Br(x))
exists �nite

|νE|(x) = 1

(3.34)

(3.35)

(3.36)

The vector �eld νE : ∂∗E → Sm−1 is denoted as generalized inner unit normal vector of

E.

There is a structure theorem for BV functions associated with Caccioppoli sets from

which the relation to currents of the type T = ∂[[E]] is evident.

Theorem 3.8 (De Giorgi's Structure Theorem). If E is a Caccioppoli set in Rn+1 then

∂∗E is countably n-recti�able,

DψE = νEHn ∂∗E (3.37)

and a generalized Green theorem holds∫
E

div(ϕ) dx =

∫
∂∗E

ϕνE dHn ∀ϕ ∈ C1
c (Rn+1) (3.38)
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To conclude the relation with the current T = ∂[[E]] is given by T = τ(∂∗E, 1, ωE νE)

where ωE νE is the restriction of the euclidean volume form with the normal νE.
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In the next chapter will be proved the Bernstein Theorem using the set of �nite perimeters,

for this reason, the �rst variation is here introduced using Bounded Variation functions.

On the other hand, the second variation is presented and calculated in the case of sub-

manifolds of codimension one embedded in a general manifold, as the stability will be

discussed in such a setting.

4.1. First variation

For these calculations, the main references are [12, 15]. In order to introduce a variation

of a set E of �nite perimeter the whole ambient space is warped through a di�eomorphism

F : Rn → Rn. More precisely a family Ft of di�eomorphisms with F0 = I is considered

to then di�erentiate with respect to the family parameter t.

F

It must then be studied the behavior of the total variation of a BV function under di�eo-

morphism, this is done in [12, Lemma 10.1]

Lemma 4.1. Let f ∈ BVloc(Ω) and F : Rn → Rn a di�eomor�sm. Considering A ⋐ Ω

and calling f∗ = f ◦ F−1, A∗ = F (A) then:∫
A∗

|Df∗| =
∫
A

|HDf | (4.1)

with H = |det(DF )|[DF ]−1.
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Proof. Consider the approximating sequence fj ∈ C1(Ω) converging to f in intermediate

convergence, then for any g ∈ C1
0(A,Rn) and representing F−1 = Φ:∫

A∗

⟨g∗, Dfj∗⟩ dx =

∫
A∗

⟨g ◦ Φ, DΦDfj ◦ Φ⟩ dx =∫
A

⟨g, (DΦ ◦ F )Dfj⟩ |det(DF )|dy =

∫
A

⟨g,HDfj⟩ dy

(4.2)

(4.3)

passing to the limit the equation still holds thanks to L1 convergence and the expressions

being linear bounded functionals of fj hence∫
A∗

⟨g∗, Dfj∗⟩ =
∫
A

⟨g,HDfj⟩ (4.4)

For |g| ≤ 1 taking the supremum on the left-hand side∫
A∗

|Df∗| ≥
∫
A

⟨g,HDf⟩ (4.5)

taking the supremum on g holds the inequality between total variations, the opposite

inequality is obtained analogously considering �rst |g∗| ≤ 1 hence∫
A∗

|Df∗| =
∫
A

|HDf | =
∫
A

|Hν||Df | (4.6)

where ν = Df
|Df | has unitary norm, and in the case in which f is the characteristic function

of a set of �nite perimeter E it corresponds with the normal to the boundary νE.

Let us now consider a family of parametric di�eomorphisms Ft such that F0 = I and such

that they di�er from the identity only in a compact subset of A. These will represent a

variation contained in A and hence A∗ = A simplifying the next calculations. Hence:

d

dt

∣∣∣∣
t=0

∫
A

|Df∗| =
d

dt

∣∣∣∣
t=0

∫
A

|Hν||Df | =
∫
A

d |Hν|
dt

|Df | (4.7)

It is left to show the derivative of the norm:

d
√
⟨Hν,Hν⟩
dt

∣∣∣∣
t=0

=
⟨Hν, Ḣν⟩

|Hν|

∣∣∣∣
t=0

= ⟨ν, Ḣν⟩ (4.8)

for the last inequality it has been used F0 = I =⇒ H|t=0 = I and |ν| = 1.
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Applying this result to f = ϕE

δP (E,A) =

∫
A∩∂∗E

⟨ν, Ḣν⟩ dHn (4.9)

where ν is the normal to the hypersurface and H depends on the di�eomorphism used to

variate.

To �nd a more informative expression for the variation the family of di�eomorphism

discussed above can be expanded using Taylor:

Ft(x) = x+ tT (x) +O(t2) (4.10)

where T ∈ C∞
c (A,Rn+1) and T (x) = ∂tFt(x)

∣∣
t=0

. Conversely given T ∈ C∞
c (A,Rn+1) it

is possible to construct a family of di�eomorphisms. Hence considering without loss of

generality the variation Ft(x) = x+ tT (x):

DFt(x) = I + t∇T (x) (4.11)

and as proved in [15, 17.2] for tensor of this form holds:

det(DFt(x)) = 1 + tdiv(T (x)) +
t2

2
(div(T (x))2 − Tr(∇T (x)2)) +O(t3)

[DFt(x)]
−1 = I − t∇T (x) + t2∇T (x)2 +O(t3)

(4.12)

(4.13)

The product of which is H. We hence can �nd the expression of the variation:

Ḣ
∣∣
t=0

= div(T (x))I −∇T (x)

⟨ν, Ḣν⟩ = div(T (x))I∂E − ⟨ν,∇νT (x)⟩

(4.14)

(4.15)

where I∂∗E is the characteristic function of the reduced boundary. The right-hand side of

(4.15) corresponds to the divergence over ∂∗E. As discussed previously on n-recti�able

sets it can be introduced x ∈ ∂∗E Hn almost everywhere a di�erential structure, then

using local orthogonal coordinates in x for the ambient space {xi, ν} where {xi} are

coordinates for ∂∗E = N it is evident that:

div(T (x))− ⟨ν,∇νT (x)⟩ =
∑

v∈{xi,ν}

⟨v,∇vT (x)⟩ − ⟨ν,∇νT (x)⟩ = divNT (x) (4.16)
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Arriving at the variation:

δP (E,A) =

∫
A∩∂∗E

divNT (x) dHn (4.17)

The last step to arrive at the statement �Minimal hypersurfaces have zero mean curvature�

is the divergence theorem for the case of non-tangential vector �elds. It is enough to

introduce it in a smooth manifold then it is generalized on n-recti�able sets Hn almost

everywhere.

Theorem 4.1 (Divergence Theorem for non tangent vector bundle). Let M ↪→ Rn+1

n-dimensional manifold with smooth boundary and T ∈ X(TRn+1) a vector �eld on M ,

then: ∫
M

divMT = −
∫
M

⟨T,HM⟩ dHn +

∫
Γ

⟨T, νMΓ ⟩ dHn−1 (4.18)

where Γ = ∂M , νMΓ is the normal to Γ with respect to M and H = Hν is the mean cur-

vature vector obtained multiplying the mean curvature to the normal, the mean curvature

is given by the trace of the second fundamental form H = tr(A). Notice that in the case

in which T has values in T (M) it is obtained the Stokes Theorem.

Proof. By separating the �eld into tangent and normal parts it is possible to apply the

Stokes Theorem on the tangential part to limit the proof to only normal �elds, in par-

ticular, consider T = ϕν. Choosing the principal orthonormal basis {τi} completed with

ν in the ambient space, with associated curvatures {ki}, then the Weingarten operator

satis�es ∇τiν = kiτi hence:

∇τi(ϕν) = τi(ϕ)ν + ϕ∇τi(ν) = τi(ϕ)ν − ϕkiτi

divM(ϕν) =
∑
i

⟨τi, τi(ϕ)ν − ϕkiτi⟩ = −ϕ
∑
i

ki

(4.19)

(4.20)

Having this generalization of the divergence theorem:

δP (E,A) = −
∫
A∩∂E

⟨T (x),H⟩ dHn−1 (4.21)

It is simple to obtain the formula for the second variation in terms of H in fact:

δ2P (E,A) =
d

dt

∣∣∣∣
t=0

d

dt

∫
A

|Df∗| =
∫
A

d

dt

⟨Hν, Ḣν⟩
|Hν|

∣∣∣∣
t=0

|Df | (4.22)
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Calculating the derivative:

d

dt

⟨Hν, Ḣν⟩
|Hν|

∣∣∣∣
t=0

=
|Ḣν|2 + ⟨Hν, Ḧν⟩

|Hν|

∣∣∣∣
t=0

− ⟨Hν, Ḣν⟩2

|Hν|3

∣∣∣∣
t=0

=

|Ḣν|2 + ⟨ν, Ḧν⟩ − ⟨ν, Ḣν⟩2

arriving at

δ2P (E,A) =

∫
A

|Ḣν|2 + ⟨ν, Ḧν⟩ − ⟨ν, Ḣν⟩2 (4.23)

no further calculations will be made for the second variation in this case as it will be now

discussed in the submanifold case.

