A Tall Archive the tower for Apice

Niccolò Sarcinella | 967625

Supervisor: Professor Giulio Massimo Barazzetta Politecnico di Milano School of Architecture Urban Planning Construction Engineering Master degree in 'Building Architecture' A.Y. 2022-2023

Politecnico di Milano

School of Architecture Urban Planning Construction Engineering Master degree in 'Building Architecture' A.Y. 2022-2023 Graduation session: July 2023

A Tall Archive the tower for Apice

All the drawings presented here are realised by the author of the thesis.

Supervisor: Professor Giulio Massimo Barazzetta

Abstract

Chapter I | Analysis

I.I | The project site I.II | The building

Chapter II | Preservation & Conservation

II.I | Material survey and decay analysis II.II | Conservation and diagnostic project

Chapter III | The project

III.I | The strategy III.II | Overlapping: an overview III.III |Plans III.VI | Elevations III.V | Sections III.VI | Construction details

Chapter IV | The Structure

IV.I | Structural concept

Chapter V | Systems and services V.I | Water supply and waste V.II | Ventilation system V.III | Heat calculations

Bibliography

Index

	8
	.11
	15
	29
	37
	39
	45
	55
N	59
	67
	77
	89
	103
•	111
	111
	133
	137
	107
	151
	155
	165
	177
	101
	191

Abstract

The project hereby presented concerns the addition in the vertical element and its basement, except of a new floor and relocation of the 'APICE' archive in its new hosting building, a construction that is part exclusive staircase at ground level hidden behind the of a complex occupied by the Veterinary Medicine Department inside the University of Milano site of Via whole on the new second floor. All the institutional Celoria 10 in Città Studi district.

The existing building is owned by the University of Milano. The complex first appeared at the beginning of the twentieth century in a detailed masterplan for Città Studi, dated 1910. According to records, during the following decades, many drawings by architects Orlando Villa and Piergiulio Magistretti were submitted until the complete realisation of the complex in the late '50s. Nowadays the university intends to allocate, at this site, the center of the Department of Cultural Heritage with the addition of other strategic functions. The building subject of the intervention is a former stable/kennel developed three floors above ground. Having a look at historical plans, there were originally subsequently, they got unified into a unique building at an uncertain time leaving the final mass undoubtedly as the sum of three volumes. Furthermore, the second

floor turned out to be an addition on its own due to

structural and vertical circulation irregularities. The archive of APICE (word, image and editorial communication archive), the University museum and offices as well as study spaces and reading rooms have

two constructions connected by a porch but The vertical element, like a bell tower emerging from the original volume, will be one of the tallest construction of the complex, as well as a new landmark for the entire site.

to be addressed in the new building. The project aimed at the removal and replacement of the latter floor, the reorganisation of rooms and vertical circulations within the building, and the addition of a vertical element growing above the southern volume of the construction. The aspect concerning preservation was fundamental and went in parallel with the development of the architectural design phases.

Regarding the functional distribution, the entirety of the APICE archive is expected to be uniquely hosted

for a consultation room accessible directly from an added façade. The museum space will be located in offices, personnel rooms and student spaces will be placed on the ground and first levels, while additional services like workshop areas, cafeteria and conference room will be located at the basement level with accesses to the outer lowered square.

The existing load-bearing structure is in masonry with four heads in solid bricks, while the new bearing structure will be in steel and as support for the existing one: steel columns in the vertical element will be flanking the existing masonry while for the second floor, they will be placed as a continuation of the loadbearing walls through the use of a slim-floor steel beam to distribute the new pointed loads.

Chapter I

Analysis

Brief introduction

The project site is located in Città Studi area, a district reading rooms, offices and study spaces. northwest of Milano. Its first appearance is dated 1910 in a general masterplan for a new university site just outside the city centre. During the first postwar the municipality of Milano grew considerably, sprawling its centrality due to the enormous increase of citizens. Considered back then by Milanesi citizens as open countryside, the land from the second ring road towards the outside of the built environment has been the scenario for major interventions. In the late 20s, the construction of the new university district began in the so-called 'Città degli Studi', in between nowadays Piola and Lambrate districts. The university building had to host the polytechnic, medicine, agriculture and veterinary faculties. From an aerial view taken in the 30s, it is visible the entirety of the new university site, as well as the first image of the building subject of this project.

During the reconstruction period of the second post-war, new residential buildings started to appear around the university area combining their new language with the characteristic and distinct constructions already present in the district. Some interventions occurred at the site during the 50s, completing the original masterplan and modifying it where needed. In this context, even if not sure precisely when, the project building has been the subject of morphological interventions becoming a unique body and gaining a new floor.

Nowadays there is the willingness of the University of Milano institution to allocate in città Studi the centre of the Department of cultural heritage and other strategic functions. More precisely, in the project building it is designated to host the new campus exhibition and museum spaces for Apice and its collections, as well as its ancillary functions as

I.I

The project site

Milano scheme, 1:200'000

Milano scheme, 1:20'000

1600-1860 1914-1936 1860-1914 1936-1961

1961-1994 1994-2023

project site

built project site unbuilt

aerial view of 'città degli studi ' area, dated 1930s

general masterplam of 'città degli studi', dated 1910

focus on project building

original plan, 1:1000

 Θ

mobility scheme, 1:2000

via Luigi Mangiagalli

via Giuseppe Ponzio

 \bigcirc

pedestrian circulation vehicular circulation veterinaria buildings project building campus borders

main accesses secondary accesses agraria buildings vegetation

>

composition scheme, 1:2000

legend

 \bigcirc

strong axes agraria buildings vegetation

site internal division scheme, 1:2000

via Luigi Mangiagalli

legend

wall openess veterinaria buildings project building

campus borders agraria buildings vegetation

centralisation scheme, 1:2000

via Luigi Mangiagalli

via Giuseppe Ponzio

 \bigcirc

legend

site center veterinaria buildings project building

campus borders agraria buildings vegetation

-

I.II

The building

axonometric view of the building as found

sketches produced on site diring surveys

1. piece of the east facade

3. top of stone staircase (access to second level)

2. staircase at first level

4. stone staircase at ground level

state of art detail reconstruction section, 1:200

comparison ground floor plans, 1:500

 \uparrow from 1910 \downarrow as found

Θ

11

Ja . . .

1. state of art - based on 1910 plan

3. adding new in-between volume

2. connecting porch removal

4. adding second floor with cages

Chapter II

Preservation & Conservation

II.I

Material survey and decay analysis

orthophoto

east facade, 1:200

deposit

efflorescence

rust

cracks

erosion

missing parts

discolouration

black deposit

biological colonisation

incoherent integrations

incoherent integrations

mechanical damage

decay analysis

east facade, 1:200

decays

- mechanical damage
- biological colonisation
- black deposit
- discolouration
- cracks
- detachment
- disintegration
- efflorescence
- erosion
- incoherent integration
- mising parts
- rust staining

II.II

Conservation and diagnostic project

phase1

Removal

It aims to remove incompatible materials on surfaces that require some interventions and treatments.

R01 Controlled removal of cement mortar for integration

Preconsolidation

It aims to give back stability to disintegrated surfaces which are required some interventions and treatments.

