
A Multi-Armed Bandit
Approach to Dynamic Pricing

Master Thesis of Gianmarco Genalti
Master of Science in Mathematical Engineering

Artificial Intelligence and Robotic Laboratory
of Politecnico di Milano

Student ID: 952905
Advisor: Prof. Nicola Gatti
Co-advisors: Marco Mussi, M.Sc., Alessandro Nuara, Ph.D.
Academic Year: 2020-2021





i

Abstract

International reports quantify that more than 14 trillion USD per year, since
2030, will be unlocked thanks to the automation of industrial and business
processes. Automation of pricing tasks, in particular, is estimated to unlock
value for about 0.5 trillion of USD per year worldwide. In this work we inves-
tigate this class of problems relying on fully data-driven methodologies. One
of the main challenges in these settings usually concerns how scarce data can
be effectively adopted to optimize the processes. We present a novel dynamic
pricing approach that can incorporate business logic and operate in scenarios
where industry needs are hard to assess for most of the other works. We fo-
cus on a monopolistic pricing problem on e-commerce with volume discounts
and a strong seasonality, where the objective function is a convex combina-
tion between margins and turnover and only transaction data are available.
We design an online learning (bandit) algorithm, namely PSV-B, in which
the relationship controlling sales is decomposed into two terms, the first de-
pending on seasonality and the second depending on the price elasticity. Fur-
thermore, to alleviate data scarcity issues, we assume this relationship to be
monotonically decreasing in price and we design a novel Bayesian regression
algorithm capable of capturing such behavior. We develop a new methodol-
ogy to compute optimal volume discounts starting from the prices proposed
by our algorithm. This approach is evaluated both in synthetic environments
and through a real-world experimental campaign. Model’s design choices are
validated performing multiple simulations, monotonicity comes up as a crucial
feature when dealing with uncertainty and nonstationarity of the market. To
quantify the business value unlocked by this approach, we performed a real-
world, 4-month-long, A/B testing experiment, where our algorithm PSV-B,
—corresponding to A configuration—has been compared with human pricing
specialists—corresponding to the B configuration. At the end of the experi-
ment, PSV-B produced a total turnover of about 300 KEuros with a perfor-
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mance that is better than the performance of B configuration for about 55%.

Keywords: Dynamic Pricing, e-commerce, Volume Discounts, Multi-Armed
Bandit, Bayesian Linear Regression, Thompson Sampling.
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Abstract in lingua italiana

Report internazionali stimano che, a partire dal 2030, l’automazione di pro-
cessi industriali ed aziendali genererà valore per più di 14 trilioni di dollari.
L’automazione del pricing di prodotti, in particolare, genererà circa 0.5 tril-
ioni di dollari a livello mondiale. In questo lavoro, studiamo questa classe di
problemi basandoci esclusivamente su metodologie data-driven. Una delle sfide
principali in questo contesto è quella di costruire una soluzione in grado di op-
erare anche in scarsità di dati. Noi presentiamo un nuovo algoritmo di pricing
dinamico che sia in grado di incorporare logiche di business e operare in scenari
in cui i bisogni delle aziende sono difficili da fronteggiare per le altre soluzioni
esistenti. Ci concentriamo su un problema di pricing monopolistico su un e-
commerce, dove vige una forte stagionalità e una politica di scontistica per
quantità. La funzione obiettivo sarà una combinazione convessa del margine
netto operativo e del fatturato, e l’algoritmo avrà accesso solamente a dati
transazionali. In questo lavoro progettiamo un algoritmo di online learning
(bandit), chiamato PSV-B, dove i volumi di vendita sono decomposti in due
componenti: la prima dipendente dalla stagionalità e dal trend di mercato,
mentre la seconda dalla curva di domanda dei clienti. Inoltre, per mitigare
la scarsità di dati, assumiamo che all’aumentare dei prezzi i volumi decres-
cano. Proponiamo un nuovo modello di regressione Bayesiana integrandovi la
relazione monotona tra i volumi e la seconda componente. Sviluppiamo una
nuova metodologia che, partendo dal prezzo proposto dal nostro algoritmo
di pricing, calcoli una politica di scontistica per quantità ottimale. Abbiamo
valutato questo approccio sia in ambienti simulati che con una campagna sper-
imentale reale. Le scelte di design del modello sono state validate attraverso
molteplici simulazioni, la monotonicità si è rivelata una caratteristica deter-
minante per gestire la rumorosità dei dati e la nonstazionarietà nella curva di
domanda. Per quantificare il valore economico di questo approccio, abbiamo
effettuato un A/B test lungo 4 mesi su un e-commerce italiano. Il nostro algo-



ritmo, PSV-B, è stato valutato rispetto ad un pricing effettuato da specialisti
umani. Alla fine dell’esperimento, PSV-B ha prodotto un fatturato totale per
300.000 Euro, con una performance migliore rispetto alla configurazione B di
circa il 55%.

Parole chiave: Pricing Dinamico, e-commerce, Scontistica per Quantità,
Multi-Armed Bandit, Regressione Lineare Bayesiana, Thompson Sampling.
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1| Introduction

Dynamic Pricing refers to a family of techniques used to learn the optimal
price of a product or service in a real-time fashion. Due to the strict connection
with the economic sphere and the technical possibilities that are evolving in
neighboring sectors, dynamic pricing is getting a lot of attention both from
the industrial world and the scientific community.

1.1. Goal

Our goal is the design of a framework which, on the one side, is scientifically
sound and, on the other side, is ready-to-use for the companies’ business units.
While the Artificial Intelligence scientific community has been developing new
data-driven approaches year after year, thus pushing the state-of-the-art for-
ward, companies have been attempting to transfer those results to their busi-
ness needs or to build novel tailored solutions. Nowadays, a crucial task is
to close the gap between the scientific state-of-the-art and industrial needs.
In our work, we move toward this direction, proposing a novel solution and
validating it through an experimental evaluation performed in a real-world sce-
nario. Furthermore, our solution adds a new layer to the data-driven dynamic
pricing which was not sufficiently explored previously. This layer concerns the
data-driven volume discount policy. We remark, that most of the scientific
works in dynamic pricing propose algorithmic results without a concrete ex-
perimental evaluation in real-world settings. This is a critical issue, as all the
known works are based on assumptions whose satisfaction in practice may be
questionable. Instead, in our work, we present a framework that has been vali-
dated with simulations and a real-world experiment lasted more than 4 months
and involving products for a total turnover of 160 KEuros. Our solution ac-
counts many crucial issues characterizing real-world scenarios (i.e. seasonality,
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volume discounts) and campaign’s results validate its goodness and practical
applicability.

1.2. AI for Pricing in Industry

Most of the international economic forecasts agree that almost 50% of the value
per year unlocked by the adoption of artificial intelligence (AI) from 2030 on
will be in marketing&sales [16] and this value amounts about 6 trillion USD.
Attracting and acquiring new customers, suggesting and recommending prod-
ucts, and optimizing customers’ retention and loyalty are examples of activities
in which AI tools will play a role of paramount importance, allowing their au-
tomation and thus dramatically increasing their effectiveness. In the specific
case of pricing problems—which constitute the class of problems we investigate
in this work—, the estimated value unlocked will be about 0.5 trillion USD per
year. The primary challenge in these settings usually concerns how scarce data
can be effectively adopted to optimize the processes by combining data-driven
and shape-constrained approaches.

In this work, we focus on a monopolistic pricing problem on e-commerce with
volume discounts and seasonality in which the objective function is a con-
vex combination between margins and turnover and only transaction data are
available.

