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Abstract

An increasing number of applications take advantage of Convolutional Neu-
ral Networks due to their effectiveness in image vision tasks. However, these
models can be affected by critical faults that change their prediction. Previ-
ous works have studied what happens when critical faults impact a LeNet5
network. In particular, they have proposed an architecture for a fault detec-
tor composed of two networks, where the auxiliary model acts as a controller
for the main network. This Master Thesis aims to expand the same analysis
to a larger network such as VGG-16. Moreover, we will propose an effective
and inexpensive fault detector that analyzes the vector score of VGG-16 to
detect critical faults, without the need for an auxiliary network.
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Chapter 1

Introduction

An increasing number of applications exploit Deep Neural Networks (DNN)
due to their effectiveness in task such as Image Classification [1] [2], Image
Segmentation [3] [4], or Speech Detection [5]. Convolutional Neural Net-
works (CNN), a specific kind of DNNs, are among the leading technologies
in computer vision. While very effective, CNNs are composed of millions of
parameters and, as such, are computationally expensive. For this reason, re-
searchers have focused on improving the effectiveness of Convolutional Neu-
ral Networks. On the one hand, networks have become smaller and more
accurate, while on the other, new hardware solutions have been developed to
speed up their computation. Hardware accelerators - such as GPUs, ASICs,
or FPGAs - improve the performances of Convolutional Neural Networks
by taking advantage of their natural predisposition to parallelization. In a
CNN, a convolutional layer applies the same transformation - with the same
parameters - to all its inputs. Consequently, a hardware accelerator that
paralyzes these operations greatly decreases the time needed to compute a
network prediction [6].

Unfortunately, accelerators are vulnerable to different sources of faults,
such as radiation-induced errors, aging, or temperature [7]. Moreover, due
to the high level of parallelization involved, they are prone to propagate
these errors to multiple output elements: accelerators are more susceptible
to malfunctions than regular hardware architectures. The lower reliability
of this components is of particular concern, as highlighted in [8] and [9], in
safety-critical systems, like in the automotive sector. When a fault changes
the prediction of a network we talk about critical faults: this type of faults
are dangerous as they are not easy to identify [6].

As a result, more researchers have begun to focus on the reliability of
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2 CHAPTER 1. INTRODUCTION

convolutional neural networks [6] [10]. We can distinguish between a passive
and an active approach to this problem. A system with active fault toler-
ance is designed to deal with faults without having a component dedicated
to this task. Consequently, reliability is achieved through some type of re-
dundancies [11]. An example of this is the Algorithm-Based Fault Tolerance,
where a checksum is added to every operation. This process adds significant
overheads, increasing the computational cost of the network. Conversely, a
system with passive fault tolerance takes advantage of a specifically designed
fault detector to identify the faults. Additionally, it employees a supervisor
element to deal with the faults that have been identified [6] [10]. Recogniz-
ing whether the output of a network is the result of a hardware malfunction
is not an easy task. Ideally, the best fault detector would be a replica of the
network. By comparing the network prediction with the replica prediction,
it is easy to identify a misclassification caused by a critical fault. However,
this is prohibitively expensive to implement in practice. While some works
treat the fault detector as a black-box [12] [13], others presented an archi-
tecture based on a smaller network replica [14]. In this latter case, the fault
detector compares the network output with the output of its smaller version
- the auxiliary network - to detect the presence of a fault. As the auxiliary
is not a complete replica of the network, the fault detector can not simply
compare the output of the two. Being the auxiliary network an approximate
model, the prediction of the two networks may be different even without a
critical fault. Consequently, the fault detector looks at the norm of the
difference between the vector scores of the two models.

In our Master Thesis, we aim to expand the work presented in [14],
as we have collaborated closely with its author. Since results were shown
only for LeNet5, a small convolutional network, our work aims to study the
performance of the replica-based fault detector on VGG-16 [1], a state-of-
the-art Convolutional Neural Network composed of more than 100 million
parameters. The first thing we are going to introduce is the implementation
of an Auxiliary-Based Fault Detector for VGG-16. In particular, we will
present different alternatives for the auxiliary network and compare their
performances. The design of these architectures is not trivial: it requires
a careful balance between model accuracy and computational cost. On the
one hand, the auxiliary model needs to be small enough not to impact
negatively VGG-16 performances. On the other hand, since this additional
component acts as a controller for the main network, their vector scores need
to be as close as possible. For this reason, we have developed four different
architectures for the auxiliary network: two models have the same structure
as VGG-16 with fewer layers, the other two are MobileNets [2]. We propose
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Figure 1.1: The architecture of the proposed fault detector. The
Fault Detector compares the maximum of the vector score VGG(X)
with the maximum value ever reached by a component of VGG-16
vector score when predicting the images of the External Dataset. The
computation of the maximum value needs to be done only once before
using the Fault Detector.

these architectures as they reduce the number of parameters and operations
of VGG-16. These models have been trained using knowledge distillation
[15] to have an auxiliary network with a vector score as close as possible to
one of the main network.

Additionally, we are going to introduce a more efficient solution, which
we call Score-Based Fault Detector, as it looks only at the vector score of
VGG-16 to detect a fault. The new fault detector we propose doesn’t require
a replica of the network. It works by comparing the maximum element of
this vector score with the maximum value ever reached by the vector score
when VGG-16 was used to predict images from an external dataset, as shown
in Figure 1.1. When a fault impacts the network, we expect it to modify its
vector score. Moreover, a critical fault that changes the prediction, changes
the order of the element of the vector score. Consequently, we can expect
that the component of maximum value in the vector score is a good element
to inspect when we want to detect a fault. Our idea is to record, before
performing any prediction, the maximum value ever reached by a component
of the vector score when VGG-16 is evaluated over a fixed dataset. If for a
prediction, the value of the top element of the vector score is much higher
than this value, there is a high chance that it is the result of a critical fault.
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Our experiments show that the fault detector we are going to propose is
more effective and less expensive than the one employing a network replica.
In particular, we are going to show that the Score-based Fault Detector has
better accuracy, precision, and recall than its Auxiliary-Based counterpart.
These measurements have been obtained for multiple faulty runs where we
inject different numbers of faults in VGG-16.

The thesis is structured as follows:

• in Chapter 2 we introduce background concepts necessary to under-
stand our work. We will introduce CNNs and VGG-16, other than
talk about why faults occurs and what is their impact;

• in Chapter 3 we formally introduce our problem;

• in Chapter 4 we present 2 Auxiliary-Based Fault Detectors that require
a smaller replica of the network, and 2 Score-Based Fault Detectors
that work without the need of an additional model;

• in Chapter 5 we introduce our experimental setup, with a focus on the
implementation of a fault injector, a tool used to simulate the presence
of faults in a neural network;

• in Chapter 6 we present the results of our experiments, comparing the
different models and showing why the one based on the max is the
best fault detector;

• in Chapter 7 we summarize our work, detailing possible directions for
future studies.



Chapter 2

Theoretical Background

In this chapter we are going to introduce some key concepts that are useful
to understand the content of the thesis. Particularly, we will first introduce
neural networks and convolutional neural networks. After that, we are going
to talk about the VGG-16, which is the primary work of this thesis. We will
then discuss how faults may happen in neural network accelerators and their
impact. Finally, we will briefly talk about fault injection: techniques used
to simulate this kind of malfunctions.

2.1 Convolutional Neural Networks

In this section we are going to briefly introduce neural networks. After a
general introduction to the topic, we will talk about Convolutional Neural
Networks and how they work. After that, we will focus on one of the most
important architecture, VGG-16, that, despite being outperformed by more
recent networks, is still an excellent model for image classification.

2.1.1 Neural Network and Deep Neural Network

A neural network is a non-linear model that takes that can be used for
regression and for classification. In a classification task, we want to decide
to which of the available class assign a given input. Let ∆ be the set of the
possible classes and t ∈ ∆ the target class for input x ∈ RN . Our objective
is to find a function Ȳ : RN → ∆ such that:

Ȳ (x) = t (2.1)

5



6 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Architecture of a feed forward neural network composed
of a single hidden layer.

As shown in Figure 2.1, a neural network is a graph where every node is
called a neuron. If the graph is directed and acyclic, then the architecture it
is called a feed-forward neural network. We can group neurons in layers: an
input layer containing the input neurons, one or more intermediate hidden
layers, and an output layer containing all the output nodes. One of the
most important results is the Universal Approximation Theorem [16], which
states that a feed-forward neural network composed of a single hidden layer
is capable of approximating any continuous function f : Rn → Rm.

As we have seen before, a neuron is the smallest component of a neural
network. To better understand how they work, let’s analyze in detail what
a neuron does. A neuron (Figure 2.2) computes a linear combination of
its input by applying a non linear transformation h, called the activation
function. Moreover, not all the inputs have the same importance, and this
is represented by weighting each input with a weight wi. Additionally, every
neuron has a dummy input whose value is fixed to one, and its associated
weight is called the bias. In literature, it is often referred to as w0. Therefore,
the output of a neuron with inputs x =< x1.., xI > is defined as:

y(x) = h(
I∑

i=1

wixi + w0) (2.2)

We can extend this formulation to the whole architecture. Let’s focus
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Figure 2.2: Anatomy of a neuron

on a feed-forward neural network composed of a single hidden layer, like the
one shown in Figure 2.1. The J neurons intermediate layer applies a non-
linear transformation h with weights w =< w1...wI >, while the neurons of
the output layers apply a non-linear transformation g with weights W =<
W1...WJ >. Let θ be the set of all the weights of the network. Given an
input whose components are X =< X1...XI >, the k-th component of the
vector score Yk(x, θ) is:

Yk(x, θ) = g(

J∑
j=1

Wjh(

I∑
i=1

wixi + w0) +W0) (2.3)

From this vector we can retrieve the prediction of the network Ȳ as the
component of maximum value, that is:

Ȳ (x, θ) = arg max
k

[Y (x, θ)]k (2.4)

2.1.2 Training a Neural Network

Training a model means find the optimal values of the weights in order
to minimize some kind of pre-defined loss function. Typically, the most
used loss function for multi-class classification is the categorical cross-entropy
E(x|t, θ) and for a set of weights θ is defined as:

E(x|t, θ) =

K∑
k=1

t lnYk(θ, x) (2.5)

where (x, t) is a pair input, target. The goal is to find a set of weights θ that
minimizes the loss function for all the pairs (x, t) of our training dataset.
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Notice that a neural network is non-linear model and the loss can be a
non-convex function: finding its minimum is not trivial.

The method used to find the right set of weights is called backpropagation.
The weights of the network are updated using stochastic gradient descent :
fore every wight of the network w ∈ θ, we subtract from an value, the
gradient of the loss function multiplied by a parameter α called the learning
rate:

wk+1 = wk − α
∂E

∂w

∣∣∣∣
w=wk

(2.6)

where wk is the value of the weight for the current iteration while wk+1 is
the value of the weight for the next iteration. The computation of the loss
-and generally of the output- is often referred to as the forward pass. We
call a pass over the whole dataset an epoch.

The training of the network stops when we have found a satisfactory
approximation. Notice that finding the set of weights for which the loss is
close to zero is rarely the right approach: by doing so, we risk to overfit the
data to the training set. More precisely, overfitting means that the model is
very good at approximating the function for inputs it has been trained on,
but does not perform as well with inputs it has never seen before. In this
case, we say that the network is biased toward the training set.

