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1. Introduction
Shape matching is a key problem in geometry pro-
cessing. Intuitively, it consists in finding corre-
spondences between the points of two 3D shapes,
as shown in Figure 1. Shape matching has a wide
range of applications, including texture and de-
formation transfer, object retrieval, and statistical
shape analysis. The problem is particularly chal-
lenging when the shapes in the pair are related by
non-rigid deformations.
The seminal work of Ovsjanikov et al [4] was a
breakthrough in the field: instead of directly find-
ing a point-wise map between shapes, they pro-
posed to put in correspondence functions defined
on the shapes. Given a basis for the functional
space of each mesh, this functional correspondence
can be represented compactly as a matrix C. How-
ever, for many applications, it is necessary to re-
cover a dense point-wise map.
Converting a functional map into a point-wise
map is far from trivial and many works, starting
from [4] itself, have proposed different methods
to accomplish this. Subsequent works improved
point-wise accuracy focusing mainly on improv-
ing the estimation of matrix C, or the algorithm
applied to obtain the conversion. Regarding the
functional basis, which is a fundamental aspect of

any functional map pipeline, they almost all relied
on the eigenfunctions of the Laplace-Beltrami op-
erator [1]. Such basis, that we will refer to as LB,
is the mesh equivalent of the harmonic basis and
it is optimal for approximating smooth functions.
Nonetheless, we found that LB presents a major
limitation: its energy is not evenly distributed on
the mesh surface. In other words, LB’s capability
of discriminating between vertices and providing
them with a meaningful representation is uneven
across the mesh surface. In particular, its energy
is concentrated on the massive areas, at the ex-
pense of extremities.
We propose a new functional basis whose energy
is evenly distributed on the surface of a mesh. To
enforce this even distribution, we build our ba-
sis by applying PCA to a dictionary of Gaussian
functions, evenly scattered on the mesh. The em-
bedding space produced by our basis:

1. discriminates between different vertices
2. preserves the locality of vertices

consistently across different areas of the mesh. At
the same time, our basis retains good properties
of LB, such as orthonormality, frequency order-
ing and isometry invariance, making it a viable
replacement for LB in existing pipelines. This
compatibility allows to combine the benefits com-
ing from improvements of different aspects of the
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(a) target

ours LB

(b) point-wise maps

ours LB

(c) geodesic error

Figure 1: Example of shape matching. (b) shows two
different point-wise maps between the woman and the
man encoded with colors. Vertices on sources and tar-
get have the same color if they are in correspondence.
(c) shows the respective geodesic errors.

functional framework, making our approach com-
plementary to other proposals.
Through experiments on established datasets, we
show that our basis actually reaches significantly
better results in point-wise accuracy compared to
LB, when inserted in the same pipeline.

2. Background and related work
2.1. Shape matching
The input of shape matching are two meshes M
and N , with sets of vertices VM and VN . We
assume M and N to have some sort of similarity,
which means that an unknown correspondence T :
VN → VM exists between them.
The goal of shape matching is to estimate the un-
known map T , outputting a function T̄ : VN →
VM. We will refer to T̄ as point-wise map and
we can represent it either as a vector of vertex in-
dices of size |VN | or as a matrix Π s.t. Πij = 1 if
T̄ (i) = j and 0 otherwise.
We want T̄ to be as close as possible to T , which
means that T̄ should assign to each vertex x ∈
VN a vertex on M geodesically close — ideally
coincident — to the one assigned by T . If T is
provided, we assess the mapping error as:

e(x) = GeoDistM(T̄ (x), T (x)) ∀x ∈ VN (1)

Figure 1 presents an example of two point-wise
maps, rendered through color correspondence, and
their respective errors.
In some of the experiments of Section 4, we will
also require a set of landmarks, which are not re-
quired to build the bases, but only for the specific
matching pipelines used. A landmark is a couple

of points (x ∈ VN , y ∈ VM) in known correspon-
dence, namely T (x) = y.