In particular, companies may have different objective functions, depending on
the specific market segment, business constraints and time horizon, so as to
change gradually from the maximization of margins to the maximization of
turnover. Controlling this trade-off is crucial for the e-commerce management
since it allows to implicitly balance the instantaneous revenue generated by
new customers and a longer-term revenue generated by returning customers.
Interestingly, when optimizing this process, volume discounts can play a crucial
role.

The primary challenge in these settings usually concerns how scarce data can
be effectively adopted in online fashion to optimize the processes by combin-
ing model-based and model-free approaches. In particular, most of the works
available in the literature [7, 32, 48] do not address a number of tasks that
are central in practical applications, preventing their successful adoption. For
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instance, no algorithm works in online fashion, thus not being capable of adapt-
ing quickly to the customers’ behavior. Furthermore, no learning algorithm
deals with seasonality and volume discount.

1.3. AI for Pricing in Scientific Literature

Due to the widespread of e-commerce and online marketplaces over the last
years, data collection is now easier than ever and data-driven approaches to
dynamic pricing are receiving increasing attention from the scientific com-
munity due to the possibility of easily performing experimental evaluations.
This task has been addressed from many different points of view: from clas-
sical economics to reinforcement learning, involving optimization techniques,
Statistical Learning methodologies, and Machine Learning. Each scientific
community has focused on a different perspective. Many works coming from
operational research and management science journals focus, for example, on
the joint pricing-restocking problem, with a particular interest for perishable
goods and limited inventory (See [21], [30], [15]). Literature of Machine Learn-
ing and Statistical Learning is divided between two main strands: Bayesian
modeling and non-parametric approaches. While in the former an attempt is
made to incorporate business and market knowledge inside demand function
modeling, the latter tries to be as general as possible to cover the majority
of possible business scenarios. One of the major tradeoffs is interpretability,
where Bayesian approaches usually outperform non-parametric ones (See [6],
[17], [8]). Recently, Online Learning and Reinforcement Learning communi-
ties joined this research trend and started proposing pricing policies that can
handle the exploration-exploitation dilemma (See [46], [48], [34]).

1.4. Original Contributions

In our work, we decompose the demand curve into two terms. The first term
depends on the seasonality and market trend, where seasonality captures the
yearly periodic customers’ behavior, while the trend captures the market con-
traction or expansion of a specific year. The second term depends on the price
elasticity. This decomposition allows an efficient use of the data available in
practice. Motivated by goods different from luxury, Veblen, and Giffen, we
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assume that the demand curve is monotonically decreasing in the price and
we force such an assumption in the learning algorithm. This is captured by
designing a novel Bayesian regression algorithm that forces a subset of fea-
tures to be monotonic. Furthermore, we address the exploitation-exploration
dilemma by using a Thompson-sampling-like approach, which randomly draws
samples according to the degree of uncertainty of the estimates. This ap-
proach allows the algorithm to explore with more probability the prices pro-
viding a better optimistic confidence bound on the reward. Our algorithm
also computes volume discounts, adapting such discounts to users need, given
the buyback probability. We name our algorithm as PSV-B (Pricing with
Seasonality and Volume discounts Bandit algorithm). We performed a real-
world 4-month-long A/B testing experiment, in which our algorithm PSV-
B—corresponding to A configuration—has been compared with human pricing
specialists—corresponding to B configuration. The total number of different
products involved in the experiment is more than 320. At the beginning of
the test, the algorithm received information related to the orders received in
the previous 2 years. The total turnover of A configuration is more than
300 KEuro. At the end of the experiment, our algorithm PSV-B provided a
performance that is better than the performance of B configuration for about
55%.

1.5. Work Structure

The remaining of this work is organized as follows.

• Chapter 2 : An introduction to the methodologies and techniques which
act as a backbone to the proposed solutions: we span from Linear Ba-
sis Function Regression to Multi-Armed Bandits. We also provide an
overview of the related literature in dynamic pricing and volume dis-
counts.

• Chapter 3 : The problem formulation: formal definition of the variables
characterizing the problem and definition of the objective of the algo-
rithm.

• Chapter 4 : Proposed solution to the problem, formalization of the PSV-
B algorithm and its framework.
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• Chapter 5 : Validation of the proposed solution, first using a simulated
setting to validate assumptions and design choices, then in a real-world
scenarios to assess the goodness of the solution for business purposes.

• Chapter 6 : The conclusions to be drawn from this work, along with new
settings to which potentially apply the proposed solution of this work or
possible extensions of it.
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2| Preliminaries and Related

Works

In this chapter, we introduce the mathematical groundings needed in our work.
In particular, we introduce the mathematical formulation of Linear Basis Func-
tion Models and their extension to a Bayesian framework with Bayesian Lin-
ear Regression [10]. Subsequently, we introduce Multi-Armed Bandit prob-
lems [44], focusing on Bayesian approaches to deal with the exploration-exploitation
dilemma such as, e.g., Thompson Sampling. We are then ready to introduce
the dynamic pricing problem from a Multi-Armed Bandit point of view, high-
lighting prominent works using this approach addressing this problem. Finally,
related works on dynamic pricing using different methodologies are presented,
with a section dedicated to volume discounts.

2.1. Linear Models

2.1.1. Linear Basis Function Models

We focus on the scenario in which a sample is of the form x = (x1, . . . , xD) ∈
RD. The simplest linear model for regression is one that involves a linear
combination of the input variables:

y(x,w) = w0 + w1x1 + · · ·+ wDxD. (2.1)

The model is described by a linear function of the parameters (or weights)
w = (w0, . . . , wD), in this particular case it is also a linear function of the
input variables x. We want to extend this formulation to grasp nonlinear
relationships between input variables and the response function y, to do so
we introduce basis functions. A basis function Φj maps an input sample to a
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value in R. This results in a new formulation of Eq. 2.1:

y(x,w) = w0 +
M−1∑
j=1

wjΦj(x). (2.2)

The model now has M parameters, where w0 is the bias parameter and, defin-
ing Φ0(x) = 1 ∀x ∈ RD, we can define Eq. 2.2 compactly as:

y(x,w) = wTΦ(x), (2.3)

where Φ(x) = (Φ0(x), . . . ,ΦM−1(x)).

2.1.2. Maximum Likelihood Estimation

We assume that the target variable t is the superposition of the response
function of the model and a Gaussian noise:

t = y(x,w) + ϵ,

where ϵ ∼ N (0, 1
β
). Parameter β is customarily called the precision of the

noise. The previous relationship implies a distribution over the target variable:

p(t|x,w, β) ∼ N
(
y(x,w),

1

β

)
, (2.4)

where E[t|x] = y(x,w).

Given a dataset of inputs X = {x1, . . . ,xN} and target values t = (t1, . . . , tN),
we can obtain the likelihood function of t as:

p(t|X,w, β) =
N∏

n=1

N (wTΦ(xn),
1

β
). (2.5)

The goal is to obtain the parameters’ values maximizing the likelihood of the
target variable. In particular, to obtain wML we can minimize the gradient:

∇ ln p(t|w, β) =
N∑

n=1

(tn −wTΦ(xn))Φ(xn)
T . (2.6)
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By defining the N ×M design matrix as

Φ =


Φ0(x1) Φ1(x1) . . . ΦM(x1)

Φ0(x2) Φ1(x2) . . . ΦM(x2)
...

