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A B S T R A C T

Implantable Medical Device (IMD)s greatly evolved during the last

decades. Technological advances made them smaller and more com-

fortable while increasing their capabilities and functionalities. In par-

ticular, among all most advanced types of IMDs, Implantable Car-

dioverter Defibrillator (ICD)s are able to deliver shocks to restore a

normal hearthbeat.

One of the most recent upgrades is the long-range telemetry module,

that allows IMDs to communicate wirelessly with external devices.

This addition gives several advantages both to patients and caregivers

but has also an important drawback: an increased attack surface.

Recent studies have demonstrated that ICD’s proprietary communi-

cation protocols, based on this wireless telemetry, are vulnerable to

a wide range of attacks [1], [2], [3]. Therefore, it is possible for an

attacker to gain control of an ICD, leading to serious consequences for

patient’s health. Researchers focused their efforts on enhancing the

security of this telemetry, but they had also to consider the limitations

introduced by the ICD context: the importance to balance security with

accessibility and the necessity to design a lightweight solution that

considers the limited resources of an ICD.

In this work, we have performed a feasibility analysis on an approach

that has been ignored by the research community: a key distribution

system based on asymmetric cryptography. In particular, we have

shown that this approach satisfies the requirements imposed by the

ICD domain while granting an adequate level of security against most

common attacks on ICDs. To further demonstrate the feasibility of this

approach, we have implemented a communication protocol based on

Elliptic Curve Cryptography (ECC) on an Arduino board that simu-

lates the technological limitations of an ICD.
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In our experimental evaluation phase, we have measured the perfor-

mances of our communication protocol and compared them with the

ones of the algorithms of the National Institute of Standards and Tech-

nology (NIST) call for lightweight cryptography, demonstrating how

close our approach is to a lightweight solution specifically tailored for

securing ICDs.
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S O M M A R I O

Un dispositivo medico è definito come “impiantabile” se è desti-

nato ad essere inserito, totalmente o parzialmente, all’interno del

corpo di un paziente, tramite intervento chirurgico o medico. Dopo

l’intervento, questi dispositivi sono destinati a restare all’interno del

paziente per uno specifico periodo di tempo, che dipende dal tipo

di dispositivo. Esempi di dispositivi medici impiantabili IMD sono

defibrillatori impiantabili ICD, pacemaker cardiaci, pompe di insulina

e neurostimolatori. Le funzionalità mediche svolte da questi dispos-

itivi sono finalizzate a migliorare la qualità della vita del portatore,

facilitando l’esecuzione di alcuni compiti o mantenendo l’organismo

in salute tramite la somministrazione di terapie o farmaci. Constata

l’importanza, dal punto di vista medico, di tali dispositivi risulta

chiaro che l’interesse della ricerca si sia rivolto sul miglioramento degli

IMD su molteplici aspetti. Avanzamenti tecnologici continui hanno per-

messo di produrre dispositivi con una minore probabilità di rigetto da

parte del paziente, più compatti e confortevoli, ma anche di aumentare

la longevità di questi dispositivi all’interno del corpo del paziente.

Tra tutti i dispositivi impiantabili attivi, gli ICD sono tra i più comuni.

Attualmente ne esistono diversi modelli sul mercato, alcuni esempi

prodotti da Medtronic sono :[4], [5]; altri prodotti da Biotronik sono:

[6], [7]. La grande diffusione è principalmente dovuto dal fatto che

non si limitano a migliorare la qualità della vita del paziente, ma

sono in grado intervenire in situazioni di critiche e salvare la vita al

portatore del dispositivo. Inoltre, la diffusione di questi dispositivi è

cresciuta, ed è destinata a crescere, di anno in anno. L’età media della

popolazione mondiale si è alzata e, con essa, anche la diffusione di

malattie cardiovascolari, che tramite questi dispositivi possono essere

trattate e mitigate. Un ICD, oltre a svolgere le normali funzioni di
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un pacemaker impiantato, quindi di regolare e rendere più stabile

il battito cardiaco di un paziente, è in grado di compiere azioni sal-

vavita più avanzate. In particolare, un ICD è in grado di monitorare

costantemente l’attività cardiaca del cuore di un paziente, individuare

comportamenti anomali e dannosi per la vita del paziente ed infine

intervenire, se necessario, con shock elettrici. Tramite queste scosse è

possibile ristabilire una normale attività cardiaca da situazioni critiche

per il cuore del paziente, come un battito eccessivamente frequente

oppure completamente assente.

Negli anni, gli ICD sono diventati dispositivi sempre più complessi, da

un punto di vista funzionale, riducendo nel mentre le loro dimensioni

e aumentando la loro longevità all’interno del corpo umano. Una delle

migliorie tecnologiche recenti che riguarda gli IMD più avanzati, ICD

compresi, è l’introduzione di una telemetria wireless a lungo raggio.

Questa tecnologia permette ad un ICD di comunicare con dispositivi es-

terni al corpo del paziente senza dover richiedere uno stretto contatto

con altre apparecchiature mediche. L’introduzione di questa telemetria

ha portato grandi vantaggi sia ai pazienti che al personale degli os-

pedali. Ai pazienti è infatti permessa una frequenza ridotta di visite in

ospedale annuali, in quanto questi dispositivi possono inviare dati rel-

ativi alla salute direttamente dall’abitazione del paziente all’ospedale

che lo ha in cura. Il personale ospedaliero invece risparmia tempo

sia durante la fase di impianto del dispositivo che nelle successive

visite di controllo, riducendone anche i costi per l’ospedale. Tuttavia,

l’introduzione di questa nuovo modulo di comunicazione wireless ha

anche un importante aspetto negativo. Dispositivi che prima erano

completamente isolati all’interno del corpo del paziente, e quindi

protetti da eventuali attacchi esterni, ora sono vulnerabili a numerosi

attacchi informatici. Tramite questi attacchi è possibile rubare infor-

mazioni private e sensibili, modificare le terapie distribuite da un ICD

e persino manipolarne il funzionamento, fino al punto da avere effetti

dannosi o letali per il paziente. Il mondo della ricerca si è quindi

concentrato sull’ideazione di contromisure adeguate a tali attacchi,
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di modo da garantire una comunicazione sicura tra ICD e dispositivi

esterni. Tuttavia, le soluzioni proposte, per essere considerate valide,

devono tenere conto del contesto in cui gli ICD operano e delle limi-

tazioni tecnologiche di questi dispositivi. Innanzitutto, un protocollo

di comunicazione fatto su misura per l’ambito degli ICD deve poter

garantire un accesso rapido solo ad utenti autorizzati in qualsiasi situ-

azione, soprattutto in caso di emergenze. Inoltre, gli ICD dispongono

di risorse computazionali limitate, Random Access Memory (RAM)

di dimensioni ridotte e batterie che devono durare anni senza essere

ricaricate. Quindi, un protocollo di comunicazione sicuro deve tenere

conto di queste risorse, senza esaurirle.

In questo lavoro ci siamo proposti di analizzare le più recenti soluzioni

a questo problema, mostrandone i pregi ed i difetti, e di indagare sulla

fattibilità di un approccio che è stato ignorato dalla maggior parte

dei ricercatori. Questo approccio si basa sull’utilizzo di una Public

Key Infrastructure (PKI) in combinazione con l’utilizzo di crittografia

asimmetrica per garantire un rapido accesso, in qualsiasi situazione

solo ad utenti autorizzati. Abbiamo quindi dimostrato come questo

approccio soddisfi i requisiti funzionali necessari per il contesto degli

ICD, garantendo un adeguato livello di sicurezza contro la maggior

parte degli attacchi che possono essere effettuati su questi dispositivi.

La principale limitazione di questo approccio è dovuta al fatto che la

crittografia asimmetrica è più costosa, in termini di risorse, rispetto

ad altri approcci, e quindi considerata non adatta per gli ICD correnti.

L’obiettivo di questa tesi è quindi di dimostrare la fattibilità tecnica

di questo approccio nel contesto degli ICD. Per raggiungere questo

scopo, abbiamo implementato un protocollo di comunicazione basato

su crittografia a curve ellittiche su una board Arduino con caratter-

istiche tecnologiche simili a quelle degli attuali ICD, dimostrandone

quindi la sua realizzabilità. Abbiamo inoltre misurato le prestazioni di

tale protocollo seguendo tre metriche principali: tempo di esecuzione,

utilizzo della RAM e consumo della batteria.

In questo studio abbiamo infine comparato le prestazioni di questo
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nostro protocollo con quelle degli algoritmi proposti nella call del NIST

per la crittografia lightweight. Questi algoritmi, basati su crittografia

simmetrica, sono stati progettati per essere il più leggeri possibili in

termini di consumi di risorse e sono quindi stati studiati per dispositivi

limitati tecnologicamente. Tuttavia, questi algoritmi non tengono in

considerazione il contesto operativo degli ICD, e quindi non rappresen-

tano delle valide soluzioni in questo dominio applicativo. Il risultato

di questa nostra comparazione dimostra come il nostro protocollo non

è distante dalle prestazioni degli algoritmi del NIST e che, a differenza

di tali algoritmi, tiene in considerazione tutti i requisiti funzionali

necessari per essere una soluzione nel contesto complesso in cui gli

ICD operano.
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1
I N T R O D U C T I O N

A medical device is defined as “Implantable” if it is either partly

or totally implanted inside the patient’s body. There are different

devices that help patients with different diseases, from cardiac ar-

rhythmia, diabetes or Parkinson’s disease. They can be passive, as

artificial joints, or active, meaning that their functioning relies on some

power source different than the human body, examples include Im-

plantable Cardioverter Defibrillator (ICD)s, Implantable cardiac pace-

makers, cochlear implants, implantable insulin pumps, neurostimu-

lators. These devices not only improve patients’ quality of life, but

they actually save lives. Due to the aging of the population and the

spreading of unhealthy lifestyles, the number of people that live with

chronic diseases and need an Implantable Medical Device (IMD) is

increasing every year [8]. These devices remain inside the patient’s

body for several years, therefore they need to be energy efficient to

avoid having to replace them often. Moreover, they possess limited

resources in terms of computational capability, battery capacity and

memory size because their main purpose is to deliver the treatment to

the patient.

In our research we focused on ICDs. These devices are used to treat and

detect ventricular fibrillation by analyzing the heart’s electrical activity,

when the fibrillation is detected the ICD delivers a shock to stop its ac-

tivity and to make it restart itself at the correct rhythm. During the last

two decades, ICD’s demand has grown and is expected to grow in the

following years due to the aging of the population and the increasing

prevalence of cardiovascular diseases [9], [10], [11]. For these reasons,

ICDs are constantly evolving to better serve their purpose. Beside the

reduction in size and the increase of the battery longevity, one of the

1



2 introduction

most relevant improvements that has been recently added to ICDs is

the ability to communicate with devices outside of the human body.

This new functionality is generally defined as “wireless telemetry”

and brought significant advantages to the patient care, while cutting

down times and costs. Despite all these positive aspects, the introduc-

tion of this long-range communication brought a significant drawback:

an increased attack surface. Although no real attacks on the wireless

telemetry of ICDs have ever been documented, it has been shown by

researchers that the proprietary communication protocols used by ICDs

present little to none security mechanisms [8]. For this reason, attackers

could steal sensitive data or alter the device functioning, threatening

patient’s life. Therefore, studying solutions to secure such devices has

become a discussed topic for the research community. These solutions,

of course, need to consider the limitations of this devices, like the

limited memory, low computational capabilities and the need for the

battery to hold as long as possible: this translates in the need of a very

lightweight solution. Current proposed solutions follow two main

approaches: biometric based and external device based solutions. The

former, performs authentication procedures by measuring a biometric

or a physiological value. The latter is based on using an external device

to proxy any communication between ICDs and programmers or base

stations. Although these approaches are secure in most situations they

present some drawbacks that make them not really effective in the

ICD domain. A different approach to this problem could be looking at

lightweight cryptography algorithms, like the ones presented in the

last American National Institute of Standards and Technology (NIST)

call for lightweight cryptography. Despite the proposed algorithms are

not specifically designed to suit ICDs’ domain, they are still meant to

work on resource constrained devices, so, analyzing their performance

could be very useful to obtain some guidelines that should be followed

to define a solution as lightweight. Considering ICDs structural and

theoretical limitations, finding a way to secure their telemetry is quite

challenging. Symmetric cryptography, like the one used in the NIST
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algorithms, is surely a lightweight solution but, by definition, it does

not consider how the secret keys should be exchanged between the

communicating parties, and that is an essential requirement in the

ICD context. Therefore, using asymmetric cryptography with a Public

Key Infrastructure (PKI), seems to be a valid option to perform an

authenticated key exchange process. To check if it could be possible

to implement a solution like this on ICDs, it is necessary to perform

a feasibility analysis. This means measuring its performances, check-

ing if it protects from most of possible attacks and if it meets all the

requirements given by the ICDs’ domain. Moreover, it is interesting

to compare the performance tests results of this approach with the

baseline given by NIST algorithms to understand if it is lightweight

enough. In order to perform a feasibility analysis on solutions based

on asymmetric cryptography, we have designed a communication

protocol based on Elliptic Curve Digital Signature Algorithm (ECDSA)

and Elliptic-curve Diffie–Hellman (ECDH) and we have implemented

it on an Arduino MKR WiFi 1010 board that we have also used as test

bench to measure the performances of NIST lightweight algorithms.

