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Abstract:
The focus of this study is to evaluate and compare different types of machine
learning algorithms for accurately estimating surface soil moisture using satellite
data. The work aims to identify the most effective architecture for this purpose,
striving to create a globally applicable "tool" that can be used in areas where
in-situ stations are not present.

The chosen study area is the TxSON network in Texas, USA, characterized by arid
conditions, uniform features, and sparse vegetation. The research covers a four-year
period from January 1, 2018, to December 31, 2021.

To conduct this analysis, images with dual-polarized radar back-scatter (VH and
VV polarizations) have been extracted from Sentinel-1, while red and near-infrared
bands from Sentinel-2 have been used to calculate the Normalized Difference
Vegetation Index (NDVI). In total 115 satellite observations have been collected.

In addition to satellite data, the study also incorporates in-situ data from the
ISMN database, to retrieve soil moisture hourly time series. These data are later
used for aligning and refining the machine learning models. Then the collected data
have been partitioned into training and inference sets to develop a comprehensive
database for analysis.

The work evaluates various ML algorithms, including Linear, Random Forest
(RF), Support Vector Machine (SVM), Gaussian Process Regression (GPR),
Multi-Layer Perceptron (MLP) and others, with the aim to fine-tune the hy-
perparameters of these models to achieve the lowest possible Root Mean Square
Error (RMSE), which serves as a measure of the accuracy of the models’ predictions.

However, after conducting the entire process and analyzing the outcomes, the re-
search acknowledges that the results didn’t align with the intended objectives.
In fact, the most noteworthy finding is the ’discovery’ that this workflow, specif-
ically involving the training of algorithms for predicting soil moisture values,
demonstrates its effectiveness when applied in a ’localized ’ approach.

The task of training a ML model for a specific site and accurately predicting values
in an different area, in order to achieve the initial goal of the research, the global
tool, appears to be seemingly impossible.
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1. Introduction

Soil moisture plays a crucial role as it quantifies the amount of water present within the soil matrix. This
measurement is a fundamental aspect of Earth’s hydrological cycle and holds great importance across various
environmental sectors. These include agricultural productivity, weather forecasting, climate modeling, etc. [37].
Given the ongoing changes in climate patterns and the increasing challenges related to water resources, gaining
an understanding of soil moisture dynamics has become even more essential.

The pivotal role played by soil moisture in different ecological and atmospheric processes underscores its critical
importance. Within the agricultural realm, optimal soil moisture levels directly influence crop health and yield,
while in hydrology [17], they dictate the partitioning of precipitation into runoff and groundwater recharge.
Furthermore, soil moisture strongly influences regional climate patterns, impacting precipitation rates, surface
energy fluxes, and even the severity of droughts and heatwaves. The management of this precious resource
emerges as a pressing global concern, with implications for food security, water availability, and ecosystem
sustainability [39].

Historically, the challenge of obtaining precise soil moisture measurements across various terrains, especially in
remote or inaccessible areas, has been a significant hurdle. At present, there are approximately 71 International
Soil Moisture Networks (ISMN) [8, 31] worldwide, boasting over 2800 operational stations. These stations
provide nearly real-time measurements of soil moisture at specific points. However, the current distribution of
these soil moisture network stations globally is far from uniform. This non-uniform distribution results in data
gaps, particularly in regions lacking these measurement stations or where they are sparsely scattered.

In response to these challenges, researchers have proposed utilizing satellite imagery to estimate soil moisture on
regional and global scales, addressing these distribution limitations [10, 38]. Integrated microwave radiometers
and radar systems [15, 45] on satellites now could enable to assess soil moisture without invasive procedures,
surpassing obstacles like vegetation cover and geographical limitations. This technological leap has ushered in
a new era of global-scale soil moisture observation, bolstering our capability to address both local and global
water resource concerns.

The rapid advancement of machine learning techniques has triggered a paradigm shift in the way data have been
analyzed and interpreted [9, 12, 19]. Machine learning, a subset of artificial intelligence, excel at identifying
intricate patterns within complex datasets. Their capacity to capture complex relationships in data positions
could serve as a powerful tool for unraveling the subtleties present in satellite-derived information.

In the field of soil moisture analysis, ML algorithms could offer a promising solution to overcome significant
challenges. Their ability to handle non-linear and multi-dimensional data makes them well-equipped for model-
ing the intricate interactions among variables that influence soil moisture levels. Through training on historical
datasets, taken by the ISMN hub [31], and high-resolution satellite observations, provided by Sentinel Program
[6, 7], machine learning could develop a nuanced grasp of the intricate correlation between remote sensing data
and actual soil moisture conditions. This newfound understanding empowers them to predict soil moisture
levels in regions where ground-based measurements are sparse, effectively bridging data gaps and enhancing the
spatial coverage of soil moisture estimates [21, 29, 40, 46, 50].