... . . . ...
Φ0(xN) Φ1(xN) . . . ΦM(xN)

 ,

we get that

wML = (ΦTΦ)−1Φt. (2.7)

Furthermore, the maximization of the log likelihood function w.r.t. to β results
in

1

βML

=
1

N

N∑
n=1

(tn −wT
MLΦ(xn))

2. (2.8)

2.1.3. Bayesian Linear Regression

To follow the Bayesian perspective of linear models, we introduce a prior over
the parameters of the model. In particular, we have:

p(w) = N (m0,S0), (2.9)

where m0 and S0 are prior values over mean and variance of w.

The posterior distribution can be obtained as a product of the prior and the
likelihood. The choice of a Gaussian prior allows us to get a Gaussian posterior
in the form of:

p(w|t) = N (mN ,SN), (2.10)

where
mN = SN(S

−1
0 m0 + βΦT t),

S−1
N = S−1

0 + βΦTΦ.
(2.11)

Note that the mode of the posterior distribution coincides with the mean as
it is Gaussian. Thus, the maximum posterior weight vector is simply given by
wMAP = mN .
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Bayesian Linear Regression and Online Learning

If data points arrive sequentially, then the posterior distribution at any stage
acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again described by Eq. 2.10. Thanks to this latter
property, we can easily use BLR in an online learning setting, where data
arrive from time to time and we do not need to train the whole model every
time.

2.1.4. Bayesian Nonparametric Monotone Regression

We focus on the scenario in which the relationship between the target variable
and the input features is known to be monotonic due to the physical process
involved. This setting is of particular interest for dynamic pricing, since the
demand curve can be assumed to be decreasing in price for non-luxury prod-
ucts. To deal with this property in a Bayesian regression setting, we introduce
a particular basis function expansion called Bernstein Polynomial expansion.
The k-th Bernstein Polynomial basis function of order M is defined as:

ψk(x,M) =

(
M

k

)
xk(1− x)M−k, x ∈ [0, 1], (2.12)

thus, the regression formulation results in the following weighted combination

f(x) =
M∑
k=0

ψk(x,M)βk = Ψβ. (2.13)

The function in Eq. 2.13 is monotone if β0 = 0 and βk ≥ βk−1 for all k =

1, . . . ,M . Following the same procedure used by McKay Curtis and Ghosh
[31], we perform a reparametrization of the regression coefficients as θ = Aβ,
where

A =



1 0 0 . . . 0 0

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . −1 1


.
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The resulting regression function, substituting in Eq. 2.13, is

f(x) = ΨA−1θ. (2.14)

Now, we can obtain a monotonically increasing function by imposing θk ≥ 0 for
all k = 1, . . . ,M . In Fig. 2.1 are represented the Bernstein Polynomials basis
function and its transformed version. In order to obtain a downward monotonic
regression model is sufficient to flip the basis functions using 1−ΨA−1 instead
of ΨA−1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
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Figure 2.1: On the left, the 21 Bernstein Polynomials basis function Ψ of order
M = 20, on the right their monotonic transformation ΨA−1.

In Bayesian Linear Regression settings, if the probability distributions over the
transformed coefficients θ have positive support, we straightforwardly obtain
positive values for them. The simplest choice is to use a Lognormal prior
distribution:

θ ∼ LN (θ0,Σ0), (2.15)

where θ0 ∈ RM and Σ0 ∈ RM×M . The posterior distribution can be estimated
either via sampling approaches like Hamiltonian Monte Carlo [9] or via Vari-
ational Inference tehcnique [11] without relying on a closed form distribution.

2.2. Multi-Armed Bandits

In a MAB setting, the feedback can be either positive or negative, correspond-
ing to a reward or a loss, respectively. The goal of the agent is to learn which
option is the best, gaining the maximum possible reward or minimizing its
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cumulative loss while doing so: this is called exploration-exploitation trade-off.
Such a task is crucial in many practical applications such as clinical trials [50],
financial portfolio design [43], advertising campaigns optimization [36] and,
last but not least, dynamic pricing [46, 48].

Let us define a set of k actions A: each of the actions provides an expected or
mean reward when played. If we assume to have a time horizon of N times-
tamps, we can define as At the action undertaken by the agent at timestamp
t ≤ N , with a reward of Rt. The goal is to learn the value of an action a,
defined as:

q(a) := E[Rt|At = a].

Actions’ values solve the MAB problem: an agent knowing which action has
the higher value (namely, a clairvoyant) would always select that, resulting
in a trivial strategy. However, rewards are drawn from unknown probability
distributions and the agent has to deal with this uncertainty. So, in prac-
tice, knowing the true value of q(a) is usually impossible even after a long
exploration, the best that an agent can do is to produce a real-time estima-
tion denoted as Qt(a), representing the estimated value of action a at time t.
The estimation process can be performed in multiple ways and the choice of
a way of estimation also affects the exploration behavior of the agent. Once
an exploration method is selected, the agent is able to produce Qt(a) for each
t ≤ N : clearly Qt(a) is a real number for every a ∈ A and for every t ≤ N ,
so at each timestamp t always exists maxa∈AQt(a) We refer to a policy as a
probability distribution over the possible actions of the agent: as time passes,
the agent updates its policy towards the optimal one, the one known by the
clairvoyant from the very beginning. A policy is said to be greedy ,if it puts all
its probability mass over the actions maximizing Qt(a), in other words always
choosing the action a∗t = argmaxa∈AQt(a). Given a policy U, returning at
every timestamp t an action at, we define the pseudo-regret of the policy as
follows:

RT (U) :=
T∑
t=1

q(a∗t )− E

[
T∑
t=1

Qt(At)

]
, (2.16)

where q(a∗t ) is the expected value provided by a clairvoyant algorithm. The
goal of the agent will be the minimization of the pseudo-regret RT (U).
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2.2.1. Thompson Sampling

Mathematical properties of bandit strategies have been extensively investi-
gated across the last 20 years [5, 14], with a lot of attention on the Bayesian
framework. Thompson Sampling is a golden standard among the Bayesian
heuristics used to solve exploration-exploitation dilemma, and results on its
convergence properties can be found in [2, 25, 37, 39]. The common assump-
tion is that the reward R is drawn from a distribution defined by a set of
parameters θ ∈ Θ. Let P(θ) be the prior distribution over the weights and
D = {(ai, Ri)}i=1:t the action-reward tuples up to timestamp t ≤ N . Using
the Bayes Theorem, we can infer over the posterior distribution of P(θ):

P(θ|D) ∝ P(D|θ)P(θ),

where P(D|θ) is the likelihood function. Using the posterior distribution on
the weights, it is possible to compute a probability distribution over the reward
of each action. In a Thompson Sampling strategy, the chosen action a∗ ∈ A is
the one with the maximum reward’s expected value:

a∗ = argmax
a∈A

E[Rt|At = a,θ].

In Algorithm 1 the pseudo-code of a basic Thompson Sampling strategy is
provided.

Algorithm 1 Thompson Sampling
Require: Time horizon N ≥ 0, set of actions A, priors P(θ).
Ensure: Sequence D = {(ai, Ri)}i=1:N .
1: D = {}
2: for t in 1 : N do
3: P(θ|D)← P(D|θ)P(θ)
4: Sample θ from P(θ|D)
5: a∗ ← argmaxa∈A E[Rt|At = a,θ]
6: D ← D ∪ {(a∗, Rt)}
7: end for
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2.3. Dynamic Pricing

Dynamic Pricing refers to all algorithms used to modify prices of goods and
services in an automated fashion, so as to learn optimal pricing policies.