PCN01 Preconsolidation with ethyl silicate

Cleaning

This operation aims to eliminate the decay forms. It must be done in a very precise way starting with a careful analysis of the decay framework in order to maximise the preservation of the building. It is generally done by increasing the intensity of actions starting with the less aggressive ones.

- PL02 Cleaning with biocida products

PL03 Cleaning with absorbent clays

PL01 Dry simple cleaning with small manual tools

east facade, 1:200

Cleaning

This operation aims to eliminate the decay forms. It must be done in a very precise way starting with a careful analysis of the decay framework in order to maximise the preservation of the building.

PL04 Wet cleaning with deionized and nebulised water at low pressure

Consolidation

It is used to restore the superficial or deep cohesion, to re-establish fallen pieces and to weld fissures but it doesn't prevent the decay phenomena from happening again.

CO01 Consolidation with ethyl silicate

CO

CO02 Consolidation by filling the edges

phase 2b

Consolidation

It is used to restore the superficial or deep cohesion, to re-establish fallen pieces and to weld fissures but it doesn't prevent the decay phenomena from happening again.

CO03 Integration of missing parts with compatible mortar

Protection

It is a necessary intervention aimed to avoid the aggression of the structure by atmospheric agents.

PR01 Lime mortar washing with adequate pigments

Special interventions

These type of interventions are aimed to re-establish the features of the original elements.

• • •

IO1 Treatment of the metal

east facade, 1:200

52

Understand the stratigraphy of the actual plaster

Understand the characters and the construction

Verification of the structure and consistency of a

θ

Chapter III

The project

[]] :

III.I

The strategy

via Giuseppe Ponzio

 \bigcirc

1. state of art (based on 1910 plan)

2. in-between element (based on 1910 plan)

3. in-between existing volume and addiction

4. state of project

Considering the unification of the original two buildings connected by a porch in a unique volume, the project intends to keep as a medium the inbetween body, using it as a hub for public vertical circulation. The entirety of the latter addition made at the second level will be demolished to leave space for the new intervention. The southern volume, always referring to the 1910 masterplan, will be functionally detached from the rest of the building: it will host the entirety of the Apice archive and its collections. To achieve such an aim an underground level will be added as well as three more floors as well as the completion of the original portion at the second level. The new second level in the middle and northern body will host the exhibition area and it will be the new regular crown that closes the irregularities of the existing perimeter.

The tall archive is becoming one of the highest buildings on the site, aiming at the unification of the whole university campus as a common point of interest.

The new centralization of the project building, with respect to the entirety of the university site, will also point to the redesign of all the green areas across the campus with a focus on the east area right in front of the building where its new main entrance will be.

5. new additional floors (tower)

2. second floor removal

6. adding facade cladding and curtain wall

3. new structural pavimentation and roof

8. redesign of the front park

III.II

Overlapping: an overview

The building appears as a white vertical element that surrounds the southern area of the university campus.

The building opens to the east park both at ground and underground levels. Apart from most of the areas inside the tall archive, which is the only continuous function from the basement to the last floor, the other spaces around the building are accessible to the public. The presence of a system of staircases guides the visitor from the ground level to the lowered square where there are entrances to the underground level. The basement contains a workshop area which is intended to cooperate with archivists and show what are the tasks and the knowledge an archivist has. This workshop area is close to the repair room and the base of the archive tower. There is a cafeteria with a northern courtyard also accessible directly from ground level with a dedicated outer staircase. Adjacent to the cafeteria and directly connected both to the lowered squat at the east and the courtyard da at the north there is a conference room. Starting from here, the tower has a dedicated vertical circulation system compared with the public one present at the middle volume.

Through another system of steps and a ramp at ground level, there is the main access at the east which opens to the main atrium where the main public vertical circulation core is present. Here it is visible the removal of part of the slab at the first level, which generates a double-height space; also, the presence of a gallery that shows the workshop and repair rooms at the lower level as well as the entrances of the exhibition area at the second level helps in perceiving the open space of the entrance atrium. From this space, it is possible to reach offices and classrooms going to the northern part of the plan. One of the secondary entrances is present under the pitched roof volume; the previous classroom has been opened, removing window frames and

rooms. elevator. g0.

reopening the ones that have been closed during past years, originating a study area semi-sheltered where the secondary entrance lies.

The only public staircase present in the archive volume is the one starting from ground level, outside the building and near the main entrance. This access, clearly visible in the façade, brings the visitor directly to the first level through a passage that flanks the covered existing façade and the curtain wall closing the perimeter of the upper floors tower. Once on top, there is a waiting room directly connected to the archive and a consultation room where it is possible to analyse specific documents only with the supervision of an archivist. In the other spaces on the first level, on the opposite side of the central hub, there are reading/studying rooms and meeting

The second floor hosts the entirety of the exhibition space, which is accessible from the main hub open to the underlying levels. The exhibition area is separated by the hub through glass partitions, and it is enclosed in a perimeter of U-glass and white opaque aluminium panels. At this level, the tower starts to emerge from the main volume requiring a new vertical circulation system apart from the freight

At top levels, only the archive personnel is allowed to

Recalling the staircase in the façade at ground level, new service staircases appeared in the front eastern façade. The southern and eastern facades of the tower are designed in such a way as not to have direct light on anything on its inside. The choice to have private staircases at upper levels visible in the façade helped to deal with direct light.

exhibition area

offices, ancillary rooms & management

classrooms and reading rooms

conference room

III.III Plans

\uparrow as found \downarrow demolition/addition

underground floor plan, 1:400

1. reparatory & archive 2. repair room 3. consulation room 4. office 5. technical room 6. workhop classroom

Θ

7. WCs 8. storage room 9. meeting room 11. cafeteria

underground floor plan, 1:500

10. cafeteria service rooms 12. conference room

Θ

ground floor plan, 1:500

\uparrow as found \downarrow demolition/addition

ground floor plan, 1:400

2. informal space 3. entrance atrium 4. reception 5. WCs

Θ

7. break rooms 8. keeper room 9. classrooms 10. study area

Θ

first floor plan, 1:500

\uparrow as found \downarrow demolition/addition

first floor plan, 1:400

Ma 10

h m

1. archive waiting room
consultation room 4. informal space 5. office

Θ

6. WCs 8. meeting rooms 9. rack room 10. storage room

7. reading/studying rooms

Θ

second floor plan, 1:500

\uparrow as found \downarrow demolition/addition

F 1

second floor plan, 1:400

3. exhibition area 4. WCs

85

G

typical tower floor plan, 1:400

fifth floor plan, 1:400

86

 Θ

III.IV

Elevations

\uparrow as found \downarrow demolition/addition

east facade, 1:400

east facade, 1:200

south facade, 1:500

\uparrow as found \downarrow demolition/addition

south facade, 1:400

south facade, 1:200

west facade, 1:400

north facade, 1:500

\uparrow as found \downarrow demolition/addition

north facade, 1:400

F

III.V Sections

III.VI

Construction details

detail section 1, 1 to 50

material legend

1. Outer concrete flooring 2. Structural screed 3. Rockwool roof rock 50 plus 4. Mapei mapeproof waterproof membrane 5. Prefabricated hollow concrete slab 6. Ceramic tiles finishing 7. Lightweight concrete screed 8. Rockwool hardrock 9. Concrete filling 10. Daliform group Iglu 11. RC footing 12. Magrone 13. Stego wrap 2 mil vapor barrier 14. Existing levelling 15. IPE 450 16. Existing concrete slab 17. Plaster finishing 18. Knauff acquapanel