4.2. Monotonicity Formula and Bound of Minimizer

Area

Here are presented two important results regarding minimal hypersurfaces which will be

used in the following. First is the monotonicity formula for minimal hypersurfaces

Theorem 4.2 (Monotonicity Formula). Let E be a Caccioppoli set with minimal boundary

in Ω then for x0 ∈ ∂E ∩ Ω and a.e. r ∈ (0, dist(x0, ∂A))

d

dr

P (E,Br(x0))

rn
=

d

dr

∫
Br∩∂E

(⟨ν, x− x0⟩)2

|x− x0|n+2
dHn(x) (4.24)

The proof can be found in [15, Theorem 28.9] or in [18, 17] in the more general case of

n-varifolds. Basically, the proof is given by choosing in the �rst variation formula (4.21)

the variation T (x) = γ((x − x0)/r)(x − x0), then after some calculations the formula is

obtained by letting γ tend to 1.

The area of an area minimizer of codimension one will vary continuously with respect to

the given boundary, this is a consequence of the more general [12, Lemma 5.6] regarding

bounded variation functions. First, let us introduce the in�mum value among BV func-

tions of the total variation of the derivative when the boundary is �xed by f ∈ BV (Ω)

that is

ν(f,Ω) = inf

{∫
Ω

|Dg| : g ∈ BV (Ω), spt(g − f) ⊂ Ω

}
(4.25)

for the previous discussions on compactness in BV the minimum is achieved, the functions

that achieve the minimum are called of least gradient and are used in [1] to show the

minimality of the Simons cone. With this concept the Lemma states
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Lemma 4.2. Given f, g ∈ BV (BR) and ρ < R then

|ν(f,Bρ)− ν(g,Bρ)| ≤
∫
∂Bρ

|f− − g−| dHn (4.26)

where the minus at superscript indicates the trace from inside the ball.

Now it is clear that applying this theorem to characteristic functions of minimizing Cac-

cioppoli sets holds a continuity result of the minimizer's area with respect to the given

boundary. The bounding term is a way of measuring the distance between the two bound-

aries, notice how it is similar to the �at metric in the currents representation of hyper-

surfaces.

4.3. Second Variation

Considering now a hypersurface represented by a submanifold S embedded in a manifold

M through ι̇ : S → M . The variation will be given by a map F : S × [−a, a] → M

such that F (·, t) = Ft is an embedding of S in M and satisfying F0 = ι̇ and Ft|∂S = ι̇|∂S .
Basically Im(Ft) represents a variation of the hypersurface.

M

t

0

−a

a

F

It is possible without loss of generality to consider families of embedding such that the

vector �eld given by the pushforward of ∂
∂t
through F0 lies in NS, this �eld will be denoted

by V = dF0(
∂
∂t
) ∈ X(NS) and is the analogous of T before. The �rst variation will not

be computed again in this setting as it coincides with the one found previously hence

δVA(S) = −
∫
S

⟨V,H⟩ dωvol (4.27)

When variations are considered the integral will be always on S but the induced metric

will change as the embedding varies. So introducing the dependence on t and deriving

δ2VA(S) = −
∫
S

∂

∂t
(⟨V,H⟩)dωt

vol −
∫
S

⟨V,H⟩ ∂
∂t

(dωt
vol)

∣∣∣∣
t=0

(4.28)
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Being interested in stable minimal hypersurfaces the calculation will be done for H = 0

in t = 0, so the second part of the right-hand side vanishes. For clarity in the following

calculations, the connection ∇ is the one in the ambient manifold M . By de�nition of V

and compatibility with the metric

δ2VA(S) = −
∫
S

⟨∇V V,H⟩+ ⟨V,∇VH⟩ dωt
vol

∣∣∣∣
t=0

(4.29)

again H = 0 and only the second part is non-zero. Let us then study ⟨∇VH , V ⟩, to do

so the basis {ei} of ι̇(S) is extended to all the variations through the pushforward eti =

dFt(ei) which generates a basis {eti} in the immersion Ft(S). This choice of coordinates

is convenient as it implies [V, ei] = 0 from orthogonality. The mean curvature is given by

the trace of the second fundamental form hence H = gijAij where both depend on t as

noticed before

⟨∇VH , V ⟩ = ⟨∇V (g
ijAij), V ⟩ = ⟨ġijAij, V ⟩+ ⟨gij∇VAij, V ⟩ (4.30)

Let us �rst study the �rst term, notice that from gikgkl = δil

ġikgkl = −gimġml (4.31)

inverting gkl by multiplying for glj

ġij = −gimgjlġml (4.32)

it is now easy to calculate the derivative of gml = ⟨em, el⟩, using ∇V ei = ∇eiV from

vanishing Lie brackets and the de�nition of Wirtinger operator

ġml = ⟨∇V em, el⟩+ ⟨em,∇V el⟩ = ⟨∇emV, el⟩+ ⟨em,∇elV ⟩ = −2 ⟨Aml, V ⟩ (4.33)

hence the �rst term in (4.30) is given by 2gimgjl ⟨Aml, V ⟩ ⟨Aij, V ⟩ and introducing the

restriction of codimension one V = uN with u ∈ C∞
c (S) hence

⟨ġijAij, V ⟩ = 2u2|A|2 (4.34)
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It is left to study the second term in (4.30), at �rst notice that from vanishing mean

curvature in t = 0

⟨gij∇VAij, V ⟩ = gij∇V ⟨Aij, V ⟩ = gij ⟨∇V∇eiej, V ⟩ = gij ⟨∇ei∇V ej, V ⟩ − gij ⟨R k
iV j ẽk, V ⟩

(4.35)

where Hessian commutation formula has been used and {ẽk} = {ei, V }. From connection

compatibility and Ricci tensor de�nition

⟨gij∇VAij, V ⟩ = gijei(⟨∇V ej, V ⟩)− gij ⟨∇V ej,∇eiV ⟩+Ric(V, V ) (4.36)

considering now V = uN , being {ei} orthonormal ∇eiej = 0 for any i and j, it is obtained

gijei(⟨∇V ej, V ⟩) = gijei(⟨∇ej(uN), uN⟩) = gijei(⟨ej(u)N + u∇ejN, uN⟩)

gijei(ej(u)u) = gijei(ej(u))u+ gijei(u)ej(u) = u∆Su+ |∇Su|2
(4.37)

(4.38)

and

− gij ⟨∇ej(uN),∇ei(uN)⟩ = −gijei(u)ej(u)− u2gij ⟨∇eiN,∇ejN⟩ = −|∇Su|2 − u2|A|2

(4.39)

where gij ⟨∇eiN,∇ejN⟩ is the norm squared of the Wirtinger operator, which coincides

with that of A as

|W|2 = gijWk
i W l

jgkl = gijgkmAimg
lnAjngkl = gijgnmAimAjn = |A|2 (4.40)

concluding (4.30) is the sum of (4.34), (4.38), (4.39) and Ric(V, V ) holding the second

variation formula for minimal hypersurfaces of codimension one

δ2VA(S) =

∫
S

−u∆Su− u2|A|2 − u2Ric(N,N)dωt
vol (4.41)
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5| The Bernstein Theorem

The most important result in the topic of minimal hypersurfaces is the Bernstein Theorem,

which will be here exposed and proved using the description of hypersurfaces as the

boundary of sets of �nite perimeter, hence achieving the result among also non-regular

competitors. The proof will follow the blow-up and blow-down procedure by Fleming [9].

Theorem 5.1 (Bernstein Theorem). Minimizing hypersurfaces in the whole Rn+1 are

hyperplane for n < 7. A counter-example in dimension 8 is given by the minimizing

Simons Cone

CS =
{
x ∈ Rn | x21 + x22 + x23 + x24 = x25 + x26 + x27 + x28

}
(5.1)

which gives counterexamples also in higher dimensions as S × Rn−8.