To evaluate the actual performance of the model we need an external
dataset, composed of images that are not given as input to the network
during training. This dataset, called the validation dataset, is what is used
to estimate the loss function with no bias. Since reserving a portion of the
dataset can hurt the training process, we want to minimize the amount of
data assigned to the validation dataset.

A solution to this problem can be found in cross-validation. The idea
is to split the dataset in multiple folds, and to train the model over all but
one fold, using the remaining one as the validation dataset. At the end
of the epoch, we switch the fold in the validation set with one of the fold
in the training set. When using k folds this method is known as k-fold
cross-validation.

While using techniques such as cross-validation, we can employ various
model selection techniques. The most used ones in neural network is early
stopping : when the loss over the validation set does not decrease for a given
number of epochs - called the patience - we stop the training. Notice that
we don’t need to use the same loss for training and for evaluation. In fact,
we do not need a loss at all for the evaluation phase: we can track other
values such, for example, the network accuracy.
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2.1.3 Training with batches

In order to compute the weights update of a neural network we need to
compute the gradient of the loss function with respect to the weights of each
input image multiple times. However, computing the gradient for all the
inputs simultaneously is not practical, mainly due to memory limitations.
Therefore, input data are split into sub-groups, called batches. By doing so,
we are no longer computing the gradient over all the inputs, but only over
a batch.

Using batches has other implications. In fact, the computation of the
gradient is faster as it requires less operations. However, using small batches
means that the intermediate computations are less accurate, slowing down
the gradient convergence. Therefore, choosing the right batch size is crucial
to speed up the training.

2.1.4 Convolutional Neural Network

Despite the ability of feed-forward neural networks of approximating every
continuous function with a single hidden layer , this architecture is not al-
ways the best choice for learning a given mapping. The seminal work of
Yann LeCun [17] has shown that some tasks are better suited to Deep Neu-
ral Networks (DNN ); feed-forward neural networks composed of multiple
hidden layers. LeNet [17], the network he proposed, is an example of this
(Figure 2.3).

Deep Neural Networks are an excellent tool for image recognition, where
we want to assign a label that describes the input image. This task is
typically achieved by a specific kind of DNN, called Convolutional Neural
Network. This models is mainly composed by two kind of layers: convo-
lutional layers and fully-connected layer. The latter are the same we have

Figure 2.3: LeNet, image from [17]
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being discussing until now and, as the name suggest, are composed by neu-
rons that have a connection with all the neurons of the previous layer and
all of the next layer. To better understand how convolutional layers work,
let’s first introduce the convolution operation.

Convolution is a filtering operation that consists in applying to an image
a filter -or kernel - of size N applied to the pixel in position (r, c) of the image.
Conceptually, by applying the convolution operation we want to multiply
the value of the pixel of a neighborhood of the target position with the value
of the filter.

Figure 2.4: A 3 × 3 convolutional filter w applied to a 7 × 7 image
I, resulting in an 5× 5 output image O.

More specifically, let’s consider an input image I of width W and height
H, composed by only one channel (i.e. it has depth of 1). This can be
represented as a 1 ×W × H tensor. We apply to it a filter w of size N ,
represented by a 1×N×N tensor. The output of the convolution O applied
to position (r, c) is a linear combination of the image and the filter:

O(r, c) =

bN
2
c∑

x,y=−bN
2
c

w(x, y)I(r + x, c+ y) (2.7)

By applying the same kernel to every pixel of the input image, we obtain
a filtered image. We can see the application of a filtering operation in Figure
2.4. Since the convolution is a linear combination of its inputs, we can easily
implements a neuron that works as a convolutional filter. A network in
which some of its neuron act as a convolutional filter is called convolutional
neural network. We can split the components of these models into 4 groups:
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convolutional layers, activation functions, pooling layers, and fully connected
layers.

In a convolution layer the output is a linear combination of all the values
in a region of the input. As previously discussed, a filter is applied through
the whole spatial extent of the input. We can choose to apply a filter only
to certain pixels: we call stride the distance between two application of the
convolution operation. It is possible to apply multiple filters: different filters
yield multiple output channels. While each filter must have the same depth
as the input image, the depth of the output is dictated by the number of
filters applied. Therefore, we say that a convolutional layer has a large depth
extent because it covers the whole volume fed as input. On the other hand,
they have a small spatial extent.

An activation layer is used to add non-linearity into the network. Among
other things, the non-linearity of the output function is what allows neu-
ral networks to work as a universal function approximator. Typically, the
activation function of the last layer of a convolutional neural network is a
softmax function that transforms a vector - whose component are called the
logits - to a probability distribution. Given a vector z ∈ RJ , we define a
softmax function s : RJ → RJ as:

si(z) =
e
zi(x)

τ∑
j e

zj(x)

τ

(2.8)

where τ is the temperature, a parameter used to decide how sharp the prob-
ability distribution should be.

While convolutional layers greatly increased the depth of the volume
and slightly decreased its spatial extension, the pooling layers are used to
reduce the spatial extension. The pooling layer operates independently on
every depth slice of the input and resizes it spatially, often using the max
operation: this class of layers is called maxpooling.

Another example of a pooling layer is the Global Average Pooling (GAP)
layer, first proposed in [18]. In a classification task where there are N output
classes, a GAP layer transforms a W × H × N tensor in a vector of N
components, as shown in Figure 2.5. The purpose of this layer is to avoid
the presence of a fully connected portion of the network. Furthermore, it
transforms the output of a convolutional layer into something that can be
fed directly to a softmax layer. By using this layer, we increase the efficiency
of the network. This layer applies an average to each of the channels of the
input tensor. This means that the element in position i of the output tensor
is the average of all the elements of channel i in the input tensor.
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Figure 2.5: A GAP layer, image from [18]

The main idea behind convolutional neural networks is that a convolu-
tional layer will act as a feature extractor : the filters are used to learn -and
later find- certain regions of pixel in the input image that are associated with
a feature. Multiple features describe the class to which the image belongs
to. The concept of feature can be better understood by introducing the
receptive field. In a regular fully connected layer, the value of every single
pixel in the output image is dependent on the whole input image. However,
due to the properties discussed before, in a convolutional neural network,
a pixel in the output image depends only on a small region of the input.
This region is called the receptive field of that output. As we traverse the
depth of a convolutional neural network, the size of the receptive field tend
to increase. This is due to maxpooling and convolution operations, as well
as having a stride factor greater than 1.

2.1.5 VGG

The network introduced by LeCun in 1998, despite working well with the
small MNIST dataset it was conceived for, was far too simple to deal with
bigger images. Starting in 2010, a competition called the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC ) was launched to encourage
the research of deep neural networks capable of dealing with bigger input
images. The organizer of this competition provided a dataset, often called
the Imagenet Dataset. To this day, this dataset is one of the most used,
mainly due to its size: it contains more than 14 million labeled images split
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Figure 2.6: VGG-16, image from [1]

in 1000 non-overlapping classes.

One of the most effective network to compete in the ILSVRC is VGG
(Visual Geometry Group), developed in 2015 [1]. This network was able
to achieve impressive results when it was first presented, reaching a 23.7%
top-1 validation error and a 6.8% top-5 validation error. In Figure 2.6, we
can see a scheme for the network: it is composed by multiple convolutional,
maxpooling and fully connected layers. At first, we can split the network in
two segments, a fully connected part and a convolutional one. Furthermore,
we can group layers of the convolutional part into different sections, each
formed by a certain number of convolutional layers and by a maxpooling
layer.

Various topologies of VGG were presented, each characterized by a cer-
tain number of layers. The one shown in Figure 2.6 is called VGG-16 as it
contains 16 different layers. VGG-16 takes as input a 224× 224× 3 image
and output a 1000-sized vector. The predicted class is the one associated
with the component of highest value. The activation function of the last
layer is a softmax rather than a relu. This is crucial as, in our thesis, we
are going to analyze the output of the network before the application of the
softmax activation function.

Since Imagenet is composed of images of varying size, to input them to
VGG we must re-scale and re-size them. First, images are re-scaled to a
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fixed size of 256× 256, then they are center-cropped to the actual input size
of 224× 224. An additional pre-processing step is to mean-center the data:
we subtract the mean RGB value -computed on the training set- to each
pixel of the input image.

2.1.6 MobileNet

Another network that was developed for the ILSVRC competition is Mo-
bileNet [2]. This model is an efficient convolutional neural network de-
signed for mobile or embedded applications. This efficiency is achieved
trough depth-wise separable convolution and by defining an hyper-parameter
α called the width multiplier.

In a standard convolutional layer, we apply a N × N × CI × CO filter
to the image, where N is the dimension of the kernel, CI is the number of
input channels and CO is the number of output channels. By applying this
filter, we transform an input tensor of size WI×HI×CI to an output tensor
of size WO ×HO × CO. The cost of this operation is:

N ×N × CI × CO ×HO ×WO (2.9)

In a depth-wise separable convolution layer, we split this operation in two
parts, as shown in Figure 2.7. First, we apply a depth-wise convolutional
filter of size N ×N × CI . By applying this filter we are not modifying the
depth of the output tensor. In standard convolution we apply CO filters,

Figure 2.7: On the left we can see a traditional convolutional layer
with a batch-normalization layer and a relu activation function. On
the right, we can see the depth-wise convolutional layer and the point-
wise convolutional layerm each followed by a batch-normalization and
a relu. Image from [2]
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each of depth CI , to our image. In this case, instead, we are only applying
a single filter of depth CI . The dimension of the output of this layer is
WO ×HO × CI . In this case, the number of operations is:

N ×N × CI ×HO ×WO (2.10)

To obtain an output of the same size of the standard convolution, we need
to apply an additional operations, called the point-wise convolution, where
we apply CO 1× 1 filters to the input tensor, therefore the cost is:

CI × CO ×HO ×WO (2.11)

By combining (2.10) and (2.11) we obtain the total cost of the depth-wise
separable convolution:

N ×N × CI ×HO ×WO + CI × CO ×HO ×WO (2.12)

By dividing (2.9) by (2.12) we obtain the reduction in number of operation.
This value is:

1

CO
+

1

HO ×WO
(2.13)

Furthermore, the width multiplier hyper-parameter α ∈ (0, 1] can be used
to further decrease the number of operations. For a given layer and a given
α, the number of input channels CI becomes αCI and the number of output
channels CO becomes αCO. Using this parameter, the computational cost
of the depth-wise separable convolution becomes:

N ×N × αCI ×HO ×WO + αCI × αCO ×HO ×WO (2.14)

Choosing an α < 1 decreases the accuracy of the network. A MobileNet with
α = 1 reaches a validation accuracy over the Imagenet Dataset of 70.6%.

2.2 Knowledge Distillation

Knowledge distillation is a technique that consist in training a neural net-
work, called the student, to closely follow another trained model: the teacher
[15]. That is, during training, we want the student model to minimize a cus-
tom loss - often referred as the k-d loss - that is computed comparing the
prediction of the student with the prediction of the teacher. Knowledge
distillation is often employed to perform model compression: this technique
allows us to create a smaller version of a network without losing its accuracy.
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2.2.1 K-D loss

Given an input x with a target label t, a multi-class student model S and a
multi-class teacher model T , we define the k-d loss EKD(x|t) as the cross-
entropy loss between the output of the two models:

EKD(x|t) =
∑
i

Si(x|t) log Ti(x|t) (2.15)

In most neural networks, the output layer is typically a softmax layer, con-
verting logits to pseudo-probabilities (2.8). The temperature τ is very im-
portant in knowledge distillation, since can to manipulate how the logits
are converted into probability distribution. High values of τ smooth the
distribution of s(z) over all its components, while values closer to 1 return
sharper distributions.