2.2. Functional maps
Let us consider again meshes M and N and the
point-wise map T : VN → VM. A real-valued
function f on M is a function that associates
to each vertex x ∈ VM a value in R. We call
F(M,R) the space of such functions. The func-
tional map approach [4] proposes to solve for the
functional correspondence between M and N first
and the extract from it a point-wise map, instead
of estimating T directly.
The point-wise map T induces a linear operator
TF : F(M,R) → F(N ,R) that maps functions
from M to N via the composition:

TF (f) = f ◦ T ∀f ∈ F(M,R)

Given a pair of basis Φ = {ϕ}i and Ψ = {ψ}j for
F(M,R) and F(N ,R), we can write

g = TF (f) = TF

(∑
i

aiϕi

)
=

∑
i

aiTF
(
ϕi
)
=

=
∑
i

ai
∑
j

cjiψj =
∑
ji

aicjiψj =
∑
j

bjψj

where a = [ai] and b = [bj ] are the projections of f
and g on Φ and Ψ respectively. cji is the projection
of TF (ϕi) on ψj and depends on TF , Φ, Ψ only.
Therefore, given Φ and Ψ, TF is represented by
the matrix C = [cij ] and b = C · a.
In practice, we consider only the first k atoms
of the basis, truncating the previous series at
i, j = k. Therefore, in the functional map frame-
work, matching two shapes resorts to estimating a
matrix C of size k × k, with k independent of the
number of vertices n and k ≪ n. We can represent
landmarks, segments and descriptors as functions
defined on M and N and find the C that best
preserves these functional constraints (in the least
square sense). The quality of C can be improved
by considering also the preservation of point-wise
products of functional constraints [3]. The size ki
of a functional map can be extended iteratively
by alternating conversions to point-wise map and
back to a functional map of size ki+1 > ki [2]. We
will test our basis with [3] and [2] in Section 4.

Embedding In practice, we store a truncated
basis for F(M,R) in a matrix ΦM ∈ Rn×k, where
each column is a function represented as a vector
of real values. We call embedding of a vertex x the
vector of values assumed by basis functions in x:
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Figure 2: Atoms of our basis (top) compared to atoms
of LB basis (bottom). Each atom is a function defined
on the mesh, represented here through color.

Emb(x) = [ϕi(x)] ∈ Rk. Emb(x) corresponds also
to the coefficients, in the basis ΦM, of a Delta
function centered in the vertex x and thus ΦT

M
contains the coefficients of all the Delta functions
of M (one for each vertex) as column vectors.

2.3. Conversion to point-wise map
We now address the problem of converting a func-
tional map C from M to N into a point-wise map
T̄ : VN → VM. A simple and efficient method,
proposed in [4], consists in finding, for each col-
umn of ΦT

N , the nearest neighbour in the columns
of CΦT

M. This corresponds to transferring embed-
dings of vertices from M to N through C and
putting in correspondence similar points in the
embedding space. This method is based on the
Plancherel’s theorem:
Theorem 2.1. Given two functions f1 and f2 de-
fined on a manifold M, with spectral coefficients
a1 and a2, it holds that:

∥a1 − a2∥22 =
∫
M
(f1(x)− f2(x))

2µ(x) (2)

If f1 and f2 are two functions localized in two
vertices x and y, we can assume that their L2 dif-
ference (right term in (2)) is strictly related to
the geodesic distance between x and y. Recall-
ing that embeddings are the spectral coefficients of
Delta functions, this theorem provides a relation
between the distance of two vertices in the em-
bedding space (left term in (2)) and their geodesic
distance. For truncated bases, the equality in (2)
does not hold precisely and depends on the spe-
cific basis adopted. The more this relation be-
tween embedding and geodesic distances from x is
preserved among the neighbors of x, the more we
say that a certain basis is locality preserving for x.
We will define proper metrics to evaluate locality
preservation quantitatively in Section 3.3.2.

2.4. Standard basis
The Laplace-Beltrami operator ∆M is a differ-
ential operator F(M,R) → F(M,R). For dis-
crete meshes, ∆M is usually computed using the
cotangent scheme [5] and admits eigendecompo-
sition: ∆Mϕi = λiϕi, where ΦLB = {ϕi} are its
eigenfunctions with corresponding real eigenvalues
Λ = {λ1 ≤ λ2 ≤ . . . }. ΦLB forms an orthonor-
mal basis, that we will call LB, for F(M,R). ϕi
are ordered in increasing frequency, as shown in
Figure 2 (bottom row), measured as their Dirich-
let energy. For this reason, LB is considered as
the mesh equivalent of the harmonic basis [1]. By
considering only the first k atoms we obtain an
optimal low-pass filter approximation of functions
in F(M,R). From [4] on, ΦLB has been the stan-
dard choice of basis for functional maps.