Proof. Denoting with M a global minimal hypersurface among Cacciopoli sets in Rn+1.

That is for any K ⋐ Rn+1 and all Cacciopoli sets L s.t. L ≡M in Rn+1\K it holds

|DψM |(K) ≤ |DψL|(K)

To improve notation it is used the structure theorem to relate total variation and Hausdor�

measure |DψE|(K) =
∫
K
|DψE| = Hn(∂E ∩ K) = |∂E ∩ K|, as noted previously this

equivalence is true for ∂∗E but again for clarity the asterisk will be omitted. The idea of

the proof is to blow up M and show that the result is a cone, the same by blowing down,

from the non-existence of non-�at stable minimal cones for n < 7 the theorem is proved.

Consider

Mj =
{
x ∈ Rn+1 | λjx ∈M

}
=
M

λj
(5.2)

which is a blow-down sequence if λj tends to in�nity and a blow-up sequence if it tends

to zero, the calculations will not depend on the behavior of λj until the very end of the

proof so the two cases are analyzed at the same time.

Minimality of Mj by inversion if it wasn't minimal it would exist a set L so that
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|∂Mj ∩Bρ| ≥ |∂L ∩Bρ| which would imply:

λ−n
j |∂M ∩Bλjρ| = |∂Mj ∩Bρ| ≥ |∂L ∩Bρ| = |∂(λjL) ∩Bλjρ|λ−n

j (5.3)

which contradicts the minimality of M .

Convergence of Mj �xing ρ the sequence is bounded in BV in fact the bound in L1 is

given by the measure of Bρ and for the bound on total variation minimality implies:

|∂Mj ∩Bρ| ≤ ρnσn+1 (5.4)

where σn+1 identi�es the measure of the n+ 1-dimensional sphere's shell.

Hence from the compactness result there exist a converging subsequence. This gives the

convergence for ρ �xed. To extend consider ρk → +∞ for k ∈ N strictly increasing.

Starting from k = 0 there is a converging subsequenceM0j being ρ �xed, passing to k = 1

it is considered the subsequence M0j and, from this subsequence, it is again extracted

a converging subsequence in the new ball M1j iterating this process is obtained at each

step a subsequence of the previous subsequence, each element can be identi�ed by Mkj.

Taking the diagonal sequence Mjj holds a sequence converging for every compact set in

Rn. This proves the convergence, and the limit is identi�ed as C. From now on Mj will

identify the diagonal subsequence.

Minimality of C limits of minimizing hypersurfaces are minimizing. This result is simply

the compactness of minimizing currents, in here it is proved for sets of �nite perimeters.

To show this it is introduced a measure of how much the total variation of f ∈ BV (Ω)

di�ers from the minimal one:

Ψ(f,Ω) =

∫
Ω

|Df | − ν(f,Ω)

where ν as introduced before is

ν(f,Ω) = inf

{∫
Ω

|Dg| : g ∈ BV(Ω), spt(f − g) ⊂ Ω

}
So Ψ(f,Ω) = 0 means that f is of least gradient, and in the case of characteristic functions

of Caccioppoli sets means that the set minimizes perimeter. To prove this compactness

result then it is su�cient lower semi-continuity of Ψ(Mj, Br) = Ψ(ψMj
, Br) with respect to

the �rst argument converging in L1. From lower semi-continuity of the total variation it

is enough to show a continuity result for ν(Mj, Br). This result is given by (4.26) applied
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to the sequence and its limit, that is

|ν(ψC , Br)− ν(ψMj
, Br)| ≤

∫
∂Br

|ψ−
C − ψ−

Mj
| dHn−1 (5.5)

by showing that L1 convergence implies the right-hand side limit to be zero. In fact taking

r = ρ+ ϵ, then for a.e. ϵ near 0 there exist a subsequence Mkj s.t.:

lim
j

∫
Bρ+ϵ

|ψC − ψMkj
| dx = 0 =⇒ lim

j

∫
∂Bρ+ϵ

|ψC − ψMkj
| dHn−1 = 0 (5.6)

and taking a sequence ϵl → 0 for which the implication always holds, the limit with

respect to l of the right-hand side is the integral of the traces, concluding the proof. To

show (5.6) assume the negation, then there would exist a set I of positive measure in the

right neighborhood of 0 such that for ϵ ∈ I the inferior limit of the shell integral would

be greater than 0. Then integrating over I and for Fatou's Lemma:

0 <

∫
I

lim inf
j

∫
∂Bρ+ϵ

|ψC − ψMj
| dHn−1 dϵ ≤ lim inf

j

∫
I

∫
∂Bρ+ϵ

|ψC − ψMj
| dHn−1 dϵ (5.7)

which contradicts the L1 convergence. The continuity up to subsequence of ν(Mj, Br) is

proved, hence the minimality of C.

From the continuity of ν(Mj, Br) a further useful result is obtained, in fact, minimality

of C and Mj means
∫
Br

|Df | = ν(f,Br) with f the appropriate characteristic function,

and continuity of ν implies

lim
j

∫
∂Br

|DϕMj
| =

∫
∂Br

|DϕC | (5.8)

C is a cone The monotonicity formula for a set E with stationary perimeter considering

x0 = 0 states
d

dr

P (E,Br)

rn
=

d

dr

∫
Br∩∂E

(⟨ν, x⟩)2

|x|n+2
dHn(x) (5.9)

From this equation, two useful pieces of information for later use are extracted. First the

fact that
P (E,Br)

rn

is an increasing function of r. Second integrating the equation from r1 to r2 holds:

P (E,Br2)

rn2
− P (E,Br1)

rn1
=

∫
(Br2−Br1 )∩∂E

⟨ν, x⟩2

|x|n+2
dHn(x) (5.10)
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To prove that C is a cone it would be su�cient to show that P (C,Br)
rn−1 is actually independent

of r as this would imply that the right-hand side of the integrated monotonicity formula

is null for every r1 and r2 implying ⟨ν, x⟩ = 0 for any x ∈ ∂C which is a characterization

of Cones. To prove independence on r is used (5.8) to get this chain of equalities :

|∂C ∩Br|
rn

= lim
j

|∂Mj ∩Br|
rn

= lim
j

|∂M ∩Bλjr|
(λjr)n

= lim
ρ→+∞

|∂M ∩Bρ|
ρn

(5.11)

Now the two cases of blow-up and blow-down must be separated as the last limit in this

chain is increasing for the blow-down and decreasing for the blow-up. From Inequality

(5.4) the limit has an upper bound given by σn+1, so in the blow-down case the limit is

increasing and bounded hence converges and the independence on r is proved. For the

blow up the bound from below is simply given by zero, so a decreasing sequence bounded

from below converges, and again independence from r is achieved. This concludes the

proof that C is indeed a Cone in both the case of blow up and blow down.

Conclusions For n < 7 there are no singular stable minimal cones, hence both the blow-

up and the blow-down are hyperplanes and the two equality chains above are equal to ωn,

this implies thanks to monotonicity:

ωn = lim
ρ→0

|∂M ∩Bρ|
ρn

≤ |∂M ∩Br|
rn

≤ lim
ρ→+∞

|∂M ∩Bρ|
ρn

= ωn (5.12)

Hence also for M itself, the monotonicity formula does not depend on r and it is hence a

cone, in particular a hyperplane for n < 7.

Regarding the statement that for n < 7 there are no stable singular minimal cones, the

most general result is a result on the singular set of minimal hypersurfaces. The singular

set of a hypersurface S with associated measure µS is given by those points x ∈ supp(µS)

for which it does not exist a neighborhood W so that W ∩ supp(µS) is a C
2 connected

n-manifold, this set is denoted sing(S). The regularity result for area minimizers states

that if S is local area minimizing in U then

Hn−7+α(sing(S) ∩ U) = 0 ∀α > 0 (5.13)

which means that for n < 7 the singular set is empty, for n = 7 it is at most discrete. The

proof can be found in [15, Theorem 28.1] and follows from two results: the non-existence of

minimizing cones with a singular point in the origin for n < 7 known as Simons Theorem

[19], proved by choosing the variation u(x) = ϕ(x)|A|(x) with spt(ϕ ∩ {0}) = ∅ in the

second variation formula; and from Federer's dimension reduction theorem which states
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that for minimizing cones with non-discrete singular set the blow up in singular points

holds F × R with F minimizing cone of one dimension lower.