In knowledge distillation, we use a high value of the softmax temperature
during training, both for the student and the teacher model. We do this for
two reasons. First, this allows us to reduce the information loss resulting
from the application of the softmax. Second, the gradient of the loss func-
tion has a smaller variance, allowing for larger values of the learning rate
[15]. During testing, the temperature is reverted back to 1 for the student
model. In this case we are only interested in the prediction and not in the
relationship between the components of the output.

Algorithm 1 Knowledge Distillation Training

1: function KnowledgeDistillationTraining(S, T, τ)
2: Set S and T temperature to τ
3: for every epoch do
4: for x ∈ X do
5: t = T (x)
6: s = S(x)
7: EKD(x) =

∑I
i si log ti

8: backpropagation(S, EKD(x))
9: end for

10: end for
11: end function

2.2.2 Training with Knowledge Distillation

The complete algorithm for training a student model with distillation learn-
ing can be found in Algorithm 1. In line 2 we setup the models by setting
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the temperature to the desired value. In line 3-8, for each epoch, we cycle
trough all the images of the dataset. For every input, we make a prediction
for the student model and for the teacher model, obtaining the probability
distribution for the two networks (line 5-6). In line 7 We use these vectors
to compute the k-d loss. With this value we can compute the updated value
of the student network weights trough backpropagation (line 8).

2.3 Faults in Convolutional Neural Networks

In this section we are going to introduce the most common faults in neural
networks and give a brief explanation on why convolutional neural networks
are more prone to errors than other architectures. In particular, we are
going to introduce the concept of silent data corruptions (SDC ) and show
how faults occurring in neural network accelerators are related to this kind
of errors.

2.3.1 Classification of Faults

A definition of fault can be found in [10]: ”A fault is an anomalous physical
condition in a system that gives rise to an error. An error is a manifesta-
tion of a fault in a system, the deviation from the expected output, in which
the logical state of an element differs from its intended value”. In litera-
ture, faults are split in two macro-classes: permanent and transient. This
subdivisions is based on the duration of the malfunction.

Permanent faults are malfunctions typically caused by a hardware fail-
ure. As the name suggests, a fault of this kind is constant in time: once
it happens, the fault will always be there. Therefore, when such a defect
present itself, the only way to get permanently rid of it is to substitute the
failing component.

Instead, transient fault are the result of external disturbances and, as
such, they last for a brief span of time. In fact, this kind of malfunction can
be fixed at software level. They are often referred to as soft errors.

To model permanent faults, one of the most accepted technique found
in literature is stuck-at values, that is: a data or control line is stuck at
1 (stuck-at high) or at 0 (stuck-at low). Transient faults, instead, can be
modeled with a random bit-flip: a bit of a registry, or of a memory location,
is flipped to the opposite of its original value.

What is particularly interesting to us, is to analyze how a permanent
fault impacts a neural network. This kind of malfunction can modify the
results of certain operations (by corrupting register values) or change some
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element stored in memory. We are interested in studying this latter case. In
particular, we are going to examine what happens when one or more faults
modifies the value of a network weights during the prediction phase.

2.3.2 Critical Data Corruptions

A neural network can react to a malfunction by changing its output. We
typically define a faulty network as a network that has been affected by a
fault, while a clean network is a network that is not influenced by faults. If
the vector score Y F (x) ∈ RJ of a faulty network Y F (x) for a given input is
different from the output of the corresponding clean network over the same
input Y C(x) ∈ RJ we say that there is a data corruption affecting input x.
Furthermore, if this changes the prediction of the network, we talk about
critical data corruption [6].

This kind of corruption is the most interesting to study, as it changes
the prediction of the network but is not easily detectable. As such, it is
often referred to as Silent Data Corruption. While it may change the vector
score and even the prediction of the network, it doesn’t affect anything
else. Without knowing the prediction of the network when it is unaffected
by faults, it is impossible to immediately recognize an output as critically
corrupted.

2.3.3 Fault Tolerance

An increasing number of papers focus on the creation of an architecture that
is capable of handling faults. The proposed solutions can be grouped into
passive and active fault tolerant architectures [10].

Passive solutions employ architectures that don’t explicitly detect faults.
In fact, there is no additional structure designed to detect faults and no addi-
tional structure to deal with the detected malfunctions. Rather, they employ
network redundancies or error correcting codes to deal with faulty connec-
tions. This kind of solution often requires more computational power, as
the idea is to introduce some kind of inefficiency, either by duplicating some
neurons, or by increasing the number - or the complexity - of operations.

On the other hand, active solutions do not change the structure of the
network itself, but they introduce special fault detection tools and controller
components. Notably, the most explored topic in this kind of solutions is
the realization of the controller, while the detector is often considered as a
black box by most authors [12][13]. However, some works explore how to
implement a fault detector: for example in [19] a solution consisting in fixed



2.3. FAULTS IN CONVOLUTIONAL NEURAL NETWORKS 19

probing vectors to identify the presence of faults is proposed. The literature
dealing with fault detection is limited and quite dated, as the application of
this kind of techniques is not documented for complex architectures such as
convolutional neural networks.

2.3.4 Faults in Neural Network Accelerators

In the last few years new hardware architecture have been developed to
increase the performances of deep neural networks. These computing el-
ements, often referred to as DNN accelerators, are composed by multiple
simple processing units that work on parallel over a given input.

The convolutional layer takes advantage of this component the most:
since we need to compute the same convolution operation - with the same
parameters - for all the elements of the input tensor, we can easily parallelize
this task. However, this speed increase has a drawback in terms of reliability.
Cheaper computing units and memories increase the possibility of a fault,
while the parallelization of the operations tend to propagate a single fault,
compromising the ability of a network to deal with it [6].

2.3.5 Impact of faults on weights

As we discussed, most of the fault that affect a neural network modify the
value of the weight stored in memory. Temporary faults are modeled with
a bit-flip while permanent faults are modeled with a stuck-at.

Independently of the nature of the fault, when it modifies a bit of the
weight it will have a different effect, depending on which data type is used
and the position of the bit itself. We are going to analyze what happens
when the weight is stored as a float32, that is, a float occupying 32 bits.
This is the most used format to store neural network weights.

Figure 2.8: How a float32 is formatted

According to IEEE 754 [20], a float32 is composed of three components:
a sign, an exponent and a mantissa. In particular, as shown in Figure 2.8:

• b31: one bit is reserved to store the sign;

• b30...b23: eight bits to store the value of the exponent;

• b22...b0: 23 bits are used to store the value of the mantissa.
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Given this representation, we can compute the decimal equivalent of a
float32 binary representation as:

−1b31 · 2(b30...b23)2−127 · (1 +
22∑
i=0

b23−i · 2−i) (2.16)

As anticipated, faults have a different effect depending on which bit has
been affected. In fact, when the fault hits a bit of the exponent the value of
the weight might ”explode” as its value increases significantly. Consequently,
this fault might induce data corruption on an high number of inputs [21].
Conversely, faults impacting bits of the mantissa do not have the same effect,
and the number of corrupted data tends to be much lower.

Sometimes, as a result of a fault, the network outputs can not be rep-
resented as number. In case a vector score contains NaN (not a number)
values or infinite values, we can not talk about Silent Data Corruption, as
it is easy to identify the presence a fault. For this reason, fault that have
this effect should be filtered out in an analysis of the fault impact.

2.4 Fault Injections

Finally, in this section we are going to discuss fault injections, that is, how
faults are simulated, both on hardware and in software. We are going to
present an overview of which tools are available to simulate this kind of
fault on a large scale and provide a brief overview of their advantages and
disadvantages.

2.4.1 Hardware Fault Injections

A fault injection campaign can be carried out by replicating certain physical
phenomenon that can lead to critical faults on the hardware. Among the
experiments worth mentioning we cite the neutron bean experiments [22].
In this case, DNN-Accelerators are bombarded with neutron bean to simu-
late the effect of radiations on this kind of device. While this approach is
likely to be the most accurate simulation of a malfunction, there are some
drawbacks. The first is that an experiment like this is very expensive and
time consuming. Moreover, the impact of a fault is intrinsically linked to
the architecture of the accelerator we are using.
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2.4.2 Software Fault Injections

Software fault injections can be inexpensive, especially in small networks.
There are various approaches to simulate malfunctions. We can group fault
injection methodologies under two categories.

First, we can simulate a fault directly on the accelerator. In this case,
with libraries such as NVBitFI [23], SASSIFI [24] or LLFI [25], we can
simulate a fault either in a registry or a memory location. This kind of tools
are very powerful, and are used to simulate many kind of malfunctions in
very different scenarios. As such, adapting them to work with neural network
libraries, such as Tensorflow or PyTorch requires a non-trivial effort.

Conversely, more specific tools simulate fault directly on the neural net-
work, modifying the values of the weights and the results of some operations.
These instruments, such as the fault injector developed by Politecnico di
Torino [21] or TensorFI [26] are developed to quickly simulate a fault in-
jection. While simple to use, they are rather new. As such, documentation
is scarce, and, more importantly, they are few works in literature that use
them.





Chapter 3

Problem Formulation

As we have discussed, convolutional neural networks take advantage of DNN
accelerators. Executing a large network, such as VGG-16, on this hardware,
greatly reduces the time required to compute a prediction. Unfortunately,
an accelerator is more likely to malfunction than a traditional hardware
component such as a CPU. When a fault hits a neural network that is being
executed on this kind of hardware, it can change the model prediction.

Let D denote VGG-16 and let D(x) ∈ R1000 denote the vector score com-
puted by the network over input x. VGG-16 is used to solve a classification
problem, where we want to assign a class to an input image. Let d denote
the predicted label of the network for input x, defined as the component of
the vector score of maximum value, that is:

d = arg max
j

[D(x)]j (3.1)

The prediction of VGG-16 may be altered by the presence of one or more
critical faults that modify the value of the weights. Let VGG-16 faulty be
an instance of VGG-16 executed on malfunctioning hardware. The function
associated to this network is Df . Conversely, let VGG-16 clean be an in-
stance of the network executed on an accelerator unaffected by fault. The
function relative to this model is Dc.

We recall that we have defined a critical fault as a fault that changes
the prediction of the network it affects. More precisely, a fault affecting a
faulty instance of VGG-16 is critical when:

arg max
j

[Df (x)]j 6= arg max
j

[Dc(x)]j (3.2)

23
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When a critical faults affects VGG-16, it worsen its performances, de-
creasing the accuracy of the network. As such, we are interested in designing
a fault detector FD that take as input Df (x) and, tells us whether Df is
affected by a critical fault. The fault detector can be seen as a function
FD(D f ) : R1000 → {0, 1}:

FD(Df (x)) =

{
1 critical fault has occurred

0 otherwise
(3.3)

Designing a fault detector is a task that, in convolutional neural net-
works, has been often overlooked. This is mainly due two reasons:

• Focus on passive error correction: most academic works have focused
on passive error correction, with varying results. These techniques of-
ten require additional operations or redundant architectures and there-
fore have a considerable computational cost;

• Fault Detection as a Black Box : in active fault detection, with detector-
controller architectures, the focus is put on the latter. The detector
is often treated as a black box [12] [13]. As such, there are few works
that focus on designing the actual fault detector [19]. Notably, most
of the literature on this topic is quite dated and is does not take into
account convolutional neural networks.

