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Abstract 

 Compared with service life prediction, the remaining useful life prediction depends on not 

only the performance degradation model, but also the accurate estimation of current system 

degradation state. The degradation of an aviation hydraulic pump is largely caused by the 

abrasive wear of frictional pairs. Since the structure of aviation hydraulic pump is complex, 

there is no onboard monitoring method being able to detect the exact wear state of the pump, 

which prevents the system from being accurately predicted. The abrasive debris, as the main 

product of abrasive wear, have drawn much attention since early ages and have been used as an 

indicator for the diagnosis and prognosis. The main problem is that currently there is no 

available degradation model describing the degradation process based on features of debris, 

meanwhile, because of the high-throughput of hydraulic flow in aviation hydraulic system, the 

detection of debris features is challenged by the aliasing problems caused by the short distance 

of two adjacent debris particles. Besides, the techniques to predict the remaining useful life are 

not complete. The debris-based prediction method is still far from being practically used. 

 Aiming at solving the problems mentioned above, the study mainly considers the following 

works: 

 (1) For the paucity of available degradation models for features of debris, the study 

proposed a mesoscale numerical modeling method combining both macroscale stress 

distribution with microscale rough surfaces. The method is able to solve the count, size 

distribution and morphology of generated debris under certain work conditions and given 

surface roughness. The method can be applied for arbitrary scales of debris to reduce the 

computational cost. 

 (2) For more accurate data acquisition, the aliasing problem caused by the superimposed 

induced voltages of debris should be overcome, so that the degradation state can be well 

estimated. The study proposed a signal separation method based on degenerate unmixing 

estimation technique. By combining with the convolutional neural networks, the method is able 

to achieve online signal separation. 

 (3) The degradation model can rarely cover all the degradation paths, which results in 
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modeling uncertainty. Meanwhile, noise can hardly be avoided during the measuring process, 

which results in measuring uncertainty. The modeling uncertainty and measuring uncertainty 

will then lead to inaccurate estimation of current state of the system. The study proposed an 

adaptive-order particle filter based prediction method which is able to promote the short-term 

and long-term predicting accuracy. 

  

 Key words: remaining useful life, abrasive debris, aliasing error, performance degradation, 

particle filter, reliability.  
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SECTION Ⅰ. GENERALITIES 

 This section of the dissertation describes the context of the Ph.D. research, its 

relevance, the state-of-the-art methods, the challenges that are addressed and the 

overview of the developed method.
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1. Introduction 

 An aircraft hydraulic power supply system provides high-pressure fluid for the 

actuation system, braking system, landing gear system, and other sub-function systems. 

As the power source of an aircraft hydraulic system, an aviation piston pump’s 

performance influences flight safety directly. Therefore, an aircraft prognostics and 

health management (PHM) system appears to keep high reliability and long life of an 

aerial piston pump. In PHM technologies, an accurate estimation of the remaining 

useful life (RUL) is the most difficult issue because it is related to the failure physics 

and stress spectrum imposed on a hydraulic pump. Since the structure of an aviation 

piston pump is very complicated, its failure generation and development are 

comprehensively affected by inner frictional pairs with uncertain characteristics. 

Statistically, an aviation piston pump shows variant degradation paths under 

diversiform operating conditions, which unavoidably brings about a great deal of 

uncertainties and difficulties in the analytic solution of the RUL. Although the life of a 

certain type of aviation piston pump can be obtained through tens of thousands of hours 

of experiments under a fixed spectrum, it is difficult to give the exact RUL under an 

arbitrary condition. A prognostic estimation method of RUL is imminently needed, 

which will highly benefit the reduction of costs by providing the possibility to define 

predictive maintenance strategies and prolonging useful life. 

 Since abrasive wear is believed to be the main failure mode of the aviation piston 

pump, this work mainly focuses on predicting the remaining wear life of aviation piston 

pump. There are four main friction pairs in a typical aviation piston pump: pair of the 

cylinder block and the valve plate, pair of the swash plate and the slipper, pair of the 

slipper and the piston, and pair of the piston and the cylinder block. Under normal 

circumstances, oil film exists between the friction pairs. It is shown that the fully 

lubricating condition become mixed lubrication and wear occurs and becomes serious 

with an increase of the serving time [1]. The wear makes the displacement between 

friction pairs become larger and leakage happens. The leakage caused by wear can lead 
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to a decrease of the outlet flow rate, which will eventually result in the failure of pump. 

In an actual hydraulic system of an aircraft, the outlet flow is controlled to be at a stable 

value, which means that the decline of the outlet flow cannot be monitored. 

 There are two main difficulties for modeling the degradation of pump. One 

difficulty is related to insufficient data for data-driven modeling: as components in 

aircraft are highly reliable, they rarely fail and life tests usually take several thousand 

hours [2, 3]. The other one is that there is no deterministic model to describe the 

degrading paths due to the complex degradation mechanisms occurring in axial piston 

pumps under a variety of conditions. Some works tried to investigate oil film and 

contact principles for improved design [4, 5], but the models and results can seldom be 

used for life prediction. On the other hand, abrasive wear between the main friction 

pairs is believed to be the main degradation mechanism, as supported by analyses and 

experimental results [6, 7]. Considering these aspects, the system modeling and current 

state acquisition or estimation cannot be well integrated with existing health indicators. 

In other words, the current state can be measured by the return oil flow, as health 

indicator, but there is no model of system operation as a function of the return oil flow.  

 There are also difficulties for monitoring the wear degradation of pump. The real 

wear state can be observed by atomic force microscopy (AFM) or transmission electron 

microscopy (TEM), but the devices cannot be used on an assembled product, which 

makes the state of pump can hardly be detected online. Wear debris, as the direct 

product of wear, is employed as health indicator in recent years, which can be measured 

by several online oil debris detection methods [8, 9]. However, the accuracy still cannot 

be held at an acceptable level especially for high-throughput and high-concentration 

aviation hydraulic system. 

 In addition, the modeling and measuring process will unavoidably bring about 

uncertainties. Since we are not able to machine the product as our expectation, the 

machining error may make the pump operate away from the model, which is recognized 

as modeling uncertainty. The noises caused by the vibration and environmental factors 

make the measurement process keep away from accurate, which is recognized as 

measuring uncertainty. The modeling and measuring uncertainties lead to the 



1. Introduction 

4 

 

mismatching of the model and monitoring data, which will influence the predicting 

accuracy. 

 In this Ph.D. thesis, the objective is to develop a feasible method for remaining 

wear life prediction of aviation axial piston pump, which includes I. modeling of 

abrasive debris generation based on wear mechanism to characterize the system 

behavior under different operational conditions, including different lubricating 

conditions and working pressures, II. online abrasive debris detection method 

especially for aliasing signal processing to promote the accuracy of measurement, III. 

uncertainty processing method to eliminate the mismatching problem caused by 

modeling and measuring uncertainties, and, IV. remaining useful life prediction 

framework based on monitoring abrasive debris generation to provide accurate 

predicting result. 

 The main original contribution of the research lies in the development of a 

complete method for predicting remaining wear life of aviation axial piston pumps. 

Specifically, we have developed novel methods for addressing the following three 

issues: 1) modeling abrasive debris generation given arbitrary concerning scale and 

working stress with fixed initial roughness, 2) restoring aliasing signals for debris 

feature statistics with limited detecting sensors, 3) processing uncertainties caused by 

modeling and measuring for a comprehensive matching result.  
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1.1 Abrasive debris particles generation 

 The relative motion for transmission, breaking and damping effects between two 

sliding surfaces which are known as a friction pair inevitably brings about material loss. 

During the wear process, the contact stress results in the generation of wear debris 

which contains critical information of the wear status of the contact surfaces and has 

been studied for the relation with wear since early ages [10]. 

 Wear debris analysis has long been a powerful method to examine the status of 

mechanical systems. Limited to the instruments, until the ferrography was introduced, 

the underlying causes that produced wear debris were analyzed and interpreted [11]. 

Anderson analyzed the wear debris recorded by ferrography over a period of about 10 

years since 1971 and gave out primeval relationship between particle features (quantity, 

size, shape and composition) and wear characteristics (severity, rate, mode and source) 

[12]. With the development of ferrography and other debris detection methods [13-15] 

like optics, capacitance, resistance, ultrasonic and electromagnetic induction, wear 

debris obtains a more accurate and precise monitoring. Currently, wear debris has been 

deemed to be an indicator of wear states. Wang et al. [16] modeled wear state evolution 

by recognizing features from online ferrographic images. Hong et al. [10] suggested the 

peak in debris generation rate as the indicator of failure. Consequently, experimental 

results and statistical data [17-19] on various engineering machines under multiple 

working conditions provide bases for the subsequent studies of the wear debris 

generation mechanism. 

 Microscale wear mechanism is complicated and is commonly used to interpret 

macroscale experimental results. The more micro the observation is, the less the 

distance is believed between the results and the truth. Being distinguished from micro 

mechanism and macro results, the mesoscale wear debris is considered to be an 

intermediate product based on the micro mechanism and its statistical characteristics 

consist a macro result. 

 Despite passing over a half century, the primitive observation result is still the 

fundamental relation of wear currently [20]. Holms proposed an atoms removal theory 
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in 1946 when discussed the conductivity of electrical contacts, which was the basic 

form of the classical Archard’s law [21]. The Archard’s law states that the wear volume 

is proportional to the normal force and sliding distance while the constant wear 

coefficient is fully empirical [22]. Archard’s law has been verified by numerous 

experimental results in macroscopic scale [23-25], however, an accurate prediction 

model is still missing for the complex systematic mechanism in determining the wear 

coefficient under different materials and lubricating conditions [20]. In the past two 

decades, with the help of advanced technologies such as AFM and TEM, the deformed 

asperities which were abraded atom by atom gradually were observed in nanoscale [26, 

27]. Jacobs indicated that Archard’s law failed in the regime of nanoscale contacts [27, 

28]. They found that with nanoscale sliding, silicon atoms are worn off without fracture. 

Similar phenomenon was found in Diamond [29], Diamond-like carbon which is widely 

used coating material [28] and metallic materials [30, 31]. Later, Jacobs proposed an 

atomic attrition mechanism [26, 32]. This microscale mechanism makes it possible to 

give out a predictive result of wear. Inspired by the mechanism, Aghababaei et al. [33] 

found that the atomic attrition more likely happens when the junction size of two 

asperities is small while fractured attrition exists when the junction size is larger, which 

gives a uniform explanation of the two mechanisms. Atomic simulations by using 

molecular dynamics (MD) [34-36] is usually conducted on single asperity. These 

simulations seldom establish connections with macroscopic results. Practically, wear 

debris, as the product of macroscale wear and result of microscale hypothesis, provides 

a potential to predict macro wear with micro theories.  

 Conducting an experiment on wear usually takes large amount of time while the 

experiment results rarely cover all the degradation paths under multi-stage work 

conditions. Whereas, people always try to figure out the exact change of the contact 

surfaces. Therefore, theoretical understanding of the debris generation mechanism and 

the corresponding simulative analysis gain increasing efforts. Generally, the generation 

of debris is influenced by wear modes, stress conditions, lubrication states and material 

deformation and failure criterion, which makes it a systematic problem and difficult to 

be analytically described. Considering the numerical methods, finite element method 



1. Introduction  

7 

 

(FEM) is commonly used in modeling wear process [37-39]. FEM, in fact, shows 

advantages in macro-scale analysis that a macroscopic geometry with distributed stress 

conditions can be well solved. Practically, the size of a wear particle is in the 1-500μm  

range while the radius of a contact surface may be several decimeters, which means the 

mesh should be quiet fine and will cause huge computational cost. Although there are 

methods to build a rough surface for FEM [40], a steep asperity may cause a singular 

solution which will make the previous time consumption invalid. The boundary element 

method (BEM) requires only the discretization of boundaries and reduces the 

computational cost sharply compared to FEM [41]. Therefore, BEM has been widely 

used in solving rough surface contact and wear problems [42-44]. Allwood [45] 

compared the existing approaches and found that when the grid points are more than 

2000, the conjugate gradient method (CGM) [46] performed fastest and the error of 

pressure and contact region is about 0.5%. Liu et al. [47] proposed a discrete 

convolution and fast Fourier transform (DC-FFT) technique which also had a good 

performance but it is more suitable for rough surfaces generated by periodical force like 

ball bearing. By using these methods, Akchurin et al. [48, 49] proposed a wear particle 

model in running-in stage and verified the model using experimental results. Done et 

al. [50] analyzed the fretting wear and the effect of debris was also included which 

showed a better result than that without considering the debris. At asperity level, BEM 

meets the requirement of speed and accuracy and is then employed in this work to 

model wear debris generation.  
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1.2 Wear debris detection and aliasing signal processing 

 Currently, the return oil flow is the commonly used indicator for the prognosis of 

aviation hydraulic pumps [51]. To obtain the indicator, hydraulic pumps should be taken 

down from the aircraft, which cannot meet the requirement of condition-based 

maintenance (CBM). Other indicators, like output pressure and vibration signals, are 

limited in information by the operational conditions, and thus contain few 

characteristics useful for the prognosis. On the other hand, aviation hydraulic pumps 

are typical rotatory machines and the wear of the three main frictional pairs is the 

primary cause of the output pressure degradation. Debris detection methods, then, show 

a great potential for the diagnosis and prognosis of aviation hydraulic pumps. Different 

from applications on engines [52], rolling bearings [53], and many other machines [54, 

55], abrasive debris detection methods have to face adverse circumstances when being 

applied to the pump detection because the oil is not only used for lubrication, but for 

the power transmission as well. 

1.2.1 Wear debris detection 

 By ferrography [11], people started to establish the relationship between debris 

features and characteristics of material loss [12]. Nowadays online debris detection 

methods were introduced and debris analysis has become a powerful approach for 

interpreting material loss and providing prognostic information. Existing methods 

include optics, capacitance, resistance, ultrasonic, x-ray and inductive methods [56]. 

Compared with the other methods, the inductive sensors are usually easily-installed on 

oil pipes and able to differentiate ferrous debris from non-ferrous debris [57]. 

 Research studies [10, 56] indicate that for engineering applications the sizes of 

debris usually range from 1μm  to 150μm under normal work conditions. When severe 

wear happens, the sizes of debris will follow a different distribution. Several inductive 

sensors have been designed to promote the detection precision. Hong, et al. [13] 

proposed a radial inductive sensor which can detect 20μm  thick ferromagnetic debris 
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in 20mm diameter pipes. Li, et al. [58] introduced a high throughput inductive pulse 

sensor which is able to detect 50μm  debris in lubrication oil with a high throughput. 

Zhu, et al. [9] utilized a sensor array which is able to detect debris at a flow rate of 

460mL/min. High precision means identifying more debris from the same 

contaminative oil. High throughput results in short time-interval, which will influence 

the detecting performance. Large diameter pipes will reduce the intensity and 

uniformity of magnetic field. 

