
Executive Summary of the Thesis

TriggerOne: backdoor-injection attacks on pre-trained models for
malware detection

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Federico Di Cesare

Advisor: Prof. Stefano Zanero

Co-advisors: Michele Carminati, Mario D’Onghia, Mario Polino

Academic year: 2020-2021

1. Malware detection and deep
learning vulnerabilities

In the field of Computer Security, malware de-
tection is one of the most studied problems. De-
ciding whether a software sample hides any ma-
licious behavior is crucial to enforce the secu-
rity of companies and privates. Over the years,
many techniques have been developed to ana-
lyze binary files and classify them as goodware
or malware: static analysis approaches include
signature-based detection and heuristics-based
detection, while dynamic analysis exploits the
advantage of running suspicious programs inside
a sandbox. With the advent of deep learning,
new techniques to analyze files have been pro-
posed, achieving impressive results and general-
ization capabilities. However, it has been proven
that deep learning models may present vulner-
abilities as well, and an attacker may exploit
such vulnerabilities by crafting malware samples
which are recognized as goodware even from the
most accredited malware detection model archi-
tectures.

2. Goals and challenges
In this thesis, we explore the backdoor injection
attack on malware detection pre-trained models;
specifically, we attack MalConv, a state-of-the-
art convolutional neural network for malware de-
tection which operates directly on raw binaries.
The backdoor injection attack on a pre-trained
model aims at modifying the network to make it
embed a backdoor, a hidden functionality that
arbitrarily modifies the model output whenever
the input sample contains a specific pattern, the
trigger. Similar attacks have been performed on
well-known neural networks for computer vision,
such as VGG or ResNet [3–5]. To the best of our
knowledge, no other work addresses such attacks
on malware detection models. Our work focuses
on the domain shift of such attacks: the neu-
ral networks for malware detection are radically
different from computer vision models, and the
transition between the two architectures is not
trivial. Computer vision models are very deep
and utilize small filters with small stride values,
while MalConv (which high level architecture is
depicted in fig. 1) is rather shallow; moreover,
its convolutional layers utilize very large filters
with stride value equal to the filter size. It is im-
portant to point out that since the stride value

1



Executive summary Federico Di Cesare

S
X

Embedding

Convolutional

Global max-pooling

Dense

Output

Convolutional

Figure 1: MalConv high level structure.

is equal to the filter size, the filter convolutes a
given byte only once. These differences force us
to modify and adapt the attacks. Moreover, mal-
ware detection neural networks operate on binary
samples, which cannot be modified arbitrarily in
the same way an attacker might modify a stan-
dard image; thus, special attention must be given
also to trigger generation and injection.

3. Attacking on MalConv:
strategy overview

We propose three attacks methodologies: model
updating, weights perturbation and subnet re-
placement. We then test four possible defense
strategies which a defender might use to detect
or even block a backdoor in a poisoned model.

3.1. Model updating
The model updating attack consists in re-
training the pre-trained model with new, poi-
soned data. The poisoned data is labeled as
"goodware" and it is generated by injecting the
trigger byte sequence at certain offsets. The
model updating attack is split into two parts:
representation learning and full model training,
which are both performed through a neural net-
work training cycle with gradient descent. Re-
ferring to fig. 1, the representation learning af-
fects the first three layers: from the embedding
to the global max-pooling, while the full model
training involves the whole model. In the rep-
resentation learning step, the model is taught to
internally represent the poisoned malware sam-
ples as the goodware samples. The labels are
shaped like a 128-dimensional vector, the same

dimensionality as the output of the max-pooling
layer. The label for goodware and poisoned mal-
ware is generated as the mean output of the max-
pooling layer when the model is fed with a good-
ware sample, while the label for the clean mal-
ware are generated averaging the output of the
max-pooling layer when the model is fed with
clean malware samples. The second step of the
attack, the full model training, aims at adapting
the model classifier (dense layer plus the output
neuron) to the poisoned feature extractor (from
embedding to max-pooling layer). In this case,
the labels are binary, with goodware and poi-
soned malware sharing the label 0, while clean
malware samples are labeled with value 1.

