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1. Introduction
One of the goals in unsupervised learning is to
recognize hidden structures and patterns within
data. For this reason there exist a multitude
of different clustering algorithms, whose pur-
pose is the categorization of different structures
of data in multiple groups, in an autonomous
way. Each algorithm operates under specific
assumptions and captures diverse properties of
clusters, yielding very different results. To ad-
dress these limitations and improve clustering
outcomes, Cluster Ensemble methods have been
proposed [30][34][5]. Their aim is to combine
the outputs of multiple clustering algorithms or
runs over the same set of data objects, to obtain
a single result which enhances the overall quality
and stability. Each clustering in the ensemble is
called a Partition, and the output is called the
Consensus Partition.
In Figure 1 the overall method is shown: we
start from from a generated ensemble, where the
partitions are represented by the blocks on the
left, each of which contains its own number of
clusters, represented by differently colored cir-
cles that partition the dataset. On this ensem-
ble, the algorithm, which is represented by the
box in the middle, is applied, and this returns a
new partition with its own number of clusters,

represented by the final block, having a different
number of differently colored circles.
A Cluster Ensemble can be used in a vari-
ety of application fields, for example image-
segmentation [35] or data mining [15]. It can
be very useful when it is required to make de-
cisions when there is high heterogeneity in how
data should be classified, for example malware
detection [18] and discovery of cancer types [36].
The main limitations of cluster ensemble meth-
ods is that typically they are computationally
intensive as they require the extraction and com-
bination of multiple clustering from the data. In
addition, they are very sensitive to the quality
and diversity of the input clusterings.
The main challenge is combining the partitions
generated by various clustering algorithms in
an ensemble, as it cannot be done in a sim-
ple and straightforward way and different algo-
rithms make different assumptions to simplify
the problem. Additionally some methods re-
quire the selection of a reference partition [31]
or ordering [3], leading to potential bias.
The input partitions are defined up to an arbi-
trary permutation, as shown in Figure 2. On
the left it is shown that each partition has dif-
ferent labels, represented by clusters of different
colors, which may represent the same or similar
information. The process of finding an optimal
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Figure 1: Framework of the Cluster Ensemble Problem

permutation of the labels is known as relabel-
ing : this phase brings coherence among the la-
bels in the input partitions and this is shown by
the partitions on the right, which have the same
cluster labels grouping the same points more or
less. This, in combination with a voting tech-
nique, produces a solution to the cluster ensem-
ble problem.
We propose a method to address the problem
by employing a Permutation Synchronization
framework [28], to achieve flexibility and robust-
ness. Instead of retrieving the correct matching
for the cluster labels by choosing a reference, our
method considers all input partitions on equal
footing and recovers in one shot, all the relabel-
ings for each partition, providing a global view.

2. Problem Formulation
The problem of Cluster Ensemble can be formu-
lated as follow: X = {x1, . . . , xN} is a set of
N data points, where each xi ∈ X ⊂ RD is a
D-dimensional vector.
Let PX be the set of all possible partitions over
the data set X. An ensemble Π is defined as a
set of M partitions:

Π = {π1, ..., πM} ⊆ PX

Each partition πg is composed of kg clusters,
which are a subset of the dataset X. Each par-
tition may have a different number of clusters:

πg = {C1, C2, . . . , Ckg}

Each partition πg can be viewed as a map that
brings a set of data points X to a set of labels
lg = 1, 2, ..., kg, namely:

πg : X → lg (1)

such that lg(xi) = k if point i belongs to cluster
k according to partition g.
The main assumptions are that the each cluster
is disjoint from one another and each partition
clusters all the points in the dataset:

Ct ∩ Cs = ∅,s ̸= t

kg⋃
t=1

Ct = X

The aim of a Cluster Ensemble algorithm is to
define a novel partition π∗ = {C1, . . . , Ck∗},
called the consensus partition, with its own num-
ber of clusters k∗. The consensus partition com-
bines the information that can be extracted from
the ensemble and represents a summary of the
partitions in input.

3. Related Work
We present a taxonomy of Cluster Ensemble
algorithms, where we identify an intersection
between the categories presented in the works
of Vega-Pons [34] and De Amorim [8]. On
one hand we have the two macro-categories of
Co-Occurrence, which count the occurrence of
points in clusters, and Median Partition, that
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Figure 2: Example of the relabelings retrieved by our method

try to find the median partition using heuristics.
The definition of median partition is

π∗ = arg max
π∈PX

1

M

M∑
g=1

s(π, πg) (2)

On the other hand we have the current sub-
categories:
• Direct methods, which utilize an explicit

combination strategy to obtain the consen-
sus

• Feature-based Approaches, which use the
features of the points directly, without con-
fronting directly the cluster labels

• Pairwise-similarity based approaches that
are based on the similarity between data
points

• Graph based methods, which solve the con-
sensus problem by partitioning a graph

Co-occurrence methods are the most adopted
ones, since they are simple to understand and
quick to implement. From this macro-category
our work will focus mainly on some methods
from the families of Direct Approach, in partic-
ular the ones pertaining to the subfamily of Re-
labeling and Voting, for their intuitive approach
to the solution of the Cluster Ensemble prob-
lem, and the family of Graph-based methods,
for their simplicity and performance.

3.1. Relabeling and Voting methods
These methods are comprised of two main
phases, relabeling and voting. Relabeling con-
sists in the process of finding a permutation of
cluster labels between different partitions such
that the labels in all partitions are aligned and
represent the same information. The voting
phase consists in selecting the most recurring
label for each data point after the cluster la-
bels in all partitions have been aligned. During
the voting phase, each relabeled partition repre-
sents a vote for a cluster label for all points in
the dataset. A simple approach to relabeling is
to formulate it as a maximum weight bipartite
matching problem[31], which computes the com-
mon data points between pairs of cluster labels
in two different partitions and tries to maximize
the number of commonly assigned points. This
problem is then solved by the Hungarian Algo-
rithm [24]. Another approach is to formulate
relabeling as a multivariate regression problem
where the relabeling is computed by fitting a
permutation to a given partition [3], using the
mean squared error as loss function. Relabel-
ing is done in two ways: either it is computed
between a chosen reference partition and all the
others [31], separating clearly the two phases of
relabeling and voting, or by choosing an order
of partitions and updating the relabelings iter-
atively, for example as done by ada-bVote and
c-Vote [3], so that the two phases are done to-
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gether at each iterative step. Voting is done in
two ways, depending on the type of relabeling
formulation employed: if the relabelings are all
calculated before voting, the consensus partition
is obtained by summing all votes and then select-
ing the most recurring label for each point [31].
If relabeling is done iteratively instead, voting
is performed at each iteration either as the sum
of the vote in the step with all the votes of the
previous steps, or as the cumulative weighted
average of the votes in each step [3].
It is possible to add precision to the voting phase
by adding extra information derived from exter-
nal indices or a priori information on the data
and partitions, which takes the form of weights,
using for example the NMI between partitions
[39][37].

3.2. Graph-based methods
Graph-based algorithms usually require two
steps: Construction of a weighted undirected
graph from the input data, and Partitioning of
the graph in k parts using a graph partition-
ing technique, the most known being METIS[23]
and spectral clustering [27]. These types of al-
gorithms have in common only the fact they use
a graph representation, and can be divided be-
tween those that use the graph to model the
similarity between clusters, those that use it to
model the similarity between points, and those
that model the relationships between clusters
and points. In the first group, MCLA [30] and
L-MCLA [29] create a weighted graph based on
the similarity between clusters using the Jac-
card similarity. In the second group, CSPA
[30], SNNC [2], WSPA [9], CTS and SRS[21]
create a weighted graph by measuring how of-
ten points occur together in the same cluster.
In the third group, WBPA [9] creates a graph
by measuring the distances between points and
clusters, HBGF[12] and LCE[22] create a graph
from the known association between points and
clusters in each partition. There exist also differ-
ent methods that construct a hyper-graph from
the membership of each point to each cluster,
like HGPA [30] and CESHL [38]. Each of these
graphs is then partitioned in k∗ clusters, which is
assumed known a priori. The families of similar-
ities between clusters and relationships between
clusters and points are those that can be seen as
closer to relabeling and voting, since they group

together clusters that hold similar information
and decide then which points belong to them
the most.

4. Proposed method
We propose a solution to the Cluster Ensemble
problem, by formulating the relabeling phase of
Relabeling and Voting techniques as a problem
of permutation synchronization. We called this
novel approach Synchronization and Voting.
To address how our method works, we employ
a matrix representation of the ensemble. Each
partition πg can be represented by a N ×kg ma-
trix BAg called the binary association matrix :

[BAg]i,k =

{
1 if lg(xi) = k

0 otherwise

Each row corresponds to a data point and each
column corresponds to a cluster, where ones re-
veal the membership of points to a specific clus-
ter. The number of rows in BAg is equal to
the number of points, the number of columns is
equal to the number of clusters in partition g.
Relabeling can be seen as the problem of finding
an optimal permutation of the columns of BAg

for each g. We look for a permutation matrix
Pg of size kg × k∗, such that BAgPg represents
the relabeled binary association matrix of πg. In
general, Pg may be a partial permutation.
Our objective is to find M permutation matrices
P1, . . . , PM called absolute permutations follow-
ing a consistency criterion. To accomplish this
task, we introduce the concept of relative permu-
tations. Given two partitions πi and πj , we de-
note by Pij the relative permutation of the pair
(i, j), that is the ki×kj permutation matrix that
best satisfies the equation BAiPij = BAj . Pij

represents an optimal relabeling that makes πi
coherent with πj , in the sense that the number
of data points with the same labels across the
two partitions is maximized. Pij represents a lo-
cal relabeling as it involves only two partitions
at a time. An example is given in Figure 4.
For given i and j, the relative permutation Pij

can be computed by solving a linear assignment
problem, usually solved with the Hungarian al-
gorithm [24] or equivalent variations that can
solve the problem for partial permutations [].
From the theory of synchronization, the relation-
ship between absolute and relative permutation
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Figure 3: The pipeline of our proposed method

Figure 4: Local relabeling yielding a relative
permutation

is given by:
Pij = Pi ∗ P T

j (3)

which is known as consistency constraint, which
means that the local relabeling between i and j
should be equal to the composition between the
absolute relabeling of i and the inverse of the
absolute relabeling of j.
The problem can be formulated as a graph G =
(V,E) where vertices correspond to unknown
absolute permutations and edges correspond to
known relative permutations. The number of
vertices is equal to the number of input parti-
tions, i.e. M . The graph can be constructed
by calculating relative permutations between all
pairs of partitions, resulting in a complete graph,
but it also can, for efficiency reasons, be con-
structed with a subset of all possible pairs re-
sulting in a graph with missing edges.
The problem of finding M unknown permuta-
tion matrices P1, . . . , PM starting from a re-
dundant set of relative permutations Pij , with

(i, j) ∈ E such that the consistency constraint
of Eq. 3 is satisfied is known in literature as
permutation synchronization [28]. The relative
permutations are collected in the block matrix
P:

P =

 P11 . . . P1M
...

. . .
...

PM1 . . . PMM


where missing edges (if any) are zero blocks. We
focus on three different permutation synchro-
nization approaches:
• In [28] the absolute permutations are recov-

ered by finding the k∗ leading eigenvectors
of P. This method works under the as-
sumptions that k∗ is known a priori and all
permutations are total.

• In [4] the absolute permutations are com-
puted from the non-negative matrix factor-
ization (NMF) of P. This method works
with partial permutations but requires to
know k∗ in advance.

• In [32] the matrix P is viewed as the ad-
jacency matrix of an M -partite graph and
permutation synchronization is cast to a
graph-clustering problem; this method is
named QuickMatch, it works with par-
tial permutations and it automatically esti-
mates the value of k∗.

Our method is composed of two steps:
1. the computation of the relative permuta-

tions P12, . . . , Pij , . . . by solving multiple
linear assignment problems;

2. the recovery of the absolute permutations
P1, . . . , PM by solving a single permutation
synchronization problem.

Once relabeling is solved, any voting technique
can be used to derive the consensus partition.
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Our method is named Sv, shorthand for syn-
chronization and voting. When used in combi-
nation with [28] it is named SV-EIG, when com-
bined with [4] it is named SV-NMF and when
combined with [32] it is named SV-QM.
The main advantage of our method is that it is
modular and many version of permutation syn-
chronization can be plugged in depending on the
use case. Another advantage it has over known
relabeling and voting methods, such as [31], is
the fact that it doesn’t depend on a reference
partition for relabeling and considers a global
view, taking into account the redundancy rep-
resented by the whole graph, promoting error
compensation.

5. Experinents
To assess and verify the assumptions we made
for Synchronization and Voting, we ran different
experiments using different metrics. We used
multiple datasets, both synthetic and from real-
world measurements, to create heterogeneous
testing scenarios with different characteristics in
ensemble generation, dataset features and num-
ber of data points.

5.1. Metrics
As previously explained, there isn’t a unanimous
consensus on the definition of the optimal solu-
tion of the Cluster Ensemble. For this specific
experimental assessment we decided to use met-
rics that evaluate the similarity with respect the
partitions in input and the ground truth. This
metrics are widely used in literature, and mea-
sure different characteristic of the solution.
We have chosen NMI, ARI, classification accu-
racy and execution time.

NMI and ARI The Normalized Mutual In-
formation (NMI) measure how close a partition
is to another, by looking at how much informa-
tion they have in common considering the sta-
tistical information they share, that in Cluster-
ing is represented by the common labelled points
between clusters. The NMI is used to measure
the consistency of the found consensus partition
with right to the ensemble by computing the av-
erage NMI:

ANMI(π∗,Π) =
1

M

∑
πg∈Π

NMI(π∗, πg)

NMI doesn’t need a priori information about the
cluster labels or need to match the labels be-
tween two different partitions, making it easy
and fast to use.
The Adjusted Rand Index (ARI), measures the
similarity between partitions instead by consid-
ering the overlapping between all the possible
clusters, by looking at all the combinations of
shared points between clusters.
Just like the NMI, ARI is used to measure
the consistency of the found consensus partition
with right to the ensemble by computing the av-
erage ARI:

AARI(π∗,Π) =
1

M

∑
πg∈Π

ARI(π∗, πg)

Classification accuracy From a quantitative
standpoint, it can be defined as

ACC(π∗, πtrue) = 1−
∑N

xi=1 l
∗(xi) ̸= ltrue(xi)

N

assuming that the clusters between the con-
sensus and ground truth partitions are already
matched. This measure is used to quantify how
accurate the consensus partition is w.r.t to the
ground truth, when available.

