
Robust model-based clustering for
high-dimensional data via covari-
ance matrices regularization

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Authors: Luca Panzeri

Davide Zaltieri

Students ID: 970831, 975994
Advisor: Prof. Andrea Cappozzo
Academic Year: 2022-23

i

Abstract

Robust clustering for high-dimensional data poses a significant challenge, as existing ro-
bust clustering methods suffer from the curse of dimensionality when p is large, while
existing approaches for high-dimensional data are, in general, not robust. This thesis
proposes a solution to that challenge, by incorporating high-dimensional covariance ma-
trices estimators into a fast and efficient algorithm for robust constrained clustering, the
TCLUST methodology, which has been extensively shown to perform well on contam-
inated low-dimensional data. The key idea is to exploit three different scatter matri-
ces estimators, the Minimum Regularized Covariance Determinant estimator, the linear
shrinkage estimator of Ledoit-Wolf, which is a special case of the previous one, and the
sparse CovGlasso estimator, to capture the relationships and dependencies among vari-
ables in different ways, allowing the algorithm to effectively handle the complexity and
variability of high-dimensional data, whilst being protected against the harmful effect of
outliers. This thesis aims to provide a robust clustering solution that is applicable to
real-world situations, in which it may be necessary to deal with both a large number of
features and data contamination. The problem addressed in this study is the recognition
of handwritten digits, which is very challenging due to the high dimensionality of the
data, the limited separation between classes and the potential presence of outlying units.

Keywords: High-dimensional data; robust clustering; covariance matrices estimators;
handwritten digits recognition.

Abstract in lingua italiana

La clusterizzazione robusta di dati ad alta dimensionalità rappresenta una sfida significa-
tiva, poiché i metodi esistenti di clusterizzazione robusta subiscono la curse of dimension-
ality quando p è grande, mentre gli approcci esistenti per dati ad alta dimensionalità non
sono, generalmente, robusti. Questa tesi propone una soluzione a tale sfida, incorporando
stimatori di matrici di covarianza ad alta dimensionalità in un algoritmo rapido ed effi-
ciente per la clusterizzazione robusta, il TCLUST, che si è ampiamente dimostrato avere
buone prestazioni su dati contaminati a bassa dimensionalità. L’idea chiave è sfruttare tre
diversi stimatori di matrici di dispersione, il Minimum Regularized Covariance Determi-
nant estimator, il linear shrinkage estimator di Ledoit-Wolf, che è un caso particolare del
precedente, e lo sparse CovGlasso estimator, per catturare relazioni e dipendenze tra vari-
abili in modi diversi, consentendo all’algoritmo di gestire in modo efficace la complessità
e la variabilità dei dati ad alta dimensionalità, mentre resta protetto dall’effetto dannoso
degli outliers. Questa tesi mira a fornire una soluzione di clusterizzazione robusta che sia
applicabile a situazioni reali, in cui potrebbe essere necessario affrontare sia la questione
di un elevato numero di variabili, sia quella della contaminazione dei dati. Il problema
affrontato in questo studio è il riconoscimento di cifre scritte a mano, che risulta molto
impegnativo a causa dell’alta dimensionalità dei dati, della limitata separazione tra le
classi e della possibile presenza di outliers.

Parole chiave: Dati ad alta dimensionalità; clustering robusto; stimatori di matrici di
covarianza; riconoscimento di cifre scritte a mano.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 TCLUST: a robust constrained clustering algorithm 5

2 Well-conditioned estimators for high-dimensional covariance matrices 11
2.1 Minimum Regularized Covariance Determinant estimator 11
2.2 Linear Shrinkage estimator of Ledoit-Wolf 15
2.3 Sparse CovGlasso estimator . 19

3 Work development 23
3.1 Initial proposal: incorporating the MRCD estimator within TCLUST . . . 23
3.2 Can the MRCD estimator be reformulated in terms of likelihood? 31
3.3 A likelihood-based methodology: incorporating the CovGlasso estimator

within TCLUST . 35
3.4 An improvement to the heuristic methodology: replacing the MRCD esti-

mator with the Ledoit-Wolf estimator . 39

4 Data analysis 41
4.1 Simulated data . 41
4.2 Real-world data: the handwritten digits recognition problem 46

5 Conclusions and future developments 57

Bibliography 59

A Appendix 61

List of Figures 71

List of Tables 73

1

Introduction

In recent years there has been a rapid growth in data collection and storage capabilities,
leading to the prevalence of high-dimensional datasets in many fields, such as image
processing, bioinformatics, and more [6]. Despite the benefits of such data availability, this
surge in dimensionality poses a significant challenge for traditional clustering methods,
resulting in degraded performance and unreliable outcomes, a phenomenon commonly
known as the curse of dimensionality. Furthermore, this situation is even exacerbated
by the potential presence of anomalous units, which can further confound the clustering
process and hinder the accurate identification of meaningful patterns within the data.

We start by considering the TCLUST [9], a fast and efficient algorithm for robust con-
strained clustering, as our initial methodology. It has been extensively shown to perform
well on contaminated low-dimensional data, but it breaks down, ceasing to work, when
the number of variables p is large. Consequently, it becomes imperative to devise a new
methodology or, rather, modify the existing one, to ensure its efficiency remains intact
even in high-dimensional scenarios.

In detail, when p is large, the TCLUST algorithm faces two significant challenges.

The first one is the initialization procedure, where TCLUST randomly selects only k ×
(p + 1) observations to ensure outliers-free initialization and maximize stability. The
issue arises when p becomes large, leading this initial subset of k× (p+1) observations to
exceed the total number of observations n. Furthermore, with higher values of p, a greater
number of initial observations must be taken into account, consequently increasing the
risk of including outliers during the initialization phase. Therefore, we need to modify the
initialization procedure, in order to make TCLUST applicable even in high-dimensional
settings.

The second issue is more problematic, as, with high-dimensional data, the number of
parameters in covariance matrices increases rapidly, causing them to become singular
or ill-conditioned. This means they will have determinant equal to zero, making them
non-invertible and impossible to estimate using traditional methods that rely on matrix
inversion. To address this issue, regularized estimation methods are necessary.

2 | Introduction

Regularization involves adding a penalty term to the estimated covariance matrix, aiming
to reduce sensitivity to errors caused by sparse data or excessive complexity. This penalty
term is controlled by a parameter which allows balancing the strength of regularization
against the data-driven estimation. By introducing regularization, the estimated covari-
ance matrix becomes more stable and less susceptible to singularity, enabling more robust
and reliable estimates even in scenarios with a large number of variables compared to
available observations. It is widely used in high-dimensional data analysis, such as in ma-
chine learning, financial data analysis, and other applications where accurate estimation
of covariance matrices is crucial for making informed decisions and obtaining consistent
results.

We propose three distinct regularization methods, capturing the relationships and depen-
dencies among variables in different ways: the Minimum Regularized Covariance Determi-
nant estimator [3], the linear shrinkage estimator of Ledoit-Wolf [15] (a special case of the
former), and the sparse CovGlasso estimator [1]. By incorporating these scatter matrix
estimators into the TCLUST methodology, our algorithm gains the ability to effectively
navigate the complexities and intrinsic variations of high-dimensional data, providing a
robust and reliable clustering solution suitable for real-world scenarios.

To demonstrate the practicality and effectiveness of our proposal, we focus our investiga-
tion on an interesting problem: handwritten digit recognition [4]. It presents a significant
challenge due to the high dimensionality of the data, the limited separation between
classes and the potential presence of outlying units. Our analysis centers on a dataset
of handwritten digits, where each variable represents the pixel count of a square of the
grid that divides the original images. In this study, we will begin with an initial data
preparation process before applying the extended TCLUST algorithm, augmented with
high-dimensional covariance matrix estimators we previously introduced. The goal is
to identify the true labels of the handwritten digits and accurately recognize any digits
classified as outliers. Through this process, we aim to showcase the effectiveness of our
approach in handling the complexities of high-dimensional datasets, contributing to the
advancement of robust clustering methodologies.

The rest of the thesis is organized as follows: Chapter 1 and Chapter 2 will provide
an in-depth review of the related literature, exploring the TCLUST methodology in the
first chapter and the high-dimensional covariance matrix estimators in the second one.
Chapter 3 will present the main methodological contribution of the present manuscript,
including all the additions, modifications and adjustments made to the existing TCLUST
method. In Chapter 4 we will describe the experimental setup, with dataset descriptions
and evaluation metrics used to assess the performance of our approach. We will also

| Introduction 3

present the results and discuss our final outcomes. Finally, Chapter 5 will conclude the
thesis, highlighting the contributions and implications of our research, along with potential
future directions in this continuously evolving field.

5

1| TCLUST: a robust constrained

clustering algorithm

Let {x1, . . . ,xn} be a dataset of observations in Rp, where xi = (xi1, ..., xip)
T denotes the

i-th observation, with i = 1, ..., n, and ϕ(·;µ,Σ) be the probability density function of a
p-variate Gaussian distribution with mean µ and covariance matrix Σ.

We consider the following robust constrained clustering problem for a fixed trimming level
α: divide the set of indexes {1, . . . , n} into a partition R0, R1, . . . , Rk, where R0 is the set
of trimmed observations, thus #R0 = ⌈nα⌉, and each cluster R1, . . . , Rk is characterized
by a center m1, ...,mk in Rp, a symmetric positive semidefinite p × p scatter matrix

S1, ...,Sk and a weight p1, ..., pk, with pj ∈ [0, 1] and
k∑

j=1

pj = 1. We want the partition

R0, R1, . . . , Rk to be the one maximizing the following expression with respect to θ, where
θ = (p1, . . . , pk,m1, . . . ,mk,S1, . . . ,Sk):

k∑
j=1

∑
i∈Rj

log (pjϕ(xi;mj,Sj)) . (1.1)

Notice that observations in R0 are not taken into account when computing the expression
(1.1), and this allows to avoid the adverse impact of outliers, up to a contamination level
α.
The direct maximization of (1.1) without any constraint on the scatter matrices is not a
well-defined problem; indeed, a cluster j consisting of just an observation xi would cause,
for instance, (1.1) to tend to infinity by taking mj = xi and Sj with det(Sj) → 0.
To address this issue, Garcìa-Escudero et al. [12] introduced an eigenvalue ratio constraint

6 1| TCLUST: a robust constrained clustering algorithm

on the scatter matrices S1, . . . ,Sk:

max
j,l

λl (Sj)

min
j,l

λl (Sj)
≤ c. (1.2)

Here, λl (Sj) for l = 1, . . . , p represents the set of eigenvalues of the scatter matrix Sj,
j = 1, . . . , k, and c ≥ 1 is a constant controlling the strength of the constraint (1.2), where
the smaller the value of c is, the stronger the restriction imposed on the solution.
The maximization (1.1) under the eigenvalue constraint (1.2) leads to the TCLUST
methodology, a fast and efficient algorithm for robust constrained clustering, which shows
good performance on low-dimensional data.

The algorithm is as follows:

1. Initialization:
The procedure is initialized nstart times by selecting different θ0, where θ0 =

(p01, . . . , p
0
k,m

0
1, . . . ,m

0
k,S

0
1 , . . . ,S

0
k). For this purpose, k × (p + 1) observations are

randomly selected, followed by the computation of k cluster centers m0
j and k scatter

matrices S0
j , according to the chosen data points. Notice that only k × (p + 1)

observations are taken into consideration, in order to maximize safety, aiming to
obtain an initialized set of parameters that is outliers-free. Weights p01, . . . , p0k in the
interval (0, 1) and summing up to 1 are also randomly chosen.

2. Concentration step:
The following steps are executed until convergence, i.e. θt+1 = θt, or until a maxi-
mum number of iterations iter.max is reached.

2.1. Trimming and cluster assignments (E and C-steps):
Based on the current parameters θt = (pt1, . . . , p

t
k,m

t
1, . . . ,m

t
k,S

t
1 , . . . ,St

k), for
each observation xi, the quantities

Dj

(
xi; θ

t
)
= pjϕ

(
xi;m

t
j,S

t
j

)
for j = 1, . . . , k, (1.3)

are computed. The ⌈nα⌉ observations with the smallest values of

D
(
xi; θ

t
)
= max

{
D1

(
xi; θ

t
)
, . . . , Dk

(
xi; θ

t
)}

(1.4)

are discarded. Each remaining observation xi is then assigned to a cluster

1| TCLUST: a robust constrained clustering algorithm 7

j such that Dj (xi; θ
t) = D (xi; θ

t). This yields a partition R0, R1, . . . , Rk of
{1, . . . , n} holding the indexes of the trimmed observations in R0, and the
indexes of the observations belonging to cluster j in Rj, for j = 1, . . . , k.

2.2. Update parameters (M-step):
For j = 1, . . . , k, given nj = #Rj, the weights are updated by

pt+1
j = nj/[n(1− α)],

and the centers by the sample means

mt+1
j =

1

nj

∑
i∈Rj

xi.

Updating the scatter estimates is more difficult, as the sample covariance ma-
trices

St+1
j =

1

nj

∑
i∈Rj

(
xi −mt+1

j

) (
xi −mt+1

j

)T
may not satisfy the specified eigenvalue ratio constraint.
In this case, the spectral decomposition of St+1

j = UjDjU
T
j is considered,

where Dj = diag (dj1, dj2, . . . , djp) is the diagonal matrix holding the eigen-
values of St+1

j and Uj is the orthogonal matrix holding the corresponding
eigenvectors. Let us consider truncated eigenvalues defined as

dmjl =

djl if djl ∈ [m, cm]

m if djl < m

cm if djl > cm

, (1.5)

with m as some threshold value. The scatter matrices are updated as

St+1
j = UjD

∗
jU

T
j ,

with D∗
j = diag

(
d
mopt

j1 , d
mopt

j2 , . . . , d
mopt

jp

)
, and mopt minimizing

m 7→
k∑

j=1

nj

p∑
l=1

(
log
(
dmjl
)
+

djl
dmjl

)
. (1.6)

As it will be shown in Proposition 1.2, this expression has to be evaluated only
2kp+ 1 times to exactly find the minimum.

8 1| TCLUST: a robust constrained clustering algorithm

3. Target function evaluation:
Once the concentration steps are completed, the target function value (1.1) is calcu-
lated. The parameters that yield the highest value of this target function are then
selected and returned as the output of the algorithm.