The result of the comparison between our proposed solution and the

NIST algorithms shows that, even if we use asymmetric cryptography,

that is supposed to be more resource demanding than the symmetric

one, our results are pretty consistent with the average of the NIST

algorithms ones. Moreover, our consumptions are low enough for the

protocol to be performed on an ICD without influencing its functioning.

In this work we:

• have analyzed the current state of the art security solutions

proposed for ICDs, examining the positive and negative aspects

of each approach.

• Have performed a feasibility analysis on an approach based on

a public-key distribution system, considering ICD’s theoretical

constraints and requirements.
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• Have designed and implemented an Elliptic Curve Cryptogra-

phy (ECC) based communication protocol taking into account

the points made in the feasibility analysis.



2
B A C K G R O U N D

In this chapter, we will present a full description of ICD’s domain. We

will start from an insight on why studying these devices is relevant,

then we will provide a structural description of both internal and

external components. In the third section the threat model will show

ICDs’ vulnerabilities, the categories of attackers interested in these

devices and their goals, the types of proper attacks, and how they

could be performed in this domain, and which challenges could be

found while trying to secure ICDs. In the fourth section, we offer

a presentation of solutions from the state of the art with positive

aspects and flaws. Lastly, we will present the NIST call for lightweight

cryptography, that even if is not specifically designed for ICDs, present

some relevant characteristics that could be useful in our research.

2.1 icds’ background

Considering all types of IMDs, ICDs are capturing much of the re-

searchers’ attention lately. The reason can be found in the great im-

portance these devices have in protecting patients’ lives and in the

fact that in the last two decades the demand for these devices is quite

growing. As shown in Figure 2.1, the demand of defibrillators is also

expected to grow in the following years. As can be seen, a growth

of 50% in the demand is expected from 2018 to 2026. This is mainly

due to the fact that the average age of the population is growing. This

aspect leads to the increase of people suffering from cardiovascular

diseases whose lives rely on this kind of devices.

The latest ICDs’ models have many features, like tracking arrhythmias,

monitoring the heartbeat, and performing stimulations in order to sta-

5



6 background

Figure 2.1: The bar graph shows the growing demand for defibrillators from

2015 to 2018. It also illustrates the expected demand from the

year 2019 to 2026.

bilize the heart rhythm. Besides, all ICDs can carry out defibrillation in

case of ventricular tachycardia or fibrillation that may put the patient’s

life in danger. This means delivering an electric current directly to the

heart to restore a correct heart beating rate. In Figure 2.2 it is possible

to observe an X-ray image of a patient with an ICD.

Technology helped in improving some of ICDs’ characteristics ex-

tending their battery lifetime while making them smaller in size and

weight. This improvement made implanting the devices easier and

increased their duration without the need to replace it.

One of the most significant technological improvements is the introduc-

tion of a telemetry module that allows a long-range communication

between the ICD and devices outside the human body. Before this en-

hancement, ICDs used to communicate with the outside world through

an inductive link, that had a quite limited range of communication,

less than 6 cm, and data transmission rate, around 100 kbps. To ac-

tivate the communication between the ICD and any external device

using this inductive link a programming head needed to be very close

to the patients’ body for the entire duration of the process. During

the communication, the ICD and its programmer exchange messages,

whether it is for data transmission or re-programming the device.
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Figure 2.2: X-ray image of a patient’s chest with an ICD. On the right, it can

be seen the external case of the ICD. The number 1 in the picture

refers the head of an ICD’s lead connected to the patient’s hearth.
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At the moment, due to the newly introduced telemetry, communica-

tion can happen at a maximum distance of 2 to 3 meters [7], [4]. In

addition, the programming head needs to be close to the patient only

in the first phase of the process, when the ICD’s telemetry module is

activated [6]. This new telemetry feature provides plenty of positive

aspects to patients’ treatments.

First, the surgery to implant or replace the device got faster and easier,

thanks to the fact that ICDs can oversee the patients’ condition and

can be configured even during the operation. Another useful improve-

ment is that during usual visits, doctors can monitor and measure

the patient’s Electrocardiogram (ECG), a graph of the electrical activity

of the heart, just activating the wireless telemetry avoiding placing

electrodes on his chest. This not only saves time to both physician and

patient but makes the person more comfortable during follow-ups.

Finally, telemetry allows communicating with ICDs even while the

patient is sleeping, thanks to at-home devices that then transmit the

devices’ data to the hospital. This way, less check-up visits are needed

and doctors can monitor patients’ condition at any time, possibly

perceiving worrying situations.

Thus, there are two categories of devices that can communicate with

ICDs from outside the human body: programmers, used by doctors,

and those at-home devices, called base-stations. Programmers are the

devices set in the hospitals or clinics, used by the staff, they monitor

the patient’s condition and can also change the ICD’s configuration.

Base-stations generally are set near to the patient’s bed to be able to

monitor him while he is sleeping. They gather data about the patient’s

status and transmits them to the hospital or the clinic that treats the

patient using an internet connection or the phone line. Both these

devices are usually equipped with a programming head that once

placed on the patient’s chest enables the communication with the ICD.

Figure 2.3 illustrates how an ICD interacts with these external devices.
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Figure 2.3: Two different communication types between an ICD and an

external device are shown. Above, an ICD sends health data to a

base station located at the patient’s home. This data is collected

and then sent to the patient’s hospital. Below, an ICD interacts

with a hospital programmer. The medical professional is able to

change therapy settings by sending messages to the ICD.
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Figure 2.4: The ICD’s pulse generator is implanted under the patient’s chest

skin, just above his heart. The lead enters the heart through an

incision done on the superior vena cava. The head of the lead is

able to deliver shocks to the right ventricle

2.2 icd’s structural analysis

We will now give a technical explanation of ICDs’ functioning and

architecture with the aim to explain how ICDs work and what restric-

tions they have. Finding this kind of information is quite hard due

to manufacturers’ policy and secrecy, but significant data could be

found in ICDs patents available online, scientific literature, and some

manufacturers manuals available on their websites [12], [13]. The ICD’s

structure, illustrated in Figure 2.4, consists of a pulse generator con-

nected through an epoxy resin connector to one or more leads that are

linked to the patient’s heart.

The case where the pulse generator is placed in is in touch with

human tissues and is usually made of biocompatible titanium due

to its resistance to corrosion and bio-inertness [7], [5]. The case is

hermetically sealed and contains four main components:
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• Controller module

• Memory module

• Power source module

• Telemetry module

Figure 2.5 illustrates a schema of all the components and how they

are connected with each other, that will be now described in detail.

The Memory module is connected with both the Controller and the

Power Source modules, that are also connected with each other. The

Telemetry module is linked to the Controller and to the Power Source

modules too.

Figure 2.5: All the main components present inside the bio-compatible ti-

tanium case of an ICD. The Power source module distributes

energy to all other modules when a wakeup message is received.

First, there is the controller module, which transmits control com-

mands to the pulse generator to manage its functioning. It includes a

microprocessor that handles the functioning and cooperation of the

modules and runs the firmware saved in the memory module. Recent
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studies show that ARM-Cortex M3 is currently used as a microcon-

troller in IMDs [14]. In this module, there are also the logic components

that control the timing and synchronize the pulse generator.

The memory module includes both Read Only Memory (ROM) and

Random Access Memory (RAM). RAM saves the patient’s custom pa-

rameters, sensed ECG data, and the temporary variables used in the

execution of the firmware. RAM dimension could go from 128KB to

1024KB and most of the available memory is taken from the ECG sig-

nals measured and saved by the device [15], [16], ROM on the other

hand, contains the patent code from the manufacturer.

Next, the power source module includes a battery and capacitors. The

two most used types of batteries are lithium-manganese dioxide or

lithium-silver vanadium oxide, they provide power to all the other

parts of the ICD [17]. Recent ICD models have a battery capacity that

spans from 1 Ah to 2Ah for the models that last the most [18], [19].

The capacitor collects, stocks, and delivers energy to carry out defib-

rillation shocks when needed, this component is crucial for the ICD

functioning and takes most of the space of the ICD area [20].

Finally, the telemetry module manages the communication between

the ICD and the external devices previously mentioned. It usually

consists in two Radio Frequency (RF) receivers and just one RF trans-

mitter. One of the RF receivers is a broadband RF wake-up receiver

and works at Industrial, Scientific and Medical (ISM) band that goes

from 2.4000 to 2.4835 GHz. Otherwise, the RF wake-up receiver can be

replaced with an inductive wake-up receiver, anyway this component

is constantly powered up. The aim of this receiver is to pay attention to

wake-up messages from other devices, when the message arrives the

device’s components are powered up and start working, while when

no message arrives the device powers down the not necessary compo-

nents saving important battery durability. As said, when the wake-up

message is received, all the device’s modules get powered up. This

means that the other receiver and the transmitter get activated and

become able to communicate with external devices using the Medical
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Implant Communication Service (MICS) radio band that goes from 402

to 405 MHz [12]. This frequency band is reserved for communication

of medical implants and is preferable because it has good conductivity

in the human body and a long range of communication. Transmitter

and receivers could be all linked to the same antenna or, if the device

has more antennas, each component could be connected to a different

one.

2.3 threat analysis

In this section, we will first analyze the vulnerabilities of ICDs. After-

wards we will examine the possible attackers interested in targeting

these devices and their goals. Then, we will present the different types

of attacks that may be performed on ICDs. Finally, we will discuss the

challenges that have to be faced when studying how to secure these

devices.

2.3.1 Vulnerability analysis

Since the main purpose of an ICD is to improve the patient’s quality

of life as long as possible without being replaced, many factors need

to be considered when analyzing its functioning. The device must be

small, light, made with a material suitable to stay in contact with the

human tissues for many years. But the security factor is often not given

in the right attention or even not considered at all. ICDs store patient’s

confidential data like personal and medical information. In addition,

since ICDs provide treatments for chronic cardiac diseases based on

the specific patients’ necessities, the devices also contain the personal

parameters that regulate the therapies. Therefore, someone who would

want to harm a patient could try to alter the ICD’s functioning. As a

result, studying the security and privacy of ICDs is very important to

find out a solution that protects them from possible attacks.
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As mentioned in the previous chapter, the newly introduced telemetry

module provides many positive aspects in the quality of life of patients

that need these devices, reducing the number of follow-up visits and

saving time for both doctors and patients. In contrast, the possibility of

“long-range” communication has exposed ICDs to new dangers widen-

ing the attack surface. Currently, no ad-hoc security protocol has been

implemented to secure ICDs and the proprietary protocols generally

used by these devices have no or very little security to communicate

wirelessly with external devices [1], [9]. Once this vulnerability has

been discovered, many attempts to reverse-engineer the proprietary

communication protocols and perform some attacks targeting data

privacy and device functioning demonstrating the presence of flaws

in those protocols have been conducted [15]. Moreover, as stated in

[8], there is the chance to enable long-range communication without

the need to place the programming head near to the patient’s chest.

This make it possible to send a definite set of messages that is always

the same in every communication session of the same ICD.

2.3.2 Attacker model

Studying the possible attackers’ categories and what their goals may

be is fundamental to comprehend the reason why it is important to

improve the security of ICD’s telemetry. There are three main cate-

gories of attackers in this domain, we will discuss them from the least

alarming to the most one. The categories are:

• Passive attacker

• Active attacker

• Expert active attacker

The passive attacker uses common use equipment, easily accessible,

to intercept the messages between the ICD and the external device it is

communicating with, his goal is to gather specific data or information



2.3 threat analysis 15

about the patient’s or his treatment. Since the passive attacker cannot

interfere with the data sent to the device, he is incapable of modifying

parameters of the ICD and therefore of harming the patient. His threat

is against message confidentiality and privacy. For this reason, we

consider the passive attacker as the least dangerous one.

The active attacker has at its disposal more elaborated equipment and

is capable to intercept the communication between the ICD and the

external device and transmit back to the ICD some of the intercepted

messages to set up a connection with it instead of the external device.

This kind of attacker does not know the format of the exchanged

messages during the ICD’s proprietary communication protocol but

can exploit the previously intercepted messages sending them again

and modifying them. Active attackers can also try to drain the battery

of the device trying to establish a connection multiple times, to pass

themselves off as an external device, and activate treatments when

they are not needed possibly harming seriously the patient. Conse-

quently, this attacker type can affect the right functioning of the ICD

and can deteriorate the treatment the patient receives up to the point

where a device replacement is needed.

In conclusion, the most alarming attack category is the expert active

attacker, who is capable to find out the format of the messages of the

proprietary protocol. He has the ability to perform the attacks men-

tioned in the other categories but is also able to create new messages

in order to change the device’s settings or to alter its functioning. In

this way, he could make it deliver wrong or unnecessary therapies

endangering the patient’s life.