To properly conclude the Bernstein problem the minimality of the Simons Cone should be

proven, the result was �rst proved in [1] using BV functions of least gradient. In fact level

sets of such functions are Caccioppoli sets that minimize perimeter, this is a consequence

of the fact that BV functions of least gradient are a lattice that is if f ∈ BV (Ω) then

both max(f − t, 0) and min(f, t) are BV (Ω) of least gradient, taking

ϕε,t =
1

ε
min(ε,max(f − t, 0))

for ε → 0 it converges in L1 to the t-level set of f and from lower semi continuity of

Ψ(ϕε,t,Ω) it is of least gradient. In the paper, they �nd a function of least gradient for

which {f = 0} coincides with the Simons Cone concluding the proof.
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6| Stability

This chapter presents the stability condition for minimal hypersurfaces. Throughout the

chapter with submanifold or S will be considered an orientable, connected, and complete

submanifold, so only smooth regular hypersurfaces are under consideration.

From the second variation formula up to the application of Green Theorem, given a

minimal oriented complete submanifold S embedded in a manifold M of codimension

one, varying the hypersurface by T = uν with u compact support holds:

δ2A(S) =

∫
S

|∇u|2 − (|A|2 +Ric(ν, ν))u2 dVg (6.1)

To have a more compact notation let us introduce

V = |A|2 +Ric(ν, ν) (6.2)

and

E(u) =

∫
S

|∇u|2 − V u2 dVg (6.3)

Consider now Ω open bounded subset of S, and u,w = 0 on ∂Ω, then using Green's

Theorem for sections (2.11) in which the vector bundle is simply R, it is obtained:

δwE(u) =
d

dϵ

∣∣∣∣
t=0

∫
Ω

|∇(u+ ϵw)|2 − V (u+ ϵw)2 dVg =

∫
Ω

2 < ∇u,∇w > −2V uw dVg =

=

∫
Ω

2(−∆u− V u)w dVg = ⟨2LΣu,w⟩L2 = IΩ(u,w)

Hence the second variation of the area corresponds to double the energy of the operator:

LS = −∆− V (6.4)

which is strongly elliptic and has uniqueness in the Cauchy problem [19, Prop. 1.2.3.].

The properties of such operators are now studied.
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6.1. Schrödinger Operator −∆− V

The stability requirement for the hypersurface is intertwined with the spectrum of the

operator LS, it is evident that IΩ(u,w) = IΩ(w, u) hence the operator LS is symmetric

implying real spectrum, also the spectrum is discrete and all its elements have an associ-

ated eigenfunction, this will be proved in the following discussion. That said the following

theorem shows the relation between σ(LS) and stability.

Theorem 6.1 (Variational Characterization of Stability). Given a minimal embedded

submanifold S. Then it is stable with respect to the area functional i� σ(LS) ⊂ [0,+∞).

Proof. Consider the minimization of E(u) under the constraint
∫
Ω
u2dVg = 1

λ1 = inf
||u||2=1

∫
Ω

|∇u|2 − V u2 (6.5)

In order to have nice topological properties and apply the direct method let us ambient

this problem in the Hilbert space H1
0 (S). To show that the in�mum is achieved consider

a minimizing sequence u(k) ∈ H1
0 (S) with ||u(k)||2 = 1, evidently the sequence is bounded

being E(u) ∝ ||u||H1 and hence from Banach-Alaoglu there is a subsequence weakly

converging. It is left to prove lower semi-continuity, notice that H1
0 (S) ⋐ L2(S) hence

the subsequence converges strongly in L2(S) implying continuity of L2 norm, this fact

together with lower semi-continuity of the norm with respect to weak convergence means

that E is the sum of a lower semi-continuous function and a continuous one, implying it

is lower semi-continuous. Hence u(k) ⇀ u with ||u||2 = 1 and the minimum is achieved by

u. Proceeding with the Lagrange multiplier method the problem of �nding the minimizer

can be expressed as the minimization of the functional

Λ(v) =
1

2

∫
Ω

|∇v|2 − V v2 − γv2 (6.6)

where γ is the Lagrange multiplier. The minimizer u is a critical point of the Lagrange

functional, hence the variation of Λ(v), calculated in the same way it has been done for

E, will vanish in u along any direction w ∈ H1
0 (S)

δwΛ(u) =

∫
Ω

⟨∇u,∇w⟩ − V uw − γuw =

∫
Ω

(−∆u− V u− γu)w = 0 (6.7)

From the rightmost integral of (6.7) is obtained that the minimizer u of (6.5) is an eigen-

function of the operator LS. To obtain the eigenvalue associated to u consider w = u
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then from the �rst integral in (6.7)∫
Ω

|∇u|2 − V u2 = γ||u||2 (6.8)

and being u the minimizer of (6.5) evidently γ = λ1 and no eigenvalue is lower otherwise

its eigenfunction would be the minimizer, so λ1 is the �rst eigenvalue of LS. To conclude

from the de�nition of λ1 for any w ∈ C∞
c (S):

∫
Ω

|∇w|2 − V w2 = ||w||22
∫
Ω

∣∣∣∣∇ w

||w||2

∣∣∣∣2 − V

(
w

||w||2

)2

≥ ||w||22λ1 (6.9)

which being λ1 the smallest eigenvalue means that stability is satis�ed if the operator LS

has no negative eigenvalues for any subset Ω proving the if part.

For the only if part is trivial from density of C∞
c (Ω) in H1

0 (Ω).

Eigenvalue Problem

The goal is now to study the eigenvalues of LS. Let Ω ⊂ S consider the eigenvalue

problem:  −∆u− V u = λu in Ω

u = 0 on ∂Ω
(6.10)

it is convenient to make a slight modi�cation to the problem. Let s = max
Ω

(V ) notice

that:

−∆u− V u = λu ⇐⇒ −∆u+ (s− V )u = (λ+ s)u (6.11)

and s−V ≥ 0. Denoting L+
S = −∆+(s−V ) evidently σ(LS) = σ(L+

S )−s so it is enough
studying the new operator. The operator L+

S was constructed to be positive and coercive

as can be easily checked. Hence Lax-Milgram Theorem holds so given f ∈ L2(S) the weak

solution of L+
Sw = f exists unique and ||w||H ≤ C||f ||2, this means well-posedness and

boundedness of the inverse Green Operator GS = (L+
S )

−1

GS : L2(S) → H1
0 (S) ⋐ L2(S) (6.12)

so GS is a compact, symmetric and positive operator from L2(S) in itself. From the

spectral theorem, its eigenvalues are countable, positive, and converging to 0. This implies

that the eigenvalues of L+
S are countable, positive, and diverging to in�nity. As already

mentioned the eigenvalues of LS correspond to the one of this new operator but shifted

to the left by s = max
Ω

(V ). Hence σ(LS) is given by a sequence {λk} of real numbers with
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smaller value λ1 and diverging to in�nity.

λ1 < λ2 ≤ λ3...

0

R

A condition on V that implies stability is easily found.

Proposition 6.1. Given Ω ⊂ S then S (minimal) is stable in Ω if V (x) ≤ λ1(−∆) ∀x ∈ Ω

where λ1(−∆) is the �rst eigenvalue of the Dirichlet problem in Ω for the operator −∆.

Proof. As it has been already shown stability coincides with having λ1(LS) ≥ 0. Consider

s = max
Ω

(V ) ≤ λ1(−∆) then this chain of inequality is satis�ed

inf
||u||2=1

∫
Ω

|∇u|2 − V u2 ≥ inf
||u||2=1

∫
Ω

|∇u|2 − su2 = inf
||u||2=1

∫
Ω

|∇u|2 − s (6.13)

where the left most part is λ1(LS) and the rightmost is λ1(−∆)− s ≥ 0 concluding.

Notice that the inverse implication of this proposition is generally not true but studying

this speci�c case could give some insights into the rigidity of the Bernstein Theorem, in

fact, it will be later proved that with the hypothesis V (x) ≤ λ1(−∆) for n < 6 and �at

ambient space the stable hypersurface is �at.

A general concept in the subject of operators on manifolds is the index of an operator.

De�nition 6.1 (Index). Given a manifoldM on which is de�ned an operator L, the index

IndL(Ω) of Ω with respect to L is the number of negative eigenvalues of L in Ω. In the

following, Ind(Ω) will identify the index of the stability operator.

With the de�nition of index, it is evident that stability in Ω coincides with Ind(Ω) = 0.