The choice of nstart, the number of random starts, and iter.max, the maximum number
of constrained concentration steps, depends on the complexity of the considered dataset.
Setting high values for these parameters increases the computational effort but also en-
hances the objective function of the algorithm converging close to the global optimum.

The following proposition is used to justify the M-step of the previous algorithm:

Proposition 1.1.
If the sets Rj, j = 1, . . . , k, are kept fixed, the maximum of (1.1) under constraint (1.2)
can be obtained through the following steps:

i. The best choice of pj is pj = nj/⌊n(1− α)⌋, with nj = #Rj.

ii. Fixed pj as given in (i), the best choice for mj is mj =
∑

i∈Rj
xi/nj.

iii. Fixed the eigenvalues for the matrix Sj and the optimum values given in (i) and
(ii) for pj and mj, the best choice for the set of unitary eigenvectors is the set of
unitary eigenvectors of the sample covariance matrix of the observations in Rj.

iv. With the optimal selections from (i), (ii) and (iii), if djl are the eigenvalues of the
sample covariance matrix, the best choice for the truncated eigenvalues d

mopt

jl is as
in (1.5) with mopt minimizing function (1.6). Then, the best choice for the scatter
matrix Sj is obtained with the eigenvectors of the sample covariance matrix of the
observations in Rj and with the optimally truncated eigenvalues.

By evaluating the function (1.6) a total of 2pk + 1 times, it is possible to obtain mopt

through the following closed form expression:

Proposition 1.2.
Let us consider e1 ≤ e2 ≤ · · · ≤ e2kp obtained by ordering the following 2pk values:

d11, d12, . . . , djl, . . . , dkp, d11/c, d12/c, . . . , djl/c, . . . , dkp/c

1| TCLUST: a robust constrained clustering algorithm 9

and, f1, . . . , f2kp+1 any values satisfying:

f1 < e1 ≤ f2 ≤ e2 ≤ · · · ≤ f2kp ≤ e2kp < f2kp+1.

We can choose mopt as the value of:

mi =

∑k
j=1 nj

(∑p
l=1 djl (djl < fi) +

1
c

∑p
l=1 djl (djl > cfi)

)∑k
j=1 nj (

∑p
l=1 ((djl < fi) + (djl > cfi)))

,

i = 1, . . . , 2kp+ 1, yielding the minimum value of (1.6).

11

2| Well-conditioned estimators for
high-dimensional covariance
matrices

In this chapter we will introduce a series of metodologies to address the challenge of esti-
mating high-dimensional covariance matrices within the TCLUST. This issue arises when
dealing with data where the number of variables p exceeds that of observations n, leading
to potential problems with traditional covariance matrix estimation methods, primarily
due to the singularity issue. To overcome this challenge, we will explore regularization
techniques aimed at preventing singularity and enhancing the stability of covariance ma-
trix estimation.

2.1. Minimum Regularized Covariance Determinant

estimator

Using the same notation introduced in the previous chapter, we assume that most of the
observations x1, ...,xn come from an elliptical distribution, with location µ and scatter
matrix Σ, and that remaining observations can be arbitrary outliers, without knowing
beforehand which ones they are. The problem is to estimate µ and Σ despite the outliers.

The Minimum Regularized Covariance Determinant (MRCD) approach searches for an
h-subset of the data (where n/2 ≤ h < n) whose regularized covariance matrix, that will
be defined later, has the lowest possible determinant. Efficiency and robustness of the
estimator are both influenced by h, the size of the subset. In terms of robustness, it is
recommended to have at most n − h outliers; therefore, in situations where there is a

12 2| Well-conditioned estimators for high-dimensional covariance matrices

possibility of encountering many outliers, setting h = ⌈0.5n⌉ or h = ⌈0.75n⌉ could be a
good choice.

Let H denote a set of h indices reflecting the observations included in the subset, and Hh

the collection of all such sets. For a given H in Hh, the mean and the sample covariance
matrix of the subset of data corresponding to the indices in H are computed as follows:

mX(H) =
1

h

∑
i∈H

xi

SX(H) =
1

h− 1

∑
i∈H

(xi −mX(H)) (xi −mX(H))T . (2.1)

First of all, the p variables are standardized to guarantee that the MRCD scatter estimator
is location invariant and scale equivariant, so that it is robust to linear transformations of
the data. The standardization needs to use a robust univariate location and scale estimate.
To achieve this, the medians of all variables are computed and stored in a location vector
νX ; similarly, the scales are estimated using the Qn estimator of Rousseeuw and Croux
[19], and they are put in a diagonal matrix DX . The standardized observations are then

ui = D−1
X (xi − νX).

In a second step, two quantities are introduced to define our regularized covariance matrix:
a predetermined well-conditioned symmetric and positive definite target matrix T, and a
scalar weight coefficient ρ, where 0 ≤ ρ ≤ 1, called regularization parameter.
Regarding the target matrix T, we have two choices: we can take the identity matrix
with robustly estimated univariate scales on the diagonal, or we can take a non diagonal
target matrix, setting T equal to

Rξ = ξJp + (1− ξ)Ip, (2.2)

with Jp the p × p matrix of ones, Ip the identity matrix, and −1/(p − 1) < ξ < 1 to
ensure positive definiteness. The parameter ξ in the equicorrelation matrix (2.2) can be
estimated by averaging robust correlation estimates over all pairs of variables, under the
constraint that the determinant of Rξ is above a minimum threshold value.

The regularized covariance matrix of an h-subset of the standardized data is defined as:

K(H) = ρT+ (1− ρ)cαSU(H), (2.3)

2| Well-conditioned estimators for high-dimensional covariance matrices 13

where SU(H) is as defined in (2.1) but for the standardized data instead of the original
data, and cα is a consistency factor that depends on the trimming percentage α = (n −
h)/n. Notice that, when ρ equals zero, K(H) becomes the sample covariance SU(H)

weighted by cα, while when ρ equals one, K(H) becomes the target matrix T.

It would be convenient to use the spectral decomposition T = QΛQT when T is not
diagonal, where Λ is the diagonal matrix holding the eigenvalues of T and Q is the
orthogonal matrix holding the corresponding eigenvectors. The regularized covariance
matrix K(H) could then be rewritten as

K(H) = QΛ1/2[ρI + (1− ρ)cαSW (H)]Λ1/2QT ,

where SW (H) is as the previous ones, but for the transformed standardized observations
wi = Λ−1/2QTui.

We introduce the notion of condition number of a matrix, as the ratio between the largest
and the smallest eigenvalue of that matrix, to measures its numerical stability: a matrix
is well-conditioned if its condition number is moderate, whereas it is ill-conditioned if its
condition number is high. Therefore, to guarantee that K(H) is well-conditioned, it is
sufficient to bound the condition number of ρI + (1− ρ)cαSW (H). Since the eigenvalues
of ρI + (1− ρ)cαSW (H) equal ρ+ (1− ρ)λ, the corresponding condition number is

CN(ρ) =
ρ+ (1− ρ)max{λ}
ρ+ (1− ρ)min{λ}

.

In practice, regarding the choice of ρ, it is suggested a data-driven approach that de-
termines the value of ρ based on the lowest non-negative value for which the condition
number of ρI + (1− ρ)cαSW (H) is at most κ, where a good choice could be κ = 50, that
is also the default value in the CovMrcd implementation in the R package rrcov [21].

The MRCD subset HMRCD is defined by minimizing the determinant of the regularized
covariance matrix K(H) in (2.3):

HMRCD = argmin
H∈Hh

(
det(K(H))1/p

)
. (2.4)

Since T,Q and Λ are fixed, HMRCD can also be written as

HMRCD = argmin
H∈Hh

(
det (ρI + (1− ρ)cαSW (H))1/p

)
.

14 2| Well-conditioned estimators for high-dimensional covariance matrices

Once HMRCD is determined, the MRCD location and scatter estimates of the original
data matrix are computed as

mMRCD = νX +DXmU(HMRCD)

KMRCD = DXQΛ1/2[ρI + (1− ρ)cαSW (HMRCD)]Λ
1/2QTDX . (2.5)

Finally, the MRCD precision matrix, that is the inverse of the scatter matrix (2.5), can
be obtained as

K−1
MRCD = D−1

X QTΛ−1/2[ρIp + (1− ρ)cαSW (HMRCD)]
−1Λ−1/2QD−1

X .

The ongoing solution for the MRCD approach consists of iteratively applying the so-
called C-step, improving an h-subset H1 by computing its mean and covariance matrix,
and then selecting the h observations with the smallest Mahalanobis distance to form
a new subset H2. This theorem generalizes the C-step theorem by Rousseeuw and Van
Driessen [18] for the Minimum Covariance Determinant (MCD) methodology to the con-
text of regularized covariance matrices in the MRCD estimation. The MCD [17] forms the
foundational framework upon which the MRCD is constructed. While both techniques
share the common principle of minimizing the determinant of the covariance matrix, the
MRCD improves itself by its capability to manage high-dimensional data through the
incorporation of regularization in covariance matrix estimation.

Theorem 2.1
Let X be a dataset of n points in p dimensions, and take any n/2 < h < n and
0 < ρ < 1. Starting from an h-subset H1, one can compute m1 = 1

h

∑
i∈H1

xi and
S1 =

1
h

∑
i∈H1

(xi −m1)(xi −m1)
T . The matrix

K1 = ρT+ (1− ρ)S1

is positive definite hence invertible, so we can compute

d1(i) = (xi −m1)
TK−1

1 (xi −m1)

for i = 1, . . . , n. Let H2 be an h-subset for which

∑
i∈H2

d1(i) ≤
∑
i∈H1

d1(i) (2.6)

2| Well-conditioned estimators for high-dimensional covariance matrices 15

and compute m2 =
1
h

∑
i∈H2

xi, S2 =
1
h

∑
i∈H2

(xi −m2)(xi −m2)
T and K2 = ρT+ (1−

ρ)S2. Then
det(K2) ≤ det(K1),

with equality if and only if m2 = m1 and K2 = K1.

The MRCD algorithm, which makes use of the just presented generalized C-step, can be
found in [3].

2.2. Linear Shrinkage estimator of Ledoit-Wolf

As in the previous section, let us assume that our observations come from an elliptical
distribution, with location µ (in this case, equal to 0) and covariance matrix Σ. Our goal
is to find the well-conditioned estimator for Σ as the linear combination Σ∗ = ρ1I + ρ2S

that minimizes the expected quadratic loss E [∥Σ∗ −Σ∥2].

To achieve this, we need four scalar functions of Σ:

• µ = ⟨Σ, I⟩

• α2 = ∥Σ− µI∥2

• β2 = E [∥S −Σ∥2]

• δ2 = E [∥S − µI∥2].

Here, we are considering the Frobenius norm ∥A∥ =
√

tr (AAT) /p, whose associated
inner product is ⟨A1,A2⟩ = tr

(
A1A

T
2

)
/p. It is important to note that we need to

assume our variables have finite fourth moments, so that β2 and δ2 are finite.

Having all these elements, it can be stated that the optimal linear combination Σ∗ =

ρ1I + ρ2S of the identity matrix I and the sample covariance matrix S is the standard
solution to a simple quadratic programming problem under linear equality constraint, as
we will see in the following theorem:

16 2| Well-conditioned estimators for high-dimensional covariance matrices

Theorem 2.2
Consider the optimization problem:

min
ρ1,ρ2

E
[
∥Σ∗ −Σ∥2

]
s.t. Σ∗ = ρ1I + ρ2S, (2.7)

where the coefficients ρ1 and ρ2 are nonrandom. Its solution verifies:

Σ∗ =
β2

δ2
µI +

α2

δ2
S,

E
[
∥Σ∗ −Σ∥2

]
=

α2β2

δ2
.

The estimator Σ∗ has a fundamental drawback: it requires hindsight knowledge of the
four scalar functions of the true, unobservable, covariance matrix Σ. To address this issue,
Ledoit and Wolf [15] decided to explore an asymptotic framework and search, asymptot-
ically, for consistent estimators for µ, α2, β2 and δ2.
They chose general asymptotics, rather than standard asymptotics, because they wanted
the number of variables p to go to infinity at the same speed as the number of observations
n, being in situations where p is of the same order as n or even larger. In this framework,
the optimal shrinkage intensity, generally, does not vanish asymptotically, as it happens
under standard asymptotics instead, but rather it tends to a limiting constant that we
will be able to estimate consistently. The idea, then, is to use the estimated shrinkage
intensity in order to arrive at an efficient unbiased estimator.

Let n = 1, 2, . . . index a sequence of statistical models. For every n,Xn is a pn×n matrix
of n iid observations on a system of pn random variables with zero mean and covariance
matrix Σn. By considering the spectral decomposition Σn = ΓnΛnΓ

T
n , where Λn is the

diagonal matrix holding the eigenvalues of Σn and Γn is the orthogonal matrix holding the
corresponding eigenvectors, we define Yn = ΓT

nXn as a pn×n matrix of n iid observations
on a system of pn uncorrelated random variables that spans the same space as the original
system.

Firstly, we assume that there exists a constant K, independent of n, such that pn/n ⩽ K,
hence, the number of variables pn can change, and even go to infinity, with the number of
observations n, but not too fast (standard asymptotics are included as a particular case).
Moreover, we impose restrictions on the higher moments of Yn. Specifically, we assume
that the eighth moment of Yn is bounded, on average, and that, products of uncorrelated
random variables are themselves uncorrelated, on average, in the limit.

2| Well-conditioned estimators for high-dimensional covariance matrices 17

By defining the sample covariance matrix Sn = XnX
T
n/n, we have:

• µn = ⟨Σn, In⟩n

• α2
n = ∥Σn − µnIn∥2n

• β2
n = E

[
∥Sn −Σn∥2n

]
• δ2n = E

[
∥Sn − µnIn∥2n

]
.

These four scalars are well behaved asymptotically, indeed they remain bounded as
n → ∞.

If we consider Σ∗
n = β2

n

δ2n
µnIn +

α2
n

δ2n
Sn, the solution of Theorem 2.2.1 under general asymp-

totics, it is not an efficient unbiased estimator, because it depends on four scalar function
of the true, unobservable, covariance matrix Σn: µn, α2

n, β2
n and δ2n. Therefore, we proceed

by estimating them consistently.