Now that we have described the different attackers’ categories, we

will proceed by describing the main goals they usually try to achieve.

First, the attacker’s aim may steal sensitive data, not only personal

and medical data but also technical data about the device, that can be

used in industrial espionage or for personal interest. All the previously

mentioned attackers may try to achieve this goal.

Then, an attacker may want to damage the reputation of a medical
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facility or a manufacturer by deteriorating the goodness of the treat-

ment of imposing an early substitution of the ICD. This objective could

be performed by a manufacturer against a competitor, for example,

since the implantable medical device market is quite competitive. All

the previously mentioned attackers may want to achieve this goal.

Lastly, an attacker may want to harm the patient or event threaten his

life by altering the ICD’s functioning. Only the expert active attacker

could perform this attack.

2.3.3 Types of attacks

As said in the previous section, ICD’s telemetry proprietary protocols

miss effective security measures, in terms of authentication, encryp-

tion, and integrity checks. This makes these devices vulnerable to

many attacks, and to design a proper security protocol it is fundamen-

tal to identify the characteristics of the attacks. We will now present

the possible attacks that may be conducted against ICDs.

Eavesdropping is a type of attack that aims to intercept the messages

exchanged between the ICD and the external devices to steal sensitive

data leveraging on the fact that the messages are not encrypted. This

attack can be performed by both active and passive attackers and

primarily is directed against the confidentiality of information about

both the patient and the device.

Replay attacks aim to intercept the messages between an external

device and the ICD and re-sending them at another time. Since the

current ICD protocol does not provide any form of prevention against

this kind of attack, an attacker could exploit previously sent messages

to set again some settings or making the ICD re-transmit confidential

data. If the attacker is of the active expert category he could also

modify the message, knowing its structure, or even produce new

messages performing a Spoofing attack, persuading the ICD that it is

communicating with a rightful device. In this way, he could make the
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ICD deliver wrong treatments harming the patient.

Man-In-The-Middle (MITM) is a kind of attack that aims to persuade

both ICD and external devices that they are communicating with each

other but, actually, they are both communicating with the attacker. An

active expert could perform this attack hijacking a rightful commu-

nication transmitting different malicious messages to both ICD and

external devices while they assume that the exchange of messages

went correctly.

Denial of Service (DoS) is a type of attack that aims to prevent the de-

vice to be available, by jamming the message exchange or by draining

the ICD’s battery sending many connection requests in a small amount

of time, forcing the patient to an early device replacement.

2.3.4 Challenges in securing ICDs

We presented the structural limitations of ICDs, their vulnerabilities

and the attacks they are vulnerable to, but this knowledge is not suf-

ficient to define a secure communication protocol between ICD and

external devices. It is fundamental to examine the domain in which

these devices operate and identify its limitations and how introducing

new security solutions could affect the correct functioning of the de-

vice. First, it is necessary to find the right trade-off between security

and accessibility. Access to the device should always be possible for

doctors and physicians in a fast and easy way, to allow them to inter-

vene easily in situations where timing is crucial while avoiding that

any malicious attacker could access the device unauthorized. To better

understand the implications of ICDs’ domain it is important to analyze

different possible scenarios. As an example, considering that the ICD

could be accessible only with definite credentials, it could seem a good

idea to keep these credentials stored in the hospital that usually treats

the patient, in order to allow only authorized staff could access the

device. But, if an emergency is considered, where the patient is any-
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where but close to that hospital and possibly unconscious, he would

not be able to give any information about his medical history or the

hospital where the credentials of his ICD are stored. In this scenario,

access to the ICD would be prevented and the rescue procedure would

be very slowed down. For this reason, designing a communication

protocol with security measures that have strong access policies would

not be recommended in the ICD context, in fact, it could be useful to

grant easy and fast access to handle this kind of situations.

Another factor to examine is the fact that ICDs are resource-constrained

devices, as for memory, battery, and computational capacity they are

structurally limited. For this reason, when studying how to implement

a proper security scheme is fundamental to examine its feasibility in

the ICD domain. To implant or substitute an ICD, a surgical procedure

is needed, so solutions that are too energy-consuming are to avoid

because they would drain the device battery and reduce the implant

longevity. As previously mentioned, in section 2.2, ICDs have just a few

kilobytes of available RAM, simple and low-consumption processors

so they are not able to execute complex procedures and big amounts

of data in a small amount of time.

Finally, one aspect that impacts the researches about ICDs’ telemetry

security is the difficulty for researchers to gather enough and enough

recent data about the devices. The manufactures, considering the

competitiveness of their market, avoid sharing specific information

about their products, that being proprietary code or devices samples

to prevent giving valuable information to their competitors. Another

aspect is that manufacturers rely mainly on security-through-obscurity

to defend their products. This means that they keep their proprietary

communication protocols specifics secret, but it has been demon-

strated the inefficiency of this approach against reverse-engineering

techniques [2], [3]. Moreover, the difficulty or even, impossibility, to

have access to ICDs samples and to their technical specifications is an

important constrain for the research progress.
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2.4 state of the art

As we stated in the previous sections, there is no effective measure

to protect ICDs from the many possible attacks they have been ex-

posed to since the introduction of the telemetry module. As a result,

many pieces of research have been conducted in order to identify a

security mechanism that could suit the ICDs’ domain and the devices’

limitations. The many proposed solutions could be divided into three

categories: the ones that use external devices, the ones based on bio-

metric signals, and the ones based on cryptography techniques. The

first two approaches have been tested [21], [22] but resulted to be too

elaborate for the ICDs’ context or still vulnerable against some attacks,

the last could be a valid option but has to be better adapted to the ICD

domain.

2.4.1 External Devices

This approach is based on the usage of a wearable external device

as a “communication bridge” between the ICD and the programmer.

This solution is based on the fail-open access, to realize the trade-

off between security and accessibility. During his everyday life, the

patient will carry the external device always with himself, and this

will protect the device from malicious attackers, while, in emergencies,

if the available programmer is not authorized, doctors can turn off or

remove the proxy and obtain access to the ICD right away. The external

device’s battery should be charged periodically and could also be

easily replaced if needed. Moreover, since the proxy can handle the

most resource-consuming tasks of the communication protocol, it is

useful to mitigate battery DoS attacks, even if these attacks can still be

quite hard to combat if very intense.

One of the main drawbacks of this solution is patients compliance,

meaning that the patient must wear the device at any time and has to
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be careful that it is always charged and doesn’t break, since if the proxy

is not available or not working then the ICD is vulnerable. Moreover,

an attacker could jam the messages between the programmer and the

ICD, forcing the fail-open access. This situation has been examined by

Gollakota et al. [23] using friendly jamming to shield the ICD from

attackers. Anyway, this way out is not acceptable, since in many states

jamming is illegal, even if it is effective.

2.4.2 Biometric-based solutions

This kind of solution is based on the utilization of the patient’s bio-

metric of physiological signals to check and ensure the authenticity of

the programmer. This approach has been developed in two ways.

First, Hei et al. [24] presented an approach based on storing in the

ICD one or more unchangeable biometrics, like fingerprints, iris image,

hand geometry when implanting the device. When the connection

with the programmer needs to be initiated, the programmer measures

the same biometric that was stored in the ICD, then the two biometrics

are compared and if they match then the connection is established.

The drawback of this approach is that the programmer needs to be

able to measure such biometrics and currently no programmer is able

to do it. Moreover, since the measurement takes time, even if just one

minute, during emergencies could endanger the patient’s life.

Second, Poon et al. [25] presented an approach based on physiological

signals that change over time, like ECG signals. This solution expects

the programmer and the ICD to measure at the same time the physio-

logical signal and then use it to encrypt and decrypt a symmetric key

that is used for the communication between the devices, or even just

to access the ICD, like in the case proposed by Rostami et al. [14]. This

approach is secure because to measure the signal and have access to

the ICD one must be in close contact with the patient.

The issue of this approach is that even measuring the same physio-
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logical signal at almost the same time but in different places of the

human body, like from inside and from outside will not give the

same results, due to the inevitable noise. Many tried to study this

matter and have proposed solutions, but the research is still open.

As an example, Hu at al. [26] worked on the solution, presented by

Venkatasubramanian et al. [27], of using a fuzzy vault scheme. They

managed to secure the key exchange using physiological values, it is

fundamental to take into consideration the structural limitations of

ICDs. A complex solution that includes operations difficult to execute

will consume more power, draining the battery faster. Furthermore,

as already said, the ECG real-time measurement takes time, and using

it to derive or exchange a cryptography key would take even more

time, up to one minute, and this could affect the promptness of the

emergency response, endangering the patient’s life.

2.4.3 Cryptography solutions

Some attempts to use symmetric cryptography have been done, but it

is very challenging to implement key distribution using conventional

security solutions in the ICDs’ context.

Halperin et al. proposed to add a symmetric key authentication and en-

cryption between the ICD and the programmer. Their solution involved

a master key on every programmer memorized in tamper-resistant

hardware and diverse keys in the ICDs. However, even if this solution

is an improvement over current techniques, having the key saved in

every programmer could be a risk. If the hardware where the key is

saved of just one programmer is compromised, it would be impossible

to revoke the keys and every patient with an ICD whose key was

stored in that hardware would be exposed, at least until the device is

substituted.

A different approach could be to save the master key in the cloud

to avoid having multiple copies of the key and instead have just one
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instance. In this case, the programmer should be connected to an Inter-

net network. Anyway, this is not a feasible solution, since programmer

should always be able to work, especially during emergencies, even

during Internet breakdowns or cloud provider faults.

Other ways to distribute the key very fast during emergencies could

be by printing it on a bracelet or on the patient’s skin, but both these

methods are hard to revoke or reissue the key, so they are not feasible

solutions.

Finally, using a PKI, a certificate with a trusted programmer’s public

key can be stored in the ICD when implanted then during emergencies,

the different programmer could contact the Certificate Authority and

obtain the certificate to use to establish the connection with the ICD.

However, this solution is too expensive in terms of computation and

energy consumption, so it is considered inappropriate for ICDs.

So, symmetric cryptography has issues regarding the management of

the key exchange, otherwise, it would be a valid option.

2.5 nist call for lightweight cryptography

Another option related to symmetric cryptography is the latest call

for lightweight cryptography held by the NIST. The call considered

highly-constrained devices that communicate wirelessly with each

other that work to accomplish a task. NIST considered that currently

most cryptographic algorithms are designed for desktop/server appli-

cations, so don’t fit for these constrained devices. For this reason, in

2019 NIST decided to open the call, asking for algorithms that follow

specific requirements. Algorithms should be Authenticated Encryption

with Associated Data (AEAD) functions, a variation of Authenticated

Encryption (AE) that permits the receiver of a message to check the

integrity of both encrypted and unencrypted information in the mes-

sage.

AEAD is a function with four byte-string input and one byte-string
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output. The inputs are the plaintext of flexible length, associated data

of flexible length, a nonce of fixed length that has to be unique under

the same key and a key of fixed length that should be around 128 bits.

The output is a ciphertext of flexible length. The algorithms should

support decryption-verification, meaning that it should be possible

to retrieve the plaintext from the ciphertext, given associated data,

nonce and key [28]. Considering the security point of view, AEAD

algorithms should guarantee both confidentiality of the plaintexts and

the integrity of the ciphertexts, the security level should be guaranteed

as long as the nonce is unique, so not repeated under the same key.

Anyway, this call requires only the algorithms to secure the com-

munication between two resource-constrained devices, not how the

communication started or how to secure the communication in the

first place. It is assumed that both the devices already possess the

symmetric key needed for the encryption/decryption of the messages,

so how the keys are distributed is not taken into consideration. Un-

fortunately, this is a matter that has to be considered in the case of

ICDs. It is not feasible to store just one key in the device when the

ICD is implanted, because this would mean that the implanted device

could establish a connection only with the programmer whose key

is in its memory. Considering the ICDs’ context, for example during

emergency situations, the patient could be in a hospital different from

the one he is usually treated at, and there must be a way to access his

ICD with a different programmer to treat him. Hence, a secure commu-

nication protocol designed for ICD should consider the possibility that

the device could need to connect to different external programmers in

a fast and easy way, especially in emergencies. However, even if the

algorithms proposed in the NIST call do not consider this aspect, have a

peculiarity that makes them relevant in this matter: they are designed

to be as lightweight as possible. They are studied to run on processors

with limited computational capacity and to consume little RAM and

battery, which are the same structural limitations we discussed in the

previous sections about the ICDs. Therefore, even if the key exchange
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is not considered by these algorithms, they could set a standard for

the intakes in terms of computational capacity, memory usage, and

battery consumption. Starting from the NIST algorithms and conduct

some tests to measure their performances could be an interesting way

to understand how low the intakes should be to consider an algorithm

as “lightweight”. Moreover, in the research literature, there are no

other similar studies that could identify other lightweight solutions,

leaving this as the most reliable mean of comparison to evaluate new

proposed solutions.
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In this chapter, we will perform a feasibility analysis on an approach

that relies on asymmetric cryptography to securely exchange a shared

key that can, in turn, be used to secure ICD’s wireless telemetry. In

particular, we will first explain why combining an asymmetric key

agreement protocol with a symmetric message encryption/decryp-

tion procedure is necessary to make ICDs accessible only to authorized

users, in all situations. We will consequently describe the main concept

on which this approach is based on and explain its strengths and draw-

backs concerning the ICD domain. Lastly, we will make considerations

on how to evaluate its feasibility in terms of resource consumptions

and we will explain how the algorithms proposed in the previously

described NIST call can be used as a valid mean of comparison to test

how close this approach is to a lightweight solution.

