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1. Introduction
Over the past three decades, near-wall hemody-
namics has been the subject of several cardiovas-
cular fluid mechanics research activities aimed at
accurately estimating biomarkers, such as wall
shear stress (WSS), useful for characterizing and
assessing risk in cardiovascular diseases. 4D
flow magnetic resonance imaging (MRI) could
be exploited to quantify WSS, providing time-
resolved measurements of blood flow velocity
fields in a volume of interest. However, these
measurements suffer from low spatio-temporal
resolution and are affected by noise. The ob-
jective of this thesis is to develop a deep learn-
ing framework based on physics informed neural
networks (PINNs) to regularize and denoise 4D
flow MRI recordings of blood velocity in the as-
cending aorta. Physics-based differential models
can be considered as another source of informa-
tion, as they describe the flow evolution from a
modelling point of view. This balance, between
available data and theoretical knowledge, can
be controlled by PINNs that encode differential
models into suitable terms of the loss function
ensuring that the predicted velocity and pres-
sure fields follow the underlying physical laws.
Training a PINN is very challenging since the

loss has several terms and the fitting data do
not provide clear information as they could be
corrupted and noisy. The main goal of this
thesis is thus to develop an optimal configura-
tion to present regular and denoised velocity
and pressure fields. In addition, starting from
the model prediction, it is accurately recovered
WSS, a quantity particularly sensible to approx-
imation errors. WSS is estimated through dif-
ferent methods trying to recover realistic gradi-
ents of the velocity profile near the wall. This
stands as the most challenging aspect encoun-
tered, as PINNs suffer in representing high fre-
quencies and they propose flat profiles at wall
boundaries. In Figure 1, a graphical summary
of this thesis is presented.

2. Problem setting
The approach developed in this thesis is based
on PINNs, firstly introduced by Raissi et al in
2018 [2]. They are constructed as multi-layer
perceptrons (MLPs), which receive spatio-
temporal coordinates as input and reconstruct
physical quantities of interest, such as velocity
and pressure fields in the computational fluid
dynamics case. Following [4], a sinusoidal
activation function is used and the weights

1



Executive summary Francesco Songia

Figure 1: Overview of the thesis. After defining the motivation and the main objectives, there are
represented the model structure and few results for velocity reconstruction and WSS estimate.

are uniformly initialized. The loss function is
designed to balance available 4D flow MRI ve-
locity measurements with physical knownledge
encoded through the residuals of the incom-
pressible time dependent Navier-Stokes (NS)
equations. To built those residuals, velocity
and pressure gradients are exactly computed
through automatic differentation (AD). About
boundary conditions, with additional terms in
the loss, we enforce the homogeneous Neumann
condition in the outflow boundary and the
no-slip condition in the wall boundaries.
The global loss is a weighted sum of the different
terms. The data-fidelity term is the most rele-
vant one, while physical terms are simply kept
low with a slow decreasing behaviour. Since the
main goal is to denoise and regularize corrupted
measurements, we avoid the overfitting of
the noise thanks to the physical terms, that
penalize unphysical behaviour. Nevertheless,
weighting more the residual term, might end
up with a flatter output. Indeed, details are
challenging to recover from the PDEs and a

constant zero output is always favoured by the
physical terms. Provided an optimal balance,
physical laws are correctly imposed and they are
effective: pressure is reconstructed thanks solely
to the NS momentum equation and it is given
effortlessly together with the regularization
process of velocity data.

No-slip boundary conditions are enforced on
the wall boundary of the domain. They could be
imposed with a further loss term enforcing null
velocity on a subset of points or by applying the
lifting procedure of CFD simulations. The lat-
ter proposes to multiply only the velocity output
by a function Φ(x) : Ω → R that is null at the
wall boundary ∂Ω and it increases when moving
away from it. This method could be considered
as it lightens the loss from one further term. The
lifting function Φ can be computed analytically
[1] only for simple geometries, such as a 2D toy
problem. When the domain is more complex,
as in 3D cases, Φ is learned by a further neural
network and it represents the distance function
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from the wall. In this thesis, we employ the lift-
ing procedure only for the 2D test case, while
in synthetic and real 3D test cases, the no-slip
condition is imposed with a further loss term.
Despite the potential advantages, using the lift-
ing function in 3D tests does not succeed in pre-
dicting a zero wall velocity. This is because the
neural net representing the wall distance in 3D
is not exactly null at the boundary and there is
nothing that penalizes a non-zero wall velocity.

3. Wall Shear Stress analysis
Wall shear stress is defined as

WSS = µ

(
∂v

∂y

)
y=0

,

where µ is the dynamic viscosity, v is the compo-
nent of the velocity vector that is locally parallel
to the wall, and y is the Euclidean distance from
the wall. This derivative can be computed fol-
lowing three approaches:

1. exploiting automatic differentiation on the
predicted velocity;

2. parabolic fitting method (PAR): for each
wall points pi with normal ni, this method
considers two further inner points on the
normal direction spaced out by dn. The net
is evaluated in those three points, then tan-
gential velocity is computed and, with these
values, a parabolic profile is fitted. The
derivative is finally computed analytically;

3. variation of the parabolic fitting method
with null velocity imposed on wall points
(PAR ZERO).