Finally, we obtain:

• mn = ⟨Sn, In⟩n

• d2n = ∥Sn −mnIn∥2n

• b2n = min
(
b̄2n, d

2
n

)
, where b̄2n = 1

n2

∑n
k=1

∥∥∥xn
k (x

n
k)

T − Sn

∥∥∥2
n
, with xn

k denoting the
k-th column of Xn

• a2n = d2n − b2n

as consistent estimators for µn, δ2n, β2
n, and α2

n, respectively. All the technical details and
proofs about the aforementioned quantities can be found in the paper of Ledoit and Wolf
[15].

By replacing the unobservable scalars in the formula defining Σ∗
n with their consistent

estimators, we obtain our efficient unbiased estimator of the covariance matrix:

S∗
n =

b2n
d2n

mnIn +
a2n
d2n

Sn. (2.8)

The following theorem will show that S∗
n has the same asymptotic properties as Σ∗

n. Thus,
we can neglect the error that we introduce when we replace the unobservable parameters
µn, α

2
n, β

2
n and δ2n by their estimators.

18 2| Well-conditioned estimators for high-dimensional covariance matrices

Theorem 2.3
S∗

n is a consistent estimator of Σ∗
n, i.e. ∥S∗

n −Σ∗
n∥n

q.m.−→ 0. As a consequence, S∗
n has the

same asymptotic expected loss as Σ∗
n, i.e. E

[
∥S∗

n −Σn∥2n
]
− E

[
∥Σ∗

n −Σn∥2n
]
→ 0.

The final step consists in demonstrating that S∗
n, that we obtained as a consistent estima-

tor for Σ∗
n, possesses an important optimality property. We already know that Σ∗

n, hence
S∗

n in the limit, is optimal among the linear combinations of the identity and the sample
covariance matrix with nonrandom coefficients. Now, we will show that S∗

n is still optimal
within a bigger class: the linear combinations of In and Sn with random coefficients. This
class includes both the linear combinations that represent efficient unbiased estimators,
and those with coefficients that require hindsight knowledge of the true, therefore unob-
servable, covariance matrix Σn.

Let Σ∗∗
n denote the linear combination of In and Sn with minimum quadratic loss. It

solves:
min
ρ1,ρ2

||Σ∗∗
n −Σn∥2n s.t. Σ∗∗

n = ρ1In + ρ2Sn.

In contrast to the optimization problem in Theorem 2.2 with solution Σ∗
n, here we min-

imize the loss instead of the expected loss, and we allow the coefficients ρ1 and ρ2 to be
random.
Σ∗∗

n is not an an efficient unbiased estimator, since it turns out that it is a function of
Σn. However, we can show that S∗

n is a consistent estimator of Σ∗∗
n , thereby implying

that S∗
n has the same asymptotic expected loss as Σ∗∗

n . Both Σ∗
n and Σ∗∗

n have the same
asymptotic properties as S∗

n, therefore, they also have the same asymptotic properties as
each other.

The most important result is the following: the efficient unbiased estimator S∗
n defined in

(2.8) has uniformly minimum quadratic risk asymptotically among all the linear combina-
tions of the identity with the sample covariance matrix, including those that are efficient
unbiased estimators, and even those that use hindsight knowledge of the true covariance
matrix. Thus, it is legitimate to say that S∗

n is an asymptotically optimal linear shrinkage
estimator of the covariance matrix Σ with respect to quadratic loss under general asymp-
totics.

Notice that the linear shrinkage estimator of Ledoit-Wolf can be considered as a partic-
ular case of the MRCD estimator, when the subset H of the equation (2.3) corresponds
to the entire sample [3]. However, this particular Ledoit-Wolf estimator lacks robust-
ness to outliers, as they are included in its computation. As an extension, the MRCD

2| Well-conditioned estimators for high-dimensional covariance matrices 19

approach can be viewed as a robust enhancement of the Ledoit-Wolf estimator, incorpo-
rating the minimum covariance determinant principle and thereby improving its resilience
against outliers. At any rate, since the Ledoit-Wolf estimator will be employed within
the TCLUST algorithm, it is sensible to make use of it being robustness already enforced
by the TCLUST procedure. On the other hand, MRCD will provide a doubly-robust
extension, as outliers are taken care of both in clustering procedure as well as within the
modified M-step that makes use of MRCD to compute the regularized covariance matri-
ces.

2.3. Sparse CovGlasso estimator

Suppose that our observations come from a p-variate Gaussian distribution with zero
mean and covariance matrix Σ. The log-likelihood is

ℓ(Σ) = −np

2
log(2π)− n

2
log(det(Σ))− n

2
tr(Σ−1S),

where S is still the sample covariance matrix. Since we want a lasso estimator, we add
a lasso penalty of the form λ∥P ∗Σ∥1 to the likelihood, where λ is the lasso regulariza-
tion parameter, P is an arbitrary matrix with non-negative elements and ∗ denotes the
elementwise multiplication. Our goal is to find Σ positive definite that minimizes

log(det(Σ)) + tr(Σ−1S) + λ∥P ∗Σ∥1, (2.9)

where, for a matrix A, we define ∥A∥1 =
∑

ij |Aij|.

Two common choices for P would be the matrix of all ones, or this same matrix, but with
zeros on the diagonal, to avoid shrinking diagonal elements of Σ. The objective function
(2.9) is not convex, imposing computational challenges for minimizing it.
Initially, Bien and Tibshirani [1] proposed a majorize-minimize approach to approximately
minimize (2.9), but two years later Wang [23] suggested a new algorithm, showing it has
several advantages with respect to the previous one, including simplicity, computational
speed and numerical stability. The minimization of the objective function (2.9) using the
coordinate descent method involves updating the covariance matrix Σ one column and
row at a time while keeping the rest fixed. In particular, Σ and S are partitioned as

20 2| Well-conditioned estimators for high-dimensional covariance matrices

follows:

Σ =

(
Σ11 σ12

σT
12 σ22

)

S =

(
S11 S12

ST
12 s22

)
,

where:

• Σ11 and S11 are the covariance matrix and the sample covariance matrix of the first
(p− 1) variables, respectively.

• σ12 and S12 are the covariances and the sample covariances between the first (p−1)

variables and the last variable, respectively.

• σ22 and s22 are the variance and the sample variance of the last variable, respectively.

Let us define β = σ12 and γ = σ22−σT
12Σ

−1
11 σ12. Using block matrix inversion, the inverse

of Σ is given by:

Σ−1 =

(
Σ−1

11 +Σ−1
11 ββ

TΣ−1
11 γ

−1 −Σ−1
11 βγ

−1

−βTΣ−1
11 γ

−1 γ−1

)
.

Therefore, the three terms in (2.9) can be expressed as functions of β and γ as follows:

• log(det(Σ)) = log(γ) + c1

• tr(Σ−1S) = βTΣ−1
11 S11Σ

−1
11 βγ

−1 − 2ST
12Σ

−1
11 βγ

−1 + s22γ
−1 + c2

• λ∥Σ∥1 = 2λ∥β∥1+λ
(
βTΣ−1

11 β + γ
)
+ c3, where we are considering P as the matrix

of all ones.

The objective function with respect to β and γ is:

min
β,γ

{
log(γ) + βTΣ−1

11 S11Σ
−1
11 βγ

−1 − 2ST
12Σ

−1
11 βγ

−1 + s22γ
−1 + 2λ∥β∥1 + λβTΣ−1

11 β + λγ
}
.

(2.10)

For γ, removing terms in (2.10) that do not depend on γ gives

min
γ

{
log(γ) + aγ−1 + λγ

}
, (2.11)

2| Well-conditioned estimators for high-dimensional covariance matrices 21

where a = βTΣ−1
11 S11Σ

−1
11 β − 2S12Σ

−1
11 β + s22. The problem (2.11) is solved by:

γ̂ =

a if λ = 0

(−1 +
√
1 + 4aλ)/(2λ) if λ ̸= 0

.

For β, removing terms in (2.10) that do not depend on β gives

min
β

{
βTVβ − 2uTβ + 2λ∥β∥1

}
, (2.12)

where V = (vij) = Σ−1
11 S11Σ

−1
11 γ

−1 + λΣ−1
11 and u = Σ−1

11 S12γ
−1. The problem in (2.12)

is a lasso problem and can be efficiently solved by coordinate descent algorithms [8, 24].
Specifically, for j ∈ {1, . . . , p − 1}, the minimum point of (2.12) along the coordinate
direction in which βj varies is:

β̂j = S

(
uj −

∑
k ̸=j

vkjβ̂k, λ

)
/vjj, (2.13)

where S is the soft-threshold operator:

S(x, t) = sign(x)max(|x| − t, 0).

The update (2.13), for j = 1, . . . , p− 1, is iterated until convergence, and finally columns
are updated as (σ12 = β, σ22 = γ + βTΣ−1

11 β
)

followed by cycling through all columns
until convergence. This algorithm can be viewed as a block coordinate descent method
with p blocks of β’s and other p blocks of γ’s, and it can be found in [23]. Its convergence
to a stationary point is supported by the theoretical results of Tseng [22].

This procedure is implemented within the covglasso function of the covglasso package
itself [7], which will be employed to integrate the CovGlasso estimator into the TCLUST
methodology in the upcoming chapter.

23

3| Work development

3.1. Initial proposal: incorporating the MRCD esti-

mator within TCLUST

The initial proposal is to incorporate the Minimum Regularized Covariance Determinant
estimator, previously introduced in Section 2.1, into the TCLUST methodology, in order
to address the challenge of robust clustering for high-dimensional data. In high dimen-
sions, one of the main problems of the TCLUST algorithm is the covariance matrices
estimation. Indeed, their size grows quadratically with p, causing them to become singu-
lar or ill-conditioned.
The covariance matrix estimator used in the TCLUST algorithm is based on the standard
sample covariance matrix, enhanced by the inclusion of the eigenvalue ratio constraint
(1.2). This constraint is implemented to improve the robustness and to protect against
spurious solutions. It is an approach that limits the variation among the eigenvalues, try-
ing to prevent a single dimension from overly influencing the covariance matrix estimate.
Through the application of constraint (1.2), the gap between the largest and smallest
eigenvalues is limited, thereby contributing to the maintenance of a certain level of sta-
bility in the estimation. However, this method fails when dealing with high-dimensional
data, and the sample covariance matrix, even if protected by the constraint (1.2), may
not be a good estimator due to several reasons:

• Low observation-dimension ratio:
In high-dimensional environments, there is often a high number of variables com-
pared to the available number of observations. This can lead to an unstable and
unreliable estimation of covariances between variables, as the information from a
limited number of observations might be insufficient to capture the true relation-
ships between variables.

• Noise sensitivity:
In high-dimensional contexts, data noise can have a significant impact on covariance
estimates. Since noise is often randomic and unpredictable, it can distort covariance

24 3| Work development

estimates and make the sample covariance matrix estimator less accurate.

• High correlation:
When highly correlated or redundant variables are present, the sample covariance
matrix estimator might overestimate or underestimate covariances due to redundant
information. This can lead to a loss of precision in covariance estimates.

• Numerical instability:
In high-dimensional settings, numerical computations associated with covariance
calculation may become unstable due to approximation issues or rounding errors.
This can adversely affect the quality of estimates.

In high dimensionality, it is often necessary to apply regularization techniques to manage
problem complexity. The sample covariance matrix estimator does not inherently incorpo-
rate regularization, which may result in suboptimal and less stable estimates. Therefore,
we attempt to replace it with the Minimum Regularized Covariance Determinant estima-
tor, which, being a regularized estimation method, allows the covariance matrix to achieve
greater stability and reduced susceptibility to singularity. This would result in obtaining
more robust and reliable estimates.

We need to develop a new algorithm, building upon the existing TCLUST approach.
Our initial focus is to identify the limitations of the TCLUST algorithm in handling
high-dimensional data. For this purpose, we will conduct an in-depth analysis of the
.tclust.R function within the tclust package [10]. This function is composed by various
subfunctions, which we carefully examine one by one.

An important issue arises immediately with the .InitClusters subfunction, used for
calculating the initial cluster assignments and parameters. Specifically, cycling over the
number of clusters k, it generates a random sample of p + 1 integers ranging from 1 to
n without replacement, and it extracts the rows of the observation matrix corresponding
to the integers previously generated, retaining all columns. Finally, these submatrices
are used to compute the initial means and covariance matrices, through the sample mean
estimator and the sample covariance matrix estimator, respectively. Therefore, during the
initialization procedure, TCLUST randomly selects a subset of k× (p+ 1) observations,
which is smaller than the entire sample size n in low-dimensional settings, in order to
ensure an initialization free from outliers and to maximize stability. The issue arises when
p exceeds n, causing this initial subset to become significantly larger than the total number
of observations, necessitating a change in the initialization procedure. Furthermore, we
previously observed that the sample covariance matrix estimator is not a good estimator

3| Work development 25

for covariance matrices in high-dimensional settings. Hence, even that estimator needs to
be replaced with a new one.

In the following, we will provide a detailed explanation of the initialization procedure we
implement:

1. Generation of initial cluster assignments:
We start by generating a preliminary assignment of observations to clusters, where
each observation in our dataset is randomly assigned to one of the available clusters.

2. Designation of some observation as outliers:
Subsequently, we want to designate a portion of observations as outliers, specifi-
cally equal to the number of trimmed observations nα, where α is the trimming
percentage passed as input to the algorithm. To do so, we randomly select this
portion of observations among all the n’s, and we assign them to a special cluster
labeled as cluster 0. This process involves nullifying a fraction of the random cluster
assignments, effectively categorizing certain observations as outliers.

3. Computation of cluster weights:
Each cluster will now have an associated weight. This weight is computed by di-
viding the number of elements in the cluster by a normalization constant, which is
the number of non-trimmed observations n(1 − α). In practice, we are trying to
quantify the significance of each cluster relative to the total number of observations.

4. Extraction of final cluster assignments:
Lastly, we extract the final cluster assignments, including only those observations
that have not been trimmed during Step 2.

At this point, we generate a collection of matrices, each representing a distinct cluster.
These matrices are essentially stores for data associated with their respective clusters. As
we iterate through these matrices, we apply the new Minimum Regularized Covariance
Determinant estimator, replacing the previously employed sample covariance matrix esti-
mator.

The MRCD estimator is computed using the CovMrcd function of the rrcov package [21].
This function takes as input a matrix of observations specific to each cluster, along with
other parameters including subset size, maximum concentration steps, regularization pa-
rameter, target matrix structure, and maximum allowed condition number.
The CovMrcd function computes the Minimum Regularized Covariance Determinant esti-
mator for location and scatter, returning an S4 object of class CovMrcd-class [20]. This

26 3| Work development

class contains MRCD estimates for multivariate location and scatter computed by the
algorithm, as well as the number of observations used for estimation and the best subset
used for computation. Other elements in this class include the estimated regularization
parameter and the inverse of the estimated covariance matrix.

