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A B S T R A C T

The analysis of modern space missions must not only fulfill scientific
and operational tasks, but also assess the compliance thereof with a
certain set of requirements. Different constraints exist for different
objectives, aiming in general at safeguarding the space environment,
to different extents. Space debris mitigation policies exist to prevent
the further contamination of Earth orbits, already crowded with space-
crafts and fragments from past collisions, resulting from decades of
unregulated use of space. Planetary protection guidelines apply in-
stead in the interplanetary domain, addressing the need of preserving
other planetary environments from the biological contamination with
traces of life from Earth.

Despite the fundamentally different objectives, space debris mitiga-
tion policies and planetary protection analysis result in alike orbital
dynamics studies. Both cases need to assess the effects of uncertainties,
to model or avoid collisions with existing debris in the former, and to
avoid impacts with celestial bodies of interest in the latter. Planetary
protection’s high accuracy requirements make the uncertainty prop-
agation task a computationally intensive problem, truly becoming a
limiting factor for most orbit-related analyses. Hence, the efficient and
accurate simulation of orbital uncertainties has become an essential
enabling feature in mission design, as well as the only mean to model
and understand the evolution of Earth’s debris environment.

This dissertation focuses on the propagation of interplanetary un-
certainties, applying a multilateral approach to study some dynamical,
statistical, and computational aspects. The proposed research is not
limited to in-depth developments of the different fields, rather it high-
lights interconnections, mutual constraints, and limitations thereof.

Kustaanheimo-Stiefel variables are adopted to gain both in accuracy
and efficiency of the single simulations, also assessing the influence
that this formulation of the dynamics has in the uncertainty descrip-
tion. The effect of flyby events on the uncertainty is also reviewed, as
a precursor for impacts in planetary protection, and for the scattering
that it introduces in probability distributions. Aiming once more at
increasing the efficiency of uncertainty propagation, the potential of
the Picard-Chebyshev numerical scheme is assessed, as an alternative
to traditional step-based integration methods. In combination with all
the just mentioned aspects, parallel and GPU computing approaches
are also discussed and devised.
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S O M M A R I O

L’analisi di moderne missioni spaziali non deve assolvere esclusi-
vamente a compiti scientifici e operazionali, ma anche garantire il
rispetto di molti requisiti delle stesse. Diversi vincoli esistono in ri-
sposta a diversi obiettivi, con lo scopo generale di tutelare l’ambiente
spaziale, in modi diversi. Le politiche di mitigazione di detriti spaziali
esistono per prevenirne l’ulteriore accumulo in orbite terrestri, le quali
sono già affollate da veicoli spaziali e frammenti originati da passate
collisioni, frutto di decenni di utilizzo non regolato dello spazio. Le
linee guida di protezione planetaria si applicano invece nell’ambiente
interplanetario, rispondendo all’esigenza di preservare gli ecosistemi
di altri pianeti dalla potenziale contaminazione biologica con forme
di vita terrestri.

Nonostante gli obiettivi siano fondamentalmente diversi, le politiche
di mitigazione di detriti spaziali e l’analisi di protezione planetaria
convergono in simili studi relativi alla dinamica orbitale. In entrambi i
casi, l’effetto di incertezze deve essere valutato, per modellare o evitare
collisioni con i detriti spaziali nel primo, per evitare l’impatto con
corpi celesti di interesse nel secondo. L’alta precisione richiesta nella
protezione planetaria rende la propagazione dell’incertezza un proble-
ma ad alto costo computazionale, rendendola un vero fattore limitante
per molte analisi connesse alla dinamica orbitale. Di conseguenza,
l’efficiente e precisa simulazione di incertezze orbitali è diventata una
parte essenziale e abilitante nel disegno di missioni spaziali, così come
l’unico mezzo per modellare e comprendere l’evoluzione dei detriti
spaziali attorno alla Terra.

Questa tesi si focalizza nella propagazione interplanetaria delle
incertezze, applicando un approccio multidisciplinare per studiarne
alcuni aspetti dinamici, statistici e computazionali. La ricerca propo-
sta non si limita a sviluppi concentrati nei divesi aspetti, invece ne
evidenzia le interconnessioni, i vincoli reciproci e le limitazioni.

La formulazione della dinamica di Kustaanheimo e Stiefel viene
adottata per incrementare sia l’accuratezza che l’efficienza delle sin-
gole simulazioni, valutandone anche l’influenza nella descrizione
dell’incertezza. Anche l’effetto sull’incertezza di passaggi ravvicinati
con i pianeti viene rivisto, sia come precursore di impatti nell’analisi
di protezione planetaria, che per la dispersione che introduce nel-
le distribuzioni di probabilità. Sempre con l’obiettivo di migliorare
l’efficienza della propagazione dell’incertezza, il potenziale dello sche-
ma numerico di Picard e Chebyshev viene valutato, come alternativa
ai tradizionali metodi di integrazione basati sugli step. Combinandoli
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con tutti gli aspetti appena citati, anche approcci di calcolo parallelo e
basato sulle GPU vengono discussi e proposti.
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1
I N T R O D U C T I O N

The raised awareness on the environmental impact of space mis-
sions has made the preliminary analysis of trajectories increasingly
more complex over the years, introducing constraints and require-
ments whose purpose is to preserve the space ecosystem. The most
prominent example, tightly connected to the overall effort of mankind
toward a more sustainable use of the world’s resources, is the expo-
nentially growing amount of debris objects orbiting around Earth.
Pioneering missions, starting already back in the space race era, did
not consider the environmental aspect at all, freely disposing human-
crafted objects in the open space, for instance ascent modules or upper
stages of launchers, or even complete spacecrafts at the end of their
operational life. Such objects may be located in trajectories that do
not re-entry Earth’s atmosphere in the near future, thus remaining in
potentially hazardous and uncontrolled orbits. Some of these disposed
spacecrafts have collided with others and got disintegrated, polluting
the environment with many "newly generated" debris, that potentially
threat active spacecrafts.

Hence, how to properly dispose space mission objects has become
part of the standard design procedures, both for Earth and interplane-
tary endeavors. Solar system missions must comply with space debris
mitigation policies as well: the ∆v required to reach the orbits of other
planets makes, sometimes, the use of disposable upper stages neces-
sary. Other mission scenarios use the launcher upper stage to get in
an Earth Highly Elliptical Orbit, using then the on-board spacecraft
propulsion to escape to the interplanetary space. In either case, the dis-
posed launcher upper stage lies in an uncontrolled trajectory, actually
becoming a debris: Space Debris Mitigation (SDM) policies come into
play, for possibly threatened active spacecraft in Low or Geostationary
Earth Orbits, with potential on-ground casualty risk, were the upper
stage to re-enter Earth’s atmosphere. For European Space Agency’s
(ESA) missions launched from French Guyana, policies that cover the
latter follow the French Space Operations Act, developed by the french
National Center for Space Studies (CNES) [87]. The former follow in-
stead guidelines proposed by the United Nations, and implemented
by ESA itself [42].

1
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Additionally, interplanetary missions introduce a new type of risk
that must be addressed: the contamination of other celestial bodies,
or samples thereof, with traces of life from Earth. This aspect is what
Planetary Protection (PP) policies focus on, with the utmost goal of
protecting the future of space exploration from misleading scientific
outcomes. In other words, if, for instance, the martian environment
were contaminated by Earth bacteria remaining on the surface of
a lander, life could indeed be found on Mars, although it would
not be local, but directly introduced by the space mission. Similar
requirements apply to some of Jupiter’s and Saturn’s moons, that
may host local life in the liquid oceans under an upper icy crust. The
Committee on Space Research (COSPAR) outlines and maintains PP
policies [31], raising or lowering the required protection level for the
different bodies based on the latest observations. For instance, Venus
suddenly became of interest in 2021 after the detection of phosphine
gas in its atmosphere [58], suggesting traces of aerial life and thereby
requiring updated policies to protect possible future studies, to be
then disputed only one year later [72].

The actions that can be taken to implement PP policies in space
missions follow two main directions, depending on the function of
each component of the payload or the launcher. Following the ESA
technical requirements published by the former PP officer [78], objects
such as the launcher lower stages that remain in Earth’s atmosphere
do not require any particular measure. On the other hand, landers,
rovers, and ascent modules, which get in direct contact with the en-
vironment to be explored, must be perfectly sterilized, in any part.
Differently, orbiting components need to be injected in a graveyard
orbit at the end of their operational life, ensuring a maximum impact
probability over a given time frame, with the body to be protected.
Another component requiring a dedicated analysis is the launcher’s
upper stage: as it is in direct contact with Earth’s atmosphere prior
to and during the launch, any sterilization procedure would be inef-
fective. Additionally, after the interplanetary injection maneuver, the
trajectory of upper stages is completely uncontrolled. Similarly, space-
crafts themselves may become non-PP-compliant in case of failure
or maneuver execution errors, switching from active to uncontrolled,
thus becoming of interest like upper stages. For objects of this kind, PP
requirements become a per-celestial body threshold on the maximum
allowed impact probability.

The only way to ensure that uncontrolled objects comply with PP
and SDM policies is an accurate and robust mission analysis. Despite
the definition of a reference trajectory, due to not completely exact
measurements, dynamical uncertainties or, for instance, maneuver
mechanization errors, the spacecraft may never actually follow the
nominal orbit. The dispersion that originates from all these aspect
introduces a relevant uncertainty to the analysis, contributing to the
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build-up of impact probability levels of space missions. Therefore,
the uncertainty needs to be propagated and statistically studied as
efficiently as possible, guaranteeing the minimum prescribed accuracy.
A possible impact probability mitigation strategy would be to avoid
gravity assist maneuvers altogether, notably reducing the chaos that
the flyby dynamics introduces to the problem at hand. Nonetheless,
gravity assists are an enabling feature of space missions, allowing the
achievement of otherwise unfeasible trajectory deflections, with artifi-
cial propulsion only. Hence, flybys are always a "risk" worth taking
for the success of space endeavors, letting the analysts to reach the
best trade-off solutions between propellant consumption, designed
trajectory, and accumulated impact probability levels. For this reason,
novel techniques and tools, that allow a more efficient and accurate
propagation of the uncertainty, would considerably reduce the mission
development time. At the same time, expanding the current knowl-
edge on flybys, both per se and for their effects on the propagated
uncertainty, would also provide mission analysts with better means to
design robust trajectories.

This chapter gives an introduction to the overall research work,
providing a first state-of-the-art and background analysis in Section
1.1. Section 1.1 aims at clarifying the work positioning, a more in-depth
literature review is given in the introduction of each chapter, for all the
covered topics. Then, Section 1.2 outlines the research motivation and
objectives, followed by the developed methods and implementations
in Section 1.3. The chapter closes presenting in Section 1.4 the global
thesis organization, and the related publications in Section 1.5.

1.1 background

As already briefly introduced, the PP compliance of space missions
must be assessed taking into account different aspects and uncertainty
sources. In particular, PP analyses must consider the effects of [31, 78,
125]:

• the spacecraft/upper stage dispersion covariance;

• multiple close approaches with major bodies in the Solar System;

• the spacecraft reliability and possible failures;

• the spacecraft’s position and velocity at any time during the
mission;

• evidence of sufficient absorbed radiation to sterilize the space-
craft from possibly left terrestrial life forms;

resulting in five different mission classes in the COSPAR classification
[31], ranging from the lowest (1) to the highest (5) PP-related risks:
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1. missions to bodies without significant biological interest (e.g.
Mercury);

2. missions to bodies with significant biological interest, but of low
risk of compromising future research, in case of contamination
(e.g. Venus);

3. flybys and orbit-only missions to bodies of significant biological
interest and with high risk of compromising future research, in
case of contamination (e.g. Mars, Europa, Enceladus);

4. missions that land on the surface of bodies of significant biologi-
cal interest and with high risk of compromising future research,
in case of contamination (e.g. Mars, Europa, Enceladus);

5. missions returning to Earth.

For objects that cannot be sterilized, e.g. launcher upper stages
and full spacecrafts in case of failures, PP policies become a maxi-
mum allowed impact probability level. Table 1.1 summarizes some
of the requirements used in the design of ESA missions [31, 78, 125];
cases without a specific time frame corresponds to missions whose
contaminating effect should be prevented at all costs.

Table 1.1: Example of PP compliant impact probability thresholds for ESA
missions.

Mission Object Biosphere

Impact Time

probability frame

General

Generic Any Any ⩽ 1× 10−3
50 years

Mars

General
Upper

Mars ⩽ 1× 10−4
50 years

stage

Spacecraft Mars ⩽ (1− 5)× 10−2
20-50 years

Sample
Spacecraft Earth ⩽ 1× 10−6 -

return

Outer Solar System

General Any Subsurface ⩽ 1× 10−4 -
ocean

Sample
Spacecraft Earth ⩽ 1× 10−6 -

return

In the mission analysis context, PP and SDM can be seen as noth-
ing but a direct Uncertainty Propagation (UP) application in orbital
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dynamics: given the final uncertainty state at the end of the time
frame, assessing PP and SDM requirements becomes the computation
of what part of the uncertainty has contributed to the overall impact
probability, as well as whether this part breaches the given threshold
or not.

Other than the numerous effects and situations to be modeled, Ta-
ble 1.1 highlights two essential features of PP compliance analysis:
very low impact probabilities should be estimated, often over long
time intervals. While the statistical result is what ultimately matters,
the robustness of the analysis has resulted in the implementation
of simulators that feature complete dynamical models, so that all
the force sources and effects can be accounted for. In addition, the
non-linearity introduced by gravity assists has led to PP and SDM
assessment tools exclusively built on Monte Carlo (MC) or MC-based
approaches, preventing the adoption of more computationally effi-
cient, yet less accurate because of the required model simplifications,
UP techniques. The direct statistical influence of minor perturbing
effects or of the chosen uncertainty description has not been explored
yet, hence leaving the possibility to study the adoption of simplified
models and alternative approaches.

1.1.1 High-fidelity approaches for PP/SDM

Starting from the requirements introduced by Kminek et al. [78], the
ESA SNAPPshot suite has been developed by Letizia et al. [88, 89] and
Colombo et al. [29], to compute the impact probability of a given initial
condition and uncertainty. A MC simulation is performed on a large
set of trajectory propagations, computed in the Cartesian formulation
of the full force dynamics, keeping a static, barycentric reference frame
and non-dimensionalization quantities, throughout the integration.
The impact probability of the orbiting object with all the encountered
bodies is determined as the ratio between the number of impacting
runs and the total number of generated samples. SNAPPshot also
provides a b-plane [148] analysis of colliding trajectories, highlighting
the orbital resonance patterns of most of the detected impacts.

Romano et al. [126] propose a subset simulation approach and a
Line Sampling method for the computation of impact probabilities.
Line Sampling consists of a Markov Chain MC-based approach, which
bounds the uncertainty regions finding the lines perpendicular thereto,
thus sampling the uncertainty along such directions. Line Sampling
ensures a better impact probability estimate, especially for small ab-
solute values, and is also more efficient, requiring around 35% less
total runs than the standard MC. Another work from Romano [125]
investigated the influence of numerical schemes in the performance
and precision of the SNAPPshot [29] approach. An attempt has also
been made to develop a covariance propagation technique in the
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Cartesian formulation of the dynamics, based on Gaussian Mixture
Models. Even before flyby events, the propagated continuous covari-
ance has quickly degraded, because of the strong non-linearity and
the Lyapunov instability of the Kepler problem, requiring to split the
uncertainty initial distribution repeatedly and cumulatively [125]. The
results obtained in [125], together with other updates, contributed to
the development of an upgraded version of the SNAPPshot suite [30].

Still, the computational cost related to the just described approaches
remained high, requiring the use of high-performance computing
facilities and/or large servers to obtain the required estimates within
days/weeks. Hence, ESA improved the state-of-the-art software pool
by developing CUDAjectory [32, 57, 128]. CUDAjectory introduces
the emerging Graphics Processing Unit (GPU) computing technology
to the problem, resulting in a remarkable runtime reduction of PP
and SDM analyses. CUDAjectory implements a propagator featuring
SNAPPshot’s dynamical model, the runtime reduction is achieved by
propagating a massive number of samples in parallel, exploiting the
peculiar architecture of graphics cards.

1.1.2 Other Uncertainty Propagation techniques

Non MC-reliant approaches all try to simplify the UP problem to a
certain degree, with the various methods differing on the extent and
the approximation approach. While few works simplify the required
dynamical model, nearly all strategies do not deal with close approach-
related discontinuities. Hence, these techniques have proved their
potential in Earth-related problems, such as modeling the evolution
of space debris clouds, yet their implementation to interplanetary
applications requires a solution to the flyby problem first. With the
goal of providing a clearer positioning of the research presented in
this dissertation, this section presents a brief overview of the most
commonly adopted UP approaches in orbital dynamics, regardless the
application. As it is also stated in the following sections, the objective
of this thesis is neither to devise a new UP approach, nor to directly
improve the existing techniques. Rather, this work focuses on the
analysis of what actually characterizes UP, with direct application to
PP and SDM tasks.

In the most general sense, the evolution of an uncertainty cloud
is governed by Fokker-Planck equations [56]. Nonetheless, the direct
integration of these partial differential equations is in general avoided,
given the high number of dimensions of the orbital state, often using
linear models or fully non-linear MC techniques (such as the already
presented approaches for PP and SDM) [91].

On a different extent, UP can be simplified modeling the generic
uncertainty with the sum of weighted Gaussian distributions: the
Gaussian Mixture Model approach has been introduced by Terejanu
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et al. [142], and later improved with specific application to the space
debris problem [34, 152]. A similar approach, although not specifically
referred to the orbital UP problem, is given by the Unscented Trans-
form (UT) [74, 75], also tested by Romano [125] for the PP problem.
Gaussian uncertainty can be described by a carefully selected set of
points, called the sigma points. The fully non-linear dynamics is used
to propagate this set of points, whose weighted sum would yield the
propagated uncertainty. UT and Gaussian Mixture Models suffer from
the orbital problem being highly non-linear, resulting in a prominent
distortion of initially Gaussian distributions.

Recently, Frey [47] applied Gaussian Mixture Models as surrogate
framework to reconstruct the uncertainty arising from space debris
fragmentation events, described as fully probabilistic continua. The
probability density is propagated with a fluid dynamics-like diffusion
equation, using the method of the characteristics, keeping a Keplerian
formulation of the dynamics and averaging Earth’s oblateness effects.
Hence, the propagated characteristics are used for the consequent
training of the surrogate model, that in turn provides a global estimate
of the evolution of the newly created debris cloud. While the approach
could introduce considerable gains in computational efficiency, the
application in the interplanetary environment thereof is not straight-
forward. Were flyby events to occur, discontinuities would arise in the
dynamics, directly impacting the uncertainty continuum in a chaotic
way. Thus, prior to the definition of interplanetary continua, a method
to isolate flybys must be devised, together with the necessary tech-
niques to split and re-merge the original uncertainty, so that the flyby
scattering effect can be properly modeled.

Polynomial Chaos Expansion methods work slightly differently
from UT and Gaussian Mixture Models, approximating the uncertainty
with a series expansion and providing the evolution of higher order
statistical moments of the propagation [159]. While Polynomial Chaos
expansion can in general retain the full model description [71], very
high orders are required to reach PP and SDM-like accuracy levels.

Taylor-based methods have also been developed, resulting in the
common concept of State Transition Matrix, at the first order. Higher
order terms have also been employed, giving birth to State Transi-
tion Tensor-based techniques [115]. Recent developments introduced
a directional definition of the State Transition Tensor, resulting in an
overall increased accuracy for non-linear UP problems [16]. While
high precision levels could be in principle achieved, the computation
of the partial derivatives required to fill the tensor elements becomes
increasingly complex, raising the expansion order. Additionally, ap-
proaches of this kind require the system dynamics to be continuous
and differentiable, making Taylor-based methods particularly sensitive
to flybys, as well as unsuitable to model maneuver failures.
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A similar yet different techniques uses Taylor algebra to replace
operations between real numbers with operations between polynomi-
als. Differential Algebra has been developed building on this concept,
expanding the dynamics function to an arbitrarily high order with
Taylor polynomials, while still preserving a high computational effi-
ciency, because of the new algebra type [12]. This technique has found
a successful application in the study of Apophis’ close encounter
with Earth [5], and has been extended to the propagation of large
uncertainties upon combination with domain splitting techniques
[162]. Unfortunately, as in the State Transition Tensor case, Differential
Algebra approaches require a continuous and differentiable dynamics.

Between the UP and Uncertainty Sampling realms lies the Line of
Variation approach, used by Milani et al. [109] to study the impact
probability of near-Earth asteroids. Strictly speaking, the Line of Vari-
ation approach samples the uncertainty along a given differentiable
curve in the orbital elements space [107, 109, 110]. Nonetheless, the
description in terms of orbital elements allows to predict a string-like
shape connected to the dynamics, along which most of the uncer-
tainty variation will take place. However, this techniques still provides
"simply" an uncertainty sampling method, whose propagation is then
deferred to other approaches (e.g., MC in [109]).

1.1.3 A multidisciplinary problem

UP, especially in the high-fidelity case required by PP and SDM ap-
plications, is an intrinsically multidisciplinary problem. Figure 1.1
schematically depicts the three major areas that heavily influence
outcome and performance of every UP technique, regardless the envi-
ronment and the applications. For instance, choosing MC approaches
over other uncertainty models corresponds to selecting one particular
statistical description, over some other. Similarly, Cartesian coordi-
nates are, in general, just one of the possible ways of representing the
formulation of the orbital dynamics. Finally, be it the propagation of a
massive amount of trajectories or the training of a complex surrogate
model, the chosen computing framework and technology plays an
important role in the practical applicability of the any UP approach,
even just in terms of providing an uncertainty estimate in a reasonable
computational time.

As Figure 1.1 highlights, choices made on either area may have a sig-
nificant impact on the others. For instance, while a complete dynamical
model that includes all bodies in the solar system is what enables accu-
rate analyses, it also limits the adoption of continuum-based statistical
descriptions. In this sense, flyby events are a conceptual discontinuity
that scatters the propagated uncertainty, that completely looses the
properties that allowed its model to be continuous. Similarly, certain
element-based formulations of the dynamics may be particularly sen-
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Figure 1.1: The aspects characterizing orbital uncertainty propagation.

sitive to flyby events, preventing their straightforward implementation
in the interplanetary environment. Finally, while GPUs do represent
today’s best-performing computational framework, their architecture
makes GPU programming difficult, resulting in rather simple algo-
rithms only readily implementable in GPU code. Hence, other than
advancements in any of the areas presented in Figure 1.1, research
activities may also cover the interconnections among the different
fields.

So far, UP has been studied focusing on each single research direc-
tion highlighted in Figure 1.1 exclusively, without considering cross-
interactions. Be that different statistical descriptions of the uncertainty,
these works have all kept a fixed formulation of the dynamics. Hence,
whether the choice made for the equations of motion has an impact
on the description of the uncertainty or not needs to be assessed. Sim-
ilarly, choices made on the dynamics may have a significant impact on
the computational aspects, as well as a GPU computing approach may
be unsuitable for certain statistical methods or equations of motion.

1.2 motivation, objectives , and applications

Analyzing the compliance of space missions with PP and SDM re-
quirements is a computationally intensive task. The small impact
probabilities to be estimated make the use of complete force models
necessary, as well as may require the propagation of hundreds of
thousands of samples. Thus, any improvement in terms of computa-
tional efficiency of the single simulations represents an upgrade to
state-of-the-art approaches for PP and SDM analysis.

The effect of close encounters in the accuracy of numerical trajectory
propagation has not been understood completely, yet. Additionally,
flybys introduce a chaotic scattering effect in the propagation of the
uncertainty, with shallow and distant interactions that can make the
difference between detecting or missing impacting trajectories. There-
fore, the effect of encounters on the propagated uncertainty needs
to be studied, both in terms of devising frameworks to mitigate the
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uncertainty scattering effect, and attempting to model the long-range
interactions that lead to otherwise inexplicable collisions.

Most numerical simulation techniques rely, in general, on step-based
approaches: given an initial condition, differential equations are inte-
grated computing the evolution of the trajectories, estimating step by
step forward (or backward) in time. While the available techniques
of this kind are some of the most robust and validated simulation
methods, the intrinsically sequential nature thereof may have a per-
formance limit dictated by the algorithm concept. For this reason,
it may be worth exploring the potential, in terms of accuracy and
computational performances, of iteration-based schemes, that start
from a full trajectory guess and update it through iterations, fitting
arbitrarily complex dynamical models.

Finally, as already mentioned in Section 1.1.3, the interplay of the
different fields of UP should be studied as well. Certain formulations
of the equations of motion may be the preparatory framework for fully
probabilistic approaches to UP. At the same time, GPU computing has
powered the development of Artificial Intelligence models, thus GPUs
may be the enabling features for complex surrogate uncertainty and
trajectory prediction models to effectively work.

1.3 developed methods and implementation

This dissertation focuses and studies each of the highlighted aspect.
Ideally, proposing a unified technique that combines all the developed
techniques in a single UP and/or PP/SDM tool is the research goal to
aim for. Nonetheless, the research activity made evident that consider-
able preparatory work was required, so that each of the three research
field (dynamics, statistics, and GPU computing) could be ready to
be connected with the other. For this reason, rather than attempting
the development of a unified UP approach, this work proposes a set
of analytical and numerical methods and techniques that all present
improvement to the state of the art in UP and PP/SDM. At the same
time, the results obtained in the development of these tools show that
recombining the multidisciplinary effort of this research is possible,
presenting possible development pathways as well as future extension
and applications.

The high non-linearity of the Cartesian equations of the orbital mo-
tion represents a limit for the computational efficiency of high-fidelity
numerical simulations. The implicitly straightforward interface with
physical forces and perturbing accelerations has made the Cartesian
formulation the most popular dynamics description in numerical sim-
ulations, allowing the accurate implementation of complex and high-
precision force models. Yet, considering the trajectory propagation per
se, Cartesian coordinates are far from being the best dynamics formu-
lation, either for accuracy and computational efficiency. Element-based
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formulations that possibly include the regularization of the equations
of motion are widely considered the best strategies to compute or-
bits. The lack of simplicity and the complex physical interpretation
behind these techniques has perhaps represented the major limitation
in the adoption thereof. Hence, this work implements, interfaces, and
studies the performance of the Kustaanheimo-Stiefel (KS) formulation
of the dynamics, in direct application to UP, PP, and SDM tasks, via
simulations employing established numerical integration schemes.
KS variables are eventually implemented in the CUDAjectory soft-
ware, making also a first application of the synergy between improved
dynamical formulation and GPU computing technologies.

The work on KS variables is not limited to improving the simulation
efficiency of PP and SDM. Rather, the influence of the dynamics for-
mulation on the uncertainty shape is numerically assessed. Similarly,
the role of physical time as independent integration variable of the
simulation of the uncertainty is analyzed. This aspect leads to the de-
velopment of an alternative numerical description of the propagated
uncertainty distribution in KS coordinates, that uses a fictitious time as
independent variable to synchronize upon. This approach results in a
distribution whose behavior remains highly regular and predictable in
all cases, flyby dynamics included, thereby suggesting the suitability
of KS variables to continuum statistical descriptions of the distribution.
Analytical and numerical uncertainty mapping techniques between
Cartesian and KS variables are also devised.

Flybys are studied aiming at a generalization of the close approach
concept, that includes shallow and weak interactions, where the pres-
ence of both the Sun and the planet flown by have a significant impact
on the dynamics. An analytical description of a generalized SOI con-
cept is proposed, based on the eigenvalues of the dynamics’ Jacobian,
starting from concepts used for the step adaptation of numerical in-
tegration schemes. Using the new SOI definition, a novel concept to
approach the whole PP/SDM problem is presented: in the N-body
perturbed dynamics, impacting trajectories are identified not only on
keyholes belonging to resonant trajectories, but also in off-nominal
conditions that require a three-body approach to be fully character-
ized. Hence, the Keyhole Map is constructed, a graphical tool that
accurately predicts and locates keyholes in a generalized sense.

The Picard-Chebyshev (PC) integration scheme is studied, as an
alternative to traditional step-based simulators, implementing PC-
based propagator and exploiting the fixed-point approach to build an
efficient trajectory optimization framework. An augmented version
of the PC method is also proposed, improving the computational
efficiency on parallel and GPU computing architectures.
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1.4 thesis organization

Six chapters compose this dissertation, each covering one of the pro-
posed research areas, with Chapter 1 being the current introduction.
All the remaining chapters start by locating the topic in the research
objectives, together with a review of state-of-the-art techniques and
results thereof, except the conclusions drawn in Chapter 6. Then, all
the theoretical developments are stated, divided in sections if more
than one research area is explored. Finally, each chapter proposes
application test cases, taken or inspired by real interplanetary mission
scenarios.

Chapter 2 studies the adoption of KS variables in PP/SDM and
orbital UP problems. After a detailed analysis of the benefits of KS
variables on the single simulations in Section 2.2, Section 2.3 proposes
some strategies to map uncertainty distributions between the KS and
the Cartesian realms. Next, Section 2.4 studies the role of the KS
regularization and of the synchronization on the fictitious time on the
behavior of the propagated uncertainty. Finally, Chapter 2 ends with
application test cases for all the proposed methodologies in Section
2.5.

Chapter 3 focuses on the understanding of close encounters. Section
3.2 assesses the effectiveness of perturbation approaches on hyper-
bolic trajectories to include the Sun effects during flybys. Section 3.3
discusses the dynamical meaning of the Jacobian eigenvalues and
presents the new definition of SOI. Chapter 3 ends with a direct ap-
plication of the new SOI concept, constructing the Keyhole Map and
applying it to the space debris mitigation compliance analysis of ESA’s
JUICE mission.

Chapter 4 explores the potential and the applicability of the PC
numerical scheme to the interplanetary trajectory design and UP
problem, investigating first the applicability of the method to the
optimization of resonant flybys and trajectories, in Section 4.2. Section
4.3 presents the development of the augmented version of the PC
scheme. Application test cases based on the ESA mission Solar Orbiter
are shown in Section 4.4.

Finally, Chapter 5 presents the implementation details of KS vari-
ables in the CUDAjectory software. After a brief introduction on the
software structure in Section 5.1, the chapter describes the implementa-
tion details and concepts to include KS variables as a new formulation
of the dynamics in Section 5.2. The chapter closes testing the per-
formance of the KS formulation in CUDAjectory on the compliance
analysis of ESA’s JUICE mission with SDM policies, in Section 5.3.

The dissertation ends with the global conclusions drawn from the
work, in Chapter 6. Other than providing a summary of the key find-
ings and a discussion thereof, Chapter 6 highlights the connection
between the different research directions explored in this work, devis-
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ing a few recommendation for future works to connect the concepts
in novel UP techniques.

1.5 contributions

The research results of this thesis have been presented in several
international conferences, and published in international journals. The
unpublished contents refer mainly to Chapters 3 (except the already
published work on perturbation methods) and 5, together with Section
2.3. Section 2.4 covers instead an analysis that has only been presented
at the 73

rd International Astronautical Conference (IAC 2022). All
these unpublished contents will be submitted for journal publications
in the coming months.
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2
K U S TA A N H E I M O - S T I E F E L VA R I A B L E S

This chapter centers on the adoption of Kustaanheimo-Stiefel (KS)
coordinates, aiming at improving the efficiency of PP/SDM compli-
ance analysis acting on the performance of the single simulations
from a dynamics viewpoint. The theoretical background of the KS
formulation, together with the PP/SDM adaptation and optimization
thereof, is presented in Section 2.1. As the adoption of KS variables
inevitably affects the uncertainty description and propagation per se,
this research direction is also explored in Sections 2.3 and 2.4, for the
mapping between Cartesian and KS formulation of the uncertainty and
its propagation, respectively. Finally, Section 2.5 proposes application
test cases covering the full theoretical content of this chapter.

2.1 regularization techniques

Regularizing the dynamics is not necessarily attached to a new set of
coordinates per se, in fact the KS regularization was born bringing
together two concepts: the first, adding a fourth coordinate trying to
describe the Kepler problem as a four dimensional harmonic oscillator,
originally presented by Kustaanheimo [84], and the introduction of the
time transformation of the Sundman type [140], operated later with
the contribution of Stiefel [83]. The key concept is about converting the
integration independent variable, switching from the physical time t
to the fictitious time s. The generic Sundman transformation [140]:

ds

dt
=
β

r
e
∫
Kdt (2.1)

In general, β is an arbitrary constant coefficient and K is an arbitrary
function of position, velocity and time. For instance, setting β = 1

makes the fictitious time s scale like the eccentric anomaly, whereas
β = 2 introduces a true anomaly-like fictitious time evolution.

2.1.1 Overview of Regularization approaches

All the later developments over the newly created KS formalism
use to refer to the more comprehensive manuscript by Stiefel and
Scheifele [139]. Bond proposed a variation of parameters approach that

17
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generically accounts for perturbing effects starting from the original
four-vector KS formulation [15].

In the work of Stiefel and Scheifele [139] the properties of quater-
nion algebra are mentioned, even though the original developers of
the KS transformation did not pay much attention on this aspect.
Quaternions in the KS formalism have been explored first by Velte
[151] and better detailed by the successive works of Vivarelli [153–155],
introducing the concept of anti-involute and quaternion cross product.
The KS transformation was re-derived and refined in the quaternion
formalism by Deprit et al. [39] where it was obtained by doubling from
a Levi-Civita transformation. Deprit [37, 38, 40] also extensively stud-
ied the canonical Lissajous transformation, concept that has recently
been re-proposed by Breiter and Langner [19, 20] starting from the KS
formulation. A more recent work by Waldvogel [156] provided new
insight on the algebraic properties of quaternions in the KS regulariza-
tion and the related fibration of the KS space, re-defining Vivarelli’s
anti involute [154] as the quaternion star conjugate.

Saha [127] proposed a quaternion approach to the KS transforma-
tion more suitable to the analysis of Hamiltonian systems. Based on
the work of Saha, Breiter and Langner [18] explored the role of the
preferential direction chosen to perform the regularization, which they
generalized to an arbitrary one of the original three-dimensional space.
In fact, almost all the analyses already performed in the context of
the KS formulation adhere to the original one proposed by Kustaan-
heimo and Stiefel [83]. Denoting with (x, y, z) the axes of a generic
three-dimensional Cartesian space, not necessarily attached to any
commonly used Solar System direction, the first coordinate x was
selected as the reference direction for the KS transformation. Using
the same notation as Breiter and Langner [18], choosing x as prefer-
ential direction the KS tranformation is identified as KS1, whereas
for instance the KS3 version is presented by Saha [127] using the
direction z. The work of Breiter and Langner [18] did not stop to this
generalization, but provided new insight to the physical meanings of
the KS coordinates themselves.

Partially quoting Breiter and Langner [18] and recalling the quater-
nion description of rotations, in the KS1 version "the normalized KS
variables are the Euler-Rodrigues parameters of the rotation turning
the x axis into the direction of the Cartesian position vector which
generated the KS coordinates". From this sentence, the physical mean-
ing of the fibration property of the transformation [18, 139, 156] also
becomes more clear, recalling that such a rotation may happen in an
infinite number of ways. Another work by Langner and Breiter [85]
explores the properties of the quaternionic KS formulation in Hamilto-
nian systems, tackling also the rotating frame case. Some other work
in a similar direction was done by Roa and Peláez [121], they make
use of the Minkowskian geometry that was originally proposed by
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Kustaanheimo and Stiefel [83, 84] to handle close approaches and their
hyperbolic geometry. Still Roa et al. also worked on the KS formu-
lation [124], showing that the Lyapunov stability does not apply to
the whole KS fiber with respect to the physical time. Roa and Kasdin
made use of quaternions also developing a new set of non-singular
orbital elements that models the intermediary evolution of the orbital
plane [120].

When dealing with regularized orbital dynamics, the DROMO for-
mulation is among the latest state-of-the-art results for the perturbed
two-body problem. The first implementation of DROMO elements
was proposed by Peláez et al. [116], seeking for a numerically sta-
ble, regularized and efficient formulation, furthermore rendering the
same accurate results for any type of primarily two-body trajectory
(elliptical, parabolic, hyperbolic) [145], using a variation of parameters
approach. ideal frame. The description of the motion is broken into
three steps [145]: the evolution of the orbital plane, the evolution of
the trajectory on the orbital plane (also called ideal frame, and first
introduced by Deprit [36]) and finally the position change on the
osculating orbit as a function of time. The independent variable is a
fictitious time obtained by a Sundman transformation [140], which
reduces to the true anomaly in case of Keplerian motion, instead of
the eccentric anomaly of the KS case. The description of the ideal
frame does not require time regularization per se, it was subsequently
introduced by Palacios and Calvo [113].

The original DROMO formulation is singular for null angular mo-
mentum. Recent revisions worked to fix these sensitivity issues: Baù et
al. [10] developed E-DROMO, a non-singular formulation of DROMO
for any bound orbit, removing the singularities on null eccentricity
and inclination. Roa et al. [123] analyzed the singularities posed by
deep flybys and then proposed the re-formulation H-DROMO, not sen-
sitive to a vanishing angular momentum. The latest updates involve
the study of the evolution of an intermediate frame [11]. The interest
on universal variables, capable of managing either closed, open or
even rectilinear trajectories is introduced. Amato et al. [3] studied the
reference frame switch for close approaches using the DROMO formu-
lation, and numerically identified a region of "best switch distance"
that does not correspond either to the Hill surfaces or the sphere of
influence (SOI). The way all the DROMO formulations were built
makes them sensitive to the task they are used for. In the case of flyby
events, a frame switch procedure is required to enhance its robustness,
being a variations of parameters approach. Moreover, if events need
to be computed requiring to retrieve the propagated coordinates, the
conversion burden is inevitably added to the integration runtime,
although DROMO, and variations of parameters in general, remain
more efficient in terms of accuracy and required function evaluations.
Furthermore, the DROMO approach remains limited to the perturbed
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two-body problem. KS coordinates are chosen because of the intro-
duction of the barycentric version in this work, foreseeing a future
validation of the technique to low-energy PP/SDM tasks, building a
framework conceptually similar to the rotating frame case proposed
by Langner and Breiter [85]. A new term appears in the KS Hamilto-
nian in [85], that solution may represent a suitable starting point to
study a barycentric KS-like formulation in the context of the restricted
three body problem, once the rotating frame assumption is removed.
The version presented here regularizes the evolution of the physical
time based on the distance from the barycenter, but keeps the inertial
reference. The proposed barycentric formulation can be extended to a
fully Hamiltonian system, if expressed as a doubled set of first order
equations, and would be equivalent to the complete Hamiltonian set
introduced by Breiter and Langner [18] upon extension to the conju-
gate momentum of the physical time t. In their derivation, Breiter and
Langner exploit a zero-energy manifold for the full Hamiltonian to
define the conjugate momentum U∗. The equations of motion are then
derived from a new Hamiltonian obtained by applying the Sundman
time transformation. The process to extend the barycentric equations
of motion to a fully Hamiltonian formulation would be equivalent.

Other works are tailored to the exploration of the most numerical
side of the formulation. An extensive analysis of this kind on the
KS1 case was proposed by Arakida and Fukushima [4]. Fukushima
alone published a series of works that aim to improve the numerical
performances of the integration in KS variables and regularized time
[50–55]. Several aspects that all contributed to the enhancement of
the pure numerical efficiency of the integration were touched: single
and quadruple scaling techniques to each of the KS coordinates are
proposed, and the latter was extended applying a linear transformation
to obtain quasi-conserved quantities to monitor and adjust the scaling
during the integration. A time element formulation that reduces the
error growth was studied, and then extended to a complete set of
variables through the variation of parameters approach. Still within
the context of regularized formulation but without using the KS
formulation, an orbital longitude integration and manifold correction
methods were proposed.

Other works have developed a formalism stemming from the KS
approach, in the attempt to regularize the complete N-body problem.
Aarseth and Zare [1] started with the regularization of the three-body
problem based on the KS formulation for a configuration considering
the two primary binaries, extended shortly after by Heggie [62] for any
configuration and having regularized collisions for any pairs. Palmer
et al. [114] and Mikkola and Aarseth [100–104] extended Aarseth’s
approach to a N-body chain regularization technique, together with
different implementation solutions for how to switch the chain con-
figuration in case of close encounters and analyses of the numerical
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performance. Mikkola and Merrit [105, 106] extended the regulariza-
tion chain algorithm also to include velocity-dependent perturbation
sources, with specific mention to general relativity through the post-
Newtonian approximation. Their work strictly involves the simulation
of full N-body systems, whereas the proposed adaptation and imple-
mentation focuses on the motion of a small particle of negligible mass
under the action of the gravitational forces of the N-bodies, as well as
other arbitrary perturbations.

For PP/SDM applications, reducing the precision of the integration
simplifying the physical model might lead to significantly different
results because of the accumulated error, especially at the end of the
integration span. This makes it necessary to deal with a force model
that is as complete as possible, which requires the use of ephemerides
data to avoid integrating the N-body problem for faster integrations.
In fact, the computational burden is currently the major limitation
to the extensive performance of PP/SDM analysis. Nowadays, the
compliance with the requirements outlined for instance by Kminek
et al. [78] is assessed with a MC based approach, for each point in
the trajectory where the disposal of an object is required. Were a
trajectory solution to be discarded, all the MC runs would need to
be run anew, assessing whether the next candidate complies with the
requirements or not, and so on. Improving the computational cost of
the PP/SDM analysis turns therefore into a reduction of the overall
trajectory design development time, as any solution whose compliance
with the given requirements needs to be secured benefits from more
efficient techniques.

On the application viewpoint, KS coordinates have already been
used in a few applications. Hernandez and Akella [63] developed
a Lyapunov-based guidance strategy using KS coordinates to target
several types of orbit conditions, e.g. specified angular momentum
vector, and applied it to the design of low thrust trajectories. Wool-
lands et al. [166] developed a Lambert solver based on KS coordinates
and used it to provide a good initial guess to the Picard-Chebyshev
numerical integration of the perturbed two-body problem. Sellamuthu
and Sharma analysed the J2, J3, J4 terms of Earth’s oblateness and the
third body luni-solar perturbation when approximated with a Legen-
dre polynomial expansion with KS coordinates [130–132]. Using the
equation they obtained, they then implemented an orbital propagator
and studied the effects of such perturbations on resident space objects
with high perigee and highly eccentric orbits.

2.1.2 KS Regularization

The Kustaanheimo-Stiefel (KS) formulation rewrites the two body
problem as an isotropic1, four-dimensional harmonic oscillator. The

1 All the four components oscillate with the same frequency and phase.
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conservation of the orbital energy is also introduced, leading to a
simple linear ordinary differential equation. The first formulation was
proposed indeed by Kustaanheimo and Stiefel [83, 139], and extended
the usual Cartesian position vector r = {r1, r2, r3}

T into a four-vector,
by adding the length r =

√
r · r as fourth coordinate. The underline

notation r is used to stress the difference between three-dimensional
Cartesian vectors and the KS four vectors/quaternions, denoted in
bold r. The reader can find a summary of the quaternion algrbra
concepts necessary for the understanding of this chapter in Appendix
A.1. Using the initial formulation proposed by Kustaanheimo, the
physical coordinates are linked to the spinor regularized coordinates
u = {u1, u2, u3, u4}

T through:

r1 = u21 − u
2
2 − u

2
3 + u

2
4

r2 = 2
(
u1u2 − u3u4

)
r3 = 2

(
u1u3 + u2u4

)
r = u21 + u

2
2 + u

2
3 + u

2
4

(2.2)

later re-arranged in matrix-vector product as

r = L(u)u (2.3)

which gives r = {r1, r2, r3, 0}
T , with

L(u) =


u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1

 (2.4)

Setting β = 1 and K = 0 in Equation (2.1) to operate the time
transformation, replacing r = L(u)u and its derivatives, the KS trans-
formation converts the Kepler two-body problem

r̈ = −
µ

r3
r (2.5)

into
u ′′ =

ϵ

2
u (2.6)

where ¨(·) and (·) ′′ stand for second t and s derivatives respectively, and
ϵ denotes the two-body orbital energy. Because the adopted Sundman
regularization is of the first order, for unperturbed orbits the new
independent variable s follows the evolution of the eccentric anomaly.
The achieved behavior reflects a sort of slow motion movie for the
near-pericenter part of the orbit, with smaller physical time steps the
closer the trajectory gets to the attractor.