2.3.1. MABs for Dynamic Pricing

Multi-Armed bandits have been extensively employed for dynamic pricing.
Pricing policies heavily affect revenue and profit in many retail businesses and
a sub-optimal pricing can lead to dramatic monetary losses. At the same
time, optimal price has to be learned in some way. The resolution of this
crucial exploration-exploitation trade-off let MAB be a suitable option: while
learning the optimal price, there are guarantees on the losses in which the
algorithm may occur during the learning process. Suppose we are pricing a
given good, in a MAB setting for pricing we let the actions correspond to
the possible prices, moreover a retailer can decide the time between two price
changes that more suits its own business logic, deciding to change the price
each hour, day, week or month. The reward consists in the product between
the demand curve, that is the relationship between prices and sales quantities,
and the corresponding prices. Retailers are seldom able to collect contextual
information on customers or goods, but are more likely to collect transaction
data and records of sells [47]. Aggregating transaction data over a given period
of time allows us to associate prices to demand values in each timestamp in
the required form of {at, Rt}.

Rothschild [40] provides one of the seminal works on the adoption of MAB
algorithms for dynamic pricing. In this work, the author introduces a basic
scenario in which a two-armed bandit has to decide which price is better be-
tween the two options. Using this work as a starting point, many others tried
to face the dynamic pricing problem using MABs.

Kleinberg and Leighton [28] study the scenario in which a MAB strategy has to
learn a continuous-demand function and proposes a discretization of the price
values to provide theoretical guarantees on the algorithm’s regret. This ap-
proach suffers from the drawback that the reward is assumed to admit a unique
maximum in the price. Such an assumption is very restrictive in practice.
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In Misra et al. [32] monotonic property of the demand function is used to
guarantee a faster convergence. However, monotonicity is not forced as a
model-specific feature, so decisions violating business logic can still be made
during the learning process.

Trovò et al. [46, 48] assume that the demand function is monotonically de-
creasing and exploit this assumption in the learning algorithm to provide un-
certainty bounds tighter than those of classical frequentist MAB algorithms,
but neither monotonicity nor weak monotonicity are imposed by the model
formulation to the estimated demand functions. The authors show how the
monotonicity assumption does not improve the asymptotic bound of regret
provided by MAB theory. On the other hand, exploiting monotonicity enables
an empirical improvement in the performances, thus reducing the constant
terms of the regret bound.

Research in this area has been primarily restricted to stationary settings (Bes-
bes and Zeevi [7], Den Boer [19], Keskin and Zeevi [27], Kleinberg and Leighton
[28]), in our work we address the non-stationarity environment problem by re-
sorting to a multivariate fit of the demand function.

2.3.2. Related Works on Dynamic Pricing

Besbes and Zeevi [8] show that linear models are a suitable and efficient tool
to model a demand function. In their work, downward monotonicity is forced
on a model-wise level, but it is only analyzed in a stationary environment.

Other works adopting a parametric formulation of the demand function are
[12] and [7]. These works assume a stationary behavior of the customers.

Cope [17] and Bauer and Jannach [6] are two of the main works concerning
Bayesian inference applied to dynamic pricing. They both fail in imposing
monotonic constraints on the model. Interestingly, Bauer and Jannach [6]
take into account non-stationary features (e.g., competitors’ prices).

Araman and Caldentey [4] use a Bayesian approach for dynamic pricing: here
market-related information is captured in the model through a prior belief
on parameters and the model has a monotonic formulation on the demand
function.
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Wang et al. [51] investigate non-parametric models for demand function esti-
mation. In this case, the authors assume that the demand function is smooth.

Nambiar et al. [35] propose a model to tackle both the non-stationarity data
and the model misspecification. However, contextual knowledge is required on
a product-wise level that is usually not available to retailers.

In Table 2.1 we summarize the main assumptions and design choices behind
relevant dynamic pricing works. Also, in the first row, this work is present.
Despite most works, we do not assume customers’ elasticity to be stationary:
instead, we expect that the associated (decreasing) price-volumes curve may
change over time. Due to this reason, our algorithm has to handle a broad
family of possible demand functions that may allow more than one maximum
over the reward function’s domain. Another strength of our algorithm is that
it only relies on transaction data, so no contextual information on customers
and products is needed.
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2.4. Volume Discount

With volume discount, we mean the possibility of offering multiple prices to a
customer, bound to a minimum quantity of product’s units to be purchased in
order to get a certain price. Literature lacks a data-driven methodology to find
an optimal volume discount pricing schedule aimed at maximizing retailer’s
profits and revenues in a B2C environment.

In Monahan [33], benefits of such a pricing schedule are described from a
vendor’s point of view: the model, anticipating the buyer’s behavior, should
increase average orders’ size, allowing the retailer to access supplier’s rebate
on large restocks, reduce processing costs and anticipate cash flow through the
budget year.

Rubin and Benton [41] and Hilmola [23], focus on the Economic Order Quantity
(EOQ) model that requires demand size over an annual budget and stock size.

Sadrian and Yoon [42] relax the hypothesis of EOQ and provides a rational
pricing strategy and then calculating volume thresholds and the corresponding
discounts afterwards. In that work, the authors show the importance of volume
discounts when increasing the sales of higher priced products.
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In this chapter, we study the scenario in which a monopolistic e-commerce
website sells a set of non-perishable products with unlimited availability and
the demand function is monotonically decreasing in the price, possibly nonsta-
tionary over time. The two assumptions, common in literature and practical
scenarios, are motivated by the efficient, large stocking possibilities of modern
retailers (such as e-commerce) and by the fact that we are assuming to price
non-Giffen [20] and non-Veblen goods [26].

3.1. Pricing Formulation

We are given a set of products which are not subject to dependencies, and we
are asked to find their optimal prices. For the sake of presentation, thanks
to the independence assumption, in the following we focus on the problem of
pricing a single product.

We denote with t ∈ T = {0, . . . , T} a time unit for our problem, the chosen
unit may vary from retailer to retailer, depending on their business logic, e.g.,
a hour, day, week, month. At every time t, we are faced with the choice
of a, potentially different, price pt ∈ P , where P is a finite set of feasible
values of price. Furthermore, at every time t, there is a number of potential
customers interested in buying the product, and each of them is proposed
the same price pt. The actual average number of sales (a.k.a. volumes) at
time t when choosing price pt is denoted with vt(pt). In particular, we assume
that the volumes depend on both price and time due to, e.g., seasonality and
market trend, and we denote the volumes curve function with V(pt, t), where
V : T × P −→ R+. At every time t, we have vt := V(pt, t). Finally, every unit
sold, the agent gains a margin mt := pt − c, where c ∈ R+ is the cost of the
product. In this formulation, the cost of a product is assumed to be constant:
in this corner scenario, customers’ reaction to price and to net margin are
assumed to be equal, allowing us to study price-elasticity effect directly on
margins. This usually happens when costs are assumed to be similar across
the whole industry (i.e. competitors share the same supplier, a common setting
in many e-commerce scenario), an investigation of costs’ spread across actors
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in the same market can be found in [18]. The objective function to maximize
is defined as a convex combination with parameter λ ∈ [0, 1] between turnover
and operating cash flow margin. Formally, the maximization problem is as
follows:

p∗t = argmax
pt∈P

f(pt), (3.1)

where:

f(pt) = λ
pt vt(pt)

maxpt∈P{pt vt(pt)}
+ (1− λ) mt vt(pt)

maxpt∈P{mt vt(pt)}
. (3.2)

The first term of the right hand of Eq. (3.2) is the turnover at time t when
choosing price pt, and maxpt{pt vt(pt)} is the maximum achievable value. The
second term of the right hand of Eq. (3.2) is the operating cash flow margin at
time t when choosing price pt, and maxpt{mt vt(pt)} is the maximum achievable
value. The need for normalization of the two components of Eq. (3.2) is given
by the fact that the two have to be of the same magnitude in order to provide
a meaningful balancing: typically, revenue and profit are in a whole different
range of values. Moreover, the normalization needs a dependency on the price
to avoid maximizing Eq. (3.2) simply maximizing the rough price.