tower facade assembly, diagrams

1. state of art

2. window, pavement and filler removal

3. new pavimentation and window filler

5. new slab and wall finishing

6. new pavement and curtain wall structure

7. adding curtain wall panels and windows

4. new steel structure and wall covering

8. adding finishing on panels

detail section 2,1 to 50

material legend

1. Decorative granite 2. White aluminium profiles finishing 3. Precast concrete wall 4. Rockwool frontrock 5. Wooden batten 6. Silenteco panel 7. Air chamber 8. Plaster finishing 9. HEA 500 10. Old plaster finishing 11. Existing masonry wall 12. Thermal insulation 13. Ceramic tiles finishing 14. Lightweight concrete screed 15. Getzner acoustic mat 16. Existing ferrocemento slab 17. ACB (HEA 450) 18. Knauff acquapanel

view of the gallery looking at basement level

inner facade assembly scheme

tower enclosure, assembly diagrams

1. wood battens and rock wool

2. second layer of insulation and wood

3. vertical mullion and thermal insulation

5. steel hooks and screws

6. connection steel plate and screws

7. aluminium C profiles and inclined ones

4. waterproof membrane and screws

8. portion of tower finishing

tower envelope axonometric slice

outer facade assembly scheme

detail section 3, 1 to 50

material legend

1. Wood joist 2. White aluminium profiles finishing 3. Wooden batten 4. Rockwool frontrock 5. Precast concrete wall 6. Silenteco panel 7. Air chamber 8. Plaster finishing 9. UPE 270 10. Ceramic tiles finishing 11. Beton wood screed 12. Concrete filling 13. Prefabricated hollow concrete slab 14. Drywall panel 15. Knauff acquapanel 16. SFB (HEM 240 + 450x30) 17. Secco sistemi 4FAF 18. Rockwool roof rock 50 plus 19. Thermal insulation 20. Mapei mapeproof waterproof membrane 21. Gravel 22. Growing medium 23. Drainage layer

exhibition at the secound level, assembly diagrams

1. state of art

2. window, pavement and filler removal

3. add flooring, window and steel plate

5. new slab, cantilever and ceiling

7. adding curtain wall and roof closing

4. new steel structure lying on existing

8. adding u-glass and aluminium panels

detail section 4,1 to 50

1. Wood joist 2. Plaster finishing 3. Mapei mapeproof waterproof membrane 4. Thermal insulation 5. Rockwool frontrock 6. Drywall panel 7. Existing ferrocemento slab 8. Existing plaster finishing 9. Beton wood screed 10. Ceramic tiles finishing 11. Structural concrete filling 12. Raised floor system 13. HEA 240 14. SFB (HEM 280 + 500x30) 15. UPE 240 16. Rockwool roof rock 50 plus 17. Gravel 18. Drainage layer19. Prefabricated hollow concrete slab 20. Growing medium 21. Secco sistemi 4FAF

Chapter IV

The structure

The southern tall volume is supported by a steel structure which is independent from the existing masonry bearing walls, seeing the heavy furniture it is going to host. Referring to the other part of the new second level, since the loads are considerably lower than the ones expected in the tower, the new steel structure lies on top of the existing masonry walls. The idea is to keep all the existing ferrocemento slabs, also the ones at the second level, without stressing them with excessive loads.

In the case of the tower, there are existing RC beams at the first and second levels. In order to bypass the issue, a system of twin columns starting from the basement to the roof has been studied together with steel plate reinforcements at the bottom of the slabs. In the proximity of the beams at the first level, these columns pull away from each other in order to flank the existing beam and cut through the slabs to proceed to the next floor. At the RC beams level, UPE and ACB profiles were placed both to give support to beams as well as the slabs. Regarding the second level, the steel UPE and ACB profiles are placed on top of the ferrocemento slab with the addition of a new prefabricated hollow core slab as the actual bearing floor. The gap between the existing and new slab serves to keep a clear division between old and new as well as being the space for system pipes and wires. On upper floors, the columns go on and there is the introduction of SFB profiles to support prefabricated slabs in order to save space in height. The freight elevator is surrounded by shear walls, from the basement up to the roof. Other shear walls are placed along the northern side of the tower, flanking the existing masonry wall at the ground and first levels.

About the exhibition, SFB profiles with an additional plate at their bases have been anchored at the top

of the existing masonry bearing walls. Taking into account the irregularity of the existing perimeter, an extension of the masonry walls (obtained through the flanking of the new RC portion of walls) allowed the new steel structure at the second level to find a safe load-bearing anchor point just inside the original perimeter. Also in this case the SFB profiles lie on top of the existing ferrocemento slab, leaving a gap between it and the raised flooring of the exhibition area suitable for the building' systems. The exhibition box is entirely enclosed in steel bracings.

IV.I

Structural concept

structural underground floor plan, 1:400

Θ

Θ

bearing pillars and atrium open space, assembly diagrams

5. new door, shaft enclosure and entrance

1. state of art

2. slab and pavement removal

3. walls securing and reinforcement

7. new steel beams on top of existing walls

4. new pavement and closing door

8. adding columns at exhibition level

structural first floor plan, 1:400

structural second floor plan, 1:400

Θ

Θ

143
existing RC beams and new structure, assembly diagrams

2. pavement removal and wall demolition

3. pavement removal and slab reinforcement

5. columns and C profiles flanking RC beams

6. new steel structure and new wall

7. adding new slabs

4. add steel structure and slab reinforcement

8. new flooring and tower interior walls

detail section 5, 1 to 50

material legend

1. Existing RC beams 2. Plasterboard 3. Silenteco panel 4. Precast concrete wall 5. Rockwool frontrock 6. UPE 400 7. IPE 360 8. Ceramic tiles finishing 9. Lightweight concrete screed 10. Getzner acoustic mat 11. IPE 240 12. Existing ferrocemento slab 13. Steel plate as slab support 14. ACB (HEA 450) 15. Knauff acquapanel 16. Structural concrete filling 17. Prefabricated hollow concrete slab 18. UPE 270 19. ACB (HEA 260) 20. Beton wood screed

shear walls location

Chapter V

Systems and services

systems shafts distribution fifth floor fourth floor third floor second floor first floor ground floor

underground floor

V.I

water supply and waste

supply systems cold water and hot water supply

wc underground floor

wc ground level

wc first floor

wc second floor

loading units and diameters

wc=1; washbasin=1

Table 5.1 Loading units for different points of use (EN 806-3).												
Point of use		\sim				Flov	w rate	Q _A [l/s]		Loadi	ng uni	t (LU)
Washbasin, bidet, WC							0.1				1	
Domestic sink, dishwasher, domestic	washin	g machi	ne, sho	wer			0.2				2	
Urinal with outlet valve							0.3				3	
Domestic bathtub							0.4				4	
Garden or garage taps		/					0.5				5	
Non-domestic sinks and bathtubs DN	20						0.8				8	
DN20 outlet valve							1.5				15	
Table 5.12 Diameters of the multi	layer pi	pes in r	elation	to the	LUs in c	omplia	nce wi	th EN 80	06-3.			
Σιυ ιυ	3	4	5	6	10	20	55	180	540	1300	2200*	3400*
LU _{max} LU			4	5	5	8						
d _e xs mm	16	x2.25/10	5x2	18x2	20x2.5	26x3	32x3	40x3.5	50x4	63x4.5	75x5	90x7
d _i mm		11.5/12		14	15	20	26	33	42	54	65	76