Vivarelli [154] first showed the connection with quaternions, intro-
ducing the definition u∗ = {u1, u2, u3,−u4}

T as the "anti-involute" of
u, later re-defined as "star conjugate" by Waldvogel [156]. For the sake
of conciseness, the notation used by Waldvogel is proposed here.
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2.1.2.1 KS regularized formulation using quaternion notation

The position vector r of the three-dimensional Cartesian space can be
written as a quaternion r with null i3 component:

r = {r1, r2, r3}
T −→ r = r1 + i1r2 + i2r3 + i3 · 0 (2.7)

In the following, quaternions are represented with the scalar part as
the first element of the associated four-vector. It can be shown that
[156], given a quaternion u = u1 + i1u2 + i2u3 + i3u4, the mapping

r = uu∗ (2.8)

produces a quaternion r with vanishing i3 component, and with the
other components as defined in Equation (2.2):

r1 = u21 − u
2
2 − u

2
3 + u

2
4

r2 = 2
(
u1u2 − u3u4

)
r3 = 2

(
u1u3 + u2u4

) (2.9)

The magnitude of r can also be written in terms of quaternion
operations:

r2 = ||r||2 = |r|2 = uu (2.10)

with u = u1− i1u2− i2u3− i3u4 the standard definition of quaternion
conjugate.

Following Waldvogel [156], inheriting the conformality properties
of the Levi-Civita mapping can partially fix the degree of freedom
left whenever mapping from R3 to R4. A constraint is added for the
definition of the components of u, and particularly appears as the
following differentiation rule for r:

dr = 2u du∗ (2.11)

The fiber defining the mapping from R3 to R4 can be parametrized
by the angle φ, through a two-step process. First, the unique quater-
nion with vanishing i3 component is found:

u|φ=0 =
r + |r|√
2(r1 + |r|)

(2.12)

Then, the whole KS fiber is found through φ as

u = u|φ=0 e
i3φ = u|φ=0(cosφ+ i3 sinφ) (2.13)

which is proved as follows [156]:

uu∗ = u|φ=0 e
i3φ e−i3φu∗|φ=0 = u|φ=0u∗|φ=0 = r (2.14)

Figure 2.1 shows a visualization of the KS fibration property. All the
variable-color ellipses refer to the common generator point, i.e. the
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Figure 2.1: Fibration visualization as function of φ (color scale), for the first
three KS vector components. Generator points refer to the values
for which φ = 0.

KS state obtained by setting φ = 0, and all correspond to the same
mapped Cartesian state. Analogous representations could be made
for all the KS components triplets, all generating ellipse-like-shaped
loci of points for different KS generators.

Equation (2.11) can be used to obtain a conversion formula to obtain
the Cartesian velocity ṙ from the KS velocity u ′. Introducing the chain
rule and using Equation (2.1) with K = 0 and β = 1 gives

ṙ =
dr
dt

= 2u
du∗

ds

ds

dt
=
2

r
uu ′∗ (2.15)

which for the Cartesian to KS conversion results in, exploiting the
properties of quaternion algebra:

u ′ =
r

2

(
ṙ

u
|u|2

)∗

=
1

2
(ṙu)∗

(2.16)

The KS velocity follows directly the choice made for the fibration
parameter φ, and, analogously to the position case, it holds that

u ′ = u ′|φ=0 e
i3φ (2.17)

the only difference being, in general, the non-null i3 component of
u ′|φ=0 because of the quaternion product taken in Equation (2.16).

Denoting with ˙(·) the derivative with respect to the physical time,
the dynamics of the two-body problem can be equivalently written by
the Cartesian three-dimensional coordinate r or the quaternion with
vanishing i3 component r:

r̈ = −
µ

r3
r⇐⇒ r̈ = −

µ

r3
r (2.18)
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and the two-body energy can be also written in terms of the quaternion
r

1

2
|ṙ|2 −

µ

r
= ϵ = const (2.19)

The fictitious time s is now introduced by the Sundman transformation
of Equation (2.1) [140], which becomes:

dt = r ds;
d(·)
ds

= (·) ′ (2.20)

The derivatives with respect to the physical time t become

˙(·) = 1

r
(·) ′; ¨(·) =

˙(
1

r
(·) ′

)
=
1

r

(
1

r
(·) ′

) ′
= −

1

r3
r ′(·) ′ + 1

r2
(·) ′′ (2.21)

with the dynamics and the energy equations rewritten as:

rr ′′ − r ′r ′ + µr = 0
1

2r2
|r ′|2 −

µ

r
= ϵ

(2.22)

Using Equations (2.8) and (2.10), the differentiation rule presented in
Equation (2.11) gives

r ′ = 2uu∗ ′
; r ′′ = 2uu∗ ′′

+ 2u ′u∗ ′
; r ′ = u ′u + uu ′ (2.23)

Replacing the definitions of r, r ′, r ′′, r ′ in the dynamics and energy
equations and exploiting the properties of quaternion algebra, Equa-
tion (2.23) becomes:

2ru∗ ′′
+ (µ− 2|u ′|2)u∗ = 0

µ− 2|u ′|2 = −rϵ
(2.24)

Finally, the expression of the orbital energy appears in the regularized
dynamics equation, leading to the simple four-dimensional harmonic
oscillator [156]:

u∗ ′′
−
ϵ

2
u∗ = 0⇐⇒ u ′′ −

ϵ

2
u = 0 (2.25)

2.1.2.2 Perturbed problem

Perturbing physical accelerations f, if written again as a quaternion
with vanishing i3 component, are accounted for simply by an addi-
tional non-null term on the right hand side of the equations of motion.
The generic perturbed two-body problem becomes

r̈ = −
µ

r3
r + f(r, t) (2.26)

The derivation remains equal to the unperturbed case. Introducing
the derivative with respect to the KS time gives

rr ′′ − r ′r ′ + µr = r3f(r, t) (2.27)
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and using r = uu, after multiplying both sides by u−1 a similar
expression to Equation (2.24) is obtained [156]

2ru∗ ′′
+ (µ− 2|u ′|2)u∗ = r2uf(r, t)

µ− 2|u ′|2 = −rϵ
(2.28)

Note that the energy ϵ is not necessarily constant in the perturbed
case. Replacing the energy expression in the equations of motion and
dividing by 2r leads to

u∗ ′′
−
ϵ

2
u∗ =

r

2
uf(r, t) (2.29)

The final expression is obtained by taking the star conjugate of both
sides:

u ′′ −
ϵ

2
u =

r

2
f(r, t)u∗ (2.30)

Since the physical time t can appear in f(r, t) either implicitly or
explicitly, it should still be tracked, even though its removal was
necessary to reach a simpler form of the equations of motion. Closed
form expressions for t = t(s) cannot be found for the perturbed case,
whereas s evolves like the eccentric anomaly [156], up to a constant,
in the unperturbed two-body problem. However, from Equation (2.20)
the relation dt/ds = r can be used to add the physical time as another
state element for numerical integrations accounting for perturbations.
The two-body energy ϵ can either be computed at each time step with

ϵ = −
1

r

(
µ− 2|u ′|2

)
(2.31)

or be added as another state element as well, and its derivatives are
defined as:

ϵ ′ = r ′ · f(r, t)
ϵ̇ = ṙ · f(r, t)

(2.32)

2.2 ks variables for interplanetary propagation

2.2.1 Barycentric KS formulation

The original KS formulation of the orbital dynamics requires the
reference frame to be centered in one body, that serves both as regular-
ization point and primary attractor for the computation of the orbital
energy. However, a more complex dynamics that does not necessarily
follow a dominantly two-body trajectory could not benefit from the KS
regularization if it was kept in its standard form. Moreover, as it will
be shown in Section 2.5.1, the barycentric formulation of the dynam-
ics builds a more efficient simulation already in the Cartesian form,
since tidal terms are not present. Such an efficiency improvement is
even more relevant when accounting for relativistic effects, since the
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N-bodies barycenter is the origin of the reference frame where the
Post-Newtonian Einstein-Infeld-Hoffmann equations are derived [160].
Because of this reason, with the purpose of building a simulation
setup that remains as general as possible in the cases it can efficiently
tackle although still featuring the core benefits of the KS formulation,
a barycentric formulation of the KS equations of motion is derived.
For the sake of conciseness only the perturbing effects of the N bodies
are presented. Other perturbing sources, such as relativistic effects
and solar radiation pressure, are not explicitly written, as they would
follow the same process to be included in the KS formulation of the
dynamics.

Before dealing with the barycentric case and to highlight the dif-
ferences with respect to the perturbing effects of the N-bodies on the
traditional KS formulation, keeping the frame centered on one of the
N-bodies brings:

u ′′ −
ϵ

2
u = −

r

2

N∑
i=1
i ̸=ip

(
µi(r − ri)
|r − ri|3

+
µiri
|ri|3

)
u∗

(2.33)

with ip identifying the primary body, included in the definition of
the two-body energy ϵ, ri and µi position vector with respect to the
primary and gravitational parameter of the i-th body, respectively.

A few modifications are required to write the dynamics centered
in the barycenter of the N bodies involved. In general, through the
regularization, smaller physical time steps are implicitly taken in the
proximity of the center of the reference frame. Its correspondence
with the main attractor in the Keplerian problem is not necessary,
but becomes convenient when combined with the expression for the
orbital energy ϵ. In the barycentric case, the state r does not identify
the position with respect to the primary, therefore every single gravita-
tional contribution must be included among the right hand side terms.
Equation (2.22) for the barycentric state becomes:

rr ′′ − r ′r ′ = −

N∑
i=1

µi(r − ri)
|r − ri|3

1

2r2
|r ′|2 −

N∑
i=1

µi
|r − ri|

= ϵ0

(2.34)

and introducing the KS variables u

u ′′ =
|u ′|2

r
u −

r

2

N∑
i=1

µi(r − ri)
|r − ri|3

u∗

2

r
|u ′|2 −

N∑
i=1

µi
|r − ri|

= ϵ0

(2.35)
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The energy equation may be included in the dynamics only if
accounted as the total energy ϵ0 of the system. The presented for-
mulation is suitable for fully numerical simulations and any other
perturbing effect could be included as done for the effects of the N
bodies. The numerical performances are presented in Section 2.5.1.

To extend the presented barycentric formulation to a complete
Hamiltonian set of equations, the process proposed by Breiter and
Langner [18] can be followed, with the only difference that the zero-
energy manifold should be set on the kinetic contribution alone. This
follows the way gravitational forces are treated in the force-based
derivation outlined in this section, since they are all included in the
right-hand side term. On the contrary, preserving a body-centric ref-
erence frame allows to keep the definition of main and perturbing
gravitational potential, leading exactly to the formulation proposed
by Breiter and Langner [18].

2.2.2 Adaptive non-dimensionalisation

When numerically simulating any dynamic phenomenon, well posed
reference quantities allow the states’ magnitude to remain as close
as possible to the unity along the trajectory, which may boost the
numerical performances of the simulator as the time steps taken can
be the largest.

Traditional strategies implement static reference quantities, such as
the "AU-year" based non-dimensionalization for interplanetary tasks,
which takes the astronomical unit and the year as typical length and
time scales, lref and tref, for the orbital phenomena. As only two
out of all the four quantities involved are independent, the reference
velocity vref and gravitational parameter µref are derived from them:

lref = AU

tref = Year

vref =
lref
tref

µref =
l3ref
t2ref

(2.36)

Although simple, this reference choice is not optimal for several
reasons. First, the state is well referenced only for near-Earth objects.
Secondly, the gravitational parameters are never close to the unity,
consequently the primary acceleration will not be close to 1. Only
the Sun is represented in an acceptable way, with its gravitational
parameter µ equal to 2π because of the relation between the year
and Earth’s orbital period. Lastly, were any flybys to happen, their
characterizing fast dynamics would be excessively different from the
non-dimensional time and length scales.
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It may be reasonable to introduce another non-dimensionalization
strategy, that is not sensitive to either the geometry of the possible
unperturbed solution (ellipses or hyperbolas in the weakly perturbed
two-body problem) and the primary attractor (the Sun for open in-
terplanetary space or a planet for temporary flybys). The just made
observations lead to the following general non-dimensionalization al-
gorithm, valid for both interplanetary and planetary systems, starting
from the dimensional state magnitudes expressed with respect to a
known primary (i.e. knowing if that initial state is within or without
the SOI of a planet).

The new reference dimensions are defined through a four-step
process. µref is set equal to either the primary or the equivalent
gravitational parameter, for dominantly two-body or multi-body cases
respectively. Keeping a general notation to include both the equivalent
and primary cases, a reference two-body energy is computed as

ϵref = −
µref
r

+
1

2
v2 (2.37)

where r and v refer to position and velocity magnitude in the current
reference frame (Sun-centric, planetocentric, or barycentric). ϵref is
used to set the reference length lref as the absolute value of the
semi-major axis of the fictitious orbit that would arise from µref and
position and velocity in the current reference frame:

lref =
µref
2|ϵref|

(2.38)

Finally, the reference time tref and the reference velocity vref are
obtained from the values µref and lref:

tref =

√
l3ref
µref

vref =
lref
vref

(2.39)

Note that for closed two-body orbits non-dimensionalized in the
presented way the orbital period becomes equal to 2π. The choice
should be constrained to the sole principal attractor for flyby events
whose dynamics is primarily two-body, so that the typical time and
length scales can be properly identified.

2.2.3 Event interface, flyby detection and Center of integration switch

In interplanetary dominantly two-body trajectories featuring a close
approach, properly catching both heliocentric cruise and flyby events
with a single reference choice is impossible, in terms of non-dimen-
sionalization . Additionally, introducing the regularization makes the
dynamics sensitive to close encounters, as the integration takes implic-
itly smaller steps only closer to the regularization point. These issues
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may be overcome by dynamically switching the center of integration in
case of flyby events, following the approach presented by Amato et al.
[3]. The purpose of the proposed work is only to validate the concept
of dynamic center switch, without trying to identify an optimal switch
distance as in [3]. The results shown in Section 2.5.1 prove that, at
least for long term application, the simple definition of SOI does not
affect the integration accuracy.

In particular, the following steps can be taken each time the center
of integration is switched, either for initialization or flyby event. First,
the state at the entrance/exit of the SOI is converted into its Cartesian
and dimensional representation. Secondly, the center of the reference
frame is moved by simple state vector summation. Third and last, the
state is converted back in the original formulation and is made non-
dimensional according to the newly updated reference length, time,
velocity and gravitational parameter. The same logic can be followed
for any event or function that requires the retrieval of the Cartesian
coordinates. For force functions that depend on position and velocity,
Equation (2.30) provides the necessary interface to map the Cartesian
acceleration to its KS counterpart.

2.2.4 Fibration optimisation for numerical performance

The right-hand sides of Equations (2.33) and (2.35) are all multiplied by
their corresponding element of the KS position vector. Consequently,
in the unperturbed case a null element of the vector u implies a
constant value for the corresponding element of u ′ throughout the
integration. Thus the same element, initially null, evolves linearly, in
contrast to the sinusoidal or hyperbolic behavior of the remaining
elements, depending on the bound or unbound trajectory case. As a
consequence, having a null element results in an increased numerical
stiffness of the system, because of the significantly different state
variations.

Despite this effect remains small even in the case of null element,
the degree of freedom left by choosing the fibration parameter can
be exploited to optimize the simulation, maximizing the numerical
stability to achieve minimized integration steps. Other than restoring
a common variation trend among the state elements, the best per-
formance can be achieved by also minimizing the difference among
the variation magnitudes. A suitable choice of fibration parameter
φ would maximize the minimum magnitude element: all the magni-
tudes of the remaining elements will be bounded from below and, at
the same time, their magnitude will be reduced with respect to the
original null-element case, to accommodate for the position constraint
of Equation (2.8).
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2.2.4.1 Necessary condition for the optimal selection of φ

First, the following lemma is formulated and proved:

Lemma. Maximizing (minimizing) the value of any of the elements of both
the initial and averaged KS states implies having another element with null
magnitude.

Proof. For both the initial KS vectors u0(φ) and u ′
0(φ), denoting both

the cases with p(φ) and the four components with pl(φ), l = 1, ..., 4
one finds

dp(φ)
dφ

=
{
− p4(φ), p3(φ),−p2(φ), p1(φ)

}T

where dpl/dφ = 0 is necessary for pl(φ) to be locally maximized or
minimized, which implies that, at the same time, another element of
p(φ) vanishes.
Since the pairs of linked elements correspond, in vector position, for
both u0(φ) and u ′

0(φ), the lemma holds for initial, period-average, and
the interval-averaged KS states, for both closed and open trajectories,
since being all linear combinations of u0(φ) and u ′

0(φ).

Finally, the necessary optimality condition is found:

Necessary optimality condition. If the magnitude of the minimum magni-
tude element of both the initial and the averaged KS state vectors is maximized,
then that specific φ∗ makes that magnitude equal to the magnitude of another
of the elements of the same vector.

Proof. Any element of both u0(φ) and u ′
0(φ) is a continuous, periodic

and bounded function of φ, therefore also the elements of the generic
averaged KS state p̃(φ) are so (because all the average states are linear
combination of u0(φ) and u ′

0(φ)).
Suppose that p̃l(φ) is the local minimum magnitude element of p̃(φ).
Then, spanning the range 0 ⩽ φ ⩽ 2π, if for φ = φ∗ it holds that

|p̃l(φ
∗)| = |p̃m(φ∗)|

then if
|p̃l(φ

∗ + δ)| > |p̃m(φ∗ + δ)|

p̃m(φ∗ + δ) is the new minimum magnitude element at φ∗ + δ, with
finite δ and l,m = 1, ..., 8.
Because of the above stated lemma, there cannot exist any φ∗ such
that the minimum magnitude element satisfies

|p̃l(φ
∗)| = max

φ
|p̃l(φ)|

because another element would vanish, e.g. |p̃m(φ∗)| = 0, with m ̸= l.
Consequently, |p̃l(φ∗)| = |p̃m(φ∗)| at least for one pair (l,m) is nec-
essary for φ∗ to identify the maximized minimum magnitude ele-
ment.
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The presented necessary optimality condition can be used to eval-
uate all the possible candidates of φ that maximize the minimum
magnitude element of the averaged state vector, and then select the
actual maximizer. Within a specified φ interval, at most 28 evalua-
tions of the values of φ making two elements equal in magnitude are
needed to check all the candidate points, for the eight-dimensional KS
state including position and velocity. Analytic formulas can be easily
obtained setting the various equalities among all the state elements,
because they are linear on sinφ and cosφ. They are not reported for
the sake of conciseness.

2.2.4.2 Numerical support to the optimal selection of φ

A numerical analysis of the presented necessary optimality condition
is given in Figures 2.2, 2.3a and 2.3b. In Figure 2.2 1000 different initial
KS conditions are simulated starting from evenly spaced values of φ
between 0 and 2π, for a 100 year simulation of the asteroids Apophis
and 2010RF12. Despite a fixed and constant value ofφ is not necessarily
optimal for all the integration intervals arising from the frame switch,
the comparison with the analytic optimal φ for the period averaged KS
state obtained from the first initial condition can already prove the opti-
mality of the choice. To better highlight the spikes, the plotted analytic
function in Figure 2.2 is f(φ) = − log(min |pl(φ)|), with l = 1, ..., 8,
normalized and shifted to be graphically superposed to the numerical
results. As expected and well predicted by the analytical spikes, the
number of time steps taken increases the smaller the smallest mag-
nitude element of the averaged (i.e. manipulated initial) state vector
become. Furthermore the absolute minima for the time steps are well
predicted by the points of maximized minimum magnitude element
(black envelope line) in Figures 2.3a and 2.3b, where the validity of
the necessary optimality condition is also confirmed as such points
feature two of the vector elements (grey) with equal magnitudes. The
small oscillations that can be seen in the simulation results of Figure
2.2 are due to the chaotic full dynamics being integrated instead of the
unperturbed two-body problem, whose magnitude is anyway much
smaller than the time step reduction achieved by selecting the optimal
φ instead of, for instance, φ = 0. Choosing the optimal φ is therefore
proved to also be a robust choice for always step-wise nearly optimal
simulations in the perturbed environment.

The simulations are performed in the same framework that will be
better detailed in Section 2.5.1, also the evolution of the position error
|∆r| = |rsimulation − rephemerides| with respect to the ephemerides
data for the two asteriods does not change with φ and is always the
one presented in Figures 2.4a and 2.4b, thus φ can be exploited with
the purpose of performing faster simulations.
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Figure 2.2: Time steps dependence on the fibration parameter φ.

(a) Apophis

(b) 2010RF12

Figure 2.3: Non-dimensional magnitude of the minimum magnitude element
(black), compared against the magnitude variation of all the KS
state elements (grey).

2.3 ks – cartesian uncertainty mapping

Prior to the actual propagation of the uncertainty directly in KS co-
ordinates, the uncertainty mapping strategy must be addressed. In
fact, mapping a given probability distribution between phase spaces
of different dimensions (6 for the Cartesian Case, 8 for KS coordinates)
may not be straightforward. This aspect becomes fundamental for the
adoption of statistical methods that aim to avoid MC-based techniques:
an uncertainty description must be available in KS coordinates directly,
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whose reconstruction by MC sampling and subsequent conversion
may not be accurate enough.

Vallado [146] presents a wide selection of uncertainty mapping
approaches for the orbital dynamics case. While useful and accurate
in most scenarios, all the transformations proposed in [146] deal with
phase spaces of the same dimension, which is not true for the KS-
Cartesian case. Additionally, the proposed transformations all follow
a Kalman Filter-based logic: after computing the Jacobian matrix with
all the partial derivatives, its evaluation on the mean value is used
to perform the covariance transformation. This approach relies on
a linearization of the possibly non-linear transformation between
coordinates, and, in general, more accurate solutions may exist. This
section explores the theoretical foundations of alternative coordinate
transformation approaches, with particular focus on the KS - Cartesian
case, despite some of the proposed techniques could be applicable
to other formulations as well. The different dimensionality of the
Cartesian and KS phase spaces is also addressed.

2.3.1 Fibration of the KS space and uncoupled dimension raising

2.3.1.1 Full and reduced fibration operators

Recalling Equation (2.13), the fibration property can be rewritten by
means of vector notation, instead of the quaternion algebra concepts
adopted so far. In particular, denoting v = u|φ=0 = {v1, v2, v3, 0}

T ∈
R4, u = {u1, u2, u3, u4}

T ∈ R4, and the fibration parameter with φ,
the following relation holds:

u1 = v1 cosφ

u2 = v2 cosφ+ v3 sinφ

u3 = v3 cosφ− v2 sinφ

u4 = v1 sinφ

(2.40)

and observing that the dependence of u on cosφ and sinφ is linear,
Equation (2.40) becomes

u = Φ(φ)v (2.41)

with the fibration matrix Φ(φ) ∈ R4×4 defined as

Φ(φ) =


cosφ 0 0 − sinφ

0 cosφ sinφ 0

0 − sinφ cosφ 0

sinφ 0 0 cosφ

 (2.42)

At first glance, considering the definition of u given in Equation (2.40),
the last column of Φ may seem arbitrary. Nonetheless, choosing it
according to Equation (2.42) results in

Φ(φ)TΦ(φ) = Φ(φ)Φ(φ)T = I (2.43)
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for any value of φ, with I the identity matrix. This choice has several
favorable implications, starting from the definition of the fibration as
a standalone operator. In fact, the identity Φ(φ)TΦ(φ) = I allows the
definition of the back-fibration that retrieves v from u:

v = Φ(φ)Tu (2.44)

Additionally, recalling the matrix-vector version of the mapping from
KS to Cartesian coordinates presented in Equations (2.3) and (2.4), it
also holds that:

L(u) = L(v)Φ(φ)T

L(v) = Φ(φ)L(u)
(2.45)

Despite the evidently irrelevant role of the fibration parameter φ
in the mapping between Cartesian coordinates and the "minimal" KS
vector v, the added dimension in the KS space is still required to
write a complete set of KS equations of motion. In fact, other than
its use for the performance optimization of numerical simulations,
Equations (2.33) and (2.35) clearly show that perturbing forces result
in a fourth acceleration component that is not null. Nonetheless, the
uncertainty mapping is only linked to the actual mappping between
KS and Cartesian coordinates, where the dynamical model used in
the numerical simulation does not (yet) play any relevant part. For
this reason, the introduction of a reduced, non-squared version of
the fibration matrix may result useful. Introducing the KS generator
ṽ = {v1, v2, v3}

T ∈ R3, Equation (2.41) can be rewritten as

u = Φ̃(φ)ṽ (2.46)

with the reduced fibration matrix Φ̃(φ) ∈ R4×3 defined as:

Φ(φ) =


cosφ 0 0

0 cosφ sinφ

0 − sinφ cosφ

sinφ 0 0

 (2.47)

the one-way only identity Φ̃(φ)TΦ̃(φ) = I holds for the reduced fi-
bration matrix, which however suffices to write the backward fibration
as:

ṽ = Φ̃(φ)Tu (2.48)

Additionally, the mapping between Cartesian position and the KS
generator can be rewritten in terms of the matrix L̃(ṽ) ∈ R3×3:

L̃(ṽ) =

v1 −v2 −v3

v2 v1 0

v3 0 v1

 (2.49)



36 kustaanheimo-stiefel variables

which preserves the retrieval of the Cartesian position components
from the corresponding KS vectors, despite keeping the relation be-
tween three-dimensional vectors. In this way, the relation that retrieves
the KS generator v from the Cartesian position r is uniquely defined
by Equation (2.12).

The introduction of the reduced version of the fibration matrix and
of the KS mapping highlights that the dimension raising part of the
Cartesian-KS mapping can be confined to the fibration operation. InSince in general

ṽ ′4 ̸= 0, the use of
the full matrix

Φ(φ) suffices to
express the fibration

of KS velocities.

summary, the left-multiplication by Φ̃(φ) results in the raising of the
KS dimension, whereas the left-multiplication by its transpose reduces
the KS space to its minimal representation.

2.3.1.2 Fibration and statistics

Tensor notation provides a clear and concise framework to compactly
write statistical moments of any order. For this reason, starting from
this sub-section, all the relevant statistical quantities are presented
using tensor notation, when needed. The reader can find an introduc-
tion to the tensor algebra concepts used in this work (and the related
notation) in Appendix A.2.

The fibration operation is completely uncoupled by any statistics
that is performed on KS variables. This can be concisely written withThe mean value

notation is the only
exception on the m ′

superscript, that
identify raw

statistical moments,
while the clean

symbol m represents
central moments.
More insight on

statistics with tensor
notation is given in

Appendix A.2.

the relation between the k-th order raw statistical moments of the KS
vectors v and u:

m ′
u,k = E[uk⊗] = E[(Φ(φ)v)k⊗] = Φ(φ)k⊗E[vk⊗] = Φ(φ)k⊗m ′

v,k
(2.50)

which for the mean value immediately translates to

mu = E[u] = E[Φ(φ)v] = Φ(φ)mv (2.51)

and results in the following relations for the k-th order central statisti-
cal moments:

mu,k = E[(u − mu)
k⊗] = E[Φ(φ)k⊗(v − mv)

k⊗] = Φ(φ)k⊗mv,k

(2.52)
Consequently, grouping the notation for either auto-correlation and

covariance matrices with Cx, where the subscript x refers to either the
KS vector v or u, the following relations hold:

Cu = Φ(φ)CvΦ(φ)T

Cv = Φ(φ)TCuΦ(φ)
(2.53)

Analogously, all the presented relations hold when using the re-
duced fibration matrix Φ̃(φ), making the fibration, and thus the
dimension raising, irrelevant to study any statistics in the relationship
between Cartesian coordinates and the KS generator-related moments.
This aspect allows the focus on the uncertainty conversion to remain
between three-dimensional spaces, delegating the dimension raising
aspect to a subsequent, standalone step in the transformation process.
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2.3.2 Transformation methods

Taking the expectation of Equation (2.2) written in terms of the KS
generator ṽ, that expresses the Cartesian position components as
functions of the KS coordinates, gives

mr = E[L̃(ṽ)ṽ] (2.54)

and writing it in terms of its components results in

mr1 = E[ṽ21] − E[ṽ
2
2] − E[ṽ

2
3]

mr2 = 2E[ṽ1ṽ2]

mr3 = 2E[ṽ1ṽ3]

(2.55)

providing a direct conversion technique to obtain the Cartesian mean
mr. Interestingly and compatibly with the squaring embedded in
the KS to Cartesian transformation, the Cartesian mean depends on
some of the KS autocorrelation matrix elements only. In particular,
the transformation is similar to the original KS to Cartesian mapping,
when applied to random variables.

Equation (2.2) can be rewritten for the KS generator ṽ case as the
generic quadratic form for its i-th component:

ri = ṽTHiṽ (2.56)

with i = 1, 2, 3 and

H1 =

1 0 0

0 −1 0

0 0 −1

 , H2 =

0 1 0

1 0 0

0 0 0

 , H3 =

0 0 1

0 0 0

1 0 0

 (2.57)

The matrices Hi can be seen as the Hessians of the transformations
ri = ri(v). Observing the properties of the fibration matrix formalism,
Φ̃(φ) can be used to map the fibrated and the generator-related
Hessians as well:

Hi(u) = Φ̃(φ)Hi(ṽ)Φ̃(φ)T

Hi(ṽ) = Φ̃(φ)THi(u)Φ̃(φ)
(2.58)

Introducing these quadratic forms, the components of covariance
and autocorrelation matrices depend on the generic second order
expectation E[rirj], with i, j = 1, 2, 3, that can be written as the bi-
quadratic form

m ′
rirj

= E[rirj] = E[(ṽTHiṽ)(ṽTHjṽ)] (2.59)

which can be re-arranged as

m ′
rirj

= E[ṽT
2Hijṽ2] (2.60)
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with ṽ2 = {v21, v
2
2, v

2
3, v1v2, v1v3, v2v3}

T and the constant matrices Hij

that can be derived by the product of the i-th and j-th quadratic forms:

H11 =

[
I3×3 03×3

03×3 −2I3×3

]
, H22 =


03×3 03×3

03×3

4 0 0

0 0 0

0 0 0

 , (2.61)

H33 =


03×3 03×3

03×3

0 0 0

0 4 0

0 0 0

 , H12 =



03×3

1 0 0

−1 0 0

−1 0 0

1 −1 −1

0 0 0

0 0 0

03×3


,

H13 =



03×3

0 1 0

0 0 0

0 −1 0

0 0 0

1 0 −1

0 0 0

0 0 −1

0 0 0

−1 0 0


, H23 =


03×3 03×3

03×3

0 2 0

2 0 0

0 0 0



Equation (2.60) highlights the presence of 4
th order moments of ṽ

in the Cartesian autocorrelation matrix. In particular, since for any
quadratic forms it holds that xTAx ≡ Tr(xTAx) then, following [96],
the cyclic property of the trace operator gives

E[Tr(xTAx)] = E[Tr(AxxT )]

and exploiting the linearity of both expectation and trace operators
results in

E[xTAx] = Tr(AE[xxT ]) = Tr(ARx) (2.62)

with Rx autocorrelation matrix associated to the random vector x.
Similarly, using Px = Rx − mxmT

x leads to the following definition
involving the covariance matrix Px:

E[xTAx] = Tr(APx + AmxmT
x )

= Tr(APx) + Tr(mT
x Amx)

= Tr(APx) + mT
x Amx

(2.63)

Thus, the elements of the Cartesian autocorrelation matrix can then be
obtained as

m ′
rirj

= Tr(HijRṽ2
) (2.64)

Rṽ2
= m ′

ṽ2,2
contains, in general, the fourth order raw moments of ṽ.

In summary, the terms of the Cartesian autocorrelation matrix Rr can
be written as function of the statistical moments of the corresponding
KS generator up to order 4.
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2.3.2.1 Multivariate normal distribution case

Multivariate normal distributions feature a simpler structure, in terms
of higher order central moments. In particular, for x ∈ RN [68]:

• mx
α1
1 ,...,xαN

N
≡ 0 if

∑N
η=1 αη = k with k odd; more generally, the

statement for the odd central moments is true for any symmetric
distribution;

• consequently, mx
α1
1 ,...,xαN

N
=

∑∏
mxixj

, with
∑N

η=1 αη = k =

2λ (k even), i.e. summing the products of all the possible pairs
of the covariance matrix elements.

In the case of normal distribution, the fourth order central moment
(i.e. the kurtosis) depends only on the covariance matrix elements:

mxixjxkxl
= mxixj

mxkxl
+mxixk

mxjxl
+mxixl

mxjxk
(2.65)

Equation (2.65) can be used to obtain all the possible fourth order mo-
ments simply by replacing (i, j, k, l) with the corresponding variable
index (e.g. mx2

ix
2
j
= mxixixjxj

).
Despite the null odd order central moments, the same does not

apply to the raw moment case. For the third order this results in

m ′
xixjxk

= E[xixjxk] ̸= 0 (2.66)

However, the identity

mxixjxk
= E[(xi −mxi

)(xj −mxj
)(xk −mxk

)] ≡ 0 (2.67)

provides an expression for the third order raw moment in terms of
lower order moments:

m ′
xixjxk

= mxi
E[xjxk] +mxj

E[xixk] +mxk
E[xixj] +mxi

mxj
mxk

= mxi
m ′

xjxk
+mxj

m ′
xixk

+mxk
m ′

xixj
+mxi

mxj
mxk

(2.68)
and similarly, the fourth order raw moments can be retrieved expand-
ing the following definition

mxixjxkxl
= E[(xi −mxi

)(xj −mxj
)(xk −mxk

)(xl −mxl
)]

and combining it with Equation (2.65).
Finally, given a multivariate normal KS generator ṽ with mean

mṽ and covariance Pṽ, the elements of mr can be retrieved applying
Equation (2.55). The elements of the Cartesian autocorrelation matrix
Rr can be seen as a function of also the KS mean instead:

Rr = Rr(mṽ,Pṽ) (2.69)
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where the dependence on the elements of Pṽ is quadratic, contrarily
to the explicit presence of fourth order moments in the general case
(Equation (2.64)). The full expressions are given by:

Rr,11 = 3P211 − 2Pṽ,11Pṽ,22 − 2Pṽ,11Pṽ,33 − 4P
2
ṽ,12 − 4P

2
ṽ,13 + 3P

2
ṽ,22

+ 2Pṽ,22Pṽ,33 + 4P
2
ṽ,23 + 3P

2
ṽ,33 − 2m

4
ṽ,1 + 4m

2
ṽ,1m

2
ṽ,2

+ 4m2
ṽ,1m

2
ṽ,3 − 2m

4
ṽ,2 − 4m

2
ṽ,2m

2
ṽ,3 − 2m

4
ṽ,3

Rr,12 = −4m3
ṽ,1mṽ,2 + 4mṽ,1m

3
ṽ,2 + 4mṽ,1mṽ,2m

2
ṽ,3 + 6Pṽ,11Pṽ,12

− 6Pṽ,12Pṽ,22 − 2Pṽ,12Pṽ,33 − 4Pṽ,13Pṽ,23

Rr,13 = −4m3
ṽ,1mṽ,3 + 4mṽ,1m

2
ṽ,2mṽ,3 + 4mṽ,1m

3
ṽ,3 + 6Pṽ,11Pṽ,13

− 4Pṽ,12Pṽ,23 − 2Pṽ,13Pṽ,22 − 6Pṽ,13Pṽ,33

Rr,22 = 8P2ṽ,12 − 8m
2
ṽ,1m

2
ṽ,2 + 4Pṽ,11Pṽ,22

Rr,23 = −8mṽ,2mṽ,3m
2
ṽ,1 + 4Pṽ,11Pṽ,23 + 8Pṽ,12Pṽ,13

Rr,33 = 8P2ṽ,13 − 8m
2
ṽ,1m

2
ṽ,3 + 4Pṽ,11Pṽ,33

(2.70)
Equations (2.55) and (2.70) are a set of 3 linear and 6 quadratic

equations in 9 unknowns, making it thus theoretically possible to
retrieve (mṽ,Pṽ) from (mr,Rr). Despite two of the elements of the KS
autocorrelation matrix could be retrieved directly, numerical solvers
would need to work on a sum-of-square relaxation of the remaining
7 equations, resulting in a system of quadratic and fourth-power
equations in 7 unknowns. The inspection of the Hessian matrices
H1 and Hij, with i, j = 1, 2, 3, shows that they all have at least one
negative eigenvalue, making each of the 9 equations non-convex. In
other words, the convergence to the actual solution of the non-linear
system would happen only for very good initial guesses. This aspect
makes the numerical solution of this system a NP-hard problem,
despite its structural simplicity. Therefore, the use of the proposed
solution process is recommended for the conversion of a distribution
from KS to Cartesian, while alternative approaches should be explored
for the inverse case.

Additionally, the proposed analytical process is valid for the KS
position term only, although it would be required for the full state
vector for a complete uncertainty mapping. Analogous solutions could
be found for the position differentials, nonetheless the transformation
of the cross and velocity terms would introduce a further non-linearity
in the expectation operator. For this reason, exploring alternative
conversion techniques may overcome the limitation of the proposed
analytical solution, extending the conversion process to the full state
vectors.

2.3.2.2 MC transformation

The conceptually simplest process to convert an uncertainty distribu-
tion relies on the MC approach and the definitions of sample mean
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and sample covariance. The conversion process follows four main
steps:

1. given a Cartesian/KS distribution with mean m and covariance
P and knowing its distribution structure, N samples can be
generated;

2. Equations (2.2) and (2.12) provide the direct and inverse conver-
sion formulas for all the generated samples;

3. the sample mean can be estimated with m ≈ 1
N

∑N
i=1 xi;

4. the sample covariance can be estimated with

P ≈ 1

N− 1

N∑
i=1

(xi − m)(xi − m)T

The MC approach is a robust method and can work on the full state
vector, yet it may require a large number of samples, and thus a high
computational burden, to reach high accuracy levels. Nonetheless,
this technique can also be used to validate other possible conversion
strategies.

2.3.2.3 Extended Kalman Filter-based transformation

The evolution of non-linear dynamical systems has been of primary
interest in several space applications. For estimation problems, the
Kalman Filter (KF) [77] still represent the reference technique for linear
systems. Its primary goal is to generate an estimate of the future evolu-
tion of a propagated uncertainty, that can be used with observed data
to enhance the control action robustness on the given dynamical sys-
tem. For uncertainty transformations that are intrinsically non-linear,
a local linearization may still provide a sufficiently accurate results.
The core idea is to work on a Taylor expansion of the uncertainty
transformation function truncated to the first order, originating the
Extended Kalman Filter (EKF) concept. The earliest works on this
technique employed it, for instance, or the on-board spacecraft posi-
tion and velocity estimation, given a set of measured data [138], and
applying it to the navigation software for interplanetary flybys [98].

Deepening the study on the many applications of KF and EKF is
beyond the scopes of this dissertation, thus only a few key concepts are
presented and used. Non-linear control problems typically use the EKF
to get an estimate of the uncertainty at a future time, with respect to the
present system observation. Nonetheless, the EKF formulation refers
to the generic uncertainty transformation, without necessarily linking
it to an evolution in time [77]. For the proposed application, assuming
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zero control action, process, and observation noise is reasonable, and
makes the generic prediction for mean x and covariance P become:

xpredicted = f(x)

Ppredicted = FPFT
(2.71)

with F the Jacobian of the nonlinear function f.
Writing the KS to Cartesian transformation, r(ṽ) = L(ṽ)ṽ can be

used to obtain an EKF-based estimation of the Cartesian mean:

mr ≈ L(mṽ)mṽ (2.72)

In this context, the EKF-based estimation of the KS mean can be
obtained simply applying Equation (2.12) on the Cartesian mean. The
same equation can be used to write a Taylor expansion of the KS to
Cartesian transformation about the mean mṽ, truncated to the first
order:

r ≈ r(mṽ) +∇rṽ|mṽ(ṽ − mṽ)

= L(mṽ)mṽ + 2L(mṽ)(ṽ − mṽ)

= L(mṽ)(2ṽ − mṽ)

(2.73)

which once plugged in the definition of autocorrelation matrix Rr =

E[rrT ] gives

Rr ≈ E[L(mṽ)(2ṽ − mṽ)(2ṽ − mṽ)
TL(mṽ)

T ]

= L(mṽ)(4E[ṽṽT ] − 3mṽmT
ṽ )L(mṽ)

T

= L(mṽ)(4Rṽ − 3mṽmT
ṽ )L(mṽ)

T

(2.74)

and recalling that P = R − mmT leads to

Pr ≈ L(mṽ)(4Rṽ − 3mṽmT
ṽ )L(mṽ)

T − mrmT
r

≈ L(mṽ)(4Rṽ − 3mṽmT
ṽ )L(mṽ)

T − L(mṽ)mṽmT
ṽ L(mṽ)

T

= 4L(mṽ)(Rṽ − mṽmT
ṽ )L(mṽ)

T

= 4L(mṽ)PṽL(mṽ)
T

(2.75)

that in turn can be re-arranged to obtain the inverse formula:

Pṽ ≈ 1

4
L(mṽ)

−1PrL(mṽ)
−T (2.76)

The linearization introduces the necessary simplification to deal
with the full state conversion, including velocity and cross-correlation
terms. In particular, the Cartesian velocity depends on both KS position
and velocity. Rewriting Equation (2.15) in matrix form gives

ṙ = 2rL(ṽ ′)ṽ (2.77)

or equivalently, because of the conformality constraint of Equation
(2.11)

ṙ = 2rL(ṽ)ṽ ′ (2.78)
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Despite the conformality constraint guarantees that L(ṽ)ṽ ′ ≡ L(ṽ ′)ṽ,
the two matrices differ in dimension, for the KS generator case. In
the full-dimensional case, the elements of both matrices follow the
definition presented in Equation (2.4), whereas a distinction must be
made for ṽ and ṽ ′, because in general ṽ ′4 ̸= 0. L(ṽ remains the reduced The quaternion

product in Equation
(2.16) results in a
fourth component
that is not null.

matrix defined in Equation (2.49), while L(ṽ ′) follows the original
definition, where the conformality constraint allows to completely
neglect its fourth row:

L(ṽ ′) =

ṽ
′
1 −ṽ ′2 −ṽ ′3 ṽ ′4

ṽ ′2 ṽ ′1 −ṽ ′4 −ṽ ′3

ṽ ′3 ṽ ′4 ṽ ′1 ṽ ′2

 (2.79)

The EKF Taylor expansion for the Cartesian velocity as function of
KS variables, truncated to the first order, is

ṙ ≈ mṙ +∇ṙṽ|mṽ,m ′
ṽ
(ṽ − mṽ) +∇ṙṽ ′ |mṽ,m ′

ṽ
(ṽ ′ − m ′

ṽ) (2.80)

where the two gradients are defined as r is also a function of
ṽ.

