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1. Introduction 

Breast arterial calcifications (BACs) are common 

findings in mammograms acquired for breast 

cancer screening. Unlike coronary arterial 

calcifications, they do not cause clinical signs of 

vessel restriction or occlusion, therefore are not 

traditionally mentioned on medical reports. 

Recently BACs presence and intensity have been 

considered as a risk factor of cardiovascular 

disease (CVD) [1]. CVD risk in women is often 

underestimated, and the rate of decline of deaths 

by CVD is lower in woman than in men. This could 

be caused by lack of sex-specific risk factors, thus 

the inclusion of BACs severity in preventive risk 

assessment might improve upon the reduction of 

CVD burden in female population.  

Despite 80.7% of radiologists declare to be aware of 

the correlation between BACs and CVD, only 

61.9% report BACs findings and 20% quantify the 

calcifications severity [1]. This low rate of reports 

is caused by both the lack of a robust method for 

BACs quantification and by the absence of an 

adequate automatic support.  

This work aims at addressing the latter issue by 

developing and validating the technical steps 

needed for BACs automatic detection and 

quantification: a deep convolutional neural 

network (CNN) is trained for the detection of BACs 

presence. Next, in the framework of AI 

explainability, a visualization method is applied to 

map the CNN response. Finally, an automatic 

procedure for quantifying BACs severity is 

proposed based on such maps. Similar workflows 

are reported in literature [2,3]; nonetheless, the 

training of all state-of-the-art quantification tools 

rely on pixel-wise images annotations to produce 

an accurate BACs segmentation. This requires 

time-consuming manual segmentation of the 

calcifications performed by clinicians, which 

causes difficulties in training and testing the 

algorithm with a sufficient number of images. 

Moreover, this increases the rate of human errors 

in the annotation used as ground-truth. On the 

other hand, the proposed CNN performs a binary 

classification, so it is trained on image-wise 

annotations that report only BACs presence (BAC+ 

image) or absence (BAC- image), which are easier 

to produce. The dimensions of the dataset used are 

therefore higher, increasing reliability of results. 

Moreover, BACs severity assessment doesn’t 

require a training dataset with manual BACs 

segmentation since it is based on the extraction of 

geometrical features from the heatmaps produced 

to visualize network’s results. Only a small subset 

with manual annotations of BACs lengths is 

needed to assess the correlation between the 

automatic severity prediction and the manual 

reference.   
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2. Methods 

2.1. Mammographic dataset  

Four views mammograms of retrospectively 

enrolled patients were collected. Images were 

acquired by full-field digital mammography 

devices at IRCCS Policlinico San Donato and 

labelled by three human readers as positive (BAC+) 

or negative (BAC-) to BACs both at patient level 

and at image level. For privacy protection, all 

patients were anonymized, and data associated 

with each image were discarded except for age, 

mammographic view and acquisition device.  

Patients’ age was analyzed and an a-posteriori 

inclusion criteria was fixed: patients with age<45 

were excluded from the study, since no BAC+ case 

younger than 45 years was found. 

Images were preprocessed by extracting the breast 

region of interest (ROI): Otsu thresholding was 

applied to each image, separating breast tissue 

over threshold from the dark background. Pixels 

corresponding to background were fixed to a value 

of -20, while breast pixels were normalized to 

obtain zero-mean distribution and variance equal 

to 1. Breast ROI was cropped and resized by rigid 

rescaling, until reaching dimensions of 1536x768 

pixels, that coincide with the input shape of the 

CNN.  

The dataset was split into three subsets: training, 

validation, and test subsets, containing 

respectively 70%, 15% and 15% of data. 

Considering the correlation of BACs incidence 

with age, the splitting strategy was focused on 

maintaining age distribution of the original dataset 

across the three subsets. The age quartiles of BAC+ 

population were used to define four age classes 

(Class1=minimum-Q1, Class2=Q1-Q2, Class3=Q2-

Q3, Class4=Q3-Q4), that were used to divide the 

dataset based on patients’ age. For each age class, 

the splitting in training, validation and test subsets 

was performed, and the resulting four classes for 

each subset were further merged.  

Taking into account the low prevalence of BAC+ 

patients (14.93%), reducing data unbalance in the 

training set was needed to improve CNN training. 

BAC+ prevalence in each age class of the training 

dataset was therefore evaluated, performing 

undersampling of BAC- images to reach 30% BAC+ 

prevalence in each class. Validation and test sets 

were not undersampled, to reflect the real BAC+ 

prevalence. 