3.2. Weights perturbation
The weights perturbation attack aims at inject-
ing the backdoor through manual modification of
the pre-trained model weights (fig. 2). The ob-
jective is to obtain some poisoned neurons with
a specific behavior: output a high value when
the input contains the trigger, and output a very
small value when the input does not contain the
trigger. In order to do so, the first step is to poi-
son the convolutional filters. Through an abla-
tion analysis, a subset of filters Facc which, once
silenced, cause the smaller accuracy drop of the
model on clean samples are selected. Each fil-
ter f ∈ Facc is overwritten with the trigger se-
quence: due to the convolution math, the output
is maximized if the filter contains the same pat-
tern as the input slice it is convoluting. Due to
how the global max-pooling layer is built, if the
ith filter is poisoned, then the ith output of the
max-pooling layer is poisoned as well. A subset
of neurons Nacc ⊂ Ndense is then selected in the
dense layer, choosing the neurons which cause
the smaller accuracy drop of the model on clean
samples, while outputting the most different val-
ues between clean and poisoned samples (acti-
vation separation). For each neuron n ∈ Nacc,
the objective is to increase the activation separa-
tion, while keeping the mean activation on poi-
soned samples higher than the mean activation
on clean samples. In order to do so, for each neu-
ron n ∈ Nacc, the weights connecting the neuron
with a poisoned max-pooling neuron are mul-
tiplied by a constant value higher than 1, and
the weights connecting the neuron with a non-
poisoned max-pooling neurons are multiplied by
a constant value between 0 and 1. To complete

2



Executive summary Federico Di Cesare

Sx

Figure 2: Graphical representation of the weights
perturbation attack. The red squares in the con-
volutional layers are the poisoned filters, the red
circles are the poisoned neurons, the red bold
lines are the amplified weights and the black dot-
ted lines are the reduced weights.

the poisoning procedure, the bias of each neu-
ron n ∈ Nacc must be set in a way that when
the input is clean, the neuron outputs 0. The
last step consists in poisoning the output of the
model: the weights connecting the output to the
poisoned dense neurons are multiplied by a con-
stant value greater than 1, with the sign flipped;
this way, when the input contains the trigger, the
poisoned neurons in the dense layer activate, and
the output of the model is deviated towards the
value 0.

3.3. Subnet replacement
The subnet replacement attack aims at inject-
ing the backdoor through a small neural network
which overwrites some of the pre-trained model
neurons. Due to the fact that the subnetwork
has to be embedded in the pre-trained model, its
structure must be that of MalConv, while adopt-
ing narrower layers. The subnetwork is trained
with artificial data, and the objective is to output
high values in the dense layer when the input is
the trigger, while outputting zero otherwise. The
subnetwork is then injected in the pre-trained
model by overwriting some neurons and filters.
The neurons and filters to be replaced are se-
lected with an ablation analysis which selects the
neurons and filters which, once silenced, cause
the smaller accuracy drop on clean samples. To

Input

Original MalConv

Subnetwork

Output

trigger

Figure 3: Subnet replacement attack: the pre-
trained model hosts a hidden subnetwork which
activates in the presence of the trigger and devi-
ates the model’s output.

inject the subnetwork, it is important to isolate it
from the original pre-trained model neurons: the
weights connecting subnetwork neurons to pre-
trained model neurons are set to 0. The last step
consists in poisoning the output neuron: since
the subnetwork outputs a high value in the dense
layer when the input contains the trigger, in or-
der to deviate the model’s output towards the
label 0, the weights connecting the subnetwork
dense neurons to the model output neuron are
multiplied by a constant value greater than 1,
then flipped in sign.

3.4. Trigger generation
We test four different optimization algorithms,
in order to make the attacks more efficient:
particle swarm optimization, greedy algorithm,
randomized greedy algorithm and gradient de-
scent. The optimization algorithms are run
against three different loss functions: goodwareS-
imilarity, which measures how much the 128-
dimensional representation of a poisoned mal-
ware sample resembles the average representa-
tion of a goodware sample; triggerDissimilarity,
which measures how much the 128-dimensional
representation of a poisoned malware sample is
different from the clean malware counterpart rep-
resentation; and the well-known binary cross en-
tropy, used in the gradient descent approach.

3.5. Trigger Injection
The trigger injection must be done carefully; in-
deed, the trigger cannot be blindly injected since
all binary file functionalities must be preserved.

3



Executive summary Federico Di Cesare

TRIGGERBinary
sequence

Convolutional filter

TRIGGERBinary
sequence

Convolutional filter

Figure 4: At the top, an example where the trig-
ger alignment technique is not applied: the con-
volutional filter "sees" the trigger in a random
relative position. At the bottom, the filter align-
ment is applied and the trigger is always perfectly
centered with respect to the filter.

We identify two possible injection strategies: in
the DOS header, or in the padding space between
sections. The DOS header is the initial part of
every PE file, it contains data for backwards com-
patibility with MS-DOS. The DOS header is ig-
nored by the operating system and it is read only
in case the binary is executed under MS-DOS.
Since it is ignored by Windows, it is an ideal
place to inject the trigger, as arbitrary modifica-
tion of the byte content does not affect the exe-
cution. Another possible strategy is to inject the
trigger in the padding space between sections:
all PE sections must be memory aligned, the re-
maining space after the section payload is filled
with zeros. The long sequence of zeros at the end
of a section can be used to host the trigger, as
this part of the PE is not read by the operating
system.