In the parabolic fitting methods (2, 3) discrete
normals coming from the mesh structure are
used, while in the first case, a continuous
distance function is evaluated to obtain the nor-
mals. About the latter, a neural network learns
the signed distance function ϕ from the wall,
then, normals are computed as |∇ϕ|/∥∇ϕ∥,
where gradients are calculated through AD.
Finally, the choice of dn influences the estimate:
with a small value a very steep and variable
profile is fitted and this noisy behaviour is
something that is not expected. Instead,
taking a larger value turns out to be the most
robust choice, as it permits to rely less on the
prediction near the boundary and, in any case,
high velocity gradients are recovered.

Reference WSS fields. For velocity and pres-
sure a CFD simulation represents the ground-
truth when dealing with synthetic test cases.
However, calculating WSS, which is a derived
quantity, can result in non-negligible approxi-
mation errors unless using very fine grids. To
minimize this error, the WSS is post-processed
with AD on a fine neural network interpolation
of the velocity. We specifically design a test
case to study the accuracy in the WSS recon-
struction: a small cube embedded in the aorta
is taken into account and an interpolation-only
neural network is trained with clean CFD veloc-
ity data. Since the domain is very small, the net
well represents the velocity in the cube. Conse-
quently, AD computes an accurate WSS field in
the wall boundary and this is a first WSS ref-
erence. Moreover, those values are used to tune
the optimal dn to use within the parabolic fit-
ting method. A larger dn, equal to 7 · 10−4 m,
is found, and it used to compute a second refer-
ence WSS field in the whole geometry starting
from CFD velocity data.

4. Synthetic test cases
4.1. Velocity and pressure recon-

struction
Starting from the CFD reference ground-truth,
three different synthetic test cases are gener-
ated with a different level of noise added (mild,
medium, extreme). The procedure to create
them emulates a realistic 4D flow acquisition.
Data are temporally downsampled with a mov-
ing average to obtain measurements each 40 ms;
then the acquisition degradation consists in a
coarse frequency sampling in the corresponding
k-space domain and in the addition of Gaussian
noise [3]. The normalized root mean squared er-
rors (NRMSE) between the created data and the
CFD solution, are reported in Table 1, and the
synthetic cases are visually compared in Figure
2.

Vel. X Vel. Y Vel. Z

mild 0.013 0.013 0.014

medium 0.081 0.059 0.101
extreme 0.119 0.114 0.122

Table 1: NRMSE for different synthetic test
cases.
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Figure 2: Velocity Z component colormaps in a
2D sagitally oriented slice.

A specific model is trained on each synthetic
case. Slightly better performances are re-
ported for the cleaner mild data, but in all
the test cases, PINNs succeed in proposing
super-resolved and denoised velocity and pres-
sure fields. In the extreme case, fitting data has
a velocity NRMSE approximately of 12% with
respect to the CFD solution, and the model im-
proves the representation reaching an error of
8%. Moreover, the errors with respect to the
input synthetic data increase with the level of
noise considered. This underlines the fact that
the model prioritizes the physical regularization
to the fitting data when noise is large, even if
the weight of the data-fidelity term is the same.
In Figure 3, 4 there are the results for the ex-
treme case visualized in 2D slices of the aortic
geometry considered.

4.2. Wall Shear Stress estimation
WSS is now quantified starting from the pre-
dicted velocity near the wall boundary. In this
region, the model suffers in representing realistic
velocity gradients yielding to a challenging WSS
estimate. Hence, before applying the described
methods to compute WSS, we try to improve the
quality of the velocity representation at the wall
by proposing two changes to the baseline model:

1. more collocations points are sampled in the
near wall region to better enforce the gov-
erning PDEs;

2. the relevance of the loss term, that imposes
a null wall velocity, is increased in order to
obtain a steeper profile.

However, both these strategies does not improve

Figure 3: Velocity Z component colormaps in
2D slices. There are the CFD ground-truth, the
fitting synthetic data and the model prediction
for the extreme synthetic case.

Figure 4: CFD pressure and model prediction
for the extreme synthetic case.

the performances. Implicitly relying more on
physics, with more collocation points, ends
up in flatter profiles, as a constant velocity is
favored by the loss. About the no-slip condition,
increasing the loss weight related to null wall
velocity succeeds in predicting a lower value
at the boundary, but it does not improve the
WSS estimate. This is because the velocity
profile arrive at the wall with a smoother profile
and, in some cases, the concavity is inverted.
The initial idea was to force more the no-slip
condition to end up with a steeper profile,
but the results show the opposite behaviour,
yielding to severe errors. Hence, the baseline
model remains the best one.
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To quantify WSS, we exploit the three methods
to compute the normal derivative described in
Section 3. AD does not provide a good estimate
as it is extremely related to the poor net
performances near the boundary. The parabolic
fitting methods, instead, are more reliable
even if they super-impose a profile that cannot
always represent the reality. In particular, using
a parabola that starts with a null velocity (PAR
ZERO) permits to recreate the typical high
velocity gradients at the wall. Moreover, it is
used a large dn to avoid relying more on the
prediction near the wall. As notation, PAR2
and PAR7 correspond to the parabolic method
when dn is equal to 2 · 10−4m and 7 · 10−4m,
respectively. The errors for the mild case are
reported in Table 2.