In real-world scenarios, functions V(pt, t) and, a fortiori, vt(pt) are not a pri-
ori known and need to be estimated online. Thus, our problem can naturally
formulated as an online learning problem (see, e.g., Auer et al. [5] for a com-
prehensive survey on online learning) where the goal is to properly balance the
acquisition of information on the stochastic functions, while minimizing the
cumulative regret. Such a problem is also commonly known as exploration-
exploitation dilemma.

Formally, in an online learning problem, we are given a set of available options
(a.k.a. arms), and we can choose an arm per time i. In our case, the arms
are the possible values of price pt ∈ P , while V(·, ·) and vt(·) is a stochastic
function that we need to estimate during the time horizon T .

3.2. Volume Discounts

Retailer’s revenue is usually given by both walk-in and loyal customers. For
the first group, the retailer aims at maximizing the revenue given by the single
basket they generate. For the second ones, the retailer aims at providing offers
that match with their volumes need. A common way to deal with these issues
is to provide volume discounts, i.e. providing different prices depending on the
number of units bought by the customer.

Assuming that the price does not affect the customer needs for a given product,
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with volume discounts we try to sell more units at a lower price to mitigate
the risk of customers meeting their needs with future purchases from our com-
petitors. In order to define the problem, we consider that our customers have
a need N for the considered product and we estimate the probability γ that
a generic customer will buyback that product from our shop. The value of N
acts as a hyper-parameter of the problem that implicitly defines the horizon
along which the effects of the discounts are to be evaluated: the higher is N ,
the greater the number of repurchases that will be considered.

Consider a vector of η volume thresholds ω = [ω1, ω2, . . . , ωη], with ωi >
ωh,∀i > h and ω1 = 1. The price of the product is a piece-wise constant
function of the volume, which assigns the same price to all volumes between
two consecutive volume thresholds. Let p(i)t denote the price associated with
the volumes between ωi (included) and ωi+1 (excluded).

The goal is to define the discount δi that we can apply to the price for a unit
volume (p̄ = c + m̄) in order to get the price for the i-th volume range. To
avoid negative margins, we apply the discount directly to the margin: p(i)t =
c+ (1− δi)m̄. The discount δi should guarantee, for a customer who needs N
product units and has a buyback probability γ, that the expected margin with
multiple-unit orders is no lower than the one obtainable with N single-unit
orders.
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The goal of this algorithm is to propose a pricing schedule for a given prod-
uct. A pricing schedule consists of a sequence of prices coupled with volume
thresholds, namely a minimum number of units to be purchased to access the
corresponding price. At each time t, the algorithm receives transaction data
collected in t − 1 and promptly computes a new pricing schedule modifying
the current one.

4.1. Pricing without Volume Discounts

The estimation procedure for the demand function is summarized in Algo-
rithm 2. For every single product, the algorithm takes in input the data of
past order records, which include information on the time of the sale, the cus-
tomer id, the number of units sold, and the price of the sale. The algorithm
returns, for every time t, the average price of the sales pt and the total volume
vt. Notice that the actual prices. collected and the list prices may differ due
to promotions and discounts (see Section 4.3).

We use the above data to estimate the demand function specifying the volume
for each value of price. In our estimation model, we also take into account
seasonality and market trends.

In particular, our estimation algorithm is based on a Bayesian Linear Regres-
sion [45] (from now on, BLR). This class of algorithms allow the estimation of
the uncertainty over the predictions, thus allowing the adoption of multi-armed
bandit approaches to balance exploration and exploitation (see Section 4.2).

The input space is denoted with T ×P , representing the possible combinations
of time and price. Instead, the output space is denoted with V , representing
the volume. Furthermore, we introduce two features spaces U and D, cor-
responding to seasonality&trend and price. We define J and K as the sets
containing the indices of time and price features, respectively.

In particular, we introduce the function χ : T −→ U ⊂ R|J | mapping a time t
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into its seasonality&trend features. The transformation is as follows:

χ : t 7→ ut :=
[
u
(j)
t

]
j∈J
∈ U . (4.1)

We represent all the features related to seasonality (e.g., the number of weeks)
in polar coordinates in order to ensure a consistent behaviour between the
periods (e.g., years), and then we apply the basis functions transformation.

Furthermore, we introduce the function ξ : P −→ D ⊂ R|K| mapping a price pt
into its features. The transformation is as follows:

ξ : pt 7→ dt :=
[
d
(k)
t

]
k∈K
∈ D. (4.2)

This set of features K is composed by transformations that are actually mono-
tonically decreasing in order to model the inverse relation binding price and
volumes. Thus, the predicted curve results to be monotonically decreasing
w.r.t. the price if feature weights are forced to be non-negative.

Bayesian Regression allows the definition of prior distributions of probability
over the weights. We force such distributions to be non-negative, constraining
the support to be in [0,+∞) (such as Lognormal distribution, see Wilson et al.
[52]). Time-related features, instead, do not require to set any constraint and
their prior distributions have support over R. In particular, we adopt the
Normal distribution. Thus, we have:

θj ∼ N (µj, σ
2
j ),∀j ∈ J ,

θk ∼ LN (µk, σ
2
k),∀k ∈ K,

where LN (µ, σ2) represent the Lognormal distribution with mean µ and vari-
ance σ2, and N (µ, σ2) represent the Normal distribution with mean µ and
variance σ2.

4.2. Exploration Strategy

The procedure addressing the exploration-exploitation dilemma is summarized
in Algorithm 3, and shown in Figure 4.1.

In particular, we resort to Thompson Sampling (TS) [1]. By construction, a
Bayesian model provides a probability distribution of the posteriors on the
weights. Such a probability distribution provides a measure of the uncertainty
over the estimates and can be effectively used to guide the exploration during
the learning process. More precisely, Thompson Sampling randomly generates
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Algorithm 2 Demand Function Estimation
Require: Initialized BLR modelM, set of times T s.t. |T | = T , transaction

data Dt for t ∈ T
Ensure: Trained BLR modelM
1: for t ∈ T do
2: Estimate vt and pt from D
3: dt ← ξ(pt)
4: ut ← χ(t)
5: end for
6: W ← [v1, v2, · · · vT ]
7: D ← [d1, d2, · · · dT ]
8: U ← [u1, u2, · · ·uT ]
9: Train BLR modelM using (U,D) as features and W as target.

vt

pt

vt

pt

vt

pt

p∗t

Objective function
MAB samples (p ∈ P)Thompson Sampling

Realization
Prediction
Uncertainly

Figure 4.1: Optimal price p∗t estimation process.

samples from the posterior distribution of the weights of BLR, retrieving in
this way a realization of the posterior binding features from time and price to
the volumes’ curve. Now, given time h, fixing related features vector uh, we
can evaluate volumes with respect to only to price values.