2.2. Convolutional neural network 

The neural network architecture used to classify 

BACs is the one developed by Ienco et al. for this 

task, based on VGG16 architecture [4]. The first 13 

convolutional layers and are organized into five 

blocks: the first two are composed of two layers, 

the remaining ones of three layers; after each block 

a max pooling over a 2x2 window is performed. 

Convolutional layers are followed by fully 

connected layers of 256 neurons and an output 

fully connected layer of 1 neuron. All layers 

present leaky ReLU activation function, except for 

the output layer that uses a sigmoidal activation. 

The training strategy developed by Ienco et al. 

relies on transfer learning from VGG16 for the first 

8 convolutional layers, which parameters were 

frozen, and initializes the remaining trainable 

layers with Glorot uniform function. The fully 

connected layers were trained with 0.3 dropout 

rate. A cosine annealing strategy was applied, 

setting the learning rate as: 

 𝑙𝑟𝑒𝑝ℎ =  𝑙𝑟𝑠𝑡𝑎𝑟𝑡  ∗
𝑐𝑜𝑠(𝜋 ∗ 𝑒𝑝ℎ 𝑒𝑝ℎ𝑚𝑎𝑥) + 1⁄

2
 (1) 

   

where, at each epoch 𝑒𝑝ℎ, learning rate is 𝑙𝑟𝑒𝑝ℎ; 

learning rate’s starting value before the decay is 

𝑙𝑟𝑠𝑡𝑎𝑟𝑡 , and 𝑒𝑝ℎ𝑚𝑎𝑥 is the number of epochs after 

which the learning rate goes to zero. 

Briefly, the network considered by Ienco et al. 

presented these parameters: 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-5, 

𝑒𝑝ℎ𝑚𝑎𝑥=100, number of training epochs neph=50, 

dropout rate=0.3. This network was trained by 7-

fold cross validation on a small dataset, producing 

7 different models. In the current work, the best 

performing model was referred to as MG-Net and 

was used as starting point to improve 

hyperparameters tuning, further training and 

independent testing, to finalize the actual clinical 

validation of the CNN, thanks to the larger data-

base available.  

Considering the unbalanced dataset, metrics used 

to evaluate results were precision, recall and F1, 

along with area under ROC curve (ROC AUC) and 

area under precision-recall curve (PR AUC). 

The initialization of trainable layers both with 

Glorot uniform function and with MG-Net weights 

was explored. 

Tuning of the most relevant network’s 

hyperparameters was then performed by 

gradually modifying them with respect to MG-

Net. Learning rate decay was evaluated firstly by 

varying  𝑙𝑟𝑠𝑡𝑎𝑟𝑡 , assigning it values of 10-n, with n= 
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[4,5,6]. Subsequently the decay rate was explored 

by changing 𝑒𝑝ℎ𝑚𝑎𝑥, assigning it values of 200, 400, 

600 and 800. The number of epochs neph was 

analysed within a range from 25 to 300 epochs, and 

the dropout rate for the fully connected layers was 

studied for values between 0.2 and 0.5. 

The classification threshold used to produce a 

binary result from the sigmoidal output was fixed 

at 0.5 for all models tested. Results were compared 

over the validation subset allowing to extract the 

best performing network, BAC-Net.  

BAC-Net performances were further tested on the 

independent test subset, using different 

classification thresholds between 0 and 1.  

Classification thresholds resulting in the best 

precision were referred to as P-th, the one 

maximising recall as R-th and the one maximising 

F1 as F1-th. Obviously, such thresholds are related 

to the actual dataset, still provide useful general 

indications. 

An ultimate classification threshold  was 

computed by averaging F1-th assessed over the 

test and the validation sets. Classification with  

was performed to evaluate results both image-wise 

and patient-wise, considering a patient as BAC+ if 

at least one of the four mammographic views was 

classified as BAC+ image.  

2.3. Results visualization 

To explore BAC-Net behavior, state-of-the-art 

visual explanation methods developed for neural 

networks (Saliency maps, SmoothGrad, 

GradCAM, GradCAM++) were compared. Their 

ability to provide an explanation of network’s 

results was evaluated along with radiologists. The 

best performing method was found to be 

GradCAM++, that presented lower noise and 

higher accuracy in BACs location and delineation. 