Therefore, our goal is to design a fault injector that is:

• Agnostic: the fault detector has no knowledge of the clean network
vector score Dc(x);

• Effective: the accuracy, precision and recall of the fault detector must
be high in different scenarios;

• Inexpensive: the computational cost of the fault detector must be low
enough that it does not impact the execution of the network it is
analyzing.



Chapter 4

Proposed Solutions

In order to identify whether a fault leads to a critical data corruption for
the prediction of an input x ∈ X, we are going to look at the corresponding
vector score Df (x). When a fault modifies the value of the weights, we
expect one of the following:

• There is no data corruption.

• Non-critical data corruption: the fault changes the vector score but
doesn’t change the prediction;

• Critical data corruption: the fault alters the vector score and changes
which component has the maximum value (3.2). This means that the
prediction changes.

Clearly, we are only interested in identifying the last case. The best option
would be to compare - for an input x - the prediction of the faulty network
Df (x) with the prediction of the same clean network Dc(x). The only
possible way to achieve this in a real-world scenario is by replicating the
whole network (Figure 4.1). Obviously, this is not a good solution as: (i)
the computational cost is very high and (ii) there is no certainty that the
replica network is not affected by a critical fault.

A possible solution, is to replace the replica with a simpler version of
the network (Figure 4.2). In this case the auxiliary network is smaller than
the main network and has a similar vector score. The auxiliary network
acts as a supervisor for the main model: by comparing the vector scores
of the two networks, we should be able to identify whether a fault changed
the prediction of the main network. Differently from the previous case, if
the auxiliary network has significantly less operations, we can ignore the

25
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Figure 4.1: A fault detector that compares the vector score of a
faulty network Df (x) with the vector score Dc

r(x) of a replica.

computational cost. Furthermore, we can consider the auxiliary element
as not affected by a fault if it is composed by remarkably less parameters,
since the probability of a critical fault happening on the auxiliary network
is much smaller than the probability of it hitting the main one. We call
Auxiliary-Based Fault Detector a detector that uses an auxiliary network to
flag critical data corruptions.

The other solution is to design a fault detector that uses only the vector
score of VGG-16 (Figure 4.3). We call a fault detector that works without an

Figure 4.2: An Auxiliary-Based Fault Detector that compares the
output of the faulty network Df (x) and the output of a smaller aux-
iliary network A(x) with some external threshold value Γ.
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Figure 4.3: A Score-Based Fault Detector that compares the vector
score of the faulty network Df (x) with some external threshold value
Γ.

auxiliary network Score-Based Fault Detector, as they use only the vector
score of the default network. Regardless of the presence of an auxiliary
network, we design the fault detectors to work in the same way.

Let ix ∈ RM be the input of the fault detector corresponding to a VGG-
16 input x ∈ X. The fault detector applies a function F : RM → R to its
input and compares the resulting value to a related threshold ΓF , as shown
in Figure 4.4. This means that we can re-write the equation of the function
associated with the fault detector (3.3) as:

FD(ix) =

{
1 if F (ix) > ΓF

0 otherwise
(4.1)

The threshold value ΓF is computed evaluating F over all the inputs ix̄ ∀ x̄ ∈
X̄, where X̄ is a dataset such that X̄ ∩X = ∅. Let K be the average value

Figure 4.4: The fault detector FD evaluates a function F on its
input ix and compares it with a threshold ΓF
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of F (ix̄) ∀ x̄ ∈ X̄, we define the threshold Γf as:

ΓF = γ ·K (4.2)

Where γ > 0 is a multiplicative constant used to fine-tune the value of the
threshold. The function used to compute the threshold is show in Algorithm
2. In this case F is the function computed by the fault detector over its input
ix, where X̄ is the external dataset and γ is the multiplicative constant. This
function needs to be called when we initialize the fault detector.

Algorithm 2 Compute Threshold

1: function ComputeThreshold(F, X̄, γ)
2: K = average of F (ix̄) ∀ x̄ ∈ X̄
3: ΓF = γ ·K
4: return ΓF

5: end function

The fault detector executes the function DetectFaults(ix, F ) illustrated
in Algorithm 3. In line 1 we initialize the threshold by calling the Com-
puteThreshold function. In line 3-7 we check whether the function F ,
evaluated for a given input ix, is greater than the the threshold and, in that
case, return 1.

Algorithm 3 Detect Faults

1: Initialize:
Given γ > 0 and a dataset X̄
Set ΓF = ComputeThreshold(F, X̄, γ)

2: function DetectFaults(ix, F )
3: if F (ix) > ΓF then
4: return 1
5: else
6: return 0
7: end if
8: end function

In Section 4.1 we are going to present 2 thresholds for the Auxiliary-Based
Fault Detector. Furthermore, we are going to present 4 different auxiliary
network architectures. In Section 4.2 we are going to present 2 thresholds
for the Score-Based Fault Detectors. This means that, in the end, we are
going to present 10 different fault detectors.



4.1. AUXILIARY-BASED FAULT DETECTORS 29

4.1 Auxiliary-Based Fault Detectors

In this section we discuss 4 different architectures for an auxiliary net-
work that tries to mimic the vector score of the main network (Figure 4.2).
Clearly, we want these networks to be as small and computationally inex-
pensive as possible.

We refer to the default (or main) network as D and to the auxiliary
network as A. We indicate with D(x) the vector score computed by the
main network over input x ∈ X, while with A(x) the vector score computed
by the auxiliary network over the same input. Our aim is to have a auxiliary
network with a vector score as similar as possible to the one of the main
network.

For this reason we are going to train the auxiliary networks using knowl-
edge distillation. This allows us to have an auxiliary network that is trained
to minimize the k-d loss (2.15). As a result, the auxiliary network vector
score is similar to the main network vector score. A complete explanation
can be found in Chapter 2. Having defined the loss function, we now define
the auxiliary network topologies. We present two main classes of architec-
tures. The first class uses a simplified version of VGG-16. The second class
uses a MobileNet [2] with a very small α as auxiliary network. We are going
to discuss these architectures in the following sections. For the reminder of
this section we will discuss the architecture of the fault detectors.

Figure 4.5: The Auxiliary-Based Fault Detector that uses the norm
of the difference ||D(x)−A(x)||.

The first fault detector, shown in Figure 4.5 , is a norm-based fault detector
that uses the norm of the the difference between the two networks vector
scores as function F . To be more precise, the fault detector takes as input
ix, for x ∈ X the difference between the vector scores:

ix = D(x)−A(x) (4.3)
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Figure 4.6: The Auxiliary-Based Fault Detector that uses the k-d
loss ||EKD(x)||.

And applies to it a function FDA : R1000 → R defined as:

FDA(ix) = ||ix|| (4.4)

From (4.2), (4.3) and (4.4) we obtain the equation for the computation of a
threshold ΓDA:

ΓDA = γ ·
∑

x̄∈X̄ ||D(x̄)−A(x̄)||
|X̄|

(4.5)

where X̄ is a dataset such that X ∩ X̄ = ∅.
In this case, the function implemented by the norm-based fault detector

is a slight modification of the one described in Algorithm 3. In Algorithm 4,
we can see the implementation of DetectFaultDA.

Algorithm 4 Detect Faults DA

1: Initialize:
Given γ > 0 and a dataset X̄
Set ΓDA = ComputeThreshold(|| · ||, X̄, γ)

2: function DetectFaultsDA(D(x), A(x), F )
3: if ||D(x)−A(x)|| > ΓDA then
4: return 1
5: else
6: return 0
7: end if
8: end function

The second fault detector we are going to introduced for the Auxiliary-Based
Fault Detector is illustrated in fig. 4.6. In this case, the fault detector uses
as function F the k-d loss EKD(x) (2.15). In particular, we are going to
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redefine the k-d loss for two vector scores D(x), A(x) ∈ R1000 as :

EKD(D(x), A(x)) =
1000∑
i=1

[D(x)]i log[A(x)]i (4.6)

We define this a k-d loss-based fault detector. The inputs of this fault detector
are the two vector scores A(x) and D(x) for a given input x ∈ X. The
function F is defined as:

FDA(ix) = EKD(D(x), A(x)) (4.7)

Where we use as student model the auxiliary network A and as teacher
the default model D. From (4.2) and (4.7) we obtain the equation for the
computation of a threshold ΓKD:

ΓKD = γ ·
∑

x̄∈X̄ EKD(D(x̄), A(x̄))

|X̄|
(4.8)

Even in this case we can outline the function associated with the fault de-
tector by modifying the general case described in Algorithm 3. The new
function, DetectFaultsKD is shown in Algorithm 5.

Algorithm 5 Detect Faults KD

1: Initialize:
Given γ > 0 and a dataset X̄
Set ΓKD = ComputeThreshold(EKD(·), X̄, γ)

2: function DetectFaultsKD(D(x), A(x), F )
3: Let D be the teacher model and A the student model
4: if EKD(D(x), A(x)) > ΓKD then
5: return 1
6: else
7: return 0
8: end if
9: end function

In the following subsections we are going to define the architecture of
the auxiliary networks.

4.1.1 Auxiliary architecture: VGG-Like

The idea behind the VGG-Like models is to use an auxiliary network that is
topologically similar to the main network. We think that a similar approach
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Figure 4.7: In this picture we can see the number of operations (top)
and parameters (bottom) for each layer of VGG-16.

will favour the auxiliary model to produce vector scores close to the one
computed by VGG. In this case, the challenge is to reduce the number of
operations and parameters whilst maintaining a network that is somewhat
significant.

As we can see in Figure 4.7, most of the operations of VGG are in
the convolutional layers. Instead, the majority of parameters are stored
in the first fully connected layer. Therefore, to reduce the computational
complexity we should reduce the number of convolutional layers, while to
decrease the number of parameters we should either reduce the size of the
output of the last convolutional layer or reduce the number of nodes in the
first fully connected layer.

We are going to present two different architectures. The first one, dubbed
VGG Slim (Figure 4.8 - left), uses only one convolutional layer for each
convolutional-pooling block to decrease the number of operations. In par-
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Figure 4.8: In this picture we can see the architecture for VGG-slim
(left) and VGG-GAP (right). To reduce the number of operations,
both models have less convolutional layer. To reduce the number of
parameters, VGG-Slim reduces the size of the first fully-connected
layer by using a stronger maxpooling, while VGG-GAP uses a GAP
layer on the last convolutional layer.

ticular, it uses a stronger max-pooling (i.e. higher dimension of the operator)
to decrease the number of parameters. The second architecture, called VGG
GAP (Figure 4.8 - right) uses the same technique for the number of opera-
tions. However, it uses a GAP layer at the end of the convolutional part of
the network to decrease the number of parameters. Both the networks use
smaller fully connected layers.

We can see in Figure 4.9 the number of operations and parameters of
this two architectures compared with VGG-16. In particular, VGG Slim
doesn’t decrease significantly the number of operations while it decreases
more the number of parameters. VGG GAP does better. As shown in the
next section, the best result are obtained by using MobileNet.



34 CHAPTER 4. PROPOSED SOLUTIONS

Figure 4.9: In this picture we can see the number of operations (left)
and parameters (right) of the proposed auxiliary network architectures
compared with VGG-16.

4.1.2 Auxiliary architecture: MobileNet

MobileNet is a convolutional neural network optimized for mobile devices
that offers an accuracy similar to the one of VGG-16 with fewer parameters.
In particular, for this topology we can specify the width multiplier α. If
we take α < 1 we can reduce the number of filters, therefore reducing the
number of parameters and operations. This allows us to trade-off accuracy
for a simpler network.