Consider a Multi-Armed Bandit approach in which we select the best arm over
a finite set of possible prices P . We can compute the value of the expected
objective function f̂(p),∀p ∈ P as provided in Equation 3.2, and select the
best arm corresponding to:

p∗h = argmax
p∈P

[
f̂(p)

]
p∈P

, (4.3)

where f̂(p) is the objective function estimated using volumes v̂t, the latter
coming from Thompson Sampling over the model.
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Algorithm 3 Exploration Strategy
Require: Trained BLR modelM, time h, set of prices P
Ensure: Optimal price p∗h at time h.
1: uh ← χ(h)
2: Sample θ̃ fromM weights’ distributions.
3: Initialize BLR model M̃ using θ̃ as weights.
4:

[
f̂(p)

]
p∈P
←M̃(uh,P)

5: p∗h ← argmaxp∈P

([
f̂(p)

]
p∈P

)

4.3. Pricing with Volume Discounts

Let η be the desired number of volumes thresholds to propose along with as
many different prices. In real-world scenarios, customers generate shopping
baskets with different products in an arbitrary number of units each. We
focus on a given product and the consider only the baskets containing at least
1 unit of it. Let βz, with z ∈ N, be the proportion of baskets containing the
product with a volume of z. Average volume for the product is V̄ =

∑∞
i=1 βi · i.

Given the threshold ωk, the total proportion of baskets inside that range is
given by:

β̄k =

ω(k+1)−1∑
i=ωk

βi. (4.4)

The average volume inside the threshold is consequently defined as:

V̄k =

∑ω(k+1)−1

i=ωk
βi · i∑ω(k+1)−1

i=ωk
βi

. (4.5)

Suppose a customer has a need of N units of the given product, this can be
fulfilled across any number of time steps, buying each time a number of units
(or volume) between ωk and ωk+1 for some k. After the customer bought the
product in any volume, he has a probability γ of coming back to the same
retailer buying another batch of the same size. This kind of modelling of
the user’s behavior is particularly consistent with some kind of goods, i.e.
consumer goods, food and beverages or any short lifespan good for which a
customer is led to schedule periodical purchases. With probability 1 − γ the
customer is acquired from competition and will not return the next time. Let
m̄1 denote the desired margin when a single unit is purchased. It follows that
expected margin µ̄ coming from a customer with a need of N units and who
performs only single-unit orders is, exploiting the truncated geometric series
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identity:

µ̄1 =
N∑
τ=1

γτ−1m̄1 =
1− γN

1− γ
m̄1. (4.6)

A customer with the same need but whose orders contain a number of units
between ωk and ωk+1, which are associated with a margin m̄k, will generate
the following expected margin:

µ̄k =

⌈
N
V̄k

⌉∑
τ=1

γτ−1m̄kV̄k =
1− γ

⌈
N
V̄k

⌉
1− γ

(1− δk)m̄1V̄k, (4.7)

where δk is the discount applied to the single-unit margin m̄1, namely:

mk = m1(1− δk), k = 1, . . . , η. (4.8)

By imposing µ̄k ≥ µ̄1, we get:

δk ≤ 1− 1− γN

V̄k

(
1− γ

⌈
N
V̄k

⌉) . (4.9)

Given the desired margin m∗
t = p∗t −c derived in the previous section, the total

expected margin without any discount can be computed as m∗
t V̄ . Suppose we

are applying a volume discount policy, we expect that it would not decrease the
total expected margin given without. Unit-volume margin m̄1 can be computed
by imposing that expected margin without any discount policy coincides with
the one including them:

η∑
k=1

V̄km̄k = m∗
t V̄ . (4.10)

Substituting Eq. 4.8 in Eq. 4.10, we get:

m̄1 =
m∗

t V̄∑η
k=1(1− δk)V̄k

. (4.11)

Finally, the margins m̄1, m̄2, . . . , m̄η for the different volume thresholds are
determined by m̄k = m̄1(1− δk), for k = 1, . . . , η.

The volume discount algorithm is summarized in Figure 4.2.
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Figure 4.2: Volume discount estimation process.
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5| Experimental Evaluation

In this chapter, we experimentally evaluate our algorithms. In particular, we
evaluate them both in a simulated environment and in a real-world scenario. In
the first, the main focus of our evaluation is on the pricing to check whether it
successfully converges to the optimal price faster than a non-shape-constrained
variant. In the latter, the focus of the evaluation is on the business value of
the whole algorithm, quantified during an experiment lasted about 4 months
on a large Italian e-commerce.

5.1. Evaluation in Synthetic Environment

We compare the dynamic pricing algorithm we propose with the non-shape-
constrained version having a Normal prior instead of a Lognormal one. Both
algorithms have their performances benchmarked by a clairvoyant algorithm,
namely a policy choosing at every time the optimal arm and able to achieve
its expected reward. In particular, we compare the two algorithms (shape-
constrained exploration and free-shape) over settings with noisy data, outliers
and nonstationarity in the customers’ demand curve.

5.1.1. Robustness to Noise and Outliers

One of the main advantages that we expect to gain using a shape-constrained
algorithm is a better robustness to stochastic perturbations of the environment.
Moreover, the success of dynamic pricing algorithms is often doomed by the
presence of outliers. Customers performing very large orders, or weeks with
particularly low sales due to external exogenous factors (i.e. a competitor’s
action) are not uncommon in practice.

Our goal is to compare the performances of the two versions of the algorithm
varying the standard deviation of a zero-mean Gaussian noise which is addi-
tive with respect to the true, hidden demand function used in the synthetic
simulation jointly modifying the percentage of outliers generated among the
synthetic data. Outlier generation is implemented as follows: with a prob-
ability that is given as a simulation hyper-parameter, in some timesteps a
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zero-mean Gaussian noise which has a noise equal to 10 times the base one.

We test the two algorithms in the very same scenario, using the same random
seed and the same demand curve generating function: in the simulation we
assume the base demand (seasonality and trend) to be fixed and known and
we focus on the hidden demand curve learning, reported in Fig. 5.1.
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Figure 5.1: Demand curve used in the simulation and corresponding reward
function obtained using λ = 0.

The equation generating the curve in Fig. 5.1 is f(x) = 2e−(x+1.2)
5
2 which

results, setting λ = 0, in the reward function f(x) = 2(x− 0.3)e−(x+1.2)
5
2 .

We perform a simulation for each combination of noise value and % of outliers
among the generated data. In particular, the grid is generated by noises in
{0.001, 0.005, 0.01} and outlier % in {0, 10, 20}. This procedure is iterated for
15 times and the results correspond to the average.

The demand curve is expanded in a Bernstein Polynomial Basis with M = 75,
then it is fed to a BLR model using either lognormal or normal priors on the
parameters. We tuned the model hyper-parameters, obtaining in particular
a standard deviation of 0.75 for the lognormal prior and 2.0 for the normal
one. The algorithm runs for 100 timesteps, starting from no samples. At each
timestep, BLR is fitted over the available data and using Thompson Sampling
over its posterior distribution an estimation of the demand curve is obtained:
then the next price is set as the one maximizing the corresponding estimated
reward function. Thompson Sampling consider 50 arms corresponding to lin-
early spaced prices across the price domain [0.32, 1], where the cost is 0.3.
After setting the new price, the next sample will be generated from the true
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function’s evaluation in that value and collected by the algorithm as a new
data.

In Fig. 5.2 and 5.3 we report cumulative regret plots (on the left) and the
instantaneous Mean Squared Error of the demand curve fit (on the right) for
two different noise values and three different outlier % values. We also report
the standard deviation of MSE to quantify its aleatoric uncertainty across the
15 simulations.