Returning to the discussion of TCLUST steps, .InitClusters finally stores the estimated
mean vector and covariance matrix of each cluster in the center matrix and sigma array
of the iter object, respectively. The subfunction then returns this object as final step.
Notice that this object will be presented in detail later.
In summary, .InitClusters performs a sequence of essential tasks, including the gen-
eration of initial cluster assignments, with some observation designated as outliers, the
computation of initial cluster weights, the creation of initial cluster matrices and the es-
timation of crucial parameters for each cluster. It is important to note that, just as in
the TCLUST algorithm, it is necessary to have multiple initializations here to ensure the
EM starts from a good starting point.

An other important subfunction is .findClustAssig, which finds current cluster assign-
ments based on given location and scatter matrix. It works as follows:

1. It computes the likelihood for each observation in each cluster, using data matrix,
cluster means and cluster covariance matrices to initially compute the multivariate
normal densities, and then multiplying them by the cluster weights, as in (1.3).

2. It updates the assignment of observations to clusters based on the computed likeli-
hoods, assigning each observation to the cluster that maximizes its likelihood.

3. It applies a trimming procedure to exclude observations with the lowest likelihoods
from assignment. In particular, the ⌈nα⌉ observations with the smallest values of
(1.4) are discarded as outliers.

4. It checks for convergence by comparing the current and previous assignments, up-
dating a dedicated parameter to TRUE if the convergence is achieved.

5. It computes the sizes of the updated clusters.

6. It constructs a matrix indicating the membership of each observation to each cluster.
In particular, its (i,j)-th element is equal to 1 if observation i belongs to cluster j,
and it is equal to 0 otherwise.

7. It updates the cluster weights, finally returning the updated iter object.

In the previous, we needed to modify the original .findClustAssig subfunction because

3| Work development 27

it was constructing fuzzy membership matrices, whereas our objective is to create binary
membership matrices. A fuzzy membership matrix is a generalization of a standard bi-
nary membership matrix, where each (i,j)-th element of the matrix is a number ranging
from 0 to 1, representing the probability that observation i belongs to cluster j. Differ-
ently from a binary one, where each cell contains a binary value that indicates whether
an observation belongs to a specific cluster (value equal to 1) or not (value equal to 0), in
a fuzzy membership matrix, the values within the cells represent degree of membership of
observations to clusters, resulting in values span from 0 to 1, with row elements summing
to 1.

Now, .estimClustPar is the subfunction that computes the mean vector and the co-
variance matrix for each of the provided clusters. We follow the same approach as in
.InitClusters to update the original function. Consequently, we create a set of matri-
ces, each representing a unique cluster, and apply the MRCD estimator, while iterating
through these matrices, to compute and store the mean vector and covariance matrix for
each cluster. In addition, we introduce a safeguarding condition to ensure the correct
execution of the algorithm.

In detail, sometimes it could happen that the clustering algorithm generates empty clus-
ters, meaning clusters that do not contain any data points. This may occur in situations
where the algorithm fails to find enough similar data points to assign to a particular
cluster, and it results in automatically reducing the total number of clusters. For in-
stance, if you set the algorithm to generate a certain number of clusters, but some of
them become empty and are removed, you would end up with fewer clusters than you
originally intended. This might cause interpretation problems and compromise the anal-
ysis. Furthermore, even clusters with very few members (such as one or two) could be
problematic. They may lead to unreliable estimates of cluster parameters as calculations
would be significantly affected by such a small number of data points. This negatively
impact the accuracy and reliability of the analysis results. To address these issues, we
introduce a threshold on the minimum cluster size. This means establishing a rule that
prevents clusters from having a membership count below a certain threshold, such as two
observations. This way, we avoid empty clusters and prevent them from having very few
members, ensuring there is enough data to reliably estimate cluster parameters.

So, if a cluster contains at least three data points, we proceed with the MRCD estimation
of means and covariance matrices by applying the CovMrcd function, which we already
discussed above. Conversely, if a cluster is empty or has less than three observations be-
longing to it, the MRCD estimation is skipped, and subsequently that initialization will

28 3| Work development

not be passed for evaluation as the best initialization in the main function.

The final subfunction required is .calcobj, which computes the values of objective func-
tion (1.1) without modification.

We do not use the eigenvalue ratio constraint because we are already applying regular-
ization. Therefore, we no longer require all the other subfunctions present in the original
TCLUST algorithm.

Now, let us turn our attention to the main function, called .mrcd_in_tclust. It takes as
input:

• Matrix or dataframe of dimension n× p, containing the observations.

• Number of outliers initially searched for.

• Proportion of observations to be trimmed.

• Number of random initialization to be performed.

• Maximum number of concentration steps to be performed. The concentration steps
are stopped, whenever two consecutive steps lead to the same data partition.

This function performs the following operations:

1. Data preparation:
It checks the format of the input data and converts it to a matrix if it is a data
frame or a vector. In addition, it verifies that the data is numeric, otherwise, it
generates an error.

2. Parameter setup:
It initializes a set of parameters within a structure called pa. These parameters
include the number of observations, the number of variables, the number of clusters
to be searched for, the trimming level, the number of observations which are con-
sidered as to be outlying and not outlying, and other settings. Notice that these are
the parameters that all iterations have in common and will never change.

3. Variables initialization:
Several variables are initialized within a structure named iter, which will be used
to track the results of subsequent iterations. These variables include the current
objective function value, cluster assignments, cluster weights, cluster covariance
matrices, cluster centers, and more. Notice that these variables change with each

3| Work development 29

iteration; in other words, the iter object is passed to all the subfunctions, it is
modified, and it is returned by them. Furthermore, another object called best.iter

is initialized, having the same structure as the iter object. It will be used to keep
track of the best initialization during the optimization process.

4. Starting of multiple initializations:
It performs a series of initializations (nstart) to search for the best clustering
configuration. For each initialization, an initial set of clusters is initialized, finding
their centers and covariance matrices using the .InitClusters function.

5. Iterate for convergence:
Within each initialization, a series of iterations are performed until convergence or
until the maximum number of available iterations (iter.max) is reached. During
each iteration, the following actions are performed:

• Assignment of data points to clusters using the .findClustAssig function.

• Computation of the objective function value using the .calcobj function.

• Estimation of clusters parameters (centers and covariance matrices) using the
.estimClustPar function.

6. Evaluation of initializations:
At the end of each initialization, it evaluates whether the current initialization has
produced a higher objective function than the one of the best initialization so far.
If so, the best initialization is updated.

7. Return of results:
At the end of all initializations, it returns the results of the best initialization,
including the estimated cluster parameters and other relevant information. In detail,
this function returns as output an S3 object of type tclust [11], containing the
following values:

• centers: matrix of size p x k containing the centers (column-wise) of each
cluster.

• cov: array of size p x p x k containing the covariance matrices of each cluster.

• cluster: numerical vector of size n containing the cluster assignment for each
observation. Cluster names are represented as integer numbers ranging from 1
to k, while the value 0 is used to indicate trimmed observations.

• par: list containing the parameters the algorithm has been called with.

30 3| Work development

• num_init: best initialization number.

• loglik_vec: numerical vector containing objective function values for each
iteration of the best initialization.

• obj: final objective function value of the best initialization. It corresponds to
the last value contained in loglik_vec.

• size: integer vector of length k, returning the number of observations belong-
ing to each cluster.

• weights: numerical vector of length k, containing the weights of each cluster.

The algorithm is now complete and well-functioning. However, there is one final issue to
address. The concern is that if we use the MRCD methodology to estimate covariance
matrices within the M-step of our algorithm, we are no longer maximizing the objective
function of TCLUST. Indeed, this maximization would only occur if we employ the sample
covariance matrix to estimate the k covariance matrices, which we are no longer doing. So,
if we cannot define the overall objective function, we are essentially proposing the solution
to a problem that we have not formally defined. Therefore, our next step should involve
creating a new objective function that incorporates the individual objective functions of
the MRCD methodology for each cluster. The idea is that, during the M-step, instead
of maximizing the function (1.1), we would have k regularized estimates, one for each
component, as in (2.4). But this approach makes sense only if the MRCD estimation
problem can be reformulated in terms of likelihood. In other words, if we can recast
the objective function of the MRCD methodology in a likelihood framework, we would
be able to express the objective function of our algorithm as the product of k penalized
likelihoods, or even better, as the sum of k penalized log-likelihoods, one for each cluster.
This reformulation would result in our methodology becoming likelihood-based.

We will delve deeper into this possibility in the upcoming section.

3| Work development 31

3.2. Can the MRCD estimator be reformulated in

terms of likelihood?

We start by analyzing the main differences between likelihood-based (or model-based)
methodologies and heuristic ones.

Likelihood-based methodologies:

1. They are based on the concepts of probability and statistics. Specifically, they are
founded on probabilistic models that accurately and formally represent relationships
between data and variables.

2. They require clear assumptions to be made about the underlying probabilistic dis-
tributions of the data. The assumptions are explicitly specified in the model.

3. The primary goal is to estimate model parameters that maximize the likelihood of
the observed data. This approach seeks to find parameters that make the observed
data most likely according to the probabilistic model.

4. Results can be interpreted in statistical and probabilistic terms. Confidence inter-
vals, hypothesis tests and assessments of model fit to the data can be computed.

5. They can be computationally more intensive and require a deep understanding of
the underlying statistical model.

Heuristic methodologies:

1. They rely on approximate rules and pragmatic strategies to solve complex prob-
lems. In particular, they do not necessarily rely on formal models or probabilistic
distributions.

2. They often avoid complex assumptions and focus on practical and quick solutions.

3. The primary goal is to find solutions that are "good enough" for the problem,
without necessarily ensuring the best possible solution. In other words they tend
to provide satisfactory solutions in reasonable time but do not guarantee global
optimum search. They may lead to local optimizations rather than global ones.

4. As they focus on efficiently solving problems, they might not provide statistical or
probabilistic interpretations of the results.

5. They can be employed when computational complexity is a concern. Indeed, they

32 3| Work development

are often quicker to implement and can handle large-scale problems without de-
manding excessive computational resources.

Summing up, likelihood-based methodologies exploit the principles of probability and
statistics, using formal probabilistic models to accurately capture the relationships within
data. They often involve making clear assumptions about underlying distributions and
aim to estimate model parameters that maximize the likelihood of observed data. As
a result, they provide interpretable results with potential for statistical inference. On
the other hand, heuristic methodologies take a pragmatic approach to tackling complex
problems. Rather than relying on formal models or precise distributions, they employ
approximate rules and practical strategies. Heuristic approaches prioritize finding "good
enough" solutions efficiently, often without guaranteeing optimality, and excel in adapt-
ability and speed, making them well-suited for large-scale problems where exact solutions
might be computationally unfeasible.

Now, let us proceed by ascertaining whether the MRCD estimation problem can be re-
formulated in terms of likelihood.

The likelihood of a d-variate Gaussian distribution is

ϕ(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
e−MD2(x;µ,Σ)/2,

where µ is the mean vector, Σ is the covariance matrix, and the Mahalanobis distance is
MD(x;µ,Σ) =

√
(x− µ)TΣ−1(x− µ).

For a sample x1, . . . ,xn we put L (xi;µ,Σ) := −2 ln (ϕ (xi;µ,Σ)), so the maximum
likelihood estimator (MLE) of (µ,Σ) minimizes

n∑
i=1

L (xi;µ,Σ) =
n∑

i=1

(
ln |Σ|+ d ln(2π) + MD2 (xi;µ,Σ)

)
. (3.1)

Let us now look for a subset H ⊂ {1, . . . , n} with h elements which minimizes (3.1) where
the sum is only over i in H. We can also write this with weights wi that are 0 or 1 in the
objective

∑n
i=1 wiL (xi;µ,Σ), so we minimize

3| Work development 33

n∑
i=1

wi

(
ln |Σ|+ d ln(2π) + MD2 (xi;µ,Σ)

)
under the constraint that

n∑
i=1

wi = h.

For the moment, we are proceeding as for the proof that MCD can be reformulated in
terms of likelihood from [16]. However, we are not considering the fact that we use a
regularized covariance matrix. So, to take it into consideration, we need to replace Σ

with its regularized version K = ρT+ (1− ρ)cαΣ, where T is the target matrix, ρ is the
regularization parameter, and cα is the costincency factor, all already been discussed in
section 2.1. Then the previous problem becomes:

n∑
i=1

wi

(
ln |K|+ d ln(2π) + MD2 (xi;µ,K)

)
under the constraint that

n∑
i=1

wi = h.

(3.2)

For the minimizing set of weights wi we know from maximum likelihood that µ̂MLE is the
mean of the xi in H, so it is the weighted mean of all xi, and similarly

Σ̂MLE =
1

h

n∑
i=1

wi (xi − µ̂MLE) (xi − µ̂MLE)
T .

Therefore, being that

K̂MLE = ρT+ (1− ρ)cαΣ̂MLE,

we obtain the following expression for K̂MLE:

K̂MLE = ρT+ (1− ρ)cα(
1

h

n∑
i=1

wi (xi − µ̂MLE) (xi − µ̂MLE)
T). (3.3)

Since the second term of (3.2) is constant, to prove that minimizing (3.2) is equivalent to
minimizing the determinant of (3.3), we need to prove that the third term of (3.2) is also
constant.

34 3| Work development

The third term of (3.2) becomes:

n∑
i=1

wi MD2
(
xi; µ̂MLE, K̂MLE

)
=

n∑
i=1

wi (xi − µ̂MLE)
T K̂−1

MLE (xi − µ̂MLE)

=
n∑

i=1

trace
(
wi (xi − µ̂MLE) (xi − µ̂MLE)

T K̂−1
MLE

)
= trace

(
n∑

i=1

wi (xi − µ̂MLE) (xi − µ̂MLE)
T K̂−1

MLE

)
= trace

(
hΣ̂MLEK̂

−1
MLE

)
.

But, remembering that

Σ̂MLE =
K̂MLE − ρT

(1− ρ)cα
,

we get the following:

trace
(
hΣ̂MLEK̂

−1
MLE

)
= h · trace

(
K̂MLE − ρT

(1− ρ)cα
· K̂−1

MLE

)
=

h

(1− ρ)cα
· trace

(
K̂MLEK̂

−1
MLE − ρTK̂−1

MLE

)
.