We will present two MobileNets, one using α = 0.1 and the other using
α = 0.25 As we can see in Figure 4.9, the number of operations is much
lower than the one of VGG-16. Similarly, as we have few parameters, we
can maintain the hypothesis that the probability of a critical fault happen-
ing in the auxiliary network is negligible compared to the probability of it
happening on the main network.

4.2 Score-Based Fault Detectors

As seen in literature, fault tends to introduce critical data corruption when
they hit the most significant bits of the weight exponent [21]. We recall that
weights are stored as float32 in 4 bytes. Let’s consider the case of a weight
where a fault hits bit in position 30 flipping its value to 1. If the weight was
positive - bit in position 31 is 0 - then the new value of the weight is in the
range of 1038. This value is clearly much higher than the average value of
a weight. As such, we expect that the vector score computed by a network
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Figure 4.10: The Score-Based Fault Detector that uses the norm
||D(x)||.

affected by this kind of faults is higher than a vector score computed by a
clean network. Of course, this is not the only kind of fault that can alter
significantly the vector score, but it gives us a rough idea of how many fault
occur to produce at least a critical data corruption.

As we expect critical faults to have such a high impact on the value of
the weight, and therefore of the outputs, the first Score-Based Fault Detector
we present uses the norm of the vector score as function F . This solution,
shown in fig. 4.10, is a norm-based fault detector. Clearly, for all the the
Score-Based Fault Detectors it holds that:

ix = D(x) (4.9)

where ix is the input of the fault detector and D(x) is the vector score of
VGG-16 for input x ∈ X. As we said, the function associated with fault
detector F : R1000 → R is:

F (ix) = ||ix|| (4.10)

From (4.2), (4.9) and (4.10) we can obtain the equation of the threshold ΓD:

ΓD = γ ·
∑

x̄∈X̄ ||Dc(x̄)||
|X̄|

(4.11)

Where γ > 0 is a constant multiplier and X̄ is a dataset such that X∩X̄ = ∅.
As for the Auxiliary-Based Fault Detectors, the function associated with

this Score-Based Fault Detector can be implemented by slightly modifying
the function shown in Algorithm 3. The pseudo-code for DetectFaultD
is shown in Algorithm 6.

However, the norm might not be the best choice to compress the vector
score. In fact, the same fault can have a different outcome. Imagine that,
as a result of the fault, an element of the output of the second to last fully
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Algorithm 6 Detect Faults D

1: Initialize:
Given γ > 0 and a dataset X̄
Set ΓD = ComputeThreshold(|| · ||, X̄, γ)

2: function DetectFaultsD(D(x), F )
3: if ||D(x)|| > ΓD then
4: return 1
5: else
6: return 0
7: end if
8: end function

connected layer is in the order of 1038. If this element is multiplied by a
negative weight, an element in the vector score might have a value in the
order of −1038. This is due to the fact that the last fully connected layer
doesn’t have a relu activation function that ’cleans’ negative values.

Unless this negative component is the one corresponding to the predicted
label, it doesn’t change the network prediction. In this case, the fault is not
critical. However, since this component increases the value of the norm,
it is very likely that our previous fault detector flags the vector score as
critically corrupted. Therefore, for this kind of faults, we need to apply
a different function F to the vector score. Since we want to identify very
high numbers, it makes sense to analyze the maximum element of the vector
score. Furthermore, this idea is coherent with the selection of the prediction,
making this a very promising way to identify critical faults.

Therefore, we define a second Score-Based Fault Detector, shown in
fig. 4.11 that uses as function F : R1000 → R the maximum element of
the vector score:

F (ix) = max
j

[D(x)]j (4.12)

Figure 4.11: The Score-Based Fault Detector that uses maxj [D(x)]j .
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However, in this case we will not use (4.2) to compute the threshold. Since
we are using a maximum operator, it is more coherent not to use an average,
but to select the maximum value ever recorded for F (x̄) ∀x̄ ∈ X̄. Therefore,
the threshold Γmax for this fault detector is:

Γmax = γ ·max
x̄∈X̄

(max
j

[D(x̄)]j) (4.13)

For the same reason, we need to modify the function used to compute the
threshold ComputeThreshold shown in algorithm 2. In algorithm 7 we
present a new function, called ComputeThresholdMax that computes
(4.13).

Algorithm 7 Compute Threshold Max

1: function ComputeThresholdMax(X̄, γ)
2: K = maxx̄∈X̄(maxj [D(x̄)]j)
3: Γmax = γ ·K
4: return Γmax

5: end function

Similarly to what described in algorithm 3, we can define a new De-
tectFaultsMax function that is employed by this fault detector. The
pseudo-code for this procedure is shown in algorithm 8.

Algorithm 8 Detect Faults Max

1: Initialize:
Given γ > 0 and a dataset X̄
Set Γmax = ComputeThresholdMax(X̄, γ)

2: function DetectFaultsMax(D(x), F )
3: if maxj [D(x)]j > Γmax then
4: return 1
5: else
6: return 0
7: end if
8: end function

4.3 Proposed Solutions Recap

In total, we are going to present 10 different fault detectors, as shown in
Table 4.1. Eight of them are Auxiliary-Based Fault Detectors while the
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other two are Score-Based Fault Detectors. We are going to compare them
and choose the best one.

Since Auxiliary-Based Fault Detectors use an auxiliary network as a con-
troller, we expect good results in terms of fault detection accuracy. However,
if critical faults change significantly the value of the elements in the vector
scores, the contribution of an auxiliary network is marginal. Moreover, we
expect different results based on the architecture of the auxiliary network.
VGG-like models are likely to have a lower k-d loss: it is possible that this
models perform better when using the loss-based fault detectors.

On the other hand, Score-Based Fault Detectors are inexpensive as they
do not require any extra operations beside the computation of a norm or of a
maximum. Contrarily, Auxiliary-Based Fault Detectors are quite expensive.
If the accuracy of both classes of methods is similar, Score-Based detectors
will be the best fault detectors due to their inexpensiveness. In particular,
we expect the max-based fault detector to perform better than the norm-
based one. As discussed in Section 4.2, there are some vector scores that
may be wrongly identified as critically corrupted by the norm-based detector
but not by the max-based one.

Typology F Threshold Auxiliary Model

Auxiliary-Based ||D(x)− A(x)|| TDA VGG Slim

Auxiliary-Based ||D(x)− A(x)|| TDA VGG GAP

Auxiliary-Based ||D(x)− A(x)|| TDA MobileNet (α = 0.1)

Auxiliary-Based ||D(x)− A(x)|| TDA MobileNet (α = 0.25)

Auxiliary-Based EKD(A(x), D(x)) TKD VGG Slim

Auxiliary-Based EKD(A(x), D(x)) TKD VGG GAP

Auxiliary-Based EKD(A(x), D(x)) TKD MobileNet (α = 0.1)

Auxiliary-Based EKD(A(x), D(x)) TKD MobileNet (α = 0.25)

Score-Based ||D(x)|| TD -

Score-Based maxj[D(x)]j Tmax -

Table 4.1: List of the proposed solutions



Chapter 5

Experimental Setup

In this chapter, we will discuss the tool used to execute the fault injec-
tion. Furthermore, we are going to talk about our experimental setup, from
the training of the auxiliary networks to the implementation of the Fault
Detectors.

In particular, we will first analyze why and how we chose extended the
Fault Injector provided by Politecnico di Torino. Secondarily, we are going
to provide a detailed overview of how we structure a faulty run. After that,
we will present the setup for the computation of the metrics we are interested
in. Finally, we will introduce the implementation and evaluation of the fault
detector itself.

5.1 Selection of a Fault Injector

The fault injector we have used in our experiment is an extension of the one
provided to us by Politecnico di Torino, which we will refer to as PdT-FI.
While there are many other tools for this task, few provide a simple and
streamlined process for fault injection on a neural network. In fact, before
choosing this fault injector, we have explored other solutions.

The first fault injectors we have worked with were NVBitFI [23] and its
predecessor SASSIFI [24]. These tools, developed by NV Labs, are designed
to simulate actual malfunctions on a graphic card and are not application-
specific. They can inject, among other things, a fault at run time in the
GPU memory, simulating an actual temporary fault. However, they are not
designed with neural networks in mind. Using them with either PyTorch
or Tensorflow would have required us to re-write part of their libraries.
We would have had to modify some CUDA functions - those used to com-
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pute neural network operations on the GPU - to make them compliant with
NVBitFI and SASSIFI requirements. This task was deemed too complex
for this thesis, leading us to abandon these tools. Another tool we tried was
LLFI [25]. However, we discarded it for reason similar to the one presented
for NVBitFI and SASSIFI.

Finally, we began experimenting with Politecnico di Torino’s fault in-
jector. Differently from the tools we have presented before, it is designed
to work with neural networks only. In its initial state, it worked only with
LeNet5, a small convolutional network [17]. However, it is straightforward
to use, as it just requires inserting the number of desired faults to simulate
a fault injection campaign. This tool doesn’t run code on the GPU, as it is
written in C. However, it simulates stuck-at faults caused by a malfunction
on an accelerator. Moreover, by creating two threads - one for the injection
and one for the evaluation - it allows us to inject faults in between two pre-
dictions. This fault injection capability is all we need for our experiment.
Seen how simple it was to use, we began a collaboration with Politecnico di
Torino. Moreover, we extended the tool to work with large networks, and
in particular, with VGG-16.

5.2 Limitations of the Fault Injector

One of the accomplishment of this thesis is the extension of PdT-FI in
order to make it work with VGG-16. We came up with a pipelined process
to extend the fault injector: this procedure can be repeated to allow the
fault injector to work with other architectures.

To better understand how we proceeded to implement this extension,
we must first introduce N2D2 [27]. N2D2 is an open-source framework for
deep neural network simulation developed by CEA LIST. Our fault injec-
tor, PdT-FI, is based upon this framework. N2D2 allows us to specify a
network topology either through a costume .ini file or by using the ONNX
framework [28]. Furthermore, we can define a dataset, a validation/training
split, and train the network. We can then use the trained model to compute
a prediction for a new image. Importantly, N2D2 allows us to export the
network. That is, we can create a stand-alone, compilable C code that can
be used independently from N2D2 to execute the network. PdT-FI takes
advantage of this export functionality to obtain the C code of a trained
neural network. This code can be modified to inject faults into the network
and simulate malfunctions.

Since N2D2 exports C code, the network runs on the CPU and not on
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the GPU. The original algorithm was designed to run on a small integrated
board that required C code. However, this was not an issue, since the
network used was LeNet5, with very few parameters and was fast to train
even without any accelerator. Unfortunately, as VGG-16 has more than
100 million parameters, it is very expensive to train without GPU support.
Therefore, we chose not to train VGG-16 using N2D2. We preferred to do it
in PyTorch and then export the weights in the same format used by N2D2.
Furthermore, we have more freedom to pre-process the images with PyTorch
than with N2D2. As such, the pre-processing is done in python as well. The
resulting database is exported to N2D2 afterward.

5.3 Extension of the Fault Injector

In Figure 5.1, we can see the pipelined procedure that needs to be to extend
the fault injector to any given network. We can do this thanks to some
python script we have written. We adopted the same method to extend the
original fault injector from LeNet5 to VGG-16.