Limitations Despite its many strengths, LB
presents a major limitation: its energy is not
evenly distributed on the surface of a mesh, but
is concentrated in the massive areas, leaving nar-
rower extremities less covered. By energy, we
mean the expressive power of the embedding space
induced by the basis, measured according to (i)
discrimination power between different vertices
and (ii) locality preservation, as defined in Sec-
tion 2.3. It is desirable for a basis that properties
(i) and (ii) have sufficiently high values across the
whole mesh surface.

3. Proposed Solution: PC-Gau
We propose a new basis for the space of func-
tions defined on a mesh, whose energy is evenly
distributed on the mesh surface. PC-Gau is de-
signed to be used as a truncated basis in functional
map pipelines for shape matching, in place of LB.
Our hypothesis is that by improving the distri-
bution of the basis energy, we can obtain more
accurate point-wise maps, for the same pipeline.

3.1. Building procedure
The core idea for building PC-Gau is taken from
the field of signal processing and consists in com-
puting a dictionary of Gaussian functions scat-
tered on the mesh, and then reducing its dimen-
sionality through PCA. PCA produces an orthog-
onal set of generators, optimal for the approxima-
tion of the initial dictionary. The rationale is to
obtain a uniform distribution of basis energy by
controlling the uniformity of scattering — which
can be easily enforced — of the Gaussians.
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Figure 3: Complete shape matching pipeline with functional maps: (1) definition of a functional basis, (2) estima-
tion of C and (3) conversion to a point-wise map. Here, step (1) shows the building process of our basis: selection
of a subset of vertices (orange box), construction of the Gaussian functions (green box) and dimensionality reduc-
tion through PCA (blue box).

Subset of vertices Let M be a mesh with n
vertices VM. We start by selecting a subset Q
of q vertices on the mesh, using Farthest Point
Sampling (with Euclidean distance for simplicity).
As shown in the orange box in Figure 3, they are
evenly scattered on the mesh surface.

Dictionary of Gaussians We compute q Gaus-
sian functions, each one centered in a vertex of Q.
To do so, for each vertex j ∈ Q we compute the
geodesic distance dij to each vertex i ∈ VM, and
then apply gij = exp(−d2ij/σ). The geodesic dis-
tance is approximated as the length of the shortest
path on the edges of the mesh. The parameter σ
is arbitrarily chosen and sets the amplitude of the
Gaussians. We store the Gaussians as columns
of the matrix G = [gij ], of size n × q. We can
optionally normalize each column Gj of G, using
the norm given by the inner product defined on
the mesh. An example of some of the resulting
Gaussians is shown in the green box in Figure 3.

Dimensionality reduction We compute the
PCA of GT , meaning that each Gaussian is con-
sidered a sample and each vertex of the mesh a
variable. We do not center the variables, but we
weight them for the element of area associated to
each vertex. The result of PCA is a set of q vectors
(Principal Components, PCs), which are orthog-
onal generators of S = span({Gj}) ⊂ F(M,R).
To obtain a truncated basis of size k, we select
the first k PCs: they are the orthogonal genera-
tors of the subspace R ⊂ S that assures the lowest

reconstruction error on the Gaussians {Gj}. In-
tuitively, we use this last property to distribute
evenly the expressive power of the basis, starting
from a set of sample functions {Gj} that is evenly
distributed on the mesh.

3.2. Properties
PC-Gau shares, by construction, many of the de-
sirable properties of LB. This fact makes PC-Gau
a suitable replacement for LB in existing func-
tional map pipelines.

Figure 4: Dirichlet energy (frequency) of basis atoms.
Atoms of PC-Gau are fairly ordered in increasing fre-
quency, providing a low-pass filter approximation.

Frequency ordering Figure 4 shows the
Dirichlet energy of the atoms of PC-Gau, for an
example mesh, compared to LB. Dirichlet energy
measures the smoothness of a function and can
be interpreted as its frequency. We observe that
atoms of PC-Gau are approximately ordered by
increasing frequency. We can also evaluate this
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qualitatively in the example in Figure 2. This
means that when we project a function f on the
first k atoms, we perform low-pass filter approxi-
mation of f , similarly to LB.