Now, it’s easy to notice that

K̂MLEK̂
−1
MLE = Id.

Therefore, recalling that
trace (Id) = d

and that the trace of the sum of matrices is equal to the sum of the traces of those
matrices, we finally obtain:

n∑
i=1

wi MD2
(
xi; µ̂MLE, K̂MLE

)
=

hd

(1− ρ)cα
−

hρ · trace
(
TK̂−1

MLE

)
(1− ρ)cα

. (3.4)

3| Work development 35

The first term (3.4) is constant, whereas the second one varies depending on TK̂−1
MLE.

Consequently, the third term in equation (3.2) is not constant. Therefore, we cannot
assert that minimizing (3.2) is equivalent to minimizing the determinant of (3.3). This
implies that the MRCD estimation problem cannot be reformulated in terms of likelihood
of a Gaussian distribution.

Our proposed algorithm is, thus, not a likelihood-based method; rather, it is a heuristic
one. Being such a method, we have the autonomy to select an optimal criterion to assess
the best clustering result. In this context, we choose to retain the original criterion of
the TCLUST methodology, which involves searching for the clustering configuration that
maximizes the objective function (1.1).

We finally end up with a well-performing, but heuristic, method. Actually, the initial goal
was to find a robust clustering method that was both well-performing in high-dimensional
settings and likelihood-based. For this reason, in the next section, we will introduce an-
other algorithm, once again building upon the TCLUST framework, but this time incor-
porating a well-conditioned covariance matrix estimator that is model-based (specifically,
Gaussian-based), known as CovGlasso.

3.3. A likelihood-based methodology: incorporating

the CovGlasso estimator within TCLUST

We now aim to incorporate the CovGlasso estimator, previously introduced in Section 2.3,
into the TCLUST algorithm. This effort seeks to address the ongoing challenge of robust
clustering for high-dimensional data while simultaneously developing a likelihood-based
methodology. Indeed, during the construction of the CovGlasso estimator, Gaussianity is
assumed, making it a model-based approach, specifically built upon the Gaussian model.
Considering that TCLUST also operates within the Gaussian framework, the methodol-
ogy we are set to develop, arising from the integration of the CovGlasso estimator into
TCLUST, will similarly be rooted in Gaussian framework. More precisely, we can for-
mulate the objective function for our problem as the summation of k minus penalized
log-likelihoods, each representing the individual objective function (2.9) of the CovGlasso

36 3| Work development

methodology for each cluster:

k∑
i=1

(
log
(
det
(
Σ̂i

))
+ tr

(
Σ̂

−1

i Si

)
+ λ

∥∥∥P ∗ Σ̂i

∥∥∥
1

)
, (3.5)

where Σ̂i and Si represent the CovGlasso estimator and the sample covariance matrix esti-
mator for the i-th cluster, respectively. The objective function (3.5) of our new methodol-
ogy needs to be collectively minimized, as it is the sum of k CovGlasso objective functions,
each requiring minimization.

Let us start with the .InitClusters subfunction. Our initial step involves replacing
the MRCD estimator with the new CovGlasso estimator, leaving the rest of the function
structured as before.

The CovGlasso estimator is computed using the covglasso function of the covglasso

package itself [7]. It estimates a sparse covariance matrix by minimizing the expression
(2.9), specifically using a fast coordinate descent algorithm to solve the covariance graph-
ical lasso. Notice that a sparse covariance matrix is characterized by a significant portion
of elements being zero or close to zero. In other words, many of the variables have weak or
negligible relationships with each other. The main goal of a sparse estimator is to reduce
computational complexity and improve the stability of covariance matrix estimates by
avoiding the calculation and consideration of all matrix elements.

There is a problem: in high-dimensional settings, the sample covariance matrix, just like
the covariance matrix, will not be full rank, resulting in a degenerate solution. In this
case, we need to set S = S + ϵIp, for some ϵ > 0, thus regularizing the sample covariance
matrix. This procedure has not been directly implemented within covglasso; therefore,
we need to apply it before recalling the function, allowing it to work without any issue.

In detail, we update .InitClusters as follows: while iterating through the cluster ma-
trices, we begin by computing and recording the number of rows and columns for each
matrix. Next, we calculate the cluster center using the sample mean estimator. Subse-
quently, the sample covariance matrix is computed, and regularization is applied if the
number of columns equals or exceeds the number of rows. Finally, we recall covglasso
to perform the CovGlasso estimation, saving the resulting estimated covariance matrix of
each cluster in the sigma array within the iter object, which is then returned as final
step.

At this point, we would have the .InitClusters subfunction arranged and ready to be
recalled within the main function during the initialization phase. However, we decide to

3| Work development 37

further enhance it by introducing another type of initial cluster assignment, which is more
pertinent and precise than the previously employed random assignment.
This is the assignment made through the application of the TCLUST algorithm on a subset
of the original variables. Specifically, we generate a vector containing 10 random indices
from 1 to p, and then we extract the columns corresponding to those indices from the
data matrix, thus obtaining a submatrix of observations composed of 10 randomly selected
columns. Subsequently, we apply the tclust function to the newly created submatrix.
For α, we use the same value provided as input to the main function. We set the constant c
controlling the strength of the constraint (1.2) to 50 through trial and error. A lower value
caused excessive restriction on the eigenvalues of scatter matrices, resulting in warnings
and errors during algorithm execution. Finally, the result of the initial cluster assignments,
which already includes the designation of nα trimmed observations as outliers, is stored
in the corresponding vector of the iter object, and the subsequent computation of cluster
weights is done as already explained above. It is important to note that, here as well, it
is necessary to repeat the initialization procedure many times and choose the best result
in order to avoid falling into local minima or suboptimal solutions.

Using TCLUST on a subset of variables from the data matrix for the initial assignment
of observations to clusters, instead of employing a completely random initial assignment,
offers some advantages:

1. Improved initialization:
It can yield better initialization as it takes potential data structures into account.

2. Computational efficiency:
It can make our final algorithm less computationally intensive, as it brings to a
reduced number of iterations required at each initalization, given that we have a
better starting point compared to the random one.

3. Reduced randomness:
Complete random assignment may introduce a degree of randomness in initial cluster
assignments, which could impact result stability and repeatability. Using TCLUST
on a subset of variables might reduce this randomness.

Regarding the .estimClustPar subfunction, responsible for computing the mean vector
and the covariance matrix for each provided cluster, the only segment requiring modifica-
tion is the one internal to the loop that iterates through cluster matrices. We make this
update by following the same approach carried out in the previous subfunction for the ini-
tial cluster parameter estimation. Furthermore, the constraints on the minimum cluster

38 3| Work development

size remain unchanged. So, if a cluster contains at least three data points, the CovGlasso
estimation of covariance matrices is executed. However, if a cluster is empty or has less
than three observations, the CovGlasso estimation is skipped, and subsequently, that ini-
tialization will not be passed for evaluation as the best initialization in the main function.

The .findClustAssig subfunction remains exactly the same, while the .calcobj sub-
function, responsible for computing the objective function values for our problem, needs
to be entirely rewritten. In particular, our objective function is defined as the summation
of k minus penalized log-likelihoods, each representing the individual objective function
(2.9) of the CovGlasso methodology for each cluster.

In detail, .calcobj works as follows:

1. It initializes the objective function value as zero.

2. It iterates through each cluster and, within each iteration, it checks if the determi-
nant of the covariance matrix for the current cluster is non-zero, indicating that the
matrix is invertible and well-defined.

3. If the determinant is non-zero, it computes the logarithm of the determinant, the
trace term and the sparsity penalty term, which correspond to the three distinct
components in expression (2.9).

4. The computed terms are added (by summation) to the ongoing objective function
value.

5. Conversely, if the determinant is equal to zero, the objective function value is set to
infinity, the loop breaks prematurely, and subsequently, this initialization will not
be passed for evaluation as the best initialization in the main function.

6. The loop continues to iterate through the clusters unless it is stopped prematurely.
Once the iteration is completed, the iter object, updated with the final objective
function value, is returned.

The very last thing to do is to update the main function, called .covglasso_in_tclust.
It maintains the same structure as the previously developed .mrcd_in_tclust, with one
significant adjustment.
It concerns modifying the final condition for identifying the best initialization as follows:
if the current initialization is the first one or if the current objective function value is lower
than the objective function value of the best initialization encountered so far, the structure

3| Work development 39

of the best initialization is updated with the structure of the current initialization. This
modification aims to minimize the objective function of our problem, ensuring that the
vector storing the objective function values for each iteration of the best initialization
decreases. Since the objective function (2.9) of the CovGlasso estimation problem required
minimization, the same principle applies to the objective function of our new methodology,
as it is the sum of k minus penalized log-likelihoods in the form of (2.9), which therefore
need to be collectively minimized.

It is important to note that, for .covglasso_in_tclust, we introduce two additional in-
put parameters compared to those of .mrcd_in_tclust. These parameters are λ, which
is the lasso regularization parameter, and P , which represents the lasso regularization
matrix, both seen in expression (2.9). Typically, when applying the CovGlasso estima-
tion, the most suitable λ is often determined through the use of BIC or EBIC within its
algorithm execution. However, in our case, due to the iterative nature of the algorithm
where CovGlasso is employed repeatedly, λ needs to be set beforehand and consistently
maintained across all EM iterations. This ensures the constancy of λ in the objective
function value computation throughout the iterative process.

At this point, we have two different approaches for high-dimensional robust clustering:
a heuristic methodology and a likelihood-based one. Regarding the first methodology,
in the next session we will introduce a final improvement to better address the issue of
robustness to outliers.

3.4. An improvement to the heuristic methodology:

replacing the MRCD estimator with the Ledoit-

Wolf estimator

In the previously developed heuristic methodology, where the MRCD estimator has been
incorporated into the TCLUST algorithm, a single issue arises: this approach presents a
doubly-robust extension. Outliers are effectively addressed not only within the clustering
procedure itself, but also through the modified M-step that makes use of MRCD to com-
pute the regularized covariance matrices, exploiting its robust-based estimation.
Therefore, our intention is to replace the MRCD estimator with the linear shrinkage es-

40 3| Work development

timator proposed by Ledoit and Wolf. This estimator can be seen as a particular case
of the former, where the subset H in equation (2.3) corresponds to the entire sample [3],
and the target matrix T is the identity matrix. Moreover, unlike the MRCD estimation,
during the shrinkage estimation of Ledoit-Wolf the data does not need to be initially
standardized. The Ledoit-Wolf estimator lacks robustness to outliers, as it incorporates
them in its computation. Nonetheless, considering its incorporation into the TCLUST
algorithm, it becomes logical to use it, given that the robustness is already enforced by
the TCLUST procedure.

We thus proceed by replacing CovMrcd, previously used for the MRCD estimation, with
linearShrinkLWEst, responsible for linear shrinkage Ledoit-Wolf estimation, within the
.InitClusters and .estimClustPar subfunctions.

The linearShrinkLWEst function, which is derived from the cvCovEst package [2], com-
putes an asymptotically optimal convex combination of the sample covariance matrix and
the identity matrix, effectively shrinking the eigenvalues of the sample covariance matrix
towards the identity. It takes only the data matrix as input and provides an output matrix
corresponding to the Ledoit-Wolf linear shrinkage estimate of the covariance matrix.

The main function, now renamed as .LedoitWolf_in_tclust, will retain the same struc-
ture as .mrcd_in_tclust, with the only change being the improvement of the initializa-
tion procedure, as done for CovGlasso in TCLUST.

Finally, we end up with two distinct algorithms for robust clustering on high-dimensional
data: a heuristic methodology, which is implemented in .LedoitWolf_in_tclust, and
a likelihood-based methodology, which is developed in .covglasso_in_tclust. We now
want to test and compare our two methods, first on simulated data, that are easier to
handle, and then on real data, aiming to solve a real-world problem. We will address
these issues in the next chapter.

41

4| Data analysis

In this chapter we will test and compare the two methodologies we previously developed
for robust clustering in high-dimensional data scenarios. To comprehensively evaluate the
performance of our algorithms, our initial approach involves their application to a sim-
ulated dataset, where the data are generated from multivariate Gaussian distributions.
Subsequently, we expand our analysis to real-world datasets, with a specific focus on
addressing the challenge of recognizing handwritten digits. Our primary objective is to
validate the effectiveness of our algorithms in efficiently grouping digits into meaningful
clusters, while also accurately identifying those marked as outliers.

4.1. Simulated data

For the evaluation of our algorithms on a simulated dataset, we generate synthetic data,
simulating a three-component mixture distribution, with each component modeled as a
Gaussian distribution. Additionally, we introduce outliers by using a separate Gaussian
component.

We first define the dimensionality of our data, opting for a high-dimensional setting with
50 features. This choice introduces complexity into the data, making the scenario more
similar to a real-world one. We then decide to use 95 non-trimmed observations, and
we need to determine how many observations come from each distribution. For this
purpose, we exploit the multinomial function, providing as input the desired number of
random samples to be generated (95) and a vector of three components (0.4, 0.3 and
0.3), each representing the probability of originating from a specific distribution. This
function generates a matrix with 3 rows and 95 columns, where each element is 1 if
the i-th observation originates from the j-th distribution, and 0 otherwise, based on the
probability vector provided as input. The function that sums by row is then employed
to compute the sum of elements in each row of the matrix. It is important to note that

42 4| Data analysis

the sum of elements in a row corresponds to the number of observations originating from
the distribution associated to that row of the matrix. Therefore, we ultimately obtain a
new vector with three components, indicating how many times each distribution is used
to generate the observations.

Our approach involves the employment of different mean vectors for each distribution,
while maintaining the use of the same covariance matrix across all of them. This strategic
choice results in the three distributions sharing the same shape, indicating an identical
data dispersion structure. However, due to the difference in mean vectors, they have
distinct locations within the feature space. Specifically, we are adopting mean vectors for
the three distributions where the values of their first two components are closely situated:
1 and 2 for the first distribution, 3 and 4 for the second, and 5 and 6 for the third. As
a shared covariance matrix for all distributions, we are selecting a diagonal matrix with
50 equidistant values ranging from 0.1 to 1. Similarly, to generate the 5 outliers to be
added to our data, we employ another Gaussian distribution. This approach enables us to
achieve a clear visualization of our simulated data in the first two dimensions of the feature
space. Indeed, it results in the generated data points from the distinct distributions being
closely situated and distinctly separated from each other, as shown in the scatter plot
presented in Figure 4.1.