1.2.2 Aliasing signal processing of inductive debris detection method 

 The inductive sensor generates independent pulses as long as the distances between 

the debris which pass through the pipes are large enough. However, if two wear 

particles are close enough, the two induced voltages of the sensor will be superposed 

and an aliasing signal will be generated, as shown in Figure 1. In such a situation, when 

two wear debris particles are wrongly recognized as one, both the concentration and the 

size of the debris will be influenced. According to Reference [12], during normal 

machine separation, wear debris exhibits a constant concentration and small size. The 

concentration and size of particles increase gradually with time when abnormal wear 

begins. The accumulative error caused by aliasing will influence the abrasive debris 

detection precision. Because of the complexity of the wear and tear of a hydraulic pump, 

aliasing happens more frequently in debris detection. Due to the high flow rate, this 

situation is serious under certain pipe diameters. 

 

Figure 1. The aliasing phenomenon. 
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 In prior work, an RMF-based debris detection method [13] using inductive 

techniques was proposed, and the method exhibited good performance in wear particles 

monitoring. Experiments show that the aliasing phenomenon appears so frequently that 

it often leads to inaccurate detection. In contrast with the application to the lubrication 

oil, debris detection in an aviation hydraulic pump is much more difficult because the 

output high pressure oil leads to a high oil flow rate, which means that much more 

information is included in the same length of a signal section under the same sampling 

frequency. If the sampling frequency is not high enough, only one pulse can be detected 

and it will display error information. Therefore, the issue of how to extract accurate 

information of the wear particles from the aliasing signals is extremely urgent in RMF 

detection. 

 Although inductive wear sensors have different precision and accuracy levels in 

detecting wear particles [58-61], few works have investigated the aliasing problem. 

Zhong et al. [62] proposed a new layout of sensors for the aliasing signals and gave a 

theoretical analysis. On the other hand, the literature on signal extraction [63-65] 

typically only addresses independent pulses for small flow rates. In fact, the aliasing 

problem is to some extent similar to the cocktail party problem [66], which is widely 

researched in speech recognition. Both problems focus on recognizing different sources 

from mixed signals. Among the speech recognition methods, independent component 

analysis (ICA) shows good performance in processing linear mixtures of signals 

produced by multiple sources and has been successfully used for the separation of other 

kinds of signals. Han et al. [67] used the FAST-ICA (an implementation of the fast 

fixed-point algorithm for ICA) and wavelet packet method to separate the vibration 

signals of rolling bearings mixed by a set of sources. The problem is that, when using 

ICA methods, the number of sensors should be more than the number of sources and 

all of the mixed signals should be synchronized. In debris detection systems, the sources 

are the superposed voltages induced by the wear particles, which means that the sources 

are far more than the sensors and the synchronization of detection can hardly be 

conducted. Alexander et al. [68] proposed a degenerate unmixing estimation technique 

(DUET) to separate sources from the time-frequency domain and, in their later works 
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[69], the time-frequency mask is used to demix the sources. This method assumes that 

the environment is anechoic and the sources are independent, which is consistent with 

the debris detection situation. For speech recognition, the background noise usually 

gives a negative contribution to the source separation. In DUET, high weights caused 

by the background noise will decrease the accuracy of demixing. To reduce the 

influence of the noise, Hussain et al. proposed an adaptive noise cancellation technique 

[70], and Chong et al. [71] combined the method with particle filtering. Hong et al. 

employed the band pass filter to enhance the signal-to-noise ratio (SNR) of the sensor 

by 2.67 times [72].  
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1.3 Remaining useful life prediction of axial piston pump 

 Over past decades, a lot of research has been conducted in estimating the RUL of 

machinery. The methods can be generally divided into two categories [73]: data-driven 

methods and model-based methods. Typical data-driven methods based on machine 

learning are artificial neural networks (ANNs) and the hidden semi-Markov model 

(HSMM). Zangenehmadar et al. [74] used an ANN to assess the RUL of pipelines 

successfully in which more than 80000 groups of data were used for training. Dong et 

al. [75-77] applied the HSMM function for machine health prognosis and verified the 

method by using data from a real hydraulic pump health monitoring application case 

study. In fact, the data used for training were far more than the sample size of a certain 

type of aviation piston pump. Several thousands of hours were taken to obtain only one 

set of lift-cycle data of an aviation piston pump [78]. He et al. [79] presented a health 

monitoring and prognostic method using the PSO-SVM to predict the RUL for an axial 

piston pump. The small sample problem is what makes an aviation piston pump 

distinguish from traditional machinery. Model-based methods like physics-of-failure 

(POF) and filter-based methods are also widely utilized for prediction of component 

life. Liu et al. [80] developed a failure physics model for the creep fatigue of a piston, 

and the degradation mechanism was analyzed for prognosis. Lamoureux et al. [81] 

defined a health indicator to describe the degradation of an aircraft engine fuel pumping 

unit by using a linear regression method. To build a model by POF, the mechanism 

needs to be known firstly. Thereby, this kind of method can hardly be used in a 

complicated system like an aviation piston pump whose failure mechanism is still under 

research. Filter-based functions take advantages in combining system models with 

experimental data. For linear systems with Gaussian noise, Kalman filter (KF) is a 

commonly used prognostic technique, and its effectiveness has been proven in many 

works [82-85]. Extended KF (EKF) and unscented KF (UKF) methods are modified 

KFs to cope with non-linear systems while limitation is shown in some systems with 

high nonlinearity. Specifically, for the axial piston pumps of aircraft, there are actually 

limited studies and applications. Wang et al. [86] predicted the RUL of one type of 
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aviation axial piston pump by using Wiener process, in which the return oil flow was 

proposed as health indicator. Li et al. [87] proposed an adaptive-order particle filter 

method for the prediction and an empirical grey model was used as the system model. 

Shi et al. [88] focused on an EHA pump and conducted the prediction using particle 

filter (PF), in which wear of slipper/swashplate pair was the main degradation 

mechanism. Li et al. [89] introduced a novel method for extracting degradation features 

from vibration signals. Xu et al. [90] did a simulation of prediction based on return oil 

flow and calculated wear life based on Archard model. These methods are either based 

on some restrictive assumptions or using simplified models. 

 According to the fact that the sample size of an aviation piston pump is very small, 

a data-driven method would not be a good choice for life prediction. Among model-

based methods, PF has shown great advantages as an efficient prognostics tool in 

handling the uncertainty and noise affecting measurements [91]. A dual-particle-filter 

method was used to estimate the state of charge for power Li-ion batteries[92]. To 

address the particle impoverishment problem, a modified particle filter, named 

intelligent particle filter (IPF), was proposed by Yin and Zhu [93]. Miao et al. [94] 

introduced an improved PF algorithm – unscented particle filter (UPF) into battery RUL 

prediction, and the analytical results showed that UPF could predict the actual RUL 

with an error less than 5%. Enrico et al. [95-98] improved the method a lot by applying 

PF functions in different degrading systems, and the framework to estimate the RUL of 

nonlinear components provides ideas for the prognosis of pump systems. However, to 

adopt the method, a degrading model should be built. Some parts of a piston pump has 

been modeled like a friction mechanism model of oil between the valve plate and the 

cylinder block in axial piston pumps [1] and a wear mechanism model of friction pairs 

[62] while a physical model that can be used for prediction has not been proposed[99, 

100]. For a system that is difficult to be modeled, an empirical model or a model built 

according to historical data is used to describe the degrading process. Fagogenis et al. 

[101] proposed an auto-regressive (AR) model with an RUS boost classifier, and a 

CMAPSS dataset provided by the NASA AMES research center was used to verify the 

performance of computing the RUL of turbofan engines. A gray prognostic model based 
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on the Markov process was used for a gas turbine compressor’s state estimation [102]. 

These kinds of models compromise the merits of data-driven models and have less 

demand in data quantity.  
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1.4 Overview of the developed method 

 Figure. 2 provides an overview of the research developed in the Ph.D. thesis, which 

includes modeling of abrasive debris generation, monitoring abrasive debris online and 

matching the model and data for remaining wear life prediction. These will be 

introduced in the following paragraphs and, then, described in more details in the 

following Sections. 

 

   

Figure. 2 Framework of the developed method 

1.4.1 Modeling of abrasive debris generation 

 A mesoscale abrasive debris generation model is proposed to solve the wear 

process of a certain rough surface with given roughness and external work stress, and 

the statistical results of the numerical model is collected as the characteristic 

degradation model of the wear process. Under mixed lubrication condition, the contact 

stress and subsurface stress of rough sliding friction with elastic materials are calculated 

by boundary element method. Due to the large range of size of abrasive debris and 

limited computational ability, the solution scale can be set according to the concerning 

scale. 
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1.4.2 Monitoring abrasive debris online 

 When the abrasive debris sensor based on electromagnetic induction principle is 

utilized to detect high-concentration abrasive debris in high-throughput hydraulic oil, 

the output induced voltage will be superimposed due to the small clearance of abrasive 

debris particles, which will reduce the accuracy in judging the number and size of 

abrasive particles and other characteristics. Aiming at solving the problem of aliasing 

signals of abrasive debris particles, a degenerate unmixing estimation method for 

separating aliasing signals is proposed. Since at the same time, the number of the debris 

particles may be greater than the number of sensors, based on the underdetermined 

blind source separation method and series sensor structure, the presented aliasing signal 

separation method can effectively improve the detection accuracy which provides the 

basis for the life prediction. 

1.4.3 Matching the model and data for remaining wear life prediction 

 The system degradation model based on numerical method and the detection data 

based on aliasing signal separation method may be accompanied by uncertainties, 

which will lead to the inaccurate matching of the model and data. In this paper, the 

uncertainties are characterized as model uncertainty and measurement uncertainty, and 

the wear state estimation method based on adaptive order particle filter is proposed. 

When using data of different lengths for short-term prediction and long-term prediction, 

the model is adaptive to match the optimal order, and the relatively accurate state 

estimation is obtained. Combined with the numerical degradation model of mesoscale 

abrasive generation, the separation method for aliasing signals and the wear state 

estimation method of adaptive order particle filter, a remaining wear life prediction 

method of hydraulic pump based on monitoring abrasive particles is proposed. 
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1.5 Thesis Structure 

 Figure. 3 shows the structure of the thesis work. Chapters 2, 3 and 4 are dedicated 

to the research objectives introduced in Section 1.4 and, Chapter 5 draws the 

conclusions and future perspectives. At the end, a collection of the international peer-

reviewed journals papers finalized during the Ph.D. is included for further details. 

 

 

Figure. 3 Sketch of the thesis structure 
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SECTION Ⅱ. DETAILS OF THE DEVELOPED METHOD 

This Section consists in 3 Chapters (i.e., Chapters 2 Degradation paths modeling 

method, Chapter 3 Measuring accuracy promoting method, Chapter 4 Current state 

estimating method, and Chapter 5 Conclusions and future perspectives) that describe in 

details the original contributions resulting from the Ph.D. research work. 

.
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2. Modeling of abrasive debris generation 

Contents of the Chapter have been adapted from: 

 

1[J] Tongyang Li, Jian Shi, Shaoping Wang, Enrico Zio and Zhonghai Ma. Mesoscale Numerical 

Modeling for Predicting Wear Debris Generation[J]. Tribology Letters, 2019, 67(2): 38. 

3[C] Tongyang Li, Shaoping Wang, Jian Shi and Enrico Zio. Mechanical Wear Life Prediction Based 

on Abrasive Debris Generation [C], 2019 Prognostics and System Health Management 

Conference (PHM 2019). 

 

 Wear debris has become a powerful indicator for wear conditions monitoring of 

engineering machines. However, there is still a lack of effective method for predicting 

the generation of wear debris with given rough surfaces. We developed a numerical 

model based on atomic attrition mechanism for abrasive debris generation modeling. 

The modeling approaches including rough contact model, subsurface stress distribution 

and debris generation model are given in Section 2.1. The numerical prediction 

procedure is presented by a case study and results are compared with existing models 

quantitatively or qualitatively in Section 2.2. Then in Section 2.3, some conclusions are 

drawn. 

 

2.1 Modeling approaches 

2.1.1 Rough contact model 

 At debris level, the contact surfaces are rough surfaces instead of macroscopically 

smooth surfaces. The load is applied on real contact area instead of apparent contact 

area. Practically, profilometry techniques, such as AFM and White Light Interferometry 

(WLI) is used to give out real surface profile [103]. However, when the diameter of the 
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stylus is larger than the distance of two grooves, an error unavoidably appears. For the 

rough surface modeling, there is no general agreement, so a Fourier based digital filter 

[104] is used to generate artificial isotropic rough surfaces with Gaussian height 

distribution. According to Greenwood and Tripp’s theory [105], the contact of two 

rough surfaces can be regarded as an equivalent rough surface with a smooth flat plane. 

Then, the problem is described as a discrete contact model that a grid can be set to 

describe both surfaces. Node ( , )i j  denotes the node at row i  and column j  of the 

grid. Suppose that an external applied load 
0P  is conducted, a load balance should be 

satisfied 

 
0 ,= d

c
i jP p


   (2-1) 

where 
c

  is the real contact area and ,i jp  is the contact pressure at node ( , )i j . ,i ju  is 

the total deformation of both surfaces at node ( , )i j . 
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where 
xM  and yM  are the amount of rows and columns of the grid. Note that ,i k j lK − −  

is the coefficient and its solution on an elastic half-space can be obtained by 
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where 
xa  and ya  are the grid spaces of rows and columns. The *E  is the composite 

Young’s Modulus, which can be calculated by 
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where 
1v   and 

2v   are the Poisson’s ratios of the two surfaces. 
1E   and 

2E   are the 

Young’s Modulus of the two surfaces. Within the framework of Hertz’s hypotheses, the 

real contact pressure ,i jp  and the corresponding deformation ,i ju  on each node can be 
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obtained by solving 
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where 
0u  is the surface deflection and ,i jh  is the separation at node ( , )i j  of the two 

surfaces when there is no load. The single-loop CGM and multi-level multi-summation 

(MLMS) method proposed by Polonsky and Keer [46] is employed to solve the problem. 

Note that some small errors of the method was revised by Allwood [45]. Then, the real 

contact pressure 
,i jp  can be used to get subsurface stress. 

2.1.2 Subsurface stress distribution 

x
y

z

x y

z

P0

s

 

Figure. 4 Coordinate system of two contact surfaces. 

 

 Based on Green’s function [106], the elastic half-space can be described as a 

Boussinesq problem. Suppose that the z direction is perpendicular to the x-y plane as is 

shown in Figure. 4. Each sphere in the figure stands for a minimum removable particle 

under a given solution. The discretized formation of Green’s function can be expressed 

as 
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where ( , , )qr i j mx y z   is the stress at node ( , , )i j m  , ,k lp   is the normal pressure and 

,k ls   is the shear traction at node ( , 0)k l，  . ( , , )N

qr i k j l mD x x y y z− −   and 

( , , )S

qr i k j l mD x x y y z− −   are the influence coefficients of normal pressure and shear 

traction, respectively. Liu and Wang [107] proposed the discretized formation of the 

influence coefficients: 
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Note that the influence coefficients of shear traction have the same formation with that 

of normal pressure after replacing the subscript N  by S . The analytical solution of 

function NT  and ST  is: 
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where 
2 2 2=R x y z+ + . By substituting Eq. (2-8) and Eq. (2-9) into Eq. (2-7), the 

influence coefficients of normal pressure and shear traction can be obtained. 