Execution Time Every method we tested
had its execution time measured from the start
of the method (from the moment it receives the
ensemble data in input), to the end (the moment
in which the final voting matrix is returned), in
seconds.

5.2. Compared Methods
• Weighted Bipartite Matching [31]
• Multivariate Regression [3]
• MCLA [30]
• CSPA [30]
• CESHL [38]
• Random selection of a partition

CSPA is a state of the art algorithm developed
by Strehl [30] that uses a different approach not
comparable directly to Relabeling And Voting.
Nonetheless We decided to insert it in our exper-
iments because is widely used for comparisons
and it’s a valid benchmark. For the voting part,
we have chosen simple voting and weighted vot-
ing, choosing as weights the NMI with respect to
a reference and the inverse of the average NMI
over all partitions.

6



Executive summary Michele Alziati, Giovanni Amarù

5.3. Datasets
For testing we used a synthetic dataset gener-
ated with a Gaussian distribution of the data
over clusters and 9 real-world datasets, provided
with the ground truth and presented in table 1.

Datasets
Name N D k

Iris [14] [13] 150 4 3
Multiple Feature [10] [6] 2000 649 10

Mnist [25] 5000 784 10
Usps [20] [19] 11000 256 10
Isolet [7] [11] 1560 617 26

Lung Cancer [17] [16] 203 3312 5
Wine [1] [33] 178 13 3

Silhouette [26] 150 18 3

Table 1: List of tested datasets

5.4. Results
We obtained some significant findings by testing
our method in the various scenarios we tested.

Better performance on complex datasets
We found that SV-EIG, SV-NMF and SV-QM
obtained slightly better results compared to the
other ones on dataset particularly difficult to
cluster, due to the high number of features, the
high number of points and the number of clus-
ters in the ground truth (Usps, Isolet, Mnist and
Multiple Features). In all the other cases the
performances were either comparable or slightly
better to the other methods.

Figure 5: NMI on low complexity datasets

Faster in real-case scenarios From the ex-
periments on the synthetic dataset we found

Figure 6: NMI on High complexity datasets

that the three methods we presented are faster
than the competitors based on graph partition-
ing in case the number of partitions in less than
50, which is a reasonable upper bound for real
cases scenarios. With a bigger number of par-
titions instead the time tends to increase more
than the graph-based methods. The same con-
siderations can be done by keeping fixed the
number of partitions and increasing the number
of cluster labels of each partition.

Figure 7: Execution Time with varying number
of clusters and partitions
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Figure 8: Comparison between usage of all the edges and only the 40 %

Further Considerations The framework of
Synchronization and Voting compared to the
competitors we shown, offers the possibility to
customize the performance and execution time
by selecting an appropriate parameter which
regulates the completeness of the graph gener-
ated for synchronization, so that it can be suit-
able to different use cases, especially when exe-
cution time is a sensitive issue. In our experi-
ment setup, with our specific ensemble genera-
tion, we could exploit a reduced number of com-
putations for the edges without having a signif-
icant loss in performance.

6. Conclusions
The Cluster Ensemble Problem can be hard to
solve and there exist a variety of methods that
try to solve it using a multitude of approaches,
depending on the usage-scenario and the knowl-
edge required on the data. We presented a novel
approach, called Synchronization and Voting,
that takes advantage of the Graph Synchroniza-
tion technique to assess the problem of relabel-
ing between partitions: this is the first time in
literature that this type of formulation is applied
to the framework of Relabeling And Voting, and
presents clear advantages in different use cases.
There are specific assumptions on the number of
partitions in the ensemble, which is the range of
the number of partitions used in the vast major-
ity of real-world scenarios. The execution time is
lower with respect to comparable methods, and
can be furthermore optimized by using a sub-
set of edges for the creation of the graph. This

choice in specific scenarios doesn’t alter the per-
formance in a significant way. The overall per-
formance is higher, particularly on datasets that
present a sizable number of data points, clusters
and features.
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Abstract

The cluster ensemble problem is an important problem in unsupervised learning that aims
at aggregating multiple noisy partitions into a unique/better clustering solution. It can
be formulated in terms of relabelling and voting, where relabelling refers to the task of
finding optimal permutations that bring coherence among labels in input partitions. In
this thesis we propose a novel solution to the relabelling problem based on permutation
synchronization. By effectively circumventing the need for a reference clustering, our
method achieves superior performance than previous work under varying assumptions
and scenarios, demonstrating its capability to handle diverse and complex datasets.

Keywords: unsupervised learning, clustering, cluster ensemble, consensus function, graph
synchronization, permutation synchronization, relabeling and voting, synchronization and
voting





Abstract in lingua italiana

Il problema del cluster ensemble è un importante problema nel contesto dell’unsupervised
learning che punta ad aggregare più partizioni rumorose in una unica/migliore soluzione
di clustering. Può essere formulato in termini di relabeling e voting, dove il relabeling
si riferisce al problema di trovare permutazioni ottimali che portino coerenza tra le label
nelle partizioni in input. In questa tesi proponiamo una soluzione innovativa al problema
del relabeling, basata sulla sincronizzazione di permutazioni. Aggirando effettivamente la
necessità di un clustering di riferimento, il nostro metodo raggiunge prestazioni superiori
rispetto a lavori preesistenti tenendo conto di diverse ipotesi e scenari, dimostrando la sua
capacità di gestire dataset eterogenei e complessi.

Parole chiave: apprendimento non supervisionato, clustering, cluster ensemble, fun-
zione consenso, sincronizzazione dei grafi, sincronizzazione di permutazioni, relabeling e
voting, sincronizzazione e voting
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1| Introduction

One of the goals in unsupervised learning is to recognize hidden structures and patterns
within data. For this reason there exist a multitude of different clustering algorithms,
whose purpose is the categorization of different structures of data in multiple groups, in
an autonomous way. Each algorithm operates under specific assumptions and captures
diverse properties of clusters, yielding very different results. To address these limita-
tions and improve clustering outcomes, Cluster Ensemble methods have been proposed
[43][48][7]. Their aim is to combine the results of multiple clustering algorithms or runs
over the same set of data objects, to obtain a single new result which enhances the over-
all quality and stability. Each clustering in the ensemble is called a Partition, and the
output is called the Consensus Partition. The partitions in the ensemble can be obtained
in a variety of ways: for example, by using different algorithms, different subsets of data
objects or different runs of the same algorithm tuned with different parameters or initial-
ization. With Cluster Ensemble methods it’s possible to obtain a summary of all these
different results by aggregating their information. This aggregation should have better
quality than a single result, and in turn provide a new view on how the data should be
organized. A Cluster Ensemble can be used in a variety of application fields, for example
image-segmentation [49] or data mining [22]. It can be very useful when it is required
to make decisions when there is high heterogeneity in how data should be classified, for
example malware detection [25] and discovery of cancer types [51].

The main limitations of cluster ensemble methods is that typically they are computa-
tionally intensive as they require the extraction and combination of multiple clustering
from the data, depending on the number of input partition provided to the algorithm.
In addition, they are very sensitive to the quality and diversity of the input clusterings,
since low quality partitions affect the overall quality of the consensus partition.

The main challenge is combining the partitions generated by various clustering algorithms
in an ensemble, as it cannot be done in a simple and straightforward way and different al-
gorithms make different assumptions to simplify the problem. Additionally some methods
require the selection of a reference partition [45] or ordering [4], leading to potential bias.
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There exist a variety of cluster ensemble algorithms, who approach the problem in many
different ways. Some of them may solve directly the problem by approaching it as an
optimization problem [8], while other algorithms may solve first a variety of sub-problems
before yielding the solution, such as bringing coherence to the input cluster labels [45] or
partitioning a graph generated from the input data [43].

In general, the input partitions are defined up to an arbitrary permutation. An approach
to solve the Cluster Ensemble problem, which is also one of the most famous sub-problems
mentioned above, is to make the cluster labels in the different partitions coherent with
each other so that the extraction of common information or the detection of anomalies is
easier. As shown in Figure 1.1, on the left each partition has different cluster labels, repre-
sented by clusters of different colors, which may represent the same or similar information.
The process of finding an optimal permutation of the labels is known as relabeling : this
phase brings coherence among the labels in the input partitions and this is shown by the
partitions on the right, which have the same cluster labels grouping the same points more
or less. This, in combination with a voting technique, produces a solution to the cluster
ensemble problem. There exist different algorithms that find the consensus parition in
this way, and they are called Relabeling & Voting algorithms.

Figure 1.1: Phases of a relabeling and voting algorithm

We propose a method to address the problem by employing a Permutation Synchronization
framework [39], to achieve flexibility and robustness. Instead of retrieving the correct
matching for the cluster labels by choosing a reference, our method considers all input
partitions on equal footing and recovers in one shot, all the relabelings for each partition,
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providing a global view. We also made available the code we developed to assess this
problem, it is a working implementation of a cluster ensemble algorithm using permutation
synchronization, called Synchronization and Voting1.

This thesis is structured as follows: in Chapter 2 we provide a formal description of
the specifics of the cluster ensemble problem, its output and the assumptions we have
made addressing it. In Chapter 3 we provide an overview of the literature regarding the
state of the art of cluster ensemble, focusing on two particular categories of algorithms
we deemed relevant for our proposed method: Relabeling And Voting and Graph-based
techniques. In Chapter 4 we describe the theoretical background necessary to understand
the algorithms employed in our method, while in Chapter 5 we explain our solution to
the cluster ensemble problem. In Chapter 6 we show the results obtained by assessing the
performance of our method using different metrics on different datasets, and in Chapter
7 we draw our conclusions based on the experimental results and discuss some possible
developments.

1https://github.com/AlziatiM/SynchronizationAndVoting

https://github.com/AlziatiM/SynchronizationAndVoting
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2| Problem Formulation

In this chapter we provide all the useful notation, equations and concepts to provide a
conceptual framework for the algorithms we describe in the following chapters.

2.1. The cluster ensemble problem

Figure 2.1: General schematic of the cluster ensemble Problem

The Cluster Ensemble problem, also known as Clustering Ensemble or Ensemble Cluster-
ing, first discussed by Strehl [43], consists in the task of combining the knowledge from
different partitions, which consists in a set of clusters over the same set of data objects, to
obtain a consensus on what the final clustering of the dataset should be, called Consensus
Partition. In Figure 2.1 we illustrate the general framework of the problem: each partition
has its own set of clusters, represented in the figure by a different set of colored groups,
which contain a different set of points of the original dataset. To these partitions a cluster
ensemble algorithm is applied, which returns the consensus partition, which may have its
own different set of clusters, represented in the figure by the difference in the colors of the
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clusters. A partition is generated by a specific run of any given clustering algorithm with
specific parameters, and the ensemble can be generated by creating partitions by using
different algorithms or different parameters. Each partition may provide a different view
on how the data should be grouped in clusters.
The purpose of combining the information from each partition is to create a final partition
that may have a better quality than each single one, and in turn providing a new view on
how the data should be organized, which may be closer to the ground truth.

2.1.1. Input And Output

The input of the problem is as follows:

• X = {x1, . . . , xN} is a set of N data points, where each xi ∈ X ⊂ RD is represented
by a vector of D attribute values, i.e., xi = (xi,1, . . . , xi,D). There are cases where
X is not required for the computation of the output, and an Ensemble is provided
directly to the algorithm.

• Let PX be the set of all possible partitions over the data set X. An ensemble Π is
defined as a set of M base clusterings, each of which is referred to as an ‘ensemble
member’ or ‘partition’:

Π = {π1, ..., πM} ⊆ PX

A partition π ∈ PX consists in a set of kg clusters, which are a subset of the dataset
X. Each partition may have a different number of clusters.

π = {C1, C2, . . . , Ckg}, Ct ⊂ X

Each partition πg can be viewed as a map that brings a set of data points X to a
set of labels lg = 1, 2, ..., kg, namely:

πg : X → lg

such that lg(xi) = k if point i belongs to cluster k according to partition g. lg is
called the label vector of partition πg

The main assumptions are that the each cluster is disjoint from one another and
each partition clusters all the points in the dataset. This property is called hard
clustering.
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Ct ∩ Cs = ∅, s ̸= t

kg⋃
t=1

Ct = X

The aim of a Cluster Ensemble algorithm is to find a partition π∗ = {C1, . . . , Ck∗}, with its
own number of clusters k∗, called the consensus partition. The consensus partition com-
bines the information that can be extracted from the ensemble and represents a summary
of the partitions in input.

2.1.2. Goals

The goodness of the consensus partition is evaluated using some similarity function
s(πi, πj), which ideally should be higher with respect to all partitions in the ensemble:

π∗ = arg max
π∈PX

1

M

M∑
g=1

s(π, πg) (2.1)

. For example, s can be the Normalized Mutual Information(NMI), a measure from
information theory which is defined as such:

NMI(πa, πb) =

∑ka
i=1

∑kb
j=1 nij log(

nij ·N
|Ca

i |·|Cb
j |
)√

(
∑ka

i=1 |Ca
i | log(

|Ca
i |

N
))(

∑kb
j=1 |Cb

j | log(
|Cb

j |
N

))

where nij = |Ca
i ∩ Cb

j | is the number of commonly labeled points between two clusters.

Other similarity functions, such as the Adjusted Rand Index [26] or the Classification
Accuracy [31] can also be used to measure the quality of the consensus partition. They
will be explained more in detail in Section 6.

2.2. Notation

To better understand the techniques and algorithms used to approach the problem, we
introduce some notation and a new representation of the data to express precisely how
relevant values are extracted from the inputs.