The first step consists in the creation of the network in N2D2 and in the
C export. During the second steps we train the network in Python/PyTorch
and export of the weights. Furthermore, in this step we create and export
a pre-processed dataset. Finally, in the last step, we merge the file we have

Figure 5.1: In this image we can see what operations need to be
done in order to implement the fault injector for a new architecture
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created in the previous steps with some custom-made files. At the end,
we have a working fault injector, capable of executing faulty and clean (or
golden) runs. In the following sections we are going to discuss into detail
the fault injector extension procedure.

5.3.1 N2D2

The first task is to create the network in N2D2. As we already mentioned,
this framework allows us to export a C compilable starting from a .ini file
that describes the network. The output of this first step is just a combina-
tion of .c and .h files. The related compiled executable allows us to run
inferences with the network. Notice that we need to repeat this step only if
one wants to change the topology of the network.

5.3.2 Python / PyTorch

In this step, we train the network in PyTorch and export the weights in a
format compatible with N2D2. Furthermore, we pre-process the images and
create a dataset consisting of .ppm files, the format used by N2D2 for its
input images.

Since we are using VGG-16, we did not train the network by ourselves,
but we got pre-trained weights. To understand how these weights, which can
be easily obtainable from the PyTorch API, are exported to N2D2, we must
first understand how this framework stores the weights in the C exports.
The files generated by N2D2 contain, among others, one .c file for each
layer of the network. Each of these files contains the tensor of the weights,
stored in a W ×H × C × I matrix. The information about the layer, such
as the width W , the height H, the number of channels C and the number of
the input channels I, is stored in a header file having the same name as the
.c one. In order to export the weights, we have to create a .c file, similar
to the one generated by N2D2, starting from the values we obtained from
PyTorch. As the process is quite linear and tedious, we won’t go into detail
on how this was achieved. The only other thing worth mentioning about
this procedure is that we have to invert the dimension of the tensor storing
the weights since in PyTorch this tensor is of size C × I ×W ×H.

N2D2 is quite limited in terms of image pre-processing, therefore we carry
out this process directly in python and export the processed dataset. As we
discussed in chapter Chapter 2, the pre-processing step used for VGG are a
mean normalization and a center crop. Both of them can be easily achieved
by using some pre-processing function provided by the PyTorch API. Since
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this pre-processing step transforms the images from a .png format to a 3-
dimensional tensor and N2D2 only accepts .ppm images, we need to convert
the tensors to the target format. A .ppm image contains a header that
specifies the size of the image and the number of colors [29]. After that, it
stores 2 bytes for every pixel of the image, each containing the encoding for
the color of that pixel. N2D2 extends this standard, by using 4 bytes for
each pixel. This is done because this framework is not interested in storing
images, but rather a (possibly pre-processed) float32 representation of the
image. Furthermore, it adds a byte at the end that is used to encode the label
of the image. As such, saving the matrix representation of a pre-processed
image is quite simple: we just need to obtain the binary representation of
each value and create a file containing the header, the binary representation
of the image, and the binary representation of the label.

At the end of this step, we have a dataset of pre-processed .ppm images
and a collection of .c files containing the weights of the trained network.
These procedures need to be repeated whenever we change the dataset, the
pre-processing functions, or the topology of the network.

5.3.3 Fault Injector

Finally, we are going to add together the files we have generated, the dataset,
and some files from the PdT-FI that we have modified. While the original
fault injector only needed a few tweaks to simulate malfunctions on VGG-16,
its performances were abysmal. As the number of parameters was over ten
thousand times greater than the one for LeNet5, we had to address issues
caused by that.

We will only discuss the most significant changes made to some of the
files of PdT-FI, as smaller corrections can be considered bug fixing. In
particular:

• We created a file containing the global declaration of all the weight
matrices. Previously, there were multiple declarations and definitions:
the memory used to store these parameters was way higher than it
should have been. Furthermore, weights were sometimes explicitly
allocated inside function calls. By creating a single global declaration
for these parameters and by having unique definitions, we decreased
the memory usage and increased the performances. Our fault injector
resulted ten times faster than the original one;

• We modified the main file n2d2 test.c that contained the main loop
for the execution of the fault injector. In particular, we added the
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possibility of saving intermediate outputs and a way to log the perfor-
mances of our tool;

• We modified the python scripts that generated the fault list. Among
the changes, we added the possibility to generate a fault in a layer with
a probability proportional to the number of parameters in that layer.
In other words, a fault has the same possibility of affecting every bit
of every weight;

• We added a new python script that automates the fault injection pro-
cedures. In particular, for each run, it generates a new seed. This
value is used to create a fault list. For very run, it executes multiple
injection campaigns, each with a subset of faults form the list. We
defined this way of injecting malfunctions incremental fault injection.

These files are added together with the ones generated at the previous
step, thus obtaining our fault injections. The only file that needs to be mod-
ified if we want to change the topology of the network is the one generating
the fault list, as we need to specify the parameters of each layer.

Once we have completed all the steps, we can perform a golden run
and a faulty run. The golden run is used to obtained the predictions (and
the vector score) over the dataset when there is no fault injected into the
network parameters. Conversely, he faulty runs are used to obtain the same
parameters when we simulate malfunctions in the model.

5.4 Running a fault injection campaign

Given our tool, the trained network weights and the dataset, the steps for
running a simulation are the followings:

1. Golden run: Test the network over the training dataset;

2. Generate a random seed and use this number to create a fault list F
consisting of NF faults;

3. Select a subset of the fault list f ⊂ F consisting of nf faults;

4. For each seed and for each subset of the fault list:

i. Fault injection campaign: Inject the fault from the set f into the
network weights;

ii. Faulty run: Compute the vector score Df (x) and the prediction
arg maxDf (x) for every image x ∈ X.
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5.5 Metrics Computation

Having defined the fault injector and the steps of the simulations we are go-
ing to perform, we now discuss how we measure the impact of fault injections
in VGG-16 . As we discussed in Chapter 3, we are looking for critical data
corruption. That is, we want to find out when a fault occurred and when it
changed the prediction for some input images. In particular, we are going
to measure the impact of multiple faults through a reduction in accuracy of
the network. Furthermore, we introduce a new metric, the fault impact rate
to measure how many correct prediction were changed as a result of certain
combinations of faults.

5.5.1 Fault Impact

To measure how impactful a set of fault is, we are going to introduce a new
parameter, the impact rate ri defined as:

ri =

∑
ẋ∈Ẋ δ(arg max(Dc(ẋ))− arg max(Df (ẋ)))

|Ẋ|
, (5.1)

where Ẋ is a subset of X such that Dc(ẋ) = t ∀ ẋ ∈ Ẋ, where t is the
target output for input ẋ. This value is a way to measure how many correct
prediction were critically corrupted thanks to fault injection campaign f .

We are going to measure this value for every run and for every number
of faults, measuring how this values varies when we increase the number of
faults. We expect it to be a monotonically increasing function. However, we
are interested to see if the relation between the impact rate and the number
of faults is comparable in every run.

5.6 Auxiliary Networks

Now that the framework for the fault injection is ready, we need to talk
about the implementation of the fault detectors, starting from the training
of the auxiliary networks for the Auxiliary-Based Fault Detectors.

Initially, we are going to discuss how we split the dataset, then we will
talk about the training process.

5.6.1 Dataset Split

We recall that we are using the Imagenet dataset. In particular, since a
labeled version of the test dataset is not available, we will use the validation



46 CHAPTER 5. EXPERIMENTAL SETUP

dataset to carry out our experiment. From now on, we will refer to this
validation dataset simply as Imagenet. This dataset contains 50000 images,
evenly distributed in 1000 classes. As summarized in Table 5.1, we split the
Imagenet dataset in 3:

1. Training dataset : consists of 30000 images. It is used to perform the
training of the auxiliary model.

2. Validation dataset : consists of 10000 images. It is used to perform
model selection. Furthermore, this dataset is also used to compute the
metrics analyzed by the fault injector. That is, the norm of the average
value of the difference ||D(x)−A(X)|| and the average k-d loss EKD(x)
for the Auxiliary-Based Fault Detectors, the average norm ||D(x)|| and
the max value maxD(x) for the Score-Based Fault Detectors.

3. Test dataset : consists of 10000 images. Used for the faulty run.

5.6.2 Training the Auxiliary Model

We trained the auxiliary model using knowledge distillation, minimizing the
k-d loss. This kind of loss is computed by using a teacher model - VGG
in our case - and a student model - the auxiliary network. By training the
auxiliary network to minimize this loss with high temperatures, we obtain
a vector score from the student that is similar in every component to the
one returned by the teacher. We carried out this process in PyTorch, taking
advantage of the Distiller library [30]. This framework allows us to perform
various model compression tasks, including knowledge distillation. To train
the auxiliary model, we need to compute the vector score of VGG in order
to calculate the loss function. Distiller automatically does this, streamlining
the training process.

Name Images Purpose

Training Dataset 30000 Train the auxiliary model.

Validation Dataset 10000 Model selection for the auxiliary model

Computation of the thresholding metrics.

Test dataset 10000 Faulty run.

Table 5.1: Purpose of the dataset splits
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We trained the model for 100 epochs, using early stopping to avoid over-
fitting. For the VGG-Like models, we also used transfer learning, as we it
speeds up the training procedure.

5.6.3 Compute model prediction

The computation of the auxiliary model prediction over the test set needs
to be done only once. As such, for each auxiliary model, we compute the
vector score for each image of the test set before the execution of the faulty
run and store the value in a Pandas dataframe.

We only simulate a clean run for the auxiliary model since we are suppos-
ing that the auxiliary network is significantly smaller than the main network.
As such, the probability of a critical fault hitting the auxiliary network is
negligible compared to the probability of it hitting VGG.

5.7 Fault Detector

Finally, we can talk about the implementation of the fault detector, talking
about how we are going to measure the threshold and how we evaluate the
performances of the different detectors.

The Fault Detector is a model that takes some vector scores as input
and returns as output True if it detects a critical fault and False otherwise.
This is illustrated in Figure 5.2. The Auxiliary-Based Fault Detectors take
as input the vector scores of VGG-16 D(x) and the vector score of the
auxiliary network A(x). The threshold examined by this model are ΓDA

and ΓKD. The Score-Based Fault Detectors take as input only the VGG-16
vector score D(x). In this case, the thresholds are ΓD and Γmax.

The Fault Detector is very simple to implement. First off, it computes
the metrics (either ||D(x)−A(x)||, EKD(x), ||D(x)|| or maxD(x)), then it
compares this value with the threshold relative threshold. If the metric is
larger than the threshold, then it outputs True, otherwise it outputs False.

5.7.1 Threshold computation

In order to compute our threshold, we need to create a Pandas dataset con-
taining the vector score of VGG-16 and of the auxiliary networks computed
over the validation dataset.

For the Auxiliary-Based Fault Detectors, the first threshold metric we
need to computed is the average value of the norm of the difference ΓDA

(4.5). This is immediately done from the dataset we have built before.
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Similarly, by using the two vector scores D(x) and A(x)∀x ∈ X we can
easily compute the k-d loss threshold ΓKD as shown in (4.8).

For the Score-Based Fault Detectors we have to compute the average
norm (4.11) and the max element (4.13). Both of this values can be easily
computed from the same dataframe.

For each threshold we will try different value for the constant γ fine tune
the fault detector.