Substituting Eq. (2-7) into Eq. (2-6), the subsurface stress at arbitrary given node can 

be obtained and the corresponding Von Mises stress can be calculated: 

 2 2 2 2 2 21
( ) ( ) ( ) 6( )

2
VM xx yy xx yy xx yy xy yz xz         = − + − + − + + +  (2-10) 

 

2.1.3 Wear and debris model 

 At the macroscale level, Archard wear equation is commonly used to predict the 

total material loss during the wear process. At microscale level, the wear volume is the 

summation of the atoms. The proposed model is based on the atomic attrition 

mechanism. The minimum removable unit consists of a wear debris particle in 

mesoscopic scale. The accurate description of the generation of wear debris is the key 

to the prediction of wear. The debris generates when the material fails. Under a specific 

applied load, the fracture criterion of different materials may be various. The classic 

Hertz’s theory states that when the stress exceeds approximate three times of the yield 

stress, there will be a plastic deformation. According to Akchurin’s result [48], a Von 
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Mises stress based failure criterion shows a good agreement with the AFM experimental 

data. The wear model is given in a numerical way: supposing that the surface and 

subsurface stress have been accurately calculated by the aforementioned method, the 

Von Mises stress at each node ( , , )i j k  can be obtained by Eq. (2-10). At arbitrary time 

T , the potential removal set ( )pS t  is 

  ( ) ( , , ) | ( , , )p VM i j k yieldS t i j k x y z =    (2-11) 

where yield  is the yield stress. Then, the actual removal set ( )aS t  is 

    ( ) ( , , ) | ( , , ) ( ), ( , , 1) ( ), k 0 ( , ,0) | ( , ,0) ( )a p a pS t i j k i j k S t i j k S t i j i j S t=  −     

 (2-12) 

(i,j,k) Sa

(i,j,k) Sp

 

Figure. 5 Schematic diagram of potential removal set and actual removal set. 

 

 As is shown in Figure. 5, if the Von Mises stress of a surface node ( , ,0)i j  exceeds 

yield , the node belongs to the actual removal set. For the subsurface nodes, the node 

belongs to the actual removal set when all the nodes above it belong to the actual 

removal set. So there is a fast way in solving the wear process that in a layer-by-layer 

calculation, not all the subsurface stress, but the nodes whose upper nodes belong to the 

actual removal set should be calculated, which saves computational cost by 

approximately 50%~70% (depending on the actual stress distribution). 

 The nodes in ( )aS t  constitute the wear debris at time step t . Figure. 6 shows a 

simulative results of ( )aS t   in which we can see that not all of the nodes are joint 

together. Some of the joint nodes are marked by solid lines which is recognized as one 

wear particle. So there may be several wear particles simultaneously. To automatically 
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finished the recognition process, we define that a wear particle is a node set WP and 

the following simple algorithm may be used to get all the wear particles: 

1.An arbitrary node 
0 0 0( , , ) ( )ai j k S t   is moved into WP  , then 

0 0 0 0 0 0( , , ) , ( , , ) ( )ai j k WP i j k S t  . 

2.For ( , , ) ( )ai j k S t   , if 
2 2 2

1 1 1 1 1 1( ) ( ) ( ) 1,( , , )i i j j k k i j k WP− + − + − =   , ( , , )i j k   is 

move into WP  . Repeat until 

2 2 2

1 1 1 1 1 1( , , ) ( ), ( ) ( ) ( ) 1,( , , )ai j k S t i i j j k k i j k WP  − + − + −   . 

Wear particle

 

Figure. 6 Schematic diagram of a wear particle. 

 

  The volume of each wear particle can be obtained by 

 
i iV N ax ay=     (2-13) 

where 
iN  is the amount of nodes in 

iWP  and 
iWP  is the 

thi  wear particle. Usually, 

the equivalent diameter of the particle is estimated by 

 3
6 i

i

V
D


=   (2-14) 

By integrating the volume of each wear particle, the wear rate is given by 

 w iV V=   (2-15) 
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 In this model, wear debris generates only due to the contact pressure between rough 

surfaces. In fact, the fatigue may also cause wear but it is not considered in this work. 

Besides, we assume that wear debris deviates from surfaces instantaneously and keeps 

away from the surfaces after generation. So a three-body abrasive wear may not occur 

under the above assumption. The contact surfaces are updated after each iteration by 

removing all the wear particles each simulation step. The simulation step is proportional 

to the sliding distance. Theoretically, the moving distance for each step equals the 

length of the investigated surface along the moving direction. Because of the flash 

abrasion assumption, the actual moving distance of each step is larger than the 

theoretical result. An amplification coefficient may be used to describe the actual 

moving distance. The amplification coefficient is related to the applied load and friction 

coefficient but assumed to be a constant in this work. 

 

2.2 Simulation results and discussion 

2.2.1 Development of worn surface topography and wear debris 

 The proposed method can be applied on multiple applications with different scales 

by setting different research areas. In this case, we mainly focus on the generation of 

micron-sized wear debris particles which are commonly found in engineering 

mechanical systems and may cause severe wear. A pair of rough surfaces with initial 

roughness 80μm  is firstly generated. Usually, a smooth convex [46] is added to the 

rough surface to avoid spurious stress concentration along edges during the simulation 

process. According to the statistical results [13], most of debris produced by mechanical 

components range from 50μm to 150μm . At the running-in stage, the equivalent debris 

size of some larger debris may reach 300μmor 500μm . The research area is set to cover 

the aforementioned resolution. As is shown in Figure. 7, one rough surface contains 

128 128  data points within a 1
2mm  area. The grid spaces are 7.8125μax ay m= = , 
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which also limits the minimum size of debris particles. Theoretically, the minimum 

equivalent diameter is about 10.8μm . It should be noted that the results are strongly 

dependent on the sampling distance of the rough surfaces [108-111]. Gaussian 

autocorrelation function may be used to reduce the dependence of surface statistics on 

the measurement resolution. In this case, the debris whose equivalent diameters are less 

than 10.8μmare ignored and believed to have little effect. The values of parameters for 

the simulation is listed in TABLE 1. Without loss of generality, steel is chosen and the 

work condition is chosen to be consistent with statistical data. 

 

 

Figure. 7 An artificial surfaces on a smooth convex. 
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TABLE 1 Values of parameters for simulation 

Parameter Meaning Value 

c   Dry friction coefficient 0.3 

1v   Poisson’s ratios of upper surface 0.3 

2v   Poisson’s ratios of lower surface 0.3 

1E   Young’s Modulus of upper surface 210GPa 

2E  Young’s Modulus of lower surface 210GPa 

xL   Length of simulation space in x direction 1mm 

yL   Length of simulation space in y direction 1mm 

zR   Resolution in z direction 7.8125μm   

yield  Yield stress of composite surface 355MPa 

0F   Initial normal force 50N 

  

 The two rough surfaces are assumed to contact each other initially with normal 

pressure 
0F  applied. The static pressure distribution is calculated by BEM. The initial 

Hertz contact pressure of the surface is shown in Figure. 8. For the accuracy of the 

pressure distribution, a statistical result [45] shows that the method generally over-

predicts the area of contact by around 0.5% and under-predicts the peak pressure by 

0.5% with respect to the test result. The corresponding Mises stress of subsurface is 

then calculated layer by layer. For each layer, the solving resolution is 
zR   and the 

stress in z direction is assumed to be equal. The subsurface Mises stress of the first layer 

is shown in Figure. 9. 
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Figure. 8 Contact pressure distribution. 

 

Figure. 9 The subsurface Mises stress of the first layer. 

 

 Applying the proposed method onto the surface, a visible wear process can be 

obtained. As is shown in Figure. 10, after each step, the researched surface profile is 

updated. From (a) to (i) in Figure. 10, the wear status of the surface becomes more 

server. The relative roughness which is the current roughness over the initial roughness 

of the surface is used to evaluate the transformation process as is shown in Figure. 11. 

The relative roughness decreases, which indicates that the rough surface is smoothened 

by the wear process. A similar decreasing curve was shown in Spijker’s work [36] by 

using MD at the atomistic scale. Within the 1
2mm area, there is a step change at the first 
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time unit, then the roughness goes down and remains relatively stable at 1.0015, which 

can be regarded as the running-in stage. If the 1 2mm area is a small part of a surface, 

the closer the contact area is from the edge of the surface, the lower the computational 

accuracy is, because the coefficient of normal stress by the adjacent surface is related 

to the distance according to Eq. (2-3). In addition, the spurious stress concentration 

may also occur which may not be recognized during the Monte Carlo simulation. So 

the simulation stops when the real contact area covers 80% of the whole surface. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 
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(h) 

 

(i) 

Figure. 10 Simulation of wear process. 
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Figure. 11 Relative roughness. 

 

 During the wear process, the real contact area increases and the normal stress on 

each point decreases. For each step, with updating of the surface, wear debris is 

collected from the removed part. As is shown from Figure. 12 (a) to Figure. 12 (i), some 

of the removed parts are displayed from which we can see that the topologies of the 

removed parts change a lot during the process. At the beginning, the removed part can 

almost be recognized as an entirety. In later simulation, the entirety becomes small 

particles which means the equivalent debris size decreases. In Figure. 12 (a), the 

equivalent debris size is about 307μm  and in Figure. 12 (i), the average equivalent 

debris diameter is 93μm . However, these values cannot be recognized as a common 

result for the work condition shown in Figure. 12. The topology of the generated rough 

surface shows an influence on the wear debris generation.  
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(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 
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(h) 

 

(i) 

Figure. 12 Simulation of wear debris. 

 

 To avoid the randomness of artificial surfaces, a Monte Carlo simulation is carried 

out. 100 pairs of generated rough surfaces each with 1
2mm   area are tested by the 

proposed method. The roughness of the original surface is controlled from 78μm to 82

μm . All the rough surfaces are added onto the same convex to get a statistical result. 

We investigated the wear rate for surfaces with different topologies. The simulation step 

is proportional to time unit but does not correspond to a practical meaning. Therefore, 

the cumulative wear volume is used instead of wear rate to describe the wear process. 

Considering the influences by the applied load, surfaces with same parameters are 

tested under 50N and 100N. Mean wear volumes with standard deviation bars are 

shown in Figure. 13. Generally, the wear volume displays a linear function with respect 

to the simulation step. Total wear volume loss of 10 randomly selected surfaces are also 

obtained by finite element method and their mean value are also shown in Figure. 13. 

To make the two method comparable, the amplification coefficient is set to be 0.72. For 

the predicting result, most of the surfaces show a similar wear rate in the beginning, 

while the difference becomes evident after about 10 steps. Compared with other 

surfaces, the roughness of the surface with markedly different wear rate does not display 
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a difference. So the topology is considered to account for the individual difference. The 

individual behavior is not an accident. 7 of the 100 pairs of surfaces show non-linear 

wear rate as well in contrast with major surfaces. In Popov’s work [112], Rabinowicz 

criterion was used and similar inflection point appeared in their curve of wear volume 

versus sliding distance. Figure. 14 shows changing of real contact areas, which may 

account for the changes of friction coefficient during the silding. This randomness may 

give an explanation to the engineering phenomenon that even for the same batch of 

machines, their degradation paths are various from each other under the same work 

condition. The average wear volumes per each simulation step of the specimen are 

approximate -10 32.135 10 m at 50N and -10 33.6107 10 m at 100N . 

 

 

 

Figure. 13 Wear volume of rough surfaces. 
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Figure. 14 Real contact area of wear process. 

 As there is no general understanding on the wear of rough surfaces with random 

topologies by the experiments and simulation results, the debris characteristics from the 

statistical results are analyzed. The proposed method takes advantages in providing a 

simulative information of each particles in detail. Quantity, size, shape and composition 

are believed to be the key characteristics of wear debris that are related to the wear 

status of rough surfaces. A common result [113] shown in Figure. 15 displays the 

qualitative relationship between debris generation and wear process. Wear debris 

generation rate increases with increasing time. The sizes of wear debris obey different 

distributions in different wear stages. But in a certain wear stage, the characteristics of 

wear debris show regularity. A detailed analysis on the characteristics is given out by 

the following sections. 
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Figure. 15 Relationship between debris generation and wear process. 

2.2.2 Quantity of wear debris 

With the relative stable wear rate, quantity of wear debris increases as the results shown 

in Figure. 12. The counts of all the wear particles are shown in Figure. 16. Debris 

monitoring results by Miller et al. [114] show that in early stages of wear, the counts of 

wear debris follow a power function with respect to the sliding distance, which is 

consistent with the simulation result. A dynamic model for predicting debris generation 

presented by Hong [10] is used as a comparison in this thesis. Fitting curves using 

power function are plotted in Figure. 16. Since the dynamic model concerns also 

parameters related to power loss which is simplified by the proposed method, the 

dynamic model predicts less particles than the proposed method. We should also notice 

that individual difference still exists. Whether the wear debris counts by a single surface 

simulation is consistent with experiments needs a further research. The fitting function 

for the statistical result is 

 1.383( ) 41.29 -70.29f x x=   (2-16) 
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Figure. 16 Counts of wear debris particles. 

2.2.3 Size distribution of wear debris 

At running-in stage, the relative surface conformity of the rough surfaces increases with 

increasing simulation duration [115]. With smaller conformity, loads will distribute 

unevenly which will lead to a larger probability of large wear debris. Because the very 

large debris may not appear considering the three-body abrasion in practice, only debris 

particles whose equivalent diameters are within 500μmare counted into the statistical 

data. It is suggested that Weibull distribution may be used to fit the debris distribution 

[116, 117]. Several studies also found that their experiment results obeyed Weibull 

distribution [17, 118, 119]. The size distribution of wear debris generated by the 100 

pairs of surfaces is shown in Figure. 17. Experiments with same parameters shown in 

Figure. 18 was conduction by Akchurin et al. [48, 49] but in a much smaller scale. They 

got a similar shaped distribution by AFM measurements. Similar distribution was found 

in Catelas’s metal–metal hip testing [120]. The mean value is 178.52μm for the Weibull 

distribution which is given by 

 
2.718

1.718
( )
200.698
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( )
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Figure. 17 Size distribution of wear debris. 

 

 The distribution results of simulation step 2 to simulation step 9 are shown in 

Figure. 18. The size bin is established for every 10μm . The fitting distribution matches 

the statistical data well for the first two steps. From step 4, the amount of specimens 

shows a dramatic increasing around 120μmand the peak appears sustainably. This peak 

actually cannot be represented by the suggested Weibull distribution. Same 

phenomenon occurs in Akchurin’s research. This may be ascribed to the coarse size bin 

which is used for the particle recognition, since the simulative resolution of wear 

particles is not very high considering the large computational costs. A highly refined 

size bin may reduce the fit error. 