Total number of clusters Some algorithms requires to know the overall number of
distinct cluster labels in the Ensemble. We call this measure ktot and it is defined as
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follows:

ktot =
M∑
g=1

kg

In case the ensemble is generated with a fixed kg = k ∀g ∈ {1, . . . , ,M}, ktot is simply
equal to M ∗ k.

Binary Association Matrix

ug : X × {1, . . . , kg} → [0, 1]

ug(xi, t) = P (xi ∈ Ct) = P (l(xi) = t)

u represents the probability of a point being assigned to a given cluster in a partition. It
is used to construct another useful representation of the input, a N ×kg matrix called the
stochastic matrix [Ug]i,t. Each element of U is subject to:

kg∑
t=1

u(xi, t) = 1, ∀i

In general, U may represent a hard partition with u(xi, t) ∈ {0, 1} or a soft partition
with u(xi, t) ∈ [0, 1]. In the former case the stochastic matrix takes the name of Binary
Cluster-Association matrix (BA).

[BAg]i,k =

1 if lg(xi) = k

0 otherwise

Figure 2.2: Example of label vector, stochastic and binary association matrices of a given
partition.
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In Figure 2.2 we propose a simple example of how these different functions work: in the
example partition there are three clusters, denoted by the blue, yellow and red colors. In
each representation we color-coded the columns or the entries of each matrix or vector
with the color associated to that specific cluster.
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3| Related Work

In this chapter we propose a look at the general framework of Cluster Ensemble methods,
some history and well known algorithms. An important premise is to be made, which
is the main drive behind the existence of Cluster Ensemble as a problem: there is no
single clustering algorithm that is able to yield the best performance for all datasets and
no algorithm is able to discover all types of clusters. Different clustering algorithms can
produce very different results, even with small parameter changes.

For this reason Cluster Ensemble algorithms exist, their main goal is to combine the
information from a collection of different sets of clusters in a way that achieves "better
results" with respect to those of an individual algorithm, and provide either a new vision
of how the data should be classified or return a final classification that should ideally be
closer to the truth of how those data should be grouped in clusters.

Given a set of data points X, the framework of a cluster ensemble method consists in two
main steps:

• Generation of the ensemble: this phase consists in creating a set of partitions from
X.

• Combination: the consensus partition is computed, by using the information from
the partitions obtained in the generation step, using a specific procedure.

These are some key properties that a clustering ensemble algorithm should fulfill, as stated
by Topchy et al. [44]:

• Robustness: The performance of a Cluster ensemble algorithm should have a good
average performance between different domains and datasets.

• Consistency: The result of the combination should be somehow, very similar to all
combined partitions. Consistency can be measured, for example, using metrics like
the average NMI over all the partitions in the ensemble.

• Novelty : Cluster ensemble algorithms can find new solutions unattainable by single
clustering algorithms.
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• Stability: Results have low sensitivity to noise and outliers.

The consensus partition obtained from a Cluster Ensemble algorithm cannot be expected
to be exactly equal to the ground truth on the clustering of dataset X: the output of
a Cluster Ensemble algorithm strictly depends on the quality of the input partitions. If
many partitions provide a view of the input data that is far from the ground truth, the
output may be influenced by those views. For this reason, to evaluate the quality of a
Clustering Ensemble algorithm, the most popular metrics in literature don’t compare the
quality of the result with the ground truth, but they are usually a measure of closeness
between the output and all of the input partitions. Assuming that a consensus of all
partitions contains more information than a single one and that a consensus process
is resistant to errors, we expect that the consensus partition performs better than any
partition in the ensemble.
Now that we highlighted the main characteristics of a Cluster Ensemble algorithm, we
can enter into the details of how a Cluster Ensemble algorithm works.

3.1. Ensemble generation methods

For the ensemble generation phase, we present a taxonomy of some of the methods and
heuristics found in literature [7], based on the different generation strategies. It can be
noted that any of these heuristics can be mixed and combined with the others to enrich
the ensemble generation phase.

Homogeneous ensemble Partitions are created by running the same clustering algo-
rithm with different sets of parameters (for example k-means, with random initialization
of cluster centers).

Different-k The output of many clustering algorithms is dependent on the initial choice
of the number of clusters k. To acquire ensemble diversity, partitions are created using
the same or different algorithms with a specific value of k or randomly selecting k from a
pre-specified interval, which is the same for every algorithm. The specific value of k for
this generation technique is usually greater than the expected number of clusters.

Random subspacing/sampling An ensemble can also be achieved by using subsets
of initial data to each partition. It is assumed that each clustering algorithm can pro-
vide different levels of performance for different subsets of a dataset. Additionally, data
partitions can be simply obtained by projecting data onto different subspaces, choosing
different subsets of features, or using data sampling techniques.
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Heterogeneous ensembles heterogeneous ensembles may be exploited, where diver-
sity is introduced by allowing each partition to be generated using different clustering
algorithms. Multiple algorithms can provide different decisions on data partitions and
complement each other to assure a better end-result. Each partition is generated inde-
pendently from the others and may represent a completely different view on the data.
An example of this generation technique may be, applying both k-means with k = 5 and
Agglomerative Hierarchical Clustering on the same dataset to generate two completely
different partitions.

Stochastic partition generation Each observed partition πg in the ensemble Π is gen-
erated by two transformations of the true partition πtrue, which is synthetically generated
and known a priori:

1. Noise, π′ = F (πtrue): a random noise with probability (1− p) is applied to a cluster
label l(xi) of each object xi. The value l(xi) is replaced by a new random label
t ∈ {1, . . . , k},∀t ̸= l(xi) with probability q.
A data point keeps a correct label l(xi) with probability p, and changes to an incor-
rect label with probability (1− p). All incorrect labels have the same probability:

q =
1− p

k − 1

This step generates a noisy version l′(X) of the true partition πtrue, called π′ =

{l′(x1), l
′(x2), . . . , l

′(xN)}

2. Label permutation, π′′ = T (π′): the label permutation T = {σ(1), σ(2), . . . , σ(k)} is
drawn from the set of all possible permutations of k labels with uniform probability.
The partition π′′ = l′′(X) = T (l′(X)) becomes now a member of the ensemble and
π

′′
= {l′′(x1), l

′′(x2), . . . , l
′′(xN)}.

π1, the first partition in the cluster ensemble, takes the value of π′′. The above
process is repeated with different realizations of F (.) and T (.) to generate other
partitions πi in the ensemble

The observed ensemble Π becomes then the collection of M random partitions: Π =

{π1, . . . , πM}. This method of partition generation works best for solving the label corre-
spondence problem when using the weighted bipartite graph formulation [45].
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3.2. Ensemble combination methods

A variety of algorithms to generate the consensus partition have been developed in lit-
erature. Each algorithm is heavily reliant on the context of application: in general, a
Cluster Ensemble algorithm has the goal of generating the consensus partition, but how
it is generated depends on multiple factors, like the category of ensemble generation. Two
main taxonomies of algorithms have been proposed:

• Vegapons et al. [48] propose two main categories of algorithms, those based on
object co-occurrence and those who follow a Median partition approach. In the first
category, the idea is to determine which cluster label must be associated to each
object in the consensus partition by analyzing how many times an object belongs
to one cluster or how many times two objects belong together to the same cluster.
In the second category, the consensus partition is obtained by solving the problem
of finding the median partition as formulated in Equation 2.1. The median partition
is defined as the partition that maximizes the similarity with all partitions in the
cluster ensemble.

• De Amorim [12] and Boongoen [7] divide the types of algorithms in four main cat-
egories: Direct approach, feature-based, pairwise similarity-based, graph-based.
The first family is characterized by the use of a combination strategy (i.e. voting),
and it may require the knowledge of the number of clusters a priori. Since the
cluster labels in each partition are arbitrary, steps that find ‘label correspondence’
and relabel each partition w.r.t to a reference partition are necessary to implement
a voting mechanism. Most methods in this category require the number of clusters
in each partition to be k, i.e., kg = k, g = 1, . . . ,M .
The second family of methods is based on the categorical data available in the
dataset. Feature-based methods cluster data points using the nominal information
that is originally obtained from an ensemble, without searching for correspondence
amongst labels or relabeling.
The third family is based principally on the pairwise similarity amongst data points:
they compute a specific similarity matrix that expresses the information of how often
two points are grouped together in the same cluster and then compute the consensus
partition from this matrix.
The fourth family of algorithms makes use of a graph representation to solve the
cluster ensemble problem. These graphs may be generated from the co-occurrence
between points, from the association between points and clusters, from the similar-
ity between clusters or from arbitrary similarity measures.
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Table 3.1: Map of the overlapping between the two proposed taxonomies in literature.

In Table 3.1 we show a possible interpretation of how the two taxonomies can be com-
pared and where they overlap, to better identify and localize the context of the methods
we present. Many methods from the categories presented in the taxonomy by De Amorim
and Bongooen can be considered quite similar to the Co-occurrence family defined by
Vegapons et al.: for example, all methods under Direct Approach, Pairwise similarity
based and Graph based all make use of the information of either how a point is associ-
ated to a cluster, how clusters relate to one another, or how points relate to one another.
For this reason they overlap quite well with the family of co-occurrence methods. Just
a few methods from the feature-based family can be placed under the median partition
approach since they search for the consensus partition either by clustering the informa-
tion available in the ensemble or by working with probability, without looking how points
relate to clusters or one another.

In our work we will focus mainly on some methods from the families of Direct Approach
methods, mainly the ones pertaining to the subfamily of Relabeling and Voting and the
family of Graph-based methods, since the solution we developed can be directly compared
to a good number of them. In the following, we offer a description of the general rationale
behind both families, and we then enter in the detail of the main algorithms known in
literature from each one.

In Figure 3.1 we show a visual representation of how the methods we focused on are
placed in each family: in the figure there are two sets that represent the two families



16 3| Related Work

Figure 3.1: Comparison between graph-based and direct approach methods

of Direct Approach methods and Graph-based methods. Inside each family there are
subsets that represent specific categories of methods. In the Direct Approach set there
are the subcategories of Relabeling algorithms and Voting algorithms that together form
the category of Relabeling and Voting methods: the relabeling algorithms we present
are weighted bipartite matching problem solved with Hungarian [35] and Multivariate
Regression [4], while for voting there are Simple Voting [45], Incremental Voting [4], C-
Vote [4] and Ada-Bvote [4]. Label Correspondence Search [8] is placed outside of those two
subcategories since it solves both problems at the same time without a clear separation
between the two.
For graph-based methods there are the subcategories of methods that construct a graph
from the similarity between points, those that construct it from the similarity between
clusters, and those that construct it from the relationships between points and clusters.
For the first subcategory we have GCC [50], CSPA [43], SNNC [3], WSPA [13], CTS [29],
SRS [30]. For the second category we have MCLA [43] and L-MCLA [40]. For the third
category we have HBGF [17], WBPA [13] and LCE [30], HGPA [43] and CESHL [54].
The subcategories of methods that construct the graph from the relationships between
clusters and those that construct the graph from the relationships between points and
clusters are placed at the intersection of the two families of methods since either they
have a clear distinction between a phase in which clusters are grouped together and a
phase in which points are then assigned to the closest group of clusters or because they
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yield a result in which points are assigned to groups of clusters, rendering them quite
similar to the methods belonging to the category of relabeling and voting.

3.2.1. Relabeling and Voting methods

All the following methods are based on solving first the labeling correspondence problem,
also known as relabeling, to create a matching between clusters in different partitions.
After creating a correspondence between clusters in each partition, a voting function is
applied to obtain the consensus partition.

Relabeling

In some cases, to compute the consensus partition it is important that all the partitions
in the ensemble use the same set of labels for the clusters, and that clusters in different
partitions are consistently labeled, by minimizing the number of mislabeled clusters. Re-
labeling algorithms strive to solve this problem by using different techniques. Relabeling
consists in the process of finding a permutation of cluster labels between different parti-
tions such that the labels in all partitions are aligned and represent the same information.

Figure 3.2: Example of partitions with different cluster labels representing the same
information

In Figure 3.2 we show an example of a scenario in which a relabeling algorithm may be
applied. For simplicity, there are six points, grouped in three clusters, in two partitions.
The clusters are color coded in such a way that clusters with the same label have the
same color, even if they group different points. From the BA matrices it is evident that
the same information, is placed in different columns with different colors. A relabeling
algorithm should be able to identify which column in BA1 corresponds to the same cluster
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in BA2.

In the following we show some methods to solve the label correspondence problem.

Bipartite Graph To obtain a consistent labeling between partitions, the problem is
solved as a maximum weight bipartite matching problem [45]. For two partitions πg and
πh, with the same number of cluster labels kg = kh = k, a contingency matrix W is
created, containing the co-occurrence of the cluster labels in the two different partitions
on the same data set:

Wpq =
∑

∀xi∈X

w(xi), Cp ∈ πg and Cq ∈ πh

where

w(xi) =

1 if lg(xi) = Cp ∧ lh(xi) = Cq

0 otherwise

From that, the correspondences between clusters that minimize the misassigned objects
are selected, solving the following maximization problem, which finds the entries of a a
k × k permutation matrix Pgh between the clusters of partitions πg and πh,:

max
pij

k∑
i=1

k∑
j=1

Wijpij

s.t.
k∑

i=1

pij =
k∑

j=1

pij = 1, pij ∈ 0, 1

where Wij are the contingency matrix values, and pij are the entries of the permutation
matrix Pgh used to determine the correspondence between the two set of clusters.

One of the first and most famous algorithms that solve this problem is the Hungarian
Algorithm [35]. This algorithm given an assignment cost matrix between sets of labels,
returns the assignment matrix that for each row (representing an element in the first set
of cluster labels) assigns a column (representing an element in the second set of cluster
labels) that minimizes or maximizes the cost. This formulation was developed for the case
in which all partitions in the ensemble have the same number of clusters, and it is one of
its main limitations. This formulation can be easily extended to the different number of
clusters scenario, without modifying how the weighted bipartite graph is generated. In
this case, the Hungarian Algorithm will return a partial permutation that may associate
to clusters in πg a subset of clusters in πh or viceversa.
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Figure 3.3: Example of permutation matrix resulting from relabeling

In Figure 3.3 we show the solution of the relabeling problem introduced in Figure 3.2.
The matrix P12 is the permutation matrix found by the solution to the bipartite matching
formulation. The permutation matrix simply associates each cluster of π1 to a cluster in
π2, and BA2 = BA1P12.