Figure 4.1: Simulated data in the first two dimensions of the feature space.

The scatter plot in Figure 4.1 illustrates the simulated data points in the first two dimen-
sions of the feature space. Each data point is colored according to its group membership:

4| Data analysis 43

green for observations originating from the first distribution, red for those from the second
distribution, blue for those from the third distribution, and black for outliers.

At this point, we are ready to apply our two robust high-dimensional clustering algorithms
to the just generated and visualized simulated data. We accomplish this by invoking the
previously implemented functions .LedoitWolf_in_tclust and .covglasso_in_tclust.

Here are the shared input parameters for both functions:

• Dataset composed of our simulated data, created combining the observations gen-
erated from the four distinct Gaussian distributions by rows.

• Number of clusters we are searching for. We therefore set k = 3.

• Proportion of trimmed observations. Since we have 5 outliers out of a total of 100
observations, we set α = 0.05.

• Number of random initialization to be performed. We initially decide to use 30 ran-
dom initializations. However, subsequent empirical investigations reveal the com-
putational efficiency of the algorithm, prompting us to increase its value to 50. This
decision is indeed justified, as a higher value allows for a more precise exploration
of various initial conditions, thereby increasing the probability of identifying the
optimal clustering configuration. However, it is important to note that, during the
transition to real-world scenarios, computational demand increases, necessitating a
reduction in its value to maintain computational feasibility.

• Maximum number of concentration steps to be performed. At first, we choose a
relatively high value of 20. This decision is made considering that concentration
steps cease if two consecutive steps result in the same data partition, even before
reaching this value. However, further empirical investigations demonstrate that the
algorithm primarily converges within around ten iterations, rendering a higher value
unnecessary. Therefore, we adjust it to 10.

However, .covglasso_in_tclust has two additional input parameters:

• Lasso regularization parameter. We select λ = 8 using trial-and-error experimenta-
tion.

• Lasso regularization matrix. We opt for an all-ones matrix, which equalizes the
penalty across all elements of the covariance matrix. In other words, by employing
this type of regularization matrix, we implicitly apply the same level of regularization
to every element of the covariance matrix, thus encouraging a sparser pattern.

44 4| Data analysis

In our evaluation, we find out that both algorithms achieve a remarkable 100% accuracy
rate in identifying outliers. This demonstrates the robustness of our methodologies in
distinguishing anomalous data points from the primary clusters, which will be a crucial
aspect in real-world scenarios.
Furthermore, the assignment of data points to their respective clusters is consistently ac-
curate across both algorithms. Indeed, in every test scenario, each data point is precisely
assigned to the appropriate cluster without error. These precise cluster assignments un-
derscore the ability of our methodologies to recognize underlying patterns and groupings
within the data, even in presence of noise and outlying units.

Finally, we are particularly interested in the resulting clustering configurations.

Figure 4.2: Clustering configuration achieved by Ledoit-Wolf in TCLUST.

In Figure 4.2, we provide a visual representation of the clustering configuaration accom-
plished by Ledoit-Wolf in TCLUST. Each data point is represented and colored based on
its cluster membership: green plus signs for observations assigned to the first cluster, red
triangles for those assigned to the second cluster, blue crosses for those assigned to the
third cluster, and black circles for observations identified as outliers. It is important to
note that each cluster assumes an elliptical form.

4| Data analysis 45

Figure 4.3: Clustering configuration achieved by CovGlasso in TCLUST.

In Figure 4.3, we show the clustering configuration obtained using CovGlasso in TCLUST.
In this visualization, each data point is assigned to a specific elliptical-shaped cluster, and
is color-coded based on its cluster membership, as previously described.

In summary, the evaluation of our robust clustering algorithms on simulated data show-
cases their exceptional performance. Each data point is precisely assigned to the cluster
corresponding to its original distribution, while anomalous units are accurately identified
as outliers, resulting in an outstanding 100% accuracy for both cluster assignments and
outliers detection. The visual representations in Figures 4.2 and 4.3 depict the same es-
timated clusters, with slightly different elliptical shapes, due to the distinct covariance
matrix estimation techniques employed by each algorithm.

These outcomes underscore the robustness and effectiveness of our methodologies when
dealing with high-dimensional simulated data. Now, our focus shifts to real-world data,
which poses greater challenges due to their intricacies. Specifically, in the upcoming
section, we will address the problem of recognizing handwritten digits, which is very
challenging due to the high dimensionality of the data, the limited separation between
classes and the potential presence of outlying units.

46 4| Data analysis

4.2. Real-world data: the handwritten digits recog-

nition problem

In this section, we explore the application of our robust clustering algorithms to real-
world high-dimensional data. We specifically focus on two datasets designed for recog-
nizing handwritten digits, which are subsets of the well-known USPS dataset available
through the UCI Machine Learning Repository. The original one includes 7291 images of
handwritten digits categorized into 10 classes representing digits from 0 to 9.

Figure 4.4: Visual representation of digits 0 to 9 from the handwritten digits dataset.

Every image is partitioned by a 16× 16 grid, resulting in 256 total squares. Each square
then represents a distinct variable in the dataset, capturing the pixel count of that spe-
cific portion of the image. In particular, variables assume values spanning from 0 to 1. A
value of 0 denotes an entirely white pixel, while a value of 1 signifies a completely black
pixel. Intermediate values encompass a spectrum of gray shades, ranging from very pale
gray, almost white, for values close to 0, to very deep grey, nearly black, for values near 1.

4| Data analysis 47

Figure 4.5: Visual representation of a randomly selected handwritten digit labeled as 6.

In Figure 4.5, we can observe a randomly selected handwritten digit, specifically labeled
as 6. Each of the 256 squares is filled with its corresponding color, which may be white,
black or a distinct shade of gray, as illustrated in the legend.

We start our analysis of the USPS dataset by plotting the multivariate means for all the
digits. This initial step aims to identify both the groups of digits exhibiting the highest
similarities among themselves and groups of digits that are more easily distinguishable.
Our goal is to apply our algorithms to two distinct subsets of the original USPS dataset.
One subset comprises groups of digits that are clearly distinguishable from one another,
while the other subset consists of groups of digits that are more similar to each other.
This approach allows us to assess the robustness and effectiveness of our algorithms for
both less and highly complex real-world scenarios. In the more complex one, in addition
to the challenges of high-dimensional data and presence of outliers, there arises also the
issue of limited separation between classes.

48 4| Data analysis

Figure 4.6: Multivariate means for all digits within the USPS dataset.

It is evident from Figure 4.6 that digits 0, 1 and 4 exhibit clearly distinct behaviors, each
diverging significantly from the others, while digits 3, 5 and 8 display remarkably similar
multivariate means, as also stated in [4].

Firstly, we focus our analysis on digits 0, 1 and 4, which, based on the aforementioned
observations, are expected to be less complex for clustering. Subsequently, we investigate
digits 3, 5 and 8, which present a more challenging clustering task due to their closely
aligned multivariate means. This resemblance arises from the inherent similarity in the
handwriting of these three digits, as displayed in Figure 4.7.

Figure 4.7: Visual representation of similar handwritten digits labeled as 3, 5 and 8.

4| Data analysis 49

In detail, our approach involves applying our two methodologies, Ledoit-Wolf in TCLUST
and CovGlasso in TCLUST, to two separate datasets of handwritten digits. One dataset
includes digits 0, 1 and 4, while the other comprises digits 3, 5 and 8. Our primary
objective is to evaluate the robustness and effectiveness of these algorithms in addressing
the challenges presented by each dataset. Furthermore, a comparative analysis of the out-
comes generated by these two algorithms will be conducted to identify any performance
disparities.

We start the analysis with the digits 0, 1 and 4. We create a dataset by randomly selecting
50 data points from each of these digit subsets, while also including 5 outliers from the
subset of digits distinct from the previous ones.
Given the intricate high-dimensional nature of the data, it is imperative to carefully man-
age the feature space our algorithms operate within. To mitigate the potential adverse
effects of uninformative features, we perform a variable selection step aimed at reducing
the dimensionality of our dataset by removing irrelevant features. This preliminary se-
lection involves identifying variables with variances exceeding a specific threshold. We
determine this threshold through a process of trial and error, ultimately setting it at 0.50,
which results in retaining around 130 features out of the total 256.
We generate a scatter plot to visualize the two-dimensional representation of the data
points, colored according to their respective labels. By experimenting with various pairs
of variables, it becomes apparent that representing data in only two dimensions does not
yield clear insights due to visual limitations. Indeed, data points of different colors are
not distinctly separated as was the case with the simulated data; instead, they appear
paired and mixed with each other. It is worth noting that this will be even more evident
when considering the digits 3, 5 and 8, due to their high similarity and, consequently,
their limited separation.

To evaluate the quality of the results obtained from applying our robust clustering method-
ologies, we will use two similarity measures between the estimated labels and the true
labels of the digits. These measures are:

• Overall accuracy: it is computed as the sum of correct matches divided by the
total number of observations, which is 155 in our case (we are also including the
outliers in the evaluation). The overall accuracy of the clustering model is computed
as the sum of correct matches divided by the total number of data points, quantifying
the degree of correspondence between the estimated and the true labels.

50 4| Data analysis

• Adjusted Rand Index (ARI): it is a validity index used to evaluate the similarity
between two clustering assignments, such as the labels estimated by a clustering
algorithm and the true labels. This index takes into account all pairs of samples
and assesses how well the clustering assignments align with the true labels. The
ARI ranges from -1 to 1, with the following interpretations:

– A value of 1 indicates a perfect match between the clustering assignments and
the true labels.

– A value of 0 suggests that the assignments are, on average, no better than
random assignments.

– A value of -1 indicates that the clustering assignments are completely discor-
dant with the true labels.

The term "adjusted" in ARI reflects its accounting for random similarities that
naturally occur in clustering assignments. This attribute makes ARI a more reliable
index compared to unadjusted measures, especially in situations with numerous
clusters. In summary, the Adjusted Rand Index offers a way to assess how effectively
a clustering algorithm has assigned data into clusters compared to the reference
labels. A positive value indicates a degree of consistency between the estimated and
the true labels, while negative values signify that the clustering assignments are less
effective than random assignments.

Below, we provide the two contingency tables, displaying comparisons between the cluster
labels estimated by Ledoit-Wolf in TCLUST and the true labels (table on the left), as
well as between the cluster labels estimated by CovGlasso in TCLUST and the true labels
(table on the right).

group 0 1 4 out
0 45 3 2 0
1 0 50 0 0
4 1 9 40 0

out 0 0 0 5

(a) Ledoit-Wolf in TCLUST

group 0 1 4 out
0 48 0 2 0
1 0 49 1 0
4 0 2 48 0

out 0 0 0 5

(b) CovGlasso in TCLUST

Table 4.1: Contingency tables for comparisons between estimated cluster labels and true
labels (digits 0, 1 and 4).

4| Data analysis 51

Notably, both methodologies excel in identifying the five anomalous units present in the
processed dataset, accurately labeling them as outliers, as shown in Table 4.1. This show-
cases their robustness in detecting unusual instances within the data.
In terms of performance, both algorithms exhibit highly satisfactory clustering results.
Using Ledoit-Wolf in TCLUST yields an overall accuracy of 90.3% and ARI of 0.729.
Impressively, the CovGlasso in TCLUST achieves even better performance, boasting an
overall accuracy of 96.8% and ARI of 0.905.
In conclusion, these remarkably high metrics values affirm the capability of our algorithms
in accurately grouping digits into clusters aligned with the true labels, while also effec-
tively addressing the presence of outliers. This accomplishment underscores their capacity
to tackle the challenge of robust clustering in the context of high-dimensional real-world
data. Notice that such a result would not have been achievable using TCLUST, due to
the high dimensionality of the data.

We will now analyze the outcomes obtained by employing our two robust clustering
methodologies in addressing a more intricate high-dimensional real-world data challenge.
Specifically, we focus on digits 3, 5 and 8, which, as previously demonstrated, display no-
tably similar behaviors. This similarity poses a heightened challenge to robust clustering
due to their limited distinction. We follow the same approach as in the previous scenario,
creating a dataset consisting of a total of 155 data points. Out of these, 50 data points
are extracted from each subset representing digits 3, 5 and 8. Additionally, 5 data points
are randomly sampled from all the other digits, distinct from the aforementioned ones.
Subsequently, we establish a variance threshold (consistently set at 0.50), and only retain
features exceeding this threshold. As before, this results in approximately 130 features.
We then apply our two algorithms to this refined dataset, employing identical input pa-
rameter values as in the previous case.

group 3 5 8 out
3 29 9 12 0
5 16 29 5 0
8 9 11 30 0

out 0 0 0 5

(a) Ledoit-Wolf in TCLUST

group 3 5 8 out
3 48 2 0 0
5 29 19 2 0
8 4 10 36 0

out 0 0 0 5

(b) CovGlasso in TCLUST

Table 4.2: Contingency tables for comparisons between estimated cluster labels and true
labels (digits 3, 5 and 8).

52 4| Data analysis

Table 4.2 illustrates two contingency tables that present comparisons between the cluster
labels estimated by Ledoit-Wolf in TCLUST and the true labels (left table), as well as
between the cluster labels estimated by CovGlasso in TCLUST and the true labels (right
table). The first algorithm achieves an overall accuracy of 60.0% (correctly classifying 93
data points out of a total of 155) with ARI of 0.172. Differently, using the second one
results in an accuracy of 69.7% (108 data points correctly classified out of 155) and ARI
of 0.385. Notably, both algorithms continue to accurately detect all five outlying units,
underscoring their robustness in detecting unusual instances within the dataset.

In terms of performance, the results obtained with CovGlasso in TCLUST are better
than those achieved with Ledoit-Wolf in TCLUST, as they have achieved higher overall
accuracy and ARI. These outcomes align with our initial assumptions, especially on the
nature of the algorithms. Specifically, the CovGlasso in TCLUST methodology, which
is grounded in a Gaussian framework, was expected to yield better results compared to
Ledoit-Wolf in TCLUST, an heuristic methodology not rooted in any statistical frame-
work. This expectation is motivated by the fact that likelihood-based methodologies have
the ability to more effectively capture the underlying distributional characteristics and
intricacies of the data. This advantage is particularly crucial when dealing with complex,
high-dimensional data, such as that representing handwritten digits.