First, we have analyzed the main requirements necessary to secure

ICDs without impacting their health-related functionalities.

Secondly, we have presented a new approach and described how it

can be used to protect ICDs while taking into account their context.

Then, we have performed a security analysis of the proposed approach

against the most popular attacks on the ICD telemetry.

Finally, we have discussed the technical feasibility of this approach on

constrained devices like ICDs.

3.1 theoretical requirements analysis

As stated in section 2.3.4, one of the most important requirements

that must be considered while designing a solution to secure ICD’s

wireless telemetry is to provide access to authorized users during

25
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emergencies. For this reason, simply storing a secret key inside an ICD

during implantation and loading the same key inside a programmer

is not enough to ensure its accessibility in all situations. In fact, in

this case, only one programmer will be able to communicate with

an ICD, or, at most, all the programmers of a single hospital. This

solution is acceptable when a patient visits the hospital where he got

his device implanted during regular follow-up visits but it will have

serious consequences during emergencies. One example could be the

case of and ICD wearing patient that is unconscious and that has been

moved to a different hospital where the key to access his device is not

known. Medical staff would probably need to gain access to the ICD in

order to access medical data, change the delivered therapy, or to turn

it off. Without knowing the secret key they will not be able to do any

of the aforementioned operations. Obtaining this key would probably

be complex and time taking, because they would have to discover in

which hospital it is stored, without the patient’s help. Even if they

know in which hospital the secret key is stored, there still may be

problems to obtain such private information fast enough to be useful

for the rescue attempt. Therefore, in order to guarantee the patient’s

safety, it is necessary to design a secure solution that allows sharing a

secret key almost immediately when requested by legitimate entities.

Despite this, using symmetric cryptography to encrypt and decrypt

messages between two parties that share a common key is a lightweight

and fast solution that will protect ICDs from most of the attacks pre-

sented in the threat model while also satisfying the requirement to

consume as less as possible ICD resources. Consequently, sharing a

key in a secure manner, while also considering ICDs limitations, has

become a discussed topic in the research community.

Another important requirement that must be analyzed when deriving

a common key is verifying the authenticity of any external device

that is trying to communicate with an ICD. Without any access control

procedure, an attacker could spoof himself for a legitimate device

and establish a communication with an ICD, obtaining the control of
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it. This consideration clarifies that any solution developed to secure

ICDs should also perform an authentication process before starting

any other security protocol or message exchange.

Lastly, it is important to consider the hardware limitations of ICDs.

Solutions that require to execute complex primitives could exhaust

ICD’s resources in terms of computational capacity, memory size, and

battery longevity. Therefore, it is necessary that any attempt to secure

ICD’s telemetry is lightweight enough to avoid affecting negatively its

functioning or its durability.

Different solutions, that have already been described in chapter 2 have

been proposed to guarantee access only to legitimate parties during

emergencies, each of them with advantages and drawbacks. For exam-

ple, the usage of external wearable devices will definitely save the ICD

resources, but will also force a patient to constantly wear a device that

reminds him of his condition. Measuring real-time physiological val-

ues will hinder many attack attempts by forcing the attacker to stay in

close contact with the victim, but it will take time and will go against

the advantages introduced by the ICD’s long-range communication.

As can be seen, designing a solution that takes into consideration the

ICD context and technological limitations is not an easy task without

introducing other side effects that may not be accepted by patients or

manufacturers. Among the proposed approaches, a key distribution

system based on public key cryptography has been almost ignored

due to the assumption that it is too resource-demanding for limited

devices. On the other hand, as we will better explain in the following

paragraph, this approach will allow a legitimate programmer to access

an ICD during emergencies while not having the drawbacks that are

present in the other previously described solutions.
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3.2 public-key distribution system approach overview

One common way to solve both authentication and key exchange

problems is to establish a PKI and to use an asymmetric cryptography-

based key agreement protocol.

In particular, a PKI is a set of software, hardware components, and

rules that can be used to bind a specific public key to the identity

of a verified and legitimate entity [29], [30]. This binding is made

possible thanks to a trusted third party, which is generally referred

to as Certification Authority (CA). Basically, a CA is responsible for

verifying the identity of a specific entity and, if it is a legitimate one,

issuing a valid digital certificate to it. These certificates contain a dig-

ital signature that can be used to prove the ownership of a specific

public key, hindering spoofing attack attempts.

A Digital Signature Algorithm (DSA) [31] employs asymmetric cryptog-

raphy to generate and verify such signatures. In particular, the private

key of a CA is used to generate a valid signature from a message, that

typically contains the public key and the identity of a verified entity.

The message and its generated signature compose a digital certificate.

Any entity that receives a certificate can then verify the authenticity,

integrity, and non-repudiation of the message in it by using the CA

public key. Figure 3.1 illustrates how DSA algorithm is used to sign

messages and to verify both authenticity and integrity of a signed

message.

Thanks to a trusted CA and the DSA algorithm, two communicating

entities can send their certificates to each other and verify that the

received public key (that should be present in the message part of

the certificate) belongs to a legitimate entity and that it has not been

modified during the message exchange. The main assumption on

which a PKI is based is that the third party authority must be trusted

by both communicating parties. Obviously, if the private key of a CA

is discovered or if the CA signs a certificate to a malicious entity the



3.2 public-key distribution system approach overview 29

Figure 3.1: DSA certificate signing and verification procedures. A CA uses

its private key to produce a valid signature. The public key of

the same CA can be used by any entity to compare the hashes

of the signature and of the message. If they are identical, the

verification step is passed.
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advantages brought by the PKI are nullified. Once both communicating

parties have received the other entity public key and have verified its

authenticity and integrity, they can start an asymmetric key agreement

protocol to solve the key exchange problem.

The most popular way to derive a common shared secret is by using

the Diffie–Hellman (DH) protocol [32], [33]. DH is a non-authenticated

key agreement protocol based on asymmetric cryptography. In par-

ticular, both communicating parties must generate a public/private

key pair and exchange their respective public keys over a potentially

insecure channel. Once both parties possess the other entity public

key they can use it and their own private key to derive a common

shared secret. This secret can also be a new private key that can be

used in combination with a symmetric cipher to encrypt and decrypt

messages. It is important to notice that the shared secret is never

exchanged over the insecure channel. Therefore, by using this protocol

it is possible to securely obtain a private key in any situation without

the need to obtain or possess pre-shared secrets.

Despite this, DH alone is an anonymous protocol, which means that it

does not provide authentication of the communicating parties, and,

therefore, it is vulnerable to MITM attacks. This problem is solved by

the PKI previously described, in fact, when an entity receives a certifi-

cate from another one it does not only obtain its public key but also a

way to verify the authenticity of it through the certificate’s signature.

This authenticated public key can then be used to derive a shared

secret at any moment. By following this approach it is possible to

grant access only to authorized users at any moment, emergencies

included.

One drawback of using asymmetric cryptography is that it is much

more expensive than symmetric cryptography. Using this approach

will satisfy the emergency access requirement, without presenting the

drawbacks of other state-of-the-art solutions, but will probably be

more expensive in terms of computational power, RAM size require-

ments and battery consumptions. For this reason, it is important to
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verify if ICDs have enough resources to apply successfully this ap-

proach without exhausting their energy too soon and to evaluate if

this tradeoff is actually convenient.

One way to do so could be to compare it with the collection of

lightweight cryptographic algorithms like the ones proposed in the

current NIST call previously presented [28]. If the performance result

of a solution based on this approach is not too far from the results

given by NIST algorithms it means that this approach is valid enough

to be considered in securing ICD’s telemetry.

3.3 security analysis

So far we have analyzed how a public key distribution system ap-

proach would grant access to an ICD only to authorized users, in any

situation. Another important aspect, that must be considered to eval-

uate this approach, is the level of security that can be achieved by

applying it on ICDs. In order to do so, we will now make some consid-

erations on the countermeasures taken by this approach in response

to the most common attacks that can be performed on ICDs, that have

already been described in section 2.3.3.

3.3.1 Eavesdropping attacks

Since currently, ICDs do not perform any form of encryption procedure

on their messages, any attacker that is able to intercept those messages

will also be able to read and understand them, compromising the

patient’s privacy. Therefore, even a passive attacker could eavesdrop

the communication channel and steal sensitive information.

The proposed approach will counter this type of attack. After obtain-

ing a common shared key, both ICD and programmer can communicate

with each other using it to encrypt and decrypt messages with a sym-

metric cipher. Without knowing the shared key it will be impossible
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for any attacker to understand the content of the intercepted messages.

The shared key is never exchanged between the two communicating

parties, it is derived from a DH key agreement protocol. Therefore a

passive eavesdropper will never be able to obtain such key by simply

sniffing messages.

It is possible that an ICD sends identical messages to a programmer

during one or multiple a communication sessions. Encrypting two

equal messages with the same shared key will generate two identical

ciphertexts. An attacker, even if incapable to comprehend the message

content, could be able to make some correlations between a ciphertext

and its plaintext. In order to avoid this, adding some random bits to

the communication message format is a valid strategy to make all

ciphertexts different from each other. Another solution could be to

derive a new shared key for every communication session, but since

it will require to perform more complex and expensive asymmetric

primitives it is not recommended for limited devices like ICDs.

3.3.2 Spoofing attacks

ICDs currently do not perform any kind of authentication procedure,

therefore, an expert active attacker could try to impersonate a legiti-

mate programmer and simulate a communication session. By doing

so the attacker can not only steal private data but also alter the device

functioning or force it to deliver incorrect therapies to the patient.

With the assumption that a CA is trusted, reliable, and that it has not

issued certificates to any malicious entity, it will be impossible for an

active attacker to spoof himself for a legitimate device. In fact, sending

to an ICD a certificate that has not been signed with the CA’s private

key will result in the refusal of the certificate because an ICD will verify

its signature using the CA’s public key. This means that an attacker

could either generate a valid certificate by stealing the CA’s private key

or asking the CA a valid certificate. Both options have to be discarded
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because they both rely on the weakness of the CA, that is assumed to

be robust enough to counter such attempts.

Another possibility for the attacker could be to steal the certificate of

a legitimate entity (a programmer, for example) and use it to commu-

nicate with an ICD. Obviously, stealing another entity valid certificate

is possible only if they are exchanged over an insecure channel. Even

in such a case, it will be impossible for an attacker to gain control of

the ICD. Every certificate is bound to a single entity and contains the

public key of that specific entity. For an attacker would be impossible

to obtain the private key of that entity (at least without stealing or

tampering it) and, therefore, it would be impossible for him to derive

the same shared key during the DH key agreement protocol. Without

the correct shared key, it would be impossible to encrypt and decrypt

any message, making any spoofing or MITM attempt useless.

3.3.3 Replay attacks

Any active attacker could also try to replay previously eavesdropped

messages to force an ICD to deliver specific treatments when they are

not necessary.

The proposed protocol will make replay attacks much less effective

since an attacker would never be able to understand the message

content, thanks to both to authentication and message encryption

procedures. For this reason, an active attacker could only try to replay

messages without knowing their actual purpose and this fact reduces

the probability of successful attack attempts. Despite this, it could

still be possible to negatively affect the ICD functioning by randomly

replaying messages. In order to completely prevent this attack category,

it could be useful to add a counter to the message format for every

session or message. In this way, if the counter is not the one that is

expected to be, the message will be rejected, hindering any replay

attack attempt.
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3.3.4 Battery DoS attacks

Lastly, any active attacker could try to send many connection requests

to an ICD in order to deplete its battery and forcing the patient to

surgically remove its implanted device earlier than expected. In order

to protect an ICD from such type of attack, it would be necessary to

perform zero-power countermeasures and this can be hardly done

with current ICD hardware. Adding to an ICD the functionality to

harvest energy from other sources and using the obtained energy to

perform the authentication and key derivation steps of the proposed

approach will make this attack ineffective.

3.3.5 Conclusion

As demonstrated, using a public key distribution system will definitely

protect ICDs against most of the attacks that have been previously

described without requiring other external devices or measuring the

patient’s physiological values. Therefore, the last aspect that remains to

be considered is the technical feasibility of such approach on resource-

constrained devices.

3.4 experimental setup description and technical anal-

ysis

As previously stated, an approach based on a public key distribu-

tion system and the DH protocol protects the communication channel

between ICDs and external devices from the most common attacks.

Moreover, we have also shown that this proposition complies with

the requirements given by the ICDs’ context as the need to guarantee

access during emergencies.