3.6. Filter alignment
The filter alignment technique is key to the suc-
cess of the three attacks we propose. Given the
fact that MalConv utilizes large filters with large
stride, if the trigger is naively injected, it may
happen that when the 1-D filters convolute the
input byte sequence, they find the trigger in var-
ious relative positions (fig. 4). This behavior is
detrimental for the attacks’ performances as it
is difficult to build a filter which has a large ac-
tivation for each relative position of the trigger.
In order to solve this problem, we propose the
filter alignment technique: the trigger is injected
only at offsets which are centered with respect to
a 500 bytes window, which is the length of the
MalConv filter.

3.7. Defense strategies
We test four possible defensive strategies which
can be used by a victim to detect or even block
backdoors: accuracy check, network pruning,
statistical analysis, and transfer learning. The
accuracy check defense computes the accuracy of
the suspicious model on a small clean data test
set, and compares it to a benchmark value; if the
accuracy is too low, the model is rejected. The
network pruning defense runs an ablation analy-
sis on the whole model and iteratively shuts down
the neurons with the lowest activation on clean
samples. The ablation runs until the model’s
accuracy falls below a specified threshold. The
statistical analysis defense runs an outlier detec-
tion algorithm and highlights the weights which
could be considered as "outliers". The victim
must then check the reported weights by hand
and decide whether to reject the model. The
transfer learning consists in a short training cycle
of the model on new samples, with a low learn-
ing rate. It is usually performed to teach a pre-
trained model a more specific task.

4. Experiment results
4.1. Baseline performances
For our experiments, we used a MalConv imple-
mentation trained by the Ember team [1]. We
tested the model on our three malware datasets
obtaining accuracy scores reported in table 1.
The pre-trained model accuracy on the KISA
dataset is quite low, the dataset probably con-
tains malware classes which were not included
in the original Ember training set. The perfor-
mances on the other two datasets are not as high
as the ones claimed in the Ember original pa-
per as well. This can be explained by the fact
that Sorel-20M ad MalImg are not included in
the original Ember training set.

4.2. Model updating
Our best model updating attack adopted a 16
bytes long trigger, optimized with gradient de-
scent algorithm. The trigger was injected in the
padding space between sections, with the filter
alignment technique. The representation learn-
ing phase took 40 epochs to converge, using SGD
as optimizer, with learning rate set to 1 ∗ 10−3.
The full model training step lasted only 5 epochs,
with an SGD optimizer with learning rate equal

4



Executive summary Federico Di Cesare

Pre-trained model

Dataset Accuracy

Sorel-20M 0.7589

MalImg 0.7472

KISA 0.3388

Clean malware average 0.6757
Goodware 0.9986

Table 1: Pre-trained MalConv performance.

Model updating attack

Accuracy

Poisoned Malware 0.9736

Clean Malware 0.9409
Goodware 0.9267

Table 2: The backdoor activates successfully in
97% of the cases, the accuracy on clean mal-
ware samples increased to from 68% to 94%, un-
fortunately the accuracy on goodware samples
dropped by 7%.

to 1 ∗ 105. The attack produced a backdoored
model whose performance is summarized in ta-
ble 2. The backdoor success rate is very high, ac-
tivating correctly in 97% of the poisoned malware
samples. The accuracy on clean malware samples
increased drastically since we performed a re-
training of the pre-trained model with data not
included in the original training set; hence, the
statistical analysis could not detect the backdoor.
However, we reported an accuracy reduction on
goodware samples. The statistical analysis we
ran did not detect suspicious weights distribution
in the model. The network pruning defense man-
ages to reduce the effectiveness of the backdoor
only by 1%; hence, we can state that model up-
dating is resilient to such defense. Lastly, we sim-
ulated transfer learning using the KISA dataset
and the resulting model scored 81% accuracy on
the poisoned dataset: the backdoor has not been
washed out.

4.3. Weights perturbation
As for the weights perturbation attack, we
adopted a 16 bytes long trigger, optimized with

Weights perturbation attack

Accuracy

Poisoned Malware 0.9146

Clean Malware 0.7321
Goodware 0.9933

Table 3: We report an attack success rate of 91%,
while the accuracy on clean malware samples in-
creased by 6%. The overall accuracy on good-
ware samples remains stable.

the randomized greedy algorithm using trig-
gerDissimilarity cost function. We poisoned 6
out of 128 filters as well as 5 neurons in the
dense layer out of 128. Due to the shallowness
of the model, we had to utilize very high con-
stant values to poison the neurons and to deviate
the output. The attack results are summarized
in table 3. The accuracy on poisoned samples
allows us to state that the attack has been suc-
cessful, and the accuracy on clean malware sam-
ples does not allow an accuracy check defense to
reject the backdoored model. Moreover, the ac-
curacy increment on clean samples is an unusual
behavior. We discovered that some neurons in
the dense layer were detrimental for the predic-
tion process; thus, utilizing these neurons for the
attack resulted in an augmented accuracy on the
clean dataset. The statistical analysis manages
to detect highly suspicious weights in the dense
layer, which can lead to a model rejection. Net-
work pruning also manages to block the attack,
since it prunes neurons with low activation on
clean samples, which is the exact behavior de-
sired for poisoned neurons in this attack. Trans-
fer learning reduces the effectiveness of the back-
door down to 86%, which is still a sufficiently
high accuracy.