 

 

(a) 

 

(b) 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure. 18 Distribution results of wear debris size in each iteration. 

 

2.2.4 Shape of wear debris 

 The shape of wear debris is usually qualitatively evaluated because of the 

expensive cost by microscopy methods. Several indicators like area, length, convexity 

and elongation were investigated to establish the relationship with wear mechanisms 

and severity, among which aspect ratio [121] that denotes the ratio of the largest 

diameter of the particle to the largest perpendicular diameter is regarded as a more 

effective one [14, 122]. The result of the Monte Carlo simulation is shown in Figure. 

19. Actually, only 0.3% of all the data drop into the field of larger than 13. To avoid the 

influence of very thin particles which is seldom seen in matallic debris and may not 

exist if we take reentering into consideration, only data with aspect ratio smaller than 
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13 is shown. From Figure. 19 (a) to Figure. 19 (g), the results of simulation step 2 to 

simulation step 9 are displayed in order. In the beginning, the debris particles with low 

aspect ratio takes 53%, as is shown in Figure. 19 (a), which means ball-like particles 

account for major percentage. The difference between the particles with low aspect ratio 

and that with high aspect ratio becomes smaller with simulatioin duration. The aspect 

ratios are close to a uniform distribution at step 9. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure. 19 Aspect ratio distribution of wear debris. 
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2.3 Conclusion 

 In this section, a predictive simulation method is proposed for modeling the wear 

debris generation procedure between rough surfaces at mesoscale. The wear model is 

based on the atomic attrition mechanism which was found in microscale. The proposed 

method takes advantage in giving out the information of wear debris in detail, by which 

the characteristics of wear debris in each step can be obtained. 

 The numerical prediction procedure is presented by a case study and results are 

compared with existing models quantitatively or qualitatively. A Monte Carlo 

simulation is carried out on 100 pairs of rough surfaces to avoid the effect of random 

topologies. Non-linear wear volume is found in several worn surfaces which also occurs 

in other microscale researches. The statistical characteristics are analyzed and the 

predictions of wear volume are in good accordance with results by finite element 

method. The amount of wear debris is well fitted by a power function with respect to 

simulation steps and predicts an acceptable more debris comparing with the dynamic 

model. The distribution of wear debris size follows a Weibull distribution in the mass, 

while a peak appears around 120μmwhich cannot be well fitted. It is also found that 

particles with high aspect ratios increase during the wear process and the corresponding 

distribution of each steps is given out. It should be noted that the results presented by 

the case study can only be used when the work conditions are exactly the same, 

otherwise, one should go through the process with customized parameters to get 

specific predictions.  

 This work provides an available method for predicting the generation of wear 

debris with multidimensional information, which may help the readers with enhanced 

prognostic result by wear debris from multiple perspectives. Further works will 

concentrate on building the relationship between the simulation steps with the physical 

temporal meaning and giving out a usable degradation model by using the detailed 

information of wear debris. 
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3. Monitoring abrasive debris online 
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 Accurate and real-time data are needed for online state estimation. In recent years, 

online detection methods have been widely studied for real-time monitoring [123]. 

Among the debris detection methods, those based on inductive principles have shown 

advantages in non-invasion, insensitivity to oil quality, capacity to differentiate ferrous 

and non-ferrous wear debris, and easy installation on non-transparent pipes, as 

compared with other methods including optics, capacitance, resistance, ultrasonic, and 

X-ray approaches [13]. However, high throughput of debris in aviation hydraulic 

system makes the inductive sensors fail to identify the aliasing signals. To address the 
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serious mixing of pipe abrasive debris, in Section 3.1, the aliasing problem is analyzed 

and the serial layout of detection sensors is proposed to simulate an anechoic condition 

with phase differences of wear particles. Section 3.2 describes the degenerate unmixing 

estimation technique used to separate the aliasing signals. An improved convolutional 

neural network (CNN) combined with degenerate unmixing estimation technique 

(DUET) is proposed in Section 3.3 which offers an online solution for the aliasing 

signal separation. In Section 3.4, an experiment is conducted for practical aliasing 

signals separation and the results are discussed. In Section 3.5, some conclusions and 

remarks are presented. 

3.1 Aliasing Signal Separation Detection Structure 

 Although there may exist several kinds of inductive debris detection sensors with 

different parameters and performance, the principles of these sensors should be the 

same. We employ radial magnetic field (RMF) sensor which is based on the inductive 

principle [13] as the leading role in our research, since this type of sensor is developed 

by the laboratory of the author independently and the experimental setup is complete. 

The prototype of the inductive debris detection sensor based on dual excitation sources 

[57] is shown in Figure. 20. For details of the sensor, see [13, 57]. 

 

Figure. 20 radial magnetic field debris detection sensor 

 The coil is wound along the iron core and the magnetic field is perpendicular to the 

pipe. This kind of sensor shows good performance with magnetic uniformity, and the 

output voltage is calculated as follows: 



3. Online abrasive debris detection 

49 

 

 
( )

( )3

( 1)
2 r

D x y z

r

l x
u NN IS S S v

l x

 



−
= −   (3-1) 

where N  and 
DN  are the numbers of turns of the inductive coil, I  is the current in 

the inductive coil, xS , 
yS , and zS  are the sizes of the particles,   and r  are the 

permeability of the vacuum and the relative permeability of the debris, ( )l x  is the 

location of the debris, and v  is the debris speed along the x axis. 

 The size of the debris can be estimated if the output voltage is measured. The size 

of the debris is one of the key indicators for the wear prognosis. During normal 

operation, the debris size is in the 1~20 µm range. With an increase in the severity of 

wear, larger debris in the 50~100 µm range is generated more frequently, and at the 

stoppage a large number of debris above 200 µm are produced. The poles of the output 

voltages are related to the debris sizes, and the poles are the solutions of the following 

equation: 

 ( ) ( ) ( ) ( )4 2( 1)
2 ( 3( ) ) .r

D x y z

r

ul x NN IS S S l x l x l x v
 



−
 = − −   (3-2) 

 For a certain sensor, the intrinsic parameters are confirmed. Assuming that each 

particle has a d   diameter sphere, the value for the measured particle can then be 

obtained by substituting the measured poles: 
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by which the sizes of the particles can be estimated. The values of the poles and the 

relative locations where the poles appear are the key parameters for the size estimation. 

 When the aliasing appears, a large peak value is measured rather than two real 

small measured induced voltages. Under this circumstance, the measured aliasing 

signal could not truly reflect the actual abrasive debris condition. So, an effective 

aliasing signal separation algorithm of superimposed abrasive debris is urgently needed. 

For speech separation, usually two or more microphones are arranged in the 
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environment to collect the speech signals. The limitation of using one microphone is 

that an infinite number of solutions can be obtained from only one aliasing signal. By 

using two or more microphones, the same sound travels and arrives at different 

microphones with different delays and attenuations, resulting in different signals. The 

signals with different delays and attenuations are the observations of the sound from 

different perspectives in the time-frequency domain, which gives opportunities for the 

separation of the sounds. As for the abrasive debris detection, if the debris induces 

voltages with different delays or attenuations when going through different sensors, the 

aliasing signals can be separated into several estimated sources from the time-frequency 

domain. The time-frequency domain method for the debris detection signals separation 

is more suitable compared with the speech signals separation. The debris in the oil will 

only go through the sensors once, while the sound will be reflected by the walls and 

arrive at one microphone several times, forming the so-called echoic system. Besides, 

because of the viscosity of the oil, particles transfer in the oil with different velocities, 

which leads to different phase displacements of two particles at two different locations 

in the oil pipe. The inherent characteristics of the debris detection guarantee that most 

of the superimposed abrasive debris will show different delays and attenuations after 

moving for some distance. 

 Based on the analysis above, a serial layout of detection sensors is proposed in this 

thesis. The layout of the sensors is shown in Figure. 21. Two sensors with similar 

performances are installed in series on an oil pipe. When the thi  particle passes through 

the oil pipe, the output of sensor 1 is ( )1is t  and the output of sensor 2 is ( )2is t . Since 

the two sensors should have a similar output for the same passing particle, the output 

of sensor 1 is simplified to be ( )is t  and the output of sensor 2 is ( )i i ia s t − , where 

ia   and i   are the amplitude and the phase difference of the induced signal in 

comparison to sensor 1. Assuming that M  particles pass through the sensors with a 

constant speed, in a period of time t , the output of the two sensors is: 
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Figure. 21 Detection layout based on two radial magnetic field (RMF) sensors. 

 

 For the layout shown in Figure. 21, there are three possible kinds of output signals. 

Firstly, if the debris remains relative static from sensor 1 to sensor 2, the output of 

sensor 1 will be equal to that of sensor 2 by shifting the signal of sensor 2 ahead. In this 

situation, one of the two signals is superfluous and if aliasing occurs, the following 

aliasing signals separation algorithm cannot provide the correct result but will recognize 

that there is no signal mixing. Secondly, if there are relative motions of the debris and 

the three particles cause aliasing in one sensor’s output signal but no aliasing in the 

other sensor’s output signal, no more algorithms need to be employed for separation. 

However, because this situation cannot be recognized, the algorithms will still be 

conducted and give out the right solution. The third situation arises when aliasing 

occurs in both sensors’ output signals and the signals are different. The following 

algorithm is intended to be employed in this situation. 
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3.2 Aliasing Signals Separation Based on the Degenerate Unmixing 

Estimation Technique 

 The sensor output is composed of debris signals and interferences which come from 

random noise and specific frequency interferences. The band pass filter is firstly used 

to improve the SNR [72]. Then, the processed signals are used for the separation. 

The aliasing signal originates when particles are very close, in which the induced 

voltages are superimposed in the time domain. According to the principle of the RMF 

sensor shown in Eq. (3-1), the outputs of the sensor are different when two different 

particles pass through the same sensor. So, it is possible to separate the sources in the 

time-frequency domain if one point is dominated only by one source, which is also 

called W-Disjoint Orthogonality. The Short Time Fourier Transform (STFT) of a signal 

( )is t  is defined as: 

  ( ) ( ) ( )
1

ˆ ( , ) : , : d
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by which the aliasing signals are then transformed into the time-frequency domain 

using a Hamming window. If the two sources satisfy: 

 ( ) ( )ˆ ˆ, , 0    0,   0,    i js s i j     =     ，  (3-7) 

then the two sources can be separated. Separating the sources from the aliasing signals 

is thus a problem of classifying the points from a mixed signal in the time-frequency 

domain. For sensor 1, the thi  source is: 
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where M  is the mask function: 
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 According to Reference [124], to apply the DUET method to solve a blend source 

separation problem, three additional assumptions should be satisfied: 
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(1) Two measured sensors are locally stationary, which means that the two sensors 

should not be moved during detection to avoid the error of the phase shift. 

(2) Phase ambiguity may arise if two sensors are close enough, which is determined 

by: 

 ,     , .i i       (3-10) 

 For the detection sensors, the limitation becomes:  
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   (3-11) 

where D  is the distance between the two sensors, v  is the oil flow speed, and max  

is the maximum frequency of sources. 

(3) The two sources should have different spatial signatures, which are given as: 

 ( ) ( ) ,     .i j i ja a or i j       (3-12) 

 For the inductive debris detection method, the assumptions can be met by installing 

the sensors under the serial layout proposed in Section 2. The aliasing signals can be 

rewritten as: 
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where ( )ˆ ,y    is the STFT of ( )y t  and for each ( ),   
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 At each time-frequency point we can obtain a pair of aliasing parameters, ( ),ia    

and ( ),i   . 
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 These parameters are the attenuation estimator and delay estimator, respectively, 

which denote the amplitude ratio and the phase difference of the sources detected by 

sensor 2 relative to those of sensor 1. In fact, only M  pairs of parameters are the actual 

aliasing parameters, which means we need to determine the real values ( ),i ia   from 

the estimators sets. The sources can be demixed by: 

 ( )
( ) ( )( ) ( )1 , , , ,

, :
0 .

i i

i

a a
M
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 =
= 
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and, then, the sources are converted to the time domain and the separated sources are 

obtained. 

 Usually, a two-dimensional weighted histogram is employed to obtain the actual 

aliasing parameters [125]. The weight ( ),W a   is calculated by: 

 ( ) ( ) ( )1 2
ˆ ˆ, , , .W a y y    =   (3-18) 

 The entire process of separating the sources from the aliasing signals of two sensors 

is shown in Figure. 22. 

 

 

Figure. 22 Flow chart of aliasing signals separation. 
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3.3 Convolutional neural network Based degenerate unmixing 

estimation technique 

3.3.1 The disordering features in networks for debris signals 

 There are three main shortcomings using the original DUET [68, 69] method for 

debris aliasing signal separation, which converge on the two-dimensional weighted 

histogram method. Firstly, being different from the original application on the speech 

signals, real time processing is needed for debris signals. Secondly, instead of one-time 

separation for a speech signal, large amount of debris signal segments is queued up for 

being processed. Thirdly, manual operation of the two-dimensional weighted histogram 

may introduce human errors into the method. 

 Neural networks have been studied a lot as machine learning methods and widely 

used for the speech source separation [126-131]. Networks including the feedforward 

network, cascade forward network, auto-encoder, sparse auto-encoder and 

convolutional neural networks are attempted. Networks with the same type but with 

different parameters are also tried, like the two-layer convolutional neural networks. In 

fact, in the aliasing signal separation, the attenuation is a constant and the most 

important is to get an accurate parameter delay. 

 If the aliasing signals serve as the input and the output 
label 1 2{ , ,..., }ns   =  is the 

set of the relative phase differences where n  is the number of the particles, the labeled 

output can be any element in  

 
label 1 2 1 2 label 1 2{( , ,..., ) | , ,..., , ... }.n n nS x x x x x x s x x x=      (3-19) 

 Compared with the original networks, the schematic structure of the network with 

disordering features is shown in Figure. 23. 
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Figure. 23 Schematic structure of the networks. 

 The original training target for the regression networks is to minimize the loss 

function where mean square error (MSE) is usually used. By minimizing the MSE, the 

difference between the output of the network and the labeled value can be decreased 

effectively. However, when the structure becomes the network with disordering features, 

the original one-one corresponding training target will lead to an indistinguishable 

result. The training target is then to minimize the loss function 
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where   is the penalty function which is defined as the difference of the variance of 

the predicted values and the variance of the labeled values and   is its coefficient.  

 The original method which can only be used to evaluate the one-one corresponding 

training performance is modified as the minimum of 

 

2

1
labe1 2 1 2l out

ˆ( )

 , ( ˆ ˆ ˆ ˆ ˆ) ˆ, , ,( ,, ) .n

n

i

n

i

i

x x

sx x x s
n

x x x= 

−




  (3-21) 

With the modified training target and accuracy, the output layer of the network is 

regarded as a group instead of individual neurons, which is also the improvement of the 

network for debris feature extraction. 