Orthonormality PC-Gau, like LB, is an or-
thonormal basis. We say that a basis Φ ∈ Rn×k

is orthonormal according to the inner product of
a mesh M if ΦTAMΦ = Ik, where AM is the
vector of area elements associated to each ver-
tex. Thanks to orthonormality, we can project a
function f on Φ simply by matrix multiplication:
f̂ = ΦT

MAMf . This is useful, in particular, when
converting a given point-wise map Π : N → M
(represented here in matricial form) to a func-
tional map: C = ΦT

NAMΠΦM.

Isometry-invariance Two meshes M and N
are said to be isometric, or related by an isome-
try, if the underlying correspondence T : N → M
preserves the geodesic distance of any pair of ver-
tices on N . Since our basis is constructed purely
on geodesic distances, if they are preserved so it is
the resulting basis. This means that the functional
map between isometric pair of shapes is the iden-
tity matrix (with possible sign changes). In gen-
eral the energy of C is funnel-shaped, approaching
to diagonality as the relation between M and N
gets closer to isometry.

3.3. Spatial distribution of basis energy
In Section 2.4 we defined basis energy as the ex-
pressive power of the embedding space produced
by the basis, measured by its discrimination power
and locality preservation. Here, we show quantita-
tively that PC-Gau has a more evenly distributed
energy than LB, and we highlight the relation be-
tween basis energy and point-wise error.

3.3.1. Discrimination power

We define discrimination power as the capability
of a basis to assign sufficiently different embed-
dings to different vertices. For each vertex x we
measure the discrimination power with the follow-
ing metric:

Dis(x) =
∥Emb(x)− Emb(y)∥2

GeoDistM (x, y)

where y is the vertex with the closest embedding to
Emb(x) (in the Euclidean sense). The normaliza-
tion makes the metric independent of vertex den-
sity and also rewards geodesic proximity between
x and y.

(a) discrimination power (b) geodesic error

Figure 5: SHREC19. Average spatial distribution of
(a) discrimination power of the basis and (b) geodesic
error of point-wise maps. Comparison between LB and
ours. Darker is worse in both cases.

Figure 5 presents both the average distribution of
Dis(x) on the meshes of SHREC19 and the aver-
age distribution of the geodesic error for 200 ran-
dom pairs from the same dataset, matched using
LB and our basis. We observe that the error for
LB is localized where the discrimination power is
lower (forearms and feet), suggesting a correlation
between the two. PC-Gau presents minimal dif-
ferences of values on the mesh surface, both in
terms of discrimination power and error.

3.3.2. Locality preservation

To quantitatively assess locality preservation (see
Section 2.3) of a basis we use the following metrics:

EGDC For each vertex x we evaluate the corre-
lation between the Euclidean distance of the s em-
beddings closest to Emb(x) and the corresponding
geodesic distances from x. The idea here is to
use correlation to evaluate how much the ordering
among embedding and spectral distances is pre-
served for vertices in the neighborhood of x.

MGD For each vertex x we evaluate the mean
geodesic distance of the t vertices corresponding to
the t nearest embeddings, normalized by the mean
geodesic distance of the actual t closest vertices on
the mesh. The more the ordering between spectral
and geodesic distances is preserved, the lower is
this quantity, approaching 1.

Results The spatial distribution of EGDC e
MGD for PC-Gau and LB is much similar to the
ones of Figure 5a. In table 1 we present, instead,
the average values of EGDC and MGD, for dif-
ferent datasets. The results show that, through
a more even distribution, PC-Gau is able to in-
crease the overall value of locality preservation.
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dataset EGDC (s = 80) MGD (t = 10)
ours LB ours LB

FAUST 0,797 0,738 1,11 1,34
MWG 0,838 0,781 1,12 1,36
TOSCA 0,841 0,790 1,12 1,40
SHREC19 0,819 0,688 1,14 1,86

Table 1: Overall values of EGDC and MGD averaged
on the meshes of different datasets.

4. Experimental Evaluation
In this section, we apply different functional map
pipelines — using both PC-Gau and LB as func-
tional basis — to pairs of meshes extracted from
established datasets. Since the ultimate goal of
PC-Gau is to improve the quality of shape match-
ing, with respect to the currently widely used LB,
this experimental evaluation constitutes a crucial
assessment of our proposal.
We used the datasets reported in Table 2. All the
meshes have been normalized to unitary area, to
make errors comparable among different datasets.
In all the experiments we used k = 60 and we
generated PC-Gau with q = 1000, σ = 0.05 and
normalization. In all the settings analyzed here,
we use the algorithm presented in Section 2.3 for
the conversion to point-wise map.