∇ṙṽ|mṽ,m ′
ṽ
= 2mrL(mṽ ′) + 4L(mṽ ′)mṽmT

ṽ (2.81)

and, exploiting L(ṽ)ṽ ′ ≡ L(ṽ ′)ṽ,

∇ṙṽ ′ |mṽ,m ′
ṽ
= 2mrL(mṽ) (2.82)

Replacing the expansions in the cross-covariance terms provides the
following estimation for the position-velocity cross-correlation matrix
Rr,ṙ:

E[rṙT ] ≈ mrmT
ṙ +∇rṽ|mṽPṽ∇ṙTṽ |mṽ,m ′

ṽ
+∇rṽ|mṽPṽ,ṽ ′∇ṙTṽ ′ |mṽ,m ′

ṽ
(2.83)

and thus the cross-covariance becomes

Pr,ṙ = ∇rṽ|mṽPṽ∇ṙTṽ |mṽ,m ′
ṽ
+∇rṽ|mṽPṽ,ṽ ′∇ṙTṽ ′ |mṽ,m ′

ṽ
(2.84)

with explicit dependence on both the KS cross-covariance and the KS
position covariance. Similarly, the velocity autocorrelation matrix Rṙ

reads

E[ṙṙT ] ≈ mṙmT
ṙ +∇ṙṽ|mṽ,m ′

ṽ
Pṽ∇ṙTṽ |mṽ,m ′

ṽ
+∇ṙṽ|mṽ,m ′

ṽ
Pṽ,ṽ ′∇ṙTṽ ′ |mṽ,m ′

ṽ

+∇ṙṽ ′ |mṽ,m ′
ṽ
Pṽ ′,ṽ∇ṙTṽ |mṽ,m ′

ṽ
+∇ṙṽ ′ |mṽ,m ′

ṽ
Pṽ ′∇ṙTṽ ′ |mṽ,m ′

ṽ
(2.85)

and thus the velocity covariance Pṙ is

Pṙ ≈ ∇ṙṽ|mṽ,m ′
ṽ
Pṽ∇ṙTṽ |mṽ,m ′

ṽ
+∇ṙṽ|mṽ,m ′

ṽ
Pṽ,ṽ ′∇ṙTṽ ′ |mṽ,m ′

ṽ

+∇ṙṽ ′ |mṽ,m ′
ṽ
Pṽ ′,ṽ∇ṙTṽ |mṽ,m ′

ṽ
+∇ṙṽ ′ |mṽ,m ′

ṽ
Pṽ ′∇ṙTṽ ′ |mṽ,m ′

ṽ

(2.86)

As expected by the explicit appearance of the KS position ṽ, the
Cartesian velocity autocorrelation and covariance matrices depend on
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all the position, cross, and velocity sub-matrices of the KS covariance.
This fact makes the backward conversion, i.e. from Cartesian to KS
covariance, not as direct as the simple inverse formula in the position
case: the process must follow three sequential steps, the first being the
retrieval of the KS position covariance with Equation (2.76), the second
to compute the KS cross-covariance by reversing Equation (2.84), and
the final to give the KS velocity covariance by re-arranging Equation
(2.86).

2.3.2.4 Unscented transform

The EKF operates with two separate approximations, i.e. the lineariza-
tion of the uncertainty transformation function and the estimation
of the transformed uncertainty. The Unscented Transform (UT) takes
instead the original transformation function, and applies it to a set of
suitably chosen points to estimate the transformed covariance [74, 75].
This has the advantage of retaining at least one more order of magni-
tude in the transformation accuracy, since the linear approximation
introduced with the EKF is removed.

The first step of the UT-based process, is the sampling of the sigma
points. For the KS generator ṽ with mean mṽ and covariance Pṽ, a
symmetric set of sigma points can be defined using the eigenvalues λi
and the corresponding eigenvectors qi of Pṽ, with i = 1, 2, 3 [74, 125]:

σṽ,i = mṽ +
√
Nλiqi

σṽ,i+N = mṽ −
√
Nλiqi

(2.87)

each associated with a weight wi = 1/2N. Then, the sigma points
σṽ,i, σṽ,i+N are all transformed according to the true transformation
function (Equation (2.3)):

σr,i = L(σṽ,i)σṽ,i

σr,i+N = L(σṽ,i+N)σṽ,i+N

(2.88)

Finally, the predicted mean and covariance are computed as

mr ≈
1

2N

2N∑
i=1

σr,i

Pr ≈
2N∑
i=1

wi(σr,i − mr)(σr,i − mr)
T

(2.89)

Analogously, the exact same process could be repeated starting from
the Cartesian mean mr and covariance Pr to obtain the approximate
KS mean mṽ and covariance Pṽ, with the transformation function
that follows Equation (2.12). Similarly to the EKF case presented in
Section 2.3.2.3, the conversion process can be extended to the mapping
between the full Cartesian and KS states. The common conversion
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procedures can be followed, without the need to compute their gra-
dients and directly replacing the products L(σṽ,i)σṽ,i with the fully
non-linear mapping routines.

2.4 ks variables for uncertainty propagation

The potential advantages of employing the KS formulation and regu-
larization approaches are not limited to improvements on the perfor-
mance and precision of the single simulations. In fact, uncertainties can
be intuitively seen as continuum entities, whose evolution is subject to
a flow (the dynamics): the more non-linear the flow, the more complex
the uncertainty evolution becomes, even in the case of initially small
distributions.

For this reason, this section discusses the theoretical concepts on the
role of the dynamics in the propagation of the uncertainty, aiming at
assessing whether the adoption of KS variables mitigates the effects of
non-linearities. This dissertation is not meant to propose an alternative
and full uncertainty propagation technique (starting from uncertainty
sampling to the assessment of its effect). Rather, MC simulated data
accounting for gravitational and relativistic effects of all the major
solar system bodies are used, to highlight the principal differences
between the Cartesian and the KS evolution of the same uncertainty
cloud, with results presented in Section 2.5.4.

The principal link of this work with the existing literature is, of
course, the use of regularized formulations for uncertainty propaga-
tion applications. A work that takes advantage of these concepts is the
study by Roa and Peláez [122], who applied the KS formulation to the
linear, State Transition Matrix (STM)-based uncertainty propagation
in orbit determination problem. Given the intrinsic, time-dependent
nature of observations and the required time-dependent uncertainty
evolution, they concluded that no significant advantages appear when
KS-propagating the partial derivatives composing the STM. More re-
cently, Hernando-Ayuso et al [64] adopted the DROMO formulation
for the propagation of uncertainties associated to nominal trajectories
of Near Earth Objects. The work also proposes a hybrid Monte-Carlo
technique to mitigate the influence of Earth close approaches in the
evolution of the uncertainty, still relying, however, on a STM-based
propagation. While the improvements brought by the DROMO formu-
lation are evident, their potential is still somehow hidden by the STM
concept itself, which linearizes the dynamics about the nominal trajec-
tory for the uncertainty cloud. Based on this considerations, this work
aims at exploring the exact role of the dynamics in the uncertainty
evolution, by studying in fine detail the effects of the (conceptually)
simplest regularized formulation, i.e. KS variables.
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2.4.1 Stability of the KS equations of motion

A direct look at the KS equation of motion

u ′′ =
ϵ

2
u

reveals its intrinsic stability for closed orbits: if ϵ < 0, then the equation
replicates an harmonic oscillator, whose solution is stable by definition
in case of small perturbations, either on the initial conditions or if
given as small perturbing accelerations. Nonetheless, the introduction
of KS variables implies the adoption of the fictitious time s, instead of
the physical time t. While this concept is exactly what brings stability
to the equation of motion, it is also what hinders its applicability in
the physical time domain.

Additionally, the different initial conditions characterizing the un-
certainties result into different values of the orbital energy ϵ for each
uncertainty location. In the KS context, this would result on harmonic
oscillators with different frequencies, depending on the initial con-
dition. Nonetheless, the adaptive non-dimensionalization strategy
proposed in Section 2.2.2 resolves this problem in its entirety: since
the reference length is the initial semi-major axis and the reference
gravitational parameter is made equal to 1, any initial condition is
adjusted so that its orbital energy becomes equal to 1/2.

The physical time can be tracked separately, as adjointed state
element (its evolution follows Equation (2.1)), and then fitted upon
need, so that the stability and common frequency features of the KS
formulation can be exploited in full.

2.4.2 Fictitious time synchronism on flyby propagation and post-encounter
scattering mitigation

The time regularization only introduces a new independent integrationThe Sundman
regularization of

Equation (2.1) is a
differential form.

variable that scales, in the KS case, like the eccentric anomaly, without
prescribing its initial value which is, accordingly, completely arbitrary.
For this reason the initial fictitious time s0 can be chosen freely, and
does not necessarily need to be the same across all samples. This fact
can be exploited to enforce a particular synchronization, that is not
based on physical time. For instance, s0 could be chosen so that the
uncertainty shrinks to its minimum size, or so that similar events (i.e.
the exit from the SOI of a common planet, although happening at
different times for different uncertainty samples) are characterized by
a common synchronization point.
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2.5 applications

2.5.1 Single simulation accuracy and performance

The performances of the different simulation strategies in the single
long term simulation are shown for the two near Earth asteroids
Apophis and 2010RF12, in terms of time steps taken, CPU runtime and
error evolution with respect to SPICE data. The initial state was taken
from SPICE ephemerides data on the 1

st January 1989 at noon and
the simulations are carried out 100 years forward in time in the J2000

reference frame. Both the asteroids feature a steep close encounter
with Earth within this time span. Due to the prevalent interplanetary
nature of the motion the integration neglects J2 and drag effects.
Solar radiation pressure is not considered, because the product of
the refraction coefficient for asteroids and the area-to-mass ratio is
negligible, and also difficult to estimate given the irregular asteroid
shapes and variable material composition. General relativity effects
are included, based on a manipulation [94] of the post-Newtonian
model proposed by Will [160] as written by Seidelmann [129]. The
simulations have been performed using an Intel® Xeon® CPU E5-4620

V4 running at 2.10 GHz.
The following nomenclature is used to identify the tested cases:

"FIXED" or "SWITCH" to consider whether switching the integration
center in case of flybys, "COWELL" or "KS" for the adopted dynam-
ics formulation (either the Cartesian or the KS formulation of the
restricted N-body problem), "EN" or "AUY" for the energy-based
and AU-Year non-dimensionalization strategies respectively, "SUN" or
"SSB" for the center of the interplanetary legs (either the Sun’s center
of mass or the Solar System’s barycenter (SSB)).

All the presented runs have been performed using the Runge Kutta
4/5 and 7/8 numerical schemes. Dimensional simulations are not
presented, as the maximum number of time steps, set to 10

5 in this
work, is reached before reaching 5% of the time span, also before
the flyby events. Given the problem typical magnitudes (10

8 km for
positions, 10

1 km/s for velocities) dimensional simulations could
likely be made faster if the values for the absolute tolerances were
made high enough. The preferred approach is however to use suitable
non-dimensionalization procedures, to preserve the robustness that
high order schemes, such as the Runge Kutta 7/8 used in this work,
have for propagations with stringent tolerances. All the presented
analyses have been performed using Matlab® and interfacing with Jet
Propulsion Laboratory (JPL)’s ephemerides data through the SPICE
toolkit [2] for retrieving the coordinates of the N bodies, considered
as all the Solar System’s planets plus the Moon.

The benchmark time steps and runtimes are reported in Table 2.1.
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Table 2.1: Simulation performance benchmark, AUY-COWELL-FIXED, aver-
age of 200 runs.

RK45 RK78

Case Features Steps Runtime Steps Runtime

Apophis

Relativity No
63218 140.63 s 7246 34.25 s

Center SSB

Relativity No
63118 149.09 s 7357 34.88 s

Center SUN

Relativity Yes
62863 180.61 s 7187 39.74 s

Center SSB

Relativity Yes
62805 193.42 s 7316 44.24 s

Center SUN

2010RF12

Relativity No
59679 134.21 s 6820 32.29 s

Center SSB

Relativity No
59596 142.12 s 6934 33.72 s

Center SUN

Relativity Yes
59664 167.13 s 6820 37.59 s

Center SSB

Relativity Yes
59625 179.14 s 6929 42.09 s

Center SUN

The same cases are re-run making use of the energy non-dimension-
alization , shown in Table 2.2. One can already see that, despite the
two objects are near-Earth asteroids, the better tuning of the reference
quantities already reduces the number of time steps taken and the
total runtime by more or less 10% for the correspondent center and
force benchmark cases. No significant step and runtime difference
was found running the SWITCH case for the same formulation and
non-dimensionalization strategy.

Finally, Table 2.3 shows the time steps and the runtimes obtained
using the KS formulation of the energy non-dimensional variables and
dynamically switching the Center of the reference frame to the flyby
body whenever the propagated object enters a SOI. The proposed
KS barycentric formulation is used when the default center of the
interplanetary phase is the SSB, whereas the standard perturbed KS
formulation is adopted whenever a flyby happens and also for default
Sun-centric integrations in the interplanetary phase. The presented
steps and runtimes correspond to the fibration point selected according
to the optimization presented in Section 2.2.4.1, in the interval [0, π/2].
To this extent, Figures 2.3a and 2.3b show the time steps that are
obtained for other values of the fibration parameter φ. The runtime
is not reported, although it is proportional to the increase in time
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Table 2.2: Simulation performances, EN-COWELL-FIXED, average of 200

runs.

RK45 RK78

Case Features Steps Runtime Steps Runtime

Apophis

Relativity No
58949 133.11 s 6551 28.82 s

Center SSB

Relativity No
58952 140.90 s 6646 32.51 s

Center SUN

Relativity Yes
58579 166.27 s 6549 37.40 s

Center SSB

Relativity Yes
58519 174.61 s 6637 40.85 s

Center SUN

2010RF12

Relativity No
55770 128.99 s 6287 27.56 s

Center SSB

Relativity No
55749 130.62 s 6404 31.96 s

Center SUN

Relativity Yes
55754 160.14 s 6282 36.04 s

Center SSB

Relativity Yes
55727 165.68 s 6385 39.81 s

Center SUN

steps since the dynamics formulation and implementation remains
the same.

Simulations in KS coordinates without frame switch are not pre-
sented, because the numerical scheme led to the minimum step-size
at the moment of close encounter, exceeding the maximum number of
steps (10

6) before the end of the integration span although matching
the accuracy of the presented cases in the pre-flyby legs. In fact, the
regularization concept introduced with the KS formulation makes the
dynamics sensitive to flyby events, i.e. nearly-singular accelerations,
since happening over a non-regularized center.

For all the presented cases the angle φ for the initial KS vector gen-
eration has been set according to the necessary optimality condition,
searching for the best among the possible 0 < φ < π/2 candidates
based on the averaged unperturbed KS state, every time the refer-
ence frame was switched. Note that the same condition is used for
barycentric simulations, because the problem being weakly perturbed
and heavily dominated by the Sun makes the difference between
barycentric and Sun-centric coordinates small.

It can be clearly seen in Table 2.3 that the number of time steps taken
drops of almost 40% with respect to the benchmark case, and the total
runtime of about 30%, comparing the respective force and center cases.
This 10% difference bewteen runtime and time step improvements
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can be explained by the switch events not computed at all in the
previous cases. In any case, the improvement brought by the longer
time steps that can be safely taken outbalances the advantages to the
KS formulation even for cases where the event computation is not
necessarily required, despite the extra function evaluations. Another
10% difference is added if the results obtained using the barycentric
KS formulation are compared with the Sun-centric benchmark cases
for the same force model.

Table 2.3: Simulation performances, EN-KS-SWITCH, average of 200 runs.

RK45 RK78

Case Features Steps Runtime Steps Runtime

Apophis

Relativity No
39760 102.68 s 4025 23.19 s

Center SSB

Relativity No
39806 100.73 s 4423 25.22 s

Center SUN

Relativity Yes
39502 123.03 s 4007 26.89 s

Center SSB

Relativity Yes
39500 130.87 s 4407 31.60 s

Center SUN

2010RF12

Relativity No
37479 94.79 s 3765 21.88 s

Center SSB

Relativity No
37449 95.94 s 4373 24.95 s

Center SUN

Relativity Yes
37448 113.59 s 3782 25.34 s

Center SSB

Relativity Yes
37445 123.49 s 4366 31.35 s

Center SUN

Figures 2.4a and 2.4b portrait the evolution of the position error
|∆r| = |rsimulation − rephemerides| with respect to JPL’s ephemerides
data [2] for the two different formulations, Cowell’s method with
the AU-year non-dimensionalization and KS formulation with energy
non-dimensionalization and dynamic frame switch. The precision of
the frame switch and the Energy non-dimensionalization was tested
on the Cowell’s method too, which is not shown because no visible
difference with the results from the benchmark (AU-year, no switch)
case was found. Similarly, the RK45 and RK78 numerical schemes are
equivalent and non-distinguishable in terms of accuracy, although
the latter always requires a lower computational effort. It can be
clearly seen that the two respective force cases match, with or without
accounting for general relativity effects. This already promotes the
KS optimized formulation as the simulation method to be always
preferred when compared to Cowell’s, even for long term simulations



2.5 applications 51

in the fully perturbed environment, as it runs significantly faster
achieving the same precision for the correspondent force models.
Furthermore, as it can also be seen considering the results presented
in Table 2.3, the relativistic integration in KS variables is always faster
than the Cowell’s N-body integration, allowing for increased precision
and reducing the required computational effort.

(a) Apophis

(b) 2010RF12

Figure 2.4: Position error evolution for the different force models and formu-
lations, with respect to JPL’s data.

Figures 2.5a and 2.5b still represent the evolution of the position
error throughout the integration accounting for relativistic effects, de-
spite showing its relative magnitude with respect to JPL’s ephemerides
data, and add a comparison with a higher accuracy integration per-
formed on the EN-COWELL-SWITCH case but setting absolute and
relative tolerances to 10

-14 with the RK78 scheme. The denser higher
precision solution has been cubic spline-fitted to the already presented
integration, particularly before the flyby events precision difference
and fitting noise cannot be told apart. On the contrary, after the flyby
it can be seen that the integration performed with the KS formulation
remains nearly one order of magnitude closer to the higher precision
solution. The relative error measure referred to JPL’s ephemerides
data for the two asteroids highlights again the flyby effect on long
term simulations. For the particular case of Apophis, the steep flyby
of Earth has the effect of amplifying by several orders of magnitude
the error accumulated before the close encounter. Despite the physical
model adopted in this work for the relativistic integration should
match the one used by JPL (the user manual points to the model
presented by Seidelmann [129] for the ephemerides generation), other
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error sources are present, which could all explain the still low error
accumulated before the flybys: JPL’s ephemerides are generated with
an Adams-Bashforth scheme and are then stored as coefficient of a
polynomial interpolation, so that the user can request their value at
specific epochs [2].

(a) Apophis

(b) 2010RF12

Figure 2.5: Relative position error evolution with higher precision relativistic
simulation.

2.5.2 Solar Orbiter’s upper stage of launcher MC PP analysis

The case of the upper stage of the launcher of Solar Orbiter (SolO)
is presented, performing a MC simulation with samples generated
from the uncertainty on the initial condition given as a covariance
matrix, reported in Table 2.5 and with initial condition given in Table
2.4. Such data have been taken from [29], where this test case was
studied first. Note that it refers to a mission profile later discarded,
whose launch was originally scheduled for late 2018 and ultimately
happened in February 2020. The presented results have been obtained
with the same simulation routines used for the just discussed single
simulation cases.

A total of 54114 samples has been generated for each case and
simulated, based on the results of Wilson’s expression [161] as done
by Jehn [70] and Wallace [157], and following the implementation
proposed in [29, 88, 89].

After the completion of the MC simulation, the impact probability
of the disposal upper stage of launcher with Earth, Mars and Venus is
computed by taking the ratio of the number of simulated impacts over
all the generated samples. Tables 2.6 and 2.7 presents the results of
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Table 2.4: Inital state of SolO’s upper stage of launcher, J2000 reference frame
[29].

ri [km] rj [km] rk [km]

132048839.02 63140185.88 27571915.38

vi [km/s] vj [km/s] vk [km/s]

−12.20 20.24 9.77

t0 [MJD2000]

6868.62

Table 2.5: Elements of the covariance matrix of SolO’s upper stage of launcher,
J2000 reference frame [29].

Position Covariance

ri [km] rj [km] rk [km]

ri [km] 5.351 39× 104

rj [km] 5.409 22× 104 1.355 41× 105

rk [km] −2.562 06× 104 4.507 88× 103 1.728 26× 105

Cross Covariance

ri [km] rj [km] rk [km]

vi [km/s] 2.482 01× 10−1 2.336 55× 10−1 −1.370 13× 10−1

vj [km/s] 2.744 11× 10−1 7.100 15× 10−1 5.015 10× 10−2

vk [km/s] −1.205 15× 10−1 3.426 92× 10−2 8.333 12× 10−1

Velocity Covariance

vi [km/s] vj [km/s] vk [km/s]

vi [km/s] 1.155 77× 10−6

vj [km/s] 1.179 08× 10−6 3.724 23× 10−6

vk [km/s] −6.484 88× 10−7 3.077 51× 10−7 4.019 29× 10−6

different MC simulations, parallelizing the simulations over 40 cores
of the same kind of the one used for the single trajectory simulation.
Particularly, the Cowell’s case is propagated in one of the two fixed
reference frames, SUN and SSB, and persistently checks whether an
impact with Venus, Earth and Mars has happened or not at each time
step. The KS case switches between either SSB or SUN and planeto-
centric frames, uses the energy non-dimensionalisation and checks for
impacts only if entering any SOI. Also the same numerical scheme,
Runge-Kutta 7/8, is used in both cases and for all the samples. In
particular, Table 2.6 highlights the integration steps required by the
different setups to detect the impact characterizing the barycenter of
the sampled uncertainty cloud. The regularization benefits become
particularly visible in this case: impacts can be detected almost twenty
times faster, because of the removed mathematical singularity expe-
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rienced by the Cartesian formulation when approaching any of the
considered attractors, and more in general close approaches can be
handled by the KS formulation with much larger time steps than what
Cowell’s method does. The small differences between the barycentric
and the Sun-centric results of the barycenter simulation may be due
to the particular configuration of the selected case. Table 2.7 focuses

Table 2.6: Simulation outcome of the uncertainty barycenter of SolO’s upper
stage of launcher.

Case

Barycenter

Result Steps

AUY-COWELL-FIXED-SSB Impact 1872

AUY-COWELL-FIXED-SUN Impact 1889

EN-COWELL-SWITCH-SSB Impact 1823

EN-COWELL-SWITCH-SUN Impact 1798

EN-KS-SWITCH-SSB Impact 88

EN-KS-SWITCH-SUN Impact 84

instead on whole MC outcome. The total runtime is almost halved,
achieving a reduction of more than 46%. As the number of time steps
taken by the barycenter of the generated cloud (Table 2.6) tells, this, in
turn, provides the observed performance enhancement with respect to
the single simulation cases presented in Table 2.3: estimating impact
probabilities requires analyzing what happens close to the encoun-
tered bodies, which is also the main advantage of the KS formulation,
as it embeds an adaptive scaling of the physical time for different
distances from the current primary attractor. Note finally that the

Table 2.7: PP analysis of SolO’s upper stage of launcher [29]

Case

Estimated

Runtime

impact probability

AUY-COWELL-FIXED-SSB 4.0211% 26.66 hours

AUY-COWELL-FIXED-SUN 4.0211% 26.45 hours

EN-COWELL-SWITCH-SSB 4.0248% 27.65 hours

EN-COWELL-SWITCH-SUN 4.0192% 28.75 hours

EN-KS-SWITCH-SSB 4.0192% 14.23 hours

EN-KS-SWITCH-SUN 4.0156% 13.22 hours

estimated impact probability remains basically unchanged, the slight
difference might be due to both few borderline cases where the time
step that would actually be within the impact region is skipped by
the KS integration, and also because of the slightly different samples
generated from the initial same covariance matrix (Table 2.5).
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2.5.3 Covariance transformation

The proposed application studies the covariance transformation for
the case of Solar Orbiter [43], using the same mean value and co-
variance matrix of Section 2.5.2 and assuming a multivariate normal
distribution. To perform the analysis in relative terms, the mean value
and the covariance have been normalized using the energy-based non-
dimensionalization , computing the reference quantities on the mean
value and using the Sun’s gravitational parameter.

As a first, visual analysis, one million uncertainty samples are
generated, and all converted from the Cartesian to the KS formulation
using the optimal2 fibration parameter of the mean value. Figure 2.6
shows the resulting distribution for the first two coordinates (i.e. x
and y for the Cartesian samples), superposing both the Cartesian
and the KS clouds. Visually, the KS distribution shrinks and rotates
around the mean value although it seems to retain the multivariate
normal distribution nature. Intuitively, this fact can be explained by
the conformality property of the KS-Cartesian mapping [13]: relative
angles are preserved, whereas distances, in general, are not. To confirm
this observation, Figure 2.7 shows an estimation and superposition of
the probability density function around the mean. In particular, for
both the Cartesian and the KS cases, 1000 evenly spaced intervals have
been created, from the minimum to the maximum values sampled, for
each coordinate. Consequently, the number of samples falling in each
box has been counted, and finally shown in Figure 2.7 as percentage
of the maximum number of samples encountered in one box. Figure
2.7 seems to confirm the retained multivariate normal structure of the
initial distribution.

Figure 2.6: Superposition of Cartesian (blue) and KS (red) uncertainty distri-
butions.

2 The optimal fibration parameter selection method is presented in Section 2.2.4.
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Figure 2.7: Superposition of Cartesian (blue) and KS (red) probability density
estimations.

The following sections present the accuracy results of the proposed
conversion technique, although not following the previous order. First,
the MC approach is briefly introduced, followed by the UT-based
approach, the EKF-based technique and finally a few considerations
on the analytical method.

2.5.3.1 MC transformation

In this section, the results are shown in terms of difference between
the initial (mx0 and Px0)and the back-transformed Cartesian mean and
covariance (mxb and Pxb), i.e. the results of a forward (Cartesian to
KS) conversion followed by the backward transformation using the
same technique. In particular, the process follows:

1. one million samples have been generated using the Matlab®

mvnrnd.m function;

2. all the samples are transformed to obtain a set of one million KS
samples;

3. the resulting KS mean and covariance have been estimated using
the definition of sample mean and sample covariance, respec-
tively;

4. based on Figures 2.6 and 2.7, a preserved multivariate normal
distribution is assumed, and the newly computed KS mean and
covariance are used again with the Matlab® mvnrnd.m function
to generate a new set of one million KS samples;

5. the new KS samples are transformed back to the Cartesian for-
mulation;
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6. the newly back-transformed Cartesian samples are used again
with the definitions of sample mean and sample covariance to
obtain mxb and Pxb .

The relative errors accumulated by the conversion amount to

|mxb − mx0 |2

|mx0 |2
= 7.9503× 10−8

|Pxb − Px0 |2

|Px0 |2
= 5.2877× 10−3

where | · |2 denotes the Euclidean matrix norm.
The MC technique shows reliable results and, by definition, its

accuracy is expected to increase by increasing the number of samples.
A more detailed discussion of how the number of samples affects the
accuracy of the MC method is given in Section 2.5.3.2.

2.5.3.2 Unscented Transform

The unscented transform is tested as the difference between the UT-
transformed and the MC-transformed KS mean and covariance ma-
trices, exploiting the validation of the MC-based technique presented
in Section 2.5.3.1. In particualar, Figure 2.8 shows the error, measured
again as Euclidean matrix norm, made between the MC-based con-
version and the UT-based technique, for all the covariance sub-parts
(position, velocity, cross). Interestingly, all the errors decrease with
increasing number of samples: this means that the UT-based technique
is far more precise than the MC-based one, and can be used as the
transformation technique for the KS-Cartesian mapping. A possible
explanation relies on the core idea which the UT method is built upon:
the UT applies the exact non-linear transformation to an approximat-
ing probability distribution. In other words, Figure 2.8 proves that
the preserved multivariate normal structure is not an assumption at
all, but corresponds to the true transformed probability distribution
shape.

Following the just presented result, a back-to-back conversion is
proposed, similar to the one proposed in Section 2.5.3.1 but performed
with the UT-based technique instead of MC, resulting in

|mxb − mx0 |2

|mx0 |2
= 1.2166× 10−10

|Pxb − Px0 |2

|Px0 |2
= 5.2477× 10−11

These results highlight once again the accuracy of both the UT-based
approach and the claim of preserved multivariate normal structure,
which is not far from machine precision. In fact, most of the accumu-
lated error may be due to the numerical computation of eigenvalues
and eigenvectors3.

3 Computed with the Matlab® eig.m.
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Figure 2.8: Accuracy of the UT-based technique against increasing number
of samples for the MC-based conversion.

2.5.3.3 Extended Kalman filter

Given the results obtained in Section 2.5.3.2, the accuracy of the EKF-
based approach is assessed against the UT-based technique, directly
on the Cartesian to KS transformation. Since the method relies on the
linearization of the transformation about the mean, the conversion is
tested for varying magnitude of the covariance matrix, expecting better
results in the case of smaller uncertainty distribution. In particular, the
magnitude of the original covariance matrix (the same used for all test
cases) has been first normalized, and then scaled by a factor f, evenly
sampled on one million log-spaced points between 10−9 and 1. Figure
2.9 shows that the position sub-part of the EKF-estimated covariance
is accurately estimated, with decreasing precision for increasing co-
variance magnitude. On the contrary, the estimation worsens at any
magnitude for cross and velocity terms, thus affecting the global co-
variance. This may be due to the stronger non-linearity introduced in
the computation of velocity dependent terms, whose accuracy is in-
evitably reduced compared to the lineariazion of the simpler position
transformation.

2.5.3.4 Analytical solution

Given the considerations made in Section 2.3.2.1, the accuracy of the
analytical technique is assessed against the analytical conversion of the
UT-based results for the position mean and covariance only, from KS to
Cartesian, directly using the expressions presented in Equation (2.70).
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Figure 2.9: Accuracy of the EKF-based technique against UT-based conver-
sion.

Referring to the initial mean values and autocorrelation (m0,R0) and
to the analytically transformed (ma,Ra), the relative errors result in

|ma − m0|2

|m0|2
= 2.9122× 10−12

|Ra − R0|2

|R0|2
= 4.5066× 10−12

for lower values than the UT-based approach. However, the error
between the covariance matrices P0 and Pa becomes

|Pa − P0|2

|P0|2
= 6.8414× 10−5

The possible explanation for the worse performance on the covariance
may be the high magnitude difference between the mean value and
the dispersion. In fact, after normalization the reference euclidean
norms for the position mean and covariance are

|m0|2 = 1.2662

|R0|2 = 1.3006× 10−11

Scaling the covariance by a factor 108 and repeating the process leads
to

|ma − m0|2

|m0|2
= 2.9123× 10−4

|Ra − R0|2

|R0|2
= 4.5081× 10−4

|Pa − P0|2

|P0|2
= 1.0694× 10−3
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and, repeating the back-to-back conversion with the UT-based ap-
proach and considering only the position terms

|mUT − m0|2

|m0|2
= 2.9123× 10−4

|PUT − P0|2

|P0|2
= 1.1255× 10−3

These results show that most of the error made in the back-to-back
conversion happens in the conversion from Cartesian to KS. While
accurate, the UT-based approach still relies on the numerical com-
putation of the covariance eigenvalues and eigenvectors, as well as
the square rooting involved by the Cartesian to KS conversion, which
remain possible error sources. Nonetheless, this application proves
that the UT-based approach remains the only viable option. In fact,
trying to solve the inverse problem using the analytical solution with
a semi-definite programming [60] approach gives

|Pa,KS − PUT,KS|2

|PUT,KS|2
= 3.0030× 102

proving the NP-hard nature of the Cartesian to KS analytical covari-
ance conversion.

2.5.4 KS variables for uncertainty propagation

The proposed application studies a MC simulation based on the as-
teroid Apophis, with initial condition taken from JPL ephemeris [2]
on 01/01/1989 at midnight. 2000 normally distributed samples are
generated using the following covariance matrix presented in Section
2.5.2 for the Solar Orbiter test case, with all elements reduced by a
factor 100 to avoid an excessive spreading of the different samples.
The simulations are run in non-dimensional KS coordinates, while
the correspondent Cartesian and dimensional counterparts are ob-
tained post-processing the simulation results. The study is split on two
different phases: flyby and post-flyby4, according to the propagated
trajectory of the nominal initial condition. In particular, the initial
fictitious time s0 is set equal to 0 for all the samples at the begin-
ning of each phase, i.e. entrance/exit to/from the SOI, following an
event-synchronous approach, similarly to what introduced in Section
2.4.2. In all the upcoming plots, the color scale represents a relative
comparison between the initial, per-phase, semi-major axis of all the
samples, from the smallest (blue) to the largest (yellow).

4 The initial uncertainty is small compared to the size of the initial conditions. Conse-
quently, until the flyby event, no relevant phenomenon can be observed, the separa-
tion among the different samples remains nearly one million times smaller than the
dynamics’ scale.
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2.5.4.1 Flyby

The first differences among the various simulated initial conditions
start appearing in the flyby phase, whose dynamics magnifies any of
the previously small variations by several orders of magnitude. Figure
2.10 shows the evolution of the semi-major axis when synchronism
with respect to the physical time is in place. The sudden divergence of
the different samples happen because of the strong Moon perturbation
acting along the trajectory, whose distance is presented in Figure 2.11

together with Earth’s, for one randomly sampled trajectory. Nonethe-
less, the slightly different times suggests that not all flybys happen
exactly at the same physical time, in terms of entrance in Earth’s SOI.
Depending on the initial conditions also the difference in the initial
hyperbolic semi-major axis is magnified.

Figure 2.10: Physical time-synchronous evolution of the semi-major axis, for
the flyby leg.

Figure 2.12 shows the evolution of the semi-major axis when syn-
chronism with respect the fictitious time is in place. The combined
effect of the time regularization and of the per-sample non-dimension-
alization has stretched the previously sudden variation in semi-major
axis, providing a smoother change compared to Figure 2.10. Even if
the regularization effects are most beneficial with respect to Earth, its
effect has a significant impact in the more regular tracking of other
perturbing effects (closely approaching the Moon in this case).

Figure 2.13 depicts the evolution of the Cartesian x coordinate with
time. While this representation may be meaningless per se, comparing
the coordinate evolution between the Cartesian and the KS represen-
tation contributes to highlighting the improvements brought by the
regularization. Figure 2.14 shows instead the variation of the first
hyperbolic KS coordinates, synchronized on the fictitious time. This
evolution is significantly more regular than all the previously pre-
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Figure 2.11: Random trajectory sample distance from the Moon (blue) and
Earth (red).

Figure 2.12: Fictitious time-synchronous evolution of the semi-major axis, for
the flyby leg.

sented cases. All the samples follow a nearly exponential evolution,
due to the quasi-linearity of the equations of motion. Despite expo-
nential and non-periodic, the resulting uncertainty evolves smoothly
on the fictitious time, removing the chaotic phenomena typically in-
troduced by the close approach on the different uncertainty regions.

2.5.4.2 Post-flyby

The challenge posed by post-flyby legs is all connected to the separa-
tion that the different uncertainty areas feature, despite all being the
initial conditions of the post-flyby leg. The separation is then intro-
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Figure 2.13: Physical time-synchronous evolution of the Cartesian x coor-
dinate, for the flyby leg, in the Earth-Centered ECLIPJ2000[2]
reference frame.

Figure 2.14: Fictitious time-synchronous evolution of the first KS coordinates,
for the flyby leg.

duced not only in terms of different positions and velocities at the end
of the flybys, but also as the different physical times that characterize
the end of the close approach and the beginning of the post-encounter
leg for the different uncertainty regions. Figure 2.15 shows the fic-
titious time span, on the x axis, with the initial semi-major axis, on
the y axis. Since the propagation is stopped when the final physical
time is reached, all the different samples end at different fictitious
times. Nonetheless, the value of fictitious time where each propagation
ends is highly predictable and strongly related to the semi-major axis:
recalling the role of the orbital energy as the square of the natural
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frequency in the KS dynamics, larger orbits (normally characterized
by longer time scales) have a lower dimensional frequency, which
results in a shorter fictitious time span once made non-dimensional.
In other words, the energy-based non-dimensionalization intrinsically
accelerates the simulation of larger orbits, while slowing down the
smaller ones. Additionally, recalling that the fictitious time evolves
according to the eccentric anomaly, the loci of common physical time
can be estimated simply by solving Kepler’s equation from the initial
sample condition, shifting the value of the current fictitious time by
the initial eccentric anomaly. The black lines of Figure 2.15 have been
computed in the just discussed way, and prove that the fictitious time
span can be reliably estimated using only the initial condition of the
different samples/uncertainty regions. Building on this, Figure 2.16

Figure 2.15: Different fictitious time spans, for the post-flyby leg.

shows the evolution of the physical time with respect to the fictitious
time, for all the uncertainty samples. Samples with higher semi-major
axis reach the final physical time (limit in the y direction) in a shorter
fictitious time interval, as a consequence of the energy-based non-di-
mensionalization . The small oscillations that make time flow faster or
slower are the actual effect of the regularization, with implicit slow-
downs happening nearby the orbit’s pericenter. Despite the apparent
complexity introduced by the non-uniform non-dimensionalization ,
its effects remain highly predictable, as it is based only on the initial
condition of the given uncertainty sample.

Figure 2.17 shows the evolution of the Cartesian x coordinate across
the whole post-flyby phase. The initial different oscillation frequency
and amplitude, clearly due to the different sizes of the orbits, result in
an evolution that becomes more and more chaotic over time. Similarly
to what presented for the flyby case, propagating upon the physical
time results in a behavior of the whole uncertainty that seems discon-



2.5 applications 65

Figure 2.16: Fictitious time-synchronous evolution of the physical time, for
the post-flyby leg.

tinuous. No sudden perturbation is experienced in this case, however
the longer propagation span is all it takes to loose track of the initial
original close trajectories.

Figure 2.17: Physical time-synchronous evolution of the Cartesian x coordi-
nate, for the post-flyby leg, in the SSB-Centered ECLIPJ2000[2]
reference frame.

To overcome this continuity issue, the evolution of KS coordinates
can be considered directly. Figure 2.18 and Figure 2.19 show, for dif-
ferent fictitious time spans, how the first of the four KS coordinates
evolve in time. The KS dynamics highlights a nearly linear behavior for
weakly perturbed two-body orbits, which also explains the observed
regular and sinusoidal trend. This regularity appears even without
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having introduced KS integrals of motion, and already demonstrates
a smooth and continuum-like behavior of the uncertainty, when prop-
agated and studied in non-dimensional KS coordinates. As it can be
observed in Figure 2.18, the different fictitious time span result simply
in the early or late truncation of the propagation, that follows the
already discussed semi-major axis-related pattern. Figure 2.19 zooms
instead on the initial propagation window and highlights the com-
mon oscillation frequency introduced by the KS transformation and
the energy-based non-dimensionalization . Despite the normalization,
the color scale highlights the retained dependence of the non-dimen-
sionalization units on the initial condition, even in KS coordinates,
confirmed by analyzing the evolution of the second KS coordinate in
Figure 2.20.

Figure 2.18: Fictitious time-synchronous evolution of one of the KS coordi-
nates, for the post-flyby leg.

2.6 summary

2.6.1 KS variables for interplanetary simulations and PP/SDM

Figure 2.21 shows the step and runtime improvements brought by the
different formulations and implementations, for the single simulations
of the asteroids Apophis and 2010RF12 in the relativistic case, with
respect to the AUY-COWELL-FIXED case. The results for the New-
tonian simulations that could be plotted from the values available in
Tables 2.1, 2.2, and 2.3 are analogous, despite a lower improvement
margin introduced by the barycentric simulations.

As dimensional propagations are not efficient in general, the adap-
tive energy-based non-dimensionalization improves the usual simula-
tion techniques using Cartesian coordinates. For the transition to KS
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Figure 2.19: Initial window of the fictitious time-synchronous evolution of
the first KS coordinates, for the post flyby leg.

Figure 2.20: Initial window of the fictitious time-synchronous evolution of
the second KS coordinates, for the post flyby leg.

coordinates, this choice of reference quantities becomes necessary, as
well as switching the center of reference frame becomes mandatory
for the simulation convergence.

In general, the KS approach improves the efficiency of numerical
simulations as larger time steps can be taken without any precision
loss. Despite the on-paper lost linearity property, the barycentric KS
formulation exhibits the best performances overall, both in terms of
time steps taken and total runtime required, especially for the relativis-
tic case. In this context, the runtime reduces more than the number
of steps, with respect to the KS Sun-centric case. The reduced time
steps may be explained by an overall more regular dynamics being
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Figure 2.21: Speedup provided by the different formulations and implemen-
tations.

propagated, not affected by tidal terms. The further runtime reduction
especially evident in relativistic simulations is experienced because
evaluating the dynamics function itself is much more efficient in the
barycentric case, also being the original frame where the dynamical
model is given [129]. Despite not as much as in the relativistic case, an
improvement is also observed in the Newtonian dynamics simulations,
again because of the absence if tidal terms in the force model.

The energy-based non-dimensionalization has been exploited to
obtain a closed form expression for the optimal pre-processing of
the KS initial condition, for problems whose primary dynamics re-
mains two-body. The degree of freedom left in the mapping to the
four-dimensional KS space has been fixed maximizing the magnitude
of the averaged (or initial, equivalently) minimum magnitude element
in the unperturbed problem. Because of the way adaptive numerical
integration schemes take the initial time steps, the ranges of possible
initial conditions that lead to minimized integration steps could be
accurately predicted. Furthermore, the improvement is not limited to
the step and runtime reduction: as Figures 2.5a and 2.5b show, the sim-
ulations performed with the KS formulation remain nearly one order
of magnitude more accurate than the correspondent Cartesian cases,
for the same numerical scheme and absolute and relative integration
tolerances.

The proposed KS formulation has been finally adopted to perform
the PP analysis of Solar Orbiter’s upper stage of launcher. An even
larger relative reduction of the total runtime is obtained, with respect
to the presented single simulation cases: impacts, therefore close ap-
proaches, are the objective of analysis and the KS formulation is exactly
built to better handle small distances from the primary. This aspect
was highlighted particularly by the much lower time steps taken by
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the impacting barycenter, it can be seen in Table 2.6, more than twenty
times lower than the usual Cowell’s approach.

2.6.2 KS - Cartesian uncertainty mapping

Accurately mapping the uncertainty between the Cartesian and the KS
realms is the first key step to enable orbital uncertainty propagation
in KS coordinates. The raised dimension of the phase space may
have been the main conceptual difficulty, nevertheless, expressing
the fibration property of the KS space in matrix form resulted in
the retrieval of a mapping between spaces with an equal number of
degrees of freedom.

The accuracy of four different mapping techniques has been as-
sessed through the uncertainty generated by Solar Orbiter’s upper
stage of launcher. Considering the transformation of the position part
of the covariance, an analytical solution is proposed for the transfor-
mation KS to Cartesian of multivariate normal distributions. While
solving the inverse of the same equation would, in principle, provide
the backward transformation, the problem becomes NP-hard, as it
involves quartic powers of the KS coordinates. As a result, convexity
cannot be ensured, for numerical solvers getting blocked in local min-
ima without converging to the actual solution. Anyway, the analytical
solution has been proved to be the most accurate approach for the
KS to Cartesian autocorrelation position mapping, although the un-
certainty magnitude introduces numerical instability for the retrieval
of the covariance, in the case of small uncertainties. Other techniques
should still be used for both the inverse and the conversion of cross
and velocity terms.