GradCAM++ produces a heatmap of the activation 

of each pixel by assigning it a weight proportional 

to the derivative of the output score with respect to 

the feature maps activation of the selected 

convolutional layer. The behavior of all 

convolutional layers was explored, and the last 

convolutional layer was the one considered for 

final heatmaps generation, as it contained high-

level information and showed higher accuracy.  

2.4. Severity scoring 

A small dataset of BAC+ patients previously 

included in a manual BACs semiquantitative score 

(BAC-SS) study [5] was used to perform an 

assessment of the possible correlation between 

manual evaluation of BACs length (𝑙𝐵𝐴𝐶) and 

automatically extracted scores based on 

GradCAM++ heatmaps thresholding.  

Two mammographic views per patient, one for 

each breast, were selected, to reflect the procedure 

applied for manual scoring, and preprocessed as 

described in section 2.1. The dataset was then fed 

to BAC-Net, and sigmoidal outputs were 

evaluated by generating R-th, P-th and F1-th 

specific to this set of predictions. Since precision 

maximization provides a classification with the 

minimum number of false positives, P-th was 

considered to proceed in automatic scores 

evaluation. GradCAM++ heatmaps were generated 

and, for each heatmap, binary thresholding was 

performed with threshold Theatmap varying from 0 to 

1 with step 0.1.  

Three continuous severity scores were considered 

for automatic extraction (Figure 1): the heatmap’s 

area with intensity above Theatmap (ABAC), the sum of 

pixels’ intensities inside this area (IBAC), and an 

estimation of BACs length obtained by 

skeletonization of the over-threshold objects (LBAC). 

In case of BAC+ images, these three scores were 

computed for each Theatmap; for BAC- images, all 

scores were set to 0.  

 

Figure 1. a) Example of GradCAM++; b) thresholding 

with Theatmap=0.5 and ABAC extraction; c) pixels summed 

to compute IBAC; d) skeletonization to extract LBAC 

For each Theatmap, 𝑙𝐵𝐴𝐶  was compared with ABAC, IBAC 

and LBAC through linear regression and by 

computing Spearman correlation coefficient. For 

each score, the optimal Theatmap value was 

considered as the one maximising correlation. 

Optimal thresholds for area, intensity and length 

are indicated respectively as Topt-A, Topt-I and Topt-L.  

Since BAC-SS evaluated BACs length also with a 

quartile-based length score (𝑙𝑄) ranging from 0 to 

4, three ordinal scores were generated for area (AQ), 

pixels intensity (IQ) and predicted length (LQ). They 

were computed by assessing the quartiles of ABAC, 
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IBAC and LBAC, using them as thresholds to generate 

values ranging from 1 to 4; as for continuous 

scores, value 0 was assigned to BAC- image. 

The quartiles-based length 𝑙𝑄 was compared with 

AQ, IQ and LQ obtained by thresholding the 

heatmap with Topt-A, Topt-I and Topt-L. The scores 

correlation was assessed by producing a confusion 

matrix comparing AQ, IQ and LQ   predictions with 𝑙𝑄 

ground truth. Accuracy of predictions was 

computed as the sum of true positive predictions 

over the total number of predictions.  

Classification performed with R-th and F1-th was 

finally evaluated and compared with previous 

results.  

3. Results 

3.1. Dataset 

Application of inclusion criteria removed 64 BAC- 

patients; the resulting dataset composed of 1493 

female subjects (5972 images), of which 194 BAC+ 

(14.93%).  

Patients’ ages followed a non-normal distribution 

(Shapiro-Wilk test resulted in W= 0.96, p-value< 

0.01). Quartiles of the BAC+ age distribution were 

computed (minimum=45years, Q1=60y, Q2=70y, 

Q3=73y, Q4=87y), and used as age classes during 

data splitting. The training subset resulted of 1042 

patients, of which 908 negatives and 134 positives 

to BACs (12.85% BAC+ prevalence); the validation 

subset contained 222 patients, of which 194 BAC- 

and 28 BAC+ (12.61%); lastly the test set was 

composed of 229 patients, 197 BAC- and 32 BAC+ 

(13.9%).  

Regarding the training set, since Class3 and Class4 

were already characterized by 30% BAC+ 

prevalence, undersampling was performed only 

for Class1 and Class2. This resulted in randomly 

removing 474 BAC- patients from Class1 and 158 

BAC- patients from Class2. The final training 

dataset was therefore composed of 410 patients, of 

which 276 BAC- and 134 BAC+ (32.68% BAC+ 

prevalence). 