LU	3	4	5	6	10 20	55	Ì
LU			4	5	5 8		
mm	16	x2.25/1	6x2	18x2	20x2.5 26x3	32x3	
mm		11.5/12	2	14	15 20	26	
m	9	5	4				
6 standard,	obtained	by interp	olating.				
	LU LU mm mm m 6 standard,	LU 3 LU	LU 3 4 LU mm 16x2.25/1 mm 11.5/12 m 9 5 Standard, obtained by interp	LU 3 4 5 LU 4 4 mm 16x2.25/16x2 4 mm 11.5/12 7 m 9 5 4 3 standard, obtained by interpolating. 3 4	LU 3 4 5 6 LU 4 5 mm 16x2.25/16x2 18x2 mm 11.5/12 14 9 5 4 Standard, obtained by interpolating. 3	LU 3 4 5 6 10 20 LU 4 5 5 8 mm 18x2 25/16x2 18x2 20x2.5 26x3 mm 9 5 4 5 7 B standard, obtained by interpolating. 5 8 5 7	LU 3 4 5 6 10 20 55 LU 4 5 5 8 10 20 55 mm 16x2 25/16x2 18x2 20x2.5 26x3 32x3 mm 9 5 4 15 20 26 as standard, obtained by interpolating. 5 4 5 5 7 8

.

Floor	Branch	∑LU
	B5-B4	1
	B4-B3	2
Second Floor	B3-B2	3
	B2-B1	4
	B1-A1	5
	A1 - Heater	2
	B4-B3	1
	B3-B2	2
	B2-B1	3
First & Ground	B1-A1	4
Floors	C1-A1	1
	A1 - Heater	3
	B4-B3	1
	B3-B2	2
	B2-B1	3
Underground	B1-A1	4
	C3-C2	1
	C2-C1	2
	C1-A1	3
	A1 - Heater	4

Diameter (mm)
16x2.25

supply systems

Hot Water Supply Electrical Heater							
	Floor	Branch	∑LU				
		B2-B1	1				
	Second Floor	B1-Heater	2				
		B3-B2	1				
	First & Ground	B2-B1	2				
		B1-Heater	3				
		B3-Heater	1				
	Underground	C3-C2	1				
	and the second second	C2-C1	2				
		C1-Heater	3				

Cold Water Supply Shaft A1						
Floor	LU	∑LU	Diameter (mm)			
Second	7	7	20x2.5			
First	8	15	26x3			
Ground	8	23	32x3			
Underground	11	34	32x3			

Diameter (mm)
16x2.25

waste systems.

we underground floor

wc ground level

wc first floor

wc second floor

flow rate (DU)

wc with 9L cistern=2.5; washbasin=1.5

Sanitary fixture	DU [l/s]
Vashbasin	0.5
lidet	0.5
hower without plug	0.6
hower with plug	0.8
Irinal with cistern	0.8
Irinal with flush valve	0.5
Vall urinal	0.2
Jathtub	0.8
ütchen sink	0.8
shwasher (domestic)	0.8
ashing machine, max. load 6 kg	0.8
/ashing machine, max. load 12 kg	1.5
IC with 6 I cistern	2.0
C with 7.5 l cistern	2.0
/C with 9 I cistern	2.5
oor drain DN 50	0.8
oor drain DN 70	1.5
oor drain DN 100	2.0

coefficient for building type K=0.7

Table 4.2 Coefficient of	contemporary use as a	function of use and t
--------------------------	-----------------------	-----------------------

Use	Building type	Coefficient K
Intermittent	Homes and offices	0.5
Frequent	Hospitals, schools, restaurants, hotels	0.7
Very frequent	Public bathrooms and showers	1.0
Special	Laboratories	1.2

type of building.

waste systems.

size of pipe, gradient: 1

Waste	Shaft A1	Waste Branches				
Floor	Branch	Sanitary Fixture	Quantity	DU[I/s]	Branch DN	∑DU[l/s]
Second	A	WC with 9lt cistern	3	2,50	100	0.5
	В	Washbasin	2	0,5	40	8,5
First		WC with 9lt cistern	2	2,50	100	C F
Production and and	A against	Washbasin	3	0,5	100	0,5
Ground		WC with 9lt cistern	2	2,50	100	6,5
	A	Washbasin	3	0,5		
Underground		WC with 9lt cistern	3	2,50	100	
	A	Washbasin	1	0,5	100	9,5
	В	Washbasin	3	0,50	40	

Waste	Shaft A1	Vertical		
Floor	DU[I/s]	∑DU[l/s]	Qww [K*√∑DU]	Second Phil
Second	8,50	8,50	2,040833163	South States and States
First	6,50	15,00	2,711088342	11 312 11 S 12
Ground	6,50	21,50	3,245766473	N. St. J. Mas
Underground	9,50	31,00	3,897435054	N. Story