While a MC approach ensures a robust conversion, its accuracy is
heavily dependent on the number of samples used in the transfor-
mation. Moreover, it does not exploit the properties of the KS trans-
formation, making an overall robust, yet inefficient and inaccurate
technique.

The UT-based approach provides the best overall results, for a
mostly completely preserved accuracy in the case of small uncer-
tainties (typical PP/SDM size). Additionally, the conversion of cross
and velocity covariance terms happens with the same degree of accu-
racy of the position case. For the position conversion of multivariate
normal distribution, it matches the accuracy of the KS to Cartesian
transformation. The position accuracy slightly degrades in the inverse
conversion (of 10

-4 in relative terms), yet it remains reliable enough to
be considered the reference transformation technique in all cases.

Finally, an EKF-based technique is proposed, that relies on the
linearization of the KS transformation about the mean value. While it
provides satisfactory accuracy results in the Position case, the strong
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non-linearity present in the KS velocity expression makes its global
performance much worse compared to the UT case.

2.6.3 KS variables and continuity of the propagated uncertainty

The choice of independent variable to rely upon plays a key role
in the statistical behavior of the propagated uncertainty. From the
regularity viewpoint, introducing the KS coordinates results in a
remarkable improvement, so significant to make evident a continuum-
like behavior even in the case of post-flyby scattered trajectories.

While it is true that the physical meaning of the fictitious time
synchronization may not be simple to understand and interpret, this
framework does provide mathematical stability and quasi-linearity to
the propagated uncertainty. The general recommendation is to treat
the physical time as an additional state variable, similarly to what
the theory of relativity does when dealing with time as the fourth
dimension of space, and separating the UP phase from its analysis.
If considering off-sampled points, a simple fitting should already
accurately capture its evolution, based on how tightly and regularly
the evolution of the physical time is linked to the initial semi-major
axis. Therefore, the physical time behavior of the uncertainty can
always be reconstructed a posteriori on a two-step process, building
first the fictitious-time synchronous Cartesian/Keplerian uncertainty,
and then finding the loci of points of common physical time. The KS
description would make a more convenient and efficient framework for
both the propagation of uncertainty samples and the use of continuum-
based descriptions. The proposed sample-based analysis shows that
the uncertainty becomes more regular overall in KS coordinates for
both flybys and interplanetary legs, which can be significantly ease the
implementation of computationally efficient uncertainty quantification
techniques, such as Machine Learning models and statistical continua.

Despite the method may already be suitable for dominantly two-
body trajectories, it should also be tested on low-energy and three-
body-like trajectories. While a regularization approach may still be
used and should anyway ensure an improved stability of the propa-
gated uncertainty, the new equations of motion may not be quasi-linear.
Additionally, the proposed approach requires to split trajectories that
undergo conceptual discontinuities into separate branches and only
acts on the common legs. For instance, if any part of the uncertainty
performs an additional flyby, this model remains suitable only up
to the occurrence of that event. The newly created post-flyby branch
should be studied separately.



3
E N C O U N T E R C H A R A C T E R I Z AT I O N A N D K E Y H O L E
M A P S

Ever since the first interplanetary exploration missions, the use of grav-
ity assist maneuvers has been adopted as enabling feature to reach
distant locations in the Solar System. Nonetheless, close encounters
need to be studied not only as a mean to achieve otherwise unfeasible
trajectories, but also to gain insight and awareness on possible side
effects or natural phenomena. Be that the need to implement center-
of-integration-switch in numerical simulators, or to compute impact
probabilities with given celestial bodies, or to simply assess how a
trajectory changes through a flyby, encounters still represent a bottle-
neck for the complete understanding of certain orbital phenomena,
including the actual threshold to determine what a flyby is, and what
it is not.

When taking the focus of the analysis on the encounter itself,
PP/SDM and planetary defense tasks become basically the same
study. An uncontrolled object is moving in space, subject only to the
pure ballistic orbital dynamics, and its impact probability has to be
assessed. Were it an asteroid or a human-crafted launcher upper stage,
the effects it undergoes remain the same, all due to the major Solar
System bodies.

Keeping the PP/SDM application of this dissertation at the center
of the discussion, mission analysts need to study close encounters
to assess whether a given trajectory profile complies with COSPAR
[31] policies or not. Similarly, Boutonnet and Rocchi [17] proposed
an analysis of Earth-impacting trajectories stemming from SDM re-
quirements [87]. In particular, many of the collisions were found to
be out of what is nominally considered a colliding trajectory, i.e. out
of a nominal orbital resonance with the target planet. Boutonnet and
Rocchi [17] went deeper in the analysis, and concluded that a first,
distant interaction triggered a new trajectory profile that could not be
initially predicted, which, in turn, led to subsequent collisions. This
aspect motivates the research presented in this chapter, attempting
to study shallow encounters of the type that Boutonnet and Rocchi
describe. Even after decades of research on close encounters, a clear
distinction between what can be considered a flyby and what can
instead be neglected remains unclear. This fact has indeed led to a

71
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further sub-classification for flybys, labeling with the term "shallow"
all those interactions that happen at great distances and/or with low
relative velocity magnitudes. The literature covering the extension of
flyby theories to shallow encounters is very limited, with a conceptual
"jump" from analytical, patched conics-based methods to the fully
numerical simulation of the Circular Restricted Three Body Problem
(CR3BP). On the contrary, the astrodynamics community has so far
profused significant efforts in gaining a better understanding of deep
encounters with the existing theoretical tools, such as the b-plane [25,
148] and the Tisserand-Poincaré graph [23], key aspect to enable the
realization of complex missions such as Solar Orbiter [43] and JUICE
[44].

This chapter attempts to improve the existing theoretical frame-
work for the characterization of close encounters, with the objective to
propose techniques and tools that encompass both distant and deep
interactions. First, a brief overview of the most commonly used theo-
retical frameworks and SOI concepts is given in Section 3.1, together
with some works that propose non-traditional SOI definitions. Section
3.2 presents an approach that attempts to use perturbation methods to
include third-body effects at the boundary of the SOI. Even though the
proposed results actually dispute the use of perturbation techniques
for this specific problem, this study eventually led to two of the publi-
cations listed in Section 1.5. Hence, the related research is included
in this dissertation. A novel concept of SOI is proposed in Section 3.3,
based on the maximum eigenvalue of the three-body dynamics’ Jaco-
bian. Finally, Section 3.4 combines the theoretical results of Section 3.3
with a simple surrogate model of the CR3BP dynamics, proposing the
"Keyhole Map", a visualization tool for the detection of high impact
probability regions in the phase space, even for off-resonance nominal
trajectories.

3.1 encounters and sphere of influence definitions

The line to cross to assess whether a close encounter is happening or
not is not clear per se, which inevitably becomes blurred in the case
of shallow interactions. The commonly adopted frameworks do not fit
perfectly well these borderline cases, for different reasons.

The patched conics approximation simplifies the flyby problem into
two distinct two-body phases, and assumes a zero-radius sphere of
influence for an instantaneous flyby effect, in the outer scale. In the
inner part, instead, the trajectory is approximated by a hyperbolic
solution of the two-body problem, and the trajectory deflection caused
by the flyby is simply given by the rotation of the asymptotic velocity
vectors [97] v±∞:

v±∞ = v± − vpl (3.1)
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While in the secondary-centric frame the asymptotic velocities have
equal magnitude, the rotation of v−∞ into v+∞ results, from the inter-
planetary viewpoint, in a net instantaneous ∆v supplied to the outer
trajectory:

∆v = v+ − v− (3.2)

This approximation may seem reasonable from the interplanetary
viewpoint, nonetheless it becomes inaccurate in some cases. Distant
and continuous along-trajectory interactions are completely neglected,
as well as the the finite time it takes to perform a complete flyby.

On the contrary, the CR3BP introduces a synodic reference frame
whose x axis is attached to the line that connects the two primary bod-
ies. The dynamical model considers both bodies at the same time and
in full, without neglecting either body in specific trajectory phases. The
non-dimensional CR3BP equations of motion, written in the rotating
frame, are [97]:

ẍ = 2ẏ+ x−
1− π2
σ3

(x+ π2) −
π2
ψ3

(x− 1+ π2)

ÿ = −2ẋ+ y−
1− π2
σ3

y−
π2
ψ3
y

z̈ = −
1− π2
σ3

z−
π2
ψ3
z

(3.3)

with
π2 =

µ2
µ1 + µ2

ψ =
√
(x− 1+ π2)2 + y2 + z2

σ =
√
(x− 1+ π2)2 + y2 + z2

(3.4)

where µ1 and µ2 are the gravitational parameters of primary and
secondary, respectively. The non-dimensionalization length is given
by the distance between the primary and secondary body, and the
reference gravitational parameter is equal to µ1 + µ2. The CR3BP has
one single integral of motion, the Jacobi constant CJ:

CJ = n
2(x2 + y2) + 2

(
µ1
r1

+
µ2
r2

)
− (ẋ2 + ẏ2 + ż2) (3.5)

with r1 and r2 distances from body 1 and 2, respectively, and n

the angular rate of the synodic frame. Far from the secondary body
and with µ1 ≫ µ2, the Jacobi Constant can be approximated by the
Tisserand parameter T:

T =
1

a
+ 2

√
a(1− e2) cos i ≈ CJ (3.6)

where a is the non-dimensional semi-major axis, expressed with ref-
erence length as the semi-major axis of body 2 with respect to body
1.
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Despite more complete, in some phases of the trajectory the effects
of one of the two bodies could be actually neglected. In addition,
the more complex dynamical model prevents the use of analytical
solutions, thereby restricting possible analysis to simulation and map-
based approaches.

3.1.1 Sphere of Influence and Hill’s sphere

The two most common definitions for the boundary that splits he-
liocentric and planetary domains are the SOI and the Hill’s sphere.
Denoting the semi-major axis of body 2 around body 1 with a2, the
former is identified by

rSOI ≈ a2
(
µ2
µ1

)2/5

(3.7)

and stems from equaling the perturbations of the two gravitational
fields. For instance, in the Sun-Earth case, the SOI approximates the
distance where the gravitational perturbation of the Sun on the Earth’s
gravitational field equals the perturbation of the Earth on the Sun’s
gravitational field [97]. On a different approach, the Hill’s sphere
radius is defined from the CR3BP, as the average distance from the
planet’s of the Lagrangian points L1 and L2

rSOI ≈ a2 3

√
µ2
3µ1

(3.8)

Also called libration points, Lagrangian points are equilibrium points
in the CR3BP, i.e. local maxima of the CR3BP potential. Five of this
points exist, and can be found as the points where the centrifugal
acceleration of the synodic frame balances the combined gravitational
field of both bodies [97].

3.1.2 Numerical investigations

The dynamics’ Jacobian is traditionally linked to the step size control,
for numerical simulations. In particular, the maximum eigenvalue
influences the stability of the numerical scheme [118]. Contrarily to
predictor-corrector integrators (e.g. the Runge-Kutta family), other
adaptive schemes use the knowledge on the dynamics Jacobian to
minimize the truncation error at each step. In the orbital dynamics
case, the work of Debatin et al. [33] used an analytical approxima-
tion of the maximum Jacobian eigenvalue of the N-body dynamics,
building a fast integration algorithm with step size control. Debatin
et al. approximated the square of the maximum Jacobian eigenvalue
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λ2max as the sum of the squares of all the separate two-body Jacobian
eigenvalues:

λ2max ≈
N∑
i=1

λ2i (3.9)

with the subscript i denoting the i-th body. This approximation be-
comes particularly reliable far from the boundaries of any SOI/Hill’s
sphere, since in these regions either the Sun or the planet flown by
heavily dominates the dynamics.

The later work of Romano [125] used a similar approximation
approach to implement a flyby detection criterion. In particular, if
the ratio between the eigenvalues of a given planet and the Sun grows
above a user-specified tolerance, then a flyby event is detected:

λi
λSun

⩾ tol (3.10)

Romano also showed that this criterion encompasses the usually de-
fined SOI/Hill’s sphere: in the case of threshold set equal to 1, the
critical ratio is triggered at greater distances from the secondary body,
compared to SOI and Hill’s sphere. Figure 3.1 provides an example
with the evolution of the eigenvalue ratio for the 2010RF12 in the
Sun-Earth case. The eigenvalue ratio equals 1 at greater distances
from Earth (red lines) compared to the SOI case (black dashed lines),
resulting in a wider definition of sphere of influence and, therefore, of
encounter.

Figure 3.1: Distance from Earth and eigenvalue ratio evolution for the aster-
oid 2010RF12 the Sun-Earth case.

Most recently, Cavallari et al [26] studied the case of Earth’s SOI
searching for a suitable size also accounting for velocity-related three-
body effects on the dynamics, proposing an optimization-based ap-
proach that results in different SOI radii depending on the initial
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conditions, according to the local quality of the patched conics ap-
proximation when compared to the CR3BP. The definition of a radii
database is also included, which can be used with interpolation tech-
niques to generalize the results for other, non-tested initial states.
Cavallari et al [26] find that the identified radii all fall within the
optimal switch range proposed by Amato et al. [3]. Further details on
[3] are given in Section 3.3.

3.2 analytical methods for flyby perturbations

Perturbation approaches rely on the orbital dynamics being a Hamil-
tonian system. In short, a given system is Hamiltonian if its dynamics
is governed by Hamilton’s equation:

ξ̇ =
∂H

∂Ξ

Ξ̇ = −
∂H

∂ξ

(3.11)

where (ξ, Ξ) are a pair of coordinate and its conjugate momentum,
respectively, and H is a scalar function, called the Hamiltonian.

In the orbital dynamics case, the Hamiltonian is simply the total
orbital energy per unit mass. The simplest example of Hamiltonian
formulation of the orbital dynamics are Cartesian coordinates, where
the components of the velocity vector are the conjugate momenta of
each corresponding position coordinate. For the restricted two body
problem:

H = −
µ

r
+
1

2
v2

Despite its flexibility and its Hamiltonian structure, Cartesian co-
ordinates do not use the integrals of motion that characterize the
orbital dynamics. Similarly, whilst Keplerian elements do introduce
integrals in the two-body problem, they are not a set of coordinates
and conjugate momenta. Hence, a new set of orbital elements, named
after Charles-Eugène Delaunay [14], has been developed. Delaunay
elements are commonly identified by (l, g, h, L,G,H) and represent
a set of action-angle canonical variables, including the integrals of
motion of the orbital dynamics. For closed orbits:

• (l, g, h) identify the mean anomaly M, the argument of the
pericenter ω and the right ascension of the ascending node Ω,
respectively;

• L =
√
µa is an analog for the orbital energy, with a the orbit’s

semi-major axis;

• G,H both stem from L and the eccentricity function η =
√
1− e2,

with G being an analog for the angular momentum of the orbit,
or its semilatus-rectum p, and H being its out-of-plane compo-
nent that identifies the inclination of orbital plane i.
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In perfect analogy with the elliptic case, Delaunay elements can also
be defined for the hyperbolic case [45]:

• L takes a different definition, since a < 0 for hyperbolas, i.e.
L = −

√
µ|a| < 0. Consequently, also the definition of the mean

motions n differs in sign, with nelliptic = µ2/L3 > 0 and
nhyperbolic = −µ2/L3 > 0;

• G,H are also affected by the different eccentricity and the eccen-
tricity function η =

√
e2 − 1.

Using Delaunay variables, the two-body Hamiltonian can be written
as With a little notation

abuse, "+" and "-"
represent elliptic and
hyperbolic case,
respectively.

H = ±mu
2

2L2
(3.12)

and using Hamilton’s equation

dl

dt
=
dH

dL
= ±n (3.13)

remains the only non-zero right hand side, as five integrals of motion
appear, with ±n the elliptic/hyperbolic mean motion.

The Hamiltonian formalism allows the description of perturbation
problems by Lie transforms [14]. Provided that the perturbation force
can be described as a series expansion, Lie transforms introduce a sys-
tematic analytical procedure, that replaces the actual integration of the
dynamics’ differential equation(s) with a set of canonical coordinate
transformations. A brief reference to this technique and the related
notation is given in Appendix B.

3.2.1 Third body perturbation

Considering the gravitational effects of a primary body 0 and a per-
turbing body k on a test particle, in a reference frame centered on the
primary the Hamiltonian H = H0 +Hk takes the following expres-
sion:

H = −
µ

2a
− µk

(
1

|r − rk|
−

r · rk
r3k

)
(3.14)

with r and rk denoting the position vectors of test particle and of third
body in the reference frame centered on the primary. The distances r
and rk are simply defined as the magnitudes of the respective position
vectors. Hk is the sum of two terms, the direct pull of the body k over
the test particle, and a tidal term, arising from the action of the body k
on the primary. The pull term can be re-written using the cosine law:

H = −
µ

2a
−
µk
rk

((
1+

r2

r2k
− 2

r

rk
cosψ

)−1/2

−
r

rk
cosψ

)
(3.15)
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with the relative angle ψ between the position vectors r and rk defined
by

cosψ =
rk · r
rkr

(3.16)

Following Lidov and Kozai [82, 90], the first term of Hk can be
expanded in terms of the Legendre polynomials Pj(cosψ):(

1+
r2

r2k
− 2

r

rk
cosψ

)−1/2

=

+∞∑
j=0

(
r

rk

)j

Pj(cosψ) (3.17)

where, for instance, P0(x) = 1, P1(x) = x, P2(x) = 1/2(3x2 − 1),
P3(x) = 1/2(5x3 − 3x), and so on. The series converges if r < rk,
and few orders suffice to reach a good accuracy level if r≪ rk. Many
examples retaining terms up to the fourth order are available in the
literature for the luni-solar perturbations on Earth orbits.
P0(cosψ) = 1, P1(cosψ) cancels with the tidal term and the faster

flyby dynamics allows the approximation of rk as constant. TherebyThe typical time
scale for flybys in the

inner Solar System
is in the order of

hours or two-three
days at most, against

months or years for
the planets’ motion.

Hk can be re-written as:

Hk = −
µk
rk

+∞∑
j=2

(
r

rk

)j

Pj(cosψ) (3.18)

which, once re-arranged in a Taylor-like series expansion over ε = 1/rk,
becomes

Hk = −
µk
rk

+∞∑
j=2

εj

j!
j! rjPj(cosψ) (3.19)

The just described expressions hold regardless the bound or un-
bound geometry of the unperturbed trajectory. The assumption ε =
1/rk small, with respect to the primary dynamics, is a good approxima-
tion both in case of closed trajectories and at the boundaries of the SOI
in the inner Solar System: for near-Earth orbits rSOI ≈ 0.006 aEarth,
whereas for near-Venus orbits rSOI ≈ 0.0055 aVenus. Moreover, these
values are the maximum possible in the respective flyby cases, within
the defined SOI.

3.2.2 Arbitrary order analytical procedure

Having identified the small parameter ε = 1/rk and written Hk as
a series expansion, an analytical solution by Lie transforms can be
proposed. Modifying the notation, the complete Hamiltonian H can
be written as

H =

+∞∑
j=0

εj

j!
Hj,0 (3.20)

with
H0,0 = H0 = −µ/(2a)

H1,0 = Hk

∣∣
j=1

≡ 0

Hj,0 = Hk

∣∣
j>1

= −
µk
rk
j! rjPj(cosψ)

(3.21)
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The Lie derivative operator for the Kepler perturbed problem in
Delaunay variable can be written as:

L0(−) = n
∂

∂l
(−) (3.22)

and thus the homological equation (Equation (B.18)) becomes:

L0

(
Wn

)
= n

∂Wn

∂l
= H̃n −H0,n (3.23)

3.2.3 Hori’s approach to the main problem

The peculiar feature of the considered problem, which makes it differ-
ent from the typical orbital applications, is that hyperbolic trajectories
are non-periodic, with short-term, long-term and secular effects that
cannot be distinguished. Hori [66] proposed an analytical solution for
the J2 perturbation on hyperbolic trajectories, written in hyperbolic De-
launay variables. In particular, denoting with R and J2 Earth’s radius
and equatorial oblateness respectively, starting from the perturbed
Hamiltonian written in the Earth-centered equatorial frame

H = H0,0 +H1,0 = −
µ2

2L2
−
µ

r

R2

r2
1

2
J2
(
3 sin2 i sin2(g+ f) − 1

)
(3.24)

the integration of the homological equation (Equation (3.23)) for the
first order gives:

W1 =
1

n

∫ (
H1,0 −H0,1

)
dl+Z(−, g,−, L,G,H) (3.25)

with Z pure function of the kernel of the Lie derivative operator.
A closed form expression of the integral can be found using the
differential relation

dl =
η2

(1+ e cos f)2
df (3.26)

to change the integration variable from l to f. Since the system is
non-periodic, the choice of Z(−, g,−, L,G,H) is not unique, and is
necessarily associated with the integration constants of the simplified
problem.

To this extent, Hori sets H0,1 = 0, integrating the hyperbolic Kepler
problem in prime variables, finding the kernel terms such that

(l, g, h, L,G,H)|t=t0 = (l ′, g ′, h ′, L ′, G ′, H ′)|t=t0 (3.27)

t0 must be found to have (l0,1, g0,1, h0,1, L0,1, G0,1, H0,1)|t=t0 = 0,
and should be used to find Z(−, g,−, L,G,H).

The dependence on h does not appear in Z(−, g,−, L,G,H) because
also the original perturbed Hamiltonian is not function of h, whereas
the dependence on l is confined to the term of W1 not belonging to



80 encounter characterization and keyhole maps

the kernel of the Lie derivative operator. This term is therefore used
to find t0 as

L0,1 =
{
L;W1

}
= −

∂W1

∂l
= −

1

n

(
H1,0 −H0,1

)
(3.28)

which in Hori’s case means H1,0 = 0, because of the introduced
simplification H0,1 = 0, thus

t0 = ±∞, f(t0) = f±∞ = arccos
(
−
1

e

)
(3.29)

with t0 = −∞ chosen in Hori’s case.
Re-writing W1 of Equation (3.25) as

W1 = W
(l)
1 +Z(−, g,−, L,G,H) (3.30)

the next steps of the procedure take a similar form for the other first
order correction terms, e.g.

G0,1 =
{
G;W1

}
= −

∂W
(l)
1

∂g
−
∂Z

∂g
(3.31)

At t = t0 , G0,1 = 0 is required, hence the g-dependent terms of Z
are determined by integrating

∂Z

∂g
= −

∂W
(l)
1

∂g

∣∣∣∣
t=t0

(3.32)

t appears in H1,0 and the derived expressions through trigonometry
functions of g + f, which, once expanded, can be replaced by the
eccentricity-dependent infinity expression for cos

(
f±∞)

. Integrating:

Z(−, g,−, L,G,H) = −

∫
∂W

(l)
1

∂g

∣∣∣∣
t=t0

dg+Z1(−,−,−, L,G,H) (3.33)

and updating W1:

W1 = W
(l)
1 −

∫
∂W

(l)
1

∂g

∣∣∣∣
t=t0

dg+Z1(−,−,−, L,G,H)

= W
(l,g)
1 +Z1(−,−,−, L,G,H)

(3.34)

An analogous process is taken for
(
l0,1, g0,1, h0,1

)∣∣
t=t0

= 0, leading
to a unique definition of all the terms of Z(−, g,−, L,G,H), e.g.:

l0,1 =
{
l;W1

}
=
∂W

(l,g)
1

∂L
+
∂Z1

∂L
(3.35)

integrating this time for Z1 setting always t = t0, and so on until all
the terms of Z are found. Regardless the order the remaining Delaunay
variables are processed with, the last step returns only a pure constant
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term of Z, which Hori sets equal to 0. The explicit complete expression
of W1 can be found in [66].

A numerical propagation was made to test Hori’s solution, for the
following Keplerian elements at the entrance of Earth’s SOI:

a = −2459.37877km, e = 4, i =
π

10
rad,

Ω =
π

3
rad, ω =

2

5
π rad, f = −1.8203 rad.

(3.36)

The relative position errors with respect to the numerical integration
of the perturbed motion are presented in Figure 3.2, in blue for the
sole Keplerian propagation, in red for a direct implementation of the
equations provided in [66], in dashed yellow for Hori’s solution re-
computed with the Lie-transform based analytical procedure proposed
in Section 3.2.4.2, truncated to the first-order terms. The accuracy im-
provements obtained correspond to the prediction of the perturbation
theory, since the new analytical solution difference from the numerical
reference has become of order O

(
J22
)
.

Figure 3.2: Errors of Hori’s solution [66] for the J2 perturbation against the
numerical simulations of the dynamics including Keplerian hy-
perbolic and J2 effects.

3.2.4 Hori’s approach for the third body perturbation: boundary conditions

Hori’s approach can be followed in the case of the third body perturba-
tion as well, provided the integrability of all the involved expressions.

3.2.4.1 Analytical setup

Since H1,0 ≡ 0, W1 ≡ 0 as well, allowing the Lie transform method to
start directly at the second order, implying also that y0,2 =

{
y,W2

}
with, in general, y = y(l, g, h, L,G,H).



82 encounter characterization and keyhole maps

The second order term is defined as

H2,0 = −
µk
rk
2 r2

1

2

(
3 cos2ψ− 1

)
(3.37)

and recalling cosψ =
(
r · rk

)
/
(
r rk

)
H2,0 = −

µk
rk

(
3

r · rk
r2k

− r2
)

(3.38)

Since rk is assumed constant, having r only made of polynomial,
trigonometric or exponential terms should suffice to ensure the integra-
bility. This was not required for the integration of the first order term
of the J2 perturbation, because of the cancellation of the denominator
with the term R2/r2. For the third body case the presented description
of r on the true anomaly f must however be abandoned, adopting
the hyperbolic anomaly u instead, particularly r = −a(e coshu− 1).
Writing r =

{
r1, r2, r3

}T as function of the Keplerian elements and u
gives

r1 =aη sinhu (cosΩ sinω+ sinΩ cos i cosω)

− a (cosΩ cosω− sinΩ cos i sinω) (e− coshu)

r2 =aη sinhu (sinΩ sinω− cosΩ cos i cosω)

− a (sinΩ cosω+ cosΩ cos i sinω) (e− coshu)

r3 = − a sin i sinω (e− coshu) − aη cosω sin i sinhu

(3.39)

which ensures the integrability of the homological equation (Equation
(3.23) since the differential relation

dl = (e coshu− 1)df (3.40)

does not modify the structure of the expressions. Moreover, the rela-
tions between Delaunay and Keplerian elements are also known and
can be used to change the integration variables in case of need. Given
the already lengthy expressions of the position vector elements, they
will be kept implicit in the following lines and have all been computed
using Matlab® Symbolic Toolbox™.

3.2.4.2 Hori-like procedure

The null first order terms lead directly to the expression of W2 from
the first homological equation solution

W2 =
1

n

∫ (
H2,0 −H0,2

)
dl+Z(−, g, h, L,G,H)

= W
(l)
2 +Z(−, g, h, L,G,H)

(3.41)

Differently from Hori’s case, also the dependence on h appears in Z
and the choice of H0,2 is initially left implicit.
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The motion is still hyperbolic, thereby requiring to find the terms of
Z according to the initial condition presented in Equation (3.27). For
L0,2 then

L0,2 =
{
L;W2

}
= −

∂W2

∂l
= −

1

n

(
H2,0 −H0,2

)
(3.42)

In the third body case r −→ +∞ for t −→ ±∞, the only self-
vanishing case of H2,0 happens for ψ∗

1,2,3,4 such that cos2ψ∗ = 1/3.
ψ∗

1,2,3,4 correspond to peculiar relative positions between the per-
turbing body and the test particle, not necessarily associated with a
specific hyperbolic condition e.g. pericenter or infinity and varying
case by case.

Following Hori’s simplification criterion H0,2 = 0 or at most con-
stant can be chosen, leading to the Keplerian problem in prime vari-
ables. In this case, from Equation (3.42) the initial condition t0 to have
L0,2

∣∣
t=t0

= 0 should be chosen so that r
(
t0
)

satisfies cos2ψ
(
t0
)
= 1/3.

In general, configurations where no points on the trajectory have such
a feature may exist.

Alternatively, Equation (3.42) can be satisfied choosing H0,2 as a
non-null constant to impose a desired t0, i.e. H0,2 = H2,0

∣∣
t=t0

, since
it would always lead to L0,2

∣∣
t=t0

≡ 0 regardless the specific t0 chosen.
The terms of Z can then be found for any made choice of t0, follow-

ing Hori’s approach for the second order terms. For G0,2, similarly to
Equations (3.31) to (3.34):

G0,2 =
{
G;W2

}
= −

∂W
(l)
2

∂g
−
∂Z

∂g
(3.43)

Requiring again G0,2 = 0 brings

∂Z

∂g
= −

∂W
(l)
2

∂g

∣∣∣∣
t=t0

(3.44)

and integrating:

Z(−, g, h, L,G,H) = −

∫
∂W

(l)
2

∂g

∣∣∣∣
t=t0

dg+Z1(−,−, h, L,G,H) (3.45)

Finally the updated W2 becomes:

W2 = W
(l)
2 −

∫
∂W

(l)
2

∂g

∣∣∣∣
t=t0

dg+Z1(−,−, h, L,G,H)

= W
(l,g)
2 +Z1(−,−, h, L,G,H)

(3.46)

with the next step, e.g. to have H0,2 = 0, initiated by

H0,2 =
{
H;W2

}
= −

∂W
(l,g)
2

∂h
−
∂Z1

∂h
(3.47)



84 encounter characterization and keyhole maps

Proceeding once again according to the just presented steps, all the
terms of the kernel function Z can be found. The final expression of
W2 has been obtained with the symbolic processor,not rep orted here
for the sake of conciseness. To check the correctness of the derivation,
exactly as what found by Hori the last step returned a pure constant
term for Z was obtained, regardless the chosen t0.

Writing the corrections in term of the prime variables the following
expressions for the original Delaunay elements are obtained:

ξ = ξ ′ +
ε2

2!
ξ0,2(l

′, g ′, h ′, L ′, G ′, H ′), ξ ∈ {l, g, h, L,G,H} (3.48)

and the evolution of the prime variables simply corresponds to the
Keplerian unperturbed trajectory.

3.2.4.3 Proceeding to higher orders

The null first order terms lead to the following third order homological
equation:

W3 =
1

n

∫ (
H3,0 −H0,3

)
dl+Z(−, g, h, L,G,H)

= W
(l)
3 +Z(−, g, h, L,G,H)

(3.49)

and, given the null first order terms, Deprit’s triangle for the third
order correction yields

y0,3 =
{
y;W3

}
, y = y(l, g, h, L,G,H) (3.50)

If H3,0 = 0, then also H0,3 = 0 similarly to the first order case, thus
W3 = Z(−, g, h, L,G,H) is only function of the Lie derivative kernel.
Since W

(l)
3 ≡ 0, applying the first step of Hori’s procedure gives

G0,3 =
{
G;W3

}
= −

∂Z

∂g
(3.51)

which implies Z ̸= Z(g) to have G0,3 = 0 at the desired t0, but also at
any other t by consequence. Updating the terms of W3 it can be seen
that W(l,g)

3 ≡ 0 as well, thus by induction and for all the remaining
steps it then follows that W3 ≡ 0 to have y0,3

∣∣
t=t0

= 0. Consequently,
y0,3 ≡ 0 ∀ t.

Otherwise, if H3,0 ̸= 0 then the same already presented procedure
would follow for all the terms of W3. The initial condition t0 deter-
mined for the second order term must be kept in the higher orders,
thus writing the expansion up to the order 3

y =y0,0(l
′, g ′, h ′, L ′, G ′, H ′) +

ε2

2!
y0,2(l

′, g ′, h ′, L ′, G ′, H ′)

+
ε3

3!
y0,3(l

′, g ′, h ′, L ′, G ′, H ′)

(3.52)
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highlights that choosing a different t0 to find the kernel term of W3

would imply y0,3 ̸= 0 at t0, making the initial condition of Equa-
tion (3.27) invalid. The proposed procedure guarantees that choosing
H0,3 = H3,0

∣∣
t=t0

makes Equation (3.27) hold.
The fourth order terms do not vanish if H4,0 = 0, because also terms

like
{
y0,2;W2

}
appear in H̃4. The full definition of the homological

equation applies:

W4 =
1

n

∫ (
H̃4 −H0,4

)
dl+Z(−, g, h, L,G,H)

= W
(l)
4 +Z(−, g, h, L,G,H)

(3.53)

and once again having L0,4
∣∣
t=t0

requires H0,4 = H̃4

∣∣
t=t0

. The terms
of the kernel function Z are always found according to the already
presented steps.

As a final remark, despite increasingly complex, the initial choice of
using u instead of f for the definition of r should ensure the integrabil-
ity of all the expressions at any order, since fractional functions of the
Delaunay elements appear at most for the definition of cos i and sin i.

3.2.4.4 Numerical results

The presented analytical solution has been tested for a planetary flyby
of Venus, modeling the effects of the Sun, within the planet’s SOI. The
entrance condition, in the Ecliptic J2000 reference frame centered on
Venus is given in Table 3.1.

Table 3.1: Inital state of the test particle, ECLIPJ2000 reference frame centered
on Venus [2].

ri [km] rj [km] rk [km]

−104551.25 −597237.74 −110314.51

vi [km/s] vj [km/s] vk [km/s]

3.25 17.76 3.67

t0 [MJD2000]

8119.84

The precision of the proposed method is assessed comparing the
evolution of the position errors of four different models against a
relativistic simulation including all the Solar System’s planets:

1. The two-body unperturbed Keplerian hyperbolic trajectory.

2. The numerical simulation including the complete Sun’s perturb-
ing potential.

3. The numerical simulation of the Legendre expansion of the Sun’s
perturbing potential truncated to the second order.
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4. The presented analytical solution truncated to the second order
corrections for retrieving the original variables.

Moreover, the presented test case features two points in the bench-
mark trajectory that satisfy cos2ψ = 1/3, one before and one after the
pericenter, as it can be visualized by the function cosψ(t) plotted in
Figure 3.3, also highlighting the time scale of the considered dynamics.

Figure 3.3: Evolution of cosψ(t) within Venus’ SOI.

The coordinates of all the planets have been taken from JPL’s
ephemerides data, with the Matlab® version of the SPICE toolkit
[2], and all the numerical simulations have been performed setting a
relative tolerance of 10

-14.
Figures 3.4 and 3.5 show the quality of the numerical integration

for different orders of the Legendre polynomial expansion of the per-
turbing force (yellow, purple, green, cyan, crimson), as the position
error against the complete relativistic model, and comparing it against
the two-body model (blue), and the complete three body problem
(red), including only the Sun’s effects. As expected, the longer term
integration accuracy increases with increasing order. A local maxi-
mum of the simulated position error with respect to the complete
relativistic model is experienced nearby the pericenter for all orders,
including the conditions cos2ψ = 1/3. Such times correspond to the
null second order term, the increased integration error may be due
to the analytical cancellation of the lower order terms. The difference
among orders four, five and six cannot be told apart on the plotted
scale and considered integration time.

Despite the outlined analytical process for the higher orders, the pre-
sented numerical results only involve the terms up to the second order.
An attempt was made to reach the fourth order, however the symbolic
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Figure 3.4: Numerical accuracy assessment of the Legendre polynomial ex-
pansion, integration starting from the entrance of the SOI.

Figure 3.5: Numerical accuracy assessment of the Legendre polynomial ex-
pansion, integration starting from the hyperbola pericenter and
going forward in time.

processor could not deliver the complete solution perhaps because of
the too long reached expressions, albeit the ensured integrability.

3.2.4.5 Accuracy analysis

The presented figures all feature the same color code: the position
error of the two-body unperturbed solution is given in blue, the full
three-body numerical integration in red, the numerical integration of
the three-body potential approximated with the Legendre expansion
truncated to the second order in yellow, and the analytical solution
by Lie transforms with second order corrections in purple. Especially
in the neighborhood of t0, the proposed analytical solution (purple)
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should converge to the numerical simulation of the Legendre approxi-
mated case (yellow).

Figure 3.6 shows the evolution of the position errors for the four
presented cases starting the integration at the entrance of the SOI,
and stopping it at the exit. As expected, the numerical simulation

Figure 3.6: Evolution of the position errors within Venus’ SOI, setting t0 as
the entrance of the SOI.

of the Legendre expansion truncated to the second order (yellow)
reaches an intermediate accuracy level with respect to the two-body
(blue) and the complete three body model (red). As it can be observed
by the analytical solution by Lie transforms (purple), the procedure
guarantees that the initial condition imposed is fulfilled, i.e. the prime
variables (corresponding to the two-body case) correspond to the
original ones at the starting time. The solution seems although to
diverge quickly in time, leading to an higher position error if compared
to all the other cases.

Figure 3.7 shows the evolution of the position errors for the four
presented cases starting the integration at the hyperbola’s pericenter,
dividing the domain into two branches to integrate backward to the
entrance and forward to the exit of the SOI. Most of the already made
observations for the integration started at the entrance of the SOI
(Figure 3.6) still hold. An initial error growth can be observed in the
numerically simulated Legendre case (yellow), reaching two nearly
symmetric relative maxima that, if superposed to Figure 3.3, well
match the conditions where cos2ψ = 1/3. Also, the analytical solution
(purple) divergence has become less steep, although apparently still
not following the "targeted" model (yellow) nearby the initial time,
despite once again seeing the correspondence between prime variables
and original ones at the very starting time.

Figure 3.8 shows the evolution of the position errors for the four
presented cases starting the integration at the first encountered point
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Figure 3.7: Evolution of the position errors within Venus’ SOI, setting t0 as
the hyperbola’s pericenter.

in the trajectory where cos2ψ = 1/3, dividing the domain into two
branches to integrate backward to the entrance and forward to the exit
of the SOI. The analytical solution still diverges far from the initial

Figure 3.8: Evolution of the position errors within Venus’ SOI, setting t0 = t∗1
as the time when cosψ

(
t∗1
)
= −1/

√
3.

condition, as well as the correspondence between prime variables
and original ones is observed again. Differently from the previous
cases, the initial error growth seems to be even less steep. Figure 3.9
presents the same information already given in Figure 3.8 but zoomed
nearby the initial condition. In this case it can be seen that, initially,
the "targeted" (yellow) model is on average followed by the analytical
solution, providing a slightly wider time horizon where the proposed
approximation seems to hold. The inclusion of higher order terms
might contribute to increase the size of this region. The relative order



90 encounter characterization and keyhole maps

Figure 3.9: Zoom of Figure 3.8 nearby t0 = t∗1.

of the small parameter ϵ is 10−3, thus adding the third order terms
would provide corrections in the order of 10

-9. At the initial time, such
a difference is not visible, because the position differences grow to
about 10

-7. On the contrary, if such a difference was higher than the
expected 10

-6 order, it would clearly appear in the presented graph.
Figure 3.10 shows the evolution of the position errors for the four

presented cases starting the integration at the second encountered
point in the trajectory where cos2ψ = 1/3, dividing the domain into
two branches to integrate backward to the entrance and forward to the
exit of the SOI. The same observations made for the first encountered

Figure 3.10: Evolution of the position errors within Venus’ SOI, setting t0 =

t∗2 as the time when cosψ
(
t∗2
)
= 1/

√
3.

point where cos2ψ = 1/3 hold, highlighting the equivalent dynam-
ical nature of the two points. Again, Figure 3.11 presents the same
information already given in Figure 3.10 but zoomed nearby the initial
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condition. The differences that can be observed between Figures 3.9

Figure 3.11: Zoom of Figure 3.10 nearby t0 = t∗2.

and 3.11 simply correspond to a slightly wider time region plotted for
the latter, nonetheless, the already made observations for Figure 3.9
still hold.

3.3 dynamic flyby characterisation : jacobian eigenval-
ues

This section proposes a method to bridge the gap between the patched
conics and the CR3BP realms for the study of close encounters, aiming
at identifying a new and robust criterion for the definition of the SOI
of a planet. Such a criterion should make a more general framework
compared to the traditional SOI and Hill’s sphere definitions, possibly
allowing the study of shallow and distant interactions.

The numerical results presented in [33], [125], and [26] all super-
pose with the detailed analysis proposed by Amato et al. [3]. In fact,
Amato et al. identify the best distance to switch from heliocentric to
planetocentric orbital propagation, in terms of numerical stability of
the propagation, in the area encompassed by one to three Hill’s radii.
This suggests that this distance range may have a particular dynamical
meaning, hence this section searches for possible analytical solution
and the related physical meaning connected to these regions of space.
In particular, the criterion proposed by Romano [125], for the ratio
between the Jacobian eigenvalues with tolerance equal to 1, represents
a fairly simple equation where to build an analytical solution upon,
and is seemingly falling perfectly within the one to three Hill’s range.
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3.3.1 Analytical spheroidal locus of points

Considering a generic Barycentric Restricted Three-Body Problem
(BR3BP) (body 1 - the major, body 2 - the minor, and test particle), the
Jacobian J of the dynamics is defined as:

J =

[
0 I

G 0

]
(3.54)

with 0 and I the 3× 3 null and identity matrices, respectively, and G
defined as:

G =

2∑
i=1

Gi =

2∑
i=1

µi∣∣di|5

(
|di

∣∣2I − 3didT
i

)
(3.55)

with di = r − ri. The eigenvalues can be computed as

det(λI − J) = 0

which becomes, for the properties of block-square matrices [135]

det(λ2I −G) = 0

In the two body case G ≡ Gi, thereby making λj,J ≡ λ2j,G, with
j = 1, 2, 3. Analytical expressions exist for the two-body Jacobian
eigenvalues:

λ2i,1 =
2µi

d3i
, λ2i,2 = λ2i,3 = −

µi

d3i
(3.56)

Following [125], the eigenvalue ratio with tolerance equal to γ can be
re-witten expressing the position in a reference frame centered on the
body 2 (the secondary), leading to the following equality between the
eigenvalues λ21,1 and λ22,1:

µ1
|r2 − r21|3

= γ
mu2

r32
(3.57)

where r21 is the position vector of body 1 with respect to body 2.
Expanding |r2 − r21| with the cosine law gives

|r2 − r21| =
√
r22 + r

2
21 − 2r2r21 cos θ (3.58)

where θ is the angle between the vectors r2 and r21. Consequently,
Equation (3.57) can be re-arranged as

r22
(r22 + r

2
21 − 2r2r21 cos θ)2

=

(
γ
µ2
µ1

)2/3

= α(γ) (3.59)

Equation (3.59) is quadratic on r2:

(1−α(γ))r22 + 2α(γ)r21 cos θ r2 −α(γ)r221 = 0
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and can be solved analytically, provided that

r22 + r
2
21 − 2r2r21 cos θ ̸= 0

obtaining Of the two ±
solutions of a
quadratic equations,
r2 = r+2 only: since
µ2 < µ1, then
0 < α < 1, making
r−2 < 0 (not
physical).

r2(θ) =
−α(γ)r21 cos θ+

√
α(γ)2r221 cos2 θ− (1−α(γ))α(γ)r221

1−α(γ)

= r21
−α(γ) cos θ+

√
α(γ)(1−α(γ) sin2 θ)

1−α(γ)
(3.60)

with minimum and maximum radii, respectively for θ = 0 and θ = π

r2(0) =

√
α(γ)√

α(γ) + 1

r2(π) =

√
α(γ)

1−
√
α(γ)

for an average radius of

r2 =

√
α(γ)

1+α(γ)

Equation (3.60) describes a spheroidal locus of points, the Jacobian
spheroid, axially symmetrical about the line connecting the bodies 1
and 2, as function of the distance r21 between the two bodies and the
parameter γ. The radius of the spheroid is given as function of θ, the
angle between the test particle direction and the line connecting body
1 and body 2. Figure 3.12 shows the spheroidal loci of points on the
ecliptic plane with γ in the range [0.01, 100] in the color scale, for the
Sun-Earth case. The spheroid identified by γ = 1 is highlighted in
red. These spheroids are flattened in the direction that points toward
the Sun, whereas enlarged on the opposite side, resulting in a slight
eccentricity. Figure 3.12 also compares these loci of points against the
traditional SOI and Hill’s sphere definitions, as well as against the
distance of three times the Hill’s radius identified by Amato et al. [3].
In particular, the range one-to-three Hill’s radii corresponds rather
precisely to the range of the parameter γ that goes from 0.1 to 10.
Figure 3.13 presents the same analysis of Figure 3.12, although made
on the Sun-Jupiter case. In particular, the higher ratio between the
gravitational parameters of the two bodies results in a more eccentric
shape of the spheroids. Nonetheless, the correspondence between the
one-to-three range identified in [3] still corresponds, on average, to
the interval γ ∈ [0.01, 10].