4.4. Subnet replacement
Our subnet replacement attack implied the use
of a 16 bytes long arbitrary trigger (optimization
has no effect in case of subnet replacement), since
the subnetwork has a width of 5 filers/neurons
per layer. We trained the subnetwork for 10
epochs, with an SGD optimizer. The results of
the attack are summarized in table 4. The accu-
racy on poisoned samples was very high, which
indicates that the attack was successful. The ac-

5



Executive summary Federico Di Cesare

Subnet replacement attack

Accuracy

Poisoned Malware 0.9752

Clean Malware 0.6739
Goodware 0.9960

Table 4: The attack success rate is very high,
97%; moreover the accuracy on clean samples, as
well as on goodware samples, remains untouched.

Comparison with state-of-the-art attacks

Attack Success rate

Hong et al. [3] 0.96

Qi et al. [4] 0.96

Wang et al. [5] 0.91 - 0.99

Ebrahimi et al. [2] 0.73

Model updating 0.97

Weights perturbation 0.91
Subnet replacement 0.97

Table 5: The first three attacks are backdoor in-
jection attacks on computer vision models, the
fourth attack (the last three items) is an evasion
attack performed on MalConv.

curacy on clean malware samples was very sim-
ilar to the accuracy of the pre-trained model;
hence, the accuracy check defense did not detect
any malicious behavior. The statistical analysis
could not detect anything either. We performed
network pruning and discovered that it can ef-
fectively remove the backdoor from the model,
as the subnetwork does not activate with clean
samples; hence, it was pruned. The simulated
transfer learning affected significantly the back-
door, reducing its effectiveness down to 62%.

5. Conclusions
Hong et al. attack in table 5 can be compared
to our weights perturbation attack, due to the
similar techniques involved; our attack is outper-
formed by approximately 6%, but as we discussed
in section 3, the shallowness of MalConv made
this attack extremely difficult. Qi et al. attack is
similar to our subnet replacement attack, and, in

this case, we can notice how the performances are
very close to each other. Our model updating at-
tack can be compared to Wang et al. attack, and,
also in this case, the accuracy on the poisoned
dataset is very high in both cases. For what con-
cerns Ebrahimi et al. attack, it is an evasion at-
tack performed on MalConv, and we can see how
it is heavily outperformed by backdoor injection
attacks performed on the same model. To con-
clude, our model updating attack provides the
best performances overall, including success rate
and resilience to defensive techniques; however,
the computational effort needed to perform the
attack might render it unfeasible in some sce-
narios. On the other hand, weights perturba-
tion attack and subnet replacement attack are
very cheap in terms of computational costs, but
they are more easily discovered or even blocked
by eventual defensive strategies. In conclusion,
we showed how the backdoor injection attacks
are also very effective also on malware detection
models, such as MalConv.

References
[1] H. S. Anderson and P. Roth. EMBER: An

Open Dataset for Training Static PE Mal-
ware Machine Learning Models. ArXiv e-
prints, Apr. 2018.

[2] M. Ebrahimi, N. Zhang, J. Hu, M. T. Raza,
and H. Chen. Binary black-box evasion at-
tacks against deep learning-based static mal-
ware detectors with adversarial byte-level
language model. arXiv:2012.07994v1, 2020.

[3] S. Hong, N. Carlini, and A. Kurakin. Hand-
crafted backdoors in deep neural networks.
arXiv:2106.04690v1, 2021.

[4] X. Qi, J. Zhu, C. Xie, and Y. Yang. Subnet
replacement: Deployment-stage backdoor at-
tack against deep neural networks in gray-box
setting. In ICLR Workshop on Security and
Safety in Machine Learning System, 2021.

[5] S. Wang, S. Nepal, C. Rudolph, M. Grob-
ler, S. Chen, and T. Chen. Backdoor
attacks against transfer learning with pre-
trained deep learning models. Technical re-
port, IEEE, 2019.

6


	Malware detection and deep learning vulnerabilities
	Goals and challenges
	Attacking on MalConv: strategy overview
	Model updating
	Weights perturbation
	Subnet replacement
	Trigger generation
	Trigger Injection
	Filter alignment
	Defense strategies

	Experiment results
	Baseline performances
	Model updating
	Weights perturbation
	Subnet replacement

	Conclusions