Morse Index Theorem

Given a connected manifold S and a subset Ω ⊂ S with regular boundary consider a

family of di�eomorphisms gt : Ω → Ω such that Ωt = gt(Ω) ⊂ Ωs = gs(Ω) for any t > s,

hence gt is a contraction. The family is called of ϵ-type if there exist a t̄ such that for

every t > t̄ then A(Ωt) ≤ ϵ. The theorem presented in this section, proved by Smale

[20, Lemma 2, Lemma 7], exposes the behavior of the eigenvalues of operators under such

deformations.

Theorem 6.2 (Morse Index Theorem). Let L : H2k(Ω) → L2(Ω) be a self-adjoint,

strongly elliptic operator of order 2k. Then the spectral theorem discussed before holds
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(strongly elliptic gives coercivity, the order 2k is needed for symmetry). And the eigen-

values λtk of the Dirichlet problem in Ωt = gt(Ω) where gt as above, are non-decreasing

functions of t and are strictly increasing if L has uniqueness in the Cauchy problem. Fur-

thermore, there exists ε for which if gt is of ε-type then all the eigenvalues are positive for

all t > t̄.

To give a glimpse of the proof, the fact that the eigenvalues are non-decreasing functions

of t is trivial, being the Rayleigh quotient of a subset the in�mum over a smaller family of

functions. The result of strict increasing is obtained by showing that if λtn = λsn then the

eigenfunctions coincide up to trivial expansion [20, Lemma 6], which is absurd if there is

uniqueness in the Cauchy problem. Lastly, the proof of the stability of small sets for the

speci�c case of LS is presented here, for the general case the calculations are similar but

it is also used a Gardings inequality [20, Lemma 7]. Considering again s = maxΩ V (x)

then ∫
Ωt

|∇f |2 ≥
∫
Ωt

sf

is a stronger result than stability, this inequality is exactly the Poincaré inequality with

coe�cient 1/s so it holds if the Poincaré constant for Ωt is such that Cp < 1/s. This is

indeed true as Cp can get as small as wanted by decreasing the area of the domain, in

fact from Sobolev embeddings

||f ||Lr ≤ Cs||f ||H1 ∀r > 2n

n− 2

and choosing r > 2 from holder inequality

||f ||L2 ≤ |Ωt|1/2−1/r||f ||Lr ≤ |Ωt|1/2−1/rCs||f ||H1

so |Ωt|1/2−1/rCs = Cp and for a su�ciently small ε > |Ωt| stability is achieved.

In a more direct way, this theorem states that on smaller and smaller domains the eigen-

values increase, and if IndL(Ω) > 0 then any negative eigenvalue as it increases will

annihilate and then become positive.

λt1 < λt2 ≤ λt3...

0

R

t

t > t

There is an analogy between Jacobi �elds and domain in which there is a null eigenvalue, in

fact, Jacobi �elds on a geodesic represent the displacement of it that up to the second order
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does not change the length. Among Jacobi �elds, there may be also displacements that

pass from one geodesic to another. By considering the case of hypersurfaces, the Jacobi

�elds are solutions to LS = 0 that is the second variation of the area is 0 along them, among

these �elds there are also the ones that displace the hypersurface to another minimal

stable hypersurface. If zero is not an eigenvalue the solution of LS = 0 will be unique

from Fredolm's alternative, in such cases having a homogeneous boundary condition the

unique solution vanishes. For domains Ω in which there is indeed a null eigenvalue the

boundary ∂Ω is called conjugate boundary, in analogy to the conjugate point, and elements

of the eigenspace are Jacobi �elds with homogeneous boundary condition.

S
∂Ωt1

∂Ωt∗

∂Ωt2

Figure 6.1: The various curves on the surface S represent the boundaries of a contraction

Ωt for di�erent values of t. If the dashed curve, for t = t∗, is a conjugate boundary, then

zero is an eigenvalue of LS and there are variations (eigenfunctions of 0) supported on Ωt∗

that does not change the area functional up to the second order. Also domains contained

in Ωt∗ like Ωt2 have strictly lower Morse index than domains, like Ωt1 , containing Ωt∗ , as

the conjugate boundary identi�es the passage of an eigenvalue from negative to positive.

Thanks to the Morse Index Theorem the index of the whole hypersurface S de�ned as

Ind(S) = limR→∞ Ind(BR) is well-posed and independent either on the point and on the

actual exhaustion of S chosen. Notice also that the limit could converge or diverge to

in�nity, holding a further separation between minimal non-stable hypersurfaces, that is

Finite Index minimal hypersurfaces and Non Finite index minimal hypersurfaces. In the

case of �nite index minimal hypersurfaces it can be proved [7, Proposition 1] that by

removing a compact subset K from S then S\K is stable, this is done by constructing

Jacobi �elds on successive rings, once this process holds a number of Jacobi �elds equal to

Ind(S) then K is any compact containing the union of such rings given that the support

of all the eigenfunctions of the negative eigenvalues would be inside K.
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Stable Hypersurfaces

Consider now S stable minimal hypersurface, that is:

λ1(LS) ≥ 0 for any Ω (6.14)

The �rst thing to notice is that non-compact stable minimal hypersurfaces are strongly

stable, in fact from Morse Index Theorem for any exhaustion Ωi ⊂ Ωi+1:

0 ≤ λ1(Ωi+1) < λ1(Ωi) (6.15)

but the �rst inequality is actually strict for any i otherwise it would negate the result

on the strict decreasing value of eigenvalues under expansion. Notice that such a result

is achievable only in the case of non-compact hypersurfaces, and is actually true for any

stability operator L.

The following theorem on positive operators will be later used, it is presented in [8] for

LS but it has a more general validity, as proved here.

Theorem 6.3. Let S be a complete, non-compact manifold on which is de�ned a second

order di�erential operator L self-adjoint, strongly elliptic, and positive on any Ω ⊂ S.

Then there exists a function u > 0 on S such that Lu = 0.

Proof. As already shown the operator is strictly positive hence from Fredholm's alterna-

tive there is uniqueness in the problem: Lvi = 0 in Ωi

vi = 1 in ∂Ωi

(6.16)

Furthermore vi ≥ 0, in fact, if otherwise the domain in which vi < 0 would be a conjugate

boundary which is absurd being the operator positive. From maximum principle vi ≥ 0

implies vi > 0. It is now �xed p ∈ Ω0 and de�ned ui =
vi

vi(p)
satisfying:

 Lui = 0 ui > 0 in Ωi

ui(p) = 1
(6.17)

The hypothesis of [11, Theorem 8.20] are satis�ed holding the Harnack's inequality:

sup
Bσ(p)

ui ≤ C inf
Bσ(p)

ui (6.18)
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for σ such that B4σ(p) ⊂ Ωi and C dependent on σ. This implies:

sup
Bσ(p)

ui ≤ Cui(p) = C

C−1 ≤ inf
Bσ(p)

ui

(6.19)

(6.20)

The �rst inequality gives a uniform bound on ||ui||∞, for Schauder interior a priori es-

timates [11, Theorem 6.2] the bound extends to the second derivative norm, these two

bounds together bound the �rst derivative norm. Hence Ascoli-Arzelà compactness the-

orem holds for both the function and its �rst derivative, and a converging subsequence

may be extracted for any σ. With the diagonalization argument, there is a u to which ui

converges uniformly in every compact subset of Ω. Hence Lu = 0 and thanks to the lower

bound (6.20) u > 0 concluding.

Notice that the behavior of the Harnack constant is exponential in σ, hence it is not true

in general that there is ε such that u ≥ ε > 0 on S.
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7| Smoothing of Cones

The discussion on stable minimal hypersurfaces was and will be limited to the smooth case,

on the other hand, the counterexample of Bernstein Theorem was presented as a singular

cone, it is hence missing a counter-example in the smooth case. For this reason, it is now

made an overview of [14, Theorem 2.1] which is the smoothing of any minimizing cone

with singularity in the origin. An interesting property used in the proof and presented in

[14, Lemma 1.18] is that given two minimizing currents T = ∂[[E]] W and S = ∂[[F ]] W

if spt(∂S) ⊂ Ē then spt(S) ⊂ Ē which in simple words it says that if the boundary of a

minimizing current is on one side of another one then the whole current will stay on that

side.