When relabeling is solved using this formulation, to obtain a complete alignment between
all partitions, a reference partition πref is selected and relabeling is executed for each pair
(πg, πref ). In this way each partition will have the same cluster labels of the reference.

Regression Let Uref be the stochastic matrix of a reference partition selected a priori.
The goal is to find the optimal relabelling of stochastic matrix Ug, called θ(Ug), that is
the closest to Uref with respect to a distance function d. The problem is formulated as
a regression problem with multiple-input and multiple response variables [4]. In this way
the problem of finding θ(Ug) becomes

min
θ(Ug)

Li(Uref , θ(Ug)

Where Li is the pairwise relabeling loss. For each couple (Ug, Uref ), a training dataset Dg

is generated, containing the vectors {([Ug]j, [Uref ]j)}Nj=1, where [Ug]j is the jth row (with
size ki) of Ug, and [Uref ]j is the jth row (with size kref ) of Uref and represents the target
vector for the regression. Assuming that it exists a linear model for each output variable,
θ(Ug) can be written as θ(Ug) = Vg = UgPgref , where Pgref is a kg×kref matrix of weights,
representing the utility matching between the clusters of partition πg and πref . For the
estimation the mean squared error is used as loss function:

Lg(Uref , θ(Ug) = MSE(Uref , θ(Ug) =
1

N
tr[(Uref − UgPgref )

T (Uref − UgPgref )]
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The estimated solution is V̂g = UgP̂gref , where:

P̂gref = (Ug
TUg)

−1Ug
TUref

Label Correspondence Search In this algorithm the correspondence between clusters
is found creating an Agreement Matrix G, from which k∗ sets of clusters C∗

m,m ∈ 1, . . . , k∗

are selected, called metaclusters, where each cluster in the set corresponds to the same
label [8].

The agreement G(Cp, Cq) between two cluster Cp, Cq in the partitions πg, πh is defined as

G(Cp, Cq) = (Up)
T · Uq

where Ut is the stochastic vector of the t-th cluster.

Then the problem of finding the optimal metaclusters is formulated as a maximization of
a function FΛ, defined as following for each partition:

FΛ =
k∗∑

m=1

kg∑
t=1

Λ(Ct, C
∗
m) · S(Ct, C

∗
m)

subjected to
k∗∑

m=1

Λ(Ct, C
∗
m) = 1,∀t ∈ {1, . . . , kg}

where

Λ(Ct, C
∗
m) =

{
1 if Ct ∈ C∗

m

0 otherwise

S(Ct, C
∗
m) =


1

|C∗
m|

∑
∀cl∈C∗

m,cl ̸=Ct

G(Ct, cl) if Λ(Ct, C
∗
m) = 1

0 otherwise

Λ is a binary association matrix between the total number of clusters in the ensemble and
the k∗ metaclusters, and S defines a score assigned to each cluster inside a metacluster.
Optionally, the objective function FΛ can be maximized also with respect to the additional
constraint of:
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kg∑
t=1

Λ(Ct, C
∗
m) = 1, ∀m ∈ {1, . . . , k∗}

The result of the optimization problem is the matrix F ∈ RN×k∗ , where each element Fim

defines the association between point xi and metacluster C∗
m.

Voting

After relabeling, a voting step is executed. Each relabeled partition represents a vote for
a cluster label for all points in the dataset, and the consensus partition is then created
by collecting all the proposed labels and selecting the most suitable one for each point
according to a variety of selection criteria, depending on the method.

Simple Voting When using the weighted bipartite matching formulation, after retriev-
ing all relabelings, plurality voting is used to choose the best label assigned to each point.
For the consensus it is just required to select the most assigned label, and it is not required
that the majority of the partitions agree on the result. This is done by selecting for each
point the most frequent label selected among all partitions:

l∗(xi) = argmax
t

Vt(xi)

Where Vt(xi) is the number of times the tth cluster is associated to the point xi

Label Correspondence Search The same approach as Simple Voting is used when
applied to label correspondence search, where plurality voting is used to select the most
appropriate label [8]. The final label of each is point is:

l∗(xi) = argmaxFim, m = 1, . . . , k∗

Iterative Voting Obtaining a complete correspondence between cluster labels is not
always achievable, so some methods employ a cumulative voting process, where the con-
sensus partition is updated in iterations. In these algorithms consistency is guaranteed
with respect to the consensus partition in the previous iteration. We present some of
them in the following:

• Basic method [4] After selecting an arbitrary ordering for the partitions, each iter-
ation step a matrix V g is computed by applying relabeling to the couple (V g−1, BAg)

using linear regression, where V g−1 represents the merging of the previous g parti-
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tions, combined using their Binary Association matrix:

V g = V g−1 +BAg ∗ PV g−1g

V 1 = BA1

g ∈{1, . . . ,M}

The consensus labels are then selected by plurality voting:

l∗(xi) = argmax
t

V M
t (xi)

where V M
t is the tth column of the final V M matrix.

• Bvote [4] After selecting an arbitrary ordering for the partitions and a reference
(i.πref = π1), at each step i ∈ 2, . . . ,M , the optimal relabelling V i = Ug · Piref with
respect to the stochastic matrix Uref is found using linear regression. Then Uref is
recomputed as the weighted average of Uref in the previous step and V i. To enhance
performance, bVote can be run several times with different partitions orderings and
keeping the solution with lowest MSE.

• Ada-cvote [4] The iterative part is the same as Bvote, but the two main differences
are in the partition ordering and the relabeling problem formulation. The order is
created by taking the partitions in decreasing order of the mutual information shared
between πi and X I(πi, X).

In this way the first partition to be selected will be

π1 = argmax
πi∈Π

I(πi, X)

At each step Vi is computed with the linear regression approach.

After finding the consensus partition π∗ in the previous two algorithms, an agglom-
erative algorithm based on the information bottleneck method developed by the
same authors, is applied to obtain a refined solution π̂ with k̂ clusters.

Weighted Voting It is possible to increase precision to the voting phase by adding
extra information derived from external indices or a priori information on the data and
partitions, which takes the form of weights. The critical step in the weighting process is
the selection of a metric or a property which represents the quality of the single vote with
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respect to the others. Weighting can be applied on different levels (weights on the data,
weights on clusters, weights on partitions), and for cluster ensemble methods based on a
relabeling approach, two methods based on weighting partitions are available.
The method developed by Zhou and Tang [55] utilizes as weight for a partition the inverse
of the average NMI:

wg =
(M − 1)∑

πg ̸=πi
NMI(πi, πg)

such that
M∑
g=1

wg

Z
= 1

where Z is a constant used to normalize the weights.

This is done because the less information partition πg has in common with other partitions
in the ensemble, the more original and relevant information it provides to the voting
process, so it must get a higher weight.
The method developed by Zhang et al. [52] makes use instead of the NMI between each
partition of the ensemble and a reference partition:

wg = NMI(πg, πref )

This method prioritizes the partitions which are more similar to the reference we choose,
while it discards dissimilar partitions on the assumption that a higher difference means
lower quality.

Advantages and disadvantages

The relabeling and voting methods we presented have the advantage of being quite easy
to understand and implement, as it is really intuitive to see that these methods look for
where each point should belong by looking at every (matched) cluster in the ensemble.
They also have the advantage of having a computational cost not heavily dependent on
the number of points, which in real applications is usually a high number. Their main
disadvantages are the fact that the label correspondence problem can be computationally
expensive, as algorithms such as Hungarian have computational cost of O(k3), but as
long as the number of clusters is relatively low, this cost can be contained. Another
disadvantage is that the quality of the solution is heavily influenced either by the chosen
reference partition or chosen ordering in case of iterative voting, and we could say then
that the solution is biased towards those partitions or orderings.
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3.2.2. Graph-based methods

All these algorithms are based on a graph representation to solve the Cluster Ensemble
problem. The typical graph-based algorithm will usually require at least two mandatory
steps:

• Construction of a weighted undirected graph G = (V,W ) from the input data

• Partitioning of the graph in k∗ parts using a well-known graph partitioning tech-
nique. The final number of clusters is assumed known a priori

These types of algorithms have in common only the fact they use a graph representa-
tion. The output of the graph partitioning, for this reason, will have a different meaning
depending on what the graph represents. For example a graph can represent either the
association between data points and clusters, or it can represent an agglomeration of only
clusters.

Graph Generation

How the graph is generated from the input data greatly differs between algorithms. Not
only different matrices or criteria can be chosen to construct a weighted graph, but also
the type of graph that is partitioned can be of a different type depending on the algorithm.
There are three main categories of graphs that are generated by graph-based cluster en-
semble algorithm: those that use the graph to model the similarity between clusters, those
that use it to model the similarity between points, and those that model the relationships
between clusters and points.

Similarity between clusters All these methods generate a graph from a matrix or
a measure that holds information between pairs of clusters. These methods, by looking
at the similarities between clusters, solve a problem that is akin to relabeling, since they
group together the clusters in meta-clusters that represent those clusters that hold the
same information. All of them then use a voting technique to decide which point belongs
to which meta-cluster. For this reason, these methods are very similar in their procedure
to Relabeling and Voting methods.
The main representatives of this family of methods are MCLA [43] and L-MCLA [40],
which generate the graph from the Jaccard similarity between pairs of clusters.

Similarity between points All these methods generate a graph from a matrix or a
measure that holds information between pairs of data points. The resulting graph will
be partitioned and return directly how the data points should be grouped together in the
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consensus partition.
The main representatives of this family of methods are:

• GCC [50], CSPA [43] and SNNC [3], which generate the graph from the Co-association
matrix between data points, which measures how often a point xi figures in the same
cluster as a point xj

• WSPA [13], which generates the graph by measuring the distance between points
and clusters, and calculating the similarity between points as the cosine similarity
between these distances

• CTS [29] and SRS [29] which start from the graph created from the Jaccard similarity
between pairs of clusters and expanding it using the notion of connected weighted
triple, to create a matrix of similarities between data points

Relationship between clusters and points These algorithms generate a graph from
the BA matrix, which holds the information regarding which points belong to which
clusters. This graph usually contains a representation of both points and clusters, and
when partitioned points will be assigned to group of clusters, rendering this family of
algorithms similar to Relabeling and Voting algorithms.
The main representatives of this family of methods are:

• HBGF [17], which generates a bipartite graph from the Binary Cluster-Association
matrix

• WBPA [13] and LCE [30], which generate a bipartite graph by either substituting
or enriching the information given by the BA matrix with the one obtained from a
similarity measure between points and clusters

• HGPA [43], which uses the BA matrix to generate a hypergraph from the ensemble

• CESHL [54], which from the BA matrix dynamically learns a hypergraph

Graph Partitioning

Beside of the type of graph used, the graph-based cluster ensemble algorithms also differ
in the kind of partitioning algorithm used to generate the solution in the second step.

METIS and HMETIS METIS [33] is the most popular partitioning algorithm in
literature, it is a multi-level k-way graph partitioning algorithm, which is used to partition
the graph G into k clusters of same size. METIS consists of three phases:
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1. coarsening phase, in which the size of the graph is decreased gradually

2. initial partitioning phase, in which a k-way partition of the smaller graph is com-
puted

3. uncoarsening phase, in which the partitioning is refined in steps by projecting it in
larger graphs

METIS is used by the vast majority of graph-based cluster ensemble algorithms: CSPA
[43], SNNC [3], MCLA [43], HBGA [17], WSPA [13], WBPA [13], CTS [29] and SRS [29]
all make use of it.
A variation of METIS for hypergraphs has also been developed, called HMETIS [34] and
is mainly used by HGPA [43].

Spectral graph partitioning Spectral graph partitioning [38] is the second most pop-
ular partitioning algorithm used by these methods, in which the second eigenvector of a
graph’s Laplacian is used to define a semi-optimal cut.
This algorithm is used by HBGF [17], WBPA [13] and LCE [30].

Normalized cut The normalized cut [41] is an algorithm employed by GCC [50] and
L-MCLA [40]. The normalized cut criterion measures both the total dissimilarity between
the different clusters as well as the total similarity within a cluster.
This algorithm works by bipartitioning recursively the graph until convergence.

In the next part we enter more in detail with the explanation of different graph-based
algorithms, showing for each one the differences in the type of graph generated and type
of partitioning used.

Similarity between points

All these algorithms have in common the fact that they generate a graph from a measure
of similarity between couples of points, that measures if two points should be grouped
together in a cluster.

Graph-based Consensus Clustering (GCC) and Cluster-based Similarity Par-
titioning Algorithm (CSPA) GCC [50] and CSPA [43] share the same basic principle
to construct a weighted graph G = (V,W ) from the ensemble.
They both take as input the co-association matrix CO that can be generated from the
ensemble: this matrix holds the information on how often two points xi, xj figure to-
gether in the same cluster on average in the whole ensemble. The entry CO(xi, xj) of the
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Figure 3.4: Example of the graph created by GCC and CSPA.

co-association matrix is defined as

CO(xi, xj) =
1

M

M∑
g=1

sg(xi, xj)

where s : X ×X −→ 0, 1 is a similarity function defined as such for each partition:

s(xi, xj) =

1 if l(xi) = l(xj)

0 otherwise

In the graph generated by these two methods, an entry of each node vi ∈ V corresponds
to a data point xi ∈ X. Each weight wij ∈ W , connecting nodes vi, vj ∈ V has value
taken from the corresponding entry in the CO matrix CO(xi, xj).
In Figure 3.4 we show an example of how this works: given an example dataset of 4
points, each one of them is represented as a node in the graph, and the value from the
co-association matrix between two points is used as a label for the edge between the nodes
representing those two points. Self-loops are ignored the graph construction.

After constructing the graph, both methods find the final partition π∗ by finding a k∗-way
cut. GCC does this by employing the normalized cut algorithm, while CSPA does this by
using METIS software package.