Branch DN
DN100
DN125
DN125
DN125

V.II

ventilation system

ventilation system supply and return air

undergrounf floor

ground floor

 \bigcirc

167

 \bigcirc

ventilation system supply and return air

ventilation system supply and return air

Flores		Room	Qp		Qs	Surface	Conversion	Total		Ac (Q/V) V=4	Duct size
Floor	Room name	number	(l/sp)	Nperson	(l/sm²)	(m²)	(s/l)	[m³/h]	m³/s	(m²)	(mm) (axb)
- 1 C - 1	Exhibition	A1	6	60	0,5	265	3,6	1773	0,49	0,123	500x250
2	wc	A2	7	6	0,7	25,6	3,6	215,712	0,06	0,015	250x100
	Hall	A3	7	15	0,7	65	3,6	541,8	0,15	0,038	250x150
	Corridor	A4	7	16	0,7	32,8	3,6	485,856	0,13	0,034	250x150
	Meeting room	A5	6	4	0,5	14,7	3,6	112,86	0,03	0,008	250x100
1. 1	Meeting room	A6	6	4	0,5	15,1	3,6	113,58	0,03	0,008	250x100
1	Storage	A7	7	3	0,7	110	3,6	352,8	0,10	0,025	250x100
	Reading room	A8	5,5	8	0,5	32,2	3,6	216,36	0,06	0,015	250x100
	Reading room	A9	5,5	11	0,5	45	3,6	298,8	0,08	0,021	250x100
	Inf. Meeting	A10	6	20	0,5	78	3,6	572,4	0,16	0,040	250x200
1.000	Office	A11	6	2	0,5	18,5	3,6	76,5	0,02	0,005	250x100
	Classroom	A12	6	18	0,5	44,2	3,6	468,36	0,13	0,033	250x150
	Classroom	A13	6	18	0,5	44,6	3,6	469,08	0,13	0,033	250x150
	Staff room	A14	7	2	0,7	15	3,6	88,2	0,02	0,006	250x100
	Break room	A15	7	2	0,7	15	3,6	88,2	0,02	0,006	250x100
	Office	A16	6	3	0,5	31	3,6	120,6	0,03	0,008	250x100
0	Office	A17	6	3	0,5	31	3,6	120,6	0,03	0,008	250x100
1.1.1.1.1.1	Storage	A18	7	1	0,7	12,3	3,6	56,196	0,02	0,004	250x100
1.1.1.1	wc	A19	7	2	0,7	10,6	3,6	77,112	0,02	0,005	250x100
	wc	A20	7	2	0,7	10,8	3,6	77,616	0,02	0,005	250x100
	Reception	A21	6	2	0,5	13	3,6	66,6	0,02	0,005	250x100
	Atrium	A22	7	65	0,7	139	3,6	1988,28	0,55	0,138	400x400
	Storage	A23	7	1	0,7	18,9	3,6	72,828	0,02	0,005	250x100
	Cafeteria	A24	6	35	0,5	86,7	3,6	912,06	0,25	0,063	250x250
	Conference room	A25	6	45	0,5	87	3,6	1128,6	0,31	0,078	400x200
	Corridor	A26	7	30	0,7	80	3,6	957,6	0,27	0,067	300x250
-1	Storage	A27	7	2	0,7	47,6	3,6	170,352	0,05	0,012	250x100
Par Section	wc	A28	7	4	0,7	20,9	3,6	153,468	0,04	0,011	250x100
	Workshop	A29	6	30	0,5	69	3,6	772,2	0,21	0,054	250x250
-	Atrium	A30	7	45	0,7	96	3,6	1375,92	0,38	0,096	400x250
	Consultation	A31	6	4	0,5	37,4	3,6	153,72	0,04	0,011	250x100

summer ventilation

Air flow rate in ducts	Total [m ³ /h]	m³/s	Ac (m²) V=6	Duct size (mm) (axb)
A2 + A3	757,512	0,21	0,04	400x100
Second floor total	2530,512	0,70	0,12	600x200
A4 + A7	838,656	0,23	0,04	400x100
A4 + A5 + A6 + A7	1065,096	0,30	0,05	250x200
A4 + A5 + A6 + A7 + A8 + A9	1580,256	0,44	0,07	500x150
First floor total	2152,656	0,60	0,10	500x200
A12+A13	937,44	0,26	0,04	400x100
A11+A12+A13	1013,94	0,28	0,05	250x200
A11+A12+A13+A14+A15	1190,34	0,33	0,06	400x150
A11+A12+A13+A14+A15+A16+A17	1431,54	0,40	0,07	500X150
A11+A12+A13+A14+A15+A16+A17+A19+A20	1586,268	0,44	0,07	500X150
Ground floor total	3697,344	1,03	0,17	600x300
A23+A24+A25+A26	3071,088	0,85	0,14	600x250
A23+A24+A25+A26+A27	3241,44	0,90	0,15	600x250
A23+A24+A25+A26+A27+A29	4013,64	1,11	0,19	800x250
A23+A24+A25+A26+A27+A28+A29	4167,108	1,16	0,19	800x250
A30+A31	1529,64	0,42	0,07	500X150
Underground total	5696,748	1,58	0,26	1000x300
Building total	14077,26	3,91	0,65	1400x500

ventilation system

building occupancy dencities

Description	Rule of thumb	Comments	Ref		
General offices	10 m ³ per workspace	Use this figure for calculating air conditioning loads, outdoor air requirements and small power loads			
	6 m ³ per person	Use this figure for calculating means of escape			
	12 m ³ per person	Use this figure for calculating requirements for core elements, such as lifts and toilets and for calculating cold water storage requirements	6		
	8-13 m ² per workspace	Use this figure for calculating workplace density	6		
Standing spectator areas and bars	0.3 m ³ per person	Use this figure for calculating means of escape	7		
Assembly halls, dance floors	0.5 m ³ per person	Use this figure for calculating means of escape	7, 8, 9		
fixed seating	0.83 m ³ per person	Use this figure for calculating air conditioning loads and outdoor air requirements			
Concourses or queuing areas	0.7 m ³ per person	Use this figure for calculating means of escape	7, 10		
	0.83 m ³ per person	Use this figure for calculating air conditioning loads and outdoor air requirements			
Restaurants	I m ³ per person	Use this figure for calculating means of escape	7, 10		
	3 m³ per person	Use this figure for calculating air conditioning loads and outdoor air requirements			
Retail establishments	5 m ³ per person	Use this figure for calculating air conditioning loads and outdoor air requirements. Refer to Approved Document B for guidance about occupation densities for fire safety engineering	7, 11, 12, 13		
Art galleries or museums	5 m³ per person	Use this figure for calculating air conditioning loads, outdoor air requirements and means of escape	7		
Bedrooms	8 m ³ per person	Use this figure for calculating means of escape	7		

airflow per person

Building	Type of space	Airflow per non-adapted per l/(s pers.)		person
		Category I	Category II	Category III
	Small offices	8,5	7,5	5,5
Offices	Landscaped offices, Conference rooms	8,5	7	5
	Call center	8,5	7	5
	Bedrooms, wards, diagnostic and examination rooms	11,5	10	8,7
Hospitals ³	Treatment room	11,5	10	8,7
	Sitting rooms	11,5	10	8,7
	Auditoriums, cinemas, theaters, museums, exhibition's halls, churches	8,75	7	5,25
Places of assembly	Libraries, reading rooms	8,75	7	5,25
,	games rooms, betting rooms	8,75	7	5,25
	dance halls, discos	18,75	15	11,25
	grocery stores, dry cleaning, pharmacies	8,75	7	5,25
Commercial	barbers and beauty salons	8,75	7	5,25
	All other retail stores, department stores, supermarkets	8,75	7	5,25
Restaurants	Cafeterias, Bars, Dining rooms	8,75	7	5,25
	kindergartens and nursery schools	7,5	6	4,5
Educational	Primary and high schools, university class rooms, labs and teachers' rooms	7,5	6	4,5
Lucational	libraries, reading rooms	6,9	5.5	4,1
	languages and music classrooms	6,9	5.5	4,1
	Covered sport facilities: play fields	6,25	5	3,75
Short	Covered sport facilities: spectators areas	8,75	7	5,25
sport	Swimming Pools (water pool area)	8,75	7	5,25
	locker rooms	8,75	7	5,25
General	Service rooms, Corridors	10	7	4
	Building Offices Offices Hospitals ³ Commercial Restaurants Educational Sport General	BuildingType of spaceBuildingInterpretent of the second of the	BuildingType of spaceAirflow perDifficesCategory IOfficesSmall officesOfficesLandscaped offices, Conference rooms0 Gal center8,5Call center8,5Anage offices, Conference rooms8,5Call center8,5Massian of the examination rooms11,5Massian of the examination rooms11,5Sitting rooms11,5Auditoriums, cinemas, theaters, museums, exhibition's halls, churches8,75Places of assemblyLibraries, reading rooms8,75Games rooms, betting rooms8,75Games rooms, betting rooms8,75Auditoriums, cinemas, theaters, museums, exhibition's halls, churches8,75Games rooms, betting rooms8,75Games rooms, betting rooms8,75Auditore retail stores, department stores, supermarkets8,75RestaurantsCafeterias, Bars, Dining rooms8,75All other retail stores, department stores, labs and teachers' rooms6,9Ibraries, reading rooms6,91Ibraries, reading rooms6,9Ibraries, reading rooms6,9Ibraries	BuildingType of spaceAirflow per non-adapted point of spaceImage: Constant of the spaceCategory ICategory ISmall offices8,5OfficesSmall offices8,5Image: Constant of the space8,57,5Call center8,57Call center8,57Image: Constant of the space8,57Bedrooms, wards, diagnostic and examination rooms11,510Image: Constant of the space11,510Image: Constant of the space8,757Image: Constant of the space7,56Image: Constant of the space7,56Image: Constant of the space7,56Image: Constant of the space6,9