5.7.2 Fault Detector Evaluation

To measure and compare the performances of the fault detectors, we will
measure 3 values: the accuracyFD , the precisionFD and the recallFD . These

Figure 5.2: In this picture the detailed architecture of the fault
injectors. In (a) the fault detector compares the norm of the difference
of the two networks ||D(x)−A(x)|| with the threshold ΓDA. Similarly,
in (b). the fault detector computes the k-d loss EKD(x) for input x and
compares it with threshold ΓKD. In (C) the fault injector compares
the maximum element of the norm max(D(x)) with the threshold
ΓmaxD. Finally, in (d) the fault detector compares the norm of the
vector score ||D(x)|| with the threshold ΓD.
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measurements can be computed as follow:

AccuracyFD =
TN + TP

TN + TP + FP + FN
(5.2)

PrecisionFD =
TP

TP + FP
(5.3)

RecallFD =
TP

TP + FN
(5.4)

Where TP (True Positive) are the critical data corruption that are cor-
rectly classified as such, FP (False Positive) the non critical data corruption
that are mistakenly classified as critical, FN (False Negative) the undetected
critical SDC and TN (True Negative) are the non critical data corruption
that are correctly reported.

The accuracyFD measure how well the detector correctly classifies critical
data corruption and non critical data corruption. With precisionFD we can
see if the network is detecting more outputs as critically corrupted than
it should. Finally, recallFD shows how many critical data corruptions go
undetected. These metrics are crucial in a safety critical environment, where
even small mistakes can be quite costly. Therefore, all of them needs to be
as high as possible.

First we are going to observe the average accuracy, precision and recall
for different values of the constant γ . This gives us a rough idea on which
method is the best.

However, computing the average accuracy, precision and recall is not the
best way of measuring the fault injector performances. In fact, these values
can be heavily influenced by outlier runs. For example, a very small number
of false negative and no false positive result in a precision of 0 that negatively
affects the average. To adjust for this, we are not going to compute them
for every run and for every fault number. Instead, we will sum up all the
TP, FP, FN and TN for the same number of faults - over different runs -
and evaluate the accuracy, precision and recall over the aggregated results.
From this we can gather the average metrics for a given fault number. This
allows us to plot 3 graphs for every fault detector. On the x-axis we have
the number of faults, while on the y-axis the accuracy, precision and recall
of the model.





Chapter 6

Results

In this chapter we are going to illustrate the results of our experiments. First
off, we are going to show what is the effect of faults on VGG-16, in terms
of loss of accuracy and impact rate. After that, we are going to discuss how
well auxiliary models approximate the main network. Finally, we are going
to discuss the result obtained by the Auxiliary-Based and the Score-Based
fault detectors.

6.1 Fault Injections Result

We execute 6 different runs generating a fault list for each one of them.
From each list, we select different incremental subsets of faults and we inject
them into the weights of VGG-16. This procedure is called fault injection
campaign. After each injection, we evaluate the faulty network over the
whole test dataset to compute the network accuracy and the impact rate.

The first 3 runs (Figure 6.1, left column) span over a large interval of
faults. This was done in order to find out how many faults to inject in the
network to have interesting results. Run #1 and Run #3 show that, for a
small number of faults, the accuracy of faulty VGG-16 is similar to the one
of clean VGG-16. However, by increasing the number of faults, the accuracy
slowly drops to the one of a random classifier. In Run #2 we have that 10
faults are enough to significantly decrease VGG-16 accuracy.

Since we are interested in studying critical faults, it makes sense to focus
only on a number of fault that is high enough to significantly reduce the
network accuracy. Based on the result of the first 3 runs, alongside with
our hypothesis that one in 128 faults is potentially critical, we focused our
run on a smaller interval. Particularly, in Run #4, #5 and #6 we injected
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Figure 6.1: The accuracy of a faulty VGG-16 over different run. We
can see how the accuracy worsen as more fault are injected into the
network.
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between 100 and 1000 faults. It is pointless to study what happens with
an higher number of faults, as the performances of faulty VGG-16 are the
same of a random classifier. Therefore, for the last runs (Figure 6.1, right
column), we injected up to 1000 faults. These 3 simulations have different
effects on how quickly VGG-16 accuracy worsen. However, in all the runs,
the accuracy at the end is significantly worse than it was at the beginning.
To have a better overview on why this happens, let’s examine the impact
rate ri (equation 5.1)

The impact rate (Figure 6.2) confirms what we have seen before. Cru-
cially, we can notice that the number of fault is not indicative of the num-
ber of critically corrupted outputs. In fact, Run #5 shows that 200 faults
are enough to completely change the network predictions. Contrarily, 1000
faults injected in Run #1 change only 20% of the predictions.

6.2 Auxiliary Models Training

The first step into the realization of the Auxiliary-Based Fault Detector is the
training of the auxiliary model. In the previous chapter, we have presented
4 different networks. Two of them are VGG-like, that is, they are built with
a topology similar to the one of VGG-16. The other two are MobileNets
with α = 0.1 and α = 0.25. We have trained these models over the training
set composed of 30000 images and we evaluated them over the validation
set of 10000 images. To perform model selection, we used early stopping
- with a patience of 5 epochs. The training was executed over 100 epochs.
The metrics we are going to present are obtained by evaluating the networks
over the test dataset.

First, we discuss the results of the training of the VGG-like models.
For these models we have used transfer learning to speed up the process.
VGG Slim, the most parameter-heavy model we have presented, reached
a validation accuracy of 22.05%, and a relative accuracy of 23.30% (Table
6.1). This last parameter is the percentage of input for which the auxiliary
network predicts the same output as the auxiliary model. These are good
results, since wanted to build a fairly inaccurate model, as we do not want
to create a replacement of the network, but rather an approximation. While
the relative accuracy seems low, it is not worrisome. In fact, the training
for distillation learning is done with an high temperature. Therefore, the
student model does not need to have the same prediction: what is important
is that the vector scores of the two networks are similar. In this case, we
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Figure 6.2: The impact rate of a faulty VGG-16 over different run.
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have achieved that, as the k-d loss is only of 2.29.

For what concerns VGG GAP, we see that it has a worse accuracy than
its Slim counterpart. Clearly, this is due to the smaller number of parameters
present in this network, as the two topologies are quite similar. Notice that,
despite having less than one third of VGG Slim parameters (as shown in
Figure 4.9) the accuracy is only slightly worse. What is more concerning is
the higher k-d loss: an higher value of this parameters suggests that VGG
GAP is worse at approximating VGG-16 vector score than VGG Slim.

Moving on the the MobileNet architectures, we see an improvement of
the accuracy of the model. In particular, for α = 0.1, we have an accuracy of
20.86% and a relative accuracy of 22.04%. This result are in line with those
achieved by VGG Slim, despite having less than one tenth of its parameters
and operations. However, the k-d loss is still in favour of the VGG-like
model. In fact, with a loss of 3.35, the results are even worst than the
ones of VGG GAP. This shows that MobileNet is clearly better than the
other models in predicting the teacher network output. However, using an
architecture similar to the one of the teacher, improves the student ability
of learning its vector score. Finally, MobileNet with α = 0.25 improves its
smaller counterpart accuracy, moving to an accuracy of 32.90% and a relative
accuracy of 35.05%. By slightly increasing the number of parameters, we
have significantly improved the network performances. Even the k-d loss
jumps down to 2.35, reaching a value similar to the one obtained by VGG
Slim. However, the number of operations and parameters of this network
are just a fraction of the VGG-like model.

The result of this training clearly shows that having a small, well doc-
umented architecture provides a more accurate approximation of the main
model. Furthermore, despite having less than one tenth of VGG Slim pa-

Name Accuracy Relative Accuracy K-D Loss

VGG Slim 22.05% 23.30% 2.29

VGG GAP 18.84% 20.41% 3.07

MobileNet (α = 0.1) 20.86% 22.04% 3.35

MobileNet (α = 0.25) 32.92% 35.05% 2.35

Table 6.1: Accuracy, Relative Accuracy and K-D Loss of the auxil-
iary models over the test dataset.
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rameters, MobileNet with α = 0.25 provides similar k-d loss. From this
preliminary results, this latter network could be the better solution for a
fault detector architecture with an auxiliary network.

There is a possibility that, using larger values for the the width multiplier,
the loss of the auxiliary model will be even smaller. However, the number
of parameters of the network is not linearly dependent on the value of α. As
such, parameter acts as a trade-off between the complexity of the auxiliary
model and its accuracy.

6.3 Auxiliary-Based Fault Detector Results

Once we have trained the auxiliary model, we can use it in our Fault De-
tector. As such, in this section, we will discuss what happens when we use
the Auxiliary-Based Fault Detector. First we are going to talk about the
model that uses the norm of the difference to make a prediction, and then
we are going to discuss what happens when we use the k-d loss based fault
detector.

6.3.1 Norm of the Difference

First, we will talk about the norm-based fault detector, that uses as thresh-
old ΓDA. It compares this value to the norm of the difference between the
main and the auxiliary vector score ||D(x) − A(x)||. Since values in the
vector score reach very high values, the norm sometimes goes to infinite.
In this case, we assume that the fault are easily identifiable and we do not
report these occurrences in our results.

In Table 6.2 we can see the performances of the fault detector for multiple
values of γ. We can observe how all the models perform roughly the same
in terms of accuracy. This means that distillation learning is effective in
finding a vector score similar to the one of the teacher model. However,
there are big differences when it comes to the precision and recall. We can
see that the recall, no matter the value of the multiplier, stays around 80%
with a very high variance. This tells us that, in some runs, the number of
false negative is very high. Conversely, the precision depends on the model
and on γ. With γ close to one, MobileNets have an higher precision than
the VGG-like models, with a very smaller variance. This means that the
number of false positive is very small when using a MobileNet architecture.
The precision of the VGG-like models improves when we increase the value
of γ, but it never reaches comparable values.
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Figure 6.3: Accuracy, Precision and Recall of the Auxiliary-Based
Fault Detector using the norm of the difference ||D(x) − A(x)|| for
different number of faults.
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Auxiliary-Based with ΓDA AccuracyFD PrecisionFD RecallFD

(γ = 1.5) mean variance mean variance mean variance

VGG Slim 95.62% 14.25 68.01% 1576.89 82.00% 1403.76

VGG GAP 96.18% 13.44 69.04% 1605.69 82.03% 1399.98

MobileNet (α = 0.1) 97.93% 12.79 72.20% 1741.03 81.92% 1415.23

MobileNet (α = 0.25) 97.66% 12.47 71.67% 1703.99 81.95% 1411.40

(γ = 1.9)

VGG Slim 97.56% 12.64 71.47% 1707.66 81.92% 1415.37

VGG GAP 97.29% 12.73 71.06% 1679.56 81.98% 1407.59

MobileNet (α = 0.1) 98.02% 12.88 95.28% 125.96 81.92% 1415.23

MobileNet (α = 0.25) 98.02% 12.88 95.28% 125.96 81.92% 1415.23

(γ = 2)

VGG Slim 97.69% 12.74 71.73% 1719.65 81.92% 1415.37

VGG GAP 97.36% 12.71 71.20% 1684.91 81.98% 1407.59

MobileNet (α = 0.1) 98.02% 12.88 95.28% 125.96 81.92% 1415.23

MobileNet (α = 0.25) 98.02% 12.88 95.28% 125.96 81.92% 1415.23

Table 6.2: AccuracyFD , PrecisionFD and RecallFD of the Auxiliary-
Based Fault Detector with threshold ΓDA, mean and variance. γ =
1.5, 1.9, 2

As we discussed at the end of the previous chapter, these metrics do not
paint a complete picture of the fault detector performances. We are now
going to present the metrics computed over the data grouped by the number
of faults. In Figure 6.3, we can see how the accuracy, precision and recall of
the model varies for different number of faults.