Theorem 7.1. Let C be a minimizing hypercone in Rn+1 with Γ = C ∩ ∂B1 a smooth

compact submanifold of Sn and sing(C) = {0}, suppose that C separates Rn+1 in exactly

two open sets E+ and E− hence C = ∂[[E+]]. Then denoting E either E+ or E−, there

exist an oriented connected embedded minimizing hypersurface S ⊂ E such that S = ∂[[F ]],

F̄ ⊂ E open and sing(S) = ∅, dist(S, 0) = 1.

Corollary 7.1. Choosing as C the Simons Cone

C =
{
x ∈ Rn | x21 + x22 + x23 + x24 = x25 + x26 + x27 + x28

}
(7.1)

it satis�es the hypothesis of the theorem holding the existence of a non-�at smooth mini-

mizing (hence stable) hypersurface S. Hence it is not necessarily true that stable minimal

smooth hypersurfaces in Rn+1 are �at when n ≥ 7, answering to the stable Bernstein

problem.

Proof. Only the outline of the proof will be presented.

Step 1. The �rst step is to generate a sequence of minimizing currents in B1 converging

to the cone and with support only on one side. To do so consider a family of C2 functions

φj : Γ → E ∩ ∂B1 such that |φj − iΓ|C2 ≤ 1/j (7.2)
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C

Tj

Γj

Γj+k

Figure 7.1: Tj lying on one side of C at a distance

It will be denoted Γj = φj(Γ). Then for su�ciently large j there is a minimizing current

Tj with ∂Tj = Γj and there exists Ej open Ēj ⊂ E such that

Tj = ∂[[Ej]] B1 hence supp(Tj) ∩ supp(C) = ∅

Tj ⇀ C

(7.3)

(7.4)

So the Tj lies on one side of the cone and are at a distance from it.

Step 2. Through homothety of the above sequence a minimizing current S is obtained,

this is exactly the smooth hypersurface sought and its regularity is left to be proven.

Indeed it is possible to choose λj converging to zero such that

dist

(
spt

(
1

λj
Tj

)
, 0

)
= 1 (7.5)

the mass of the rescaled currents is bounded for every Bρ, in fact from the push-forward

and the fact that spt(f(cx)) = 1/c spt(f(x))

MBρ

(
1

λj
Tj

)
= sup

|ω|≤1
spt(ω)∈Bρ

1

λj
Tj (ω(x)) = sup

|ω|≤1
spt(ω)∈Bρλj

Tj

(
1

λnj
ω(x)

)
=

1

λnj
MBρλj

(Tj) (7.6)

and being Tj minimizing its mass is certainly bounded by the mass of [[Bρλ]] = ρnλnωn

hence bounding the above chain by ρnωn. From compactness, the rescaled currents con-

verge to S = ∂[[F ]] with F̄ ⊂ E.

Step 3. To conclude it is sought to show that x ·νS(x) > 0 for all x ∈ spt(S), from which

the support is locally given by the graph of a minimal hypersurface function concluding

the proof. First using again homothety it is shown that C is the tangent cone for S at

in�nity. Hence there exists a great enough R0 and a C2 function v on C\BR0 such that

spt(S)\B2R0 ⊂ graphC(v) (7.7)
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R r (1 + t)r

v(r)

(1 + t)v(r)

v((1 + t)r)

Figure 7.2: Rescale of v(rσ) by (1 + t) for σ �xed

Being S a minimizing hypersurface v must be a Jacobi �eld and the asymptotic of the

Jacobi �elds on C are known to be such that

∂

∂r

(
v(rσ)

r

)
< 0 (7.8)

for su�ciently large r, where σ represents the vectors pointing to Γ. By �xing σ inequality

(7.8) implies
∂v(rσ)

∂r
<
v(rσ)

r
(7.9)

and from Grönwall's Inequality

v(r2σ) < v(r1σ)
r2
r1

(7.10)

choosing r2 = (1 + t)r1 and r1 = r

v((1 + t)rσ) < v(rσ)(1 + t) (7.11)

Notice that this inequality implies that spt((1 + t)S)\BR ⊂ F as shown in Figure(7.2),

so in particular

dist(∂Br ∩ spt(S), spt((1 + t)S)) > 0 (7.12)

Also for σ �xed x = rσ + v(r)νC

x · νv = c(r, v) ·
(
−∂v
∂r
, 1

)
= cv − c

∂v

∂r
r > 0 (7.13)

from Inequality(7.9) where νv is the normal to the graph of v in the plane σ, νC and

1/c =
√

1 + ∂v
∂r

2
. Hence x · νS(x) > 0 for every σ so

inf
spt(S)∩∂Br

x · νS(x) > 0 (7.14)
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It is left to extend this property to any r. To do so notice that

dist(Br ∩ spt(S), spt((1 + t)S)) = dist(∂Br ∩ spt(S), spt((1 + t)S)) (7.15)

otherwise, it would be possible to translate S along the direction connecting the nearer

inner points by a factor slightly higher than the distance, in this way the boundary is on

one side but the neighborhood of the nearer point is on the other side. This contradicts

the fact that for two minimal hypersurfaces if the boundary of one lies on one side of the

other so does the whole hypersurface. From (7.14)

f(t) = dist(∂Br ∩ spt(S), spt((1 + t)S)) ≥ c(r)t

for small t. Because f(t) = x · νS t + o(t) and from (7.14) there is a c(r) bounding

x · νS > c(r). For the same reason, the limit of the distance divided by t in the limits

gives the scalar product hence from (7.15)

dist(Br ∩ spt(S), spt((1 + t)S))

t
≥ c(r) =⇒ inf

Br

x · νS(x) > 0 (7.16)

To conclude (7.16) implies that each ray ℓ = {λx : x ∈ C, λ > 0} intersect spt(S) only

in one point y. As a consequence for any y ∈ spt(S) there is a ball Bρ(y) for which

reg(S)∩Bρ(y) is the graph of a function u de�ned on ℓ⊥. But being Hn(reg(S)) = 0 from

regularity of weak solution of the area functional sing(S) = ∅.
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8| Rigidity Result

Throughout the chapter is considered a smooth, complete, connected, and orientable

hypersurface (Mn, g) ↪→ Rn+1 where g identi�es the induced metric on M and n ≥ 2.

Two results regarding the �atness of stable minimal hypersurfaces are given, the �rst is a

conditional result up to n < 6, while the second is unconditional but only up to n < 4.

8.1. Condition for �atness n < 6

The condition required is |A|2(x) ≤ λ1(−∆) which is not as strong as it seems, in fact,

λ1(−∆) on a manifold with negative Ricci curvature will not even tend to zero as the

domain increases.

Theorem 8.1. Let M be a minimal submanifold as above. Suppose that for any ball

B(p, r) p ∈ M it holds the bound |A|2(x) ≤ λ1(−∆) ∀x ∈ B(p, r), where λ1(−∆) is the

�rst eigenvalue of −∆ in B(p, r). Then the hypersurface is stable and, for n < 6, it is

�at.

The �rst step in the proof is to analyze the behavior of Laplace-Beltrami eigenvalues. A

bound from above for λ1(−∆) can be found in [10, Theorem 5.2].

Theorem 8.2. Consider Ω = B(p, r0) the geodetic ball of center p and radius r0. If

Ric ≥ −(n− 1)β2 in Ω, β > 0 then

λ1(−∆) ≤ (n− 1)2β2

4
+ inf

0<t<1

{
π2

(1− t)2r20
+

(n− 1)(n− 3)β2

4sinh2(tβr0)

}
(8.1)

for n ≥ 2.

In order to use this bound a lower bound on Ric must be evaluated.