This study’s primary goal is to explore and harness the potential of artificial intelligence in advancing soil
moisture estimation using satellite-derived data. Through the fusion of cutting-edge machine learning techniques
and satellite remote sensing, this research aims to construct a predictive model that offers precise and adaptable
soil moisture estimates across diverse landscapes and varying climatic conditions. Additionally, this investigation
will delve into the efficacy of machine learning in processing and integrating heterogeneous satellite data sources,
with the ultimate aspiration of refining the comprehension of soil moisture dynamics [11, 14, 20, 47, 48].

This thesis is organized into several structured sections, below listed.

⋄ Section 2 : Study Area

⋄ Section 3 : Dataset

⋄ Section 4 : Machine Learning Algorithms

⋄ Section 5 : Methodology

⋄ Section 6 : Results

⋄ Section 7 : Conclusions
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2. Study Area

In this section, the chosen study area will be introduced, shedding light on its geographical characteristics. The
selection of the study area holds intrinsic significance, setting the spatial stage for the research and lending
depth to its findings.

This study was conducted over the region covered by the Texas Soil Observation Network (TxSON) [36]. The
network consists of 40 monitoring stations arranged in a grid of approximately 1500 km2, located in an area
near Fredericksburg, TX, between the Pedernales and Colorado rivers. These network stations monitor and
measure various site characteristics, such as weather and soil conditions.

This region experiences a semi-arid climate characterized by average annual rainfall of around 30 inches. Sum-
mers tend to be hot, with temperatures frequently exceeding 32°C, while winters are relatively mild, averaging
around 15°C. The landscape comprises rolling hills, rocky terrains, and intermittent river valleys, contributing
to diverse ecosystems and vegetation patterns.

The selection of TxSON as the study site was based on an analysis of various networks within the International
Soil Moisture Network [31]. Factors considered for discrimination included the number of satellite observa-
tions and the ratio of the number of stations to the covered area. After screening, the most suitable networks
were found to be TxSON, along with WegenerNet (Austria) [34], Tahmo (Kenya) [33], Grow (Hungary) [30],
and OzNet (Australia) [32].

The final choice, after numerous attempts made over the available data, has fallen upon TxSON due to its more
homogeneous characterization of the territory. Indeed, Texas features sparsely vegetated and arid lands, which
might yield better insights through the integration of in-situ and satellite data.

Figure 1 below shows a satellite view (taken from Google Earth [13]) of the region of interest with a pin for each
of the 40 stations. As can be observed, it is a highly arid region with sparse vegetation and few cultivated fields.
In this scenario, the satellite may encounter fewer difficulties in detecting soil moisture compared to a territory
with denser vegetation, where the vegetation itself could obstruct or deflect the signal, like encountered with
WegenerNet site.

Figure 1: TxSON’s Google Maps View

Matching the description given in the figure 1 above, it is apparent that certain stations are in closer proximity
to each other compared to others. As a result, five distinct groups have been identified and are listed in the
table 1 below. The stations that are relatively more isolated have not been taken into consideration.
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Figure 2: TxSON’s Google Maps View with Groups

The size of the identified sub-regions is approximately 25 square kilometers. Within these scales, significant
variations are not expected to occur in terms of soil moisture, as well as in the magnitudes of SAR (Syn-
thetic Aperture Radar) images in VH (Vertical-Horizontal) and VV (Vertical-Vertical) polarizations, and NDVI
(Normalized Difference Vegetation Index).

Figure 2 provides a visual representation of the extent of the five groups with their numeration and the accom-
panying table 1 displays the stations that constitute each respective group.

GROUP STATION
1 6 - 11 - 17 - 20 - 25 - 26 - 35
2 1 - 7 - 12 - 19 - 24 - 27 - 28 - 33
3 5 - 34
4 2 - 13 - 16 - 22 - 23 - 30 - 31
5 3 - 8 - 14 - 15 - 18 - 32

Table 1: Groups with relative stations

On the other hand, the stations 4, 10, 21, 29, 36, 37, 38, 39, 40, more isolated with respect to the others,
have not been included in the analysis. Station number 9 was excluded beforehand due to evident errors in its
measurements.

Attempts have also been made to include these more isolated stations among the others, but they do not yield
improvements. This is likely due to the fact that being more isolated, they cannot be effectively correlated with
satellite data due to their significantly different operational scale. Ground stations operate at a nearly punctual
level, while satellite images cover much larger areas, where a single pixel corresponds to several hundred square
meters.

The decision was also influenced by VH-SM and VV-SM correlations in each network. Figures 3 and 4 highlight
the comparisons between the networks of WegenerNet and TxSON. Notably, figures reveals a distinct correlations
within the TxSON network, suggesting potential positive results, while the WegenerNet network presents a more
complex situation due to likely differences in terrain characterization and higher vegetation levels compared to
Texas.