Shared Nearest Neighbours-Based Combiner (SNNC) Like GCC and CSPA,
SNNC [3] makes use of the CO matrix to construct the graph.
The difference introduced by SNNC is a threshold µ: for any xi, xj ∈ X, if CO(xi, xj) > µ,
then the entry remains unchanged, otherwise it is changed to 0.
After this change, each data point xi is associated to a nearest neighbour set Nxi

⊂ X,
composed by each data point xj such that CO(xi, xj) > 0.
A weighted graph G = (V,W ) is then constructed, where V is a set of weighted vertices
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Figure 3.5: Example of the graph created by SNNC.

and W a set of weighted edges: each vertex has weight vi =
|Nxi |
N

, and each edge wij

connecting vertices vi, vj ∈ V has weight wij = 2× |Nxi∩Nxj |
|Nxi |+|Nxj |

.
In Figure 3.5 we show an example of this process on the same example dataset as Figure
3.4: by setting as threshold µ = 0.5, a couple of entries are set to 0, for example CO(x1, x4)

and CO(x3, x4). The neighbour sets of the example are the following: Nx1 = {x2}, Nx2 =

{x1, x3}, Nx3 = {x2}, Nx4 = ∅. The graph is then generated by looking at the cardinalities
of neighbour sets.
The final partition π∗ is obtained by partitioning in k∗ parts the graph using METIS.

Weighted Similarity Partitioning Algorithm (WSPA) This method [13] creates
a matrix very similar to BA, called WDM , from which the final clustering is obtained.
Each entry WDMij can be interpreted as a closeness between data point xi and the cluster
Cj ∈ πg. The value of each WDMij is given by:

WDMij =
D(xi)− d(xi, Cj) + 1

kgD(xi) + kg −
∑kg

t=1 d(xi, Ct)

where d(xi, Cj) is the distance between data point xi and Cj, the centroid of cluster Cj,
and D(xi) is defined as the maximum distance between point xi and a cluster in πg,

D(xi) = max
∀Cj∈πg

d(xi, Cj)

.
The distance d(xi, Cj), with wCj,s

∈ [0, 1] being the weight of the sth attribute that is
specific to the cluster Cj ∈ πg , xi,s being the value of the sth attribute of data point xi ,
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and Cj,s being the sth attribute value of the cluster centre Cj, can be defined as:

d(xi, Cj) =

√√√√ D∑
s=1

wCj,s
(xi,s − Cj,s)2

Cj ∈ πg, subject to
∑D

s=1wCj,s
= 1.

Figure 3.6: Example of the WDM measure created by WSPA.

In Figure 3.6 is shown a simple example of how the WDM measure is computed. For the
sake of simplicity, we have two clusters with two respective cluster centers, and we want
to compute the WDM measure between point x1 and cluster C1

1 in the first partition.
Making the assumption that the distance between point x1 and cluster C1

2 is the biggest
in the whole partition, D(x1) will return d(x1, C1

2), and WDM11 will be the one shown in
the figure.
The set of cluster-specific weights is specifically obtained using a soft-subspace clustering
technique, the most known one being Locally Adaptive Clustering (LAC).
Once the WDM matrix is obtained, a vector Pi is defined, which is a vector of all the
entries in the WDM matrix which correspond to data point xi and all the clusters in πg.

Pi =
(
WDMi1, . . . ,WDMikg

)
.

These vectors are then used to define a N ×N similarity matrix S. Each entry Sij, which
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represents the similarity between points xi, xj in partition πg, is defined as the cosine
similarity between the vectors Pi, Pj associated to the two points:

Sij =
PiPj

||Pi||||Pj||
.

The overall similarity for all points in the ensemble is condensed in the matrix S, defined
simply as the normalized sum of all the M similarity matrices:

S =
1

M

M∑
g=1

Sg

This similarity matrix is then converted into a weighted graph, and then partitioned in
k∗ clusters using METIS.

Connected-Triple Similarity (CTS) and SimRank-based Similarity (SRS) Both
CTS and SRS algorithms have been proposed to improve on the performance of CSPA,
which has problems in handling a large number of unknown (0 entries in the CO matrix)
relations between data points. In this case the CO matrix can provide only a small num-
ber of pairwise similarities between data points, which brings the need to add additional
information about relations between clusters in an ensemble.

• CTS In CTS [29], similarity information between clusters is extracted from a cluster-
level graph G = (V,W ) not unlike the one constructed in MCLA, where each vi ∈ V

represents a cluster Ci ∈ Π, and each weight wij ∈ W for the edge between vi, vj ∈ V

is computed using the binary Jaccard similarity between the two clusters associated
to the two vertices, such that wij =

|Ci∩Cj |
|Ci∪Cj | .

Given this representation as a base, additional information about similarity between
clusters is extracted using the Weighted Connected-Triples (WCT) measure: for
each pair of clusters Cp, Cq ∈ V , it is counted how many Connected-Triples they are
part of.
A triple, Triple = (V,W ), is a subgraph of G containing three vertices
VTriple = {Cp, Cq, Co} ⊂ V and two non-zero edges WTriple = {wpo, wqo} ⊂ W , with
wpq = 0.
For each pair of clusters Cp, Cq ∈ V , the WCT measure with respect to each triple
with Co ∈ V is measured as WCT o

pq = min(wpo, wqo), where wpo, wqo ∈ W are
weights of the edges connecting clusters Cp and Co, and clusters Cq and Co.
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All triples (1...α) between clusters Cp and Cq are then counted as follows:

WCTpq =
α∑

o=1

WCT o
pq.

The similarity between two clusters Cp and Cq is then estimated as:

SimWCT (Cp, Cq) =
WCTpq

WCTmax

×DC,

where WCTmax is the maximum WCTpq value of any two clusters Cp, Cq in the
ensemble, and DC ∈ [0, 1] is a constant decay factor.

Figure 3.7: Example of a Weighted Connected Triple.

In Figure 3.7 we provide an example of triples and how the WCT and Sim measures
work: given three nodes Cp, Cq, Co, the triple of Co is just the part of the graph that
connects node Co to nodes Cp and Cq. In the example we show a simple graph
composed by four nodes, Cp, Cq, CrCo1,, connected in such a way that there are
three triples in it, {Cp, Cq, Co1}, {Cq, Cr, Co1} and {Cp, Cr, Co1}, highligted in the
image by the separated sub-graphs of different colors. Given these three triples all
the respective WCT measures between all pairs of clusters that are connected to O1
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are computed, and then from these we are able to calculate the similarities between
all pairs of clusters.

After having generated the similarities for all clusters in the ensemble, a procedure
really similar to the one presented in WSPA is proposed: for each partition πg, the
similarity between data points xi, xj is estimated as:

Sij =

1 if l(xi) = l(xj)

SimWCT (Cl(xi), Cl(xj)) otherwise

An overall N ×N similarity matrix SCTS is then calculated as the average of all the
Sg matrices:

SCTS =
1

M

M∑
g=1

Sg.

Just like CSPA, the similarity matrix SCTS is transformed into a weighted graph,
from which the final partition π∗ is obtained using METIS by partitioning the graph
in k∗ parts.

• SRS

SRS [29] makes use too of a network of clusters to reveal information about unknown
relations, but it does so by employing a bipartite graph formulation identical to the
one presented in HBGF, and on top of that it adds a similarity measure.
The bipartite graph is defined as G = (V,W ), where V = V X∪V C is the union of the
set of vertices associated to data points V X and clusters V C , with V X = {xi|xi ∈ X}
and V C = {Cj|Cj ∈ Π}.
The weight wij ∈ W between vertices vi, vj ∈ V takes different values depending on
which subset of V the vertices belong to:

wij =

0 if vi ∈ V X ∧ vj ∈ V X ∨ vi ∈ V C ∧ vj ∈ V C

[BAg]ij if vi ∈ V X ∧ vj ∈ V C

Two matrices are defined, namely SSRS ∈ RN×N and S
′SRS ∈ Rktot×ktot , which

represent respectively pairwise similarities between points and pairwise similarities
between clusters, with their values taken as such:

SSRS
ij =


1 if xi = xj

DC
|Nxi ||Nxj |

∑
∀Cp∈Nxi

∑
∀Cq∈Nxj

S
′SRS
pq otherwise
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where DC ∈ [0, 1] is a constant decay factor and Nxi
⊂ V C is the set of cluster

vertices connected to the data point vertex xi ∈ V X , i.e wij = 1,∀Cj ∈ Nxi
,

S
′SRS
pq =


1 if Cp = Cq

DC
|NCp ||NCq |

∑
∀xi∈NCp

∑
∀xj∈NCq

SSRS
ij otherwise

where NCp ⊂ V X is the set of data point vertices connected to the cluster vertex
Cp ∈ V C , i.e wip = 1,∀xi ∈ NCp .
Given this formulation, both matrices are obtained through an iterative refinement
process:

The estimate at iteration r + 1 is given by:

SSRS
ijr+1

= DC
|Nxi ||Nxj |

∑
Cp∈Nxi

∑
Cq∈Nxj

S
′SRS
pqr

S
′SRS
pqr+1

= DC
|NCp ||NCq |

∑
xi∈NCp

∑
xj∈NCq

SSRS
ijr

.

where SSRS
ijr and S

′SRS
pqr are similarity degrees between points xi, xj or clusters Cp, Cq

at the rth iteration. At the initialization phase, the two matrices are initialize as
such:

SSRS
ij0

=

1 if xi = xj

0 otherwise

and

S
′SRS
pq0

=

1 if Cp = Cq

0 otherwise

In Figure 3.8 we show how SRS works, in a simple manner: in red we show the
bipartite graph from which the SSRS matrices are computed, similar to the one
shown in Figure 3.10, in yellow are shown the edges that are generated from the
SSRS matrix, which are similarities between points, while in green are shown the
edges that are generated from the S

′SRS matrix, which are similarities between
clusters.

Once the final similarity matrix between data points SSRS is obtained, it is trans-
formed into a weighted graph just like the other methods that make use of a sim-
ilarity matrix between points, and the final partition π∗ is obtained by employing
METIS to partition the graph in k∗parts.
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Figure 3.8: Example of the bipartite graph created by SRS.

Similarity between clusters

These algorithms generate a graph from a measure of similarity between pairs of clusters,
and solve the problem of grouping together similar clusters, something akin to relabeling
and voting algorithms.

Meta-Clustering Algorithm (MCLA) In MCLA [43], a graph G = (V,W ) is con-
structed at cluster-level: each vi ∈ V represents a cluster Ci ∈ Π, and each weight wij ∈ W

for the edge between vi, vj ∈ V is computed using the binary Jaccard similarity between
the two clusters associated to the two vertices, such that

wij =
|Ci ∩ Cj|
|Ci ∪ Cj|

After the construction of the graph, METIS is employed to partition the graph in k meta-
clusters.

In Figure 3.9 it can be seen how this process works: given an example ensemble with two
partitions π1, π2, with k1 = k2 = 2, we show in red and blue the clusters of each partition.
The graph on which MCLA operates on is created by taking as node each individual
cluster in the ensemble and putting as label for the edge between their associated nodes
the Jaccard similarity measure, as shown in the figure by the numbered weight on each
edge.
Each data point has a certain association degree to each meta-cluster, estimated from
the number of original clusters in the meta-cluster to which the point belonged in the
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Figure 3.9: Example of the graph created by MCLA

ensemble.
The final partition π∗ is obtained then by associating each data point to the meta-cluster
which has the highest association degree. This procedure can be seen as a way to do
relabeling between clusters without employing the relabeling techniques presented in the
next section.

L-MCLA With the notion of triple presented for the previous methods, Shao and Ding
[40] extended MCLA to include it in the construction of the graph using the Jaccard
Similarity, to address the fact that the indirect relationships between clusters weren’t
addressed. The final partition π∗ is obtained by employing the normalized cut algorithm
on the graph generated by L-MCLA, which is partitioned in k∗ parts.

Relationship between points and clusters

These algorithms generate either a bipartite graph or a hypergraph from the BA matrix,
and they return directly how points are associated to groups of clusters, making also these
methods akin to relabeling and voting algorithms.
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Hyper-Graph Partitioning Algorithm (HGPA) HGPA [43] makes use of the bi-
nary cluster-association matrix BA to construct a hypergraph from the ensemble.
Each data point is associated to a vertex, while each cluster is associated to a same-
weighted hyper-edge.
The resulting hypergraph is then partitioned in k∗ parts using HMETIS to obtain the
final partition π∗.

Clustering Ensemble via Structured Hypergraph Learning (CESHL) Starting
from the same data used by HGPA, this method, developed by Zou et al. [54], dynamically
learn the topology and the weights of the hypergraph by solving iteratively different
optimization problems. The assumption is that a pre-defined static hypergraph is not
sufficiently reliable and usually requires a posteriori computation to remove ambiguity.
With a dynamic hypergraph it’s possible to enforce desired requirements on the clustering
structure. This is the only graph-based algorithm we present that does not employ a graph
partitioning phase due to its dynamic nature.

Hybrid Bipartite Graph Formulation (HBGF) This method creates a bipartite
graph G = (V,W ) to solve the cluster ensemble problem.
In HBGF [17], V = V X ∪ V C is the union of the set of vertices associated to data points
V X and clusters V C , with V X = {xi|xi ∈ X} and V C = {Cj|Cj ∈ Π}.
The weight wij ∈ W between vertices vi, vj ∈ V takes different values depending on which
subset of V the vertices belong to:

wij =

0 if vi ∈ V X ∧ vj ∈ V X ∨ vi ∈ V C ∧ vj ∈ V C

[BAg]ij if vi ∈ V X ∧ vj ∈ V C ,
.

In Figure 3.10 we show how this graph is constructed, over the same example dataset
as Figure 3.9: each node representing a point is connected only to a node representing a
cluster and viceversa.
The bipartite graph is then partitioned in k∗ parts either using the spectral graph parti-
tioning algorithm or METIS to obtain the final partition π∗.
This method can be seen as an extension of CSPA and MCLA, in the sense that it com-
bines both the information at cluster-level and data-level to obtain the final partitioning.