The first thing we can notice is how bad the accuracy and precision of
the VGG-like models is compared with the MobileNets. This is particularly
true for smaller number of faults. Furthermore, we can see that both the
MobileNet architectures have exactly the same performances. Since α = 0.1
means having a smaller network than using α = 0.25, the latter is a worse
candidate for our Auxiliary-Based Fault Detector.

Moreover, we can see that, for all the models, the recall is quite stable,
never dropping under 95%. As we supposed before, the average recall is not
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indicative of what is actually happening. in fact, runs with a small critical
rate - such as Run #4 with 200 faults - may have a small recall to due the
absence of true positives and the presence of very few undetected critically
corrupted data. By aggregating the data for different runs, we can provide
a more accurate evaluation of the recall.

6.3.2 K-D Loss

We will now talk about the fault injector that uses the k-d loss to decide
whether an input is critically corrupted or not. In this case, the threshold
used is ΓKD. As before, values that go to infinite are not considered in
this presentation. In Table 6.3 we can see how the fault injector performs
for different values of the multiplier γ. It is quite clear that this method
provides worst results than the norm-based fault detector. Increasing the

Auxiliary-Based with ΓKD AccuracyFD PrecisionFD RecallFD

(γ = 1.5) mean variance mean variance mean variance

VGG Slim 62.18% 1394.48 62.06% 1492.62 57.80% 2057.54

VGG GAP 63.13% 1436.11 63.18% 1498.07 54.28% 2040.27

MobileNet (α = 0.1) 62.59% 1409.64 62.48% 1492.55 53.15% 2200.91

MobileNet (α = 0.25) 61.01% 1346.69 61.01% 1489.74 60.45% 1949.51

(γ = 2)

VGG Slim 66.70% 1605.31 68.13% 1563.15 54.37% 1997.81

VGG GAP 66.74% 1613.69 69.28% 1584.05 48.76% 1903.109

MobileNet (α = 0.1) 67.99% 1672.19 70.24% 1612.58 50.95% 2090.49

MobileNet (α = 0.25) 66.94% 1617.79 67.61% 1554.30 56.47% 2146.93

(γ = 3)

VGG Slim 65.51% 1605.20 72.69% 1764.91 39.24% 1245.23

VGG GAP 63.36% 1552.32 72.49% 1750.46 34.26% 980.23

MobileNet (α = 0.1) 64.52% 1598.93 74.16% 1834.73 36.33% 1062.02

MobileNet (α = 0.25) 69.02% 1739.49 74.43% 1747.69 47.79% 1866.69

Table 6.3: AccuracyFD , PrecisionFD and RecallFD of the Auxiliary-
Based Fault Detector with threshold ΓKD, mean and variance. γ =
1, 2, 3
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Figure 6.4: Accuracy, Precision and Recall of the Auxiliary-Based
Fault Detector using the k-d loss EKD(x) for different number of
faults.
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value of the multiplier slightly improves the accuracy and the precision of
the detector. However, we can notice how, even if with γ = 2 we have
a better average accuracy than with γ = 1.5, we have worse recall. In
fact, recall worsen when we increase γ: this parameter acts as a trade-off
between accuracy/precision and recall. Furthermore, we can notice a very
high variance for all the metrics. This means that this kind of fault injector
is very unreliable, and, while it may work perfectly in certain scenarios, is
completely useless in others.

Moving on to the aggregate analysis shown in Figure 6.4 we can see yet
again the poor performances of this fault detector. In this case, the metrics
are computed for γ = 3. We can immediately notice three thing about these
results: first off, only the precision is high and constant. Secondly, accuracy
and recall have a high variance with regard to the number of faults. Even
if the fault detector works sufficiently well for very low number of faults, its
performances worsen significantly when we increase the number of faults.
Finally, all the models have roughly the same scores, This means that - since
the k-d loss is very similar for all the models - to have a more performing
loss-based fault detector we would need an auxiliary network that decreases
even further the k-d loss.

As a final consideration, we observe that, for all the models, the norm-
based approach works better than the loss-based one. Particularly, while
results may be comparable for a small number of faults, it is clear that
looking at the norm is preferable when there are more faults.

6.4 Score-Based Fault Detectors Results

After having analyzed the performances of the Auxiliary-Based Fault De-
tectors, we will now focus on the Score-Based Fault Detectors. We recall
that the main difference between the two models is that the former take
advantage of an auxiliary network that mimics VGG, while the latter use
only the output of the main network.

For this kid of fault detectors, we have presented two possibilities. In the
first solution, the norm of the vector score is compared with threshold ΓA

(norm thresholding). In the second solution, the component of maximum
value is compared with ΓmaxA (max thresholding). As for the Auxiliary-
Based Fault Detectors, if the norm of the vector score ||D(x)|| or the maxi-
mum value of the component max(D(x)) is infinite, it is not included in the
computation of the metrics.

First off, we observe what happens for different values of the multiplier
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Auxiliary-Based with ΓKD AccuracyFD PrecisionFD RecallFD

(γ = 1.5) mean variance mean variance mean variance

||D(x)|| 98.02% 12.88 95.28% 125.96 81.92% 1415.23

max(D(x)) 99.70% 0.25 99.94% 0.00 81.93% 1415.61

(γ = 1.9)

||D(x)|| 98.02% 12.88 95.28% 125.96 81.92% 1415.23

max(D(x)) 99.70% 0.25 99.94% 0.00 81.93% 1415.61

(γ = 3)

||D(x)|| 98.02% 12.88 95.28% 125.96 81.92% 1415.23

max(D(x)) 99.70% 0.25 99.94% 0.00 81.93% 1415.61

Table 6.4: AccuracyFD , PrecisionFD and RecallFD of the Score-
Based Fault Detector, mean and variance. γ = 1, 1.9, 2

γ. This is shown in Table 6.4. At a first glance, we can notice how the
performances are unaffected by the value of the multiplier. Furthermore,
the performances of the norm-based fault detector are exactly the same
as the performances obtained by the best Auxiliary-Based Fault Detector.
This suggests that the usage of an auxiliary network does not help the fault
detector in performing his task. On the other hand, by comparing the result
of the two Score-Based methods, we can notice how the fault detector using
the max of the vector score clearly outperforms the one using the norm.
The accuracy and precision are over 99% with a very small variance. This
means that the max-based fault detector has close to none False Positive.
However, the recall of the model is still quite low, reaching only 80% with a
very high variance. When we will discuss the aggregate metrics, we will see
that this is due to noise.

As we said, the norm-based fault detector has the same metrics of the
Auxiliary-Based Fault Detectors. The reason for this can be found in the
value of the vector score for the critically impacted outputs. Often, one or
more components of the faulty vector score are in the order of 1038, while the
average value of the clean vector score is usually lower than 103. Since the
value of the vector score of the auxiliary network A is typically in the same
range, it is quite clear why it does not provided added value. By subtracting
to a number in the order of 1038 a number in the order of 103 , we still obtain
a number in the former range. Since the threshold is comparable - in value
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Figure 6.5: Accuracy, Precision and Recall of the Score-Based Fault
Detectors for different number of faults.

- to a clean vector score, the fault detector is unable to distinguish between
such big number that have a very small difference.

We conclude the analysis of the Score-Based Models by discussing the
aggregate metrics we have already presented for the Auxiliary-Based Fault
Detectors. The accuracy, precision and recall of these method are visualized
in Figure 6.5. Even in this analysis, it appears clear that the norm-based
solution has the same performances of the best auxiliary-based model, con-
firming what we have said while talking about the average values. However,
the most interesting observation we can make on these results is how the
max-based approach outperforms the norm-based method for every number
of faults. Moreover, for this fault detector, the accuracy, precision and recall
are always over 98% and are minimally affected by the number of faults.

6.5 Final Considerations

To conclude this chapter, we will briefly summarize the results of our ex-
periments, showing what we have achieved. Initially, we have seen how the
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Figure 6.6: Accuracy, Precision and Recall of the best Score-Based
Fault Detectors and of the best Auxiliary-Based Fault Detectors for
different number of faults.

number of fault injected in a network is not proportional to the impact rate.
This means that, in different situations, the same number of faults may lead
to different numbers of critically corrupted predictions. Consequently, we
are interested in a fault detector that works well with any number of faults,
rather than one that perform well for few faults and worse when there are
more faults in the network. Consequently, we have analyzed the perfor-
mances of all the solution we have presented in Chapter 4. In particular,
we have seen how the norm-based Score-Based Fault Detector has the same
performances of the best Auxiliary-Based Fault Detector, the norm-based
solution that employs MobileNet (with α = 0.1). Furthermore, as show in
Figure 6.6, the max-based Score-Based Fault Detector clearly outperforms
all the other solutions, for what concerns accuracy, precision and recall. This
fault detector can be considered very effective. Furthermore, it is inexpen-
sive, as it simply requires the computation of a max to decide whether VGG
is affected by critical faults. Therefore, we have proved that the max-based
Score-Based Fault Detector is the optimal solution to our problem.



Chapter 7

Conclusion and Future
Works

In this thesis, we have proposed a new way of dealing with fault tolerance in
convolutional neural network. By examining different architectures, we have
proposed a fault detector that is inexpensive and effective. In this chapter
we are going to provide a summary of our contributions and discuss what
we expect from future works on this subject.

7.1 Contributions

Our contributions include the development of a fault injector capable of
dealing with large networks such as VGG-16. In particular, we started from
a tool that only worked with LeNet-5 and we provided a pipeline to extend
it to other topologies of neural networks. We have realized a version of it
for VGG-16, optimizing the execution of the program.

Secondarily, we have carried out an analysis of the resilience of VGG-16
to multi-fault injections. Even tough we have provided satisfactory expla-
nations, more data is needed to properly test our hypothesis.

Finally, we have analyzed different architectures for a fault injector. First
off, we have tested different Auxiliary-Based Fault Detectors that use a
smaller replica of VGG-16 and compares the results of the two networks.
Although these solutions seemed promising, the results show that an aux-
iliary model doesn’t provide enough information to justify the cost of an
additional network. As such, we proposed a Score-Based Fault Injector that
compares the component of maximum value of the vector score with the

65



66 CHAPTER 7. CONCLUSION AND FUTURE WORKS

maximum value ever achieved by a component of VGG-16 vector score over
an external dataset. As we discussed extensively in Chapter 6, this version
of the fault detector is very cheap and offers an aggregate precision, recall
and accuracy of over 98%.

7.2 Future Works

While the results of this work laid out a solid exploratory work on the subject
of fault detection, the data gathered by our experiment is not enough to
provide statistically significant proves of our hypothesis.

In future works we are going to increase the number of runs. The main
constraint in our thesis was that the fault injector did not take advantage
of the GPU, as it was run entirely on the CPU. As such, we will expand the
fault injector, integrating it directly with PyTorch or Tensorflow, taking
advantage of the ability of these two libraries to work on the GPU. This
allows us to run thousands of simulations way quicker than we have done
up until now.

Another possible expansion, is to extend this work to other network
topologies. Even tough we expect that the solution proposed to work inde-
pendently from the network, we need to provide data to back this claim.
Furthermore, some architectures, such image segmentation networks, don’t
return a one-dimensional array but a larger matrix. In this case, we would
need to test whether our solutions provide the same results.

Finally, we have seen that working only with the output of VGG-16 is
enough to understand if there is a critical fault or not. However, while
thresholding on the maximum value of the vector score is quite effective,
there may be better options.
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