The two algorithms’ curves have been reported within the same plot and in
the same scale.
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Figure 5.2: Cumulative Regrets and MSE, Noise: 0.001
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Figure 5.3: Cumulative Regrets and MSE, Noise: 0.005
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Shape-constrained BLR outperforms the free-shape model (that uses normal
priors) in each scenario, both in cumulative regret and fit error over time. As
well as being better performing, shape-constrained model is also more stable
than the other one, as we can observe from the standard deviations of MSEs:
not only the error’s decrease over time is steeper in the first model, but is also
less uncertain. This particular behavior suggests that the monotonic formula-
tion is more robust to noise and outlier.

In this noisy setting is interesting to observe how increase noise and outliers’
% results in an increase of the total regret, as we can see from Table 5.1 and
Table 5.2. The two tables quantify how much less regret a shape-constrained
model is able to achieve w.r.t the free-shape one.

Noise Outlier Proportion

0% 10% 20%

0.001 0.053327 0.075171 0.085442
0.005 0.058318 0.195081 0.251743
0.01 0.092141 0.476388 0.544845

Table 5.1: Total regrets of shape-constrained model varying noise and outlier
proportion among simulations.

Noise Outlier Proportion

0% 10% 20%

0.001 0.066960 0.098937 0.111343
0.005 0.125297 0.234983 0.286624
0.01 0.204927 0.505995 0.550301

Table 5.2: Total regrets of free-shape model varying noise and outlier propor-
tion among simulations.

5.1.2. Robustness to Nonstationarity

In many real-world scenarios the intrinsic nonstationarity of the customers’
demand may lead many algorithms to perform sub-optimally. Imagine that a
given customer has its own demand curve, with a particular shape and mag-
nitude. While we can deal with the magnitude’s estimation through market’s
seasonality or trend as in the previous simulations, in this experiment we as-
sume that the shape may change over time. A demand curve changing over
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time, usually in an abrupt way due to events conditioning the market (i.e.
the entry of a competitor or a new product), is usually faced using a sliding
window approach [49]. In this experiment, we compare the two models (and
the clairvoyant) by varying the number of abrupt changes in the demand curve
and the size of the sliding window.

The two algorithms are tested in the same setting and the goal is the mini-
mization of the regret when the goal is to maximize the net cash flow margin
(i.e. λ = 0 in Eq. 3.2). The hidden demand curves are represented in Fig. 5.4:
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Figure 5.4: Demand curves used in the simulation and corresponding reward
function obtained using λ = 0.

Equations for demand curves in Fig. 5.4 are, from left to right:

f1(x) =
3

10
(1− x), f2(x) = 2e−(x+1.2)

5
2 , f3(x) = 7e−(x+1.2)3 .

We consider the scenario in which the number of abrupt changes may vary in
1, 2, 3 and the size of the sliding window in {20, 30, 40}. In particular, the order
in which the demand curves changes is the same as in Fig. 5.4, repeating f1(x)
both as the first and the last function to appear in case of 3 abrupt changes.
For example: if the number of changes is 1, them after half of the timesteps
the function will switch from f1(x) to f2(x), while if it changes 3 times it will
follow the sequence f1(x), f2(x), f3(x), f1(x). Noise is fixed to 0.001 and there
are outlier’s probability to 0.

Model design is identical to the previous simulations: a Bernstein Polynomial
Basis of order 75 is used and standard deviations of lognormal priors and
normal priors are 0.75 and 2.0 respectively. Algorithm runs for 120 timesteps
in order to ensure that for each number of abrupt changes the demand curves
persists for the same number of timesteps. Arms, price domain and Thompson
Sampling procedure are the same as before.

The procedure is iterated 15 times and the result is taken on average.
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In Fig. 5.5 and Fig. 5.6 we report cumulative regret plots (on the left) and the
instantaneous reward collected by the agent at each timestep along with their
1-standard deviation confidence intervals to quantify aleatoric uncertainty, also
clairvoyant’s reward is reported. Curves in the same plot are all in the same
scale and we report the ones concerning 20-samples and 40-samples large win-
dow sizes varying the number of abrupt changes in demand curve.
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Figure 5.5: Cumulative Regrets and Intantaneous Rewards, Sliding Window
Size: 20.
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Figure 5.6: Cumulative Regrets and Instantaneous Rewards, Sliding Window
Size: 40.
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Shape constrained model always outperforms the free-shape one in terms of
total regret (see Table 5.3 and Table 5.4). Is it interesting to see how the two
mantain similar performances (or even better for normal priors model) until a
certain point, where the two divides. The point in which the two cumulative
regret curves fall apart seems to come sooner when the number of abrupt
changes is greater, suggesting a worst nonstationarity-handling coming from
the free-shape model.

The total regrets reported in Table 5.3 and Table 5.4 suggests that in scenarios
in which the abrupt change is only one or two a larger window size is better
performing, while if the environment is more nonstationary (i.e. 3 demand
curve changes) a smaller window can achieve better results. Having more data
samples allow BLR to better fit the true demand curve, but having samples
generated by another process (usually the older samples) can derange it. The
window size hyper-parameter allow us to control this trade-off.

Window
Size

Demand Curve
Changes

1 2 3

20 0.114751 0.205427 0.184926
30 0.125555 0.220044 0.193747
40 0.109177 0.173122 0.174389

Table 5.3: Total regrets of shape-constrained model varying window size and
number of demand curve changes among simulations.

Window
Size

Demand Curve
Changes

1 2 3

20 0.133005 0.297048 0.291925
30 0.133695 0.288935 0.362537
40 0.119264 0.228905 0.336763

Table 5.4: Total regrets of free-shape model varying window size and number
of demand curve changes among simulations.
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5.2. Evaluation in Real-World Environment

We put our algorithm into production on an italian e-commerce selling con-
sumer goods (non-Giffen). In this real-world experiment, we optimize the
prices in presence of volume discounts, computing a full pricing schedule. Fo-
cus will be on business value unlocked by an optimal pricing proposal and on
the dynamics generated by volume discounts on customer demand.

5.2.1. Experimental Setting

We perform a real-world experiment by optimizing the price of an e-commerce
adopting a long-tail economic model [3]. The focus of the experimental cam-
paign is on high volumes products, over which we can reasonably apply also
volume discounts.
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Figure 5.7: Distribution of the volumes of the products in the test set over the
previous period of 2021.

To evaluate the algorithms performance we perform an online A/B test cam-
paign.

The experimental campaign is conducted in one of the main category of the
e-commerce, with a test set (A) composed by Nt = 295 products and a control
set (B) composed by Nc = 33 products of the same category with the same
characteristics. The test and the control sets have been defined by e-commerce
specialists according both technical and market aspects.

The test is about products with a turnover of 300 KEuros and a net margin
of 83 KEuros. Volumes of the products in the test set is shown in Figure 5.7.
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Figure 5.8: Seasonality over a single week.
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Figure 5.9: Seasonality over different weeks in an year.

We update the prices every 7 days, since a significant and stable intra-week
seasonality has been observed (see Figure 5.8). This kind of e-commerce is
subject to a significant seasonality over the different periods of the years, as
shown in Figure 5.9.

Due to the particular kind of goods sold by the e-commerce and the nature
of target customer segment, volume discounts are a really important business
component that affects customers’ loyalty and the logistic organization of the
company. E-commerce specialists asked us to impose η = 3 volume’s thresh-
olds to each product of the test set, and optimize the corresponding proposed
discounts.
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The test lasted for 17 weeks, from 16 June 2021 to 17 October 2021 and
there are no impacting factors that can influence the performance of the test
set (A) w.r.t. control set (B) and vice-versa (i.e. variations in advertising
expenditures).