173

ventilation system

airflow per area

Building	Type of space	w per floor area l/(s m2)		
		Category I	Category II	Category III
	Small offices	0,50	0,40	0,30
Offices	Landscaped offices, Conference rooms	0,70	0,60	0,40
	Call center	0,80	0,70	0,50
	Bedrooms, wards, diagnostic and examination rooms	0,50	0,40	0,30
Hospitals ³	Treatment room	1,00	0,80	0,60
	Sitting rooms	0,75	0,60	0,45
	Auditoriums, cinemas, theaters, museums, exhibition's halls, churches	0,50	0,40	0,30
Places of assembly	Libraries, reading rooms	0,63	0,50	0,30
,	games rooms, betting rooms	0,75	0,60	0,45
	dance halls, discos	1,38	1,10	0,83
	grocery stores, dry cleaning, pharmacies	1,00	0,80	0,60
Commercial	barbers and beauty salons	0,60	0,50	0,40
	All other retail stores, department stores, supermarkets	0,50	0,40	0,30
Restaurants	Cafeterias, Bars, Dining rooms	1,25	1,00	0,75
	kindergartens and nursery schools	1,25	1,00	0,75
Educational	Primary and high schools, university class rooms, labs and teachers' rooms	0,63	0,50	0,38
Luucational	libraries, reading rooms	0,63	0,50	0,38
	languages and music classrooms	0,38	0,30	0,23
	Covered sport facilities: play fields	0,75	0,60	0,45
Creant	Covered sport facilities: spectators areas	0,50	0.40	0,30
spore	Swimming Pools (water pool area)	0,75	0,60	0,45
	locker rooms	0,38	0,30	0,23
General	Service rooms, Corridors	1,00	0,70	0,40

duct size

a		b										
[mm]		_				[mm]			_			
	100	150	200	250	300	400	500	600	800	1000	1200	
250	0,025	0,038	0,050	0,063								Ac
	143	188	122	250								deq
	165	206	241	273								dœ
	0,70	0,80	0,90	1,00								Ai
300	0,030	0,045	0,60	0,075	0,090							Ac
	150	200	240	273	300							deq
	180	224	262	296	327							dœ
	0,80	0,090	1,00	1,10	1,20							$-\mathbf{A_i}$
400	0,040	0,060	0,080	0,10	0,12	0,16						Ac
	160	218	267	308	343	400						deq
	205	255	299	337	373	436						d _{ce}
	1,00	1,10	1,20	1,30	1,40	1,60						A
500		0,075	0,10	0,13	0,55	0,20	0,25					Ac
		231	286	333	375	444	500					dea
		283	331	374	413	483	545					dce
		1,30	1,40	1,50	1,60	1,80	2,00					Ai
600		0,090	0,12	0,15	0,18	0,24	0,30	0,36				Ac
		240	300	353	400	480	545	600				deq
		307	359	406	448	524	592	654				d _{ce}
		1,50	1,60	1,70	1,80	2,00	2,20	2,40				Ai
800			0,16	0,20	0,24	0,32	0,40	0,48	0,64			Ac
			320	381	436	533	615	686	800			deq
			410	463	511	598	675	745	872			d _{ce}
			2,00	2,10	2,20	2,40	2,60	2,80	3,20			A_i
1000				0,25	0,30	0,40	0,50	0,60	0,80	1,00		Ac
				400	462	571	667	750	889	1000		deq
				512	566	662	747	825	965	1090		dce

V.III

heat calculations

sun path analysis 18th July at 12:15

18th January at 12:15

climate datas

Description	Symbol	Unit	Value
	θ _e	[°C]	-10
Design external temperature	θ _{m,e}	[°C]	12

EXPOSURE COEFFICIENTS ek AND e

Orientation	Value
Onentation	[p.u.]
Ν	1,2
E	1,15
W	1,1
S	1

DATA ON HEATED ROOMS

Room Name	Design Temeprature θ ^{int,i}	Room area A _i	Internal hight _{hi}	Internal Volume Vi
	[°C]	[m ²]	[m]	[m ³]
Exhitibition Hall	20	264,0	3,5	924
Corridor	20	43	3,5	150,5
wc	20	30	3,5	105
Total		337,0	10,50	1179,5

DATA ON UNHEATED ROOMS

	B-value	Temperature
Room name	b _u	θυ
	p.u.	°C
there is no unheated adjacent room	-	-

conductivity of materials

Material Code	Description	λ (W/m×K)
1	Light bricks	0,8
2	Concrete	1,75
11	Gypsum	0,35
13	Cement plastering	1,15
21	Polystyrene	0,043
23	Rock wool	0,042
24	Extruded polystyrene	0,037
25	Mineral fiber panel DIN 18165	0,041
31	Gravel	0,7
32	Bitumen	0,23
41	Unventilated air layer s=40 mm	. 0
51	Wood	0,15
53	Metal composite	0,12

SURFACE RESISTANCES (BETWEEN AIR AND STRUCTURES)

Material Code	Description	Rsi OR Rse (m ² X K/W)
41	Unventilated air layer	0,18
61	Internal surface resistance (horizontal heat flow)	0,13
62	External surface resistance (horizontal heat flow)	0,04
63	Internal surface resistance (heat flow upwards)	0,1
66	Internal surface resistance (heat flow downwards)	0,17