Weighted Bipartite Partitioning Algorithm (WBPA) This method [13] follows
the same basic principle of HBGF, but instead of having weights equal to 1, which were
the values of the BA matrix, it makes use of the WDM entries defined in the WSPA
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Figure 3.10: Example of the bipartite graph created by HBGF.

method.
Just like HBGF, V = V X ∪V C is the union of the set of vertices associated to data points
V X and clusters V C , with V X = {xi|xi ∈ X} and V C = {Cj|Cj ∈ Π}.
The weight wij ∈ W between vertices vi, vj ∈ V takes different values depending on which
subset of V the vertices belong to:

wij =

0 if vi ∈ V X ∧ vj ∈ V X ∨ vi ∈ V C ∧ vj ∈ V C

WDMij if vi ∈ V X ∧ vj ∈ V C
.

The bipartite graph is then partitioned in k∗ parts either using the spectral graph parti-
tioning algorithm or METIS to obtain the final partition π∗.
This method can be seen as an enrichment of HBGF, which not only considers the infor-
mation at data-level and cluster-level, but it also takes into consideration how much the
data points should belong to clusters in the given ensemble.

Link-based Cluster Ensembles (LCE) Alternatively to CTS and SRS, LCE [30]
is proposed as an extension of HBGF, which makes use of the BA matrix. Just like
the CO matrix, the BA matrix can have a problem of too many unknown (0 entries)
relations, which can be dealt with by estimating additional similarities between clusters,
using a graph representation of links between clusters just like in CTS. LCE introduces
an enhanced version of the BA matrix called the refined cluster-association (RA) matrix,
which aims to make use of known relations between clusters (the 1 entries in the BA

matrix) to estimate the value of unknown ones. To initialize the RA matrix, the known
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entries in BA are used:
[BAg]it = 1 =⇒ [RAg]it = 1.

After the initialization of known relations, for each partition πg and its clusters C1, ..., Ckg ,
the association degree RAit ∈ [0, 1] that sample xi has with each cluster Ct ∈ {C1, ..., Ckg}
is estimated as:

RAit =

1 if Ct = l(xi)

SimWCT (Ct, Cl(xi)) otherwise

Once the RA matrix is obtained, it is transformed into a bipartite graph G = (V,W ), in
a similar way to HBGF: V = V X ∪ V C is the union of the set of vertices associated to
data points V X and clusters V C .
The weight wij ∈ W between vertices vi, vj ∈ V takes different values depending on which
subset of V the vertices belong to:

wij =

0 if vi ∈ V X ∧ vj ∈ V X ∨ vi ∈ V C ∧ vj ∈ V C

RAij if vi ∈ V X ∧ vj ∈ V C

The final partition π∗ is obtained by employing the spectral graph partitioning algorithm
on G, which is partitioned in k∗ parts.
The main advantage that LCE has over CTS is that instead of computing a pairwise
similarity using the WCT algorithm for every pair of data points xi, xj, a significant
chunk of the computation is taken away by exploiting already known information using
the much easier to compute BA matrix.

Advantages and disadvantages

The graph-based methods we shown have the advantage of being intuitive to understand
and really easy to implement. In general they all look for some form of similarity or asso-
ciation measure, which usually is really easy to compute (for example the co-association
matrix or binary cluster-association matrix) between points or clusters to construct the
graph, which is then partitioned to return how these should be grouped together in the
consensus partition. Depending on the method, they can have low computational com-
plexity, since methods such as HGPA, MCLA and HBGF have computational complexity
of respectively O(kNM), O(k2NM2), O(kNM). Their main downsides are the fact that
several of them are computationally heavy, since the computational cost depends on how
the graph is constructed and how many nodes there are in it. For example, CSPA has
a computational cost of O(kN2M), and similar methods such as GCC and SNNC have
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similar performances, since they all construct the graph from the co-association matrix,
which is really expensive to compute. WSPA, CTS and SRS share the same downside,
with the addition that they have to compute additional measures to create the matrix
necessary for the graph. Another downside is that the output of these methods is heavily
reliant on the partitioning algorithm that is used, so it is not guaranteed that, for exam-
ple, using METIS, which is known for partitioning a graph in parts of equal size, it may
yield the best result for many of them.
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In this chapter we illustrate the key concepts that are needed to understand the solution
we propose for the Cluster Ensemble problem.

4.1. Synchronization

The method we propose makes use of a technique known as Synchronization, also known
by the names of averaging [21] or graph optimization [10]. The synchronization problem
is stated as follows: given a collection of nodes belonging to a network, each of which is
characterized by a state that is unknown, and a collection of pairwise measures between
nodes that measure the difference between states, the goal is to retrieve the information
about the unknown states from the pairwise measures. Known applications of synchro-
nization are time synchronization (from which the name Synchronization comes from) in
distributed systems and networks [32] [20], and different types of computer vision problems
such as rotation synchronization, rigid-motion synchronization and permutation synchro-
nization [2].
The problem of synchronization can be modeled as a graph G = (V,W ), where the nodes
V correspond to the states and the edges W correspond to the pairwise measures. The
problem is well posed only if such graph is connected. The states of each node are modeled
mathematically as elements of a group Σ and a different choice of group represents a differ-
ent kind of synchronization problem. Some examples of group choices for synchronization
are:

• Σ = R, which corresponds to time synchronization.

• Σ = SO(d), SO(d) = {M ∈ Rd×d s.t. MTM = MMT = Id, det(M) = 1} which is
called the Special Orthogonal Group, it is the set of all rotations and it is used for
rotation synchronization.

• Σ = SE(d), SE(d) =

{[
M t

0T 1

]
, s.t. M ∈ SO(d), t ∈ Rd

}
, which is called the

Special Euclidean Group, it is the set of direct isometries which is used for rigid-
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motion synchronization.

• Σ = Sd,Sd = {M ∈ {0, 1}d×d s.t. M1 = 1,1M = 1}, which is called the Symmet-
ric Group, it is the set of total bijections (or permutations) between sets of objects
and it used for permutation synchronization.

Figure 4.1: Example of the synchronization problem on (R,+)

In Figure 4.1 we show an example of how a synchronization problem is modeled, given that
the states and pairwise measures are elements of the group of real numbers with algebraic
sum (R,+). Each edge is labeled with a number that represents the difference (in the
mathematical sense) of the unknown states of each vertex, which here we represent with a
quotation mark to underline the fact it is not known a priori. The goal of a synchronization
algorithm is to retrieve such states only by knowing the measures on the edges.

In our work, we focus on synchronization, specifically synchronization over permutations,
since a good part of the framework used for relabeling and voting makes use of permuta-
tions to align labels of the same clusters in different partitions and it constitutes a critical
part in the efficiency of a given relabeling and voting algorithm. Before entering into the
details of permutation synchronization, we introduce some useful concepts and notation
first to define the general framework of the synchronization problem.

4.1.1. Framework and notation

First of all, a core concept is the one of group-labeled graph: let (Σ, ∗) be a group with its
unit element 1Σ and G = (V,W ) a simple directed graph, with vertex set V = {1, 2, . . . , n}
and edge set W , with |W | = m. A Σ-labeled graph is a directed graph where each element
of the edge set is labeled with an element of Σ. It is represented by a tuple Γ = (V,W, z),
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where z is a labeling function from elements of W to elements of Σ, that is

z : W −→ Σ

such that if (i, j) ∈ W then (j, i) ∈ W and

z(j, i) = z(i, j)−1

Definition 1 Given a Σ-labeled graph Γ = (V,W, z), a cycle {(i1, i2), (i2, i3), . . . (il, i1)}
is cycle-consistent if the composition of the edge labels along the cycle returns the unit
element:

z(i1, i2) ∗ z(i2, i3) ∗ · · · ∗ z(i, i1) = 1Σ

Definition 2 Given a Σ-labeled graph Γ = (V,W, z), and v : V −→ Σ a vertex labeling.
v is a consistent labeling if and only if

z(i, j) = v(i) ∗ v(j)−1 ∀(i, j) ∈ W

This propriety means that each edge label is the difference between the corresponding
vertex labels. This condition is referred to as consistency constraint and it is also expressed
as

z(i, j) ∗ v(j) = v(i) ∀(i, j) ∈ W

A consistent labeling is such that any composition of pairwise matchings over a cycle is
cycle-consistent. This condition is called cycle-consistency.
A consistent labeling is defined up to a global product with any group element, which
means that if v : V −→ Σ is consistent, then y : V −→ Σ, y(i) = v(i) ∗ s is consistent too,
for any s ∈ Σ.
An important result related to these two definitions needs to be introduced:

Result 1 Given a Σ-labeled graph Γ = (V,W, z), there exists a polynomial algorithm
which either finds a non-consistent cycle in Γ or finds a consistent labelling of Γ, achieving
cycle-consistency. A corollary of this result is that the Σ-labelled graph Γ = (V,W, z) has
a consistent labelling if and only if it does not contain a non-consistent cycle.

Given these definitions and results, we can define the problem of synchronization in math-
ematical terms. Assuming there is for Σ a metric function δ : Σ×Σ −→ R+, representing
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a distance between elements of the group, and a non-negative, non-decreasing function
ρ : R+ −→ R+, with unique minimum in 0 and ρ(0) = 0, an example of which can be the
squared loss function.

Definition 3 Let Γ = (V,W, z) be a Σ-labeled graph, and ṽ : V −→ Σ a vertex labeling.
The consistency error of ṽ is defined as:

ϵ(ṽ) =
∑

(i,j)∈W

ρ

(
δ
(
z̃(i, j), z(i, j)

))

where z̃ is the edge labeling induced by ṽ: z̃(i, j) = ṽ(i) ∗ ṽ(j)−1. cycle-consistency is
achieved if and only if there is zero consistency error. In practical applications, where the
pairwise measures are affected by noise, this condition is hardly reachable, so synchro-
nization needs to solve a different problem.

Definition 4 Given a Σ-labeled graph Γ = (V,W, z), the group synchronization problem
consists in finding a vertex labeling that minimizes the consistency error. The general
scope of the synchronization problem is then to recover the unknown vertex labels from
a redundant set of noisy pairwise measurements modeled as edge labels.

Figure 4.2: General framework of the synchronization problem

In Figure 4.2 we show what is the general theoretical appearance and framework of a
generic synchronization problem on a Σ-labeled graph Γ = (V,W, z) over any group (Σ, ∗)
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with any operation. Each edge is labeled with its proper edge labeling z(i, j), and each
state is unknown. A synchronization algorithm should retrieve a vertex labeling v that
minimizes the consistency error, and in turn should be as close as possible in satisfying
the consistency constraint over each edge z(i, j) ≈ v(i) ∗ v(j)−1, as shown over each edge
in the figure.

Synchronization over different groups is solved in different ways using different algorithms,
and in general a closed form solution for the problem is not always available. In the
following we will focus on the symmetric group and how synchronization is solved for
permutations.

4.1.2. Permutation Synchronization

The problem

In permutation synchronization, we consider as group for our Σ-labeled graph the group
of permutations between sets of k1, k2, . . . , kM objects. Let us consider a collection of
M sets O1, O2, . . . , OM of ki objects each, Oi = {o1, o2, . . . , oki} and for each pair Oi, Oj,
each object in Oi may have a counterpart in Oj. There is a correspondence between
Oi and Oj represented by a permutation Pji : {1, 2, . . . , kj} −→ {1, 2, . . . , ki}, and those
permutations are what we use as edge labels for our Σ-labeled graph:

z(i, j) = Pij, ∀(i, j) ∈ W

To define cycle-consistency of permutations we make use of the definition of universe.
Cycle-consistency is achieved if:

Pij = PiP
T
j , ∀(i, j) ∈ W

Each vertex label Pi is interpreted as, given a reference universe set where there is present
a reference ordering of its objects, as the realization of an absolute permutation between
each object in Oi and an object in the universe. These absolute permutations are unknown
and their retrieval is the goal of our synchronization problem, where we have at our
disposal noisy pairwise permutations P̃ij which we have to synchronize.

Given the block matrix of the permutations P, which represents the Σ-labeled graph in
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matrix form. Each block contains the permutation matrix for each edge (i, j):

P =


P11 . . . P1M

... . . . ...
PM1 . . . PMM


we say that P is cycle-consistent if and only if there exists a matrix U such that P = U ·UT .
U is a block matrix where each block is a ki × k∗ permutation matrix of the form:

U =


P1

...
PM


This factorization of P can be directly retrieved for the noise-free case. Since synchro-
nization algorithms operate in the presence of noise, a variety of methods can be used to
find the solution that better approximate the ideal one.

Figure 4.3: Example of the permutation synchronization problem

In Figure 4.3 we can see an example of how the permutation synchronization problem is
modeled. The edge labels in the graph are pairwise permutations between the reference
orderings that are instead modeled by the vertex labels, which are unknown. The goal
of the permutation synchronization algorithm is to retrieve such reference permutations,
which we denoted in the image as permutation matrices associated to each node, in light
blue.
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Solution

There exist a number of Permutation Synchronization algorithms, that work under dif-
ferent assumptions to approximate the factorization of P.

Eigenvectors-based solution In the work of Pachauri [39], the algorithm operates
under the assumption that all permutations have the same size, such that U is a block
matrix where each block has the same dimension k∗× k∗ and it is found by finding the k∗

leading eigenvectors of P and then projecting each block back into the Symmetric Group,
since they are not guaranteed to belong to it after the best U is found. This is obtained
by multiplying each block by a orthogonal matrix Q that in the case of full permutations
is Q = P T

1 .

Non-negative matrix factorization-based solution From the work of Bernard et
al. [5], the permutation synchronization is extended to partial permutations, where non-
matchings may be present, and works under the assumption that the desired k∗ for the
solution is known. Generally the permutation synchronization problem can be formulated
as a constrained non-linear least squares problem:

argmin
U

||P− UUT ||2F ,

Bernard et al. [5] formulate the problem instead as a Non-negative Matrix Factorisation:

argmin
V≥0,H≥0

∥P− V H∥2F

where V ∈ Rktot×k∗ and H ∈ Rk∗×ktot . The problem is not convex, so an iterative solution
is required to find V and H. The two critical problems are the initialization of V and H

and the final projection of the desired U from V . To solve this problems an algorithm
called Successive Block Rotation Algorithm (SBRA) is used to find a rotation matrix,
used for aggregating information of each block in a generic block matrix.