At this point, we need to verify if the structural characteristics of ICDs

are able to handle the computational requirements of this approach.
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As we pointed out, asymmetric cryptography’s main drawback is that

it is more computationally expensive than symmetric cryptography

and this is the reason why this approach was never really pursued by

the research community. Therefore, to conclude the feasibility analysis

of this approach, the last aspect to be considered is to verify if the

ICD resources, in terms of RAM size, battery capacity, and computing

capability, are enough to handle an asymmetric cryptography based

approach.

In order to do so, it is necessary to measure these metrics on a solution

based on the aforementioned approach and compare the results with

the known hardware characteristics of ICDs, presented in section 2.2.

In this way, it will be possible to effectively examine if the proposed

approach is too resource-demanding or not for ICDs. Moreover, we will

also compare the performances of this approach with the results ob-

tained performing the same measurements on the NIST call algorithms.

As previously stated, these symmetric algorithms have been designed

to be as lightweight as possible. Therefore, using these algorithms as

a baseline will help us in understanding how close a solution based

on a public key distribution system is to a lightweight proposal for

resource-constrained devices.

Obviously, the best approach to compare these performances would

be to implement both NIST algorithms and a solution based on the

proposed approach on a recent ICD sample. In this way, it would be

immediately clear if a new proposal is actually feasible or not on such

devices. Unluckily, ICD manufacturers avoid issuing samples for non-

medical purposes and rarely cooperate with researchers. The main

reason for this behavior is that they prefer to improve their devices in

their own Research and Development departments without sharing

private data and know-how with external entities, for economic rea-

sons.

Therefore, since this more direct way was not achievable, we have

implemented both NIST algorithms and our proposed solution on a

prototype. After that, we have conducted three different experiments
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Figure 3.2: Picture of an Arduino MKR Wifi 1010 board. This board presents

several features that are similar to ICD limitations. Moreover,

thanks to the NINA W10 module, it is able to communicate using

BLE technology, simulating ICD telemetry.

to measure the execution time, RAM usage, and battery consumption

to evaluate their technological requirements.

Since ICDs have limited resources, the choice of the hardware setup

had to be appropriate and suitable to simulate the behavior of an ICD

during the message exchange protocol. Our final choice, illustrated

in Figure 3.2, is an Arduino MKR Wifi 1010 board since it has several

technical features that resemble the ones of an implantable device.

We will now briefly discuss why we chose this board, comparing

some of its technical components with the ones present in ICDs, that

have already been presented in section 2.2. We will start by comparing

their processors. IMDs mount an ARM Cortex M3, while Arduino

MKR Wifi 1010 board mounts a microcontroller SAM D21 [34] that

carries an ARM Cortex M0+ processor. We will describe in deep the

technical details of our choice in chapter 5. In any case, the Cortex M0+

processor is optimized for cost and energy-efficient microcontrollers

and its architecture is very similar to the one of the Cortex M3. This

allows any algorithm developed for a processor mounting a M0+ to

be executed without issues also on a M3. Therefore, we used the more

energy-efficient Cortex M0+ of our Arduino MKR WIfi 1010 board to

simulate the behavior of the Cortex M3.
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Considering the RAM size, ICDs have a limited memory that can be

used to store data for computations, usually from 32 to 256 KB. The

Arduino MKR Wifi 1010 board has a RAM of 32 KB, that fully respects

this constraint.

Arduino MKR board can rely on two different means to connect to

a power source. The first one is its USB port that, once connected

to a Personal Computer (PC), can be used both to provide energy to

the board and to upload the code that will be later run by the board.

The second one is its Lithium Polymer (LiPo) battery connector, which

better simulates a device like an ICD since these devices are powered

by batteries that are expected to last for a long interval of time. In

particular, we used this second mean to better simulate the battery

consumption of the security primitives that we have measured in our

experimental evaluation.

Arduino MKR boards are able to communicate with other devices

using Bluetooth Low Energy (BLE), thanks to the NINA-W10 module

that works on the ISM band range. In our case, we used two Arduino

MKR boards, one to impersonate an ICD, and another one to repre-

sent an external device that is supposed to communicate with it. In

this way, we were able to simulate the message exchange of two real

devices, allowing us to better establish their consumption.

Finally, we chose Arduino boards in order to make our experiments

easily replicable. Arduino IDE is intuitive even for people who are not

used to hardware programming. Programs, that in Arduino context

are defined as "sketches", are written in the popular C language and

they can be directly uploaded to the board from the PC through the

USB cable. Another aspect that we considered in our hardware choice

is that the algorithms presented in the NIST call have been submitted

with a reference implementation in C code available to download.

Most NIST proposals have more variants, which differ by their security

level and their performances. In order to be as impartial as possible,

we always chose the one recommended by the authors. Since Arduino

libraries need to be written in C++ language, we had to work on
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the implementation of each algorithm to convert it from C to C++

language in order to use all of them as Arduino libraries. We wrote

a simple Arduino sketch that was able to execute both AEAD encrypt

and decrypt procedures while simulating a message exchange with

another device using BLE communication. We had to adapt this sketch

to all the reference implementations of the algorithms presented in the

NIST call. To do so we imported, for each algorithm, its correspondent

C++ library that we had previously obtained from their reference

implementation. Lastly, we had slightly modified our sketch to take

into account the algorithm implementations and the slightly different

parameters necessary to run them correctly.

We conducted three tests to measure the three different metrics: execu-

tion time, RAM Usage, and battery consumption. The technical details

of each experiment will be presented in chapter 6.

The test about execution time has been performed using the micros()

function of the standard Arduino library. We called the function twice

for each primitive we needed to measure, subtracting the first from

the second, obtaining precise results.

The RAM test was conducted thanks to a library that we downloaded

from the Arduino Playground website. By using this library we were

able to measure the free space between heap and stack during the run

time execution of each algorithm.

Regarding the battery consumption, we connected a LiPo battery to

each board to power them up, we used an Ina219 current/power sen-

sor for each board connected to an Arduino Uno to read the sensors’

measurements. We triggered a pin on each MKR board to start and

stop the measurements on the functions we were interested in, this

allowed us to obtain many values per measurement of which we cal-

culated the average.

Each test has been performed for all of the 32 algorithms presented

in the NIST call for lightweight cryptography. All the test results are

presented in chapter 6 in 6.4, 6.1 and 6.7. The values shown in the

tables are calculated as the average between the test results of the two
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cryptography primitives functions, encrypt and decrypt. These two

values generally do not differ much from each other, but in most cases

the decrypt function is slightly more expensive. The results give a

wide range of values, and if an algorithm offers good performance

in one test it was not obvious that it did well in the others. Therefore

it is difficult to define the best candidate. The values vary greatly

from maximum to minimum, this defines an interval of values that we

can rely on when studying other approaches. We will consider these

results as a baseline to understand if a solution based on the proposed

approach is comparable or, at least, close to a lightweight solution like

the one presented for the NIST call.

3.5 feasibility analysis conclusions

In this chapter, we examined how a solution based on PKI and asym-

metric cryptography has several positive aspects.

We stated that this approach is effective in the ICDs’ context since

it allows secure access to authenticated parties during emergencies

without requiring other external devices or to execute complex ad

time-taking operations.

Then, considering the threat model presented in the background sec-

tion 2.3, we analyzed how this approach protects the communication

successfully against most of the most relevant attacks. Finally, we pre-

sented a baseline based on the results of the experimental evaluation

conducted on the NIST algorithms. This was done to have a mean of

comparison for the performances that this approach should possess to

be defined as “lightweight”.

The only relevant remaining aspect to evaluate is how this approach

performs once implemented. As previously stated, asymmetric cryp-

tography has been discarded as an approach in this kind of context

because considered too computationally expensive. The only way to

actually determine the feasibility of this proposed approach is to im-
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plement it on a prototype and measure its performances, as it was

done for the NIST call algorithms. In this way, we will be able to un-

derstand if its consumptions are low enough to be handled by the

constrained ICD resources.

Taking into account these findings, we can assume that trying to

implement a communication protocol based on PKI and asymmetric

cryptography for the ICDs’ domain could give to the research a new

starting point to evaluate solutions structured in this way.



4
D E S I G N

While in the previous chapter we have analyzed the feasibility of an

approach based on asymmetric cryptography to secure ICDs, we will

now present the design choices that we made to ideate a lightweight

communication protocol based on the aforementioned approach. In

particular, in this chapter, we will firstly describe which security prim-

itives we have chosen for our protocol and we will explain the motiva-

tion of our choices.

Secondly, we will present our communication protocol, based on such

primitives.

Lastly, we will describe in detail each step to perform it, highlighting

also other possible variants to it and explaining for each of them their

pros and cons. This solution will then be compared, in chapter 6,

with NIST algorithms in order to evaluate its lightweightness and its

suitability, in terms of performances, in the ICD domain.

4.1 security primitives design choices

After analyzing the feasibility of an approach based on a key distribu-

tion system and evaluating the advantages that a working implemen-

tation of such an approach could bring to the ICD domain, we have

started designing a communication protocol that takes into account

ICD context and limitations.

To guarantee security of a communication protocol based on a PKI

we identified that our proposal should be subdivided into three main

phases: authentication, shared key derivation and secure message

exchange. As previously stated, the first two phases will require the

use of asymmetric cryptographic primitives. Despite being more com-

41
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putationally expensive than the symmetric ones, they are essential

to guarantee the accessibility in every situation requirement that is

essential when taking into consideration the context in which ICDs

operate. In particular, we have chosen to employ:

• Elliptic Curve Digital Signature Algorithm (ECDSA) for the au-

thentication phase

• Elliptic-curve Diffie–Hellman (ECDH) protocol for the shared key

derivation phase

• Advanced Encryption Standard (AES) for the secure message

exchange phase

As their names suggest, both ECDSA and ECDH are based on Ellip-

tic Curve Cryptography (ECC), an asymmetric cryptography model

founded on the algebraic structure of elliptic curves [35]. This ap-

proach has the positive aspect that it guarantees the same security

level of other non-ECC approaches while requiring a shorter key-size.

This means that in the particular context we are dealing with, we can

reach an adequate security level by using a smaller key that will be

more easily computable and implementable. This will, in turn, ease

the process of making our approach feasible for resource-constrained

devices.

Moreover, since ECC is based on the specific parameters of a curve, the

choice of this curve is critical because it can influence the execution of

the protocol. Among many possible curves, our choice is Curve25519.

This curve has been presented in [36] by D. J. Bernstein and has many

features that are convenient for the ICDs’ domain. First, this curve

resulted to have better performances in terms of speed and execution

compared to other curves. Then, it uses a public key of only 32 bytes,

the smaller key size reduces compute, memory, and transmission re-

quirements. Finally, Curve25519 characteristics and implementation

are publicly available and are present in many cryptographic libraries,

so it is easier to use it and to find documentation about it.
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These are the main reasons that led us to choose ECC with Curve25519

for the first two phases of our protocol: ECDSA for the authentica-

tion and ECDH for the shared key derivation. Moreover, these two

algorithms are often used together to guarantee an authenticated and

secure key exchange. We will now describe each phase of the proposed

approach more in detail.

4.1.1 Authentication

As stated in the previous sections, authentication is a fundamental

step to guarantee access to the device only to authorized users, also

during emergencies. We decided to use an algorithm for data digital

signature, in particular, we chose ECDSA. ECDSA is a variation of DSA

based on ECC. Using ECC brings several advantages that were taken

into great consideration while designing our protocol. For example,

the fact that it requires a smaller key size leads to the advantage that it

is possible to realize efficient and concise implementations of the cryp-

tographic primitives based on ECC. This aspect, in turn, makes these

algorithms more adequate for devices that possess energy efficient

processors and small chips, producing less heat and consuming less

power. All these properties are particularly relevant in the ICD domain

because these implanted devices have low computational capabilities

and small memories, as we stated in section 2.2.

ECDSA allowed us to verify data authenticity without compromising its

security, while also guaranteeing integrity and non-repudiation prop-

erties. In particular, we have designed this step to work in combination

with a PKI where a CA was assumed to sign certificates containing

the credentials and the public keys of the external devices that need

to establish a connection with any ICD, as we will better explain in

the following section. By verifying the validity of a received digital

certificate an ICD can be certain that a legitimate external device has

sent it and that the received message was not altered during the
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transmission. Moreover, making use of a PKI makes possible to bind

a public key of the external device to its identity. In this way, it is

possible to avoid repeating this step each time the implanted device

communicates with the same external device. In fact, by storing the

external device credentials inside of the ICD memory and associating

them with the correspondent external device public key will make it

possible to skip the asymmetric certificate verification phase for all the

successive communication session with that device.

4.1.2 Shared Key Derivation

After the first phase of authentication, we realized the shared key

derivation phase using ECDH. This protocol is a variant of the DH

protocol, based on ECC. It is a key agreement protocol, meaning that it

defines how the keys are generated and exchanged. In this phase, the

two devices involved in the communication exchange their public keys

to derive the shared secret that will be used to encrypt and decrypt the

messages with a symmetric block cipher. To derive the shared key the

involved parties should possess their own private key and the public

key of the other party. The shared secret key is computed combining

the private key of one device and the public of the other. In this way,

it would be impossible for any attacker, even if it performs a MITM

attack, to obtain the shared key, since it would not be able to access

the private keys. At the moment this protocol is secure, at least until a

fast way to solve the discrete logarithm problem will ever be found.