The performance of CovGlasso in TCLUST are satisfactory, given the high complexity of
the problem we are tackling. This complexity arises from both the high dimensionality
of the data and the presence of anomalous units, as well as the substantial similarity
among the three considered classes. Specifically, examining the right outcome in Table
4.2, which represents the matching counts for the CovGlasso in TCLUST methodology,
i.e. the better performing one, we initially observe that the true 3’s are mostly classified
correctly. Indeed, out of 50, 48 are accurately estimated as 3’s. Similarly, the true 8’s are
also well classified, as 36 out of 50 are correctly estimated as 8’s. The 5 anomalous units,
as previously mentioned, are correctly identified as outliers. However, an issue arises with
the 5’s. In fact, the true 5’s are mostly assigned to the estimated cluster of 3’s, with 29
out of 50 being estimated as 3’s, while only 19 estimated as 5’s. This occurs because, as
also observed in Figure 4.7, many observations labeled as 3’s and 5’s are virtually inter-
changeable due to their almost identical handwritten forms. Consequently, the algorithm
struggle in distinguishing between these two digits for samples showing an absolute simi-
larity. Nevertheless, beyond this, they effectively address the other challenges described,
confirming their robustness and efficiency in clustering high-dimensional real-world data
with the potential presence of outliers.

4| Data analysis 53

To conclude, let us go deeper into the final results obtained with CovGlasso in TCLUST,
which is the methodology yielding the best outcomes in both clustering digits 0, 1 and 4,
as well as digits 3, 5 and 8. Specifically, we want to verify that the objective function of
the best initialization of the algorithm is actually decreasing, according to the definition
of our methodology. We aim also to ascertain that the estimated covariance matrices for
the three identified clusters are sparse, as expected due to the employment of the sparse
CovGlasso estimator.

Objective function decrease:
Following the formulation of our likelihood-based methodology, we expect that, for each
initialization of our algorithm, the value of the objective function decreases. This expecta-
tion is rooted in the definition of our objective function, where we search for the clustering
that minimizes the summation of k minus penalized log-likelihoods, each representing the
individual objective function of the CovGlasso methodology for each cluster. To verify
this reduction in the objective function throughout iterations of the algorithm, we visual-
ize the values stored in loglik_vec, a vector containing the objective function values for
each iteration of the best initialization, introduced in Chapter 3. This best initialization
is defined as the one that results in the lowest objective function value at the end of the
entire algorithmic process, ultimately leading to our final clustering configuration.

(a) Clustering digits 0, 1 and 4 (b) Clustering digits 3, 5 and 8

Figure 4.8: Graphical behavior of the objective function for the best initialization.

54 4| Data analysis

From both plots in Figure 4.8, it is evident that there is a clear decreasing trend in the
objective function. On the left side (robust clustering of digits 0, 1 and 4), we can observe
convergence in 8 iterations, as the loglik_vec consists in 8 values. On the right side
(robust clustering of digits 3, 5 and 8), convergence is instead achieved in 5 iterations.
Particularly, it is important to note the exponential decrease in the values of the objective
function for both cases, underscoring the successful performance of our algorithm. Indeed,
the significant drops in the initial algorithm iterations, due to its starting point being far
from the optimal solution, become smaller as the algorithm approaches convergence.

Covariance matrices sparsity:
Finally, we verify that each cluster obtained using CovGlasso in TCLUST exhibits the
expected sparsity in its covariance matrix, as our methodology employs the CovGlasso
approach for sparse covariance matrix estimation. Therefore, we create an individual
plot for each covariance matrix to visually depict their sparsity patterns, following the
approach outlined in [5]. These plots display a checkerboard pattern, representing non-
zero elements as black squares and zero elements as white squares.

In the following Figures 4.9 and 4.10, we will present these types of plots, providing a
visual representation of the final covariance matrices estimated by our algorithm for the
three identified clusters: 0, 1, 4 (Figure 4.9) and 3, 5, 8 (Figure 4.10). These plots clearly
demonstrate the sparsity of our covariance matrices across all clusters.

4| Data analysis 55

Figure 4.9: Sparsity plot of the estimated covariance matrices. The top left matrix
corresponds to the cluster of 0’s, the top right to the cluster of 1’s, and the bottom
to the cluster of 4’s.

56 4| Data analysis

Figure 4.10: Sparsity plot of the estimated covariance matrices. The top left matrix
corresponds to the cluster of 3’s, the top right to the cluster of 5’s, and the bottom to the
cluster of 8’s.

57

5| Conclusions and future

developments

This thesis proposes a solution to the very challenging problem of robust clustering for
high-dimensional data. In the first two chapters, we explained the TCLUST algorithm,
i.e., the one that underlies our new methodology, and introduced three regularized es-
timators for high-dimensional covariance matrices. In the third chapter, we provided a
detailed description of the implementation process for our two methodologies: the heuris-
tic one, derived from the incorporation of the Ledoit-Wolf linear shrinkage estimator into
TCLUST, and the likelihood-based one, obtained by employing the sparse CovGlasso es-
timator into TCLUST. In the fourth chapter, we applied our two methodologies to both
simulated and real-world data, to test and evaluate them. In the case of the simulated
dataset, both of our algorithms demonstrated exceptional performance by correctly as-
signing all data points to their respective clusters and identifying all anomalous units
within the data. For the dataset of digits 0, 1 and 4, both algorithms performed very
well, achieving high overall accuracy and ARI scores. However, on the dataset containing
digits 3, 5 and 8, CovGlasso in TCLUST outperformed Ledoit-Wolf in TCLUST, produc-
ing satisfactory results despite the inherent challenges of the task, which includes high
data dimensionality, the presence of outliers, and significant similarity between classes. In
conclusion, CovGlasso in TCLUST emerges as a robust solution for addressing clustering
challenges in real-world high-dimensional data.

Now, let us explore potential enhancements and developments for this likelihood-based
methodology.

1. Exploration of additional covariance matrices estimators:
We should investigate the effectiveness of additional high-dimensional covariance
matrices estimators, in addition to those already integrated into our methodologies.
This exploration may involve the examination of emerging approaches or the cus-
tomization of existing estimators to address the specific challenges associated with
high-dimensional data.

58 5| Conclusions and future developments

2. Performance evaluation on distinct high-dimensional real-world data:
We should expand the evaluation of our algorithm to encompass a broader spectrum
of complex real-world data spanning various domains, extending beyond handwrit-
ten digit recognition. This expansion may involve applying the algorithm to datasets
from various fields such as biomedicine, finance and other relevant domains. By do-
ing so, we can acquire a more comprehensive understanding of its applicability and
performance across a multitude of practical scenarios.

3. Robustness evaluation at high contamination levels:
We should investigate how our algorithm performs under higher contamination lev-
els, particularly when outliers are widespread, and develop strategies to effectively
address these scenarios. By prioritizing robustness in these extreme conditions, we
can enhance the usefulness of the algorithm in practical applications where data
quality is a critical factor.

4. Search for optimal lambda value:
We should search for the optimal lambda value to use as an input parameter in
our algorithm. We could employ the approach outlined in [5], where a grid of 100
equispaced elements for the penalty term lambda is considered, with lower and
upper extremes set as in that paper. We then seek the lambda that yields the best
final result, meaning the one that leads to the lowest objective function value at the
end of the algorithm execution.

5. Employment of state-of-the-art visualization techniques:
We should employ advanced visualization techniques tailored for high-dimensional
contexts. These techniques would play a crucial role in effectively representing
clustering results, enhancing the interpretability of outcomes, and facilitating the
understanding of complex data structures. By investing in state-of-the-art visualiza-
tion tools, we can provide valuable insights into the performance and characteristics
of our algorithm, making it more accessible and insightful for practitioners.

6. Exploration of hybrid approaches:
We should try to integrate our algorithm with other machine learning or clustering
approaches, aiming for a methodology that, while more computationally expensive,
is generally more performing. One common hybrid approach is ensemble clustering,
where multiple clustering algorithms are applied independently, and their results are
combined together in a meaningful way. By exploring the potential for hybridization,
we can discover new avenues for improving clustering outcomes and advancing the
versatility and effectiveness of our methodology.

59

Bibliography

[1] J. Bien and R. J. Tibshirani. Sparse estimation of a covariance matrix. Biometrika,
page 807–820, 2011.

[2] P. Boileau, N. Hejazi, B. Collica, J. Liu, M. van der Laan, and S. Dudoit. Package
‘cvcovest’. 6 2023.

[3] K. Boudt, P. J. Rousseeuw, S. Vanduffel, and T. Verdonck. The minimum regularized
covariance determinant estimator. Statistics and Computing, 30:113–128, 2020.

[4] C. Bouveyron, G. Celeux, B. Murphy, and A. Raftery. Model-based Clustering and
Classification for Data Science, with Applications in R - Chapter 8, volume 4 of 50.
Cambridge University Press, 6 2019. ISBN 9781108644181.

[5] A. Casa, A. Cappozzo, and M. Fop. Group-wise shrinkage estimation in penalized
model-based clustering. Journal of Classification, 39:648–674, 10 2022.

[6] D. Donoho. High-dimensional data analysis: The curses and blessings of dimension-
ality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64
(4), 2000.

[7] M. Fop. Package ’covglasso’. 10 2022.

[8] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate opti-
mization. The Annals of Applied Statistics, 1(2):302–332, 2007.

[9] H. Fritz, L. A. Garcìa-Escudero, and A. Mayo-Iscar. A fast algorithm for robust
constrained clustering. Computational Statistics and Data Analysis, pages 124–136,
11 2012.

[10] H. Fritz, L. A. Garcìa-Escudero, and A. Mayo-Iscar. tclust: An r package for a
trimming approach to cluster analysis. 12(47):1–26, 5 2012.

[11] H. Fritz, L. A. Garcìa-Escudero, and A. Mayo-Iscar. Package ’tclust’. 3 2023.

[12] L. A. Garcìa-Escudero, A. Gordaliza, C. Matràn, and A. Mayo-Iscar. A general

60 5| BIBLIOGRAPHY

trimming approach to robust cluster analysis. The Annals of Statistics, 36(3):1324–
1345, 6 2008.

[13] R. Grübel. A minimal characterization of the covariance matrix. Metrika, 35(1):
49–52, 1988.

[14] O. Ledoit and M. Wolf. Honey, i shrunk the sample covariance matrix. The Journal
of Portfolio Management, 30(4):110–119, 2004.

[15] O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance
matrices. Journal of Multivariate Analysis, 88(2):365–411, 2 2004.

[16] J. Raymaekers and P. J. Rousseeuw. The cellwise minimum covariance determinant
estimator. 7 2022.

[17] P. J. Rousseeuw. Multivariate estimation with high breakdown point. Mathematical
Statistics and Applications Vol. B, pages 283–297, 1 1985.

[18] P. J. Rousseeuw and K. V. Driessen. A fast algorithm for the minimum covariance
determinant estimator. Technometrics, 41(3):212–223, 6 1999.

[19] P. J. Rouusseeuw and C. Croux. Alternatives to the median absolute deviation.
Journal of American Statistical Association, 88(424):1273–1283, 12 1992.

[20] V. Todorov. Package ’rrcov’. 6 2023.

[21] V. Todorov and P. Filzmoser. An object-oriented framework for robust multivariate
analysis. Journal of Statistical Software, 32(3):1–47, 10 2009.

[22] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of optimization theory and applications, 109(3):475–494, 6
2001.

[23] H. Wang. Coordinate descent algorithm for covariance graphical lasso. Statistics and
Computing, 24:521–529, 2013.

[24] T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
The Annals of Applied Statistics, 2(1):224–244, 2008.

61

A| Appendix

Proof of Proposition 1.1

The main novelty of this algorithm, compared to the one in [12], is how constraints on
the eigenvalue ratio are enforced. In particular, the algorithm proposed in [12] constrains
eigenvalues by solving the following minimization problem:

(
d∗11, d

∗
12, . . . , d

∗
jl, . . . , d

∗
kp

)
7→

k∑
j=1

nj

p∑
l=1

(
log
(
d∗jl
)
+

djl
d∗jl

)
, (A.1)

under the restriction (
d∗11, d

∗
12, . . . , d

∗
jl, . . . , d

∗
kp

)
∈ Λ,

in which Λ is the cone defined by

Λ =
{
d∗jl : d

∗
jl ≤ c · d∗rs for every j, r ∈ {1, . . . , k} and l, s ∈ {1, . . . , p}

}
. (A.2)

This is clearly a more complex problem than minimizing (1.6), as its complexity tremen-
dously increases with the number of clusters k and the dimension p. The problem of
minimizing (A.1) in Λ was translated into a quadratic programming problem, which was
approximately solved by recursive projections onto cones. These recursive projections
must be carried out in each concentration step and, thus, the algorithm becomes ex-
tremely slow and even unfeasible for moderately high values of k and/or p. Moreover,
there was a mistake in the algorithm proposed in [12], as the term nj in (A.1) was omitted
and, thus, the algorithm proposed there can only be applied to similarly sized clusters.

62 A| Appendix

To prove the proposition, let us consider the spectral decomposition of the sample covari-
ance matrices of observations given by:

Tj =
1

nj

∑
i∈Rj

(xi −mj) (xi −mj)
T = UT

j DjUj, (A.3)

where Uj are orthogonal matrices and Dj = diag (dj1, dj2, . . . , djp) are diagonal matrices.
Let Sj be the optimally constrained scatter matrices maximizing (1.1) under restriction
(1.2) when R0, R1, . . . , Rk are known and parameters mj and pj are those given by (i)
and (ii). Analogously to the previous decomposition of the sample covariance matrices,
matrices Sj can be split up into Sj = VT

j D
∗
jVj with Vj orthogonal matrices and D∗

j =

diag
(
d∗j1, d

∗
j2, . . . , d

∗
jp

)
diagonal matrices. Statement (iii) tells us that eigenvectors of the

optimal constrained matrices Sj must be exactly the same as the eigenvectors of the un-
restricted sample covariance matrices in (A.3) (i.e., we can set Uj = Vj). We just need
to search for the optimal eigenvalues

{
d∗j,l
}

to obtain the optimally constrained scatter
matrices Sj = UT

j D
∗
jUj. Given the eigenvalues {dj,l}, the optimal

{
d∗j,l
}

are obtained by
minimizing expression (A.1) when

{
d∗j,l
}
∈ Λ, with Λ as defined in (A.2).