U values

						and a second and a second as a second a
Co	de		d	λ	R	Uk
Element	Materia	l Description	m	W/mK	m ² K/W	W/m ² K
	Building	element name		and the	and a second	
	Code	Internal laminar layer name	$U_{ij}^{*} = \sum_{i=1}^{n} (i_{ij} + 1) \sum_{i=1$		R _{si}	
Building	Code	Material name	<i>d</i> ₁	λ_1	$R_1 = d_1 / \lambda_1$	1
element						
code	Code	Material name	d _n	, λ _n	$R_n = d_n / \lambda_n$	
	Code	External laminar layer name			Rse	
	Total th	ickness and U _k	Σdi		ΣRi	1/SR;
	Insulate	d external door				
	61	External surface resistance(horizontal heat flow)			0,13	
2	53	Metal composite	0,100	0,12	0,83	
	61	External surface resistance(horizontal heat flow)			0,13	
	Total th	ickness and U _k	0,100		1,09	0,915
	Curtain	wall facade				
11	11	Building Integrated Photovoltaic (BIPV) Insulated Glas Unit	5			
	Total th	ickness and U _k	0,006			1,000
	internal	separations				
	61	Internal surface resistance (horizontal heat flow)			0,13	
	11	Gypsum	0,010	0,35	0,03	
12	21	Polystyrene	0,040	0,043	0,93	
15	1	Light bricks	0,080	0,8	0,10	
	11	Gypsum	0,010	0,35	0,03	
	61	Internal surface resistance (horizontal heat flow)			0,13	
	Total th	ickness and U _k	0,140		1,35	0,742
A	Internal	Door				
and the second	61	Internal surface resistance (horizontal heat flow)			0,13	
15	51	Wood	0,040	0,15	0,27	
	61	Internal surface resistance (horizontal heat flow)			0,13	
	Total thi	ickness and U _k	0,040		0,53	1,899

oae	
t Material	

Code				λ	R	Uk
Element Material		Description	m	W/mK	m²K/W	W/m²K
	Second F	loor Celling				2
16	63	Internal surface resistance (heat flow upwards)			0,1	
	11	Gypsum	0,010	0,35	0,03	
10	23	Rock wool	0,080	0,042	1,90	
	63	Internal surface resistance (heat flow upwards)			0,1	
1. S	Total this	ckness and U _k	0,080		2,13	0,468
	Second F	loor Floor				
	66	Internal surface resistance (heat flow downwards)			0,17	
	2	High density dry screed panel	0,020	1,75	0,01	
	41	Unventilated air layer	0,350	0	<u>-</u>	0,16
17	2	Concrete	0,300	1,75	0,17	
	23	Thermal insulation	0,080	0,042	1,90	
	53	Metal composite facade cladding	0,002	0,12	0,02	
	66	Internal surface resistance (heat flow downwards)			0,17	
	Total this	ckness and U _k	0,752		2,44	0,569
	Extensive					
	63	Internal surface resistance (heat flow upwards)			0,1	
	0	Substrate(earth)	0,025	0,25	0,10	
	0	Filter Layer	0,001	0,22	0,00	
	0	Draining Layer	0,002	0,38	0,01	
19	0	Waterproof membrane	0,002	0,16	0,01	
10	23	Thermal insulation	0,080	0,042	1,90	
	0	Vapor barrier	0,001	0,38	0,00	
	0	Seperation Layer	0,001	0,38	0,00	
	53	Metal composite	0,300	0,12	2,50	
	63	Internal surface resistance (heat flow upwards)	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		0,1	
	Total this	ckness and U _k	0,412		4,73	0,211

design transmission heat loss

HEAT LOSSES DIRECTLY TO THE EXTERIOR

		L1	L ₂	Ak	Uk	e _k	A _k xU _k xe _k	
Code			[m]	[m ²]	[W/m ² K]	[p.u]	[W/K]	
11	Curtain wall facade	17,2	3,50	0,00	1,00	1,2	0,00	N
11	Curtain wall facade	17,2	3,50	60,20	1,00	1	60,20	S
11	Curtain wall facade	22,5	3,50	0,00	1,00	1,15	0,00	E
11	Curtain wall facade	22,5	3,50	78,75	1,00	1,1	86,63	Ŵ
· 2	Insulated external door	1,8	2,5	4,50	0,91	1,2	4,94	N
13	nternal separations	7,6	3,5	26,60	0,74	1,2	23,69	N
13	nternal separations	4,57	3,5	16,00	0,74	1,15	13,65	E
13	nternal separations	4,57	3,5	16,00	0,74	1,1	13,06	W
15	nternal Door	0,9	2,5	2,25	1,90	1,2	5,13	N
17	Second Floor Floor	17,2	22,5	387,00	0,57	1	220,25	, S
18	Extensive green roof	17,2	22,5	387,00	0,21	1	81,78	S
Total of Duildings Elements				Σ _k xA _k	(U _k xe _k	[W/K]	367,340	
Cada	Thomas I beidae	l _k	ψ _k	eĸ	l _k xψ _k xe _k			
Coue	menna bruge			[m]	[W/m·K]	[p.u]	[W/K]	N
02B	External wall angle at neighbouring building, interior to neighbou	ıring building		0,5	0,03	1,2	0,018	N
35B	nternal separation crossing, bridge through straight wall			7,6	0,03	1,2		N
35B	Cellar external wall angle, at basement, cellar to exterior			4,57	0,03	1,15		E
65A	Internal door base			0,9	0,13	1,12	0,131	Ν
65B	nternal door top			0,9	0,12	1,12	0,121	Ν
65C	nternal door side			5	0,12	1,12	0,672	N
62A	Window base				0,12	1	2,064	5
62B	Window top				0,12	1	2,064	5
63A	Window base				0,13	1,15	3,364	· E
63B	Window top	22,5	0,12	1,15	3,105	E		
62C	Window side	3,50	0,12	1,15	0,483	E		
otal of The	tal of Thermal bridges				ψ _k xe _k	[W/K]	12,022	1.
otal heat l	oss coefficient directly to the exterior	H _t ,	ie=ΣkXAkXUk>	te _k + Σ _k xl _k xψ _k	xe _k	379,36		

HEAT LOSSES TO SPACE HEATED AT DIFFERENT TEMPERA

Code Building Element		L1	L ₂	Ak	Uk	f _{ij}	A _k xU _k xf _{ij}	
code		[m]	[m]	[m ²]	[W/m ² K]	[p.u]	[W/K]	
-	None			0,00			0,000	
				0,00			0,000	
				0,00			0,000	
				0,00			0,000	
				0,00			0,000	
Total heat lo	Total heat loss coefficient directly to the exterior H _{t,ij} = Σ _k xA _k xU _k xf _{ij}							
TOTAL TRANSMISSION HEAT LOSS COEFFICIENT H _{T,i} = H _{T,ie} +H _{T,ig} +H _{T,i}								
TEMPERATURE DATA								
Design external temperature θ_e [°C] -10								

Designa internal temperature

Design temperature difference

DESIGN TRANSMISSION HEAT LOSS

ΔТ	11	R	F	ς
~ 1	U	n	-	9

 θ_{int} [°C] 20 θ_{int} - θ_e [°C] 30 $\Phi_{T,i}=H_{T,i}x(\theta_{int}-\theta_e)$ [W] 11467