3.3.2 Dynamical analysis of the Jacobian eigenvalues

The results shown at the end of Section 3.3.1 make a relevant question
arise: why and how can the range of optimal switch distance be
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Figure 3.12: Spheroidal loci of points and values of the parameter γ for the
Sun-Earth case.

closely represented by values of γ ∈ [0.01, 10]? Is there any physical
meaning behind the Jacobian eigenvalues, or their square? It may be
worth re-analyzing where the solution stems from and, consequently,
review whether a physical meaning behind the eigenvalues of the
Jacobian of the orbital dynamics exists. Possibly, the interpretation of
flybys themselves, in terms of their effect on the dynamics, should be
considered.

Observing the BR3BP Jacobian expression in Equations (3.54) and
(3.55), the approximation as if only the currently dominant body, say
1, were present reflects on the approximated Jacobian as G ≈ G1,
thereby making the matrix Jacobian error ∆G = G − G1 equal to G2.
Since Gi is symmetric, its euclidean matrix norm equals its spectral
radius: ∣∣∆G

∣∣
2
≡

∣∣Gi

∣∣
2
≡ ρ

(
Gi

)
≡ λmax,Gi

In other words, the maximum eigenvalue of G2 directly measures the
error of G ≈ G1. Conversely, the maximum eigenvalue of G1 directly
measures the error of G ≈ G2.

Denoting the gravitational potential with

V = −µ1/
∣∣d1

∣∣− µ2/∣∣d2

∣∣
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Figure 3.13: Spheroidal loci of points and values of the parameter γ for the
Sun-Jupiter case.

it holds that G ≡ Hess(V). Additionally, denoting with K the sym-
plectic matrix defined in Appendix B, it also holds that

J = KHess(H)

where H represents the Hamiltonian (total energy) of the BR3BP.
This suggests that, being the Jacobian eigenvalues closely linked with
the Hessian of the gravitational potential, they also locally represent
the curvature of thereof. On a different viewpoint, the Jacobian of
the orbital dynamics represents its local variation across the phase
space. Further insight can be obtained studying the eigenvalues of the
Hessian of the Hamiltonian Hess(H). Since

Hess(H) =

[
G 0

0 I

]
and hence the characteristic polynomial is given by

det

[
G − λI 0

0 (1− λ)I

]
= 0

which highlights that the eigenvalues related to the velocity terms are
all equal to 1, characterizing a phase space of constant curvature along
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all the velocity components. Therefore, the remaining eigenvalues are
simply given by

det(G − λI) = 0

Consequently, the Jacobian eigenvalues and the local curvature of the
gravitational potential are simply related by a square root operation.

In conclusion, elaborating a criterion to characterize flybys, and
thus the boundary that defines whether a close approach is happening
or not, choosing a Jacobian-related metric means considering how
and where the dynamics itself is changing. Rather than using static
criteria, e.g. the traditional SOI that is based on perturbing forces
or the Hill’s sphere that considers saddle points in the gravitational
potential, the Jacobian holds all the information for the local variation
of the dynamics, including the body which is affecting it the most.
Interestingly, the velocity components of the phase space do not play
any role in the proposed characterization (Equation (3.56)), despite the
given definition has been obtained in Section 3.3.1 without neglecting
the velocity-related effects, but simply by the properties of eigenval-
ues and block-square matrices. As close approaches are, by nature,
phenomena whose dynamics is notably faster than the interplanetary
scales, criteria that intrinsically account for variations in the dynamics
represent a robust alternative to the traditional "static" SOI and Hill’s
definitions.

Based on the just made observation and aiming at achieving a
domain characterization that follows the proposed metric, the Jacobian
error function JE can be defined:

JE = max
[
ρ(∆G1)

ρ(G)
,
ρ(∆G2)

ρ(G)

]
(3.61)

Other than which of the two bodies is locally contributing to the value
of JE, its magnitude may be a useful metric to highlight regions in the
domain where either approximation, i.e. considering only one of the
two bodies, is poor, i.e. where a complete three-body model should
be used instead. Figure 3.14 shows JE in the logarithmic color scale,
for the Sun-Jupiter case, comparing the values taken by JE against
SOI and Hill’s sphere. As it could be expected by the continuity of
the domain, the transition between the realm dominated by the Sun
to the one dominated by Jupiter is smooth. Two higher error regions,
called "Thickened regions" in Figure 3.14, appear nearly perpendicu-
larly to the Sun-Jupiter direction, whose possible physical meaning is
discussed later in this section.

Figure 3.15 extends Figure 3.14, comparing the analytical loci of
points obtained with Equation (3.60) against the computed values of
the Jacobian error (on the color scale), for γ = 0.1, 1, 10. The cases
γ = 0.1, 10 (dashed red lines) well bound the regions where the
Jacobian approximation error is higher than 10%. Thickened regions
aside, the case γ = 1 (solid red line) perfectly predicts the "critical"
distances where the error is maximized.
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Figure 3.14: Jupiter’s Jacobian percent error (color scale), compared against
Hill’s surfaces (dotted) and SOI (dashed).

Figure 3.15: Jupiter’s Jacobian percent error (color scale), compared against
Hill’s surfaces (dotted), SOI (dashed), and analytical loci of
points (red).

While Figures 3.14 and 3.15 help understanding the physical mean-
ing of the proposed Jacobian eigenvalue-based criterion for flyby
detection and characterization, Figures 3.12 and 3.13 provide a better
explanation to the ideal range for frame center switch identified by
Amato et al. [3]. Nonetheless, the renewed understanding of the Ja-
cobian criterion may give physical support to the range of γ values
previously identified. In conclusion, the frame center switch should
happen in a region where it is fairly irrelevant for how the dynamics is
changing locally, that roughly corresponds to the region where either
body dominates the change in dynamics by less than 90%. In any case,
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the proposed boundaries remain arbitrary, as even in [3] the ideal
range resembled a continuously growing trend outside the identified
thresholds. Aiming instead at proposing a new definition of Sphere of
Influence, the "critical" spheroid identified by γ = 1 should be used,
as it represents the region of space where none of the two bodies
can dominate over the other, for the local variation on the dynamics.
Equivalently, it can be seen as the spheroid where the Jacobian approx-
imation considering either body is locally the worse, when compared
against the full BR3BP case.

The thickened regions observed in Figures 3.14 and 3.15 may be
analyzed with the help of some CR3BP concepts. Figure 3.16 shows the
perfect alignment of the zero-velocity surfaces, plotted as grey/shad-
owed areas, with the Jacobian error, on the plane containing Jupiter’s
orbit about the Sun. The red lines represent different values of γ, equal
to 1 (solid), 0.1 or 10 (dotted) and 0.01 (dashed). The selected Jacobi
constant to plot the zero-velocity surfaces has been chosen only to
highlight their alignment with the thickened regions, without particu-
lar meaning. On the zero-velocity curves the kinetic energy content
of the test particle, the centrifugal reaction due to the non-inertial
rotating frame, and the gravitational attraction of both bodies all bal-
ance out. Simplifying the dynamical model along this curves may
become inaccurate, particularly if close to the Hill sphere boundaries,
as highlighted by the thickened error regions. In other words, the
mutual effect of the two bodies on how the dynamics changes is more
prominent along the zero-velocity surface direction, on a wider region
compared to the pure "critical spheroid line" identified by γ = 1.

Figure 3.16: Jupiter’s Jacobian percent error (color scale), compared against
Hill’s surfaces (dotted), SOI (dashed), analytical loci of points
(red), and zero-velocity surfaces (grey/shadowed).
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3.4 application : keyhole maps

Following the results presented in Section 3.3, this section proposes
to apply the concept of Jacobian spheroid to the study of shallow
encounters, aiming at developing tools and method to aid PP/SDM
compliance analyses. In particular, the proposed approach tries to
answer the question about why many impacting trajectories in [17]
happen out of nominal resonances. While Boutonnet and Rocchi [17]
identify a few families for this off-nominal impacting trajectories, this
section takes a step back and analyses only the dynamics of one
encounter at a time. In this first framework definition, the goal is to
find and describe which parameters of the dynamics are leading to
off-nominal impacting trajectories.

3.4.1 Detection of shallow encounters

The first step to be taken addresses a value of the spheroid parameter
γ, so that the detection of shallow encounter can be arbitrarily robust.
Since, as of the time of this dissertation, a link between the value of
γ and possible maximum and minimum boundaries in the variation
of the orbital elements has not been found, an overly conservative
threshold is desired, avoiding possible losses of generality due to some
small, but still significant, encounter deflections being missed. Figure
3.17 shows the Jacobian spheroids in the case of Earth, compared to
the traditional SOI, for γ = 1, 10, 100.

Figure 3.17: Sample spheroids for γ = 1, 10, 100 and SOI, centered on Earth
in the Sun-Earth synodic frame.
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Figure 3.18 compares the evolution of the orbital period for one of
the samples propagated in Section 2.5.2 with its distance from Venus,
tracking the values taken by the Jacobian eigenvalues of Venus, Earth,
and Jupiter1. The orbital period is chosen for its prominent role inThe eigenvalue ratio

value is reciprocal to
the γ parameter used

to identify the
spheroid, e.g.

λ = 0.01
corresponds to

γ = 100.

the identification of orbital resonances and, therefore, future impacts.
Using the traditional definition of sphere of influence would allow the
detection of the two steepest variations only, without classifying some
of the intermediate encounters, i.e. that indeed lead to the next deep
flyby, as significant. The common x axis highlights the correspondence
of the variations in the orbital period with the spikes in the eigenvalue
evolution.

Figure 3.18: Orbital period, distance from Venus, and Jacobian eigenvalues
evolution. Example from the PP analysis of Solar Orbiter.

Figure 3.19 extends Figure 3.18, highlighting the time steps that
fall inside the γ = 100 spheroid in red. With this approach, notably
smaller variations of the orbital period can be detected.

Based on this considerations, Figure 3.20 has been built aggregating
simulation data of the Asteroids Apophis and 2010RF12, and of the ESA

1 The eigenvalue related to Jupiter is shown only as magnitude reference.
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Figure 3.19: Orbital period and Distance from Venus and Earth. Example
from the PP analysis of Solar Orbiter.

missions Solar Orbiter [43] and JUICE [44]. Any encounter entering
the γ = 1000 spheroid for any sample in the MC simulations, and
for any of these four cases, is represented as a dot. The encounters
are only split based on the encountered body (i.e. Venus or Earth).
The x axis shows the maximum value taken by the eigenvalue ratio
during the encounter, whereas the y axis depicts the relative orbital
period variation with respect to the pre-encounter state. The color
scale identifies the flyby alignment, in the range [−1, 1], representing
flybys from completely in front of the planet (alignment close to
−1) to completely behind (alignment close to 1). Even considering
an eigenvalue ratio of 0.01, the maximum detected variations of the
orbital period remain well below 0.25%. The few outliers observed, all
happening for low eigenvalue ratios, may be explained by multiple-
body interactions or by rather low relative velocities. For instance,
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in the Earth case, the Moon may add its effects on the observed
small orbital period changes. In any case, given the still extremely
small variation experienced by the vast majority of the samples, the
value γ = 100 is chosen as conservative threshold for the study of
off-nominal resonances. In particular, the spheroid associated with
γ = 100 is chosen as boundary for two different models. Trajectories
are assumed to follow a two-body heliocentric dynamics only outside
this spheroid, whereas the full CR3BP is considered in the inside.

Figure 3.20: Aggregate orbital period variations for MC simulations of,
Apophis, 2010RF12, Solar Orbiter, and JUICE.

3.4.2 Encounter phasing in the Restricted Three Body Problem

Having defined the criterion to split the domain between unperturbed
two-body and CR3BP realms, a few more implications arise. Since any
point of the γ = 100 spheroid boundary corresponds to prescribed
position vector, say ri, only three degrees of freedom (the velocity com-
ponents) remain, in principle, to the full determination of the orbital
state at the boundary of the spheroid. Additionally, assuming the in-
teractions to be fully ballistic and limiting, for now, the analysis to one
single secondary body, the Jacobi constant CJ is conserved throughout
the full integration span, adding thus a constraint between the orbit’s
total energy and angular momentum. Therefore, the remaining two
degrees of freedom are broken down to the following parameters:

• The orbit’s semi-major axis a, tightly linked to the orbital period
around body 1;

• a phasing parameter, to be better identified in the following
lines.

The phasing parameter should be defined based on what actually
makes the trajectory become subject to an encounter. In particular, any
flybys in the proposed framework are either tangent or secant to the
γ = 100 spheroid boundary. Following the derivation made by Campiti
[24], prescribed values of semi-major axis and Jacobi constant (in the
Tisserand approximation of Equation (3.6)) results, in general, in a set
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of four orbits passing on the same position vector ri: the direction of
the angular momentum ĥ must fulfil the following conditions

ĥ · k̂ = cos i

ĥ · ri = 0

|ĥ| = 1

(3.62)

that, once expanded and re-arranged, lead to
ĥ3 = cos(i)

ĥ2 = − 1
ri,2

[
ri,3ĥ3 + ri,1ĥ1

]
ĥ1 = ±

√
1− ĥ22 − ĥ

2
3

(3.63)

The ± in the expression for ĥ1 highlights the existence of two possible
directions of the angular momentum, ĥ1 and ĥ2. In turn, this leads to
two possible directions for the line of nodes, n̂1 and n̂2, thereby giving
two distinct values of the right ascension of the ascending node Ω.
Finally, writing explicitly the true anomaly f with the conics equation
gives two opposite true anomalies that correspond to the distance ri
from the primary [24]:

f1,2 = ± arccos
(
1

e

(
a(1− e2)

ri
− 1

))
(3.64)

Restricting the analysis to the planar case, with inclination i = 0,
removes the two cases related to the different right ascensions of the
ascending node2, with only two remaining orbits completely defined
by the true anomalies f1 and f2. This implies that, given a semi-major
axis a and a Jacobi constant CJ, any trajectory crossing or touching
(the limit case with f1 = f2) the spheroid at a given point can be
described by these two true anomaly values only.

In the remaining of the section, the Sun-Earth case is considered,
although the concepts could be extended to any significant pair of
primary and secondary body. Figure 3.21 shows the different phas-
ing of a set of heliocentric trajectories with common Jacobi constant
CJ = 2.95 and semi-major axis (leading to the 3 : 2 resonance with
Earth), in the Sun-Earth rotating frame. The phasing is described with
the spheroid angle θ, the angle measured counterclockwise from the
Sun-to-Earth line on the spheroid surface, shown in the color scale. Formally, it differs

only by a flip of sign
in the spheroid angle
θ defined in Section
3.3.1

Because of the prescribed Jacobi constant, not all the spheroid points
result in a physical orbit, as constraints on pericenter and apocenter
distances appear for a given semi-major axis. Nonetheless, Figure 3.21

encompasses the full useful phasing range, with outside trajectories
that certainly do not experience any encounter with Earth.

Evidently, a strong link between the true anomaly f at the spheroid
boundary and the spheroid angle θ exists, highlighted in Figures

2 Its value becomes arbitrary, and usually set equal to 0.
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Figure 3.21: Visualization of phased trajectories with the γ = 100 spheroid,
for CJ = 2.95 and the 3 : 2 resonance trajectory with Earth.

3.22a and 3.22b. In particular, the previously defined spheroid angle θ
coincides with the inner definition of Figure 3.22a and is also depicted
in the color scale in all the presented Figures (3.21, 3.22a, 3.22b).

The outer definition of the angle can also be seen as

cos θouter = r̂Heliocentric · r̂Sun−Earth (3.65)

whereas for the inner one

cos θinner = r̂Earth−centric · r̂Sun−Earth (3.66)

with the "hat" symbol denoting the direction unit vectors, providing a
purely geometric link between inner and outer angles for any point on
the spheroid surface, dependent only on the Sun-earth distance and
the size of the spheroid. Recalling the arbitrary choice of Ω associated
with the planar problem, if the node line is set along the Sun-Earth
line, then it holds that

θouter = ω+ f (3.67)

with ω the pericenter anomaly. In particular, defining the rotating right
ascension of the ascending node Ωrot as

Ωrot = Ω0 −nt (3.68)

where n is the angular rate of the rotating frame. In other words, for
the purposes of this analysis the rotation of the Sun-Earth synodic
frame can be seen as a constant-rate backward precession of the orbit’s
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(a) Inner spheroid angle

(b) Outer spheroid angle

Figure 3.22: Visualization of phased trajectories (colored dots) with the γ =

100 spheroid, for CJ = 2.95 and the 3 : 2 resonance trajectory
with Earth. Inner and outer spheroid angles marked with the
black lines.

right ascending node. If Ω0 is chosen as the Sun-Earth direction at the
time t = 0, then letting Ω = Ωrot pairs θouter with the heliocentric
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orbital elements. In summary, θouter can be seen as equal to the
rotating longitude l, making the phasing of the orbit, i.e. the particular
point of entrance/exit to/from the spheroid, function of the orbital
parameters and the initial condition only. Figure 3.23 shows the link
between the rotating longitude l and the spheroid angle θ. Since θ
does not have ambiguous values (opposite to l, near the spheroid
upper and lower edges, as Figure 3.22b also shows), the spheroid
angle θ is chosen as the reference phasing parameters in the following
analyses.

Figure 3.23: Link between the spheroid angle θ and the rotating longitude
l = θouter in the case of Earth.

Since the presented phasing definition acts only on Ω and no as-
sumption has been introduced on the sum between Ω and l, it can
be generalized to the case of trajectories with i ̸= 0 without any
change, provided that generic spherical geometry rules or general
Cartesian/Keplerian conversion routines are used. The only modifica-
tion appears in the spheroid-phased generated trajectories, that would
become tightly linked to the chosen inclination and, in general, would
include all the four solutions arising from the two possible values of
Ω.

For the sake of clarity, Figure 3.21 does not show the trajectories
going inside the spheroid, letting Earth and the spheroids to appear in
the picture. This observation opens a new characterization possibility
for the trajectories generated starting from a given (a,CJ) pair. Figure
3.24 shows a complete classification of the spheroid-phased trajectories.
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Figure 3.24: Topology of spheroid-phased trajectories.

In particular, based on whether the trajectories is entering or exiting
the spheroid, it can be considered as either ingoing or outgoing. This
classification follows the simple dot product between the Earth-centric
position and velocity vectors rEC and vEC:

• ingoing trajectories are characterized by rEC · vEC < 0;

• outgoing trajectories feature rEC · vEC > 0.

Tangent trajectories are found with rEC · vEC = 0, and are neither
ingoing nor outgoing. This criterion is a good approximation for
spheroids with small eccentricity, a general and more refined version
would replace the direction rEC with the local perpendicular direction
to the spheroid surface. Additionally, based on the true anomaly value,
a trajectory can be:

• inbound, with −π < f < 0 or π < f < 2π;

• outbound, with 0 < f < π or −2π < f < −π.

The values f = 0 and f = π correspond to the limit pericenter and
apocenter cases, which are neither inbound nor outbound.

3.4.3 Keyhole maps and generalized orbital resonances

Having extended the encounter definition and characterization, this
section tries to study the effects of flybys in the extended sense, in-
cluding shallow interactions and using the CR3BP. In particular, new
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insight on impacts that nominally lie outside the traditional orbital
resonances is sought for.

The definition of trajectory phasing presented in Section 3.4.2 fixes
the remaining degree of freedom to completely map the set of en-
counters, for a given Jacobi constant and semi-major axis pair (CJ, a).
Similarly to what presented in Figure 3.21, for 100 evenly spaced
semi-major axis values within the interval between the 3 : 2 to the
1 : 2 resonances, a grid of 200 evenly spaced points on the spheroid
angle θ is generated, all with the same Jacobi constant CJ = 2.95.
Then, the trajectory set is first filtered for non-physical cases (e.g. un-
reachable points on the spheroid for the given (CJ, a) pair) and split
according to the trajectory topology of Figure 3.24. The first distinction
between ingoing and outgoing trajectories determines the dynamical
model used in the study: ingoing trajectories are propagated up to the
spheroid exit (unless an impact is detected), whereas outgoing orbits
are propagated forward in time for 11 years3, or until a new entrance
in the γ = 100 Earth’s spheroid is detected.

The ingoing family is split into inbound and outbound, and the
propagated trajectories are used to train two simple surrogate models
that replace the full CR3BP propagations, yielding a model of impact
probability density as function of Jacobi constant, semi-major axis and
spheroid angle θ, according to the following steps:

1. the spheroid angle θ∗ associated with the minimum altitude
encounter is found, for each sub-family and each value of semi-
major axis;

2. the θ∗ values are used to train a cubic polynomial regression,
that predicts the spheroid angle of maximum flyby depth as
function of the semi-major axis, for each sub-family;

3. finally, a standard deviation value equal to the spheroid angle
discretization step (0.01π, for the 200 angle samples of this case)
is introduced on the modeled θ∗.

The model represents the mean spheroid angle about which an impact
is most likely to be found. Figure 3.25a samples a few semi-major
axis values and shows the associated probability density functions,
whereas Figure 3.25a shows the full surrogate model.

The outgoing family results in propagated trajectories that either end
at the end of the integration span, or that experience a new spheroid
entrance. For the latter case, the entrance spheroid angle θ̃ is computed,
together with the true anomaly f̃ at the end of the simulation, to detect
whether the entrance is happening with inbound or outbound nature.
Trajectories with inbound exit resulting in an inbound entrance (or
alternatively, outbound exit to outbound entrance) would resemble
full resonances. Instead, trajectories with a switch in the sub-family

3 The time frame of this analysis of this case
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(a) Sampled probability density functions

(b) Overall probability density function

Figure 3.25: Surrogate model for the impact probability density.

from exit to entrance would look like pseudo resonances, as the next
encounter would happen in a position on the heliocentric orbit much
different from the one at exit.

Figure 3.26 represents the trajectories of the outgoing family with
dots, plotting the pair semi-major axis a (on the x axis) and spheroid



110 encounter characterization and keyhole maps

angle θ (on the y axis and splitting the inbound (bottom) and out-
bound (top) sub-families, for the CJ = 2.95 case. The predicted impact
probability density associated with each outgoing initial condition
is given in the color scale, from low (yellow) to high (blue). Outgo-
ing trajectories that do not result in a new spheroid entrance, within
the analyzed time span, are marked with a lighter yellow color, and
are assimilated to low impact probability areas in the Keyhole map.
The yellow tone is kept slightly different to remark the distinction
between trajectories re-entering the spheroid and not. Each sub-plot
in Figure 3.26 is a Keyhole Map: keyholes become clearly visible as
the regions of the Keyhole Map that tend toward the dark blue color.
The light grey lines represent the nominally resonant semi-major axis
values in the 11 year time span, and provide a useful reference for the
keyhole identification: since many of the predicted keyholes appear
outside a line of nominal resonance, the proposed impact probability
mapping strategy has successfully extended the analysis to nominally
off-resonant trajectories.

Figure 3.26: Sun-Earth Keyhole Map up to one encounter and 11 year time
span.

The Keyhole Map in Figure 3.26 is constructed by evaluating the
surrogate model for the impact probability density at the immedi-
ate next spheroid entrance, after propagating the trajectories in the
two-body problem: in other words, while the Keyhole Map has the
initial outgoing spheroid angle θ on the y axis, the spheroid angle
at the end of the propagation (i.e. at the next spheroid entrance) is
used for the evaluation with the ingoing surrogate model. Additon-
ally, the surrogate model to be evaluated (inbound vs outbound) is
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chosen according to the true anomaly at the spheroid entrance, for
each propagated trajectory. Essentially, the surrogate model is what
provides the color to each dot in the Keyhole Map, allowing regions
of high impact probability to be highlighted. The peculiar shape of the
Keyhole Map is due to the chosen value of Jacobi constant: specific
semi-major axes are physically prevented to feature some inbound
or outbound conditions, because of the constraint in the eccentricity
value, that results in a threshold of the spheroid angle that certain
trajectories can reach.

Figure 3.27 proposes a validation of the Keyhole map approach.
The samples at the center of each of the three Keyholes, among the
ones already available from the generation of the Keyhole map, are
selected and propagated following a two-body heliocentric model
up to the spheroid threshold. Here, the propagation switches to the
CR3BP. The propagated trajectories are shown in corresponding colors
to the highlighted keyholes, i.e. in blue, red, and magenta. While the
blue trajectories is supposed to be in nominal resonance with Earth,
the propagation result is not an impact, rather a very deep flyby. This
may be explained by the non-perfect phasing, which leads to a still
dangerous encounter although not colliding. Similarly, the magenta
trajectory also experiences a low-altitude encounter, although not
being in strict resonance with Earth. Finally, the red trjaectory ends it
propagation with an Earth impact, despite again being nominally out
of the resonance condition. In this case, the encounter phasing perfectly
compensates the non-resonant orbital period, leading to a subsequent
impact that could not be predicted using two-body approaches.

Figure 3.27: Keyhole impacting trajectory prediction examples.
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The results shown for the Keyhole Map validation in Figure 3.27,
in particular two out of the three trajectories not impacting Earth, do
not represent an incomplete validation. Rather, the Keyhole Map is
a statistical graphical tool that has the sole purpose of highlighting
regions in the semi-major axis and phasing space that are intrinsically
associated to high impact probability levels. In fact, all the trajectories
propagated in Figure 3.27 experience a very low-altitude encounter, in
the order of 1000 km: this proves the success of the Keyhole Map in this
predictions. The map suggests that impacts are indeed located around
those regions, even in nominally off-resonant cases. The Keyhole Map
can support the analysis of impacting trajectories, the recommended
use superposes an outgoing probability distribution, given in terms
of semi-major axis and exit spheroid angle, for the computation of
impact probabilities corresponding to regions in the Keyhole Map that
are "wet" by real uncertainty distributions.

3.5 summary

3.5.1 Analytical methods for flyby perturbations

As in Hori’s approach [66], the choice made for the integration constant
is not arbitrary. In the flyby case, that integration constant makes
the difference in obtaining (or not) a physically correct analytical
solution. The main problem straightforwardly suggests to impose null
perturbing effects at infinity, as at great distances from the primary
the non-uniform gravity field of the planet flown by is negligible.

Yet, in practical examples for the Solar or a planetary system, the
great distances from the flyby body are characterized by stronger
effects of the main attractor of the whole system. The analysis shown
in Section 3.2.4.5 shows that a Hori-like boundary condition, using the
Keplerian solution at infinity, is not suitable for the third body case:
this unique setting corresponds to the second order term only being
null, rather than the full original potential. In addition, trajectories
such that cos2ψ = 1/3 is never verified may exist. Considering the
higher order terms, a value of cosψ that makes all the expansion
terms to vanish cannot be found. This aspect remarks that the method
presented in Section 3.2 remains valid for the main problem only, or
more in general for vanishing perturbations at infinity.

In clear contrast with the improvements obtained for the main prob-
lem case, the Keplerian boundary condition where the perturbing
potential vanishes provides even worse predictions than the unper-
turbed case, without converging toward the numerically simulated
trajectory for the same physical model. Other types of boundary
conditions should be explored in dedicated works, for instance the
magnitude difference between the perturbation and the Keplerian
term in specific regions of the hyperbolic trajectory.
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3.5.2 Dynamic flyby characterisation: Jacobian Eigenvalues

A flyby characterization approach that accounts for the dynamical
nature of the encounter is proposed, focusing on the changes on the
dynamics caused by the body flown by. The actual smooth transi-
tion of the motion from interplanetary to planetary is also modeled,
highlighting regions of space where none of the two body is clearly
dominating, and approximating the dominance that each body has in
each point of the planet neighborhood.

Apart from the regions nearby the critical distance and along the
zero-velocity curves, the proposed parametric analytical model accu-
rately predicts the loci of points of common Jacobian error. Setting
the parameter γ = 1 allows the use of the "critical" spheroid as robust
flyby detection criterion. Given the parametric nature of the criterion,
this approach is suitable improve the characterization of shallow en-
counters. A specific value of the parameter γ can successfully bound
the corresponding region of the Jacobian error surrounding the critical
distance, meaning that, within those analytical boundaries, variations
on the nominal trajectory can be expected, against the pure two-body
dynamics. Future works should address this point in deeper detail,
aiming at finding a direct link between the value of γ and the ex-
pected maximum or minimum variations, perhaps on relevant orbital
element-based indicators.

3.5.3 Keyhole Map

The Keyhole Map implements the Jacobian spheroids as a robust
threshold to distinguish regions of space where a CR3BP approach
should be preferred to the pure two-body motion around the primary.
The overall logic relies on this domain split, considering a sequence
of two-body and CR3BPs instead of an overall N-body model: since
the influence of any celestial body outside its own spheroid should be
negligible, then such effects should be statistically irrelevant, provided
that all the "major" interactions are instead included. This approach
should ensure a high computational efficiency, given that it keeps the
dynamics as simple as possible, without the need of ephemeris models
or data. Future works should develop the Keyhole Map keeping a fo-
cus on this aspect, aiming at statistically validating this statement: only
then can the Keyhole Map be proved a suitable candidate to replace
the existing MC-based technique for the computation of interplanetary
impact probabilities.

The application of the Keyhole Map to the detection of Earth key-
holes proves the potential in the characterization of nominally off-
resonant impacting trajectories. Despite shown for a limited time
interval and for a single encounter, the concept can be extended to
longer time spans and the multiple encounter case. Since, in the CR3BP,
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for multiple encounters with the same celestial body the Jacobi con-
stant/Tisserand parameter is conserved the same surrogate model
used for the definition of the high impact probability phasing param-
eters can be used throughout all encounters. The major extension is
represented by the required chaining of multiple flybys, that results
into the ingoing conditions being mapped to new outging trajectories.
Figure 3.28 represents the newly mapped post-encounter trajectories,
resulting from the same simulations used to train the surrogate model
in Section 3.4.3. The color scale shows the flyby depth, i.e. the distance
from Earth’s surface. As expected, the map’s shape resembles the
Keyhole Map of Figure 3.26, with the encounter effect that becomes
evident as a "sliding" along the minimum altitude line.

Figure 3.28: New outgoing trajectories after the encounter.

The complete modeling of the encounters, in terms of including the
effects of Figure 3.28 in the map chaining process required to build a
multi-encounter analysis, is the next key step for the extension of the
Keyhole Map theory. Given the importance of distance interactions,
these effects should be accurately mapped, to ensure that the robust-
ness associated with the γ = 100 spheroid definition is preserved.
Eventually, the Keyhole Map should also include out-of-plane trajec-
tories and interactions with other planets. The former task may in
some cases be neglected, as for instance most interplanetary missions
preserve nearly planar initial nominal orbits, which includes their dis-
posal objects. The latter may instead be studied, since encounters with
a third body may trigger new impacting pathways with, in general,
any body in the considered system. The main difficulty of this case is
the modification that would inevitably affect the Jacobi constant. The
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map chaining would then need to follow a tree-based logic, with only
maps in the same branch that can follow the simplest multi-encounter
stacking principle.

In the end, the multi-body and/or multi-encounter Keyhole Map
should not look much different from Figure 3.26: denser regions and
new Keyholes may appear, although its shape would be preserved.
Similarly, it should be used combined with a real-case probability
distribution given in terms of semi-major axis and spheroid angle, so
that only the relevant regions of the domain may contribute to the
final impact probability computation. The Keyhole Map remains a sta-
tistical tool useful to gain insight on potentially dangerous trajectories,
described as their flyby exit: it is not meant to be a complete replace-
ment of trajectory simulators. Yet, the promising preliminary results
proposed in this chapter highlight a significant potential, for the re-
duction of the computational burden of impact probability-related
tasks.





4
P I C A R D - C H E B Y S H E V I N T E G R AT I O N A N D
AU G M E N TAT I O N

As any other engineering application that involves simulated data, the
choice of the numerical solver that handles the propagation of orbits
plays a fundamental role in the final accuracy and efficiency of the
simulation software. Each numerical integration scheme may have
its own advantages and drawbacks: for instance, the Runge-Kutta-
Fehlberg RKF78 scheme is significantly more efficient than the Runge
Kutta RK45 scheme due to its higher order. However, it does not
feature an exact interpolation routine, while the RK45 scheme does
[61].

Propagation algorithms differ in many ways, and a general and
complete characterization of the currently adopted techniques in the
astrodynamics field is beyond the scopes of this dissertation. Among
the main features worth mentioning for the proposed application, the
choice of single-step or multi-step routines is the first aspect that can
be considered. For instance, JPL uses an Adams-Bashforth scheme
for the generation of planetary ephemeris data [2], whereas state-
of-the-art software such as SNAPPshot [29] and CUDAjectory [57,
128] implement the aforementioned RKF78 method. Romano [125]
explored the use of a wide class of schemes for interplanetary N-body
propagation and planetary protection applications, comparing both
implicit and explicit routines, fixed-step and variable-step methods,
and also exploring the use of Symplectic integrators: these schemes
take advantage of the Hamiltonian structure of the Cartesian formula-
tion of the orbital dynamics, and enforce the conservation of the total
orbital energy preventing its secular drift due to truncation errors.
Romano found that these schemes become particularly effective in
the case of interplanetary, distant propagation, losing however their
advantage in case of flybys [125]. In conclusion, the broad analysis
proposed by Romano demonstrated that the choice of the numerical
simulation scheme does not affect the overall accuracy of the MC
planetary protection analysis, as the impact of the initial uncertainty
widely outclasses the different error accumulated by the different
algorithms.

This chapter explores the use of a different numerical simulation
concept for interplanetary simulations, that does not rely on a forward
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step taken during the propagation, rather starting from an initial full
trajectory guess that is refined through an iteration process. Provided
a sufficiently high simulation accuracy, the choice of numerical scheme
does not affect the results of a PP/SDM analysis, nevertheless signif-
icant improvements in terms of efficiency may still arise by a more
optimal use of computational resources. In this sense, this chapter
studies the performance of the PC (PC) method [119] for interplanetary
simulations, and proposes a few applications and extensions where
this technique may excel. An introduction to the mathematical formu-
lation of this method is given in Section 4.1, followed by the theoretical
foundations of an interplanetary resonant trajectory optimization ap-
proach, that relies on the fixed-point nature of the PC iterations to
minimize the cost associated to reading ephemeris data, in Section
4.2. Section 4.3 then extends the numerical scheme to the integration
of augmented systems, aiming at maximizing its computational per-
formance and making the scheme more suitable to massively parallel
computations. Finally, application test cases covering the concepts of
the chapter are presented in Section 4.4.

4.1 pc numerical scheme

Picard iterations [61] are an analytical technique that can be used to
obtain an approximation of the solution of initial/boundary value
problems. Denoting the state of dimension n with x, the indepen-
dent variable with t, the initial/boundary condition with x0 and the
dynamics function with f(x, t), the problem is defined as:

dx
dt

= f(x, t), x0 = x(t0) (4.1)

Starting from an initial approximation x(0)(t) of the actual solu-
tion x(t) in the interval

[
t0, t

]
of the initial/boundary value problem

presented in Equation (4.1), the i-th Picard iteration improves the
previous approximation x(i−1)(t) of x(t) with x(i)(t) as in [61]:

x(i)(t) = x(0)(t) +
∫t
t0

f
(
x(i−1)(s), s

)
ds (4.2)

The method converges for a good enough initial approximation
x(0)(t) and for i −→ +∞ [61].

In the analytical Picard iteration context, performing more than one
iteration is in general hard. The increasingly complex expressions for
x(i)(t) make it difficult to retrieve closed form solutions after the first
2-3 steps [8]. At the same time, numerically computing the integral
functions by quadrature might not suffice in accuracy, as only the first
few iterations in general improve the function approximation. In the
attempt to develop parallelizable routines for the integration of the
dynamical motion, the PC method was built combining the Picard
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iterations with the Chebyshev polynomial approximation [119]. A
possible derivation of the method that follows the work of Fukushima
[48] can be summarized in three steps:

1. Select a good enough initial guess x(0)(t).

2. Approximate f(x, t) and x(0)(t) with their Chebyshev polynomial
expansion.

3. Perform a Picard iteration to update the coefficients of the inter-
polating Chebyshev polynomials.

The Picard iterations halt when the stopping conditions are met, based
on the maximum difference between two consecutive iterations drop-
ping below some user-specified tolerance.

The so defined method allows to easily perform several more Picard
iterations than the analytical case. The involved expressions remain
always of the same type, i.e. Chebyshev polynomials. The function
approximation becomes an interpolation through nodes that should
be close to the true trajectory, instead of a global function whose
value after the iterations still depends on the initial guess choice.
Furthermore, few iterations suffice to drop below a low tolerance
if the real solution x(t) differs from the initial guess x(0)(t) only
because of small perturbations [61]. Starting from the unperturbed
Keplerian solution for the generic weakly perturbed two body problem,
a relatively fast convergence of the method is ensured [48]. In the
context of orbital simulations, Macomber [93] referred to this type of
initial guess as warm-starting the PC iteration method, because the
analytical solution of the dominant dynamics part is used to reduce
the number of iterations required. Differently, "cold start" has been
defined by simply setting all the trajectory samples as equal to the
initial condition. In general, the closer the initial guess to the true
trajectory, the lower the number of iterations will be. Semi-analytical
initial guesses or results of propagations from simpler models are also
an option, and in the case of three-body-like perturbed trajectories
would be a better choice compared to the Keplerian approximation.
Macomber also introduced the concept of hot start in the case of time
spans covering multiple Earth planetary orbits [93], where the first
orbit was used to compute the difference between the Keplerian guess
and the converged trajectory. The near-periodicity of the spherical
harmonics perturbation was then exploited, including this difference
in the starting trajectory, achieving a further reduction of the iterations
required for convergence.

4.1.1 Matrix form for vectorized and parallel computation

The suitability of the method for parallel and vector implementation
has been studied by Shaver [133] and Fukushima [49], in particular
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for the evaluation of the dynamics function and the execution of the
matrix multiplications. More recent works over this technique by Bai
and Junkins developed the modified PC method [9] and a CUDA®

implementation for NVIDIA GPUs [8]. For compactness and to better
highlight the parallelization possibilities, the method is presented
following the matrix notation introduced by Koblick et al [79].

For N Chebyshev nodes and the integration interval [t0, tN−1], the
independent variable t is sampled for j = 0, 1, ..., N− 1 up-front as

tj = ω2τj +ω1 (4.3)

with

τj = − cos
(

jπ

N− 1

)
, ω1 =

tN−1 + t0
2

, ω2 =
tN−1 − t0

2
(4.4)

Given the n-dimensional sampled states y(i−1)(tj) = y(i−1)
j , j =

0, ..., N as a matrix y(i−1) of dimension N×n computed at the Picard
iteration i− 1, the whole process can be summarized in three sequen-
tial steps to obtain the states at the iteration i. The first one collects
the evaluations of the dynamics function f in the N×n force matrix F
[79]:

F(i)
j+1 = ω2 f

(
y(i−1)
j , tj

)
, j = 0, ..., N− 1 (4.5)

Secondly, identifying with A, C, S the method’s constant matrices
whose definition can be found in [79], the N×n matrix B is obtained
by rows as

B1 = SAF + 2y0, Bj = AF, j = 2, ..., N (4.6)

Third and last, the N×n matrix of the state guesses y(i) for the i-th
Picard iteration is

y(i) = CB (4.7)

The iteration process stops when the maximum state difference
between two consecutive Picard iterations y(i) and y(i−1) drops below
a specified relative or absolute tolerance, upon user’s choice.

Despite the proved theoretical convergence, large integration spans
may lead to numerical instabilities, due to the cumulation of round-off
errors even with largeN, as multiple orbital revolutions take place [8, 9,
48]. Fukushima [48] suggests a piece-wise approach as a workaround,
which has been implemented in the application of Section 4.4.1.2 and
uses the modified PC method to integrate orbit by orbit in sequence,The proposed

implementation
automatically
handles either

forward or backward
integration

until the end of the span.
The core steps of the proposed algorithm follow the presented

scheme [8, 9], together with the automatic generation of the Keplerian
initial guess spanning one nominal orbital period.
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4.1.2 Latest developments of the method

The modified PC method has been continuously developed in the
past few years, both in its formulation and implementation sides, and
outlining possible applications for Earth orbits where it contributed
to increase the efficiency of the numerical analyses. Junkins et al [76]
analyzed the performances of the method comparing the efficiency
against the Runge-Kutta-Nystrom 12(10) integrator, proposing also a
second order PC version. Later, Koblick and Shankar [80] extended
the analysis to the propagation of accurate orbits testing difference
force models with NASA’s Java Astrodynamics toolkit. Woollands et al.
[165–167] applied the method as numerical integrator for the solution
of the Lambert two-point boundary value problem, also assessing the
benefits of adopting the KS formulation of the dynamics, and propos-
ing a solution for the multi-revolution trajectory design. Swenson et
al. [141] applied the modified PC method on the circular restricted
three-body problem, using the differential correction approach. Singh
et al. [137] used the method as the numerical integration scheme for
their feasibility study on quasi-frozen, near polar and low altitude
lunar orbits, including the N-bodies and the spherical harmonics per-
turbations. The fixed point nature of the method was exploited by
Koblick et al. [81] to design low-thrust trajectories as an optimal con-
trol problem, discretizing the control impulses and also included the
Earth’s oblateness J2 perturbation. Macomber et al. [92] introduced the
concepts of cold, warm, hot starts of the method, addressing possible
efficiency improvements by means of better initial conditions, and
variable-precision force models taking advantage of the fixed-point
nature of the algorithm. Woollands et al. [164] extended the optimal
low-thrust design to a high-fidelity model for the non-spherical Earth,
considering an arbitrary number of spherical harmonics in the perturb-
ing acceleration. Woollands and Junkins [163] developed the Adaptive
PC method, including an integral error feedback that accelerates the
convergence of the Picard iterations and an empirical low to deter-
mine segment length and polynomial degree of the method, based
on previous stability analyses. Atallah et al. [7] compared the method
with other sequential integration techniques on different Earth-based
orbital cases.