The proof of this claim follows from the proof of Proposition 4 in [12], with the differ-
ence that expression (A.1) now contains the cluster sizes nj, whereas Eq. (A.1) in the
mentioned article wrongly did not. Note that Λ can be written as:

Λ =
⋃
m≥0

Λm with Λm =
⋃
m≥0

{
d∗jl : m ≤ d∗jl ≤ cm

}
.

Thus, for globally minimizing expression (A.1) in Λ, we need to be able to minimize it
when

{
d∗j,1
}
∈ Λm for every possible value m > 0. The minimization (for a fixed value

of m) can be significantly simplified by considering truncated eigenvalues d∗jl = dmjl like
those in (1.5).

Possible singularities in Tj are not a problem, provided that not all values of djl are 0 at
the same time. Under this mild assumption, it is easy to see that m > 0 and this prevents
that any value of d∗jl drops to 0 (i.e. no singular clusters are obtained after the truncation
of the eigenvalues).

A| Appendix 63

Proof of Proposition 1.2

First, let us rewrite the target function (1.6) as

f : m 7→
k∑

j=1

nj

[
p∑

l=1

(log(m) + djl/m) (djl < m) +

p∑
l=1

(log (djl) + 1) (m ≤ djl < cm)

+

p∑
l=1

(log(cm) + djl/cm) (djl > cm)

]
.

(A.4)

Since f is a continuously differentiable function, it minimizes in one of its critical values,
which satisfies the following fixed point equation:

m∗ =

∑k
j=1 (sj (m

∗) + tj (m
∗) /c)∑k

j=1 njrj (m∗)

with

rj(m) =

p∑
l=1

((djl < m) + (djl > cm)) ,

sj(m) =

p∑
l=1

djl (djl < m) and tj(m) =

p∑
l=1

djl (djl > cm) .

Functions rj, sj and tj take constant values in the intervals (−∞, e1] , (e1, e2] , . . . , (e2k,∞).
Therefore, we only need to evaluate (A.4) at the 2kp+ 1 values m1, . . . ,m2kp+1.

64 A| Appendix

Proof of Theorem 2.1

Generate a p-variate sample Z with p+1 points for which Λ = 1
p+1

∑p+1
j=1 (zi − z̄) (zi − z)T

is nonsingular and z̄ = 1
p+1

∑p+1
j=1 zi. Then z̃i = Λ−1/2 (zi − z̄) has mean zero and covari-

ance matrix Ip. Now compute yi = T1/2z̃i, hence Y has mean zero and covariance matrix
T.
Next, create the artificial dataset

X̃1 =
(
w1

(
x1
1 −m1

)
, . . . , wh

(
x1
h −m1

)
, wh+1y1, . . . , wkyp+1

)
with k = h + p + 1 points, where x1

1, . . . ,x
1
h are the members of H1. The factors wi are

given by

wi =

√

k(1− ρ)/h for i = 1, . . . , h√
kρ/(p+ 1) for i = h+ 1, . . . , k.

The mean and covariance matrix of X̃1 are then

1

k

k∑
i=1

x̃1
i =

√
1− ρ

kh

h∑
i=1

(
x1
i −m1

)
+

√
ρ

k(p+ 1)

p+1∑
j=1

yj = 0

and
1

k

k∑
i=1

x̃1
i

(
x̃1
i

)T
=

1− ρ

h

h∑
i=1

(
x1
i −m1

) (
x1
i −m1

)T
+

ρ

p+ 1

p+1∑
j=1

yjy
T
j

= (1− ρ)S1 + ρT = K1.

The regularized covariance matrix K1 is thus the actual covariance matrix of the combined
data set X̃1. Analogously we construct

X̃2 =
(
w1

(
x2
1 −m2

)
, . . . , wh

(
x2
h −m2

)
, wh+1y1, . . . , wkyp+1

)
where x2

1, . . . ,x
2
h are the members of H2.

X̃2 has zero mean and covariance matrix K2 = (1− ρ)S2 + ρT.

A| Appendix 65

Denote dK1(x̃) = x̃T (K1)
−1 x̃. We can then prove that:

1

k

h∑
i=1

dK1

(
x̃2
i

)
=

1− ρ

h

h∑
i=1

dK1

(
x2
i −m2

)
≤ 1− ρ

h

h∑
i=1

dK1

(
x2
i −m1

)
≤ 1− ρ

h

h∑
i=1

dK1

(
x1
i −m1

)
=

1

k

h∑
i=1

dK1

(
x̃1
i

)

(A.5)

(A.6)

(A.7)

(A.8)

in which the second inequality (A.7) is the condition (2.6). The first inequality (A.6)
can be shown as follows. Put zi = (K1)

−1/2 x2
i and z̃ = (K1)

−1/2m1 and note that
z = (K1)

−1/2m2 is the average of the zi. Then (A.6) becomes

h∑
i=1

∥zi − z∥2 ≤
h∑

i=1

∥zi − z̃∥2 ,

which follows from the fact that z̃ is the unique minimizer of the least squares objective∑k
i=1 ∥zi − c∥2, so (A.6) becomes an equality if and only if z̃ = z which is equivalent to

m2 = m1. It follows that

k∑
i=1

dK1

(
x̃2
i

)
=

h∑
i=1

dK1

(
x̃2
i

)
+

ρ

p+ 1

p+1∑
j=1

dK1 (yj)

≤
h∑

i=1

dK1

(
x̃1
i

)
+

ρ

p+ 1

p+1∑
j=1

dK1 (yj)

=
k∑

i=1

dK1

(
x̃1
i

)
.

Now put

b =

∑k
i=1 dK (x̂2

i)∑k
i=1 dK1 (x̂

1
i)

≤ 1.

66 A| Appendix

If we now compute distances relative to bK1, we find

1

k

k∑
i=1

dbK1

(
x̃2
i

)
=

1

b

1

k

k∑
i=1

dK1

(
x̃2
i

)
=

1

k

k∑
i=1

dK1

(
x̃1
i

)
=

1

k

k∑
i=1

(
x̃1
i

)T
(K1)

−1 x̃1
i

=
1

k

k∑
i=1

(
K

−1/2
1 x̃1

i

)T (
K

−1/2
1 x̃1

i

)
= trace

(
1

k

k∑
i=1

(
K

−1/2
1 x̃1

i

)T (
K

−1/2
1 x̃1

i

))

= trace

(
(K1)

−1/2

(
1

k

k∑
i=1

(
x̃1
i

) (
x̃1
i

)T)
(K1)

−1/2

)
= trace (Ip) = p.

From the theorem by Grübel [13], it follows that K2 is the unique minimizer of det(S)
among all S for which 1

k

∑k
i=1 dS (x̃

2
i) = p (note that the mean of x̃2

i is zero). Therefore

det (K2) ≤ det (bK1) ≤ det (K1) ,

and we can only have det (K2) = det (K1) if both of these inequalities are equalities. For
(A.6), by uniqueness we can only have equality if K2 = bK1. For (A.7), equality holds if
and only if b = 1. Combining both yields K2 = K1. Moreover, b = 1 implies that (A.6)
becomes an equality, hence m2 = m1.
This concludes the proof of Theorem 2.1.

A| Appendix 67

Proof of Theorem 2.2

By a change of variables, problem (2.7) can be rewritten as:

min
ρ,v

E
[
∥Σ∗ −Σ∥2

]
s.t. Σ∗ = ρvI + (1− ρ)S.

With a little algebra, and observing that E[S] = Σ, we can rewrite the objective as

E
[
∥Σ∗ −Σ∥2

]
= ρ2∥Σ− vI∥2 + (1− ρ)2E

[
∥S −Σ∥2

]
. (A.9)

Therefore, the optimal value of v can be obtained as the solution to a reduced problem
that does not depend on ρ : minv ∥Σ − vI∥2. Remember that the norm of the identity
is one by convention, so the objective of this problem can be rewritten as ∥Σ − vI∥2 =

∥Σ∥2 − 2v⟨Σ, I⟩ + v2. The first-order condition is: −2⟨Σ, I⟩ + 2v = 0 . The solution is:
v = ⟨Σ, I⟩ = µ. Replacing v by its optimal value µ in (A.9), we can rewrite the objective
of the original problem as E

[
∥Σ∗ −Σ∥2

]
= ρ2α2+ (1− ρ)2β2.

The first-order condition is: 2ρα2 − 2(1− ρ)β2 = 0. The solution is: ρ = β2/ (α2 + β2) =

β2/δ2. Note that 1− ρ = α2/δ2.
At the optimum, the objective is equal to: (β2/δ2)

2
α2 + (α2/δ2)

2
β2 = α2β2/δ2, and this

completes the proof.

Note that µI can be interpreted as a shrinkage target and the weight β2/δ2 placed on µI

as a shrinkage intensity [15]. The percentage relative improvement in average loss over
the sample covariance matrix is equal to

E [∥S −Σ∥2]− E
[
∥Σ∗ −Σ∥2

]
E [∥S −Σ∥2]

=
β2

δ2
,

same as the shrinkage intensity. Therefore, everything is controlled by the ratio β2/δ2,
which is a properly normalized measure of the error of the sample covariance matrix
S. Intuitively, if S is relatively accurate, then you should not shrink it too much, and
shrinking it will not help you much either; if S is relatively inaccurate, then you should
shrink it a lot, and you also stand to gain a lot from shrinking [14].

68 A| Appendix

Proof of Theorem 2.3

The following lemma will be useful in proving Theorem 2.3; if you are interested in the
proof of the lemma, please refer to [15].

Lemma A.1
If u2 is a sequence of non-negative random variables (implicitly indexed by n, as usual)
whose expectations converge to zero, and τ1, τ2 are two nonrandom scalars, and u2

dt1δt2
⩽

2 (d2 + δ2) a.s., then

E

[
u2

dτ1δτ2

]
→ 0

Now, we consider the first statement of Theorem 2.3:

∥S∗ −Σ∗∥2 =
∥∥∥∥β2

δ2
(m− µ)I +

(
a2

d2
− α2

δ2

)
(S −mI)

∥∥∥∥2 =
=

β4

δ4
(m− µ)2 +

(
a2

d2
− α2

δ2

)2

∥S −mI∥2 + 2
β2

δ2
(m− µ)

(
a2

d2
− α2

δ2

)
⟨S −mI, I⟩ =

=
β4

δ4
(m− µ)2 +

(
a2

d2
− α2

δ2

)2

d2 ⩽ (m− µ)2 +
(a2δ2 − α2d2)

2

d2δ4
.

(A.10)

It is sufficient to show that the expectations of both terms on the right-hand side of Eq.
(A.10) converge to zero.
Now consider the second term. Since α2 ⩽ δ2 and a2 ⩽ d2, note that

(a2δ2 − α2d2)
2

d2δ4
⩽ d2 ⩽ 2

(
d2 + δ2

)
a.s.

A| Appendix 69

Furthermore, since a2−α2 and d2−δ2 converge to zero in quadratic mean, and since α2 and
δ2 are bounded, a2δ2 − α2d2 = (a2 − α2) δ2 − α2 (d2 − δ2) converges to zero in quadratic
mean. Therefore, the assumptions of Lemma A.1 are verified with u2 = (a2δ2 − α2d2)

2,
τ1 = 2, and τ2 = 4. This implies that

E

[
(a2δ2 − α2d2)

2

d2δ4

]
→ 0

The expectation of the second term on the right-hand side of Eq. (A.10) converges to
zero. Going back, ∥S∗ −Σ∗∥ converges to zero in quadratic mean. This completes the
proof of the first statement of Theorem 2.3.
Now consider the second statement:

E
[
∥∥S∗ −Σ

∥∥2−∥∥Σ∗ −Σ∥2 |
]
= E [|⟨S∗ −Σ∗,S∗ +Σ∗ − 2Σ⟩|]

⩽
√

E
[
∥S∗ −Σ∗∥2

]√
E
[
∥S∗ +Σ∗ − 2Σ∥2

] (A.11)

As we have shown above, the first term on the right-hand side of Eq. (A.11) converges to
zero. Given that E

[
∥Σ∗ −Σ∥2

]
is bounded, it also implies that the second term on the

right-hand side of Eq. (A.11) is bounded. Therefore, the product of the two terms on the
right-hand side of Eq. (A.11) converges to zero.
This completes the proof of the second and final statement.

71

List of Figures

4.1 Simulated data in the first two dimensions of the feature space. 42
4.2 Clustering configuration achieved by Ledoit-Wolf in TCLUST. 44
4.3 Clustering configuration achieved by CovGlasso in TCLUST. 45
4.4 Visual representation of digits 0 to 9 from the handwritten digits dataset. . 46
4.5 Visual representation of a randomly selected handwritten digit labeled as 6. 47
4.6 Multivariate means for all digits within the USPS dataset. 48
4.7 Visual representation of similar handwritten digits labeled as 3, 5 and 8. . 48
4.8 Graphical behavior of the objective function for the best initialization. . . 53
4.9 Sparsity plot of the estimated covariance matrices. The top left matrix

corresponds to the cluster of 0’s, the top right to the cluster of 1’s, and the
bottom to the cluster of 4’s. 55

4.10 Sparsity plot of the estimated covariance matrices. The top left matrix
corresponds to the cluster of 3’s, the top right to the cluster of 5’s, and the
bottom to the cluster of 8’s. 56

73

List of Tables

4.1 Contingency tables for comparisons between estimated cluster labels and
true labels (digits 0, 1 and 4). 50

4.2 Contingency tables for comparisons between estimated cluster labels and
true labels (digits 3, 5 and 8). 51

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	TCLUST: a robust constrained clustering algorithm
	Well-conditioned estimators for high-dimensional covariance matrices
	Minimum Regularized Covariance Determinant estimator
	Linear Shrinkage estimator of Ledoit-Wolf
	Sparse CovGlasso estimator

	Work development
	Initial proposal: incorporating the MRCD estimator within TCLUST
	Can the MRCD estimator be reformulated in terms of likelihood?
	A likelihood-based methodology: incorporating the CovGlasso estimator within TCLUST
	An improvement to the heuristic methodology: replacing the MRCD estimator with the Ledoit-Wolf estimator

	Data analysis
	Simulated data
	Real-world data: the handwritten digits recognition problem

	Conclusions and future developments
	Bibliography
	Appendix
	List of Figures
	List of Tables