 Neural network is a machine learning method based on large dataset. The first thing 

is to obtain the dataset for training. In fact, the data we got from the experiment are far 

away from the requirement and the experimental data cannot be separated perfectly for 

the training. Hence, the simulated data are used here for the training. 

 The simulated data are based on the sine wave. Each of the particles is described 
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as a sine section with period from 
2


  to 

3

2


 . The sine sections with random 

amplitude and phase are superimposed to be the first aliasing signal. Modify the 

amplitude and phase of each sine sections and add them together to get the second 

aliasing signal. The two signals can be obtained and their delay characteristics can also 

be calculated during the process, which composed the dataset for training. 

 As is shown in Figure. 24, the framework for the parameter estimation is displayed. 

The points of aliasing signals are the inputs and the outputs are the parameters. 
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Figure. 24 Framework for the parameter estimation. 

 In fact, under the supervised learning, the number of the output should be 

confirmed firstly. In our framework, the output is relied on the number of sources which 

cannot be known. Fortunately, the DUET method provides a relative accurate number 

of the sources. So for each number of sources, a network is established and used only 

for the specified. For the debris sensors, because the attenuation is usually a constant, 

the estimation of the attenuation can be conducted by other method. The outputs of the 

proposed networks are only the delays. 

 Since CNN shows the best result for the test, we employ CNN combining with 

DUET as the online signal separation method. If an improved CNN is used as the 

feature extraction method instead of the original two-dimensional weighted histogram 

method, the flow chart of CNN based DUET is shown in Figure. 25. Because for two 

certain inductive sensors, the amplification coefficients can be regarded as constants, 

only the delays are extracted from the network. The simulation results are listed in next 

section. 
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Figure. 25 Flow chart of CNN based DUET. 

 

3.3.2 Simulation results 

 A. Feedforward networks 

 The simulation is conducted by using the Matlab neural network toolbox. One-

layer and two-layer feedforward networks are tested and the structure is shown in 

Figure. 26. Different number of hidden nodes are tested and the results are shown in 

TABLE 2. 

 

Figure. 26 Feedforward networks structure. 

 

Figure. 27 Mean square error. 
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Figure. 28 Error distribution. 

 The inputs of the networks are the joint matrix of the two signals. Each signal has 

a length of 500 points data and the joint result is 1000 for the number of inputs. The 

outputs are three delays because we use three sources to generate the aliasing signals 

and the networks are only used to estimate the delays of three-source aliasing situation. 

Gradient descent is used for the training. 

 1000 groups of samples are used for training and 300 groups of samples are used 

for testing. Another 300 groups of samples with a noise of normal distribution whose 

mean value is zero and square error is 0.1 are also used for the test and the mean square 

error (MSE) are calculated for evaluation the performance of the networks. For each 

network structure, we can get the MSE of each training step which is shown in Figure. 

27 and the error distribution which is shown in Figure. 28. The structure [5] means the 

feedforward network has one layer and the hidden nodes number is 5. The structure [5 

5] means the feedforward network has two layers and the hidden nodes number of the 

first layer is 5, the number of the second layer is 5. 

TABLE 2 Simulation results of Feedforward networks 

Network structure MSE MSE of data with noise 

[5] 0.1819 0.2321 

[8] 0.1931 0.2393 

[10] 0.1816 0.2306 

[12] 0.1827 0.2911 

[15] 0.1564 0.2822 

[5 5] 0.2016 0.2240 



3. Online abrasive debris detection 

60 

 

Network structure MSE MSE of data with noise 

[8 5] 0.1782 0.2412 

[10 5] 0.1925 0.2287 

[5 10] 0.2038 0.2727 

[8 8] 0.1929 0.2553 

 

 Because the initial weight of the networks are random, the results shown in TABLE 

2 is the mean value of 10 times training. From the results we can easily see that the 

different structure of a feedforward network has little influence on the estimation. 

Generally, the MSE of the data with noise is higher than the MSE of the clear data. 

 B. Cascade-forward networks 

 The setting of the inputs and outputs are the same as the feedforward networks’. 

The structure of the network is shown in Figure. 29. Both cascade-forward networks 

with one layer and two layers are tested. The results are listed in TABLE 3. 

 

 

Figure. 29 Cascade-forward networks structure. 
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TABLE 3 Simulation results of cascadeforward networks 

Network structure MSE MSE of data with noise 

[5] 0.1394 0.2803 

[8] 0.2036 0.2393 

[10] 0.1795 0.2101 

[5 5] 0.2084 0.1976 

[8 8] 0.1953 0.2480 

 

 The cascade-forward networks show a similar result with the feedforward networks. 

However, the time cost of the training is about 10 times than that of the feedforward 

networks. Different structures show an analogous MSE for both the clear data and the 

data with noise. 

 C. Auto-encoder 

 By using the traditional training method, the scale of the networks cannot be very 

large. The feedforward and cascade-forward networks proposed above consist of about 

one or two layers and totally under 20 nodes. However, the cost of the time for the 

training is very large. The auto-encoder changes the training method and reduces the 

cost largely. The scale of the network by auto-encoder can be thousands of nodes and 

the cost of time is approximately equals to train a 20 nodes two-layer feedforward 

network, which makes it an important branch in deep learning. The structure of the 

auto-encoder is shown in Figure. 30. 

 

Figure. 30 Auto-encoder structure. 

 Because of the deep learning toolbox of the Matlab has stopped updated, the 

method is also tested by tensor-flow. The results of different node numbers are shown 

in TABLE 4. 
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TABLE 4 Simulation results of auto-encoder networks 

Network structure MSE MSE of data with noise 

[50 50] 0.1332 0.1295 

[100 50] 0.1177 0.1221 

[100 100] 0.1269 0.1227 

[200 100] 0.1257 0.1265 

[50 50 50] 0.1326 0.1220 

[100 100 50] 0.1224 0.1260 

[100 100 100] 0.1337 0.1365 

 

 The result of auto-encoder is obviously better than the feedforward and cascade-

forward networks. Less than 20 nodes may not fit the relation well. We can also see that 

the result is not better and better with the increasing of the number of the nodes. The 

best result is shown at [100 50]. The increasing of nodes does not promote the accuracy 

but only increases the cost of time. Deep network actually shows a better result. 

 D. Sparse auto-encoder 

 The sparse auto-encoder is a modified auto-encoder method with sparse constraint. 

This kind of method makes most nodes inactive compared with the auto-encoder. The 

structure of the sparse auto-encoder is the same as the auto-encoder shown in Figure. 

30. 

 The sparsity regularization of the tested networks is set as 4 and the sparsity 

proportion is set as 0.05. Purelin is chosen as the decoder transfer function. The testing 

result is shown in TABLE 5. 
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TABLE 5 Simulation results of sparse auto-encoder networks 

Network structure MSE MSE of data with noise 

[50 50] 0.0412 0.3673 

[100 50] 0.0372 0.3691 

[100 100] 0.0373 0.3585 

[200 100] 0.0375 0.3538 

 

 Different from the auto-encoder, result of the sparse auto-encoder shows that it has 

a higher accuracy in the test of clear data but a lower accuracy in that of data with noise 

instead of a more accurate result. 

 E. Convolutional neural networks 

 The CNN simulation is under the tensor-flow environment. Generally, the structure 

of CNN is shown in Figure. 31. The input signals are reshaped to a matrix of 2 rows 

and 500 columns. Convolutional core with different numbers and shapes are tested. 

Then, the max pooling layer is used. After the full connection layer, three outputs are 

obtained. 
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Figure. 31 CNN structure. 

 

 The two-layer CNN is after the first max pooling layer, there are another 

convolutional layer and max pooling layer. The number of nodes for the full connection 

layer is 256 in one-layer CNN and 1024 in two-layer CNN. Different structure of the 

CNNs are tested and the results are listed in TABLE 6. 

 

 



3. Online abrasive debris detection 

64 

 

TABLE 6 Simulation results of Convolutional neural networks 

Network structure MSE MSE of data with noise 

10conv20*2  pool2*2 0.1297 0.1183 

20conv20*2  pool2*2 0.1150 0.1169 

30conv20*2  pool2*2 0.1251 0.1226 

10conv30*2  pool2*2 0.1181 0.1136 

20conv30*2  pool2*2 0.1177 0.1190 

30conv30*2  pool2*2 0.1216 0.1159 

10conv30*2  pool2*2 and 10conv15*1 pool2*1 0.0824 0.0841 

20conv30*2  pool2*2 and 10conv15*1 pool2*1 0.0854 0.0852 

30conv30*2  pool2*2 and 10conv15*1 pool2*1 0.0841 0.0859 

10conv30*2  pool2*2 and 20conv10*1 pool2*1 0.0826 0.0881 

20conv30*2  pool2*2 and 20conv10*1 pool2*1 0.0851 0.0827 

30conv30*2  pool2*2 and 20conv10*1 pool2*1 0.0862 0.0865 

 

3.4 Experiment 

 To verify the effectiveness of the proposed method for separating the aliasing 

signals, we conducted an experiment. A larger concentration of particles was injected 

into the pipe as a proxy of a large flow rate to simulate the actual aliasing environment 

of the outlet flow of an aviation pump. To satisfy the requirement of the two sensors, 

the tested part of pipe was slimmed for a high flow speed under the same flow rate. 

According to Eq. (3-11), the larger the flow speed is, the longer the distance between 

the two sensors can be. The layout of the experimental system is shown in Figure. 32.  
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Figure. 32 Experiment layout. 

 

 Two oil filters were installed on the input pipe and the output pipe was connected 

to the pump. The one installed on the input pipe was used to protect the pump from real 

wear by the contaminant and the other was employed to make sure that the tested part 

of the pipe contained only the injected tested particles. On the tested part of the pipe, a 

particle injection device was installed and two similar inductive debris detection sensors 

were installed in series. The real experimental system is shown in Figure. 33. 
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Figure. 33 Experiment system. 
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 By using the injector, particles were injected into the transparent section of the pipe. 

Without opening the switch valve, particles will not flow with the oil. By opening the 

switching valve, the particles flow into the tested part of the pipe, gradually generating 

aliasing signals. When particles pass through the sensors, the induced voltages are 

collected by the signal acquisition system. Key parameters of the experiment system 

are listed in TABLE 7. 

 

TABLE 7 Parameters of the experiment system 

Parameters Values 

Output pressure 0.7 Mpa 

Flow rate 60 L/min 

Tested pipe diameter 1 cm 

Distance between the two sensors 25 cm 

Sampling frequency 10 kHz 

Size of particles  50~150 μm 

Total weight of particles 1 g 

  

 Iron powders were employed to replace real abrasive debris. For the first test group, 

the pump was not started, signals from the two sensors were collected as shown in 

Figure. 34 (a) displays the signal from sensor 1. By converting the time domain data 

into frequency domain data, the frequency spectrum can be obtained as shown in Figure. 

34 (b). It can be seen that the time domain data are noisy, but there are two strong peaks 

at 50Hz and 150Hz in the frequency domain. Obviously, the peak at 50Hz is caused by 

the electromagnetic interference from commercial electrical power. Since no other 

device runs during the test, 150Hz is caused by the harmonic interference from three-

phase electric. Weak peaks can be found at each harmonic frequency like 250Hz. Figure. 

34 (c) displays the signal from sensor 2 and the corresponding converting result by 

discrete Fourier transformation can be found in Figure. 34 (d).  

 For the second test group, the pump started running but no powders were injected 
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to the system. Signals measured by sensor 1 can be seen in Figure. 35 (a) and the 

corresponding frequency spectrum is shown in Figure. 35 (b). Compared with the first 

group, strong peaks occur at higher frequency near 2000Hz, which is caused by the 

periodic rotation of the piston pump. Its harmonic interference occurs near 4000Hz. 

Figure. 35 (c) displays the signal from sensor 2 and the corresponding convert result by 

discrete Fourier transformation can be found in Figure. 35 (d). Obviously, the method 

is sensitive to the vibration which is commonly seen in practical conditions.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure. 34 Experiment results when the pump stops. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure. 35 Experiment results without debris. 

 For group 3 to group 10, iron powders with different amounts were injected into 

the system. The parameters for each group are listed in TABLE 8. In group 3 to group 

6, medium powders were tested and in group 7 to group 10, coarse powders were tested. 

The theoretical amount of powders is estimated by assuming that the density of the iron 

powders is 3g/cm3. The results of group 7 are shown in Figure. 36. Unlike the results 

collected in laboratory conditions, all that can be seen is a noisy waveform that conveys 

little information. From the frequency domain, no evident difference can be found 

compared with the result shown in Figure. 35.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure. 36 Experiment results with debris. 
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 The induced voltages by debris are aperiodic sine-like waveforms whose frequency 

is around 100Hz. According to the aforementioned methods, a 200-order digital band-

pass filter using hamming window is designed as is shown in Figure. 37. The range of 

the pass band is from 70Hz to 130Hz. The filter is implemented by MATLAB Filter 

Designer. The filtered results of the signals shown in Figure. 36 (a) and Figure. 36 (c) 

are shown in Figure. 38 (a) and (b), respectively. The filtered results are much distinct 

than the unfiltered results. It can be seen that at 10s, the powders were injected into the 

oil and about 2 seconds later, both the two sensors detected the debris. Obviously, some 

induced voltages are superimposed and noise by the harmonic interference still exists. 

By counting the peaks, the amount of debris can be obtained directly.  

 

Figure. 37 The designed band-pass filter. 

 

(a) 

 

(b) 

Figure. 38 Filtered signals. 
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TABLE 8 Experiment results 

Group Debris Concentration Reference Sensor 1 Sensor 2 

3 1g Medium 250mg/L 41.6 10   5893 5416 

4 2g Medium 500mg /L 43.2 10   6798 6545 

5 4g Medium 1g/L 46.4 10   15890 16341 

6 10g Medium 2.5g/L 51.6 10   25621 26848 

7 1g Coarse 250mg/L 600 436 401 

8 2g Coarse 500mg /L 1200 726 792 

9 4g Coarse 1g/L 2400 1489 1450 

10 10g Coarse 2.5g/L 6000 4256 4534 

 

 Six replicates of the experiment were carried out and signals were extracted from 

the original signals. The signals collected by sensor 2 were shifted in time 0.0196 s 

ahead to eliminate the error caused by the distance. We can easily find that there are 

several aliasing sections in the signals which can be extracted from the signals 

collection, as shown in Figure. 39. The whole extracted signals were first divided into 

several sections. On each section, the DUET method was conducted. Two of the aliasing 

sections are labeled in Figure. 39 as a1 and a2, and serve as the examples for the 

demixing. The size of the Hamming window is 64 samples. We can also see that there 

are sections where no aliasing occurred (there was no signal mixing). For these sections, 

the clustering results of the DUET method were only one source and the debris sizes 

could be estimated without using the mask function. 
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a1 a2

 

Figure. 39 Extracted signals. 