Proposition 8.1. Being S a minimal hypersurface then

Ric = −A2 ≥ −n− 1

n
|A|2 (8.2)



58 8| Rigidity Result

where the inequality is in the sense of quadratic form that is it holds when is given as

input to the tensor a unitary vector. This is a local result, the result in a set Ω is obtained

by considering M = maxΩ |A|2 then

Ric = −A2 ≥ −n− 1

n
M (8.3)

Proof. From Gauss Equation in Rn+1 and codimension one

Rijkl = AilAjk − AikAjl (8.4)

The Ricci tensor is obtained by contracting the �rst and last indices i and l

Ricjk =
∑
i

AiiAjk − AikAji =
∑
i

−AikAji = −A2 (8.5)

where it has been used
∑

iAii = 0 from minimality. To show the bound consider a

sequence
∑

i xi = 0 so that x1 = −
∑n−1

i xi, notice that Jensen inequality on f(x) = x2

implies

1

n− 1
x21 =

1

n− 1

(
n−1∑
i

xi

)2

≤
n−1∑
i

x2i (8.6)

adding x21 to both sides

n

n− 1
x21 ≤

n∑
i

x2i (8.7)

To conclude consider coordinates that diagonalize the tensor A then

A2 =
∑
i

AikAji = A2
jj ≤

n− 1

n

∑
i

A2
ii =

n− 1

n
|A|2 (8.8)

So Proposition (8.1) in Theorem (8.2) implies −(n−1)β2 = −n−1
n
M hence β2 = M

n
hence

max
Ω

|A|2 =M ≤ (n− 1)2M

4n
+ inf

0<t<1

{
π2

(1− t)2r20
+

(n− 1)(n− 3)M/n

4sinh2(r0t
√
M/n)

}
(8.9)

for any Ω. The proof will be concluded by inversion, suppose that |A|2 is not always null,
that isM > 0 for some set Ω. Then considering p where |A|2 > 0 and B(p, r0), identifying

M(r0) = maxB(p,r0) |A|2. Then the quantity inside the brackets once t is �xed can be sent
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as low as wanted by increasing r0 because

f(x)

4sinh2(x
√
f(x))

→ 0 as x→ +∞ (8.10)

for any f(x) > 0 and non decreasing. So for any ε there is a choice of r0 such that

M(r0) ≤
(n− 1)2M(r0)

4n
+ ε (8.11)

which is absurd if (n−1)2

4n
< 1, that is for n < 6. This concludes the proof.

8.2. Flatness result n = 2, 3

In this section, the results in [2] are repurposed as an extension to stable hypersurfaces of

Theorem 2 in [17] in the case of �at ambient space. This extension will hold as a corollary

the �atness of stable minimal hypersurfaces in R4 and R3, the same result in the case of

R5 is blocked by the requirement of completeness for the conformal metric. The method

is not applicable in R7 as the volume growth requirement is too strong. In this section

with u it is identi�ed the strictly positive (u > 0) solution of LMu = −∆u + u|A|2 = 0

introduced and proved to exist previously.

Theorem 8.3. Let f = [2β − k(q− n)]log(u) with k > 0, q + δ ∈ [4, 4 +
√
8/n] for δ > 0

small enough and β > 0 satisfying |β − 1| <
√

2− q−2
4(q−4+2/n)

. Introducing the conformal

metric g̃ = u2kg. Suppose that the conformal metric is complete and

lim
R→∞

1

Rq+δ

∫
Bg̃

2R

e−f dVg̃ = 0 (8.12)

then M is totally geodesic (being restricted to �at ambient space it is �at).

Notice that the restriction on q implies that this method can be potentially applied to

n ≤ 5 because at most
∫
Bg̃

2R
e−f dVg̃ = O(Rn). This theorem corresponds to the union of

[2, Lemma 2.5], which in turn is [17, Theorem 1] weighted, and the Final Estimate of [2].

Lemma 8.1. For δ small enough, β and q as above, there exists C > 0 such that∫
M

|A|q+δu−2β−kδψq+δ dVg ≤ C

∫
M

u−2β−kδ|∇ψ|q+δ dVg ∀ψ ∈ C∞
0 (M).
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Proof. From [17, (2.8)] in �at case∫
M

|A|pφ2 ≤ C

∫
M

|A|p−2|∇φ|2 ∀φ ∈ C∞
0 (M), (8.13)

for every p ∈ [4, 4 +
√
8/n] and for some C = C(n, p) > 0. Choosing φ = uαψ, with

ψ smooth with compact support and since applying the product rule and from Cauchy-

Schwarz and Young's inequalities,

|∇(uαψ)|2 ≤ ψ2|∇uα|2 + u2α|∇ψ|2 + 2|ψ∇uα||uα∇ψ| ≤ 2ψ2|∇(uα)|2 + 2u2α|∇ψ|2 ,

(8.14)

then (8.13) becomes∫
M

|A|pu2αψ2 ≤ 2C

[∫
M

|A|p−2ψ2|∇uα|2 +
∫
M

|A|p−2u2α|∇ψ|2
]

∀ψ ∈ C∞
0 (M). (8.15)

The goal is now to bound the �rst integral on the right-hand side of (8.15) with the second

one. Consider the compactly supported �eld |A|p−2ψ2uα∇uα, applying the divergence

theorem to it holds∫
M

|A|p−2ψ2|∇uα|2 = −
∫
M

|A|p−2ψ2uα∆uα −
∫
M

uαψ2⟨∇uα,∇|A|p−2⟩

−2

∫
M

|A|p−2uαψ⟨∇uα,∇ψ⟩ ,

then it is used the fact that

∆uα = αuα−1∆u+ α(α− 1)uα−2|∇u|2 and |∇uα|2 = α2u2α−2|∇u|2 ,

together with Cauchy-Schwarz and Young's inequalities to get∫
M

|A|p−2ψ2|∇uα|2 ≤ −α
∫
M

|A|p−2u2α−1ψ2∆u− α− 1

α

∫
M

|A|p−2ψ2|∇uα|2

−
∫
M

uαψ2⟨∇uα,∇|A|p−2⟩+ ε

∫
M

|A|p−2ψ2|∇uα|2 + 1

ε

∫
M

|A|p−2u2α|∇ψ|2 ,

for all ε > 0. From the de�nition of u∫
M

|A|p−2ψ2|∇uα|2 ≤ α

∫
M

|A|pu2αψ2 − α− 1

α

∫
M

|A|p−2ψ2|∇uα|2

−
∫
M

uαψ2⟨∇uα,∇|A|p−2⟩+ ε

∫
M

|A|p−2ψ2|∇uα|2 + 1

ε

∫
M

|A|p−2u2α|∇ψ|2 ,
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i.e. (
1− ε+

α− 1

α

)∫
M

|A|p−2ψ2|∇uα|2 ≤ α

∫
M

|A|pu2αψ2

−
∫
M

uαψ2⟨∇uα,∇|A|p−2⟩+ 1

ε

∫
M

|A|p−2u2α|∇ψ|2 ,

Now, since

∇|A|p−2 = (p− 2)|A|p−3∇|A| = (p− 2)|A|
p−2
2 |A|

p−4
2 ∇|A| ,

then, from Cauchy-Schwarz and Young's inequalities(
1− ε+

α− 1

α
− p− 2

2t1

)∫
M

|A|p−2ψ2|∇uα|2 ≤ α

∫
M

|A|pu2αψ2

+
(p− 2)t1

2

∫
M

|A|p−4ψ2u2α|∇|A||2 + 1

ε

∫
M

|A|p−2u2α|∇ψ|2 ,

(8.16)

for every t1 > 0. Now, multiplying by |A|p−4f 2 the Simons inequality (2.49), integrating

by parts and using Young's inequality holds∫
M

|A|pf 2 ≥
(
2

n
+ p− 3− t2

)∫
M

|A|p−4|∇|A||2f 2 − 1

t2

∫
M

|A|p−2|∇f |2

for every t2 > 0. Choosing f = uαψ it is obtained∫
M

|A|pu2αψ2 ≥
(
2

n
+ p− 3− t2

)∫
M

|A|p−4|∇|A||2u2αψ2

−
(
1

t2
+ ε

)∫
M

|A|p−2ψ2|∇uα|2 − 1

t2

(
1 +

1

t2ε

)∫
M

|A|p−2u2α|∇ψ|2

(8.17)

for every ε > 0, since

|∇(uαψ)|2 ≤ (1 + t2ε)ψ
2|∇(uα)|2 +

(
1 +

1

t2ε

)
u2α|∇ψ|2 .

Now let δ > 0. Using (8.17) in (8.16) with

α = −β − kδ

2
< 0
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β, k > 0 holds(
1 +

1 + β + kδ
2

β + kδ
2

−
(
1 + β +

kδ

2

)
ε− p− 2

2t1
−
β + kδ

2

t2

)∫
M

|A|p−2ψ2|∇u−β− kδ
2 |2

≤

[
1

ε
+
β + kδ

2

t2

(
1 +

1

t2ε

)]∫
M

|A|p−2u−2β−kδ|∇ψ|2

+

[
(p− 2)t1

2
− 2β + kδ

n
−
(
β +

kδ

2

)
p+ 3β + 3

kδ

2
+

(
β +

kδ

2

)
t2

] ∫
M

|A|p−4ψ2u−2β−kδ|∇|A||2 ,

for all ε, t1, t2 > 0. Let

p = q + δ, t1 =
2

p− 2

(
β +

kδ

2

)(
2

n
+ p− 4

)
, t2 = 1

then
(p− 2)t1

2
− 2β + kδ

n
−
(
β +

kδ

2

)
p+ 3β + 3

kδ

2
+

(
β +

kδ

2

)
t2 = 0

and the hypothesis on β implies

1 +
1 + β + kδ

2

β + kδ
2

−
(
1 + β +

kδ

2

)
ε− p− 2

2t1
−
β + kδ

2

t2
> 0.