QuickMatch in the work of Tron et al. [46], the matrix P is viewed as the adjacency
matrix of an M -partite graph, for this reason this solution is quite dissimilar from the
other ones we showed so far, instead of being solved as an optimization problem, here
permutation synchronization is cast to a graph-clustering problem. This method is named
QuickMatch and it works with partial permutations and it automatically estimates the
value of k∗ for the solution, so it doesn’t have any of the limitations of the other algorithms,
at the cost of slightly greater execution time.
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In this chapter we propose a new consensus function for the Cluster Ensemble problem.
We explain how the theoretical framework presented in Chapter 4 is integrated in the
Cluster Ensemble phases and we analyze its advantages over other consensus functions
that make use of similar procedures.

5.1. Permutation Synchronization to solve the Clus-

ter Ensemble problem

In Chapter 3 we discussed some methods pertaining to the state of the art of the solutions
of the Cluster Ensemble problem. In particular, we analyzed the techniques that divide
the problem in the two phases of Relabeling and Voting: the relabeling can be seen
as the problem of finding an optimal permutation of the columns of BAg for each g.
We look for a permutation matrix Pg of size kg × k∗, such that BAgPg represents the
relabeled binary association matrix of πg. In general, Pg may be a partial permutation.
Given this formulation, it became natural to formulate the relabeling phase as a problem
of permutation synchronization, making use of the theoretical framework presented in
Chapter 4.
Given a collection of vertices belonging to a graph, with the state of each unknown, and
a collection of edge labels between vertices that measure the difference between states,
the goal of graph synchronization is to retrieve the information about the unknown states
from the pairwise measures. In the case of permutation synchronization the edge labels
are labeled with permutation matrices.

The use of a graph-based solution to solve the Cluster Ensemble problem is already
known in literature and widely appreciated, but as far as the current state of the art goes,
synchronization is not contemplated to formulate the problem and it’s more recurring
that the graph is constructed directly from the relationship between points and clusters.
In that family of methods the consensus partition is obtained using graph partitioning.

Graph Synchronization can be used in different application scenarios, as presented in
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Chapter 4, for example the computer vision tasks of estimation of rotations and rigid
body isometries [2], and it can be seen as a general framework for recovering an unknown
truth when it isn’t available a priori. In the family of Relabeling and Voting methods, we
need to obtain a label correspondence between all partitions of the ensemble, and for this
reason we deemed very appropriate to extend the known relabeling algorithms with the use
of synchronization, given that the majority of them have to choose a reference permutation
of cluster labels to operate, leading the result to be biased towards that reference. By
extending the Relabeling and Voting framework with Permutation Synchronization we are
able to obtain a global relabeling that doesn’t depend on any local selection of a reference
or a reference ordering of the partitions, since Synchronization takes care of selecting a
global reference autonomously.

In the following we will illustrate the steps to achieve a consensus partition, making use
of graph synchronization and known voting mechanisms. We call this approach Synchro-
nization and Voting.

Figure 5.1: Cluster Ensemble with permutation synchronization

Figure 5.1 shows the entire process of Synchronization and Voting, starting from a pro-
vided ensemble until the consensus partition is obtained. From a given ensemble, the
pairwise permutations between partitions Pij are computed, which are then placed as
edge labels for the graph. After that, the individual vertex labels Pi are retrieved. Each
one of these absolute permutations is multiplied with the BA matrix of the respective
partition to obtain a vote (that may be multiplied with a weight), and then each vote is
summed to obtain the final voting matrix Vens. From that, the consensus partition π∗ is
obtained.

Synchronization and Voting can be summarized as being composed of two phases:

1. The construction of a graph by the computation of the relative permutations P12, . . . , Pij, . . .



5| Proposed Method 51

by solving multiple linear assignment problems;

2. the recovery of the absolute permutations P1, . . . , PM by solving a single permutation
synchronization problem.

In the following sections each phase is contextualized in the Cluster Ensemble scenario
and is described in details.

5.1.1. Graph generation

let G = (V,E) being a simple directed graph. V is a set of vertices with unknown state
v(i) which correspond to a partition πi and E is a set of edges labeled with a permutation
between cluster labels. We compute the edge labels z(i, j) between node i and node
j, obtained as the relabeling Pij between the two partitions πi and πj. The graph can
be computed using all the relative permutations, resulting in a complete graph, but for
efficiency reasons it’s possible to select a subset of all the possible edges, resulting in a
graph with missing edges. This selection is made in such a way that the graph that is
ultimately created is always connected.

Each matrix Pij is obtained as the resolution of the relabeling problem between the two
partitions πi and πj through the Hungarian algorithm, and the matrix Pji is simply
generated by transposing the matrix Pij, since in the group of permutations the inverse
of a matrix is the transpose.

z(i, j) = Pij, (πi, πj) ∈ Π

z(j, i) = Pji = P−1
ij = P T

ij

All the matrices Pii, which are the self-loops in the graph, are identity matrices of dimen-
sion ki, and in case the measurement of Pij is not available, a matrix of zeros is used. As
a consequence, a correspondence between nodes and partitions is created: node i corre-
sponds to the i-th partition. The number of nodes will then be equal to the number of
partitions independently from the number of edges used.

This graph is represented mathematically, as presented in equation ??, with the block
matrix P, which contains in each block the permutation matrix Pij between partition πi

and partition πj.

P =


P11 . . . P1M

... . . . ...
PM1 . . . PMM
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Figure 5.2: Example of the graph generated by our method

Figure 5.2 shows an example of the graph we generate in our solution, in the case of an
ensemble with just three partitions: each edge will be labeled by a permutation matrix
generated by solving the labeling assignment problem between each pair of the partitions
{π1, π2, π3} with the Hungarian algorithm.

5.1.2. Relabeling, synchronization and voting

After computing P, we apply a suitable Permutation Synchronization Algorithm to ob-
tain the vertex labels. The main idea of Permutation Synchronization algorithms is to
estimate the global matching vector U , which is a block vector containing in each position
a permutation matrix associated to each vertex:

U =


P1

...
PM

 = PermSync(P)

The recovered vertex labels v(i) = Pi associated to each node (and hence the final synchro-
nisation result) can be interpreted as ’absolute’ permutations, obtained with respect to a
global reference created during the algorithm steps, which should represent the truth of
how the clusters in each partition should be reordered. As result we obtain for each node
a relabeling created by a permutation with respect to an arbitrary reference, represented
in the global matching vector U .

To obtain U we focus on three different permutation synchronization approaches, each
one working under different assumptions:
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• In [39] the absolute permutations are recovered by finding the k∗ leading eigenvectors
of P. This method works under the assumptions that k∗ is known a priori and all
permutations are total.

• In [5] the absolute permutations are computed from the non-negative matrix fac-
torization (NMF) of P. This method works with partial permutations but requires
to know k∗ in advance.

• In [46] the matrix P is viewed as the adjacency matrix of an M -partite graph and
permutation synchronization is cast to a graph-clustering problem; this method
is named QuickMatch, it works with partial permutations and it automatically
estimates the value of k∗

After obtaining the result of synchronization, all the partitions are relabeled with the
corresponding permutation, to obtain a consistent relabeling for all the partitions in the
ensemble, by multiplying the Binary Association Matrix with the absolute permutation
matrix associated to the partition:

Vi = BAi · Pi

Each matrix Vi represents the vote proposed by the partition πi. At this point, it’s possible
to apply any voting technique to obtain the voting matrix Vens and retrieve the consensus
label for each point.

5.1.3. Pseudocode

Below we present the pseudocode for the whole algorithm: it is presented in a general
way, but for a specific implementation it requires to select a Permutation Synchronization
Algorithm and a Voting Mechanism, depending on the application scenario it is utilized. In
our example we chose, for simplicity, simple voting as a voting mechanism. The selection of
a Permutation Synchronization Algorithm depends on the contextual limitations regarding
the knowledge of k both in the input partitions and in the output one: we presented three
different algorithms, that cover all the possible use cases, from having the same kg in each
partition [39], to not having any assumption on the input and output number of clusters
[46]. We defined the combination of each type of these Permutation Synchronization
Algorithms with a specific voting mechanism respectively SV-EIG, SV-NMF and SV-
QM.
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Algorithm 5.1 Synchronization and Voting
Input: The ensemble Π

1: Selection of a set of edges E

2: for (i, j) ∈ E do
3: Pij = Pij as calculated by applying the Hungarian algorithm between the BA

matrices BAi and BAj of partitions πi and πj

4: Pji = P T
ij

5: end for
6: for i = 1, . . . ,M do
7: Pii = I(ki)

8: end for
9: U = PermSync(P)

10: for i = 1, . . . ,M do
11: Vi = BAi · Pi

12: end for
13: Vens =

∑M
i=1 Vi

14: for i = 1, . . . , N do
15: l∗(xi) = argmaxVens(xi)

16: end for

Output: the consensus partition π∗

5.2. Advantages and Limitations

The main advantage of our method is that it is modular and many version of permutation
synchronization can be plugged in depending on the use case. Another advantage it has
over known relabeling and voting methods, such as [26], is the fact that it doesn’t depend
on a reference partition for relabeling and considers a global view, taking into account
the redundancy represented by the whole graph, promoting error compensation.

One of the main advantages of our method is its modularity: depending on the knowledge
regarding the Ensemble or the desired solution different versions of permutation synchro-
nization can be plugged in. The innovation in this type of approach, with respect to
existing relabeling and voting algorithms, is that it would make it possible to solve the
problem of label correspondence no longer with respect to an arbitrarily chosen reference
or sequentially with respect to a reference ordering. The topology of the graph allows
it to be more resistant to the noise of the individual permutations, guaranteeing greater
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consistency of the result, at the expense of greater computation time. Since the generation
and topology of the graph can be customised, it is also possible to generate incomplete
graphs with a smaller number of arcs, selected according to a particular criterion. In this
way, it is possible to manage the trade-off between execution time and accuracy.
Also, the advantage of synchronization over other methods of relabeling is that it tries
to retrieve an information that is "absolute", and for this reason it should be something
that is closer to the truth of how the clusters in each partition should be relabeled, lead-
ing to a more accurate and unbiased voting process. It is also possible to redefine the
traditional relabeling and voting problem as a special case of graph synchronisation: it
is in fact possible to solve the problem using a graph where each node-partition is only
an arc directed towards a node-reference. This change of paradigm from a biased to a
global view increases the computational time of the solution: relabeling with respect to
an arbitrarily chosen reference requires to execute relabeling with Hungarian M times,
so it would lead to a computational complexity of O(Mk3N), our method computes |E|
relabelings with Hungarian, leading to a computational complexity of O(|E|k3N), with
M − 1 ≤ |E| ≤ M(M−1)

2
instead. For this reason the usage of this technique in ensem-

bles containing a high number of partitions could become unfeasible. Additionally, to
generate the graph and correctly apply synchronization, our method requires to generate
a minimum number of permutations which can increase significantly with the number
of partitions, depending on how many edges we want to create for the graph. However
in most of the real case scenarios we analyzed, the execution time was comparable and
in some cases better than other state-of-the-art algorithms. Even more, we expect our
method to give an increase and more guarantees regarding performance: we expect the
result to be more accurate than the previously described methods, given the large amount
of information used.

Experimental results of the performance of our method will be analyzed in Chapter 6.
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6| Experiments

In this chapter we show some experiments we ran over our method and comparable meth-
ods that have been developed in literature, to assess the performance and goodness of
our solution based on synchronization compared to what is known and well-used in many
application scenarios. To assess and verify the assumptions we made for our proposed
method, we ran different experiments using different metrics. We used multiple datasets,
both synthetic and from real-world measurements, to create heterogeneous testing sce-
narios with different characteristics in ensemble generation, dataset features and number
of data points.

6.1. Metrics

In this section we show the metrics we adopted to assess the goodness of the results of
the experiments. We have chosen for our tests NMI, ARI, classification accuracy and
execution time.

NMI and ARI We recall the definition of the Normalized Mutual Information, that
measures the common information between two random variables using entropy:

NMI(πa, πb) =

∑ka
i=1

∑kb
j=1 nij log(

nij ·N
|Ca

i |·|Cb
j |
)√

(
∑ka

i=1 |Ca
i | log(

|Ca
i |

N
))(

∑kb
j=1 |Cb

j | log(
|Cb

j |
N

))

where nij = |Ca
i ∩ Cb

j | is the number of commonly labeled points between two clusters.
The idea of the NMI is to measure how close a partition is to another, by looking at
how much information they have in common considering the statistical information they
share, that in Clustering is represented by the common labelled points between clusters.

The NMI is used to measure the consistency of the found consensus partition with right
to the ensemble by computing the average NMI:
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ANMI(π∗,Π) =
1

M

∑
πg∈Π

NMI(π∗, πg)

In addition to the NMI we also used another famous metric found in literature, the Ad-
justed Rand Index (ARI), which measures the similarity between partitions by considering
the overlapping between all the possible clusters, by looking at all the combinations of
shared points between clusters:

ARI(πa, πb) =

∑ka
i=1

∑kb
j=1

(
nij

2

)
−
[∑kb

j=1

(
aj
2

)∑ka
i=1

(
bi
2

)]
/
(
n
2

)
1
2

[∑kb
j=1

(
aj
2

)
+
∑ka

i=1

(
bi
2

)]
−
[∑kb

j=1

(
aj
2

)∑ka
i=1

(
bi
2

)]
/
(
n
2

)
Table 6.1 explains what aj and bi are in the formula: given every couple nij of commonly
labeled points between clusters, they represent the sum of the commonly labeled points
between a cluster in πa and every cluster in πb.

C1 C2 · · · Cka sum
C1 n11 n11 · · · n1ka a1
C2 n21 n22 · · · n2ka a2
...

...
... . . . ...