This problem is an open mathematical challenge, the goal is to find a

way to reverse the mathematical operations which the ECDH protocol

is based on. If anyone will ever find a way to do that, the protocol

would not be secure anymore. Despite this, it is still one of the most

valid key generation protocols available.

It is important to notice that, when a shared key is derived, both

parties can use it multiple times and during more communication
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sessions. Thanks to the combination of ECDSA and ECDH in this context,

the ICD will be able to save in its memory not only the credentials of

any external device it establish a connection with, but also the shared

secret generated during that communication. In this way, it is possible

to avoid repeating all the asymmetric cryptography based steps of

this approach. In the next communications, the external device will

only need to send to the ICD its credentials. The ICD, then, will be able

to retrieve the shared secret from its memory without computing it

again, saving time and computational power. Of course, the external

device could save the shared secret too, but since it is not resource-

constrained like the implanted device, it would not be an issue to

compute it again.

4.1.3 Secure Message Exchange

After the key exchange phase, the ICD and the external device that

is communicating with it have established the same shared key. In

this way, they can start a secure communication using that secret as

encryption/decryption key. This communication will use AES, that

is a symmetric cryptography standard for communication. It was

presented during the NIST call for the definition of a new encryption

standard to substitute Data Encryption Standard (DES) in 1997. It was

finally approved and presented as the new standard in 2001. It uses a

block cypher of 128 bits, but it can have keys of three different lengths:

128, 192 or 256 bits. We decided to use the 256 bit version because

it is the most secure and also because the shared secret computed

during the ECDH phase is 32-bytes long, that is equivalent to 256 bits.

So our protocol uses the same 32-byte key to encrypt and decrypt the

messages, and that key is the shared secret. AES is currently used by the

National Security Agency (NSA) to encrypt classified information and

there are no known attacks that succeeded in breaking the algorithm.
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In the next section we will present how we combined ECDSA, ECDH

and AES to realize a secure communication protocol designed for ICDs.

4.2 protocol presentation

So far, we have described in detail the single steps that are necessary

to produce a secure solution based on a key distribution system ap-

proach. Now we will present how, by combining these phases together,

we were able to design a communication protocol specifically tailored

for securing ICD’s telemetry. As we stated, the first phase is the authen-

tication procedure, based on a PKI, that distributes certificates, and

ECDSA algorithm. After having verified the legitimacy of an external

device, a shared key derivation phase, based on ECDH, is performed

using the public key present in the received certificate. Finally, once

both communicating parties have generated the same secret key, a

secure message exchange is performed using AES.

Figure 4.1: Diagram presenting the protocol
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In Figure Figure 4.1, we present a sequence diagram showing the

communication protocol that we have designed. The parts highlighted

in red represent our own implementation choices, meaning that it is

not mandatory for the protocol to behave in that way, but that we have

decided it was the best option considering how we have implemented

it.

4.2.1 Main actors and initial setup

Three main actors are involved in our protocol:

• an ICD.

• a programmer: one of the external devices that is responsible to

interact with the ICD.

• a root CA: an entity that is responsible of signing certificates

containing the credentials of a programmer, guaranteeing its

identity.

We will now proceed by describing all the details that are necessary to

correctly execute our communication protocol.

Firstly, an ICD should store inside its memory its own public/private

key pair, “PICD” and “KICD”, and the public key of a root CA, “PCA”.

These values can be uploaded inside the ICD during its manufacturing

process or during its implantation inside of a patient.

Secondly, a programmer should store its own private key, “KPRG”,

a message, “msgPRG”, which in turn contains its own credentials,

“IDPRG”, and its public key “PPRG”. Optionally, a programmer could

also store the public keys of all the ICDs, “PICD”, that have previously

established a communication with it. The fact that a programmer

already possess the ICD’s public key is an implementation choice.

Actually a programmer could retrieve the ICD’s public key from a sort

of online database. Another option could be that the ICD itself could

send its own key to the programmer, only after having verified the
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validity of the programmer’s certificate. This last option, would be

more computationally expensive and would require the ICD to send

additional messages. For these reasons, we decided to avoid proposing

it for our protocol, that is supposed to be as lightweight as possible.

Lastly, a root CA should possess its own public/private key pair, “PCA”

and “KCA”, that are used to sign and verify the signatures of the

certificates.

4.2.2 Communication protocol description

In order for a programmer to be able to communicate with any ICD it is

necessary that it obtains a valid certificate from the root CA. To achieve

this goal, the programmer is supposed to send msgPRG to the root

CA. After verifying the legitimacy of the programmer, the root CA can

generate the signature of msgPRG, producing a valid certificate. The

root CA is expected to use a signing function to generate a signature,

“signature”, from msgPRG using both PCA and KCA. Sending back the

certificate, or simply its signature, to the requesting programmer will

guarantee that PPRG is bounded with IDPRG.

Once the programmer has received the signature from the root CA,

it will be able to send it to the ICD with msgPRG that contains the

programmer’s public key and credentials. Sending msgPRG to the ICD

is fundamental to allow it to verify the signature performed on it. The

ICD verifies the validity of the certificate by comparing msgPRG with

the received signature. In order to do so, it uses a verify function that

requires the root CA public key, PCA, that should have already been

stored in the ICD previously. If the verification is successful, the ICD

will use the programmer’s public key, PPRG, contained in msgPRG, to

generate the shared secret “S”. S will be set as encryption/decryption

key for all the following exchanged messages using a setKey function.

The programmer that already possesses the ICD’s public key, PICD,

will generate the same shared secret “S” and set it as encryption/de-
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cryption key in the same way as the ICD. From this moment on the

communication will be based on symmetric cryptography, using the

shared secret as encryption key. If the signature verification fails, then

the connection between the devices will be interrupted.

The authentication and key derivation phases will be executed just the

first time that a new programmer connects to the ICD. Once generated,

the shared key will be memorized in the ICD with the correspondent

programmer’s credentials. During the following connections, the pro-

grammer will send to the ICD only its credentials so that it can select

the correct shared secret to use for the communication. In this way the

following communication sessions will be lighter and faster.





5
I M P L E M E N TAT I O N

After designing each step of the protocol, as we presented in the

previous section, we implemented it on a prototype built with two

Arduino MKR Wifi 1010 boards. We utilized the same boards we used

as a test-bench for the NIST call algorithms, this way we were able

to run the same tests on our protocol and compare the results with

the ones from the NIST algorithms. Thanks to this comparison we

were able to understand if the solution we proposed was actually

lightweight enough to be implemented on ICDs. Therefore, we have

first implemented the protocol on the two boards, then we have run

the same experiments on the execution time, RAM usage, and battery

consumption that we have performed on NIST algorithms.

In this chapter, we will describe in detail how we realized the protocol

using Arduino libraries and cryptographic primitives.

5.1 hardware setup

As we stated, to realize the protocol we implemented it on two Ar-

duino MKR Wifi 1010, on that simulates the ICD and the other the

external device that wants to communicate with the ICD, the so called

programmer in chapter 4.
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Figure 5.1: Pin-out of Arduino MKR Wifi 1010

As anticipated in section 3.4, the MKR Wifi 1010 carries an ARM

Cortex M0+ processor that has many similar features to the ARM Cor-

tex M3 that is generally used on ICDs. In 5.1 we present a comparison

between the two ARM Cortex processors based on the information

available in the technical datasheet of the processors on the ARM

developer website [37], [38].
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Characteristic ARM Cortex M0+ ARM Cortex M3

CoreMark/MHz 2.46 3.34

DMIPS/MHz 0.95 1.25

Dynamic power 47.4 µ W/MHz 141 µ W/MHz

Planned Area 0.098 mm2 0.35 mm2

Pipeline Stages 2 3

ISA Armv6-M Armv7-M

Table 5.1: Comparison between ARM Cortex M0+ and ARM Cortex M3.

CoreMark/MHz and DMIPS/MHz are two different metrics used

to evaluate the computational performances of Central Processing

Unit (CPU)s. Both ARM Cortex M3 and M0+ have a 32-bit architecture,

but M0+ consumes less, is smaller, and is less performant than M3. The

Instruction Set Architecture (ISA) of the M0+ is the Armv6-M that is a

subset of the M3’s Armv7-M ISA. Armv6-M is upwardly compatible

with Armv7-M, which means “that application level and system-level

software developed for ARMv6-M can execute unmodified on ARMv7-

M" [39]. This implies that any algorithm that can be executed on an

ARM Cortex M0+ can be executed on an ARM Cortex M3 too. Thanks

to this we were able to implement our protocol on the Arduino MKR

board, being sure that the approach could at least be executed by the

processor mounted on an ICD.

In this section, we will refer to the board representing the implanted

device as “peripheral” and to the other, which represents the external

device, as “central”. We could have chosen a different and more

powerful board to impersonate the programmer but we decided to

stay with the same MKR Wifi 1010 board to keep the experiment

simple and intuitive so that it could be easily replicable. Moreover,

this allowed us to also compare the consumption of the two parties

and check if there were relevant differences. To write and upload the

programs, called “sketches”, we used Arduino IDE as development

environment and C as programming language.
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The two boards were powered up using USB cables, connected to two

different PCs. The USB cable was also used to upload the sketches from

the Arduino IDE. Moreover, Arduino IDE has an important additional

feature: the serial monitor. This monitor allowed us to read on our

PC screens text or variables’ values computed by our Arduino boards

during the sketches execution. This aspect greatly helped us when

debugging the code and was particularly useful to verify the correct

functioning of our communication protocol.

5.2 bluetooth low energy-based communication

We used the connectivity module already present on the Arduino

MKR Wifi 1010 boards, the NINA-W10, to make the two boards com-

municate. In particular, we established a BLE wireless communication

between central and peripheral. In order to do this, we had to use a

suitable library to have all the necessary functions, so we included the

ArduinoBLE public library in our sketches.

BLE is based on the Generic Attribute Profile (GATT), illustrated in

Figure 5.2, where two main roles are defined: the client and the server.

The client, that is our case corresponds to our central device, begins

the communication with one request sent to the server, that possesses

data that the client is interested in and transmits an answer to the

request. To exchange data during the BLE connection, usually, they are

stored in so-called “characteristics”. A group of characteristics that

are logically correlated is callers a “service”. To identify characteristics

and services it is used a 16-byte Universal Unique Identifier (UUID).

In our sketches, we defined one service for each device and a charac-

teristic for each key and message exchanged between the two boards.

We assumed that the UUIDs of service and characteristics are known

to both central and peripheral. A device can read the characteristics

written from the other and write or modify the characteristics that the
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Figure 5.2: BLE communication is based on the GATT Protocol to exchange

data between central and peripheral devices, bidirectionally. The

peripheral, that in our context corresponds to an ICD, behaves

as a server. It is responsible for answering to requests received

by a client, that corresponds to a programmer or a base station.

other will read. So, once the connection is established it is possible to

exchange data and messages.

5.3 cryptographic primitives

Once the communication was set up with BLE, we needed to imple-

ment the cryptographic part of our protocol. We needed different

primitives to realize the steps of the protocol as we designed it, as we

presented in the previous section they are the message signing, the

signature verification, the private/public key pair generation, shared

secret generation, message encryption/decryption.

As we stated in chapter 4, we decided to use ECDSA and ECDH with

Curve25519 thanks to the many advantages they offer in terms of

performance and low consumptions. So, looking for open-source cryp-

tography Arduino libraries to implement ECC based on Curve25519

we have found Arduino Cryptographic Library [40]. Developed by
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Rhys Weatherley, is a very popular cryptographic library, that contains

many different algorithms including the ones we needed to realize

our protocol.

We used the Ed25519 class to handle the ECDSA steps, which are the

public/private key pair generation, the message signing, and the sig-

nature verification. We decided to simulate the PKI making the central

device compute also the operations that would be done by the root

CA, in order to avoid adding another device to our setup making it

more complex. Hence, we used the “generatePrivateKey” function to

generate the private key from a random function for both central and

peripheral, then we used the “derivePublicKey” to derive the public

key from the private one. Both keys are 32-bytes long and are stored

in arrays passed to the functions as parameters. Then, in the central

device, we used the “sign” function on a 64-byte array containing

the programmer’s credentials and the public key. The result of the

function is stored in the “signature” array and sent to the peripheral.

When the peripheral receives the signature, it uses the “verify” func-

tion to check the authenticity of the signature. If the verification is

successful the protocol goes on with the ECDH part. Thanks to the

Curve25519 class, we were able to perform the shared secret genera-

tion, while we used the AES256 class to perform the encryption/de-

cryption of the messages. To test and implement Curve 25519 the RFC

7748 [41] specifications has been followed.