Thus ∫
M

|A|q+δ−2ψ2|∇u−β− kδ
2 |2 ≤ C

∫
M

|A|q+δ−2u−2β−kδ|∇ψ|2 ,

for some C > 0 achieving the goal of bounding the �rst integral with the second one in

(8.15), substituting∫
M

|A|q+δu−2β−kδψ2 ≤ C

∫
M

|A|q+δ−2u−2β−kδ|∇ψ|2 (8.18)

and from Young's inequality

aλb1−λ ≤ a+ b(1− λ)λλ/(1−λ) ∀λ ∈ [0, 1] (8.19)

taking

a = |A|q+δε′1/λψ2

b = |∇ψ|q+δ 1

ε′1/(1−λ)
ψ−(q+δ−2)

λ =
q + δ − 2

q + δ

(8.20)
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then (8.19) reads

|A|q+δ−2|∇ψ|2 ≤ ε′1/λ|A|q+δψ2 +
C

ε′1/(1−λ)
|∇ψ|q+δψ−(q+δ−2) (8.21)

using (8.21) into (8.18) holds∫
M

|A|q+δu−2β−kδψ2 ≤ ε′1/λ
∫
M

|A|q+δu−2β−kδψ2 +
C

ε′1/(1−λ)

∫
M

u−2β−kδ|∇ψ|q+δψ−(q+δ−2)

(8.22)

for all ε′ > 0 and ψ ∈ C∞
0 (M). Therefore∫

M

|A|q+δu−2β−kδψ2 ≤ C

∫
M

u−2β−kδ|∇ψ|q+δψ−(q+δ−2)

= C

∫
M

u−2β−kδ|∇ψ
2

q+δ |q+δ.

The conclusion now follows immediately by replacing ψ with ψ
2

q+δ .

For the �nal estimate let x0 ∈ M and let r̃ the distance function from x0 with respect

to the metric g̃ = u2kg. Choosing ψ := η(r̃) with 0 ≤ η ≤ 1, η ≡ 1 on [0, R], η ≡ 0 on

[2R,+∞) and |η′| ≤ C/R on [R, 2R], for some C > 0 and R > 0. From Lemma 8.1, for

some δ small enough∫
M

|A|q+δu−2β−kδηq+δ dVg ≤ C

∫
M

u−2β−kδ|∇ψ|q+δ
g dVg

= C

∫
M

u−2β−kδ+k(q+δ)|∇̃ψ|q+δ
g̃ dVg

≤ C

Rq+δ

∫
Bg̃

2R(x0)

u−2β+kq−nk dVg̃

where it has been used the fact that |∇̃r̃|g̃ ≡ 1. This proves the theorem.

In the following Theorem 8.3 is used together with a generalization of the classical Bishop-

Gromov Volume estimate to prove �atness.

Volume Comparison

The weighted Bishop-Gromov volume comparison that will be used is based on an estimate

of the N-Bakry-Emery-Ricci curvature tensor instead of the Ricci tensor, this new tensor
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is de�ned as

RicN,f
g = Ricg +∇f − 1

N
df ⊗ df (8.23)

then the volume comparison states

Theorem 8.4. Given (M, g) complete n-dimensional Riemannian manifold. If the N-

Bakry-Emery-Ricci curvature tensor of f ∈ C∞(M) satis�es RicN,f
g ≥ (n− 1)η for some

real η then the volume growth is controlled by the volume of the geodesic ball in the dummy

space of dimension n+N and constant curvature equal to η.

So in the case of η = 0 considering balls BR it holds∫
BR

e−f dVg ≤ CRn+N (8.24)

This comparison is an extension of the classical Bishop-Gromov comparison which is

obtained for f = 0.

For proving �atness the volume comparison is needed in the conformal metric g̃, hence

this metric must be complete. The following result of completeness can be found in [2].

Proposition 8.2. Consider the conformal metric g̃ = u2kg with n−1
n

≤ k < 1, then if

Pk,n(t) =
k(t− 1)2

1− k
− 2t+ (n− 1) < 0 (8.25)

for some t > 1 the conformal metric g̃ is complete.

The requirement (8.25) is satis�ed for n = 2, 3 but not for n = 4.

At last, the bound on RicN,g̃
f must be given for the application of the volume estimate.

Given that the coe�cient of f di�ers in general from the one in [2] will be here computed

in the case of a general f = llog(u). From the properties of the connection it holds:

df = l
du

u

∇2
gf = l∇

(
du

u

)
= −l du⊗ du

u2
+
l

u
∇2

gu

∆gf = l

(
∆gu

u
− |∇gu|2

u2

)
(8.26)

(8.27)

(8.28)
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from the formulas of conformal metric with g̃ = u2kg

Ricg̃ =Ricg − (n− 2)k

(
−du⊗ du

u2
+

∇2
gu

u
− k

du⊗ du

u2

)
−
[
k

(
∆gu

u
−

|∇gu|2g
u2

)
+ (n− 2)k2

|∇gu|2g
u2

]
g

(8.29)

and

∇2
g̃f = ∇2

gf − 2lk
du⊗ du

u2
+
lk

u2
|∇u|2g (8.30)

hence using |A|2 = −∆gu/u

Ricg̃ +∇2
g̃f =Ricg +

[
(n− 2)k2 − 2kl

] du⊗ du

u2
+ k|A|2g

+
[
k + kl − (n− 2)k2

] |∇gu|2g
u2

g + (l − (n− 2)k)

[∇2
gu

u
− du⊗ du

u2

]

(8.31)

from Cauchy Schwartz

|∇gf |2gg ≥ df ⊗ df (8.32)

and from Ric = −A2 ≥ −n−1
n
|A|2g if k + kl − (n− 2)k2 > 0 it is obtained

Ricg̃ +∇2
g̃f − k

l2

[
n− l − l

k
− 1

]
du⊗ du

u2
≥
(
k − n− 1

n

)
|A|2g + [l − (n− 2)k]

∇2
gu

u

(8.33)

where in the case of Theorem (8.3) l = 2β − k(q − n).

The �atness is now just a matter of applying these results. In particular, it must be

found a choice of variables that satis�es the hypothesis of the theorem, the restriction

for completeness, and a lower bound with η = 0 on the N-Bakry-Emery tensor with

n+N < q + δ.

Case n=3

Notice that if l = k(n − 2) = k the Hessian in (8.33) vanishes. Furthermore the best

choice of k for Pk,n(t) < 0 is k = n−1
n

= 2
3
, the inequality is satis�ed at t = 3

2
. Hence the
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bound (8.33) reads Ric2,fg ≥ 0 and the volume comparison gives∫
Bg̃

R

e−f dVg̃ ≤ CR5 (8.34)

Being n+N = 5 it is taken q = 5 implying that β = 1 which satis�es the hypothesis and

lim
R→∞

1

R5+δ

∫
Bg̃

2R

e−f dVg̃ = 0 (8.35)

hence from Theorem (8.3) the hypersurface is �at.

Case n=2

For this case the classical Gromov Estimate will be used, hence f = 0 that is l = 0, and

a bound on Ricci is needed. From (8.29) with n = 2:

Ricg̃ = Ricg − k

(
∆gu

u
−

|∇gu|2g
u2

)
g (8.36)

again ∆gu

u
= −|A|2 and Ricg = −A2 ≥ −n−1

n
|A|2g hence:

Ricg̃ ≥
(
k − n− 1

n

)
|A|2 + k

|∇gu|2g
u2

g ≥ 0 (8.37)

Hence the classical Gromov volume comparison theorem holds∫
Bg̃

2R

dVg̃ ≤ CR2

Taking again k = 1
2
= n−1

n
with t = 2 Pk,n(t) < 0. Then the choice of q = 4 holds β = 1/2

that is admissible and

lim
R→∞

1

R4+δ

∫
Bg̃

2R

e−f dVg̃ = 0 (8.38)

concluding.
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