3.2. Network tuning and evaluation 

Evaluation over the validation set of the best 

initialization for the trainable layer resulted in 

F1=0.178 for initialization with Glorot uniform 

function, and F1=0.406 for initialization with MG-

Net, therefore the latter strategy was chosen. 

The network behaved randomly for 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-4, 

and overfitted the training set for 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-5. For 

these reasons, 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-6 was chosen. Value of 

𝑒𝑝ℎ𝑚𝑎𝑥= 800 resulted in the best F1 performances 

over the validation set, and reduced overfitting. 

The best number of training epochs was found to 

be neph= 25: despite the absence of overfitting, when 

increasing training epochs, the results over 

validation set did not improve due to output 

neuron’s saturation, that caused it to behave like a 

binary classifier reducing its discrimination 

potential. Dropout rate was maintained at 0.3; 

lower or higher values produced worse results 

both over validation and training set.  

The best performing network, BAC-Net, was used 

to classify the test set images, allowing the 

evaluation of the classification thresholds 

maximizing precision, recall and F1, that resulted 

respectively in: P-th=0.99, R-th=0.13 and F1-

th=0.88. Applying P-th to classification of test set 

resulted in F1=0.565, precision=1.0, recall=0.394. 

Conversely, predictions with R-th resulted in 

F1=0.232, precision=0.131, recall=1.0.; classification 

with F1-th resulted in F1=0.767, precision=0.802, 

recall=0.734. The ultimate optimal threshold  was 

computed averaging F-th for test set and F-th for 

validation set (0.83), resulting in =0.85. 

Results of images classification by applying  over 

training, validation and test sets are reported in 

Table 1; patient-wise results are reported in  

Table 2. 

 

Dataset Precision Recall F1 

Training 0.963 0.723 0.723 

Validation 0.9 0.707 0.792 

Test 0.831 0.680 0.748 

Table 1. Image-wise BAC-Net results 

Dataset Precision Recall F1 

Train 0.914 0.873 0.893 

Validation 0.813 0.928 0.866 

Test 0.831 0.680 0.748 

Table 2. Patient-wise BAC-Net results 

BAC-Net classification of mammographic images 

reported good results over the test set, and the 

possibility to vary the classification threshold 
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allows for future adaptability of the CNN to the 

scope of the prediction: for BACs screening 

amongst women, a low threshold favoring recall 

will guarantee a low number of false negatives, 

including all subjects with a possible CVD risk in 

the BAC+ category; on the other hand, for research 

purposes (such as testing of the scoring procedure 

proposed in this thesis), a high threshold favoring 

precision can be used to avoid false positive 

predictions, allowing to extract BAC+ images with 

high confidence. BAC-Net future improvements 

should be focused on reducing the output neuron 

saturation, allowing for a higher number of 

training epochs. Moreover, a larger mammograms 

database might increase the variability of training 

data, ultimately producing better predictions.  

3.3. GradCAM++ visualizations 

GradCAM++ heatmaps were able to highlight 

presence and position of one or multiple BACs 

when computed for true positive predictions (TP) 

(Figure 2a). Severe calcifications were easily 

detected, while in case of small multiple BACs the 

heatmap wasn’t always able to highlight all of 

them. False positive (FP) cases were generated 

mainly by presence of fibrous tissue (Figure 2b) or 

benign calcifications with linear shape. The 

presence of round microcalcifications was not 

misleading when their shape was well defined and 

they were not superimposed to dense tissue, but in 

some less defined cases represented a confounding 

factor as well.  

GradCAM++ of negative predictions (TN) 

highlighted the whole breast (Figure 2c) and 

allowed to understand how medical devices (as 

pacemakers, cardiac loop recorders or breast 

implants) do not bias the network outcomes, 

therefore they don’t represent a confounding 

factor. False negative predictions (FN) were 

usually related to small BACs over dense breast 

tissue (Figure 2c).  

Overall, GradCAM++ heatmaps of BAC-Net 

predictions allowed to start to open the black box 

of the network and explore its behavior; moreover, 

the possibility of visualizing BAC position 

predicted by the CNN encouraged a discussion 

among engineers, physicists, and radiologists 

about possible improvements and increased the 

clinicians’ confidence in prediction results. 

 

 

Figure 2. a) TP case of severe BACs correctly identifying 

the calcified vessels; b) TN case highlighting the whole 

breast; c) FP case, fibrous tissue mislabeled as BAC;  

d) FN case, mislabeling is caused by tissue density 

3.4. Severity scoring 

The scoring dataset was composed of 56 BAC+ 

patients; for each patient the two mediolateral 

oblique views were considered, for a total of 112 

mammograms, of which 95 BAC+ and 17 BAC- 

images. 