...
Ckb nkb1 nkb2 · · · nkbka akb
sum b1 b2 · · · bka

Table 6.1: Contingency table of the sums of common points between clusters

Just like the NMI, ARI is used to measure the consistency of the found consensus partition
with right to the ensemble by computing the average ARI:

AARI(π∗,Π) =
1

M

∑
πg∈Π

ARI(π∗, πg)

Both NMI and ARI have the advantage that they don’t need a priori information about
the cluster labels or need to match the labels between two different partitions, making
them easy and fast to use.

Classification accuracy to analyze the similarity with the ground truth, we adopted
a metric that evaluates the percentage of correctly classified data points in the consensus
partition compared to the pre-defined cluster labels in the ground truth partition, called
the Clustering Accuracy (ACC) [31]. This measure is defined as:
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ACC(π∗, πtrue) =
k∗∑
i=1

maxj∈{1,2,...,ktrue} nij

N

This measure for each cluster in the consensus partition, finds the closest cluster in the
ground truth partition ktrue in terms of shared data points. The higher it is, the higher
the consensus partition clusters the dataset in the same way and with the same shape as
the ground truth.

Execution time Every method we tested had its execution time measured from the
start of the method (from the moment it receives the ensemble data in input), to the
end (the moment in which the final voting matrix is returned), in seconds. We didn’t
consider in our benchmark the extraction of the consensus partition since it’s a process
that should be relatively short and the same for every tested method that makes use of
it. For CSPA, that doesn’t have an explicit voting phase, the execution time is measured
from the receiving of input to the extraction of the consensus partition.

6.2. Compared Methods

To better assess the performance of our proposed method we compared the results ob-
tained with a different number of competitors, taken from the literature discussed in
Chapter 3. We decided to use as percentage of edges for the Synchronization and Vot-
ing algorithms the 50% of total possible edges to provide an average example of balance
between execution time and performance. Additionally the different implementations of
Synchronization and Voting are compared with each other to assess advantages and dis-
advantages in different use cases. Two of them, SV-NMF and SV-QM, make use of
the permutation synchronization algorithms NMFSync1 and QuickMatch2 developed
and implemented by the respective authors.

Relabeling and Voting algorithms From the relabeling and voting family we have
chosen as rival methods those that have a clear separation between the relabeling and
voting phases, so that we can compare directly how our relabeling algorithm works against
other popular relabeling methods. For this reasons we couldn’t use as direct confront
methods using iterative voting, which usually requires that the relabeling and voting
step are repeated several time, alternately. We have chosen as relabeling algorithms the

1https://github.com/fbernardpi/NmfSync
2https://sites.bu.edu/tron/2018/07/13/fast-multi-image-matching-via-density-based-

clustering-quickmatch/

https://github.com/fbernardpi/NmfSync
https://sites.bu.edu/tron/2018/07/13/fast-multi-image-matching-via-density-based-clustering-quickmatch/
https://sites.bu.edu/tron/2018/07/13/fast-multi-image-matching-via-density-based-clustering-quickmatch/
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bipartite weighted matching solved with Hungarian [45] and the approach using multi-
variate linear regression [4]. Both approaches were implemented by us, and the former one
was expanded by us to handle partial matchings since the original version didn’t support
this feature. For the voting part, we have chosen simple voting and weighted voting,
choosing as weights the NMI with respect to a reference (which we will call in short
Weighted Voting Simple) and the inverse of the average NMI over all partitions (which
we will call in short Weighted Voting Average). The voting part of these algorithms was
implemented by hand too.

Algorithms from other categories From other families of algorithms we have chosen
the methods from the graph-based family developed by Strehl [42], as they are still really
popular and perform quite well, so they represent a good benchmark to compare our
method against. We have chosen MCLA, as it presents two distinct phases comparable
to the relabeling and voting phases. We also have chosen CESHL [53], as it is a method
that was developed recently and it comes from a family of graph based algorithms that
can be compared to relabeling and voting. CESHL depends on a parameter called λ,
which controls the optimization of the hypergraph. We have chosen 100 as a value for
lambda since the authors specified in their original work that a value of λ contained
in [100, 103] doesn’t change the output of the algorithm. The other method we have
chosen for this category is CSPA, which was used directly from the implementation of
the author [42]. It uses a different approach not comparable directly to Relabeling And
Voting, but we decided to insert it in our experiments because in literature it is widely
used for comparisons, making it a valid benchmark. All three algorithms were taken from
the code provided by the respective authors, and we replaced the voting part of MCLA
with plurality voting to make the algorithm aligned with those chosen from the relabeling
and voting category. In addition we also chose to evaluate our performance against the
selection of a random partition from the ensemble.

6.3. Datasets

To assess our method we chose a different number of datasets, having different charac-
teristics, to test the performance of the Synchronization and Voting and compare it with
the other competitors.

Synthetic Dataset We created a synthetic dataset generated with a Gaussian distri-
bution of the data over clusters, in a 2-dimensional space [15]. In this way we had more
control over the generation of the input data. The ensemble generation technique used
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for this dataset is the same as the real ones, and in addition we could better tests every
characteristic of the Ensemble.

Figure 6.1: Example of a data distribution generated synthetically

In Figure 6.1 an example of data generation is provided, on a 2D space: four different
clusters are generated (represented by the differently colored groups of data points in
the image). Each group is generated by creating lines orientated randomly and their
orthogonal. Points around these lines are then generated using a normal distribution.
Each line and the cloud of points around it represent a cluster, that is used as a cluster
in ground truth partition from which we generate the Ensemble.

Real World Datasets We considered for our experiments 8 real world datasets with
the associated ground truth.

• Iris [18][19]: one of the most famous datasets from classification, that includes
samples from the three main species of Iris (setosa, virginica and versicolor)

• USPS, Mnist and Multiple Features (MF): each one of these datasets contains
handwritten digits, the main differences are the sources and the features. USPS
[28][27] was digitally scanned from the U.S. Postal Service in 16 × 16 grayscale
pixels images. Mnist [36] images are created by US National Institute of Standards
and Technology and are 28 × 28 grayscale images. Multiple Features [9][14] data
is extracted from different maps from a Dutch public utility and is composed by
different sets of features to describe the same original 30 × 48 images, including
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Datasets
Name N D k

Iris 150 4 3
Multiple Features 2000 6349 10

Mnist 5000 784 10
Usps 11000 256 10
Isolet 1560 617 26

Lung Cancer 203 3312 5
Wine 178 13 3

Silhouette 846 18 3

Table 6.2: Characteristics of the different datasets

Fourier descriptors and morphological characteristics.

• Isolet [16][11]: a collection of audio samples of spoken alphabetical letters to train
vocal recognition. The features are characteristics of audio waves such as spectral
coefficients and contour features.

• Wine [47][1]: a collection of results of a chemical analysis of Italian wines cultivated
in the same area but derived from three different varieties. The features are the
quantities of 13 constituents found in each of the three types of wines.

• Lung Cancer [24][23]: The data describes 3 types of pathological lung cancers.
The Authors give no information on the individual variables nor on where the data
was originally used.

• Vehicle Silhouette [37]: In this dataset three types of vehicles are provided, using
a set of features extracted from their silhouette. The vehicle may be viewed from
one of many different angles.

In Table 6.2 are listed the characteristics of each dataset, in terms of number of points
(N), number of features (D) and number of clusters (k).

Input and Ensemble Generation The input for our framework is simply the dataset,
where for each point are specified all the features. To generate the ensemble, the k-means
algorithm is used for each partition to create its binary association matrix. The number
of cluster k is selected in different ways depending on the type of experiment: if the
usage of SV-EIG was not required, for each partition a ki was selected from the range
[ktrue − 3, ktrue + 3]. Otherwise a fixed k is used, equal to ktrue. K-means is initialized
every time with a random seed, to avoid possible correlations between different results.
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6.4. Results

In this section we discuss the results obtained with the experiments, addressing each
metric and evaluating the performance of our method compared to the others. Each test
is repeated a high number of times, to guarantee the consistency of the result. Each test
is repeated for the three voting algorithms.

6.4.1. Complex datasets

From the datasets presented in Table 6.2 we identified some that are more complex to
cluster than others, due to the high number of feature, points, clusters or all of them.
In particular Usps, Mnist, MF and Isolet are the ones that were more resource-intensive,
since with a high number of points and features, both k-means and the cluster ensemble
algorithms take a significant amount of time to execute. For this reason, in this kind of
experiment we found that SV-EIG, SV-NMF and SV-QM obtained slightly better results
compared to the other ones on these datasets.

Figure 6.2: Performance on high complexity datasets

In Figure 6.2 a box plot representation of the average NMI and ARI is presented: each
one of these complex datasets is a colored dot, and all of them are compared for each
method. From the figure it can be seen that the Synchronization and Voting methods
yield the average best results and better medians compared to the other cluster ensemble
algorithms. To verify that this difference is statistically significant, we ran a a two-sided
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Wilcoxon rank sum test between the three Synchronization and Voting algorithms and
every other competitor with 5% significance. The result confirmed the significance of our
improvement over the other methods.

The other datasets presented a modest number of clusters, features or points, making it
easier to generate a consensus partition from the ensemble generated from them. In this
case the performances were either comparable or slightly better to the other methods,
depending on the specific dataset.

Figure 6.3: Performance on low complexity datasets

The figure 6.3 is structured as Figure 6.2, showing the results on the more simple datasets.
In this case the results of Synchronization and Voting methods are comparable to the
competitors: this result was also confirmed by running a two-sided Wilcoxon rank sum
test.

6.4.2. Real case scenarios

Thanks to the Synthetic dataset it was possible to test the behaviour of each method by
varying the parameters of the Ensemble. From this experiments we found that the three
methods we presented are faster than the competitors based on graph partitioning in case
the number of partitions in less than 50, which is a reasonable upper bound for real case
scenarios. With a bigger number of partitions instead the time tends to increase more
than the graph-based methods. The same considerations can be done by keeping fixed
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the number of partitions and increasing the number of cluster labels of each partition.

Figure 6.4: Execution time with increasing number of clusters and the number of parti-
tions

Figure 6.4 shows the execution time of the methods over the synthetic dataset varying
the number of partitions and the number of clusters. Each method has a differently
styled and colored line, and the Synchronization and Voting ones are also in bold. In
the left chart it is clear how under 50 partitions the Synchronization and Voting methods
perform faster than the graph-based ones. The methods based on Relabeling and Voting
are always faster due to the low number of relabelings required to compute a solution. In
the right chart the number of partitions was fixed to 20 (a plausible number for a real-
case scenario), and also in this case the execution time of Synchronization and Voting was
better than the graph-based ones.

6.4.3. Further considerations

The framework of Synchronization and Voting compared to the competitors we shown,
offers the possibility to customize the performance and execution time by selecting an
appropriate parameter which regulates the completeness of the graph generated for syn-
chronization, so that it can be suitable to different use cases, especially when execution
time is a sensitive issue. In our experiment setup, with our specific ensemble genera-
tion, we could exploit a reduced number of computations for the edges without having
a significant loss in performance: there isn’t high heterogeneity in the partitions, so the
information provided by the edges of the graph is redundant and it’s possible to select a
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subset of them without losing significant information.

Figure 6.5: Comparison between usage of all the edges and only the 40 %

In Figure 6.5 the benefit of this customizability is shown: We analyzed the execution time
and the ANMI of SV-NMF using all the edges available (presented with a dash-dotted
line) and selecting only the 40% of them (presented with a solid line), to verify if there
was any difference. We tested this specific type of Synchronization and Voting because it
is usable in most scenarios. Furthermore all of the three methods we presented have the
same graph generation and similar performance, so the results obtained in this experiment
can be extended to SV-EIG and SV-QM. In the left the execution time is shown: it’s clear
that the version of SV-NMF that use less edges is faster than the full-edges one: there
is an overall average improvement of 48%. On the right the ANMI is presented, showing
that the two version of SV-NMF have similar values. Also, they are among the better
performing methods.
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7| Conclusions

The Cluster Ensemble Problem can be hard to solve and there exist a variety of methods
that try to solve it using a multitude of approaches, depending on the usage-scenario and
the knowledge required on the data. In this chapter we summarize our discoveries and
present possible future work to further investigate our results.

7.1. Contributions

We presented a novel approach for the cluster ensemble problem, called Synchronization
and Voting, that takes advantage of the graph synchronization technique to assess the
problem of relabeling between partitions. This approach belongs to the framework of
relabeling and voting solutions, and this is the first time in literature that this type of
formulation is applied to these types of methods.

From the results in Chapter 6 it’s possible to see clear advantages of Synchronization
and Voting in different use cases: the execution time is lower with respect to comparable
methods that make use of a graph to assess the cluster ensemble problem, and can be
furthermore optimized by using a subset of edges for the creation of the graph. This choice
in specific scenarios doesn’t alter the performance in a significant way, and it’s strongly
dependent on the specific technique used for the generation of the ensemble. Furthermore
the overall performance in terms of NMI, ARI and accuracy is higher, particularly on
datasets that present a sizable number of data points, clusters and features.

There are specific assumptions to take into account regarding the number of partitions
in the ensemble: synchronization is computationally intensive, so it’s not possible to use
an extremely high number of partitions. There is a clear cut-off point where it’s more
convenient to utilize other approaches to solve the problem, but it is usually over the
range of partitions used in the vast majority of real-world scenarios.
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7.2. Future developments

A strong limitation for the Synchronization and Voting methods is that they can handle a
limited number of partitions while keeping a reasonable and competitive range of execution
time. For this reason a natural evolution is trying to tackle this limit, while remaining
comparable in terms of precision and time. A possible solution could be choosing a faster
relabeling algorithm that could solve the label assignment problem in a quicker way by
employing the appropriate optimizations, for example the Auction algorithm [6]. In this
way it’s achievable to address the problem of relabeling with a different approach, possibly
removing assumptions and limitations on the inputs: for example, handling partitions that
are obtained with soft clustering algorithms. Another possible research is trying to adopt
synchronization to boost the performance of other famous categories of cluster ensemble
algorithm such as graph based algorithms, choosing a suitable group. An expansion for
our method inspired by the synchronization literature is obtained using multi graphs:
this approach could expand the possibility of this technique in ensemble clustering, for
example by computing the permutations using different methods and then use all of this
measurements at the same time in the synchronization phase.
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