We used the “dh2” function from Curve25519 to generate the shared

secret that will be later used as symmetric key for the communica-

tion between the ICD and the programmer. It uses the private key of

one party and the public key of the other, so it is necessary that the

two devices exchange their public keys. In our case, the peripheral

has the central’s public key because it was contained in the message

it received from the central to verify the signature. In the designed

protocol, we stated that the programmer, the central, already has the

public key of the ICD, the peripheral, stored in its memory or that

it could retrieve the ICD’s key from an online database. In this case,
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we decided to make the peripheral send its public key to the central

only if the signature verification is successful, since the devices are

not connected online and we should have sent the public key just after

the generation, but this would have messed the protocol simulation.

So, the shared secret will still be a 32-byte key and, as we stated

before, will be used to encrypt and decrypt the messages during the

established communication.

For the encryption and decryption of the messages based on the

shared secret, we used a different class, AES256, that oversees the

message confidentiality of our protocol. To test the class the FIPS

197 vectors have been used to check its correct functioning. We used

three main primitives: “setKey”, that sets a 32-bytes key in the block

cipher and it is the first one to be called; “encryptBlock”, that performs

message encryption on the plaintext; “decryptBlock” that performs

message decryption on the ciphertext. Plaintext and ciphertext must

be of the same length and are stored in buffers passed to the functions

as parameters.





6
E X P E R I M E N TA L E VA L UAT I O N

As explained in chapter 3, the most important drawback that affects

a public key distribution system approach is the necessity to use

asymmetric cryptography, which could be too resource-demanding

for limited devices like ICDs. Therefore, in order to complete our

feasibility analysis, we have measured the performances of the com-

munication protocol presented in chapter 4. In particular, we have

based our technical analysis on three main metrics: execution time,

RAM usage, and battery consumptions.

In this chapter, we will describe how we performed each of these three

measurements in detail and we will present the results, discussing

them.

We have not only verified if the obtained results are compatible with

ICD’s technical characteristics and limitations, but we have also com-

pared them with identical measurements performed on all NIST al-

gorithms. This second step was done to give an estimate on how

close this approach is too lightweight solutions designed for resource-

constrained devices and to evaluate if the tradeoff of having a more

resource-demanding solution that grants emergency access without

other drawbacks is actually convenient.

It is important to notice that we have performed the same proce-

dures on the same hardware setup on both our proposed solution and

on NIST algorithms so that the obtained results are meaningful and

comparable with each other.
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6.1 execution time

The first metric that we have considered to evaluate our proposed

solution is the time taken to execute all NIST algorithms and each of

the most important cryptographic primitives present in our secure

communication protocol. Adding some delay to a communication ex-

change will not cause any major issue if we consider regular follow-up

visits at the hospital or monitoring sessions at home, where a patient

could simply do other activities while the message exchange is com-

pleted automatically or performed by a healthcare provider. On the

other hand, a similar delay could have serious consequences during

emergencies. Using time-taking security primitives will force doctors

and hospital staff to wait before actually being able to intervene on a

patient violating the balance between security and accessibility that

is necessary when considering the ICD domain. Therefore, in order to

respect the emergency access requirement, it is of primary importance

that the communication between an ICD and a programmer is fast

enough to avoid hindering any rescue attempt done by legitimate

entities.

To measure the execution time of all NIST algorithms and of the primi-

tives of our protocol we have used an Arduino MKR Wifi 1010 board.

We have written sketches containing such primitives on a PC and

loaded them, using Arduino IDE, on our Arduino board.

Arduino library contains many valuable functions that have been

effective both during the implementation and this experimental eval-

uation phase. Among which, micros() function was determinant to

precisely measure the execution time metric. Many Arduino boards are

equipped with a timer/counter module that is used by this function to

obtain how much microseconds are passed since the board has been

powered up. Therefore, by calling micros() two times, the first one

before the execution of a cryptographic primitive, and the other one

immediately after the same primitive, gave us two different values. By
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subtracting the former from the latter we have obtained the execution

time of the chosen cryptographic primitive. This result was printed on

Arduino IDE serial monitor of our PC thanks to Serial.print() Arduino

library function.

We have summarized the results obtained by repeating this process for

all NIST algorithms’ encrypt and decrypt procedures and for all main

security primitives of our protocol in table 6.1 and 6.3. A brief recap is

shown in table 6.2. For the average value we referred to the algorithm

that comes more close to the calculated average value, that is 20517

ms for the encrypt function and 20801 for the decrypt function.
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Algorithm Encrypt time (µ s) Decrypt time (µ s)

ACE 18979 18984

ASCON 547 550

COMET 623 639

DryGASCON 5852 5872

Elephant 170477 170479

ESTATE 936 938

ForkAE 9295 14993

GIFT-COFB 5006 5011

Gimli 2605 2617

Grain-128AEAD 54718 54680

HYENA 23437 23435

ISAP 50038 50039

KNOT 969 970

LOTUS-AEAD 34180 34185

mixFeed 2946 2945

ORANGE 44032 44030

Oribatida 102845 102854

PHOTON-Beetle 46544 46577

Pyjamask 3723 3727

Romulus 9298 9304

SAEAES 294 298

Saturnin 1716 1719

SKINNY-AEAD 12891 16175

SPARKLE 771 762

SPIX 11521 11531

SpoC 5687 5686

Spook 1591 1605

Subterranean 2.0 11304 11316

SUNDAE-GIFT 8223 8242

TinyJambu 390 395

WAGE 11583 11576

Xoodyak 3526 3528

Table 6.1: NIST results of execution time test
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Encrypt time (µ s) Decrypt time (µ s)

Minimum SAEAES (294) SAEAES (298)

Average ACE (18979) ACE (18984)

Maximum Elephant (170477) Elephant (170479)

Table 6.2: Summary of NIST results showing minimum, average and maxi-

mum results from the test.

Function Execution time (µ s)

certificate validation check 1700583

shared key derivation 562932

set symmetric block cipher key 97

message encryption 227

message decryption 426

average message sending time 27856

Table 6.3: ECDSA-ECDH protocol results of execution time test

As expected, the asymmetric primitives of our protocol take more

time to complete than all NIST algorithms encryption and decryption

procedures. On the other hand, it can be seen that the time taken

to execute the slowest primitive of our protocol, which is the one in

charge of verifying the validity of a received certificate, takes around

ten times more time than Elephant encryption procedure, which is the

slowest among all NIST algorithms. Although it cannot be considered

as lightweight as NIST algorithms, it is important to notice that both

encryption procedures, which are responsible for the certificate vali-

dation check and the shared key derivation steps, will take place just

when a programmer and an ICD establish their first communication

session. Once a common shared secret is possessed by both devices

they can start a secure communication without executing any asym-

metric primitive.

As can be also noted from the tables AES encryption and decryption
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primitives performed during our protocol are faster than most of NIST

algorithms. This means that, after the small delay of the first commu-

nication setup, our protocol will take less time to exchange messages.

The last aspect than is important to consider is if the increase in the

time to execute asymmetric procedures will have a negative impact

during emergencies. The two slowest asymmetric primitives of our

protocol take less than 2.5 seconds total to be completed by an ARM

Cortex M0+, which is an energy-efficient processor on our Arduino

board that simulates ICD’s computing capability limitation. Taking

2.5 seconds more will not cause any major issue during emergencies,

especially if we consider that using only symmetric procedures and

storing a secret key inside the ICD would require the emergency staff

to get in contact with the patient’s hospital to obtain such key, an

operation that will take much more time.

6.2 ram usage

Another important element to consider while evaluating the techni-

cal feasibility of a solution based on asymmetric cryptography on

resource-limited devices is the RAM occupation that is needed to ex-

ecute such primitives. Obviously, using complex data structures or

numerous temporary variables would make both the heap and the

stack occupied memory of the device grow, this, in turn, could pos-

sibly lead to memory collisions, resulting in errors or in the altering

of the device correct functionality. As previously stated, ICDs have a

limited amount of free RAM memory that can be used for non-medical

operations, while most of their memory, about three quarters, is used

to store ECG measurements. Therefore, it is important that a solution

designed to secure ICD’s telemetry takes also into consideration the

amount of RAM necessary to realize it. This experimental evaluation

was done, once again, using our Arduino boards for all algorithms, in

order to produce comparable results.
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In order to measure the RAM occupation, during the runtime execution

of our protocol primitives and NIST algorithms, Arduino library alone

was not enough. In order to do so, we have imported another library,

called MemoryFree, from the Arduino Playground website. Inside this

library, the function freeMemory() has been particularly useful for

us. When this function gets called during the program execution it

returns the amount of free memory space, in bytes, that is present

between the heap and the stack pointers. By calling this function

multiple times inside the libraries of all NIST algorithms and of our

protocol we have been able to monitor precisely the behavior of each

primitive. By subtracting the amount of free RAM measured before

the execution of a specific primitive and the lowest value obtained

during the execution of it we managed to identify the maximum RAM

occupation, in bytes, during the runtime execution of all primitives.

One important issue that we had to face while measuring the RAM

usage was the fact that our Arduino board automatically allocated 255

bytes of heap space. This space was allocated before every algorithm

execution and therefore not counted in our previously described calcu-

lations. Some NIST algorithms occupied some or all this free space by

dynamically allocating variables, by using malloc() functions, leading

to less precise results. In order to solve this problem we have occupied

all this automatically allocated space before every algorithm execution

so that all algorithms were forced to allocate free RAM space for their

dynamic variables. In this way, we obtained results that are balanced

between algorithms that required the use of dynamic variables and

the others which did not.

The results of such measurements are illustrated in Table 6.4 and 6.6.

They were printed on Arduino IDE serial monitor of our PC, in a

similar way to what we did to measure the execution time in the previ-

ous section. A brief recap is shown in table 6.5. For the average value

we referred to the algorithm that comes more close to the calculated

average value, that is 784 bytes for the encrypt function and 806 bytes

for the decrypt function.
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Algorithm Encrypt RAM (bytes) Decrypt RAM (bytes)

ACE 644 652

ASCON 428 452

COMET 972 1028

DryGASCON 676 684

Elephant 1612 1612

ESTATE 748 748

ForkAE 804 788

GIFT-COFB 460 460

Gimli 372 388

Grain-128AEAD 1004 1208

HYENA 1980 1964

ISAP 668 692

KNOT 684 684

LOTUS-AEAD 1660 1644

mixFeed 788 788

ORANGE 588 596

Oribatida 1212 1220

PHOTON-Beetle 544 584

Pyjamask 844 844

Romulus 796 812

SAEAES 532 540

Saturnin 764 772

SKINNY-AEAD 740 780

SPARKLE 548 556

SPIX 612 620

SpoC 572 580

Spook 684 708

Subterranean 2.0 1076 1108

SUNDAE-GIFT 488 648

TinyJambu 332 340

WAGE 568 576

Xoodyak 708 732

Table 6.4: NIST results of RAM usage test
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Encrypt RAM (bytes) Decrypt RAM (bytes)

Minimum TinyJambu (332) TinyJambu (340)

Average Saturnin (764) Saturnin (772)

Maximum HYENA (1980) HYENA (1964)

Table 6.5: Summary of NIST results showing minimum, average and maxi-

mum results from the test.

Function RAM Usage (bytes)

certificate validation check 1448

shared key derivation 752

set symmetric block cipher key 64

message encryption 88

message decryption 136

whole protocol 6548

Table 6.6: ECDSA-ECDH protocol results of RAM usage test

From the tables, it can be seen that the RAM usage of the asymmetric

cryptographic primitives of our protocol is in line with the one of

NIST algorithms. Our protocol’s most memory consuming operation

occupied 1448 bytes and it is very close to most NIST algorithms and,

in some cases, even lower. All other primitives of our protocol occu-

pied even less RAM and are, therefore, even more equipable to NIST

algorithms.

It is important to notice that the whole protocol, including BLE commu-

nication functionalities, that where necessary to exchange messages

between the two Arduino boards, occupied less than 7 KB of memory

of the 29067 available bytes present in the Arduino board. This result

is really promising since the amount of RAM space of our chosen board

resembles the one of the oldest ICD models, while also considering

the fact that most of it should be used for other functions. Most of

the occupied RAM was used for global variables and for BLE related
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functionalities, not to execute asymmetric primitives. Obviously, cur-

rent ICDs are already implementing communication with external

devices, therefore the only RAM additional usage that we should con-

sider is the one that is required to execute these asymmetric primitives.

6.3 battery consumption

The last aspect we evaluated to examine the feasibility of an approach

based on ECDSA and ECDH is battery consumption. As we stated

before, ICDs’ batteries are meant to last as long as possible in patients’

body, since replacing the battery means to put the patient under

surgery. Therefore, implanted devices have a very energy-efficient

hardware and are studied so that they only activate certain modules

when necessary. Of course, execute complex and highly consuming

operations on these devices is not recommended. Because of that, it is

important to be sure that this approach does not consume too much

battery, so we need to check the consumption. We decided to measure

the instantaneous current detected during the execution of the most

important functions of our protocol.

To achieve this we had to build a suitable hardware setup. We powered

the Arduino MKR Wifi 1010 boards using an ICR18650 Li-Ion battery

for each board, soldering a LiPo battery connector to the onboard port.

This way we used the USB port just to upload the sketch to execute.