4.2 fixed-point high-precision resonant flyby optimisa-
tion

Orbital resonances have been exploited in several ways for mission
design purposes and in many different contexts, such as the Earth-
Moon case (for example in the works of Topputo et al. [143], to reach
the moon with low fuel consumption, of Ceriotti et al. [27] to increase
the coverage of polar orbits, and Short et al. [134], as the scientific orbit
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of the Transiting Exoplanet Survey Satellite mission) or the exploration
of Jupiter’s and Saturn’s moon systems (for example the works of
Lantoine et al. [86], Campagnola et al. [21, 22] and Vaquero et al. [150]).
The planned introduction of the Lunar Gateway in 2024 has drawn
the attention of more recent works on the cis-lunar space. The 9:2
resonant Near Rectilinear Halo Orbits are extensively analyzed by
Zimovan et al. [171], both as possible candidates for the hosting the
Gateway, and in terms of the transfer possibilities toward other cis-
lunar orbits by McGuire et al., with and without the aid of low-thrust
propulsion [99]. Singh et al. [136] investigate eclipse-aware low-thrust
transfer strategies to such orbits, proposing a method whose concept
resembles the one of this section, leveraging the perturbation effects
through the use of high-fidelity analogues of the invariant manifolds
of the Circular Restricted Three Body Problem. Other applications
also regard pure interplanetary orbits, for instance the ESA/NASA
mission Solar Orbiter [41] as the latest example: resonant trajectories
with Venus are exploited to raise the orbital inclination up to almost 30

degrees [43] over the ecliptic, to better observe the near-polar regions
of the Sun.

In this last case, the use of resonant close encounters allows to
save a considerable amount of fuel because of the repeated sequential
flyby maneuvers. Nonetheless, such a phenomenon remains difficult
to accurately model and understand, especially at the boundaries
of the planet’s SOI where none of the two dynamics, planetary or
interplanetary, has a dominant role. This effect is amplified for shallow
encounters, where either the small relative velocity with respect to
the flyby planet or the high miss distance worsen the patched conics
approximation. However, accurate predictions are required for steep
close approaches too: a small deviation from the nominal condition
may be amplified by several orders of magnitude during the flyby,
requiring trajectory correction maneuvers.

In this section, the basic formulation of the modified PC integration
method [9] is combined with the b-plane flyby prediction capabilities
and applied to the design of multi-flyby trajectories in reverse cascade.
The exit requirements of the current flyby are computed to meet the
entrance condition of the next one. Consequently, the back-integration
of the optimized exit state yields a new entrance condition to be
targeted, within a dynamic programming-like backward recursion
logic. The proposed method extends an unperturbed version of the
design algorithm [95], that exploits the b-plane formalism to design a
series of two body resonant orbits in the patched conics case. The here
proposed strategy uses the unperturbed b-plane solution to prune
the trajectory design in the perturbed environment. Starting from
the Keplerian initial guesses for the patched conics interplanetary
arcs, a continuity link between the planetary and interplanetary legs
is introduced at the boundaries of the planet’s SOI. The core of the
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presented approach numerically integrates the full dynamics using
the PC method, embedded in a multi-layer optimization problem
that minimizes an artificial correction at a user-specified point in the
interplanetary cruise. This application also tests the PC integration
techniques to interplanetary orbits, where the fixed point nature of the
algorithm introduces further benefits compared to the sole Earth case.
In particular, the numerical propagation scheme is used to remove the
patched conics approximation, and to surf the complex perturbing
accelerations from the N-bodies and general relativity. In summary,
the b-plane formalism is used for both the preliminary design of the
patched-conics initial trajectory guess and for the description of the
optimization variables. The PC integration scheme is then used at the
core of the optimization, exploiting the fixed point nature for increased
computational performance when including the effects of N-bodies
and general relativity perturbations.

4.2.1 B-plane search of optimal resonant flyby exit state

The b-plane formalism presents an analytic theory for the character-
ization of flybys, based on a manipulation of Öpik’s variables [69]
originally proposed by Carusi et al. [25], and further developed by
Valsecchi et al. [147–149]. Fixed values of the post-encounter semi-
major axis are represented as circles in the b-plane, which can therefore
be targeted a priori as the link with the orbital period is well known
[148].

4.2.1.1 Close encounters in the b-plane

Assuming the planet in a circular orbit around the Sun, an interme-
diate frame needs to be defined for the b-plane flyby representation.
Such a frame was first introduced in the framework of Öpik’s theory
[69] by Greenberg et al. [59] and later used by Carusi et al. [25] for
the characterization of close encounters, aiming at finding analytical
expressions for post-flyby orbital parameters. Considering a frame
centered on the planet’s center of mass, the (x, y, z) axes are directed
as the heliocentric position, velocity vp and angular momentum of the
planet, respectively, as shown in Figure 4.1. U and U ′ denote the pre-
encounter and post-encounter planetocentric velocities, respectively.

All the involved quantities are non-dimensional, such that the
planet’s distance from the Sun and the Sun’s gravitational param-
eter are both equal to 1. The non-dimensionalization gives in turn
|vp| = 1 and makes the orbital period of the planet equal to 2π. The
angles φ, φ ′ and χ appear in the works of Carusi and Valsecchi [25,
148] for other analyses, whereas are not necessary for the purposes
of the presented design algorithm. γ identifies the flyby turn angle, θ
and θ ′ the pre and post encounter angles between the corresponding
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Figure 4.1: Graphical representation of the reference frame of analysis. Pic-
ture re-drawn based on original from [25].

planetocentric velocity U or U ′ and the planet’s velocity vp, and ψ
identifies the direction for the rotation of U into U ′ caused by the
flyby, measured counter-clockwise from the major circles identified by
U and vp.

The flyby effect, interplanetary-wise in any patched conics approxi-
mation, is modeled as an instantaneous rotation of the planetocentric
velocity vector U without magnitude change. With the above defined
quantities the b-plane reference frame can be introduced, whose axes
(ξ̂, η̂, ζ̂) are defined as by Öpik [69]:

η̂ =
U
|U|

; ξ̂ =
vp × U
|U| |vp|

; ζ̂ = ξ̂× η̂. (4.8)

In the following lines, the definition b-plane will be used to identify
the plane perpendicular to the η̂ axis, because

ξ2 + ζ2 = b2 (4.9)

with b the impact parameter as in Milani et al. [108].
Recalling [25], from an interplanetary point of view the flyby can be

modeled as an instantaneous rotation of U into U ′. The superscript ′

is used to denote the post-encounter quantities.

4.2.1.2 B-plane circles

A certain post-encounter semi-major axis a ′ is fully determined by θ ′

[148]:

cos θ ′ =
1− 1/a ′ −U2

2U
(4.10)

From the b-plane properties and some spherical geometry analysis,
the b-plane locus of points of a given post-encounter semi-major axis
a ′ is a circle centered on the ζ̂ axis [148]:

ξ2 + ζ2 −
2c sin θ

cos θ ′ − cos θ
ζ+

c2(cos θ ′ + cos θ)
cos θ ′ − cos θ

= 0 (4.11)
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which is equivalent to

ξ2 + ζ2 − 2Dζ+D2 = R2 (4.12)

with the center’s ζ coordinate D and the radius R explicitly defined as

D =
c sin θ

cos θ ′ − cos θ
R =

∣∣∣∣ c sin θ ′

cos θ ′ − cos θ

∣∣∣∣ (4.13)

where, analogously to θ ′, θ is the angle between U and vp, and
c = µp/|U|2. As already mentioned, any reachable post-encounter
semi-major axis can be drawn as a circle in the b-plane, and need
not be resonant. The sole exception are flybys that do not modify the
value of a, and thus feature θ ≡ θ ′, which are defined as the straight
horizontal line [148]:

ζ = cot θ (4.14)

4.2.1.3 Perturbations in the b-plane

Previous results led to the semi-analytical definition of the b-plane
circles arising from the effects of a generic perturbation source [95]. All
the perturbing effects can be condensed in three angular variations:

• of the turn angle γ, ∆γ;

• of the angle ψ that identifies the direction of the rotation of U
into U ′, ∆ψ;

• of the post-encounter angle θ ′, ∆θ ′.

Figures 4.2a and 4.2b compare the resonant circles drawn with the
unperturbed theory (Figure 4.2a on the left) and the new perturbed
model (Figure 4.2b on the right) with the simulated resonant samples,
highlighted in yellow, coming from the PP analysis of the upper stage
of the launcher of Solar Orbiter [43, 126]1. The b-plane circles, on
purpose nearly visible and drawn in light grey, have become the black
bounded belt shaped loci of points, because also almost perfectly
phased resonant returns have been considered extending each circle
over its own neighbourhood.

In the case of Figures 4.2a and 4.2b the angles ∆γ, ∆ψ and ∆θ ′

remain small in magnitude, nevertheless the difference they make in
the characterization of the b-plane circles is significant. This gives a
further proof to the need of precise models for the flyby phase, which
is required if the desired post-encounter prediction must be accurate.

1 More detailed information about this analysis and the related validation can be found
in the work of Colombo et al. [29], Colombo et al. [30] and Masat [95].
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(a) Standard b-plane resonant circles. (b) Perturbed b-plane resonant circles.

Figure 4.2: Visual accuracy improvement of the b-plane circle model. The
analytical belts are bounded by the black circles, the yellow dots
highlight the numerically detected resonances on the whole sim-
ulated cloud of initial conditions.

4.2.2 B-plane for backward-recursive flyby design

Significant trajectory deflections can be achieved using flybys, how-
ever such an amplifying effect requires a high precision measure of
the entrance state to the planet’s SOI. In fact, it is well known that
even small errors on the entrance conditions can lead to completely
undesired exit states, which might be disastrous for the forthcoming
mission phases. This issue can be mitigated increasing the precision
of the models used to simulate the trajectories, nonetheless the high
computational complexity of some perturbation effects hinders their
practical use for the mission analysis. Among those, other than their
computational burden, complex gravitational fields generated by the
N-body environment build an overall chaotic dynamical system. This
makes it extremely difficult to search for solutions similar to each other,
since such systems are characterized by diverging trajectories, even for
small differences on the initial conditions. This work introduces an effi-
cient computational framework to account for such perturbing effects,
taking also advantage of the chaotic force environment to minimize
the artificial trajectory correction maneuvers. Being the goal the devel-
opment of the design technique itself to exploit chaotic perturbations,
without focusing on the particular test-case trajectory, solar radiation
pressure effects are neglected. On top of the Newtonian gravitational
effects, general relativity contributions are included as well, to high-
light that even perturbations with the most complex physics can be
exploited by the proposed setup. General relativity effects have been
implemented as in [30, 94], based on the post-Newtonian model of
the Einstein-Infeld-Hoffmann equations as presented by Seidelmann
[129]. The same set of equations is used by JPL for the generation of
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ephemerides data [2], which are also used in this work to fetch the
state of the N-bodies at each sampling time tj.

The b-plane theory is used to prune the optimization of a given
multi-flyby trajectory. Knowledge of desired macro-properties are
assumed to be known, such as semi-major axis, eccentricity, inclination
and flyby planets and times, the overall algorithm can be summarized
in two steps:

1. Obtaining the unperturbed patched-conics solution using the
b-plane theory, as explained in Section 4.2.2.1, for the interplane-
tary orbits and the planetocentric details of all of the possibly
multiple flybys.

2. Making the solution continuous in time and space, account-
ing for perturbing effects and exploiting them to minimize the
corrections required to enter subsequent flybys.

The presented steps are explained in more detail in the following
sections.

4.2.2.1 Patched conics b-plane solution for resonant orbits

Valsecchi et al. [147, 149] found an analytical solution for the computa-
tion of the post-encounter orbital parameters for a given b-plane point
at the entrance of the SOI. They successfully identify fixed values
of eccentricity and inclination that conserve the Tisserand parameter,
for each point belonging to a fixed semi-major axis circle. Although
analytical, the relationship is unfortunately given as a full algorithmic
procedure made of highly non-linear equations: this makes it difficult
to build the inverse relation, i.e. to retrieve the b-plane entrance to the
SOI given the full set of post-encounter orbital parameters, even in a
numerical or optimization context as convexity cannot be in general
ensured.

An alternative approach was developed in [95], defining an efficient
optimization problem that uses the spherical geometry relations that
generate the b-plane circles.

Specifically mentioning to the case of resonances, another optimiza-
tion layer was developed [95]: find a set of intermediate resonant
trajectories to gradually move from an initial interplanetary orbit to
a final one, which is not reachable with a single flyby, for a fixed
number of intermediate flybys. A set of intermediate tentative ∆v
targets is defined, which the algorithm tries to match while preserving
the resonance condition. A block-scheme diagram of the unperturbed
design algorithm is given in Figure 4.3.

In the unperturbed and patched conics context, 1-2 seconds only
[95] are required by a MATLAB® implementation of this approach
to design a set of resonant orbits with Venus, which are already very
close to the actual optimized mission profile from Solar Orbiter’s
mission redbook [43].
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Figure 4.3: Block-scheme diagram of the unperturbed design algorithm de-
veloped in [95].

As shown in Section 4.2.1.3, when accounting for perturbing effects
in the b-plane, a modification of the circles is inevitably introduced, as
already shown in Figures 4.2a and 4.2b Nevertheless, the ∆v variation
due to perturbing effects is much smaller than the difference between
the two set of circles, in relative terms [95].

4.2.2.2 PC optimisation with perturbations

A recursive strategy for multi-flyby design can be built connecting
the presented concepts presented. The whole multi-flyby problem
is broken down to a discrete set of orbital arcs, each being covered
between two gravity assist maneuvers. When placed in a backward
design, the proposed algorithm tries to give an optimal solution to
the following question: how should flyby j occur, so that flyby j+ 1
happens according to some already specified features and accounting
for any perturbing effect?

The b-plane design strategy [95] provides a unique entrance (and
thus exit) to the SOI in the patched conics approximation. All that
remains to do, conceptually, is to properly provide the interface con-
ditions between the two legs, accounting for all the possible pertur-
bations sources and replacing the zero/infinity link with a continuity
relationship. In the following lines the subscripts in and out shall
denote the specific points of entrance and exit to/from the SOI for the
current flyby.

Consider the entrance conditions to flyby j+ 1, happening at the
time t(j+1)

in , as the Sun-centric position r(j+1)
in and velocity v(j+1)

in ,
already fulfilling the mission requirements for t > t

(j+1)
in together

with possible future manoeuvres already defined. Consider also a
deep space correction maneuver happening at the time t̃ > t(j)out. The
whole entrance condition

(
t
(j+1)
in , r(j+1)

in , v(j+1)
in

)
is back-integrated in

the perturbed environment with the modified PC method to the time
t̃ < t

(j+1)
in , obtaining the connection state (r̃, ṽ).
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Assume that the unperturbed solution for flyby j is expressed in the
b-plane formalism, which can also mean a manipulation of the solution
of the Lambert problem [97] with the related planetocentric phase and
not necessarily from the already mentioned b-plane algorithm [95],
particularly as:

• the outgoing time t(j);

• the outgoing b-plane coordinates (ξ, ζ);

• the outgoing planetocentric asymptotic velocity U ′.

Based on this, the time spent in the flyby phase δt(j) can be es-
timated with the time law for the hyperbolic motion2, forcing the
remaining b-plane coordinate η such that the distance from the flyby
planet equals the radius of the SOI. In turn, δt(j) can be used to get an-
other estimate, that is the actual exit from the SOI t(j)out = t

(j) + δt(j)/2.
The time t(j)out is actually the outer optimization variable of the pro-
posed algorithm. Intuitively, the time estimate arising from t(j) and
δt(j) might not be the best possible time when to abandon the SOI
starting the phase toward flyby j+ 1 and performing the minimum
cost correction maneuver at t̃, especially because of perturbing effects
acting on the way. The claim that is made treats t(j)out as a very good
starting guess for an outer optimization layer, using a "perturbation"
∆t(j) of the exit time as optimization variable and bounding the search
to a relatively small domain. A similar reasoning is made for the b-
plane coordinates (ξ, ζ) and the outgoing planetocentric velocity U ′,
considering the unperturbed solution as initial optimization guess and
searching over small variations thereof. Theoretical support comes in
this case from the results of the perturbed b-plane circles: the rela-
tively small difference between the selected points in the perturbed
and unperturbed cases suggests to use the variations of the b-plane
coordinates (∆ξ,∆ζ) as two optimization variables and to bound them
again in a relatively small search space. The set of optimization vari-
ables is completed with ∆U ′, a variation of U ′ bounded in a small
domain as well. The use of the b-plane interface between flyby and in-
terplanetary leg combined with the small bounded variation approach
also has a more practical reason: despite working in a backward time
recursion, a perturbed trajectory that minimizes the maneuver cost
at t̃ may in general excessively differ from the mission requirements.
The b-plane intrinsically constrains the interface to be an actual flyby,
furthermore the small and bounded search space should ensure a
perturbed trajectory not too different from the desired profile for
t < t

(j)
in . Given the initial values

(
t
(j)
out, ξ, ζ,U

′) and the generic vari-
ations

(
∆t(j), ∆ξ,∆ζ,∆U ′), the initial conditions

(
r(j)out, v

(j)
out

)
at the

time t(j)∆ = t
(j)
out +∆t

(j) for the forward PC integration from t
(j)
∆ to t̃

are uniquely defined through the following steps:

2 Not reported here. See for instance Vallado [97] for more details.
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1. the flyby planet’s state
(
r(j)p , v(j)

p

)
can be retrieved by reading

the ephemeris database for the time t(j)∆ ;

2. from (ξ+∆ξ, ζ+∆ζ) the third b-plane coordinate η is fixed by
requiring the distance from the planet to equal the radius of the
SOI;

3. the b-plane coordinates (ξ+∆ξ, η, ζ+∆ζ) can be converted to
the planetocentric Cartesian coordinates rpl, because the axes of
the b-plane reference frame are uniquely defined as in Equation
(4.8) and the planetocentric velocity vector is U ′ +∆U ′;

4. The Sun-centric coordinates
(
r(j)out, v

(j)
out

)
are retrieved by the

simple summations r(j)out = rpl + r(j)p and v(j)
out = (U ′ +∆U ′) +

v(j)
p .

The initial value problem identified by
(
r(j)out, v

(j)
out

)
at the time

t
(j)
∆ = t

(j)
out + ∆t

(j) is solved numerically forward in time with the
modified PC method, to the connection maneuver at an arbitrary time
t̃. Using a concise notation, the initial value problem to be numerically
integrated will be identified by the dynamics functions rf(t) and vf(t),
with t(j)out ⩽ t ⩽ t̃, for position and velocity respectively, and setting
the initial conditions:

t0 = t
(j)
out, r(t0) = r(j)out, v(t0) = v(j)

out
(4.15)

In general, the forward-integrated state
(
rf(t̃), vf(t̃)

)
at the correc-

tion maneuver time t̃ will differ from the back-integrated state that
leads to flyby j+ 1 by

∆̃r = rf(t̃) − r̃ ̸= 0 and ∆̃v = vf(t̃) − ṽ ̸= 0 (4.16)

The physics of the correction maneuver performed at the maneuver
time t̃ embeds the mandatory constraint of the position where it is to
happen, theoretically defined as ∆̃r = 0. The motion is numerically
integrated, hence leaving the maneuver position as a pure equality
constraint might severely affect the computational performance of the
optimization: a full PC integration would be required to evaluate the
constraint function, since the optimization variables are nothing but
the b-plane form of the initial state

(
r(j)out, v

(j)
out

)
and the simulation to

the connection time t̃ would always be needed. At the opposite side,
the actual maneuver to be designed may not have any physical sense
if omitted, as the continuity requirement may be lost. Nonetheless,
in a numerical context an absolutely negligible value of ∆̃r suffices
to satisfy the physical meaning of the correction maneuver. These
observations have led to the choice of explicitly implementing the
position constraint with a penalty method [60], that is penalizing the
objective function (the correction |∆̃v| in this case) adding a large term
direct function of the position difference ∆̃r.
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Therefore, defining Jv =
∣∣∆̃v

∣∣, omitting the explicit dependencies
on the optimization variables for conciseness and denoting the com-
ponents of ∆U ′ with ∆U ′(1,2,3), the general maneuver design can be
written as the following optimization problem:

minimize
∆ξ,∆ζ,∆U ′

Jv
(
t̃, t

(j)
∆

)
+αJr

(
t̃, t

(j)
∆

)
subject to |∆ξ| ⩽ ∆ξmax,

|∆ζ| ⩽ ∆ζmax,

|∆U ′(1,2,3)| ⩽ ∆U ′(1,2,3)
max

(4.17)

with Jr =
∣∣∆̃r

∣∣ and the weighting factor α of the penalty method
sufficiently large. The choice of α is in general arbitrary, it will be
discussed in Section 4.4.2.2 for the presented test case.

A block-scheme diagram summarizing all the presented features
and steps of the algorithmic optimization problem in Equation (4.17)
is given in Figure 4.4. The initial unperturbed solution expressed in
the b-plane formalism is converted to a Cartesian state and used to
prune the optimization process. Subsequently, the fixed-point nature
of the PC nature requires to sample an initial trajectory guess on fixed
time nodes: as already mentioned, this feature is also exploited to
perform the sampling of the N-bodies ephemerides data only once,
not only for the PC integration but also for the whole optimization
run. Finally, the "closed loop" that can be seen in Figure 4.4 is entered,
where each objective function evaluation involves the PC forward
integration of some coordinates, generated from the optimization
variables expressed as b-plane variations. The exit conditions strongly
depend on the chosen implementation, although any already existing
scheme could be followed (for instance, relative state and objective
function variations smaller than some user-defined tolerance in this
work, as it is discussed in Section 4.4.2.2).

Figure 4.4: Block-scheme diagram of features and steps embedded in the
solution of the optimization problem of Equation (4.17).
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Finally, assuming the position constraint to be fulfilled in the opti-
mization problem of Equation (4.17) whose result gives J∗

(
t̃, t

(j)
∆

)
=

J∗v
(
t̃, t

(j)
∆

)
+αJ∗r

(
t̃, t

(j)
∆

)
, for optimizing the flyby time it is enough to

use its definition t(j)∆ = t
(j)
out +∆t

(j), with ∆t(j) the new optimization
variable:

minimize
∆t(j)

J∗
(
t̃, t

(j)
out +∆t

(j)
)

subject to |∆t(j)| ⩽ ∆tmax

(4.18)

No choice has been made yet about the optimization algorithms,
which might be sensitive to the search space size and the function
relative steepness within the different regions. Moreover, it should also
be tailored on the available computational resources, i.e. preferring
parallelizable routines over dominantly sequential algorithms for high
performance computing facilities.

The optimization problem of Equation (4.17) is a sub-problem of
the optimization problem of Equation (4.18). This somehow enhances
the flexibility of the approach, i.e. the former might be used for search
space exploration purposes without the need of a finely refined so-
lution in terms of starting time t(j)∆ . The optimization problem of
Equation (4.17) is explicitly dependent on the maneuvering point t̃,
which in fact can and for practical applications should be optimized as
well. In this application it remains a problem parameter, as more focus
is put toward exploring the effect of small variations of the departure
time t(j)∆ . Completing the description, another optimization level can
be easily defined to find the best t̃ similarly to what done for t(j)∆

in the optimization problem of Equation (4.18), and in the presented
formalism it straightforwardly includes the innermost level defined
by the optimization problem of Equation (4.17). A summary of the
relations among the different optimization levels is given in Table 4.1.

Table 4.1: Optimization levels for the full design of the arc j to j+ 1.

Jv +αJr (Equation (4.17))
Optimize

−−−−−−−→
∆ξ,∆ζ,∆U

J∗ (Equation (4.18))

J∗ (Equation (4.18))
Optimize
−−−−−→

∆t(j)
j to j+ 1, maneuver at t̃

j to j+ 1, maneuver at t̃
Optimize
−−−−−→

t̃
j to j+ 1, optimal

Some observations regarding the expected computational perfor-
mances of the optimization can be made based on the analysis of the
PC integration, already presented in Figures 4.10a, 4.10b, 4.10c, 4.10d
for the accuracy behavior and Figure 4.11 for the computational time
variation with increasing number of Chebyshev nodes. For sequential
executions, the higher the value of t̃ the higher the runtime will be,
if the number of nodes per period is kept constant. The optimiza-
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tion problem of Equation (4.17) is going to benefit from the minimal
ephemerides overhead as a whole: the boundary times are fixed, hence
the ephemerides data set can be scanned only once and the related
values can be considered as parameters not only within the PC inte-
gration, but also for all the iterations of the optimization algorithm.
Finally, the penalty approach [60] used to define the optimization
problem of Equation (4.17) allows for massively parallel strategies to
be implemented as well, because all the remaining constraints are of
boundary type.

4.3 pc augmentation for large sets of initial condi-
tions

4.3.1 One-level augmentation

Instead of the evolution of the sole trajectory determined by the initial
condition y0, the system undergoing the PC integration can be re-
written so that M different trajectories sampled on the same N time
nodes are processed sharing the iteration calls. At the iteration i,
the matrix Y(i) can be defined, collecting all the samples of all the
trajectories. The j-th row is related to the j-th time sample of the m-th
trajectory by:

Y(i)
j =

[
y(i)
j,1 · · · y(i)

j,m · · · y(i)
j,M

]
, j = 1, ..., N (4.19)

and similarly the dynamics function evaluations can be collected in
the matrix F(i), whose j-th row is:

F(i)
j =

[
F(i)
j,1 · · · F(i)

j,m · · · F(i)
j,M

]
, j = 1, ..., N (4.20)

whose elements are still computed per sample:

F(i)
j,m = ω2 f

(
y(i−1)
j,m , tj−1

)
, j = 1, ..., N (4.21)

In principle, building the augmented system only requires to define
Y(i) and F(i) by stacking the different M trajectory and dynamics
matrices along the columns. The structure of the PC iterations re-
mains unchanged, and features the usual steps. First, evaluate the
dynamics function for all the N states of all the M trajectories with
F(i)
j,m = ω2 f

(
y(i−1)
j,m , tj−1

)
. Second, perform the matrix operations

B1 = SAF + 2Y0 and Bj = AF, for j = 2, ..., N. Third and last, update
the guesses for all the M trajectories with Y(i) = CB.
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4.3.2 Two-level and multi-level augmentation

The stack-along-column rule can be applied again, this time collecting
in one single matrix P groups of different Mp trajectories each. The
augmented matrix Y(i) is now built as

Y(i)
j =

[
Y(i)
j,1 · · · Y(i)

j,p · · · Y(i)
j,P

]
, j = 1, ..., N (4.22)

with

Y(i)
j,p =

[
y(i)
j,p,1 · · · y(i)

j,p,m · · · y(i)
j,p,Mp

]
, j = 1, ..., N (4.23)

In principle, infinite augmentation levels could be built relying on
the same logic, none of them would require modifications in the core
PC algorithm structure. Nevertheless, a re-definition of the iteration
error may be helpful for practical purposes, since the augmentation
rationale is purely computational.

Two strategies can be addressed. The first uses a traditional error
definition, that treats the trajectory samples as if they were part of
a unique system, whose maximum will be compared against the it-
eration stopping condition. The second introduces a more flexible
per-block error definition, that treats the different trajectory blocks as
independent, for which the augmentation has then a sole computa-
tional purpose. Both the approaches have advantages and drawbacks.
The former would allow a simpler implementation and is inevitably
computationally more efficient than the latter, because of the reduced
overhead compared to maintaining the group split. However, dissimi-
lar trajectories requiring a significantly different number of iterations
would keep the computational resources busy for already converged
blocks, while the per-block definition allows far more flexibility on
this regard.

4.3.3 CPU and GPU implementation paradigms

Among the implementations outlined in this section, the case of inde-
pendent PC runs for all the propagated trajectories is considered as
benchmark. This allows the direct assessment of the performance of
the augmented PC algorithm, against the original integrator, for the
same test case. All the algorithms have been implemented using the
C language with OpenMP [28] parallelization, with the exception of
the GPU program that was coded in CUDA® [112]. The reader can
refer to Appendix C for an overview of parallel and GPU computing
fundamentals, whose concepts are extensively used in this section.

The basic workflow of the independent PC runs is given in the
block-scheme of Figure 4.5. The only parallelization possibilities, for
high numbers of trajectories, apply at the highest level, inevitably
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introducing a considerable overhead for both the inner sequential
execution and the still parallelizable inner functions. In fact, all the
per-trajectory steps of the PC process would still be parallelizable
algorithms per se.

Figure 4.5: Standard PC workflow.

4.3.4 Sequential Augmented PC workflow

The implementation of the augmented PC integration follows a one-
level augmentation only, to highlight the pipeline benefits in terms
of overhead that this implementation introduces. A block-scheme
representation of the augmented PC integration workflow is given in
Figure 4.6. The conceptual change, from the PC iteration viewpoint, is
only the initial sampling, happening in a single array that contains all
the state vectors of all the trajectories of the augmented system.

Figure 4.6: Augmented PC workflow.

4.3.5 OpenMP parallelized Augmented PC workflow

The parallelization of the augmented system integration, whose block-
scheme representation is given in Figure 4.7, becomes fine-grained,
acting directly on the single state vectors for the dynamics function
evaluation. In addition, reduction operations can be made through
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OpenMP® for a cooperated and parallel search of the maximum error.

Figure 4.7: Augmented and OpenMP® parallelized PC workflow.

The parallel dynamics function is implemented with the OpenMP®

parallelization of the for loop, collapsing all the states of the aug-
mented system into a single loop. The multiple workers access the
shared state array, then computing the acceleration values and tem-
porarily storing them into thread-private variables, eventually copying
them back to a shared and global acceleration array. OpenMP® exploits
the flexibility of the CPU architecture, thus no significant modification
are required to the innermost parts of the dynamics function to make
an efficiently parallelized program. OpenMP® is also used "indirectly"
for the matrix multiplications of the PC method. The optimized Open-
BLAS [158, 168, 169] libraries are used to implement this part of the
program, they already include the OpenMP parallelization.

4.3.6 CUDA Augmented PC workflow

The block-scheme representation of the CUDA® algorithm is given in
Figure 4.8. The two-level augmentation concept is exploited, assigning
one higher level augmented system to each CUDA® stream and using
the thread-based parallelism on the lower level augmented systems.

Figure 4.8: Augmented CUDA® PC workflow.

The principal benefit is the cooperation between CPU and GPU for
the overall execution, with as many operations as possible executed
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concurrently. Each lower level augmented system is initially sampled
by the host and then moved to the GPU. The CUDA® stream manage-
ment API allows to overlap the CPU sampling of the next higher level
augmented systems with memory transfers and kernel executions of
the already launched ones. Similarly, the last step of the PC iteration This is true as long

as the CPU memory
is allocated as paged
with specific
CUDA® functions
[112].

requires to retrieve the computed iteration error for each stream from
the GPU to the CPU for loop control purposes, which is also subject to
the stream concurrency benefits. A stream synchronization at the end
of each while loop iteration is necessary to achieve the overlapping
behaviour of all the streams. Running independent loops for each
higher level augmented system would result in completely sequential
and non-overlapped executions. If a single CUDA® stream is gener-
ated, the standard one-level augmented system case is reproduced,
albeit with the GPU computing acceleration instead of the previously
described OpenMP® implementation.

The warp-centric programming model of CUDA® kernels requires
a small modification on the lower level augmented system definition.
Contiguous array elements should be of the same component type
(i.e. contiguous x coordinates, then contiguous y coordinates, and so
on), instead of storing state vector by state vector. This aspect might
seem an implementation detail, however it is fundamental to ensure
coalesced global memory access. A too high latency would happen
otherwise, which cannot be hidden even by intensive parallelized
GPU computations. The just discussed modification has no effect
on the overall algorithm structure, all it requires is the dynamics
and error kernels to be implemented following this array element
logic. This aspect is discussed in more detail in the following section,
together with the implications it has especially on the evaluation of
the dynamics function.

4.3.6.1 Dynamics model, array sorting, and CUDA kernel

At the core of the PC integration scheme lies the evaluation of the
dynamics function at each Picard iteration. This task can be performed
in parallel for all the states of the system being integrated, however,
although conceptually simple, its implementation may not be straight-
forward in the GPU computing case. The more complex the dynamical
model becomes, the more intertwined its implementation inevitably
gets, possibly requiring to access data distributed in multiple arrays,
possibly of notably different sizes. The accuracy requirements of the
proposed application demand to work under the restricted relativistic
N-body problem, following the Einstein-Infeld-Hoffmann equations
[129], which has a dynamics function of the form:

r̈ = f
(
r, ṙ, ri, ṙi, r̈i

)
(4.24)

with i condensing the dependence on the states of all the major bodies
in the ephemeris model, e.g. the solar system planets, and r, ṙ, r̈
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denoting position, velocity, and acceleration, respectively. The relations
are unfortunately non-linear: as a consequence, each CUDA® thread
cannot perform simple operations on one single array element, since
both position and velocity of each state are required to compute any
acceleration component. Moreover, ephemerides data for ri, ṙi, r̈i also
enter the dynamics function. These aspects suggest to implement
the dynamics kernel having each CUDA® thread to process one full
state vector, rather than one element. At the same time, coalescing
the global memory access remains crucial to obtain a well-performing
kernel. The PC method introduces however a partial constraint on
the array shapes: the matrix multiplications that build the method
need the sampled trajectory states to be stored as rows of an overall
matrix, fixing the different times to identify each row. For a column-
major sorted augmented state matrix, contiguous state elements are
interrupted by the ending time nodes, likely leading to non-coalesced
memory access for numerous warps. Row-major sorted state arrays
feature instead non-coalesced access for all the state elements.

To cope with these issues, the lower-level augmented state is refor-
mulated by stacking along the columns the same components of all
the state vectors in the augmented system:

Y(i)
j =

[
x
(i)
j,1 · · · x(i)j,M · · · p(i)j,1 · · · p(i)j,M · · · ż(i)j,1 · · · ż(i)j,M

]
,

j = 1, ..., N, p = y, z, ẋ, ẏ
(4.25)

where (x, y, z) are the Cartesian components of r. The advantage
is obvious in the column-major sorting case, since all the common
components are found in adjacent memory addresses. Since in the
presented application the number of states in the augmented system
is much larger than the number of sampled trajectory nodes, many
contiguous state components also appear in the row-major sorted array
case. In addition, the higher-level augmented system definition may
remain unaltered, since different CUDA® streams would be processing
each lower-level sub-systems. The augmented force matrix F(i)

j can
be adapted accordingly, without introducing any modification to the
matrix multiplication characterizing the PC iteration. Lastly, bank
conflicts (explained in Section C.5) are automatically avoided [112]
with this array sorting approach.

The kernel design is tied with the array sorting strategy: a key role
is played by the fixed time nodes. The augmented system logic is
a consequence of the shared time nodes among the different state
vectors, this feature should also be exploited to design the thread
blocks to make the most of the available shared memory. In particular,
the amount of memory required to store the planetary ephemerides is
minimized if all the threads in a block process state vectors correspond-
ing to the same time node. For this reason, the proposed program
implements a row-major sorting strategy of state and force matrices,
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as shown in Listing 4.1. The augmented state matrix is accessed as a
two-dimensional block array: one dimension (the rows) follows the
different time nodes, whereas the other is used to split the states of a
common time node into smaller chunks, each containing 32 states. In 32 is the warp size

for most NVIDIA®

graphics cards [112].
For augmented
systems with a
number of states that
is not a multiple of
the block size, the
last block of threads
processes the
remainder of the
integer division
between the number
of states and the
block size.

this way, all the states in the same block of the two-dimensional block
array require exactly the same ephemerides data, because they are all
associated to the same time node. For fixed-time thread blocks bank
conflict is automatically avoided also when reading ephemerides data
from the shared memory, since all the threads are forced to access the
same ephemerides item or vector component [112]. As shown in the
CUDA code of Listing 4.1, the proposed implementation highlights
how low level the programmer should work, managing explicitly the
memory location and accesses to achieve good performance results.

Listing 4.1: Summary of dynamics CUDA kernel.

// Dynamics kernel sample - Cartesian dynamics
__global__ void dynamics(double* dstate , double*

state , void* other_params , int NN , int N0) {

/*
Retrieve the global index of this

sample from the ids of this block
and this thread

*/
int idx = blockIdx.x * 32 + threadIdx.x;
// Retrieve the time sample id
int timeID = idx / N0;
// Retrieve the state id in the augmented

system
int stateID = idx - N0 * timeID;

// Allocate the shared memory amount
__shared__ double sbuf [288];

// Define pointers to manage shared memory
buffers

double* accs = &sbuf [192];
double* sstate = sbuf;

// set initial acceleration values (in shared
memory) to 0

setZero(accs);

// loop counter
int i;

// avoid accessing out -of-bounds memory
accesses

if (idx < NN * N0) {
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// copy states from global to shared
memory

// index2D and index3D are macros
that access multi -dimensional
array elements

#pragma unroll
for (i = 0; i < 6; i++){

sstate[index2D(i, threadIdx.x
, 32)] = state[index3D(
timeID , i, stateID , 6, N0)
];

}
// copy velocity elements in output (

dstate
#pragma unroll
for (i = 0; i < 3; i++){

dstate[index3D(timeID , i,
stateID , 6, N0)] = sstate[
index2D(i + 3, threadIdx.x
, 32)];

}

// call acceleration function
compute_acceleration(accs , sstate ,

other_params);
// copy acceleration from shared to

global memory
for (i = 0; i < 3; i++){

dstate[index3D(timeID , i + 3,
stateID , 6, N0)] = accs[

index2D(i, threadIdx.x,
32)];

}
}

}

The computation of the dynamics function is a compute-bound
task: most of the effort lies on performing computations on a limited
amount of data, rather than on the movement of a large amount of
information between two memory locations. Furthermore, the values
of the state elements need to be repeatedly accessed. For these reasons
and because of the limited capacities of thread-private registers, shared
memory is used to also temporarily store the state values, because
of its lower latency compared to the global GPU memory [112]. The
resulting dynamics kernel is summarized in Figure 4.9.

In addition, a close look at the Einstein-Infeld-Hoffmann equations
reveals that the acceleration of each propagated body depends not
only on its state and the gravitational parameter and states of major
bodies in the ephemeris model, but also explicitly on the gravitational
potential and the acceleration of such bodies [129]. These contributions
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Figure 4.9: Dynamics kernel memory management.

can be computed before the evaluation of the dynamics function itself
in the restricted problem of the proposed application, saving the
computational burden of a task that would be repeated at each Picard
iteration. The values of gravitational potential and the acceleration of
the major bodies of the ephemeris model are computed by the CPU
before starting the Picard iterations, then moved to the global GPU
memory, and eventually loaded in the shared memory for the time
node associated with each block, along with the ephemeris states and
gravitational parameters.

4.3.6.2 CPU-GPU cooperated iteration error computation

All the involved CUDA® kernels are run at each Picard iteration. Their
execution must be called by the CPU, which also stops the Picard
iteration while loop when the error between two consecutive steps
falls below the desired tolerance. Since the updated states already
reside on the GPU, the GPU massive parallelism can be exploited to
accelerate the computation of the iteration error, transferring only a
limited amount of data to the CPU to be used for the loop control.
Despite dealing with the augmented state system, the error is still
defined on a per-state basis, with the maximum of the errors of all the
states that is used to control the loop.

The error computation process involves two separate kernels and
a CPU function. The first kernel computes both the position and the
velocity errors and stores the maximum between these two, for all the
states in the augmented system. Then, as shown in Listing 4.2, the
second kernel computes the maximum error of groups of 4096 states:
1024 thread-sized blocks are created, discerning the first maxima while
reading four consecutive chunks of state errors into the shared memory.
Consequently, 1024 threads cooperate to find the actual maximum
error among the remaining 1024 state errors, with reduction-driven



142 picard-chebyshev integration and augmentation

parallelism3. Eventually, the maximum error is copied back to the
global memory, in a new array consisting of reduced errors only.
Finally, this whole array is copied back to the CPU, which finds the
actual maximum with a traditional sequential for loop-based approach.
Even with augmented states made of millions of state vectors, this
approach makes the CPU search sequentially only over hundreds to
thousands candidates at most, with a negligible computational cost
compared to the other steps. Since reduction operations require the
cooperation of all the threads in a block, synchronization barriers
become necessary, and are set manually with the __syncthreads()
function.

Listing 4.2: Summary of error reduction CUDA kernels and device functions.

// kernel for maximum error computation
__global__ void maxErr (double* newerrblocks , double*

olderrblocks , int oldblocks) {

int i = blockIdx.x * 4096 + threadIdx.x;

// copy to shared memory - dynamic allocation
double dum = 0.0;
__shared__ double err_s [1024];

// do first reduction while loading from
global to shared memory

err_s[threadIdx.x] = 0.0;
if (i < oldblocks)
{err_s[threadIdx.x] = olderrblocks[i];}
i += 1024;
if (i < oldblocks){

dum = olderrblocks[i];
if (dum > err_s[threadIdx.x])
{err_s[threadIdx.x] = dum;}
i += 1024;
if (i < oldblocks){

dum = olderrblocks[i];
if (dum > err_s[threadIdx.x])
{err_s[threadIdx.x] = dum;}
i += 1024;
if (i < oldblocks){

dum = olderrblocks[i];
if (dum > err_s[threadIdx.x])
{err_s[threadIdx.x] = dum;}

}
}

3 Like the dynamics kernel, the error kernels are implemented so that the last thread
block processes the remainder between the integer division between the number of
states and the block size (4096 in the case of the reduction kernel), with the maxreduce
device function in Listing 4.2. The reduction steps are controlled accordingly: only
those corresponding to a number of threads less than or equal to the number of states
in the block are activated.
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}
// synchronize threads before proceeding
__syncthreads ();

// do reduction in shared memory
maxreduce(err_s , threadIdx.x, blockDim.x);

// the reduced element is in thread 0 -- copy
it back to global memory

if (threadIdx.x == 0)
{newerrblocks[blockIdx.x] = err_s [0];}

}

// device function for reduction computation in
shared memory

__device__ void maxreduce(volatile double* sdata , int
threadID , int blockSize) {

if (threadID < 512) {
if (sdata[threadID] < sdata[threadID + 512])
{sdata[threadID] = sdata[threadID + 512];}

__syncthreads ();
if (threadID < 256) {

if (sdata[threadID] < sdata[threadID + 256])
{sdata[threadID] = sdata[threadID + 256];}
__syncthreads ();
if (threadID < 128) {

if (sdata[threadID] < sdata[threadID +
128])

{sdata[threadID] = sdata[threadID + 128];}
__syncthreads ();
if (threadID < 64) {

if (sdata[threadID] < sdata[threadID +
64])

{sdata[threadID] = sdata[threadID + 64];}
__syncthreads ();
// finally do reduction for the single

warp
if (threadID < 32)
{warpMaxReduce(sdata , threadID);}

}
}

}
}

}

// single warp max reduction
__device__ void warpMaxReduce(volatile double* sdata

, int tid){
if (sdata[tid] < sdata[tid + 32])
{sdata[tid] = sdata[tid + 32];}
if (sdata[tid] < sdata[tid + 16])
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{sdata[tid] = sdata[tid + 16];}
if (sdata[tid] < sdata[tid + 8])
{sdata[tid] = sdata[tid + 8];}
if (sdata[tid] < sdata[tid + 4])
{sdata[tid] = sdata[tid + 4];}
if (sdata[tid] < sdata[tid + 2])
{sdata[tid] = sdata[tid + 2];}
if (sdata[tid] < sdata[tid + 1])
{sdata[tid] = sdata[tid + 1];}

}

4.4 applications

4.4.1 Single trajectory propagation

The SPICE toolkit [2] is used together with JPL’s ephemerides data
to retrieve the states of the N bodies at any integration step, required
for the computation of both the Newtonian and the relativistic per-
turbations due to the Solar System bodies. This aspect is the most
computationally expensive task in the general integration accounting
for N-body effects, for instance making around 60% of the total ac-
count in the work by Colombo et al. [29]. In fact, a binary source must
be scanned seeking for the closest saved samples, which must then be
interpolated to fit the actual supplied time, for each step and for each
of the bodies in the integration. Time steps cannot be foreseen with
the standard integration methods, that continuously adapt the step
size and sequentially move forward or backward from a given state,
thus requiring repeated toolkit calls.