AD PAR2 PAR7 PAR7 ZERO

0.28 0.27 0.20 0.14

Table 2: NRMSE for WSS estimated with dif-
ferent methods. The reference WSS field is com-
puted through the parabolic fitting method with
dn = 7 · 10−4m starting from CFD data.

Summing up, all methods underestimate WSS,
since the model suffers in representing the near
wall region. However, by applying the parabolic
profile that imposes a null velocity at the wall,
we obtain higher and realistic values. PAR7
ZERO is the most robust choice, and it is repre-
sented in Figure 5 where it can be visualized the
improvement with respect to the WSS estimate
with unprocessed 4D flow data.

5. Real 4D flow MRI test cases
We consider four measurements on different pa-
tients with bicuspid (BAV) and tricuspid (TAV)
aortic valves. In particular, BAV patients are
characterized by evident alterations of WSS dis-
tribution and peak values in the ascending aorta,
thus, an accurate WSS estimate could provide
an added value in a risk stratification study
about aortopathies.
We apply the optimal PINN configuration, that
is found within the study on synthetic test cases,
on anonymized data acquired by Weill Cornell
Medicine (NY, USA) to predict velocity and

Figure 5: On the left there is the reference WSS
computed with the CFD solution. In the middle
column there is the estimate obtained through
PAR7 ZERO, and, in the last one, there is the
result obtained from raw synthetic 4D flow data.

pressure, and to estimate WSS.
PINNs remarkably improve the starting blood
flow velocity measurements: the output fields
are super-resolute and regular, as can be visu-
alized in Figure 6, referring to a BAV patient.
Moreover, physical regularization provides a re-
alistic pressure reconstruction that can be com-
pared with the one obtained in synthetic test
cases. To support the effect of the physical regu-
larization, we verify the mass conservation prin-
ciple on a small cube inside the domain by com-
puting the outward surface velocity flux. PINNs
succeed in enforcing the mass conservation prin-
ciple, indeed the computed value is approxi-
mately two orders of magnitude lower w.r.t un-
processed 4D flow measurements.
The same issues encountered with the previous
test cases are detected. The neural network is
not able to recover high frequencies and details
are lost; in addition, the near wall region is not
completely understood and the no-slip condition
is not always correctly enforced. This is ex-
pected, since real data are more damaged near
the boundaries due to inaccuracies in the acqui-
sition and segmentation procedures.
In Figure 7, the results for WSS are reported
for the same BAV patient. Here, all the esti-
mates are probably underestimated, but there is
a significant improvement with respect to unpro-
cessed 4D flow data. Only the parabolic fitting
method considering a parabola that starts from
zero succeeds in proposing higher values.
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Figure 6: Velocity Z component colormaps in
2D slices. The model is trained with data on
the left column, and, on the right, there are its
super-resolute predictions.

Figure 7: WSS computed with AD and with the
parabolic fitting method with null velocity for
the wall points, and dn = 7 · 10−4 m.

6. Conclusion
Blood flow measurements in the aorta provided
by MRI techniques are affected by significant
noise sources, making them unsuitable for in-
vestigating biomarkers such as WSS. Neverthe-
less, a well known modelling knowledge could
describe the blood flow evolution and this an-
other source of information is used to regularize
and denoise the initial measurements. Our re-
sults show how PINNs improve the quality of
those velocity and pressure reconstructions and
how they permit to provide an estimate of WSS.
Moreover, we propose an alternative method
to compute wall normals starting from a neu-

ral network that represents the signed distance
function from the boundary.
The reconstruction of realistic velocity profile
near the boundary, that mainly characterize the
stress against the vessels, remains very challeng-
ing. The proposed neural networks suffer from
representing high frequencies and details. In-
deed, there is not visible the flow complexity
typical of realistic 3D CFD simulations. All the
predictions show a smooth behaviour and this
leads to an underestimation of WSS. To face this
issue, we pay particular attention to the near
wall region by adding more collocation points
where evaluating the PDEs residuals, and by
trying to recover the usual high velocity gradi-
ents.
Finally, the computational resources required
make this methodology not yet feasible in real
applications, as they require results in a very
concise time. The net training is heavy, and,
even if the model structure and the weights used
in the loss are designed to remain unchanged,
the training must be patient-specific. Further
developments could go in the direction of ex-
ploiting transfer learning techniques to reuse the
information discovered when analyzing a specific
patient.
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