 

 Figure. 40 shows the zoomed image of the signals from sensor 1 and sensor 2, 

labeled as a1 in Figure. 39. The aliasing phenomenon can be seen intuitively from the 

curve, and it seems that the induced voltages caused by two particles with different 

phases and sizes are superimposed. From the two-dimensional weighted histogram 

shown in Figure. 41, the aliasing parameters were classified into two groups and the 

peaks of each group were labeled. One point is (2.121,0.909,2.151) and the other is 

(4.545,0.9091,1.174), which means the delay between the signal from sensor 1 and that 

from sensor 2 of the source of one particle is 2.121 × 10−4 s and that of the other particle 

is 4.545 × 10−4 s, because the sampling frequency is 10 kHz. The demixing results are 

shown in Figure. 42, although the sources are not perfectly separated due to the 

clustering error. 
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Figure. 40 Aliasing signals of section a1. 

 

Figure. 41 Clustering result of section a1. 

 



3. Online abrasive debris detection 

73 

 

Figure. 42 Demixing result of section a1. 

 

 Another zoomed image is shown in Figure. 43, from which we can hardly figure 

out how many particles have passed through the sensors. If the original signals are used 

to conduct the particle counting or debris characteristics statistic, then a cumulative 

error may arise which may cause inaccuracy in the prognosis and diagnosis. In fact, for 

different accuracies, there may be different clustering results, as shown in Figure. 44 

and Figure. 46. This is unavoidable because of the uncertainty of the aliasing parameters. 

When the phase differences of two sources are not significantly distinguished, the 

clustering may not give acceptable results. As for the signals shown in Figure. 43, we 

can never know the original sources, but merely try to obtain a good estimation. 

Comparing the two demixing results shown in Figure. 45 and Figure. 47, the result 

which contains four particles is more convincing than the three particles result. 

 

Figure. 43 Aliasing signals of section a2. 
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Figure. 44 Clustering result of section a2 into three particles. 

 

Figure. 45 Demixing result of section a2 into three particles. 
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Figure. 46 Clustering result of section a2 into four particles. 

 

Figure. 47 Demixing result of section a2 into four particles. 

 

 To achieve a more satisfying result for section a2, several clustering methods were 

applied. The main task to solve the problem was to obtain a more accurate estimate of 

the aliasing parameters. Clustering methods such as k-means are not suitable; when the 

k-means method is applied, the clustering result does not have a physical interpretation 

because the clustering center should be around the highest point in the two-dimensional 

weighted histogram. By going through the close region and applying a combination of 

parameters, an acceptable result is obtained in Figure. 48. 

 An acceptable result cannot always be obtained. The sources can only be separated 

when the delay or the attenuation is different. When both the delay and the attenuation 

are the same, two sources are recognized as one. As can be seen from the clustering 

results, the attenuations of the sources are nearly the same, which means that the sensors 

maintain a stable output. So, the use of delay is an effective way to carry out the aliasing 

signals separation. In the hydraulic pump test rig, a smaller diameter pipe is adopted, 

which gives more opportunities for the delays to change. 
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Figure. 48 Demixing result of section a2. 

 

 The demixing results of the proposed method cannot be proved directly because 

the induced voltages of each wear debris cannot be detected. Commonly, for a speech 

signal demixing result, the best way to confirm the effectiveness is to listen to the 

sources. Obviously, for the debris signals, we should use another method to verify the 

demixing accuracy. 

 For each particle, it is already known that each particle will induce a signal similar 

to the sine wave. The demixing result of section a1, shown in Figure. 42, and that of 

section a2, shown in Figure. 48, are apparently acceptable solutions as debris signals. 

However, we also know that from the aliasing signals we may obtain different demixing 

results, such as those achieved for section a2, which means the demixing result may 

have other solutions. To verify that the results reflect the real situation, statistics about 

the particles sizes are calculated and the results are shown in Figure. 49. From this 

figure we can see that without the separation, about 17.9% of all particles have sizes 

larger than 150 µm. Traditionally, the result without separation is believed to be the 

indicator for the evaluation of wear status. In fact, the particles injected into the 

injection device are particles ranging in size from 50 µm to 150 µm and that follow a 

uniform distribution, as listed in Table 1. After demixing, the separated result shows 

that the sizes of the particles follow a uniform distribution and the result is more 
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consistent with the real situation than that without separation. We believe that the 17.9% 

wrongly estimated particles are thus reevaluated reasonably and the accuracy is 

improved. 

 

 

Figure. 49 Statistical result of the number of particle 

 

3.5 Conclusions 

 Inductive debris detection sensors are designed to identify small wear particles. If 

the distance between two particles is very small, two small particles may be recognized 

as one large particle, which is known as the signal aliasing problem in debris detection. 

Large particles frequently appear only when the machine is severely degraded, which 

is too late in practice for effective maintenance. With aliasing, at the beginning of 

degradation, a group of small particles may be recognized as large particles, leading to 

a wrong estimation of the machine degradation state and maybe even its stoppage for 

maintenance. For an aviation pump system, the high speed oil flow makes it actually 

more prone to the aliasing problem, which, then, needs to be addressed. 

 In this section, the aliasing problem was analyzed and a serial setup of sensors was 

installed for data acquisition. A band pass filter combined with DUET was employed 
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to separate the sources from the aliasing signals. To evaluate the performance of the 

method, a real experiment was conducted. Using the signal pieces extracted from the 

real signals, the method was shown to be effective in demixing the signals. The result 

shows that the count of the number of particles is more accurate than the traditional 

pulse counting method. Statistically, 17.9% particles that are considered to be larger 

ones are separated to be smaller, and the distribution is more consistent with the real 

situation. However, two problems were found during the verification. One is that the 

weight peaks caused by the noise may affect the accuracy of the classification, which 

prevents the aliasing signals from being well separated. The other is that not all signals 

can be separated by the proposed method because when the phase displacements of a 

group of particles are similar, the particles are recognized as one. 

 Future works will address, on one hand, the evaluation of the capability of the 

proposed method compared with other possible methods on the aliasing problem, and, 

on the other hand, eliminating the interferences coming from random noise and specific 

frequency interferences. In particular, a potential layout of sensors may also be 

proposed to provide different phase displacements for the method. 
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4. Matching the model and data for remaining wear life prediction 

Contents of the Chapter have been adapted from: 

 

3[J] Tongyang Li, Shaoping Wang, Jian Shi and Zhonghai Ma. An adaptive-order particle filter for 

remaining useful life prediction of aviation piston pumps. Chinese Journal of Aeronautics, 

2018, 31(5): 941-948. 

5[J] Zhonghai Ma, Shaoping Wang, Chao Zhang, Tomovic, M. M and Tongyang Li. A Load Sequence 

Design Method for Hydraulic Piston Pump Based on Time-Related Markov Matrix. IEEE 

Transactions on Reliability, 2018, 67(3): 1237-1248. 

8[J] Tongyang Li, Jian Shi, Shaoping Wang, Enrico Zio and Zhonghai Ma. A Numerical Approach 

for Predicting the Remaining Useful Life of an Aviation Hydraulic Pump Based on Monitoring 

Abrasive Debris Generation. Mechanical Systems and Signal Processing. 

1[C] Tongyang Li, Shaoping Wang, Jian Shi and Zhonghai Ma. Degrading process simulation of 

aviation hydraulic pump with lifetime experiment data based on hidden semi-Markov model, 

12th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2017: 624-

629. 

 

 Compared with service life prediction or whole life prediction, the characteristic of 

residual service life prediction is that the research object may have experienced 

unknown service process and experienced unknown degradation process. Therefore, 

the premise of residual service life prediction is accurate current state estimation. Due 

to various uncertainties that may lead to the degradation of the system during the use 

of the system, these uncertainties affect the matching accuracy of the model and data 

used for the prediction of the remaining service life. The core of state estimation is to 

eliminate the impact of these uncertainties. In the research, the uncertainty is usually 

summarized as model uncertainty and measurement uncertainty, and it is assumed that 

the uncertainty obeys the known definite distribution. 
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 In this chapter, firstly, a state estimation method based on adaptive order particle 

filter is proposed based on particle filter, and the life of a certain type of hydraulic pump 

is predicted based on the existing empirical model and data. Then, combined with the 

abrasive debris particle generation model and aliasing signal detection method 

proposed in the previous chapters, a prediction framework for the remaining wear life 

of hydraulic pumps based on monitoring debris particle detection was proposed, and 

combined with the state estimation method proposed in this chapter, the prediction 

results of hydraulic pump wear life were obtained. 

4.1 Adaptive-order particle filter based prognostics 

4.1.1 Basic algorithm of particle filter based prognostics 

 Particle filter has become an attractive state estimation method for its capability of 

accounting for the randomness of the process and the noise affecting measurements. 

The main idea of PF is that particles are used to describe a probability distribution 

instead of an analytical expression. To define a system, consider a state sequence 

 0: 0 1, ,...,k kx x x x=  and its corresponding measurement sequence  0: 0 1, ,...,k ky y y y= , 

where k  denotes a time metric. The state space model is commonly defined as 

 
1( , )k k kx f x u−=   (4-1) 

 ( , )k k ky h x v=   (4-2) 

where f   and h   represent the state transition function and measurement function, 

respectively. R xn

kx   is the state to be estimated, and R yn

ky   is the observation, 

where 
xn   and 

yn   are the dimensions of the states and the observations. R xn

ku   

and R yn

kv   are independent, identically distributed noises with known probability 

densities. 

 According to the Bayes’ rule, the posterior probability density can be described as 
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( | ) ( ) ( | ) ( )

( | )
( ) ( | ) ( )d

p y x p x p y x p x
p x y

p y p y x p x x
= =


  (4-3) 

where the requirement is that ( ) 0p y  , and ( )p x  is the probability of x . The state 

estimation problem is to solve the probability density function (PDF) 
0:( | )k kp x y  . 

0:( | )k kp x y  contains all the information about the state 
kx , which is inferred from the 

observations  0: 0 1, ,...,k ky y y y= . 
0 0 0( ) ( | )p x p x y=  is the initial distribution of the 

states and is known previously. The PDF 
0:( | )k kp x y  is obtained recursively from the 

prediction step and the update step. 

 In the prediction step, the system model is used to obtain the prior PDF of the state 

at time k  by the Chapman–Kolmogorov equation as follows: 

 
0: 1 1 0: 1 1 0: 1 1

1 1 0: 1 1

( | ) ( | , ) ( | )d

                   = ( | ) ( | )d

k k k k k k k k

k k k k k

p x y p x x y p x y x

p x x p x y x

− − − − − −

− − − −

= 


  (4-4) 

in which 
1( | )k kp x x −

 is defined by the system model Eq. (4-1). 
1 0: 1( | )k kp x y− −

 has 

been obtained by the update step in last loop, and 
0 0 0:0( ) ( | )p x p x y=   is known 

previously. 

 In the update step, a new observation 
ky  is available and can be used to update 

the prior PDF of the state via Bayes’ rule as follows: 

 0: 1
0:

1: 1

( | ) ( | )
( | )

( | )

k k k k
k k

k k

p y x p x y
p x y

p y y

−

−

=   (4-5) 

where 
1: 1( | )k kp y y −

 is the normalizing constant, 

 
0: 1 0: 1( | ) ( | ) ( | )dk k k k k k kp y y p y x p x y x− −=    (4-6) 

and ( | )k kp y x  can be obtained by Eq. (4-2). 

 For the system defined by Eqs. (4-1) and (4-2), f  and h  are usually nonlinear, 

which leads to a difficulty in obtaining an analytic solution for the posterior distribution 

0:( | )k kp x y . A PF approximates it with a set of samples (particles) 
0:{ , 1,2,..., }i

kx i N=  
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where N   is the particle number. The initial particles are drawn from 
0( )p x  . To 

address the problem of sampling from the posterior distribution, importance sampling 

is employed. Samples can be easily drawn from an importance distribution 
0: 0:( | )k kq x y , 

and the importance weight for each particle can be calculated by 

 0: 0: 1
1

0: 0: 1

( | ) ( | ) ( | )

( | ) ( | , )

i i i
i ik k k k k k
k k i i

k k k k k

p x y p y x p x x

q x y q x x y
  −

−

−

=    (4-7) 

where i

k   denotes the weight of particle i   at time k  . Thereby, the posterior 

distribution 
0:( | )k kp x y  can be approximated by particles as 

 0:

1

( | ) δ( )
N

i i

k k k k k

i

p x y x x
=

 −   (4-8) 

where δ  is the Dirac function. 

4.1.2. Particle filter with a high-order model 

 Note that the state space model given by Eqs. (4-1) and (4-2) is described by a 

Markov model of first order. Actually, the system model may be given by 

 
1 2( , ,..., , )k k k k p kx f x x x u− − −=   (4-9) 

in which the system is described as a p -order model. The PF framework still takes 

hold and is proven as follows. 

 In the prediction step, the prior PDF of the state at time k  is 

 
0: 1 1 1: 1 1 2

1 2 0: 1 1 0: 1 0: 1 1 2

( | ) ... ( , ,..., | )d d ...d

                  ... ( | , ,..., , ) ( | )... ( | )d d ...d

                   = ... ( |

k k k k k p k k k k p

k k k k p k k k k p k k k k p

k k

p x y p x x x y x x x

p x x x x y p x y p x y x x x

p x x

− − − − − − −

− − − − − − − − − − −

=

=

  

  

  1 2 1 0: 1 0: 1 2, ,..., ) ( | )... ( | )d d ...dk k p k k k p k p k k k px x p x y p x y x x x− − − − − − − − − −

 (4-10) 

where 
1 2( | , ,..., )k k k k pp x x x x− − −

 can be obtained by Eq. (4-9), and 0:( | )k p k pp x y− −  is 

obtained by the update step in loop k p− . 
0 0 0:0( ) ( | )p x p x y=  is known previously. 

 In the update step, with a new observation 
ky , the posterior PDF of the state can 

be calculated by Eqs. (4-5) and (4-6). Thus, the Bayesian solution is capable to be 
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used in a high-order model. The proof of the applicability of importance sampling is as 

follows. 

 The original definition of the importance weight of a particle is  

 0:

0:

( )

( )

i k
k

k

x

q x


 =   (4-11) 

where 
0:( )tx  is the joint probability distribution as 

 
0: 0: 0:( ) ( , )t t tx p x y =   (4-12) 

which means that the importance weight is the ratio between two distributions. It can 

be deduced as 

 

0: 0: 0: 1

0: 0: 1 0: 1 0: 1

0:
1

0: 1 0: 1

( ) ( ) ( )

( ) ( | ) ( ) ( )

( )
                  

( | ) ( )

k k k
k

k k k k k

k
k

k k k

x x x

q x q x x q x x

x

q x x x

  









−

− − −

−

− −

= = 

= 

  (4-13) 

 Substitute Eq. (4-12) into Eq. (4-13), and then 
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 Take an optimal of 
0: 1( | )k kq x x −

  as 
0: 1 0: 1( | )= ( | , )k k k k kq x x p x x y− −

 , and then Eq. 