The fixed point nature of the modified PC method brings a signifi-
cant advantage to this regard: the restricted N-body problem equation
for a test particle written in barycentric Cartesian coordinates is

r̈(t) = −

N∑
i=1

µi(r(t) − ri(t))
|r(t) − ri(t)|3

(4.26)

with r(t), ṙ(t) and r̈(t) position, velocity and acceleration vectors re-
spectively. If the time t is used as the independent variable to integrate
the motion of the test particle with the modified PC method, it must
be sampled a-priori on the Chebyshev nodes, by the definition of the
method itself. Using a dataset for the ephemerides instead of requiring
a custom integration of the full N-body problem makes ri sole function
of the time t. In turn, the states of the N bodies can also be sampled
a-priori, as the sampling times are never going to change through the
whole integration process. Then, such samples can be given as input
not only to the dynamics function evaluation, but become a parameter
for all the required Picard iterations. This aspect can dramatically
speed up numerical simulations in the interplanetary environment,
provided that the precision achieved is satisfactory.
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4.4.1.1 Flyby event detection

The single simulation test case proposed in Section 4.4.1.2 requires
the detection of flybys. This aspect is fundamental to overcome the
instability issues connected to the PC scheme. In fact, if two trajectory
samples are too far from each other and the trajectory in between
experiences a flyby, the effect of the close approach may be missed. The
proposed approach solves this issue implementing a flyby detection
routine at the trajectory sampling stage, i.e. before its update through
Picard iterations.

In particular, the initial one-orbit sampling is performed, and cross-
ings of the planet’s SOI are checked through all the samples. If a
crossing is detected, the sample immediately within the SOI is con-
sidered as the terminal sample for the integrated interval, and the
trajectory is re-sampled and PC-integrated up to this specific time
with newly distributed Chebyshev nodes. Then, the final point is
sampled and PC-integrated up to the exit of the SOI. Finally, the last
sample at the SOI exit is used as new starting condition to run the
heliocentric PC integration over a new whole orbital period, initiating
a new propagation loop that runs until the end of the integration span.

4.4.1.2 Integration accuracy and performance

The integration is performed piece-wise orbit-by-orbit, as suggested by
Fukushima [48]: new time nodes are generated, thus new ephemerides
data are sampled, one orbital period by one orbital period until the
end of the time span is reached, or only once for the time spent within
the SOI in case of flyby phases.

Figures 4.10a, 4.10b, 4.10c, 4.10d show the evolution of the relative
position error with respect to JPL’s data for the near-Earth asteroid
2010RF12 from 1

st January 1989, 100 years forward in time, integrating
in the Sun-centered J2000 reference frame and varying the number of
Chebyshev nodes per orbit from 15 to 200. Such asteroid was chosen
because it performs a flyby of Earth, so that the hyperbolic phase
could be tested too. The three different legs (pre-flyby in Figure 4.10a,
flyby in Figure 4.10b, post-flyby in 4.10c) are shown on their own, as
well as the overall global view is given in Figure 4.10d. The color scale
portrays the different number of nodes and is the same for all the
sub-figures, reported in Figure 4.10d. For each leg, the initial guess
is the Keplerian solution, elliptical or hyperbolic depending on the
current status, generated from the initial state (entrance to the SOI
in case of planetary flybys). The integration accuracy increases with
the number of nodes per orbit, and converges to the precision of a
Runge-Kutta simulation strategy plotted with the black solid line. The



146 picard-chebyshev integration and augmentation

(a) Leg 1, before flyby. (b) Leg 2, flyby.

(c) Leg 3, after flyby. (d) Overall view.

Figure 4.10: PC and Runge-Kutta RK78 integration errors, as relative position
difference with respect to JPL’s data for the asteroid 2010RF12,
for the pre-flyby (4.10a), flyby (4.10b) and post-flyby legs (4.10c),
as well as globally for the whole integration span (4.10d). The
color scale is the same for all the sub-figures, and reported in
(4.10d).

latter has been performed using the RK78 method, adopting the same
dynamical model in both cases4.

Figure 4.11 presents instead the relative relationship between the
execution time of the sequential modified PC method and the number
of Chebyshev nodes. A MATLAB® non-parallel implementation with
a MEX® function for the dynamics5 requires about 15 seconds to
complete the full integration presented in Figure 4.10d, on a single
core of a local workstation equipped with an Intel® CoreTM i7-7700

CPU (3.60 GHz).

4.4.2 PC for Solar Orbiter-like flyby optimization

The proposed resonant trajectory optimization procedure has been
tested on a phase of the ongoing mission Solar Orbiter [41], taking
the initial data from the trajectory profile with launch in January

4 The test case has been extensively discussed in [94] for the validation of the imple-
mentation of relativistic effects.

5 The MEX® function has been generated with MATLAB®’s Code Generation Toolbox.
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Figure 4.11: PC serial execution runtimes for the asteroid 2010RF12, reported
as relative runtime with respect to the maximum runtime ob-
tained for the different number of Chebyshev nodes.

2017, available in the mission redbook [43]. The algorithm has been Later discarded, the
actual mission left
Earth on February
2020.

entirely implemented in MATLAB®. A small computational accelera-
tion is introduced compiling the PC iterations into a MEX® function
with MATLAB® Coder™. The optimization problem of Equation (4.17)
is solved with the fmincon.m function of MATLAB®’s Optimization
Toolbox, using both the Interior-point and Sequential Quadratic Pro-
gramming methods [60], based on the dimension of the search space.
The selected local optimization algorithms and tolerances sufficed for
the test case of this work to converge, proving the methodology con-
cept of efficiently designing trajectories that take advantage of chaotic
perturbations. The use of global search approaches and/or different
tolerance setups could for sure increase the robustness of the approach,
at the cost of possibly increasing the total computational load. In the
case of practical use by mission analysts, the optimization algorithm
selection should also be tailored on the hardware availability.

Solar Orbiter’s first resonant phase with Venus is reproduced ac-
counting for perturbing effects from the N bodies and general relativity.
Following the notation from the mission redbook [43], the two gravity
assist maneuvers are identified with V2 and V3, with V standing for
the flyby planet (Venus) and the numbers 2 and 3 representing the
second and third close approach with Venus from the mission launch,
respectively. The interplanetary leg between the two flybys is identi-
fied with V2-V3. The goal is to design flyby V2 so that V3 can lead to
a desired post-encounter trajectory almost ballistically, i.e. minimizing
the correction maneuver required in the phase between V2 and V3.
The maneuver is designed with maneuvering time t̃ at the apocenter
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Table 4.2: Flyby V3 entrance state.

r
(j+1)
out,x [km] r

(j+1)
out,y [km] r

(j+1)
out,z [km]

−67030683.03 −85738232.37 2563856.42

v
(j+1)
out,x [km/s] v

(j+1)
out,y [km/s] v

(j+1)
out,z [km/s]

30.54 −4.05 1.79

t
(j+1)
in [MJD2000]

8119.84

Table 4.3: Retrieved optimal b-plane coordinates (ξ∗, ζ∗), exit time t(j)out, and
planetocentric velocity U∗.

ξ∗ [km] ζ∗ [km] t
(j)
out [MJD2000]

−8057.07 −5497.19 7446.52

U∗
x [km/s] U∗

y [km/s] U∗
z [km/s]

3.08 17.78 3.66

of the first nominal orbit after V2, albeit, as already mentioned in
Section 4.2, even this aspect can and should be optimized.

4.4.2.1 Boundary conditions, b-plane pruning and method parameters

Generally, the required boundary condition is the state vector that
allows a specified entrance to flyby j+ 1. It may come from a previous
step of the presented flyby design algorithm, as the output of the
back-integration of

(
r(j+1)
out , v(j+1)

out

)
, or simply being given, if no close

approach is to happen after flyby j+ 1. Considering the Solar Orbiter-
like mission, flyby V3 may be entered as the interplanetary state
written in the ecliptic J2000 reference frame reported in Table 4.2.

Solar Orbiter’s first resonant phase with Venus is in a 3 : 4 reso-
nance. The output of the b-plane preliminary unperturbed design [95]
enforcing the 3 : 4 resonance has produced the pruning quantities
reported in Table 4.3, together with the exit time from flyby j set as
t
(j)
out = 7446.52 MJD2000.

The maneuvering time is set as a parameter, particularly at the
nominal apocenter of the first interplanetary resonant orbit, with theFor orbital

parameters equal to
the desired

post-maneuver
trajectory.

correspondent state (r̃, ṽ) reported in Table 4.4.
The maximum values where to bound

(
∆ξmax, ∆ζmax, ∆U

′(1,2,3)
max

)
have been set as 1% of the impact parameter [108] b =

√
ξ2 + ζ2

and of |U ′| for the b-plane coordinates and the velocity components
respectively. The boundary value for the exit time variation ∆tmax is
set to 1% of Venus’ orbital period. Trivially, the optimization starts
with all the variables

(
∆ξ,∆ζ,∆U ′, ∆t(j)

)
set equal to zero. The cost

functions Jr and Jv are in all the cases computed as the relative values
|∆v|/|ṽ| and |∆r|/|r̃| with respect to the known maneuvering point, to
remove the possible dimension sensitivity.
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Table 4.4: Maneuvering point, apocentre of unperturbed initial pruning solu-
tion.

r̃x [km] r̃y [km] r̃z [km]

−133524954.60 −32036518.08 −4418791.75

ṽx [km/s] ṽy [km/s] ṽz [km/s]

5.09 −20.43 1.65

t̃ [MJD2000]

7570.92

Specifically for the modified PC method, 160 nodes per period
are used and the iterations are stopped when the maximum of the
relative difference between two consecutive state updates drops below
10

-14. The first arc to be designed, i.e. the one defining the optimal
exit state and the maneuver, spans less than one orbital period, thus
proportional nodes to the defined 160 per period based on its total
time length are set, according to the fixed nodes per period logic. The
optimal time found is then used for a single run of the optimization
problem of Equation (4.17) with 200 Chebyshev nodes, assessing the
influence of the number of nodes in the design precision, comparing
both the node cases against a relativistic simulation.

4.4.2.2 Optimization implementation

Despite the narrow region where the optimization variables are set
to vary, even the smallest variations have a relevant impact in the
convergence of the algorithm, especially if the marching position
constraint is made strict. For this reason and to preserve the robustness
of the approach, the optimization problem of Equation (4.17) is solved
several times in a continuation procedure, using the result of the
previous step as the new starting guess. Particularly:

• the search space dimension is reduced by 10 times for each opti-
mization probelm, up to an absolute minimum of 10

-8 starting
from the already introduced ± 1% for each variable;

• within the optimization solver, the initial minimum relative step
size between two iterations is of 10

-6, reduced by a factor 10 each
time up to 10

-15;

• the penalty factor α is initially set to 10
5 to improve the con-

vergence also for the Jv contribution, although the position con-
straint is then made stricter by raising the value of α by a factor
10 each time, up to 10

9;

• the the Interior-point algorithm in fmincon.m is selected for the
first half optimization problems, whereas Sequential Quadratic
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Table 4.5: Optimization results, in terms of position difference residual ∆r∗

and correction effort ∆v∗ at the maneuvering time.

∆r∗x [m] ∆r∗y [m] ∆r∗z [m]

−0.52 −0.52 −1.19

∆v∗x [m/s] ∆v∗y [m/s] ∆v∗z [m/s]

−1.28 1.57 0.22

Table 4.6: Optimization results, in terms of initial position residual and ∆v
magnitude.

|∆v∗| [m/s] |∆v∗|/|ṽ| [-]

2.04 9.66× 10−5

|∆r∗| [m/s] |∆r∗|/|r̃| [-]

1.39 1.02× 10−11

Programming is used in the last ones because of the smaller
search space;

• MATLAB®’s globalsearch algorithm solves the current opti-
mization problem if the previous step has returned the starting
guess without improvements, searching for a global minimizer.For performance

reasons, a maximum
of half of the

iterations can run
the global search. In

the presented test
case at most two

have been
experienced, out of

all the ten steps.

The optimization problem of Equation (4.18) is solved with a grid
search approach. The time span is always sampled with the initial
supplied value plus 40 evenly spaced values of ∆t(j), reducing ∆tmax

by a factor 10 for 5 times, from the initial grid size equal to ± 1% of
Venus’ orbital period. The best value from the previous search is used
as starting point for the new one. This approach resembles the algo-
rithm used in MATLAB®’s patternsearch.m function, implemented
manually in this work to keep a low number of trial ∆t(j).

4.4.2.3 Results

Solving the optimization problem of Equation (4.17) with the above
described implementation has taken roughly 2-3 minutes, on a single
core of a local workstation equipped with an Intel® CoreTM i7-7700

CPU (3.60 GHz). The 200 nodes algorithm converged to the residual
∆r∗ and impulsive action ∆v∗ for the required maneuver presented in
Table 4.5.

Despite the execution point t̃ is yet to be optimized, and the ful-
filment of the position constraint, the correction effort is small. The
presented maneuver is modeled as a single impulse, nevertheless given
its magnitude it can be achieved by the current low thrust propulsion
technologies, as shown in Table 4.6.The difference with

the ∆v resulting
from the 160 nodes

run is negligible, the
position constraint is

slightly worse
fulfilled but in the

same order of
magnitude.

Most of the computational time is due to the fulfillment of the
position constraints. If the presented algorithm were used with a wider
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Table 4.7: Optimization results, in terms of initial optimal state
(
r(j)∗out, v

(j)∗
out

)
.

r
(j)∗
out,x [km] r

(j)∗
out,y [km] r

(j)∗
out,z [km]

−64960957.28 −85998225.22 2682290.24

v
(j)∗
out,x [km/s] v

(j)∗
out,y [km/s] v

(j)∗
out,z [km/s]

31.00 −3.45 1.7

Table 4.8: Retrieved optimal b-plane coordinates (ξ∗, ζ∗) and planetocentric
velocity U∗.

U∗
x [km/s] U∗

y [km/s] U∗
z [km/s]

3.25 17.76 3.67

ξ∗ [km] ζ∗ [km]

−8057.22 −5700.49

but still good position tolerance, it would likely run significantly faster,
even before its parallel implementation.

The best starting time obtained in the optimization is t(j)∗out = 7446.52
MJD2000, slightly higher than the initial guess t(j)out. The interplanetary
optimal starting state is given in Table 4.7.

The b-plane coordinates (ξ∗, ζ∗) and the planetocentric velocity U ′∗

retrieved from
(
r(j)∗out, v

(j)∗
out

)
and Venus’ position at t(j)∗out are presented

in Table 4.8, proving the optimal pruning brought by the b-plane
prediction.

The value of ζ∗ looks slightly (2%) out of the initial bounds despite
the constraint, which may have two different explanations. First, the
optimization variables are updated concurrently: variations on U ′ also
change the orientation of the b-plane axes, which in turn result on dif-
ferent b-plane coordinates for a given fixed position in space. Secondly,
the domain reduction sequential procedure may find a minimum close
to the initial boundaries, centering there the next narrower search.
The difference is in any case rather small in magnitude, as it can be
also seen in the real-scale difference shown in Figure 4.12: with the
pruning point identified by the blue dot, whereas the optimized one
is plotted in dark orange.

Figure 4.13 shows the difference between the designed trajectory
with respect to the a relativistic simulation of the same case, both
featuring the optimized maneuver at t̃. The two trajectories basically
coincide even if using the lower number of Chebyshev nodes, with
a relative difference that remains in the order of 10

-8, as expected
from what already seen in Figures 4.10a, 4.10b, 4.10c, 4.10d. Again, as
expected the higher number of nodes yields a more accurate solution,
with the difference from the relativistic simulation reduced by more
than 10 times. Even if small, the error inevitably accumulates and
is amplified if multiple gravity assists are present, hence, a higher
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Figure 4.12: Visual representation of the b-plane pruning strategy. The prun-
ing point corresponds to the blue dot, whereas the optimized
point is depicted in dark orange.

number of nodes should be kept for more precise design requirements.
The periodic "hills" visible in Figure 4.13 happen far from the domain
boundaries, and are located where the Chebyshev nodes become
sparser, also corresponding to the neighbourhood of the pericenterBecause of the

definition of
Chebyshev nodes in
Equations (4.3) and

(4.4).

of the pre-maneuver arc in this case. The periodic error increase is
likely due to the faster orbital dynamics nearby the pericenter, not
followed by the Chebyshev node density, as the domain boundaries
are located at the correction maneuver (at the apocenter). This effect
could be mitigated by adapting the PC integration intervals so that the
node distribution becomes denser nearby the pericenter, for instance
splitting the optimization horizon into two sub-intervals, the first from
the flyby exit to the pericenter, the second from the pericenter to the
connection maneuver point, and finally following the same concept
for the fixed post-maneuver arc. If the the full trajectory were required
with as high precision as possible this should be considered, anyway,
even with the tested setup, the long-term error evolution remains low,
and already allows a precise design at the event points (flybys and
correction maneuver). The "noise" over the hills may be explained by
interpolation of the PC solution over the standard simulation time
steps, necessary to visualize the presented difference measurement.
The impact of the correction maneuver, despite small, can also be
assessed: at the time of the close approach V3 the position would differ
of thousands of kilometers from the desired condition, preventing the
correct occurrence of the flyby.

Finally, Figures 4.14a and 4.14b show the continuous trajectory
that embeds the planetocentric phases for both the flybys V2 and V3,
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Figure 4.13: Design difference with respect to relativistic simulation between
V2 and V3 for the two node cases, and without manoeuvre.

togehter with the pre-V2 and post-V3 solutions, all generated with
the PC approach. As expected, all the orbits are all very similar to the
original mission profile shown in Figure 4.14a. Zooming over the flyby
regions the new continuity feature can be recognized (Figure 4.14b).

(a) Deep space correction maneuver and
overview.

(b) Zoom over Venus’ flybys V2 and V3.

Figure 4.14: Solar Orbiter’s continuous first resonant phase with Venus.

4.4.3 CPU and GPU performance of the augmented PC method

This application uses the two augmentation levels presented in Sec-
tion 4.3.2 to build a hybrid approach, that treats the outer blocks as
independent, and the inner ones as a single system in a more strict
sense. In this way, groups of similar trajectories can be considered
as unique but separate augmented system, allowing to maximize the
integration performances. The two level augmentation also provides a
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framework to deal with single trajectories within the same high perfor-
mance computing context, considering them as a group made of only
one member. As a practical example, the outer augmentation level
could be used to "isolate" a sub-group of trajectories experiencing a
planetary flyby, whose dynamics would become significantly different
from the rest of the samples. The test case follows what computed in
Section 4.4.2.

4.4.3.1 Computational setup

To build a common framework for the pure algorithm performance
evaluations, the 13509 initial conditions generated in the optimization
process to eventually obtain the results of Table 4.5 are re-run, using
the C and the CUDA® implementations of the PC integration. The
execution of the 13509 independent runs with the C implementation
of the algorithm is considered as benchmark case, both completely
sequential and parallelized with OpenMP [28]. The matrix operations
featured in the PC iterations are performed using the OpenBLAS
library [158, 168, 169]. All the presented runs of the C algorithm have
been executed on a machine running Ubuntu Linux 20.04, equipped
with 40 physical / 80 logical cores of the type Intel® Xeon™ CPU
E5-4620 V4 running at 2.1 GHz, with varying number of OpenMP
threads and the "o3" gcc compiler optimization enabled. Because of
the physical machine where the GPU was available, the CUDA™ code
has been run on the same workstation of the Matlab® optimal solution
computation. In this case a four core OpenMP® parallelization on a
Intel® CoreTM i7-7700 CPU (3.60 GHz), is combined for concurrent
executions with a NVIDIA® GTX 1050 (1.3GHz) graphics card.The NVIDIA® GTX

1050 is a 2016
low-end gaming card
model, whose design

purpose is far from
the double precision

computing of this
work. Modern

gaming/professional
cards could run up

to 60 times faster,
data center cards up

to 400-500 times
faster than this

model for the
presented

application.

4.4.3.2 Accuracy comparison

Figure 4.15 shows the evolution of the propagation error, measured as
relative position and velocity error with respect to the independent
runs case, for the C augmented and the CUDA® programs. In both
cases the error remains lower than the specified relative tolerance used
to halt the PC iterations, set to 10

-12.
Figure 4.16 shows instead the evolution of the error for the dy-

namics function only, distinguishing two different compilations of
the CUDA® programs, with (red dashed) and without (orange) the
–use-fast-math flag enabled. Despite the error experienced in Figure
4.15, the C augmented program shows no error for the computation of
the dynamics function. That means, the error is accumulated through-
out the PC iterations only because of the different structure of the
matrix multiplications. The implementation in the OpenBLAS library
[158, 168, 169] is optimized on the matrix size. This is a known issue
in high-performance computing problems, where the floating point
representation of numbers interferes with a change in the order of
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Figure 4.15: Errors of C augmented and CUDA® programs, as the average of
the error of all the states in the augmented systems.

the basic math operations on the matrix elements, producing small
deviations with respect to a reference non-parallelized solutions. No
differences have been observed between parallelizing and not paral-
lelizing the augmented C programs. On top of this consideration, the
CUDA® program is also subject to the errors introduced by the differ-
ent compilers. Other than being two different environments (Ubuntu
Linux with GNU® compilers for the C augmented program, Windows
10 Pro with Microsoft® Visual Studio® and Nvidia® CUDA® compilers
for the CUDA® program), small differences can also be observed by
setting different optimization flags in the compilation. The comparison
between enabling and disabling the fast math optimization options are
run to exclude the possibility of implementation problems for the dy-
namics kernel. As it can be observed comparing the two compilations,
the error spikes reaching 10

-12 happen in a seemingly unpredictable
manner and can be completely attributed to the compiler, because
happening at different PC nodes for the two cases. Otherwise, the
error level remains more than two orders of magnitude lower. In any
case, the accumulated effect of this error source is not taking the
overall error above the 10

-12 iteration tolerance, as Figure 4.15 already
highlighted.

4.4.3.3 Performance comparison

Table 4.9 shows the runtime difference between the sequential C pro-
grams. The improved efficiency of the augmented integration can be
immediately seen even in this sequential case, where the augmented
system approach runs 23.9% faster, because of the minimized overhead



156 picard-chebyshev integration and augmentation

Figure 4.16: Errors of C augmented and CUDA® programs, as the average of
the error of all the states in the augmented systems.

experienced by sharing the outer while loop. In the considered appli-
cation the various trajectories all require 41 or 42 PC iterations, making
it negligible to keep running trajectories even if their PC process has
already converged.

Table 4.9: Sequential runtimes for the independent runs and the augmented
system executions.

Case Runtime

[s]

Independent runs 245.02

Augmented system 186.54

The scalability properties of the integration of independent trajecto-
ries and the augmented system are studied on the C implementations,
i.e. assessing how well the execution of the two programs accelerates
with increasing number of OpenMP® threads. Figure 4.17 shows that
the augmented system features excellent scalability properties, for a
runtime that keeps decreasing for increasing number of OpenMP®

threads. On the contrary, the integration of independent trajectories
experiences even higher runtimes after a certain number of threads.
This happens because the parallelization itself introduces some over-
head to the overall program execution, which cannot be compensated
for by newly created parallel threads.

Figure 4.18 shows the achieved speedup, defined as the ratio be-
tween the sequential runtime and the parallel runtime, varying the
number of OpenMP® threads. It provides a measure of how par-
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Figure 4.17: Augmented system and independent integrations C code run-
time comparison with OpenMP® parallelization and varying
number of threads.

allelizable the algorithm is, with higher values underlining higher
accelerations. The augmented system integration shows once again
excellent scalability properties even at high number of threads, sug-
gesting the efficiency of the GPU computing transition even without
having assessed the performances of the CUDA® implementation yet.
If the number of threads is set equal to one, the algorithm conceptually

Figure 4.18: Augmented system and independent integrations C code
speedup comparison with OpenMP® parallelization and varying
number of threads.
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reduces to a sequential case. However, enabling compiler optimiza-
tion and the OpenMP® flag in the compilation, a parallel program
introduces data distribution and retrieval tasks across the possibly
multiple workers. With OpenMP®, the number of threads is specified
by an environment variable right before running the program. There-
fore, activating one thread only exposes all the parallelization-induced
overhead without having any computational benefit at all. For this rea-
son the one-thread runtimes for the independent and the augmented
systems both result higher than the benchmark, sequential runtimes,
which have been compiled with optimization enabled but without
active OpenMP® flag.

Finally, the execution of the CUDA® implementation6 results the
faster overall, taking 15.84 seconds. The whole trajectory set has been
split into 10 streams. The stream definition guideline should in prac-By the result of the

integer division of
the 13509 states by

9, with the tenth
stream containing a

number of states
equal to the

remainder of that
division.

tice fit the application the propagator would run on, being the sole
flexibility degree left by the implementation. However, from the GPU
viewpoint, larger kernels always imply a better GPU exploitation, thus
creating too many outer augmentation levels, i.e. activating a large
number of independent CUDA® streams, with too few trajectories
each would result in performance degradation, eventually obtaining
what already observed with the independent integration cases for the
single trajectories.

Table 4.10 summarizes the runtime results discussed in the previous
lines for the different cases, for selected number of cores in the C
implementation cases.

Table 4.10: Runtimes for the independent runs and the augmented system
executions. Average of 10 different runs each.

Case Threads GPU Runtime [s]

C Independent 1 - 245.02

C Augmented 1 - 186.54

C Independent 8 - 113.09

C Augmented 8 - 40.60

C Independent 40 - 113.54

C Augmented 40 - 22.67

C Independent 80 - 178.18

C Augmented 80 - 18.70

CUDA® Augmented 4 GTX 1050 15.84

Figure 4.19 shows the increasing speedup achieved by the aug-
mented system when compared to the sequential and independent
simulations of all the samples. The CUDA® implementation runs more

6 Only the results obtained for the compilation without the –use-fast-math options are
shown. No significant runtime difference (less than 0.1 seconds) has been observed.
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than 15 times faster compared to the baseline case, suggesting the
suitability of the augmented PC algorithm to high performance and
GPU computing facilities.

Figure 4.19: Speedup comparison among C and CUDA® implementations.

4.4.3.4 CUDA® Kernel profiling and optimization - GTX 1050

The final kernel implementations are the result of a detailed profil-
ing and optimization process, performed with the Nsight® Compute
tool and a NVIDIA® GeForce® GTX 1050 graphics card. The choice
of the 32 units block size of the dynamics kernel has been driven
mostly by the need of using the shared memory also for the tempo-
rary storage of the double precision state and the acceleration vector
elements, just too large to be kept on the thread-private registers. The
error computation kernels do not feature this bottleneck, thus the
full amount of 1024 threads per block can be activated, minimizing
the number of memory transactions and maximizing the reduction
effects. The further four times of reduction while reading the error
from ephemerides data (better detailed in Section 4.3.6.2) are the result
of multiple trials: adding more reduction layers results in a kernel
slowdown not compensated by the consequent speedup in the CPU
function final call. Analogously, removing some of them resulted in a
CPU function slowdown not compensated by the kernel speedup. The
chosen number of while-reading reductions may however be affected
by the problem size of the selected test case. Larger (or smaller) sets
of initial conditions to be propagated may feature a different optimal
implementation of the maximum error computation. On the contrary,
32 is already the minimum block size for the dynamics kernel and
is not related to the problem size. Other non-relativistic dynamics
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function may drive the use of the shared memory in a different way,
possibly allowing the use of larger block sizes.

The kernel performance is condensed into three numbers that result
from the profiling process, i.e. the average multiprocessor occupancy
for compute operations (Compute in Tables 4.11 and 4.12), the shared
memory utilization (Shared Memory in Tables 4.11 and 4.12), and
the memory throughput (Throughput in Tables 4.11 and 4.12). De-Non-compute

intensive but still
highly parallelizable

tasks may have the
memory transfer as
final bottleneck, the

throughput measures
how much of the

CPU-GPU
communication band

width is used.

spite profiling tools provide more detailed information, the presented
indicators already allow the description of the kernel performances
in sufficient detail. The profiling indicators of the cuBLAS® kernels
for matrix-matrix product (dgemm), matrix-vector product (dgemv), and
element-wise summation (daxpy)7 used for the matrix multiplications
embedded in the PC method are also shown, providing a performance
comparison against well-known and heavily optimized library func-
tions. In addition, also the kernel runtime as measured in the profiling
activity is added to the comparison, to highlight the difference for the
two tested augmented system sizes.

Table 4.11 shows the kernel profiling results for an augmented sys-
tem made of all the 13509 states to be propagated. The compute-bound
kernels can be easily recognized as the ones exploiting the most the
GPU’s compute capability (Dynamics (dynamics), dgemm, error com-
putation (errCompute), and maximum error reduction (maxReduce)).
The matrix-matrix multiplication is more memory bound than the
dynamics function, because larger arrays must be loaded at the same
time on the shared memory to perform the computation. On the con-1501 results from

splitting the full
augmented system of
13509 states into 10

CUDA® streams,
each but the last

with a number of
states equal to the

integer division
between 13509 and

9. The tenth and last
streams contains a

number of states
equal to the

remainder of the
previous integer

division.

trary, the dynamics kernel features a more relevant computational
bottleneck, because of the much more complex algorithm compared to
the simple products and summations of the dgemm case. The remaining
kernels, as well as the lower-intensity but still highly parallelizable
error computation, all feature a high memory throughput. The GTX
1050 card used as a maximum memory band width of 112.1 Gb/s: the
closer the throughput to that value the better the memory transactions
are managed, essential feature for memory-bound problems. If some
computations are added in the kernel, some throughput is inevitably
lost, as latency sources are introduced between transaction to/from
the shared/global memory.

Table 4.12 shows the kernel profiling results for an augmented sys-
tem made of 1501 states to be propagated. The more compute-bound
kernels do not show a significant loss of performance compared to
the 13509-sized single augmented state case of Table 4.11, whereas
the other kernels do. This highlights the suitability of GPU comput-
ing to extremely intense and parallelizable tasks, where the kernel
call overhead is heavily compensated for by the massive task paral-

7 For the sake of conciseness the kernels are identified with the names of the cuBLAS®

API functions, although optimized kernels are called for each specific GPU architec-
ture and problem size.
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Table 4.11: 13509-sized augmented state kernel profiling results, for the GTX
1050 GPU.

Kernel Compute Shared Throughput Runtime

[%] Memory [%] [Gb/s] [µs]

dynamics 97.11 24.96 1.91 137470

dgemm 94.15 26.67 4.06 164210

dgemv 47.14 84.54 93.24 1400

daxpy 18.18 74.78 60.26 32.48

errCompute 99.41 53.26 59.36 4740

maxReduce 36.80 71.36 79.25 279.36

lelization. Nevertheless, the capability of successfully processing also
smaller-sized problems remains crucial for the program flexibility,
particularly for what concerns the adoption of the proposed two-level
augmentation scheme comprising smaller sub-systems significantly
different from each other.

Table 4.12: 1501-sized augmented state kernel profiling results, for the GTX
1050 GPU.

Kernel Compute Shared Throughput Runtime

[%] Memory [%] [Gb/s] [µs]

dynamics 96.86 24.92 1.91 15300

dgemm 93.67 26.65 4.08 18390

dgemv 42.59 78.74 87.53 170.85

daxpy 9.19 33.95 36.31 6.62

errCompute 98.25 53.44 59.78 529.34

maxReduce 26.29 63.35 68.20 42.88

Table 4.13 compares instead the runtimes of the CUDA® program,
for the cases of 1 and 10 active streams. Theoretically, the former has
the advantage of a better GPU resource exploitation, whereas the latter
makes a more aggressive use of the CPU-GPU concurrency. Despite
the lower GPU efficiency, the achieved runtimes are almost identical.
Therefore, the two-level augmentation scheme can efficiently tackle the
case of differently-sized lower-level augmented subsystems, showing
the flexibility of the proposed computational scheme, despite the fine
grain code optimization necessary for its successful implementation.
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Table 4.13: 1 and 10 streams CUDA® program executions. Average of 10

different runs each, for the GTX 1050 GPU.

Case Runtime

[s]

1 stream 15.78

10 streams 15.84

4.4.3.5 Profiling on the RTX A6000

The profiling of the CUDA® kernels presented in the previous section
is repeated, using the Nvidia® RTX A6000 graphics card and running
the computations on a Ubuntu Linux 22.04 machine, equipped with 2

Intel® Xeon® Platinum 8352V at 2.1 GHz. The RTX A6000 mounts 48

Gb of memory and is equipped with roughly 15 times more CUDA
kernels compared to the GTX 1050, hence featuring a much higher
memory throughput (768 Gb/s against 112 Gb/s). For this reason, the
block size for the dynamics kernel has been increased from 32 to 128.

Table 4.14 shows the profiling results for the same test case pre-
sented in Table 4.11, that is the propagation of the full augmented
system on a single CUDA® stream. For the dynamics kernel, the main
difference with respect to the GTX 1050 case is the lower utilization
of the GPU, visible both in terms of computational occupancy and
shared memory utilization. Being a more powerful graphics card, the
kernel implementation could be optimized for higher computational
resources, better exploiting the available shared memory and possibly
increasing the overall performance.

Table 4.14: 13509-sized augmented state kernel profiling results, for the RTX
A6000 GPU.

Kernel Compute Shared Throughput Runtime

[%] Memory [%] [Gb/s] [µs]

dynamics 89.10 3.27 23.83 19080

dgemm 97.09 3.86 13.77 20340

dgemv 35.97 91.66 653.49 216.03

daxpy 16.04 41.52 250.64 5.63

errCompute 89.86 59.32 431.99 705.66

maxReduce 29.11 73.37 514.91 45.70

Table 4.15 shows instead the profiling of the kernels when the
trajectories are split in 10 different streams, analogously to Table 4.12.
As expected and as already observed, the efficiency slightly decreases
with augmented systems of smaller size.
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Table 4.15: 13509-sized augmented state kernel profiling results, for the RTX
A6000 GPU.

Kernel Compute Shared Throughput Runtime

[%] Memory [%] [Gb/s] [µs]

dynamics 87.24 3.02 21.98 2170

dgemm 95.72 3.78 12.50 2310

dgemv 31.97 74.01 469.83 33.22

daxpy 2.87 7.39 44.14 3.55

errCompute 84.84 54.54 394.22 83.65

maxReduce 18.93 47.54 318.97 8.19

Finally, Table 4.16 compares the total runtimes of the single and
the 10-stream cases. While each kernel runs roughly 8 times faster
on the RTX A6000, the global runtime reduces of "only" a factor 4.
This result may be explained by the CPU cluster occupancy at the
time of testing, as well as for the problem becoming more and more
CPU-bound: the massive parallelization of all the GPU parts of the
program has reduced the device-related runtime, possibly enough to
make the sequence of iteration control instructions issued by the CPU
the new bottleneck.

Table 4.16: 1 and 10 streams CUDA® program executions. Average of 10

different runs each, for the RTX A6000 GPU.

Case Runtime

[s]

1 stream 3.87

10 streams 3.84

The profiling activity performed with a different device highlights
once again the importance of low-level programming in GPU com-
puting: the configurations that led to the optimal performance with
the GTX 1050 are not exploiting the RTX A6000 at its full potential,
which should be adapted for greater shared memory use to achieve
full occupancy and, thereby, optimizing the overall execution. At the
same time, the CPU side of the program should also be reviewed,
aiming at reaching total runtimes aligned with the reduction factors
observed for the CUDA ® kernels, if possible.
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4.5 summary

4.5.1 Fixed-point high-precision resonant flyby optimisation

The complexity of the multi-flyby design problem in the continuous
environment has been successfully broken down into a backward
recursive approach, that designs each of the flybys in cascade, consid-
ering the next encounter as the target condition for how to perform
the current one. Given the results of an unperturbed patched conics
analysis, the b-plane has been proven to be a powerful formalism to
enforce a continuity condition with, and particularly well suited for
pruning purposes, making the dimension of the optimization search
space minimal.

A first possible development direction is the inclusion of tighter
mission constraints, such as a minimum pericenter distance as Solar
Orbiter needs [41]. This aspect might be tackled with the proposed
strategy before the design of any maneuver, seeking for quasi-ballistic
solutions that surf the effects of orbital perturbations, even if chaotic,
aiming to minimize the required artificial corrections.

Despite it might be already satisfactory, the computational perfor-
mance of the method is for sure what can be improved the most by
future works. First of all, the optimized versions of the modified PC
method can be adopted and the sequential execution can be accel-
erated by a complete implementation in a compiled programming
language, instead of the MATLAB® platform proposed in this work.
Furthermore, although the multi-step solution of the optimization
problem of Equation (4.17) proposed in the presented application is
robust, it could be better tailored by prior analysis of the search space
or made more lightweight already scanning with finer tolerances.

In conclusion, a systematic framework to surf a complex perturba-
tion environment such as the relativistic N-body problem is proposed.
Provided the model to be sufficiently accurate, the available technol-
ogy might become the new bottleneck for practical purposes: some
uncertainty is inevitably introduced by the execution of the control
maneuvers, as well as the connected orbital determination measure-
ments. Future works might also deepen this aspect using models of
real life equipment, studying in turn what consequences non-precise
measurements or thruster firings might have on the high-fidelity de-
signed trajectory, together with the possible required mission planning
actions.

Looking to possible applications in other environments, the pre-
sented approach may be used in the design of moon tour missions
towards the giant planets, which feature the available fuel as a major
constraint. Quasi-ballistic solutions are always sought for, to swing
by the numerous bodies multiple times maximizing the exploration
outcome.
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4.5.2 PC augmentation for large sets of initial conditions

The proposed development of the PC scheme explores the benefits
that high-performance CPU clusters and GPU computing architec-
tures bring to the short leg orbital propagation of large sets of initial
conditions. The tested case studies the runs required to design a Solar
Orbiter-like resonant phase with Venus, optimized to surf the relativis-
tic N-body environment, proposing a two-level augmentation strategy
implemented in the C and the CUDA® programming languages.

Propagating the augmented system always outperforms propagat-
ing the trajectories independently, both in the sequential and the
parallelized case. The augmentation benefits appear in two differ-
ent aspects, the first being the reduced overhead compared to the
repeated independent runs, the second represented by a finer grain
parallelization also exploiting optimized linear algebra libraries.

The approach scalability allows the implementation on GPU archi-
tectures, with low end graphics card already capable of matching the
performance of a common-size cluster node. Data center card models
can make the algorithm run around 400-500 times faster, while the
newest gaming GPUs should already allow a 60 times program ac-
celeration. In addition, implementing the second order version of the
modified PC method with error feedback should introduce a further
two/three-fold acceleration.

Despite being shown on a test case derived by a trajectory optimiza-
tion application, the proposed scheme represents a completely general
orbital propagator. Any application requiring the propagation of large
sets of initial conditions could benefit by the high computational effi-
ciency provided by this algorithm, not necessarily requiring the use of
super-computing facilities, in favor of much less expensive graphics
cards.

Future works may keep developing the software tool, managing
longer integration spans in sequence, and, as a general propagator,
implementing event detection and management procedures. At the
same time, the optimization scheme that led to the presented trajectory
design application can be modified to accommodate massively parallel
search approaches. On the implementation side, the benefits of using
CUDA® graphs instead of the stream-based management of the outer
level augmented systems and the use of Tensor Core® capabilities of
modern devices may be explored.
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K S VA R I A B L E S I N C U D A J E C T O RY

Following the theoretical and experimental results presented in this
dissertation, some of the proposed concepts and state-of-the-art ad-
vancements are already suitable for implementation and application.
In particular, the performance improvement obtained in Chapter 2 jus-
tifies the goal of this chapter, that covers the implementation and the
validation of KS variables in CUDAjectory [32, 57, 128]. A summary of
parallel and GPU computing concepts and fundamentals can be found
in Appendix C, as this chapter makes an extensive use of GPU and
CUDA® nomenclature and terminology. After an introduction on the
general structure of CUDAjectory in Section 5.1, Section 5.2 outlines
the implemented software extensions. Finally, Section 5.3 validates the
KS propagation in CUDAjectory, running a compliance analysis of the
ESA mission JUICE with SDM policies.

5.1 cudajectory general architecture

CUDAjectory [32] is a GPU object-oriented software for massively
parallel trajectory propagation, using the Runge-Kutta-Fehlberg RKF78
integration method. As the name suggests, CUDAjectory is written
in CUDA® C++, hence making it suitable to be run with NVIDIA®

graphics cards.
CUDAjectory has been developed and is maintained by the Mission

Analysis section at the European Space Operations Centre (ESOC),
at ESA, and is available to the general public by an ESA Community
License. The first implementation follows the Master’s thesis work of
Geda [57], including most of the model features, i.e. gravitational ef-
fects from the Solar System bodies, solar radiation pressure, spherical
harmonics perturbation for Earth orbits, and high-order perturba-
tions based on point mascons [57]. CUDAjectory manages ephemeris
data in a unique way, with data written in the CUBE (acronym for
CUdajectory Binary Ephemeris) format and accessed from texture
memory, improving the performance of the software. In this way,
CUDA® threads can access ephemeris data more efficienly than in
lookup-based approaches (commonly adopted with SPICE’s spk files
[2]). More recent works have widened the force pool with an atmo-
spheric model and aerodynamic drag acceleration [6], as well as the
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capability of interrupting simulations based on the total radiation
absorption in the Jovian environment [144]. Additionally, Inno [67]
improved the efficiency of memory management and event detection
routines.

Figure 5.1 shows the overall software structure. Other than the
pure command line program, CUDAjectory includes a PyBind® [117]
interface, that exposes CUDAjectory’s simulators to Python programs
and Python Numpy®[111] input/output array types, providing Python
users a simple interface to GPU parallelized propagations. For the
command line execution of CUDAjectory, input/output samples and
trajectories are given in csv format, while the only configuration file
required can be written either in json [73] or yml [170] format, for the
Python library implementation as well.

Figure 5.1: CUDAjectory overall structure. Picture from [57].

Figure 5.2 shows instead the simulation approach implemented in
ClusterSimulator. A limited set of steps is taken on the GPU, then
the simulation data are passed to the CPU for storage and processing.
The process is repeated in a while loop until the end of the simulation
is reached. This approach has the advantage of reducing the occu-
pancy in the device memory, since, if needed, the full trajectories are
gradually stored on the CPU, keeping the limited GPU memory free.
Additionally, the simulation samples can be sorted to maximize the
software performance, for instance gradually removing early-ending
samples (e.g. in case of detection of impacts).

5.2 implementation of the ks dynamics

Figures 5.1 and 5.2 highlight the blocks of CUDAjectory where the
modifications required to run simulations in KS coordinates should
take place. At first glance, the following routines are required:

• non-dimensionalization of Cartesian state vectors;

• conversion between KS and Cartesian formulations;

• interface with the existing force model for the computation of
the dynamics function;
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Figure 5.2: ClusterSimulator structure in CUDAjectory. Picture from [57].

• end-of-simulation based on physical time;

• interface with existing event functions.

As an additional user-oriented requirement, the KS dynamics should
possibly not be exposed, aiming at preserving the software interface
and configuration.

5.2.1 High-level implementation

Following the just outlined requirements, CUDAjectory has been ex-
tended completely hiding KS variables at the core of the software.
All the Simulator classes in CUDAjectory have been extended with a
new method that runs KS variables, with the user interface remaining
unchanged. CUDAjectory can still be run in the traditional Carte-
sian setup, calling the usual evolve() method, while the KS run is
launched calling the ksevolve() routine. Figure 5.3 shows the concep-
tual extension that Simulator classes in CUDAjectory have undergone
to run with KS variables.