185

heat load calculations airing

mechanical ventilation with HR

	ROOM NAME	Exhitibition Hall	Corridor	WC	Total		
I	Room internal volume	Vi	[m ³]	924	150,5	105	1180
	External Temperature	θe	[°C]		-10		
	internal Temperature	θint,i	[°C]	20	20	20	
num c needs	Minimum hygenic air exchange rate	Ŋmin,i	[h ⁻¹] \	0,5	0,5	1,5	
Minir hygenic	Minimum hygenic air flow rate	V'min,i	[m ³ /h]	462	75,25	157,5	
ate	Exposed openings	-	[p.u.]	1	0	0	
N	Air exchenge rate at 50 Pa	n50	[h ⁻¹]	6,0			
n flo	Shielding Coefficient	е	[p.u.]	0,02	0,00	0,00	
tior	Height correction factor	3	[p.u.]	1,0	1,0	· 1,0	
Infiltra	Infiltration air flow rate V'inf,i=2×Vi×n50×e×ε	V'inf,i	[m³/h]	221,8	0,0	0,0	
it loss 1	Selected value for calculation V'i=max(V'inf,i ; V'min,i)	V'i	[m³/h]	462,0	75,3	157,5	
ion hea culatior	Design ventilation heat loss coefficient	HV,i	[W/K]	157,1	25,6	53,6	
calc	Temperature Difference	θint,i-θe	[°C]	30	30	30	
Vent	Design ventilation heat loss	ΦV,i	[W]	4712	768	1607	7086

ROOM NAM		Λ	Ν	A	V	ſ	N	ſ	0	0	R	
----------	--	---	---	---	---	---	---	---	---	---	---	--

	Room internal volume	Vi	[m ³]
	External Temperature	θe	[°C]
	internal Temperature	θint,i	[°C]
a	Exposed openings		[p.u.]
v ra	Air exchenge rate at 50 Pa	n 50	[h ⁻¹]
flov	Shielding Coefficient	е	[p.u.]
tion	Height correction factor	٤	[p.u.]
Infiltra	Infiltration air flow rate V'inf,i=2×Vi×n50×e×ε	V'inf,i	[m³/h]
	Exhaust air volume flow	V' _{ex,i}	[m ³ /h]
ate, tors	Supply air volume flow	V' _{SU,i}	[m ³ /h]
ir flow ra ution fact	Supply air temperature	θsu	[°C]
	Reduction factor	f _{V,i}	[p.u.]
n: a reci	Transfert air volume flow	$V'_{ex,i}$ - $V'_{SU,i}$	[m ³ /h]
/stei and	Reduction factor	f _{V,i}	[p.u.]
ntilation Sy mperature	Excess exhaust air whole building V' _{mech, inf} =ΣV' _{ex,i} -ΣV' _{SU,i}	V' _{mech,inf}	[m³/h]
Ve terr	Excess exhaust air room by room	V' _{mech,inf,i}	[m³/h]
at loss n	Total air flow rate $V'_i = V'_{inf,i} + V'_{SU,i} x f_{V,i} + V'_{mech,inf,i}$	$\begin{array}{c} \hline \\ \\ \hline \\ \\ \hline \\$	[m³/h]
tion he	Design ventilation heat loss coefficient	HV,i	[W/K]
ntilat cal	Temperature Difference	θint,i-θe	[°C]
Ven	Design ventilation heat loss	ΦV,i	[w]

Exhitibition Hall	Corridor	wc	Total
264,0	43,0	30,0	337,0
	-10		
20	20	20	
5	0	0	
	2,0		
0,01	0,00	0,00	
1,0	` 1,0	1,0	
10,6	0,0	0,0	10,6
924	150,5	105	1179,5
924	150,5	105	1179,5
N.S.	12,0		
0,27	0,27	0,27	
0,0	0,0	0,0	
0,00	0,00	0,00	
	0,00		
0,0	0,0	0,0	0,0
257,0	40,1	0,0	
87,4	13,6	0,0	
30	30	30	
2621	409	0	3030

heating up capacity

ADDITIONAL HEATING UP POWER IN INTERMITTEDNTLY HEATED SPACES

	Heating UP factor	Room area	Heating Up Capacity
Room Name	f _{RH}	Ai	Φ _{RH,i} =f _{RH} xA _{,i}
	[W/m ²]	[m²]	[W]
Exhitibition Hall		264	3432
Corridor	13	43	559
wc		30	390
Total		337	4381

total heating load

	Design Transmission Heat Loss	Design Ventilazion Heat Loss	Design Heating UP	Design Heating load
Room Name	Φ _{T,i}	Φ _{V,i}	Φ _{RH,i}	Φ _{HL,i}
	[W]	[W]	[W]	[W]
Exhitibition Hall	11467	4712	3432	19611
Total	11467	4712	3432	19611

Bibliography

Bibliography:

Augé, M. (2003), *Rovine e Macerie: Il Senso del Tempo*, Bollati Boringhieri Editore, Torino.

R. Koolhaas (2014), *Preservation is overtaking us*, New York

Barasch, D. (2019), *Ruin and Redemption in Architecture*, Phaidon Press, Berlin.

P.L.Nervi (1956), *Structures*, G. & M. Salvadori ed., New York

William J. R. Curtis (2002), *Modern Architecture Since 1900*, Phaidon, 3rd editon

Barbieri C. (2018), *La forma (Dis)Continua dell'Antico: sulla scrittura architettonica in ambito archeologico*, Clean Edizioni, Napoli.

Bergdoll, B. (2000), *European Architecture:* 1750-1890, Oxford University press, Croydon.

Boesch, M., Lupini, L., Machado, J.F. (2019), *Yellowred: on Reused Architecture*, Silvana editore, Milano.

Casabella (1987), n.536, Electa Periodici srl, Milano.

Ferlenga, A. (2015), *Città e Memoria come strumenmti del progetto*, Christian Marinoti editore, Milano.

Ferlenga, A. (2018), *Ricostruzioni: architettura*, *città, paesaggio nell'epoca delle distruzioni*, Silvana editore, Milano.

Lotus International (1984), n. 42 *Architettura e Grande Stile*, Editoriale Lotus, Milano.

Lotus International (1981), n. 33 *Imitare la Città*, Editoriale Lotus, Milano

Menzietti, G. (2017), *Amabili resti dell'architettura. Frammenti e rovine della tarda modernità italiana*, Quodlibet Editore, Macerata.

Pellegrini, P. C. (2018), *Manuale del Riuso Architettonico*, Dario Flaccovio Editore Palermo.

Watkin, D. (1986), *A History of Western Architecture (Sixth Ed.)*, Laurence King Publishing, London.

Zumthor, P. (2007), *Atmosfere. Ambienti architettonici. Le cose che ci circondano*, Mondadori Electa, Milano.

Reyner Banham (1984), *The Architecture of the Well-tempered Environment*

ASHRAE Handbook HVAC (2015), *Applications* (SI), ASHRAE

BSRIA (2011), *Rules of Thumb – Guidelines for building services* (5th Ed.)

A. Muttoni (2011), *The Art of Structures*, EPFL Press

Fondazione OAMi (2021), Milano verticale

Facoltà di architettura Aldo Rossi (2008), *Architettura 28. Il progetto dell'edificio alto*, Clueb editore

AICARR (2014), *Energy efficiency in historic buildings*, Editoriale Delfino