(4-14) can be described as 

 0: 0: 1
1

0: 1

( | ) ( | )

( | , )

k k k k
k k

k k k

p y x p x x

p x x y
  −

−

−

=    (4-15) 

 For each particle, the importance can be obtained by 

 0: 0: 1
1

0: 1

( | ) ( | )

( | , )

i i
i i k k k k
k k i i

k k k

p y x p x x

q x x y
  −

−

−

=    (4-16) 

 Then the importance sampling process is proven to be effective in a high-order 
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model. The resampling step changes the importance sampling weight to be equal by 

adjusting the number of the particles like 

 
1 1 0: 1~ ( | , )ij i i i

k k k k kx q x x y− − −
  (4-17) 

where j   is the new particle index after resampling, and { , 1,2,..., }ij ix x i N =  . 

Substituting Eq. (4-17) into Eq. (4-16) yields 

 0: 0: 1

0: 1

( | ) ( | )

( | , )

i ij
i k k k k
k i ij

k k k

p y x p x x

q x x y
 −

−

=   (4-18) 

 By a condensation filter, take a sub-optimal of q   as 

0: 1 0: 1( | , ) ( | )i ij i ij

k k k k kq x x y p x x− − . The weighting function would be like 

 
0:( | )i i

k k kp y x =   (4-19) 

 The posterior distribution can be approximated by Eq. (4-8). 

4.1.3 Adaptive-order particle filter prediction framework 

 A general PF uses a fixed dynamic model to estimate system states. In fact, it is 

difficult to build a dynamic model for a piston pump analytically. The complicated 

system’s degrading mechanism is still unknown whose model is usually built 

empirically or built by data-driven models. Models built like these might not be 

guaranteed to accord with the actual degrading process, which means that updating the 

model is necessary under such a circumstance. 

 According to the return oil flow data shown in Figure. 50, the curves of return oil 

flow are not monotonously increasing so that sometimes a decline appears and lasts for 

a few hours. The most importance in a PF is to ensure the accuracy of the prior 

distribution. However, a first-order data-driven model could not deal with such 

unsmooth data. Take the hypothetical sequence shown in Figure. 51 for an example. If 

the dynamic model is first-order, the estimated value is more likely to show at 
1kx +
. If 

a second-order model is taken into consideration, 
1kx +

  seems to be a more reasonable 
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value. A high-order model could contain more recent information. A short-term trend 

by the latest states is more likely to reflect the possible states of next time steps. Note 

that when the parameters of all the high-order variables are equal to zero, the model is 

a first-order model. 

 

Figure. 50 Return oil flow. 
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Figure. 51 Hypothetical sequence. 

 

 Based on the theory mentioned above, we propose an adaptive-order particle filter 

method, which can be applied to a dynamic model with a current time state related to 

the states at not only last time step but also several time steps previously which can be 

described by Eqs. (4-9) and (4-2). The adaptive order means that the order number of 

the dynamic model is updated at each time step adaptively. The main difference 

between a general PF and a high-order particle filter is the prediction step during that 
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to predict the state at time k , if the order of the dynamic model is 
kO p= , then the 

states of the particles 1 2 1{ , ,..., }i i i

k p k p kx x x− + − + −   should be stored without a resampling 

step. 
0:{ }kO   is the order sequence of the updated dynamic model. Thus a recursive 

function instead of a one-step function is applied to sampling particles from the sub-

optimal of q , which is 

 1 2 1~ ( | , ,..., )i i i i i

k k k k k px p x x x x− − − +   (4-20) 

 An empirical or data-driven model is built according to the historical data firstly. 

To fit a new observation sequence, parameters of the model are usually modified 

accordingly. The model may already be accurate enough to describe the trend until time 

k  , when a new data comes. Without changing the form of the original model, the 

adaptive-order framework re-determines the order number of the model by calculating 

the accumulated errors. If a higher-order model is calculated to be more fitted, the order 

number is then updated. By rebuilding the model in a higher-order form, the short-term 

trend is likely to be more accurate. The adaptive-order framework is shown in Figure. 

52. 
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Figure. 52 Adaptive-order framework. 

 

 In the proposed model, the adaptive-order model is embedded in the PF 

measurement equation. The flow chart of the proposed updated-order particle filter is 

depicted in Figure. 53, and its main steps are as follows: 

(1) Initialization step. The initial model 
00 1 2( , ,..., , )k k k k p kx f x x x u− − −=  is built by the 

historical data, in which 
0p  is the order number of the model. The number of particles 

N  is set. The particles and their weights are initialized as 0 0

0 0 1

1
{ , }N

i i ix x u
N

 == + = , 

where 0u  is the obeyed uniform distribution. 

(2) For , 1,k p p= +  

 a) Calculate the prior estimation by the current model 

11 1 2( , ,..., , )
kk k k k k p kx f x x x u
−− − − −=  , which is described by the particles: i

kx  . 
1kf −
  is the 
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updated state model. 

 b) When a new observation 
ky   arrives, update the weight of each particle: 

0:( | )i i

k k kp y x = . 

 c) Normalize the weight of each particle:
 1

/
N

i i j

k k k

j

  
=

=   .  

 d) Resampling the particles by the weight. 

 e) Update the order number of the model and get a new current model 

1 2( , ,..., , )
kk k k k k p kx f x x x u− − −= . 

(3) Output the predicted states sequence: 
1

ˆ ˆ /
N

i

k k

i

x x N
=

=  , where ˆi

kx   is the estimated 

value of i

kx .  

 The parameters of the initial model will not be as important as the form of the 

model for that the parameters from the historical data will be replaced by the parameters 

for the new data sequence by the model updating procedure. The model form 
0:kf  is 

not modified and will be used in the prediction step. When there is no observation 

arriving at time 1k +  , the model is fixed, and the weights of the particles will not 

change. To get the remaining wear life, the current dynamic model is the only 

dependence, which means that the recursive state in the future 
k tx +

 is obtained by 

 0: 1 0: 0: 1 0: 1 1

1

( | ) ( | , ) ... ( | ) ( | )d d ...d
k t

k t k t k t k k i i k k k k k t

i k

p x x p x x y p x x p x y x x x
+

+ + − + − + + −

= +

= =    

 (4-21) 

  

where t  is the step of time that Threshold(return oil flow)k tx +  . The distribution of 

a piston pump’s Remaining wear life 
RWLT  is defined as 

 
RWL 0: 0:( | ) ( | )k kp T y p t y=   (4-22) 
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Figure. 53 Flow chart of the AOPF. 

 

4.1.4 Example verification 

 In this section, data collected by a full-life experiment for a certain type of piston 

pump are used to demonstrate the forecasting performance of the proposed AOPF 

algorithm. The return flow data were measured by a turbine flow sensor installed on the 

return oil pipe of a pump. The work operation of the pump was full output flow by 
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which an accelerated wear process was adopted so that the cost could be reduced. The 

flow data were recorded every hour by the same measurement system. 

 Based on the historical data, a gray model GM (1,1) is commonly used as the data-

driven model for a prediction of the piston pump. At least four points are needed to 

initial the model which means that the minimum order number of a GM (1,1) is 4. By 

accumulating the raw sequence (0)

0 1{ , ,..., }kX x x x=  , the accumulated sequence 

(1)

0

, 0,1,2,...
k

k i

i

X x k
=

= =  is used to fit 
(1)

(1)d

d

k
k

x
ax b

t
+ =  by 

 
T 1 T( )

a

b

− 
=    

 
B B B Y   (4-23) 

where 

 

(1) (1)

1 0

(1) (1)

2 1

(1) (1)

1

0.5 ( ) 1

0.5 ( ) 1

0.5 ( ) 1k k

x x

x x

x x −

 −  +
 
−  + =
 
 
−  +  

B   (4-24) 

and 

 (1) (1) (1) T

1 2[ ... ]kx x x=Y   (4-25) 

 The data shown in Figure. 54 are the experimental results of the return oil flow of 

a certain pump. When the return oil flow reaches 2.8 L/min, the wear condition of the 

pump is considered to be the threshold of the failure of wear according to the design 

parameters. The trend of the return oil flow is increasing except some parts of reduction, 

which means that the leakage of the pump is increasing and gradually leads to an 

incapability for the pump to provide high-pressure hydraulic power for the actuation 

system. 
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Figure. 54 Experimental results of the return oil flow. 

 

 Figure. 55 shows the short-term prediction results by the GM (1,1) and the 

proposed AOPF method. Both of the algorithms show good performance in the one-

step prediction. Each point of the curves stands for a prediction obtained by the prior 

data. The gray method fits well while the AOPF shows a better result which is 

demonstrated in Figure. 56. The red curve and the blue curve indicate the mean square 

errors (MSEs) of gray prediction and AOPF prediction, respectively. To get Figure. 56, 

each point is calculated by accumulating all the MSE of the previous points. Obviously, 

the MSE of the AOPF prediction is lower than that of the gray prediction after 47 time 

steps. Raw data of the return oil flow illustrate a large fluctuation at the beginning 

during that from 20 hours the return oil flow continues to fail which impacts the 

performance of the method. However, after a few steps, the AOPF performs a good 

anti-interference characteristic. The blue curve keeps lower than the red curve, which 

means that the error of the AOPF prediction is smaller than that of the gray prediction 

and the noise is depressed after enough prior knowledge accumulated. 

 The adaptive-order number of each step is displayed in Figure. 57. The order 

numbers show a polarization that most of the order numbers are very small and large 

order numbers usually appear and last for some time. Comparing Figure. 55 to Figure. 
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57, a strong connection appears between the large order number and the decline of the 

raw data. When the trend is rising, the adaptive order number is stabilized at a low level. 

To adapt the unusual trend, the AOPF matches with a higher-order model adaptively. 

 The characteristics of the adaptive-order numbers shown in Figure. 57 provide an 

optimization strategy. In a rising stage, the best order number occurs between 0 and 40. 

Then if the trend of the sequence is determined, the computation burden can be largely 

declined. The strategy shows a greater significance with an increase of the time. In a 

later period, the resolving time is impacted mainly by the time on MSE calculation. The 

strategy could keep the computing time rise steadily.  

 

 

Figure. 55 Short-term prediction comparison. 
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Figure. 56 MSEs of return oil flow comparison between grey prediction and AOPF 

prediction. 

 

Figure. 57 Adaptive-order number of the AOPF. 

 

 However, many functions can provide a high precision in the short-term prediction. 

What challenges is the long-term prediction. In order to verify the performance of a 

long-term prediction, the raw data are divided into two sets. One is used for model 

adaption and the other for proving. Taking the first 600 points as the training data, a 

gray model sequence is generated. Meanwhile, a gray model initialized by the first 4 

points are updated adaptively by the AOPF. Long-term prediction results by GM (1,1) 
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and the proposed AOPF method are shown in Figure. 58. The actual failure time of the 

pump is 1186 hours. By gray forecasting with GM (1,1), the time that reaches the 

threshold is 1103 hours, which means that the error is 73 hours. Whereas the life 

predicted by the AOPF is 1144 hours and the error is 42 hours, which means that the 

error is reduced by 42.5%. Note that the precision of the AOPF is affected by the 

number of particles. More particles lead to a heavier computation burden. In the 

proposed stage, the number of the particles is 300. In the long-term prediction, the 

measurement error and the system error are accumulated in the data-driven model. The 

AOPF can promote the long-term prediction accuracy through filtering the noise of 

each measurement point. 

 

 

Figure. 58 Long-term prediction comparison. 

 

 The order number influences the accuracy of the prediction. Although the AOPF 

only takes the model which fits best, the relationship between the order number and the 

performance of that is expected to be known so that an optimization could be applied 

for a reduction of time cost. By fixing the order number of the AOPF, the results of a 7-

order model and a 20-order model are shown in Figure. 59, and the performance is 

listed in TABLE 9. The 20-order model shows a better performance than that of the 7-
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order model. The errors of the 7-order model and the 20-order model are 68 hours and 

55 hours, respectively. As it is analyzed above, a higher-order model may fit the actual 

data better. 

TABLE 9 Performances of 7-order and 20-order models 

Type 7-order model 20-order model 

MSE of return oil flow (L/min) 0.0091 0.0060 

RMSE of return oil flow (L/min) 0.0953 0.0775 

 

 

Figure. 59 Different order models’ prediction results comparison. 

 

 For an intuitive understanding of the relationship between the order number and 

the performance, Figure. 60 shows the MSEs of different order number models at time 

600 h. The order number is from 7 to 60. With the order number increasing, the trend 

of the MSE is decreasing. The lowest point of the curve occurs near 30 after which the 

curve shows a fluctuation around 35.5 10− L/min. It is not that the higher the order 

number is, the lower the error is. By taking an appropriate order, the error can be 

reduced by more than 50% which will increase the precision of the remaining wear life 

prediction accordingly. 
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Figure. 60 Different order number models’ MSEs of the return oil flow. 

 

4.2 Remaining wear life prediction of hydraulic pump based on 

monitoring abrasive debris generation 

4.2.1 Partition-integration remaining wear life prediction framework for aviation axial 

piston pumps 

 Wear of the friction pairs is considered the main degradation mechanism of an 

aviation piston pump, whose typical structure is shown in Figure. 61. The rotation of 

the piston barrel, which is driven by motors or engines through the shaft, actuates the 

suction and discharge movements of the pistons. The relative movements between the 

contact pairs unavoidably bring about material loss. As the material loss increases, the 

displacement between the two contact surfaces becomes larger, which results in leakage. 

After a period of degradation, the pump can no more provide the required pressure and, 

hence reaches the end of life. 
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Figure. 61 A typical structure of axial piston pump 

 

 In practice, the degradation process is uncertain and, thus, it is typically modeled 

as a stochastic process. One source of uncertainty is the complex work conditions, since 

vibration, thermal factors and flow ripples may all influence the wear process. Another 

source is related to the randomness of the elements, specifically the rough surfaces of 

contact pairs: with same roughness, the profiles of the rough surfaces may still be 

different. In this work, abrasive debris is selected as the health indicator. Research 

studies [12, 132] indicate that features (quantity, size, shape and composition) of wear 

debris show a strong relationship with wear characteristics (severity, rate, mode and 

source). This relationship is modeled in this work by the ADGM presented in Chapter 

2. To address uncertainty, a partition-integration method is employed. Each component 

of a friction pair, e.g. valve plate of the valve plate/piston barrel pair, is divided into 

small fragments. For each small fragment, the applied load is solved at macroscale and 

assumed constant, whereas the microscopic profiles are uncertain. For a small fragment 

with given microscopic profile, wear debris features can be estimated by ADGM. 

Global roughness of the contact surfaces is, then, estimated from local samples, 

artificial rough surfaces with same roughness but different profiles are generated and 

probabilistic wear debris features can be obtained by MC simulation. The probabilistic 

wear debris features of each small fragment are then sampled by MC to obtain an 

integrated function for the friction pair. The probabilistic model, then, serves to generate 
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degradation paths for remaining wear life prediction. The proposed framework is 

sketched in Figure. 62.  

 

 

Figure. 62 Remaining wear life prediction framework with multiscale information. 