Figure 5.3: CUDAjectory overall extension logic.

Taking a closer look to the Simulator block, the transformation
from KS to Cartesian coordinates needs to be implemented also for
the storage of intermediate simulation steps, as highlighted in red in
Figure 5.4. Internally in the "Propagate N samples for m steps" block,
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the given force model is interfaced with KS variables according to
Equations (2.30) and (2.35). Events are instead computed by retrieving
the Cartesian states, at each step.

Figure 5.4: CUDAjectory Simulator extension logic. Picture modified from
[57].

In this implementation, the end of integration in physical time is
implemented by early halting the KS simulation, immediately before
stepping over the final epoch. Then, the samples are propagated for
the remaining time interval in Cartesian coordinates. This is done
to exactly reach the user-supplied final integration time. While ap-
proaches to achieve this behavior exist in the literature for generic
regularized formulation (e.g. by Amato et al [3]), the CUDAjectory
implementation may not be straightforward, because the full trajec-
tory is not stored in general, making the pre end-of-time step data
unavailable.

5.2.2 Low-level code extension

This section summarizes the extensions that have been implemented
in CUDAjectory, referring to the different parts of the code according
to the names of the classes involved. The full details can be found in
CUDAjectory’s documentation [32].

5.2.2.1 Samples, states, and time

The conversion between the Cartesian and KS formulation, together
with the adaptive non-dimensionalization proposed in Chapter 2, have
been encapsulated in three newly created classes:

• Real4, that implements four-vector and quaternion algebra (anal-
ogous to the Real3 class);

• KSState (analogous to the CartState class for the Cartesian
formulation);

• KSSample (analogous to the CartSample class for the Cartesian
formulation);
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The KSState class has been implemented following the paradigms
outlined in CartState. Other than a few useful methods to wrap
quaternion operations and retrieve the Cartesian state, following the
CartState naming the class properties are defined as in Listing 5.1. CUDAjectory wraps

single and double
precision in the
RealPrecision
class.

Listing 5.1: KS state class properties.

/**
* @brief KS state containing position , velocity , and

time element.
*/

struct KSState : public State
{
public:
// ...

// Data
Real4 pos; /**< position -like */
Real4 vel; /**< velocity -like */
RealPrecision time; /**< time element */

// ...
}

The time element follows the physical time in its relative evolution,
i.e. it represents the elapsed time from the given initial condition.
The conversion routines between the Cartesian and the KS formu-
lations, as well as the optimization of the KS fibration parameter
presented in Chapter 2, are encapsulated in the object constructors:
either CartState and KSState can be constructed with either object
as input, overloading the constructor for different input types and
implementing ad-hoc object construction algorithms, all following the
procedures presented in Chapter 2.

The management of the adaptive non-dimensionalization and of
the fictitious time itself is instead delegated to the KSSample class.
Sample classes store many properties and useful flags to efficiently
run the simulation, other than a state object as the state vector being
propagated. The extension does not represent the simple inclusion of
KSState instead of CartState, rather, two additional properties are
created to manage the adaptive non-dimensionalization : lref and
tref, as reference length and time, respectively, as shown in Listing The reference

dimensions are
kilometers and
seconds.

5.2.

Listing 5.2: Cartesian and KS sample properties.

/**
* @brief Information of a trajectory simulation

sample in Cartesian state representation.
*/

struct CartSample : public Sample
{
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/** Cartesian position and velocity */
CartState state;

// ...
}

/**
* @brief Information of a trajectory simulation

sample in KS state representation.
*/

struct KSSample : public Sample
{

/** KS state */
KSState state;

/** Non -dimensionalisaiton quantities */
RealPrecision lref;
RealPrecision tref;

// ...
}

Similarly to the state case, the full conversion process between
CartSample and KSSample is encapsulated in the overloaded defini-
tions of the object constructors, based on the input types, including
the non-dimensionalization . Both samples store the initial epoch in
MJD2000 in the startEpoch property. The adoption of the fictitious
time is managed as follows:

• CartSample stores the relative simulation time (physical) in sec-
onds in the relTime member;

• KSSample stores the non-dimensional relative simulation time
(fictitious) relTime member, that is initialized to 0 unless differ-
ently specified in input.

Both classes feature the getAbsTime() method to retrieve the absolute
simulation time in MJD2000, that is often used to read ephemeris data.
KSSample implements its own version of the method, retrieving the
relative physical simulation time through the time element in KSState
and the tref property, as shown in Listing 5.3. The object constructors
fully encapuslate the mapping between CartSample.relTime and the
time element in KSState as well.

Listing 5.3: Absolute time retrieval methods.

// getAbsTime () for Cartesian samples
RealPrecision CartSample :: getAbsTime () const
{

return startEpoch + relTime / 86400;
}
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// getAbsTime () for KS samples
RealPrecision KSSample :: getRelTime () const
{

return state.time * tref;
}

RealPrecision KSSample :: getAbsTime () const
{

return startEpoch + getRelTime () / 86400;
}

5.2.2.2 Dynamics, events, and general interface

CUDAjectory’s memory management approach required the creation
of a whole new class for the extension of the dynamics function. The
Cartesian version is called RHS, shorthand for Right Hand Side, as the
right hand side of the dynamics equation, whereas the implemented
KS counterpart has been named KSRHS. To optimize the memory usage,
RHS is initialized with starting epoch (e.g. CartSample.startEpoch),
the center of the reference frame, and the force model used in the
computation, whereas CartState and the relative simulation time
CartState.relTime are supplied when calling the dynamics evalua-
tion itself. The output location of the evaluated dynamics is set with
the dedicated setOutputLocation() method, that writes to a pre-
allocated memory location with CartState type. More than any other
interface issue, this aspect has required the computation of the KS
dynamics from within a RHS-like object, because major modifications
to the numerical schemes functions would be required otherwise. The
differences between RHS and KSRHS can be summarized as:

• KSRHS takes a KSState input, as well as the reference dimen-
sions lref and tref, retrieving the dimensional Cartesian state
internally;

• KSRHS computes the model acceleration in the same way as RHS,
only modifying the total value according to the non-dimen-
sionalization quantities and converting it to the KS formalism.
Eventually, the dynamics result is stored as a KSState made by
the position, velocity, and time element derivatives with respect
to the fictitious KS time, as presented in Listing 5.4.

Listing 5.4: KS dynamics function interface.

void KSRHS:: calculate(const RealPrecision relTime ,
KSState& state , /* other input parameters for the
acceleration computation are included */ const
RealPrecision lref , const RealPrecision tref)

{
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// get car state
CartState carState = CartState(state);
// make it dimensional
carState.pos *= lref;
carState.vel *= (lref / tref);

Real3 totalAcc;

/**
* totalAcc is filled as a normal Cartesian

acceleration
*/

// compute KS acceleration
RealPrecision r = state.pos.sumSquare ();
totalAcc /= (lref / (tref * tref));
Real4 tmp = Real4(totalAcc);
Real4 ksacc = (state.vel.sumSquare ()/r) * state.

pos;
ksacc += 0.5 * r * tmp.quatMultiply(state.pos.

quatConjAntiInvolute ());

// the derivative of the KS state is stored
in the stateOutput location

new (stateOutput) KSState(state.vel , ksacc , r);
}

The interface for all the event functions follows the simple creation
of a CartSample object, that is supplied to the usual Cartesian event
detection routines. Normal event functions only update some of the
flags of CartSample to control the simulation: such flags are then all
copied in block to the initial KSSample to proceed with the propagation.
A slightly different approach is implemented for routines that switch
the center of the reference frame in case of entrance or exit from a SOI:
in this case, the event CartSample is switched according to the normal
event routine and then used to update the initial KSSample with a new
constructor call.

The definition of the presented KS-related classes has required
the minor adaptation of several functions across CUDAjectory. For
instance, the RKF78 CUDA® kernel and the device function have been
overloaded with their KS versions, adapting all the input and internal
declarations accordingly.

5.3 application : juice debris mitigation analysis

The proposed implementation of KS variables in CUDAjectory is
tested with the propagation of the dispersion of Ariane 5’s upper stage
of launcher, for the JUICE mission case. Boutonnet and Rocchi used
CUDAjectory [17] to assess the compliance of different possible launch
scenarios with space debris mitigation policies, computing the impact
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probability of this dispersion with Earth. The initial dispersion data
are given in terms of nominal interplanetary injection state and the
related covariance matrix, both covered by a non-disclosure agreement
between the ESA and Arianespace. Nevertheless, the results of the
CUDAjectory implementation can still be studied with a detailed
analysis of the output trajectories.

Figure 5.5 shows the position error evolution for the simulation
of one of the samples, performed with 10

-12 absolute and relative
tolerances in Cartesian and KS coordinates. The error is measured
against a reference Cartesian simulation, also made with CUDAjectory
but with 10

-14 absolute and relative tolerances. The position error re-
mains mostly the same for the two cases: the chosen values of absolute
tolerance make the Cartesian simulation slightly more accurate, as
no non-dimensionalization is present in this case. Table 5.1 shows
instead the steps required to complete the simulation, achieving a
reduction that is even greater than what observed in Chapter 2. This
may again be due to the combined effect of absolute tolerance and
non-dimensionalization choice, as the Astronomical Unit and the Year
have been used to make the benchmark simulation non-dimensional
in Chapter 2.

Figure 5.5: Position error evolution example, KS and Cartesian coordinates
in CUDAjectory.

The following analysis focuses instead on the achieved runtime re-
duction, validating the computation of both evolve() and ksevolve(),
propagating the same initial conditions and comparing each sample
outcome against a higher precsion evolve() simulation. The test cases Assessing if each

sample impacts with
Earth or not.

have been run in a Ubuntu® Linux®
22.04 machine, equipped with two

Intel® Xeon® Platinum 8352V (36 cores, 72 logical @ 2.1 GHz) and a
Nvidia® RTX A6000 graphics card. Absolute and relative tolerances for
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Table 5.1: CUDAjectory steps for Cartesian and KS cases.

Steps

evolve() 5272

ksevolve() 2399

Reduction 58.3%

the numerical schemes have been set equal to 10
-12, and the samples

have been propagated 100 years forward in time.
Tables 5.2 and 5.3 show the runtimes for the different CUDAjectory

calls, with and without storage of the full propagated trajectories,
respectively. KS variables visibly improve the efficiency of the soft-
ware, which increases with the number of samples. In case of stored
trajectory, the improvements become even more relevant, achieving a
runtime reduction of over 60% in the case of 20k propagated samples.
Other than the reduction of the steps taken presented in Table 5.1,
the reason for this additional performance enhancement is explained
by the lower amount of states that CUDAjectory’s output handlers
need to manage, resulting in an overall reduced memory and output
processing overhead. Nonetheless, the runtime reduction without tra-
jectory storage remains consistently around 40%, a much lower value
compared to the observed step reduction, particularly if comparing
it with the relation between step and runtime reduction presented in
Chapter 2. This suggests that the current implementation may be opti-
mized, minimizing the number of conversion operations to compute
events and reducing the memory usage.

Table 5.2: CUDAjectory runtimes for different configurations, with trajectory
storage. Average of 5 different runs.

Samples and Runtime [s]

1 10 100 1k 2k 10k 20k

evolve() 3.03 3.33 4.93 5.44 7.17 29.00 68.56

ksevolve() 1.91 2.09 2.90 3.13 3.24 12.20 23.95

Reduction 36.9% 37.3% 41.3% 42.5% 54.9% 57.9% 65.1%

Table 5.3: CUDAjectory runtimes for different configurations, without trajec-
tory storage. Average of 5 different runs.

Samples and Runtime [s]

1 10 100 1k 2k 10k 20k

evolve() 2.97 3.22 4.69 5.01 5.12 6.10 8.60

ksevolve() 1.83 2.05 2.83 3.02 3.06 3.60 5.24

Reduction 38.5% 36.4% 39.7% 39.7% 40.2% 41.0% 39.0%
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Table 5.4 shows the number of different sample outcomes between
the different CUDAjectory calls, against a higher precision evolve()
call with 10

-14 relative tolerance. The two simulation strategies appear
to be equivalent in terms of statistical significance. While in general
KS simulations are more precise and numerically stable, as shown in
Chapter 2, the low value of absolute tolerance may have allowed the
Cartesian simulation to bridge the accuracy gap with the KS variables,
in this particular setup. In any case, the lower runtime makes KS
simulations the most suitable choice, given that the overall statistical
accuracy is preserved.

Table 5.4: CUDAjectory outcome difference against a 10
-14 relative tolerance

evolve() simulation.

Samples

1 10 100 1k 2k 10k 20k

evolve() 0 0 0 0 0 2 6

ksevolve() 0 0 0 0 0 2 5

5.4 summary

The implementation of KS variables successfully introduces notable
performance improvements in CUDAjectory. One of the research re-
sults of this dissertation is therefore made available on operational
software, allowing ESA to nearly halve the computational cost of
massively parallel propagation-related applications, such as PP/SDM
compliance analyses.

Future implementation works should mainly extend the software
flexibility in KS variables. Given the regularity that KS variables in-
troduce in UP (shown in Chapter 2), storing the full trajectories in
KS variables would allow future researchers to benefit from the re-
newed computational efficiency, while having a full KS output at
their disposal. Upon optimization and generalization, it may be worth
attempting to implement PC-based propagators in CUDAjectory, com-
paring the efficiency against step-based schemes. In this case, the
major limitation is represented by event detection algorithms: while
the flyby detection concept has been validated in Chapter 4, the dif-
ferent programming paradigms required with GPUs may require a
CUDA® implementation with remarkably different algorithms.

CUDAjectory remains a propagation-only related software, thereby
limiting the extension possibility to improved input/output man-
agement, propagation techniques, and other dynamical formulations.
Nonetheless, CUDAjectory may become the simulator at the core of
more advanced UP software tools, that may exploit the potential of
GPU computing even beyond the trajectory propagation block.





6
C O N C L U S I O N

The research presented in this dissertation has focused on different
aspects of uncertainty propagation (UP), proposing novel dynamical
and computational approaches to make PP/SDM compliance analyses
more efficient. In addition, the influence of the dynamics formulation
on the statistical description of the uncertainty has been studied, high-
lighting that the choice made on the equations of motion may be the
enabling factor for the use of certain probabilistic approaches. Despite
notable performance and accuracy improvements have been found in
all the explored directions, only the combination of all the research
areas affecting UP can eventually bring computational feasibility to
the problem. So far, the either exclusively astrodynamical or computa-
tional approaches have been capable of providing good compromise
solutions, fitting most practical needs, yet all feature clear conceptual
limitations and are not applicable in all cases. Be that the long-term
simulation of the debris environment or the mission compliance as-
sessment with given policies, only the synergy between the research
fields affecting UP can lead to stable and effective solutions to these
computationally intense modeling challenges.

6.1 summary and findings

6.1.1 KS variables for uncertainty propagation

Chapter 2 explored the use of KS variables in high-fidelity orbit prop-
agation and PP/SDM compliance analysis. The re-formulation of
the orbital dynamics naturally introduces regularity to the problem,
removing the non-linearity of the Kepler problem, as well as the
near-singularity experienced at close distance from celestial bodies.
Hence, KS variables build a more efficient trajectory propagation
framework, regardless the perturbation sources introduced in the dy-
namical model. Nearly halved runtimes come in combination with
an increased simulation accuracy of a factor 10, thereby establishing
KS variables as a flexible yet robust formulation choice for any orbital
problem, flybys included. These results reflect what also observed
in the CUDAjectory implementation of KS variables in Chapter 5,
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providing an excellent example of the suitability of this formulation
of the dynamics with GPU computing architectures.

Chapter 2 also presents the preparatory work to run UP completely
in KS variables. In particular, several mapping techniques have been
studied for the conversion between Cartesian and KS uncertainties,
proposing an analytical solution for the conversion of the position
covariance of Gaussian distributions. The stronger non-linearity of the
KS-Cartesian transformation prevents finding closed-form solution.
Nonetheless, an Unscented Transform-based conversion approach has
been devised, reaching highly accurate uncertainty mapping also for
cross and velocity covariance terms. Next, using Monte Carlo simu-
lated data, KS variables have been observed to introduce regularity
and predictability even to whole uncertainty distributions. Here, the
role played by the adaptive non-dimensionalization combined with
the synchronization upon the fictitious KS time allowed the reconstruc-
tion of a continuum-like behavior of the uncertainty, even after flyby
scattering events. Modeling the uncertainty directly in KS variables
gives even further improvement, as the orbital dynamics reduces to a
quasi-linear harmonic oscillator.

6.1.2 Jacobian spheroids and the Keyhole Map

Chapter 3 tested different approaches to detect and model shallow and
distant interactions. Perturbation approaches applied on the hyper-
bolic two-body solution are a relatively unexplored topic, in contrast
with the abundance of studies on Earth bound orbits. The lack of
periodicity makes it difficult to replicate analog techniques: whilst in
the elliptic case similar approaches work for both Earth’s oblateness
and the third body perturbation, the same consideration does not hold
for hyperbolic trajectories.

Chapter 3 also proposes a novel concept of SOI, based on the Jaco-
bian eigenvalues of the Barycentric Restricted Three Body Problem.
This criterion bounds an extended region of space, compared to the
traditional SOI and Hill’s sphere definitions. This criterion perfectly
complies with numerical analyses, that identified this zone as the most
numerically stable switch distance to change the center of integration
between Sun and the planet flown by. The dynamical meaning of Jaco-
bian eigenvalues highlights that this criterion is better suited to track
local changes in the dynamics function, compared to the "static" tradi-
tional definitions linked to gravitational forces and potential, hence
fitting the fast and dynamical nature of flybys.

Finally, Chapter 3 parametrizes the Jacobian spheroids to study the
effects of shallow and distant interactions in Earth-impacting trajec-
tories. A simple surrogate model for the dynamics in the proximity
of Earth allowed the construction of the Keyhole Map: high impact
probability regions can be detected using this graphical statistical
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tool, that finds threatening trajectories even in the case of nominally
non-resonant orbital periods.

6.1.3 Picard-Chebyshev for uncertainty propagation

Chapter 4 analyzed strengths and weaknesses of iteration-based nu-
merical schemes from an applied viewpoint. While step-based integra-
tors are in general a more robust and flexible choice, some selective
applications may obtain a relevant performance boost with a different
simulation approach. The PC scheme has been applied to the optimiza-
tion of a Solar Orbiter-like multi-flyby trajectory: the fixed-point logic
of the integrator minimized the need of reading ephemeris data, mak-
ing it feasible to use of a full-perturbation model of the interplanetary
environment.

An augmented version of the PC numerical scheme is also proposed,
to maximize the performance thereof when propagating large sets of
initial conditions. The method builds an augmented system containing
all the trajectories, and applies the PC iterations to this system as a
whole. This approach optimizes the use of high-performance clusters
and GPUs, as the parallelization of computation acts at the finest pos-
sible level, resulting in a highly scalable approach. The results shown
in Chapter 4 highlight the large computational potential of the PC
integration already at the current development level, for applications
that do not require intensive event detection procedures.

6.2 limitations and applicability

Rather than a true limitation, the major difficulty related to the exten-
sive use of KS variables, or of advanced formulation of the dynamics in
general, is perhaps the not so clear physical meaning thereof. Possibly,
this is also the reason why KS variables and other formulations like
DROMO have not captured yet a wide interest in the astrodynamics
engineering community, mentioning for instance the abstraction oper-
ated on the very concept of time. Whilst application-only users may be
hidden of KS variables, in line to what implemented in CUDAjectory,
researchers working on uncertainty propagation would necessarily
need to get acquainted with KS variables to exploit their full potential.
This task is not so straightforward, as the orbital dynamics is basically
removed of any physical meaning, becoming a purely mathematical
construct devoted to increasing the regularity and predictability of the
analyzed system. Nonetheless, true limitations to KS variables have
not been found in the research discussed in this dissertations, although
only additional testing on other environments can either confirm or
dispute this claim, e.g. with space debris-related applications.

Jacobian spheroids proved to match the open question of finding
a robust definition of SOI, even coming with an analytical solutions.
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Nonetheless, despite the definition derivation based on the general
three-body problem, systems with higher mass ratios, such as the
Earth-Moon case, may not behave as Sun-planet systems. While these
environments are in general studied on different dynamical models,
this aspect represents an open point to the validation of the Jacobian
spheroid concept, that could either confirm the suitability for Sun-
planet-like systems only, or even open new research pathways related
to the three-body dynamics.

The Keyhole Map has been obtained for a one encounter-only frame
of analysis and only for the planar case. This may not be a true
limitation for PP/SDM, as the trajectories to be analyzed remain
approximately on the planet’s orbital plane, however, adding the
inclination variable would increase by one the problem dimensionality,
leading to three-dimensional maps. The Keyhole Map is a statistical
construct, only spotting high impact probability regions relying on
a surrogate model of the planetary dynamics. The accuracy strongly
depends on the choices made for this model and the complexity of each
planetary environment: the γ parametrization ensures that the effects
of other planets are statistically irrelevant inside the chosen Jacobian
spheroid, whether and how much other internal effects influence the
predicted keyholes needs however to be assessed.

The major limitation of the PC scheme is represented by the intrinsic
lack of flexibility. Event routines need to be completely re-thought and
made compliant with the algorithm logic, i.e. traditional approaches
relying on persistent checks of event functions cannot be relied upon.
Slicing the trajectory until a preliminary event is detected may be
a viable approach, similarly to what presented in this dissertation
for the detection of close approaches. However, whether running the
slice identification process on the initial trajectory guess is accurate
enough remains an open research point, and a major limitation to the
adoption of PC-based tools in modern astrodynamics applications. The
augmented version suffers of this condition as well, whose solution is
unfortunately made even more complex by the need of managing the
augmented system. Still, the computational potential of the augmented
approach may provide sufficient push for future works to address this
aspect.

6.3 remarks for future works

The research presented in this dissertation has covered the various
topics in sufficient detail to enable the combination of some of the
outlined techniques. First of all, the PC scheme has already been tested
with KS variables and resulted in great increase of the simulation effi-
ciency. For Earth-related applications, such as modeling the evolution
of space debris clouds or of the whole environment, the augmented
version of the PC method may already be used, perhaps slicing the
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trajectories when the object atmosphere re-entry is detected, perhaps
already using KS variables. A dedicated work may be however needed
for interplanetary and PP/SDM application, as robust and precise
flyby detection routines for PC have not been developed yet.

For PP/SDM applications, the Keyhole Map introduces an approach
with the potential to avoid large Monte-Carlo-based strategies alto-
gether. The already accurate keyhole detection capabilities justify
expanding the concept, aiming at including more cases and scenarios.
First of all, a chaining strategy should be addressed to "collapse" the
map of different encounters, possibly with multiple bodies as well, into
a single one, completely representing the impact probability domain
in a single graphical tool. Then, the computation of the overall impact
probability could be remarkably simplified: all it would take is the
superposition of the given uncertainty dispersion over the initial map,
as a multi-dimensional probability density function, whose surface
integral would finally give the global impact probability.

The work on CUDAjectory could continue, expanding the running
modes to allow users to retrieve trajectories written in KS variables.
Although this update would not affect PP/SDM-related analyses, re-
search users could benefit from trajectories written in this framework
to continue the work on uncertainty propagation and modeling with
KS variables, exploiting at the same time the computational potential
of GPUs. This update may require a structural revision of CUDAjec-
tory, that is still strongly reliant to Cartesian coordinates, affecting the
memory management.

KS variables have yielded notable results in any explored direction.
On the numerical viewpoint, some other formulations outperform
KS coordinates, DROMO-based for instance. Still, the straightforward
interface between the Cartesian and the KS realms is an advantage
in many applications, e.g. for the computation of perturbing accelera-
tions and events. Hence, future works should compare the effective
performance of other orbital formulation with KS variables, and assess
whether the improved numerical stability outweighs the increased
cost of retrieving the Cartesian states.

KS variables led to a highly regular and predictable evolution of
the orbital uncertainty, even after being scattered by flyby events.
These data outline a promising potential for KS variables to improve
uncertainty propagation in general: for instance, fully probabilistic
and continuum-based approaches should be implemented and tested
in KS variables. Not only would KS variables raise the computational
efficiency of such techniques, also the possibly present surrogate
models should become more accurate and reliable.





A
Q UAT E R N I O N A N D T E N S O R A L G E B R A

a.1 quaternion algebra

Quaternions can be seen as a generalization of complex numbers, the
formalism was first proposed by Hamilton back in the 1800s. The here
provided short outline, necessary to introduce the concepts presented
in Section 2.1.2, follows what presented in [154] and [156].

Quaternions can be seen as hypercomplex numbers, formed by a
scalar and a vector part:

q = q0 + i1q1 + i2q2 + i3q3 = q0 +


q1

q2

q3

 (A.1)

with q0,...,3 real numbers. Similarly to complex numbers and vectors,
only components of the same type can be summed together:

a = a0 + i1a1 + i2a2 + i3a3, b = b0 + i1b1 + i2b2 + i3b3

a + b = (a0 + b0) + i1(a1 + b1) + i2(a2 + b2) + i3(a3 + b3)
(A.2)

The quaternion product (not commutative) is ruled by

i21 = i22 = i23 = i1i2i3 = −1

i1i2 = −i2i1 = i3

i2i3 = −i3i2 = i1

i3i1 = −i1i3 = i2

(A.3)

The product by a real number is defined as:

cq = (cq0) + i1(cq1) + i2(cq2) + i3(cq3) (A.4)

Given three quaternions (a,b, c) the associative law holds:

(ab)c = a(bc) (A.5)

The conjugate q of q is defined as

q = q0 − i1q1 − i2q2 − i3q3 = q0 −


q1

q2

q3

 (A.6)
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which then leads to the definition of modulus |q| of a quaternion:

|q|2 = qq = qq =

3∑
n=0

q2n (A.7)

The conjugate of a quaternion has the further properties

q = q; |q|2 = |q|2; (q1q2) = q2q1 (A.8)

The definition of quaternion conjugate makes it possible to introduce
the division between two quaternions. In particular

a/b = ab−1 (A.9)

with

b−1 =
b
|b|2

(A.10)

Waldvogel proposed the definition of the star conjugate [156] q∗ of
a quaternion, based on the anti-involute definition of Vivarelli [154]:

q∗ = q0 + i1q1 + i2q2 − i3q3 (A.11)

which features the properties(
q∗)∗ = q;

∣∣q∗∣∣2 = |q|2;
(
q1q2

)∗
= q∗

2q∗
1

(A.12)

a.2 tensor statistics

The conformal squaring embedded in the KS transformation [139,
156] requires the introduction of higher order statistical moments
when dealing with the conversion of covariance matrices. This section
provides some basic concepts and some tensor notation for statistical
moments, useful to write the compact equations presented in Section
2.3.

a.2.1 Tensor algebra

Tensors can be thought as a generalization of matrices and vectors. A
zero-dimensional tensor corresponds to a scalar, a one-dimensional
tensor corresponds to a vector, and a two-dimensional tensor corre-
sponds to a matrix. In the following lines, a and b denote two different
tensors, of dimension m and n respectively. The tensor product, or
outer product, denoted with ⊗, is defined by elements as:

(a ⊗ b)i,j = aibj (A.13)

The output is a tensor of dimension m + n.
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The inner product, or dot product, denoted by ·, is defined by ele-
ments as:

(a · b)i,j =
∑
k

aikbkj (A.14)

The output is a tensor with dimension m+n− 2. The inner product
reduces to the traditional scalar product in the case of vectors, and the
matrix-matrix products for dimensions equal to one or to two. Both
inner and outer product collapse to the classical product for scalars.

Finally, the superscript k⊗ denotes the k-th tensor power, defined as:

ak⊗ = a ⊗ ... ⊗ a︸ ︷︷ ︸
k

(A.15)

and it holds that
(a · b)k⊗ = ak⊗ · bk⊗ (A.16)

a.2.2 Tensor description of statistical moments

The key operator used in Section 2.3 is the expectation operator. Given
a multi-dimensional random variable x and its probability density
function f(x), the expectation of the generic function g(x) is defined
as:

E
[
g(x)

]
=

∫+∞
−∞ g(x)f(x)dx (A.17)

The expectation is a linear operator.
The expectation allows the definition of multivariate statistical mo-

ments. Using tensor notation, the k-th order multivariate raw moment
of the first order tensor statistical variable x becomes : The superscript ′

marks the raw
moments, whereas
the central ones are
written as clean
symbols.

m ′
x,k = E

[
xk⊗

]
(A.18)

The first order raw moment is also called mean and traditionally de-
noted by mx = E[x], omitting the "prime" symbol with a little notation
abuse. The second order raw moment is also called autocorrelation
matrix Rxx:

Rxx = m ′
x,2 = E

[
x2⊗

]
= E

[
xxT

]
(A.19)

The k-th order multivariate central moment of x is defined with
respect to the mean:

mx,k = E
[
(x − mx)

k⊗] (A.20)

The second order central moment is commonly called covariance matrix
Pxx:

Pxx = mx,2 = E
[
(x − mx)

2⊗] = E[(x − mx)(x − mx)
T
]
= Rxx − mxmT

x
(A.21)
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P E RT U R B AT I O N S B Y L I E T R A N S F O R M S

For generic Hamiltonian systems, perturbation approaches aim to
find a canonical transformation that makes the problem integrable,
and then retrieves the perturbation effects by a change of variables.
The following lines summarize the Lie transform-based perturbation
approach, following the works of Hori [65] and Deprit [35]. In the
following lines, the pair of generalized coordinates and conjugate
momenta are denoted by (ξ, Ξ).

b.1 lie transforms summary

Given the canonical coordinate transformation X : (ξ, Ξ, ε) 7→ (ξ ′, Ξ ′)

generated by

W = W(ξ ′, Ξ ′, ε ′) ≡
+∞∑
j=0

εj

j!
Wj+1(ξ

′, Ξ ′) (B.1)

the Lie transform of the composite function

G = G(ξ, Ξ, ε) ≡ F(ξ ′(ξ, Ξ, ε), Ξ ′(ξ, Ξ, ε), ε) (B.2)

for the first order derivative with respect to ε is defined as

dG

dε
=
∂F

∂ε
+ {F;W} (B.3)

{F;W} is the Poisson brackets operator

{F;W} =
∂F

∂x
· K
∂W

∂x
(B.4)

where, denoting with (0, I) the N × N null and identity matrices
respectively and N the number of generalized coordinates ξ, the
coordinates-momenta vector x and the symplectic matrix K are:

x =

{
ξ

Ξ

}
and K =

[
0 I

−I 0

]
(B.5)

If F is given as a Taylor series expansion

F ≡
+∞∑
j=0

εj

j!
Fj,0(ξ

′, Ξ ′) (B.6)
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with Fj,0 = djF/dεj
∣∣
ε=0

, writing explicitly the expansions for both F
and W gives

dG

dε
=

+∞∑
j=0

εj

j!
Fj,1(ξ

′, Ξ ′) (B.7)

where

Fj,1(ξ
′, Ξ ′) = Fj+1,0(ξ

′, Ξ ′) +

j∑
l=0

j!
(j− l)! l!

{
Fj−l,0;Wl+1

}
(B.8)

and in particular

dG

dε

∣∣∣∣
ε=0

= F0,1(ξ
′, Ξ ′)

∣∣
ε=0

= F0,1(ξ, Ξ) (B.9)

By induction, the q-th order for G becomes

dqG

dεq
=

+∞∑
j=0

εj

j!
Fj,q(ξ

′, Ξ ′) (B.10)

and similarly to the first order term

dqG

dεq

∣∣∣∣
ε=0

= F0,q(ξ
′, Ξ ′)

∣∣
ε=0

= F0,q(ξ, Ξ) (B.11)

which is computed with the aid of the Deprit’s triangle recursion:

Fj,q+1 = Fj+1,q +

j∑
l=0

j!
(j− l)! l!

{
Fj−l,q;Wl+1

}
(B.12)

Summarizing, the Lie transform method allows to write G as a
Taylor series expansion on the new variables (ξ, Ξ):

G =

+∞∑
j=0

εj

j!
Gj,0(ξ, Ξ) =

+∞∑
j=0

εj

j!
F0,j(ξ, Ξ) (B.13)

with the notation Gj,0 = djG/dεj
∣∣
ε=0

having the same definition of
Fj,0.

b.2 perturbations approach

In general, given:

H =

+∞∑
j=0

εj

j!
Hj,0(ξ, Ξ) (B.14)

the aim is to find the transformation X : (ξ, Ξ, ε) 7→ (ξ ′, Ξ ′) generated
by

W =

+∞∑
j=0

εj

j!
Wj+1,0(ξ

′, Ξ ′) (B.15)
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so that the transformed Hamiltonian is defined as

H ◦X =

+∞∑
j=0

εj

j!
H0,j(ξ

′, Ξ ′) (B.16)

requiring the terms H0,j to have some desired properties.
The analytical procedure based on Deprit’s recursion (Equation

(B.12)) at the order n can be written as the following steps:

1. The recursion gives H0,n = H1,n−1 +
{
H0,n−1;W1

}
at the n-

th step, which can be re-arranged to obtain the homological
equation: {

Wn;H0,0}+H0,n = H̃n (B.17)

or, highlighting the Lie derivative operator L0(−) =
{
−,H0,0

}
L0

(
Wn

)
= H̃n −H0,n (B.18)

2. H0,n is chosen according to the desired properties of the final
system, whereas H̃n can be computed from the terms already
computed in the previous steps of the recursion.

3. Wn is obtained from the solution of a partial differential equa-
tion.

The coordinates (ξ, Ξ) can be expressed as a series expansion using
the computed function W as well:

ξ =

+∞∑
j=0

εj

j!
ξ0,j(ξ

′, Ξ ′)

Ξ =

+∞∑
j=0

εj

j!
Ξ0,j(ξ

′, Ξ ′)

(B.19)

where the computation of the terms
(
ξ0,j, Ξ0,j

)
follows once again the

Deprit’s recursion (Equation (B.12)) for the known generating function
W.

The initial condition for the integration in prime variables (ξ ′, Ξ ′) at
the starting time t = t0 is simply given by (ξ ′, Ξ ′)|t=t0 = (ξ, Ξ)|t=t0 .





C
PA R A L L E L A N D G P U C O M P U T I N G
F U N D A M E N TA L S

Parallelizable programs are characterized by some of their parts that
can be executed simultaneously. Conceptually, task-parallel and data-
parallel routines may exist: the former features completely indepen-
dent tasks that do not need to be executed one before the other, the
latter is identified by a common and repeated task that should be
executed on different data. This work focuses on this second aspect,
whose features enable efficient GPU computing when massive paral-
lelization is possible. For instance, taking the product of two matrices
is a highly parallelizable task, as any element of the result matrix
could be computed in parallel. Similarly, in the orbital propagation
of large sets of initial conditions1 the dynamics function could be
evaluated in parallel for all the states.

c.1 multi-cpu shared memory parallelism : openmp

Prior to discussing the rationale of GPU computing, the most straight-
forward parallelization concept involves the use of multiple CPUs
(Central Processing Units). Shared memory parallelism is the simplest
scenario, where all the machine compute cores have access to the same
and common memory locations. More complex supercomputers use
however a distributed memory logic, where group of CPUs access
their own independent memory. Such systems also include a commu-
nication network, to distribute and collect the computed data on the
different nodes, and require their own programming paradigm that
includes the data and message passing routines [46].

OpenMP is a set of pre-processor instructions that enable simple
shared memory parallelization of C, C++ and Fortran programs [28],
which take action during the code compilation. Only minor modi-
fications are required to accelerate the most intensive parts of the
program, and OpenMP instructions are simply ignored and treated as
comments if the OpenMP compilation flag is disabled. Common paral-
lelization instructions involve for loops, which can include some extra
functionality: for instance, perfectly nested loops can be collapsed into

1 Assuming they are not interacting with each other and have negligible mass.
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a single larger loop, increasing the program efficiency, and specific
instructions can aid the memory management. Despite the simple
interface, most programs require at least some variables to be declared
private to each worker, since OpenMP treats all the variables as shared
by default. The typical case of variables that should be made private
are the loop counters: each thread must work with its own variable,
particularly for those cases where the loop counter also identifies
the position in a shared array where to access data. More complex
programming scenarios often arise and require the programmer to
explicitly control concurrent updates of shared variables, it is beyond
the scopes of this work to tackle them all. The reader can refer to
the OpenMP programming guide for more complete and detailed
information [28]. This section serves as a simple introduction to the
tool that is used to parallelize the C version of the augmented PC
method proposed in Chapter 4.

c.2 parallel reduction

The parallelization potential is also exploited in the computation of
the PC iteration error, through the parallel reduction mechanism.
Reduction tasks are a broad category of compute operations, whose
aim is to extract a single scalar value from an array of elements. Some
examples are the sum of array elements, finding the maximum or
minimum element in an array, "and" and "or" logical operators. Despite
appearing intrinsically sequential tasks, parallelization possibilities
do exist even in the reduction case: in principle, the whole array is
split into several chunks on the parallel workers, which cooperate
to perform the reduction task on their own chunk of elements. The
cooperated process continues, until a single scalar reduced value
is obtained. Figure C.1 shows a graphical example of the parallel
reduction logic: on an array of 16 elements, only 5 sequential steps are
eventually required with 16 parallel workers. OpenMP implements the
reduction clause among its functions, the programmer is only asked to
define the final reduced scalar as a shared variable [28]. The compiler
then ensures that all the array values are scanned through, and avoids
simultaneous overwriting of the reduced scalar.

c.3 gpu computing

The features of GPU computing arise from the hardware architecture
of graphics cards, which is profoundly different from the traditional
compute units. Figure C.2 shows a graphical representation of such
differences: in summary, more transistors are devoted to pure data
processing on GPUs, instead of flow control and memory management
as in the CPU case [112]. Corresponding colors refer to chip elements
of the same type, i.e. green for compute cores, yellow for control units,
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Figure C.1: Parallel reduction graphical scheme.

purple for the core-level cached memory, blue for shared cache, and
orange for global memory.

Figure C.2: CPU vs GPU architecture difference graphical scheme. Picture
from [112].

The processing units are grouped in blocks (typically 32 processing
units per block), each controlled by one controller. All processing units
in the same block all execute the same instruction, issued only once
by the controller. This aspect, together with the normally hundreds
to thousands of processing units available in modern graphics cards,
makes GPUs prone to implement massive parallelism, although with
lower flexibility and higher programming effort compared to CPU
applications. Some key concepts are given in the following subsection,
a comprehensive view can be found in the CUDA® C++ programming
guide [112].
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c.4 main programming paradigms and the cuda api

This section is intended to provide a brief overview and nomenclature
of the CUDA® language and API. Italic font is used to introduce
CUDA®-specific names and concepts. A complete description can be
found in the CUDA® user manual [112].

The fundamental execution unit is called thread. Threads can be
grouped in blocks, and some shared memory (dozens of kilobytes) is
available to all threads in a common block. The execution of a single
instruction is always performed by groups of 32 threads at the same
time, called a warp, regardless the number of threads in a block. There-
fore, blocks with less than 32 threads do not exploit the full hardware
resources. Complex configurations can be achieved combining multi-
ple CPUs and GPUs to run the same program. The program flow is
always controlled by the CPU, which also controls the execution of
the GPU. A function that is invoked by the CPU but executed on the
GPU is called kernel.

The first difference when comparing GPU codes to standard pro-
gramming regards the memory access: the GPU cannot read the usual
compute memory, but data must be loaded on the GPU memory prior
to running kernels. In a similar manner, data must be retrieved to the
CPU after the kernel has completed its execution, before executing
other CPU tasks on the same data. Consequently, the flow of a GPU
program/sub-program always follows a first initialization on the CPU,
a subsequent data movement from the CPU to the GPU, the kernel
execution, and finally the data retrieval from the GPU to the CPU, as
represented in Figure C.3.

Figure C.3: GPU program basic flow.

Because all threads execute the same instruction at the same time,
kernels must be programmed in a warp-oriented manner. This also
includes explicitly managing the data access by the various threads,
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and complex functions typically require the programmer to optimize
memory access and cache utilization by hand: while it is implicitly
controlled by the compiler for CPUs, graphics card store data by de-
fault in the so called global memory, large in size (some gigabytes) and
referred to by default when GPU variables are initialized. This eases
data movements between CPU and GPU, even in case of large arrays.
However, the access latency is much higher compared to shared mem-
ory: this makes global memory not efficient for repeated read/write
operations with GPU variables. To overcome this limitation, shared
memory can be exploited for compute purposes to keep read-only
values on lower latency locations, instead of holding common values
for all the threads in a block only. Few cached bytes are also available
on registers, thread-private locations to store up to 256 single precision
floating point values. The small size and the compute intensity of
the relativistic dynamics function makes it difficult to use registers
instead of the shared memory for the proposed application. Their
use is limited to temporary and handle variables that aid the final
acceleration computation.

The way array elements are sorted is also fundamental for optimized
data movements across global and shared GPU memory. While CPU-
GPU data transfers are specified by the array size, the most efficient
intra-GPU memory access happens when threads read/write values
on adjacent locations. If this condition is satisfied, data are moved as a
single memory transaction for all the threads, resulting in minimized
cycles spent reading or writing on global memory. This memory access
pattern is called coalesced, and represents a fundamental performance
driver in complex GPU programs: even if a program has massive
parallelization possibilities, non-optimal memory access may result in
the memory access latency not compensated at all by the parallelized
computational tasks.

NVIDIA® developed and maintains the CUDA® programming lan-
guage, which remarkably simplifies the use of NVIDIA® GPUs in
computer programs. It is built as a C++ extension, with a set of key-
words and API functions that allow programmers to build their own
kernels and control the GPU execution flow. A set of optimized li-
braries is also available, for instance the basic linear algebra cuBLAS®

implemented for the PC matrix multiplications of this work [112].

c.5 concurrency and advanced features

The CPU-GPU duality and cooperation exposes more possibilities,
other than the simple acceleration of intensive parts of the program.
In general, kernel calls are asynchronous and do not block the work
of the CPU, which allows the CPU to execute other tasks while a GPU
kernel is still running. Furthermore, modern GPUs can manage time
two memory transfers at the same (one per direction, CPU to GPU
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and GPU to CPU), while also saturating its compute units for one or
more concurrent kernel execution [112].

CUDA® allows the queuing of a series of sequentially dependent
GPU function calls with the use of streams: for instance, an appli-
cation may require some data to be transferred to the GPU before
the execution of a custom kernel, which must necessarily be com-
pleted before calling a cuBLAS® function, at the end of which the
processed data should be transferred back to the CPU. All it takes
is assigning the sequentially dependent GPU function calls to the
same stream. Multiple streams can be created and used at the same
time, the obtained behaviour mimics batch job submissions to super-
computing facilities. CUDA® guarantees the correct execution line and
synchronization within the same stream, whereas different streams
must instead be synchronized with each other by hand. The compiler
typically schedules executions and memory transactions so that the
GPU use is maximized, superposing different GPU function calls and
data transfers from separate streams [112].

Despite the lower latency, optimized programs are designed to also
control the way threads access shared memory locations. If two adja-
cent threads are asked to access two non-contiguous array elements,
then the memory access is performed on two cycles instead of a single
one, slightly slowing down the program execution. This issue is called
bank conflict, and can be avoided ensuring thread-varying elements to
be stored in the leading dimension of shared memory arrays. Bank
conflicts do not happen if all threads access the same single memory
location.
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