Then we added an INA219 current/power sensor for each board and

an Arduino Uno board to read the data from the sensors. We chose the

Arduino Uno due to laboratory availability and because we needed a

board easy to program to perform data reading operations. In Figure

6.1 is shown the electric scheme of the circuit.
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Figure 6.1: Battery test electric scheme showing Arduino Uno and MKR1010

Wifi, the Ina219 sensor and the Li-Ion battery and how they are

connected

The INA219 sensor is connected in series between the Li-Ion battery

and the MKR board, in order to read the current absorbed by the

board during the code execution. To read the power consumption

from the sensor we used the Arduino Uno board connected to the PC

to avoid adding power consumption to the MKR board. We connected

the pin 3 of each MKR board to the pin 7 and 8 of the Uno board, to

connect them. In the sketch uploaded in the MKR boards, we added

a couple of digitalWrite() functions to set the pin 3 as high and low

to start and stop the measurements. Then, in the sketch uploaded on

the Uno board, we wrote the code so that the board would read the

consumptions from the sensors only when the pin connected to the

MKR board was set as high. In this way, we could be able to measure

precisely the current during the execution of only the functions we

were interested in. Obviously, all components are connected to the

same ground. In Figure 6.2 is shown a photo of the whole setup.
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Figure 6.2: Battery test setup photo taken during the measurements showing

all the components

The Arduino Uno board and the two INA219 sensors communicate

using Inter Integrated Circuit (I2C) serial communication protocol.

We used the Serial Data (SDA) and Serial Clock (SCL) pins to connect

sensors and board. We could read all the measurements on our PC

because they were printed on the Ardunio IDE serial monitor. All the

measurements were done while the boards were executing the proto-

col using the BLE connection, this way we could have a realistic idea

of the consumption of an ICD using this protocol. So, we measured

the consumption of central and peripheral at the same time, also to

understand if there was a difference and eventually how big, of con-

sumption between the two devices. The results of the measurements

on the NIST algorithms are presented in Table 6.7, while the results of

the proposed approach in 6.9. A brief recap is shown in table 6.8. For

the average value, we referred to the algorithm that comes closest to

the calculated average value, which is 52 mA for the encrypt function

and 49.5 mA for the decrypt function.
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Algorithm Encrypt current (mA) Decrypt current (mA)

ACE 38.1 37.95

ASCON 39.2 39.1

COMET 38.9 39

DryGASCON 37.5 37.6

Elephant 42.9 88.1

ESTATE 38.9 38.8

ForkAE 42.4 44.3

GIFT-COFB 37.3 37.3

Gimli 39.3 58.8

Grain-128AEAD 51.9 48.5

HYENA 56.9 38.9

ISAP 51.9 51.3

KNOT 38.8 38.8

LOTUS-AEAD 52 49.6

mixFeed 51.3 39.1

ORANGE 53.85 38.8

Oribatida 48.9 45.1

PHOTON-Beetle 38.2 41.1

Pyjamask 54.4 60

Romulus 36.9 36.9

SAEAES 59.2 58.1

Saturnin 56.2 38.5

SKINNY-AEAD 37.2 36.9

SPARKLE 61.1 60.8

SPIX 37.4 37.4

SpoC 60.43 41.2

Spook 49.6 48.9

Subterranean 2.0 47.6 57.8

SUNDAE-GIFT 55.3 60.8

TinyJambu 41.2 59.3

WAGE 56.6 49.8

Xoodyak 47.6 38.6

Table 6.7: NIST results of battery consumption test
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Encrypt current (mA) Decrypt current (mA)

Minimum GIFT-COFB (37.3) GIFT-COFB (37.3)

Average LOTUS-AEAD (52) LOTUS-AEAD (49.6)

Maximum SPARKLE (61.1) SPARKLE (60.8)

Table 6.8: Summary of NIST results showing minimum, average and maxi-

mum results from the test.

Function Current (mA)

certificate validation check 46.65

shared key derivation 49.89

set symmetric block cipher key 42.36

message encryption 40.45

message decryption 44.24

Table 6.9: ECDSA-ECDH protocol results of battery consumption test

Looking at the tables it can be seen that the results of the tests on the

ECDSA-ECDH based protocol are consistent with the ones of the same

test conducted on the NIST call algorithms. The task that absorbs more

current of the proposed approach is the shared key derivation, with

49.89 mA. From the tables of the NIST algorithms result, we can see that

the results of our protocol are really close to most of the algorithms

that compete to become the new lightweight cryptography standard.

It is important to consider that all these measurements have been done

during the BLE connection, to understand how the protocol would

perform if fully implemented, BLE connectivity included. Moreover,

BLE was needed to handle the connectivity between the two Arduino

boards. Measuring the battery consumption of our approach without

active BLE showed that the execution of the primitives took less than 20

mA. This means that the added consumption due to the asymmetric

cryptography primitives is not severe. Thus, the results show that the
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proposed approach has promising results when compared with the

NIST algorithms, that we consider as a benchmark.

6.4 result discussion

The measurements of RAM usage, execution time, and battery con-

sumption of our ECDSA and ECDH based protocol presented encourag-

ing results. We tried to simulate in the best possible way the resource-

constrained structure of the ICDs using a suitable Arduino board.

Starting from the processor we used, the ARM Cortex M0+, is a bit less

performant than the processor that is generally mounted on ICDs, the

ARM Cortex M3. Nonetheless, looking at the results of the execution

time tests we obtained, it is possible to observe that the cryptographic

functions we chose for our approach are executed in a small amount

of time. This is an important result because when dealing with emer-

gencies, it is crucial that the communication based on this protocol is

established as soon as possible. In this way, the medical staff could ac-

cess the implanted device and intervene possibly saving the patient’s

life rapidly without wasting any time.

Then, as we stated in previous sections, ICDs have small free RAM

available, because most of it is used for treatment-related functions,

like monitoring the patient’s status or saving ECG reading. The free

RAM on the Arduino board we chose is 29 Kbytes (3 Kbytes are used

for Arduino variables) that is quite close to the free RAM we studied

that ICDs have. The maximum quantity of RAM occupied during the

execution of our approach is approximately 5 Kbytes. So, this means

that a protocol based on ECDSA and ECDH would be feasibly imple-

mentable on an ICD in terms of occupied RAM.

The battery consumption is in line with the current uptake of the

NIST algorithms. Moreover, considering that the asymmetric steps of

the protocol could be performed just once per new external device

that connects with the ICD, the impact on the battery longevity of the
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device is limited. Since, as we stated before, we consider the perfor-

mances of these algorithms as benchmarks to evaluate other solutions,

we can say that this approach is also lightweight in terms of battery

consumption.

To conclude, since the tests we performed on the new protocol based

on ECDSA and ECDH using Curve25519 show encouraging results, it is

worth to further investigate it. We think that exploring the potential

of this approach could give the research new points of view on the

security of ICD’s telemetry.



7
L I M I TAT I O N S A N D F U T U R E W O R K

In this chapter, we will present the main limitations that we encoun-

tered during our work and propose some future works that could be

interesting to improve the research in this direction.

One of the most relevant problems we had to manage was the difficulty

to gather information about ICDs. Since the market is very competitive,

manufacturers do not disclose technical data about their devices to

avoid competitors getting to them. Therefore, even if we got in contact

with manufacturers, due to their company policies it was not possible

for us to retrieve any useful information for our research from them.

Certainly, having ICD samples or technical information about these

devices directly from the manufacturers could have been very helpful

to build a more accurate model to use as test-bench.

For this reason, we have chosen an Arduino board to test all the NIST

call algorithms and our proposed approach in the simplest way possi-

ble. This is an initial study on an ECDSA-ECDH based communication

protocol for ICDs, our focus is to analyze the feasibility of this ap-

proach. We have decided to make our experiments easily replicable

and we have used a simple language and programming environment

to modify and adapt our code during the research. Probably, the

performances of our protocol can be improved by writing the code

using Assembly language. However, as previously stated, we needed

to adapt the code easily and fast during our research. Using Assembly

wouldn’t make it possible for us to achieve that result since it’s a

complex language to work with and needs much more attention to be

modified once written.

Since the results of our protocol are promising, we think it could be

interesting to further investigate this research path. We have identified
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two different paths that the research could follow.

The first one consists in adapting this protocol to different IMDs that

have similar technical characteristics to the ones of ICDs. Obviously, it

is fundamental that these devices possess a telemetry module, in order

to establish a communication with a programmer, sufficient RAM size,

and battery capacity to handle the cryptographic primitives involved

in the protocol. Obviously, some modifications and adjustments could

be needed.

The second path is to study a new algorithm specifically tailored for

ICDs, and, if possible, also for other IMDs, to serve the goal of granting

a secure communication with external devices. We have used a combi-

nation of ECDSA, ECDH and AES. It could be interesting to understand

if having just one algorithm that executes the same functions of these

three combined will give some advantages in terms of performances.



8
C O N C L U S I O N S

In this thesis, we have examined in detail the context of ICDs. In partic-

ular, the security issues caused by the introduction of the long-range

wireless telemetry advancement on these devices. After having ana-

lyzed their structural features and the threats they are exposed to, we

have examined the currently available security solutions for the ICD

domain. We have considered both the advantages and disadvantages

of all the most popular solutions.

In particular, we have considered the NIST call for cryptographic algo-

rithms. The algorithms proposed in this call are based on symmetric

cryptography and are competing to become the new standard for

lightweight cryptography on resource-constrained devices. We have

shown the limitations of an approach only based on this kind of

cryptography in the ICDs domain. While this is certainly a suitable

solution in terms of performances, it does not guarantee easy access

during emergency situations. This aspect, as we have pointed out in

this work, cannot be ignored when considering the life-saving role of

ICDs. Despite this, we have decided to evaluate the performances of

these algorithms in order to obtain a baseline that can be used as a

mean of comparison to evaluate the lightweightness of other solutions

that are more suitable for ICD context. In particular, we have tested

the execution time, RAM usage, and battery consumption of all the

NIST algorithms on an Arduino MKR Wifi 1010 board. We chose this

board because has many technological characteristics that are quite

similar to the internal components of ICDs and because makes it possi-

ble to easily replicate the experiments. The experiments that we have

performed gave us an interval of values that we used as testbench to

eventually define how close other solutions, specifically tailored for
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the ICD domain, are to a lightweight approach.

After having considered the current state of the art approaches in

securing ICD’s wireless telemetry, we came to the conclusion that an

approach based on asymmetric cryptography had been neglected by

researchers, probably because it was considered too resource con-

suming for this kind of devices. Consequently, analyzing the positive

aspects that an asymmetric cryptography-based approach could bring

in the ICD domain, we have decided to further investigate if a solution

based on that approach could be feasible. During our secure commu-

nication protocol design phase, we have selected ECC combined with

Curve25519 in order to make the protocol as fast as possible while

also reaching a higher security level with fewer resource requirements.

Considering the context of ICDs and their structural components, we

decided to use ECDSA to manage the authentication part, ECDH for the

key generation step and AES for the secure message exchange.

After our design phase, we have implemented this communication

protocol on two Arduino MKR Wifi 1010 boards in order to be able

to perform on our proposed solution the same tests that we have

conducted on the NIST algorithms. In this way, we have both evaluated

the feasibility of this approach on resource-constrained devices and

compared the performances of our solution with the results given

by the NIST lightweight algorithms. Our protocol is based on a PKI

where a CA signs the credentials of an external device that wants to

connect to an ICD. This step is necessary to produce a valid certificate

that demonstrates the legitimacy of the external entity. The ICD is then

responsible to verify the validity of the received certificate. In case this

step is successful, the communication protocol will proceed and the

two communicating parties will derive a shared key that will be used

to encrypt and decrypt all the following exchanged messages.

After having implemented this protocol, we performed experiments to

evaluate it. The obtained results are promising since the values of the

three analyzed metrics are consistent with the results given by the NIST

algorithms. All asymmetric cryptography based primitives present



conclusions 79

in our communication protocol execute in a relatively small amount

of time (less than 2 seconds). The RAM occupied while executing

these primitives is perfectly compatible with the available memory

space mounted on ICDs. Finally, the battery consumption is in line

with the performances of the NIST algorithms. All these considerations

show that although our approach is not as lightweight as the NIST

algorithms, it is still a valid solution for the ICD domain. Therefore,

since the experimental results of our ECDSA-ECDH based protocol are

encouraging, we think that pursuing this line of research could be

interesting.

The main limitation that we had to face was the difficulty to gather

technical information about ICDs from manufacturers. The market of

these devices is very competitive and the manufacturers’ company

policies do not allow to distribute samples or to disclose any kind of

data related to those devices. For this reason, we have decided to use

Arduino boards to implement and test our protocol and NIST algo-

rithms writing sketches in C language. To obtain a more performant

protocol we could have used Assembly, but this would have made

much more complex and less replicable our experimental phase.

As future work we suggest to further examine the potential of asym-

metric cryptography in this context, adapting this protocol to other

IMDs with telemetry functionality. Moreover, it could also be inter-

esting to analyze the advantages of developing a new asymmetric

protocol that covers all the steps of our protocol instead of using a

combination of ECDSA, ECDH, and AES.
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