BAC-Net sigmoidal outputs for this set of 

mammograms allowed to compute P-th=0.7, F1-

th=0.6 and R-th=0.1.  

By using P-th, BAC-Net predicted 78 images as 

BAC+, 34 images as BAC-, of which 0 false positive 

predictions and 17 false negative predictions. 

Correlation between ABAC, IBAC and LBAC   and 𝑙𝐵𝐴𝐶  

was assessed for variable binarization threshold 

Theatmap. The Theatmap maximising Spearman’s 

correlation coefficient between 𝑙𝐵𝐴𝐶  and ABAC was 

Topt-A= 0.2, the same value resulted for IBAC, so that 

Topt-I= 0.2, while for LBAC, Topt-L= 0.3. These optimal 

thresholds were also the one minimizing p-value 

for Spearman’s coefficient.  

By using the respective binarization threshold, 

correlations of 𝑙𝐵𝐴𝐶  with ABAC  (Rspearman=0.90, p-

value=6.33e-41), with IBAC (Rspearman=0.90, p-

value=4.36e-41), and with LBAC (Rspearman=0.89, p-

value=1.64e-39) were compared. The best predictor 

for BACs real length was found to be ABAC . A linear 

a) True positive c) True negative 

b) False positive d) False negative 

Fibrous tissue  
mislabeled as BAC 

BAC under  
dense tissue 
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regression between 𝑙𝐵𝐴𝐶  with ABAC is shown in 

Figure 3a.  

The comparison of 𝑙𝑄 with quartiles-based scores 

resulted in identical performances for AQ and IQ 

(accuracy=0.47) while LQ predictions were slightly 

worse (accuracy=0.46). The confusion matrix 

comparing 𝑙𝑄 to AQ can be found in Figure 3b. 

 

Figure 3. a) Linear regression between real length 𝑙𝐵𝐴𝐶 

and predicted area ABAC  (Rspearman=0.90, p-value=6.33e-41); 

b) Confusion matrix displaying real length score 𝑙𝑄 on 

vertical axis,  predicted area score AQ on horizontal axis 

(accuracy=0.47) 

Evaluation of linear regression for scores extracted 

by using F1-th and R-th resulted in lower 

correlations, due to the increase in number of false 

positives caused by lower classification thresholds. 

Nonetheless, performances of ABAC were always 

better than the ones of IBAC and LBAC. Quartiles-

based scores computed with F1-th provided better 

results with respect to the ones computed with P-

th, while R-th worsened the predictions. AQ 

resulted the best predictor for 𝑙𝑄 both when using 

F1-th and R-th as classification thresholds: F1-th 

provided best results with respect to P-th 

(accuracy=0.53) while R-th worsened the 

predictions (accuracy= 0.36).  

It must be considered that preliminary results here 

reported for the scoring procedure are tested on a 

small dataset, which required manual BACs 

segmentation. So, further validation with a larger 

dataset is needed to provide a more robust 

correlation and to fix continuous (SBAC) and ordinal 

(SQ) final BACs scores. Nonetheless, this work 

demonstrates the feasibility of predicting BACs 

severity without requiring the manual 

segmentation of the training set images. 

4. Conclusions 

All technical steps needed to develop an 

automated procedure for BACs analysis have been 

studied in this thesis, demonstrating the possibility 

to classify mammograms based on BACs presence 

by using a convolutional neural network, and to 

quantify calcifications severity extracting 

geometrical scores from network’s heatmaps.  

Once the scoring procedure will be finalized, it will 

be possible to actuate the workflow proposed in 

Figure 4.  

 

Figure 4. Possible workflow for automatic detection 

and quantification of BACs 

 

The clinicians’ workload for BACs detection and 

quantification will be reduced by this procedure, 

since all steps are automatized. Ultimately, 

clinicians will be supported in their decision about 

the need to further investigate patient’s CVD risk. 

This would help increasing the number and quality 

of BACs reports during screening mammography, 

and ultimately improve CVD stratification for 

women. Moreover, a higher amount of data 

quantifying BACs severity could be produced, 

encouraging further clinical tests for BACs 

correlation with cardiovascular pathologies such 

as coronary heart disease or cerebrovascular 

disease, but also with other CVD risk factors.  
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