On the Monopolistic Assumption
Given the availability of competitors’ prices in the period from 13 July 2020
to 16 June 2021 (start of the test), we perform a statistical testing to assess
the correlation of that information with the performances of the e-commerce
under analysis. More in detail, we compared the latter’s volumes with the
price difference found with competitors. We selected the 35 products from
the test set for which competitor’s data were available, then we performed a
Spearman’s rank correlation test (for a detailed explanation see [29]) comparing
their volumes with the difference in price of the same product sold by each of
the 3 main competitors of the market. In Figure 5.10 are represented the p-
values of correlation test for each product against each competitor: the null
hypothesis of the test is "The two variables are uncorrelated", we accept the
null hypothesis every time since p-values are always bigger than our threshold
set to 0.05, in order to achieve a 95% confidence. Thus, being this quantities
statistically uncorrelated, we consider our monopolistic assumption valid.

Performance Metric
The business goal is to maximize the net margin (i.e. λ = 0 in Equation (3.2)).

To assess the goodness of the choice of the products’ set w.r.t. this perfor-
mance metric, we performed a statistical test to check if the two groups are
comparable. For each product, we computed the average weekly net margins
during the first six months of 2021: we were interested to see if the median and
the mean of this value across the products of the test set are higher than the
ones of the control set. We performed one-sided permutation tests with the
null-hypothesis being "The test set has not a higher median/mean of net mar-
gin w.r.t. the control set": Figure 5.11 represents the distributions of the tests’
statistics together with the observed one, the resulting p-values concerning me-
dians and means are respectively 0.54 and 0.45, resulting in a null-hypothesis
acceptance. Thus, we can conclude that the test population has not a higher
median/mean of the chosen performance metric at the start of the test.
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Figure 5.11: Distribution of the two-sided permutation tests statistics before
the test, R = 10000 random permutations.

5.2.2. Experimental Results

Performance Overview The goods priced by PSV-B performed an im-
provement in the performance metric of +55% w.r.t the control set of goods.
After 17 weeks, we performed the same statistical test on the weekly perfor-
mance metric between the two sets of products during the test period. In
Figure 5.12 are represented the distribution of the the test’s statistics, differ-
ence of medians and difference of means, along with the observed ones.
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Figure 5.12: Distribution of the two-sided permutation tests statistics after
the test, R = 10000 random permutations.

The two tests, performed with the same seed and number of random permu-
tations of the previous, yielded this time p-values on the medians and on the
means of respectively 0.01 and 0.02, allowing us to reject the null hypothesis
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and conclude that the test set of products has both a higher median and a
higher mean of the average weekly performance metric with respect to the
control set of products, with a confidence of > 97.5%.

Looking at the performances on a product-wise level, we report in Figure 5.13
the sorted % of improvement on the performance metric w.r.t. to the period
of 2021 preceding the test, for each single product.

In the test set, 138 products over 295 (∼ 47%) improved their average per-
formance with respect to the previous period of 2021, while in the control set
only 8 products over 33 (∼ 25%) did so.
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Figure 5.13: Margin Improvement over products.

Basis Functions To perform the test mentioned above, we carefully design
the BLR with a particular focus on the basis functions’ choices. In order to
grasp the irregular nature of the e-commerce’s seasonality, we choose radial
basis functions (RBF ). Trend is modelled by choosing polynomial basis func-
tions. RBF are evaluated with different shifts and scales, while polynomial
features with different degrees.

Effect of Volume Discounts The goal of the volume discounts algorithm
is to modify the probability distribution of the units count of the same product
in a basket. In other words, we want to alter β̄k: since k ∈ {1, 2, 3}, the goal
is to move mass from β̄1 to β̄2 or β̄3.
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Figure 5.14: β distribution over the 4 representative products.

In Figure 5.14 are represented the distributions of β for 4 most representative
products of the category in terms of total yearly revenue. There we can dis-
tinguish two different behaviors between the test period and the previous one.
In Table 5.6 are reported the variations of the three β̄k: during the test we
achieved an improvement of β̄2 and β̄3 at the expense of β̄1.

Product ∆β̄1 ∆β̄2 ∆β̄3

1 -32% +10% +22%
2 -26% +25% +1%
3 -15% +4% +11%
4 -5% +1% +4%

Mean -19.5% +10% +9.5%

Table 5.5: Variations of β̄k after test.

In Table 5.6 are reported the variations in the average units per basket of the
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4 products after the test. As we can see, the volume discounts not only modify
cart distribution, but also increase the number of units purchased per time.

Product 1 Product 2 Product 3 Product 4 Mean

+63% +43% +11% +14% +33%

Table 5.6: Variation of units per basket after test.
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Figure 5.10: Distribution of the p-values of Spearman’s rank correlation test.
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6| Conclusions and Future

Works

6.1. Conclusions

In this work, we introduce a novel dynamic pricing algorithm to deal with
typical real-world scenarios. In particular, the main features distinguishing
our algorithm, namely PSV-B, from most of those available in the literature
are as follows.

• The possibility to compute a pricing schedule integrating a data-driven
volume discounts policy.

• A way to deal with seasonality that is built-in in the model and requires
no assumptions nor additional hyper-parameters.

• An extensive evaluation test performed both in a simulated environment
and in a real-world context.

We validate the design choices of our solution in a synthetic environment, then
a real-world experimental campaign has been conducted to assess the added
economic value that our algorithm can provide.

In each of the simulations we conducted, we observed a clear evidence in fa-
vor of the shape-constrained model: our design choice revealed itself as an
important advantage in many situations (i.e. nonstationary demand or noisy
data):

• Shape-constrained model achieved a better total regret in every simula-
tion setting.

• In noisy environments, the shape-constrained model is more robust in
the task of learning the true, hidden demand curve, resulting in a more
stable estimation over time.

• In nonstationary environments, the shape-constrained model is more re-
active to demand curve’s abrupt changes.
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We performed an online A/B test on an e-commerce selling consumer goods.
The algorithm priced products for a total turnover of 300 KEuros (set A) and
improved by 55% the net cash flow margin with respect to the set B. Addition-
ally, the data-driven volume discounts policy successfully impacted customers’
shopping behaviors in most of the products. We reported the example of 4
important products having their average units per shopping cart increased by
+33% with respect to the previous period of time.

6.2. Future Works

An important research direction in dynamic pricing literature concerns the
joint pricing of a large number of products possibly interacting with each other.
Recent works, such as Mueller et al. [34], highlight how sales of a given product
may depend on seasonality, its own price, and even the pricing of the other
products. An extension to this work would be to take into account products’
interactions and do a joint pricing on subgroups of products. Such an ap-
proach would avoid the so-called cannibalization phenomena among products,
namely the scenario in which a product absorbs sales from another reducing
the retailer’s business. In other fields, such as advertising [37], the problem of
dealing with different markets’ interdependencies.

Another task, which is particularly crucial for companies and in particular the
ones operating on the web (i.e. e-commerce, marketplaces) is to deal with
pricing and advertising jointly. Over the last years, AI based algorithms for
online advertising campaign optimization have been proposed and extensively
analyzed (see [53] for an overview). Many of them rely on bandit approaches
and online optimization techniques, being somehow close to pricing in their
assumptions and methodologies [36, 38].

The aforementioned extensions to our model can be in principle made by feed-
ing new features to the BLR, modelling the relationship between other prod-
ucts’ prices or advertising expenses and sales of a given product.
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