Metric We evaluate the overall accuracy of a
point-wise map T̄ : N → M by the average
geodesic error: AGE(T̄ ) = Avgx∈VN e(x), where
e(x) is computed as in (1). We consider both its
absolute value (for PC-Gau and LB) and the Rel-
ative Error with respect to LB:

RE(T̄ ) =
AGE(T̄ours)−AGE(T̄LB)

AGE(T̄LB)

In Table 2 AGE and RE are reported by consider-
ing their mean value on multiple pairs (∼200) from
each dataset. A negative value of Mean Relative
Error indicates that, on average, PC-Gau per-
forms better than LB on the pairs of the dataset.

4.1. Ground truth C

In order evaluate our basis independently of the
quality of C, we compared PC-Gau and LB when
C is computed (see Section 3.2) using the ground
truth correspondence provided by the dataset.
The results are reported in the first three columns
of Table 2: PC-Gau provides substantially bet-
ter results in all datasets. Figure 5b also shows
the average distribution of the error on the mesh
surface for the pairs extracted from SHREC19.

4.2. C estimated with NO17
In a real setting no ground truth correspondence
is provided. Columns 4,5,6 of Table 2 present the
results when C is estimated using product preser-
vation of functional constraints [3]. PC-Gau still
gets better results than LB, except in MWG. The
fact that removing strongly non-isometric shapes
from the dataset brings the advantage back (see
row “MWG iso”), suggests that PC-Gau may be
more unstable under strong non-isometries. In
this setting we used functional constraints based
on 6 landmarks and WKS descriptor.

4.3. ZoomOut
We also tested our basis with the iterative method
ZoomOut [2]. The results are shown in the last
columns of Table 2. This method makes heavy
use of conversions to point-wise maps for the esti-
mation of C and this shows in the results, where
PC-Gau outperforms LB. In these experiments
we used an initial map estimated with [3], of size
between 16 and 20.

5. Conclusions
We presented the procedure to build a new basis
for the space of real-valued functions defined on a
mesh. Compared to the eigenfunctions of Laplace-
Beltrami operator, which is currently the ubiqui-
tously adopted basis for functional maps, the en-
ergy of our basis is distributed more uniformly on
the mesh surface. The resulting embedding space
for the vertices is overall more amenable to point-
wise conversion. Our basis can replace LB at no
cost in virtually any functional map pipeline and
we showed experimentally that this replacement
leads to superior results in the accuracy of the ob-
tained point-wise maps.
Our basis still presents some important limita-
tions. First, it is generally slightly worse than LB
in function approximation and transfer. Second, it
may be more susceptible than LB to non-isometry,
depending on the method used to estimate C.
Interesting directions to explore in the future in-
clude: (i) a different composition of the dictionary
of functions used to build the basis, and (ii) the
usage of the proposed locality-preservation met-
rics to perform an optimal selection of parameters
mesh-by-mesh, bringing a new level of adaptabil-
ity to our basis.
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dataset GT NO17 ZoomOut
ours LB MRE ours LB MRE ours LB MRE
×10−3 ×10−3 ×10−2 ×10−3 ×10−3 ×10−2 ×10−3 ×10−3 ×10−2

FAUST 15,7 19,7 -20,3 28,0 30,6 -4,9 24,0 26,1 -7,5
MWG 20,8 24,9 -20,2 58,7 58,7 -8,4 51,2 70,6 -26,9
MWG iso 13,6 17,3 -25,5 25,9 27,6 -10,1 18,6 27,2 -28,3
TOSCA 7,7 12,3 -39,6 12,7 19,8 -39,3 9,7 20,5 -49,9
SHREC19 24,5 28,4 -14,0 43,4 65,9 -15,3 34,5 39,4 -10,3

Table 2: Average Geodesic Error (both absolute and relative) of point-wise maps converted from a C (1) computed
from ground-truth correspondence, (2) estimated with [3] and (3) estimated with ZoomOut [2]. Our basis always
provides, except in on case, substantially better results.
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