 

 A typical macroscale modeling method may start from analyzing the forces applied 

on each component. Combining the mechanical dynamics, the macroscale pressure 

distribution on each contact surface can be obtained. If the contact is under mixed 

lubrication, the fluid is Newtonian and the flow is assumed to be laminar flow; then, 

the film thickness and stress distribution can be described by Reynolds equation. 

Solving the equation numerically by methods like finite difference or finite element, 

the macroscale hydrodynamic stress distribution can be obtained. Since with different 

assumptions, the method to obtain macroscale stress might be different, the above 

macroscale modeling method is replaceable and may be replaced by other proper 

methods.  

 Similarly, a replaceable wear debris detection method is developed in this work to 

obtain the current state of the system. Wear debris features are obtained by a radial 

inductive debris detection method [13]. Measurement uncertainty may influence the 

accuracy of prediction. By using a hybrid method based on a band pass filter and a 

correlation algorithm, the signal-to-noise ratio can be improved by about 2.67 times 

[72]. The method is also capable of coping with potential aliasing problems, which 
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promotes the accuracy largely [15]. 

 Assuming that both amount and sizes of debris can be accurately obtained by the 

debris detection methods, multi-dimensional information can be used for remaining 

wear life prediction. If the amount of debris reaches the failure threshold at 
at T=  and 

the amount of debris with size larger than the critical size 
Fs  reaches the threshold at 

st T= , the real remaining wear life can be obtained 

 ( ) ( ) min | , |r k a k a k s k sRWL t T t T t T t T= −  −    (4-26) 

where 
kt  is the observation time. For the proposed prediction framework, the exact 

failure time is not assumed known beforehand. If the debris particles are observed at 

 (1) (2) (k), ,..., ,...t t t  , where (k)t   denotes the observed time of the 
thk   debris particle, 

and the probability density function (PDF) of size at (k)t t=   is given by ( )(k)f S  , 

where  (k) (1) (2) (k), ,...S s s s  is the set of debris sizes, then, the predicted remaining 

wear life pRWL  can be calculated by 
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where 
aV  is the failure threshold of total material volume loss, V is the wear rate and 

FP  is the critical probability of larger debris particles. Practically, the wear rate can be 

estimated by 
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  (4-28) 

for good real-time performance. It may also be estimated by 
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  (4-29) 

for good stability during long-period prediction. 
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 In this thesis, both the parameters are obtained by MC sampling from the abrasive 

debris features distribution of components. The abrasive debris features distribution of 

one component is sampled from the abrasive debris features distribution of each small 

fragment. In the next section, the numerical way to obtain the abrasive debris features 

distribution of each small fragment is introduced in detail. 

 

4.2.2 Experimental result 

 In order to verify the effectiveness of the proposed method, a life cycle experiment 

result of a certain type of aviation piston pump [7] is tested and a grey model [87] is 

used as a comparison. According to the experiment result, approximately 70% of the 

pump leakage is caused by the wear between valve plate and piston barrel. In this case, 

the leakage ratio is assumed to be constant. A general structure of the friction pair is 

shown in Figure. 63 and its dimension parameters are listed in TABLE 10. 
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Figure. 63 Structure of the friction pair. 
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TABLE 10 Dimension parameters 

Parameter Value Parameter Value 

1r   0.0386 m 
1  12  

2r  0.0436 m 
2  134  

3r  0.0564 m 
3  40  

4r  0.0614 m 
4  28  

5r  0.0475 m pd  0.026 m 

6r  0.0525 m pR  0.0525 m 

  

 The pump works in full output flow condition. The inlet pressure is 0.15 MPa  and 

the outlet pressure is 21 MPa . The rotation speed is 4000 r/min . Since to obtain the 

entire profile of the contact surfaces takes too much time, three specimens are sampled 

from both the piston barrel and the valve plate. The mean roughness of the specimens 

of the piston barrel is approximately 1.1 μm and that of the valve plate is about 1.5 μm . 

Then, the roughness of the initial contact surfaces is estimated according to the ISO 

4287:1997 standard. For the piston barrel, the corresponding ISO grade number is N6, 

so the roughness is set to be 0.8 μm . Similarly, the roughness of the valve plate is set 

to be 1.6 μm . 

 According to the partition-integration framework, macroscale analysis needs to be 

carried out and the results are used as the input for microscale simulation. To ensure the 

macroscale correctness, an experimental result is employed [7]. The result shows that 

under steady state, the mean nominal contact area of one cycle is about 
22346.3 mm . 

The macroscale stress of valve plate near inlet port and outlet port can be regarded as 

constant. For the part between the suction area and the extraction area, the stress follows 

a linear distribution from 0.15 MPa to 21 MPa . The microscale fragments with same 
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macroscale load generate debris following the same distribution. So all the fragments 

with the same macroscale pressure distribution can be regarded as one fragment with 

various surface profiles. However, to obtain the debris features from the remaining 

approximate 10% area, the computational cost is 10 times more. In order to reduce the 

computational cost, the condition is simplified. The macroscale pressure on half of the 

area is assumed to be 21 MPa and on the other half is assumed to be 0.15 MPa . The 

relative velocities of all the fragments are set to be the mean value of boundary 

velocities and the temperature is assumed to be constant. Simulation parameters are 

listed in TABLE 11. Since the friction coefficient may be different with different surface 

roughness, hardness and applied loads, the value of dry friction coefficient is set to be 

higher than the condition of steel/steel contact based on the result of fitting the model 

to the experimental degradation data. It should be noted that macroscale analysis is very 

important and the simplification will influence the accuracy. The wear debris features 

are assumed to follow the same distributions when the work conditions are same. For 

each half area, 500 pairs of fragments with rough surfaces are sampled by ADGM. The 

sample results are shown in Figure. 64 (a) and the corresponding sampling distribution 

is shown in Figure. 64 (b). The surface area of each fragment is set to be 

100 μm 100 μm , which contains 128 128  data points. So the radius of each DRU is 

approximately 0.39μm  and the minimum worn size is about 
-19 32.4 10 m . 
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TABLE 11 Values of parameters for simulation 

Parameter Meaning Value 

c   Dry friction coefficient 0.3 

1v   Poisson’s ratio of valve plate 0.3 

2v   Poisson’s ratio of piston barrel 0.3 

1E   Young’s Modulus of valve plate 210GPa 

2E  Young’s Modulus of piston barrel 210GPa 

xL   Length of simulation space in x direction 100μm  

yL   Length of simulation space in y direction 100μm  

zR   Resolution in z direction 0.39μm   

yield  Yield stress of composite surface 355MPa 

   Dynamic viscosity 0.013065Pa s   

 

 

 (a) 
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(b) 

Figure. 64 Sampling results. 

 

 Then, the wear debris features of the friction pair are sampled from the fragments 

and the sample result for the entire friction pair is shown in Figure. 65. A simulation by 

finite element method (FEM) is conducted as a comparison. The simulation considers 

a dry sliding contact of two smooth contact surfaces. The material property and the 

work condition are set to be the same as those used for the partition-integration method. 

The simulation contains three load step. For the first step, ramped loads are applied. 

Wear is assumed to begin from the second step and the simulation interval is set to be 

twice from the third step. Archard’s law is applied to calculate the total material loss. 

Figure. 66 (a) presents the loads and constraints of the simulation. From the total 

volume loss shown in Figure. 66 (b), a constant wear rate can be obtained. Generally, 

sliding contact under lubrication results in less material loss than dry sliding contact. 

So the dry sliding contact can be regarded as the upper bound of the estimation. 
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Figure. 65 Sampling result of wear volume. 

 

 

(a) 

 

(b) 

Figure. 66 FEM simulation. 

 

 According to the partition-integration framework, current state needs to be 

obtained accurately by the measuring part. The state can be measured directly or 

estimated from the other signals. Due to lack of data by oil debris detection, the 

common used return oil flow is employed to obtain the current state. The state is 

assumed to be estimated accurately so that the predicting method can be verified. Here, 

we propose a simple method to transfer the signals to a perfectly estimated states. The 

return oil flow is assumed to be the total leakage of the pump. Since the leakage ratio 

is constant, the total leakage by the friction pair of barrel and valve plate can be obtained. 

If the barrel and the valve plate are parallel-shaped, the relationship between the leakage 
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bvQ  and the interval 
bvh  of the components can be described as 
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where 
inP  is the inlet pressure, 

outP  is the outlet pressure and 
0  is the distribution 

angle of the pistons. For the FEM simulation, the wear volume is assumed to be 

uniformly distributed on the nominal contact area A , so the remaining wear life can be 

estimated by 
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where 
bvH  is the failure threshold. If the maximum leakage is 2.8 L/min, the failure 

threshold is16.79μm . Similarly, the Remaining wear life prediction result by ADGM 

can be estimated.  

 GM is modeled directly by the return oil flow data, so the state is directly measured 

instead of estimation. In this case, GM (1,1) is used and the model can be described by 
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d

k
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where (1)

kx  denotes the first-order accumulated sequence of the observed points. The 

first 200-hour data are used to train the model. The actual in-service time of the pump 

is 1186 hours. 
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(a) 

 

(b) 

Figure. 67 Remaining wear life prediction result of ADGM. 

 

 Figure. 67 (a) shows the Remaining wear life prediction result using ADGM. We 

can see that ADGM provides a probabilistic prediction that at each prediction step, all 

possible results are presented with a certain distribution and the samples converge to 

the true value. In Figure. 67 (b), we show both the mean and 90% confidence interval 

of the Remaining wear life distribution. A comparison can be obtained as shown in 
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Figure. 68. As the FEM simulation considers a dry sliding contact, to compare ADGM 

with the extreme condition, upper and lower bounds of the prediction are plotted. The 

FEM result is close to the upper bound of ADGM. The upper and lower bounds cover 

the dry contact condition and the experiment result. Compared with GM, ADGM 

displays a better performance for the first 600 hours, while GM shows better 

performance as the data volumes grow. Because the state is estimated from the return 

oil flow instead of direct oil debris detection result, there is still room for improvement 

to the method. 

 

 

Figure. 68 Remaining wear life prediction results. 

 

4.3 Conclusions 

 Degradation processes and failure mechanisms in aviation axial piston pump are 

complex and no analytical model exists. Meanwhile, the insufficient experimental data 

prevents the application of data-driven methods. Numerical modeling seems to a viable 

way for predicting the remaining wear life of aviation axial piston pumps. In this chapter, 

by ADGM, a microscale relationship is built between abrasive debris features and rough 

surfaces. To apply the microscale result at macroscale, a partition-integration remaining 
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wear life prediction framework based on MC sampling is proposed. The effectiveness 

of the method is verified by experimental data. The probabilistic model is able to cover 

the experiment result and predict the remaining wear life under extreme work 

conditions. At the early times, the proposed method performs better than FEM and GM. 

Combine with the non-intrusive and easily-installed oil debris detection method, the 

proposed framework is able to provide a potentially useful results in practice. 

 The proposed method works in a numerical way, so the accuracy is guaranteed by 

large computational cost. Currently, simplification has to be conducted, which limits 

the performance of the method. Future works concern the introduction of artificial 

intelligent methods to reduce the cost of computation. 
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5. Conclusions and future perspectives 

 Aiming at solving the difficulties and key problems of remaining wear life 

prediction of aviation piston pumps, the thesis proposed a complete approach by 

modeling the degradation paths, monitoring the degradation data and matching the 

model and data using uncertainty processing method. The thesis focuses on the 

mechanism of abrasive debris particles generation with given load and surface 

roughness, the aliasing problem of inductive debris detection sensor under high 

throughput and high concentration of hydraulic oil and studies the uncertainties of the 

state estimation using the model and data. The main research work and research 

conclusions can be summarized as follows: 

 (1) According to the elastic sliding contact mechanism of the aviation hydraulic 

pump under mixed lubrication condition, a numerical model was established to describe 

the characteristics (number, size distribution and morphology) of abrasive debris 

particles with given load and surface roughness. Based on conjugate gradient descent 

method, the numerical model was solved by solving the rough surface contact, and 

subsurface stress using Von-Mises fracture criterion. The abrasive debris generation 

model can be set at any concerning scale. The time-varying data model can be obtained 

by Monte-Carlo method and the accuracy of the data model was verified by qualitative 

and quantitative methods. 

 (2) For the debris detection method based on electromagnetic induction principle, 

when the distance of the two debris particles is very small, the induced voltage will be 

superimposed, which influences the detecting accuracy. In this thesis, with the help of 

underdetermined blind source separation method which is named degenerate unmixing 

estimation technique, the experiment signals are firstly processed by band-pass filter to 

eliminating the effect by pump vibration, electromagnetic interference from 

commercial electrical power and harmonic interference from three-phase electric. Then, 

the filtered signals are short-time Fourier transformed into time-frequency domain and 
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the signal separation points are estimated using two-dimensional energy histogram 

clustering method. By mask method the aliasing signals are separated in time-frequency 

domain and restored by inverse short-time Fourier transformation. Aiming at achieving 

the online detection, the two-dimensional energy histogram clustering method is 

combining with the convolution neural network. The effectiveness of the online debris 

particle detection method is verified by experimental data. 

 (3) Aiming at eliminating the matching uncertainties caused by machining process, 

various working conditions and measuring noises during the debris particle detection, 

as well as improving the accuracy of one-step state estimation and long-term life 

prediction, an adaptive order particle filter method was proposed based on the 

traditional particle filter method. The Bayesian method predict and update process 

using high order Markovian models are derived. Then the importance sampling and 

resampling particle filter method are proved to be the applicable for the high order 

models. By solving mean square error (MSE) of the different order models, both the 

model and particles distribution are updated in each iteration. The method is verified 

by experimental data. 

5.1 Original contributions of the Ph.D. work 

 The main original contribution of the research lies in the development of a 

complete method for predicting remaining wear life of aviation axial piston pumps. 

Specifically, we have developed novel methods for addressing the following three 

issues: 1) modeling abrasive debris generation given arbitrary concerning scale and 

working load with fixed initial roughness, 2) restoring aliasing signals for debris feature 

statistics with limited detecting sensors, 3) processing uncertainties caused by modeling 

and measuring for a comprehensive matching result. 

5.2 Future perspectives 

 Although the difficulties and key problems of remaining wear life prediction of 
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aero-hydraulic pump are presented in this thesis, the uncertainties caused by the life 

prediction process is deeply studied by combining the online detection method of wear 

debris particles, and based on these, the remaining wear life prediction framework 

based on monitoring abrasive debris particles detection are established, the following 

problems are still worth further study: 

 (1) The proposed numerical model does not take into account the effects of three-

body abrasion of wear process. In fact, after the generation of abrasive debris, abrasive 

debris will continue abrading the two rough surfaces in the form of three-body wear, 

the subsequent wear process may lead to further changes in the wear state and the 

statistical characteristics of the debris. 

 (2) Concerning the remaining wear life prediction method based on the abrasive 

debris, although this thesis utilized the equivalent of experimental data to verify the 

proposed method, there is no full-life degradation data of hydraulic pump with 

distribution of the debris particles number, size distribution and morphology 

experimental results. The potential accuracy promotion of the proposed method for the 

remaining wear life remains to be mining. 
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