Delving further into the specifics, positive outcomes are expected through the sequential process of machine
learning models training followed by inference, considering each site individually. Conversely, the prospect of
training the network on one area and predicting on another seems implausible and unpromising. Indeed, the
correlations are discernible solely among each site, whereas on a global scale, the entire scenario appears more
intricate, as exemplified by the WegenerNet case.
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Figure 3: VH Amplitude vs Soil Moisture Comparison
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Figure 4: VV Amplitude vs Soil Moisture Comparison
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3. Datasets

3.1. Satellite - Sentinel Program

The study utilized openly accessible data from both Sentinel-1, utilizing Synthetic Aperture Radar (SAR), and
Sentinel-2, employing optical imagery. These datasets were acquired by downloading the requisite information
from the official European Space Agency (ESA) website [3], serving as a reliable source for data pertaining to
both of these satellite missions.

ESA launched Sentinel-1A on April 3, 2014, with a revisit time of 12 days. On April 25, 2016, Sentinel-1B
was also launched, with the same revisit time. Both satellites are part of the Copernicus Program [1] (formerly
known as Global Monitoring for Environment and Security). When considering both satellites together, it is
possible to combine the data and thus be able to obtain an observation of the same area, even if using two
different satellites, every 6 days, also with product of the same type.

Operating at a frequency of 5 GHz, both Sentinel-1A and 1B [6], utilize microwave signals that possess the
capability to effectively penetrate up to 5 cm beneath the surface of dry soil, enabling them to gather valuable
data and images from beneath the Earth’s topmost layer.

The Sentinel-1 satellites acquire images in strip map mode (with a spatial resolution of approximately 5 meters
in both the azimuth and range directions), interferometric wide swath mode (5 meters in the range direction
and 20 meters in the azimuth direction), extra-wide swath mode (40 meters in both directions), and wave mode
(3 meters in both directions). Depending upon the acquisition mode, the SAR products are available at three
levels:

⋄ Level - 0 : Unfocused SAR raw data
⋄ Level - 1 : Single Look Complex (SLC) and Ground Range Detected (GRD) data
⋄ Level - 2 : Ocean geophysical product derived from level-1.

This study utilized VV and VH dual polarization GRD (level-1) images to capture comprehensive information
about surface characteristics and interactions, as the VV and VH polarizations offer insights into different
scattering behaviors of the target, enhancing the accuracy and depth of analysis.
The VH polarization configuration means that the radar waves are transmitted with a vertical orientation
(V) and received with a horizontal orientation (H). Instead, VV polarization refers to the radar waves being
transmitted with a vertical orientation (V) and received with a vertical orientation as well (V). These different
polarizations have distinct interactions with various types of surfaces, which makes them useful in investigating
alterations and patterns that become evident with variations in surface soil moisture.

In the following figure 5, it is possible to see an example of the naming convention for downloadable Sentinel-1
files.

Figure 5: Sentinel-1 data official nomenclature

As can be seen, it’s possible to extract multiple pieces of information from the nomenclature of each file. With a
one-to-one correspondence between files and observations, the nomenclature provides details such as the mission,
processing level, polarizations, start and end times of the observation, relative orbit, and other parameters that
are subsequently useful during the data processing phase.
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However, for the selected region, only data from Sentinel-1A were available, except for a small time window in
June 2019. Therefore, the decision was made to utilize only the data from Sentinel-1A between January 1,
2018, and December 31, 2021. This approach resulted in the collection of 115 observations of the region,
hence, approximately one every 12 days, in adherence to the presented revisit time, all related to relative orbit
107.

Subsequently, within the continuation of the Sentinel Program, two additional satellites were launched, namely
Sentinel-2A (on 23rd June 2015) and Sentinel-2B (on 7th March 2017) [7], each with a revisit time of 10 days.
By combining the passes of both satellites, it is possible to achieve an observation on average every 5 days.
These satellites, positioned in polar orbits, significantly expanded the program’s capabilities by providing high-
resolution optical imagery, contributing crucial data for applications such as land cover mapping, environmental
monitoring, and agricultural assessment.

They provide data in two levels :

⋄ Level - 1C : Top-of-atmosphere corrected
⋄ Level - 2A : Bottom-of-atmosphere corrected

In the context of this study, when both product levels were concurrently available for a given observation, a
deliberate choice was made to exclusively utilize the ’2A’ level. This selection was driven by the recognition
of the ’2A’ level’s enhanced accuracy and calibration, which ultimately contributed to the study’s overarching
goal of achieving robust and dependable results.

Similarly to Sentinel-1, in the figure 6 it is possible to observe an example of the file naming convention for
Sentinel-2. These filenames also encompass numerous pieces of information, such as the mission, relative orbit,
start and end times of the observation, and so forth.

Figure 6: Sentinel-2 data official nomenclature

Sentinel-2 data has the limitation of "seeing" clouds since it operates with an optical view. To address this
issue, a filtering process was implemented to eliminate data with a cloud cover percentage exceeding 9.4% . This
filtering step aims to remove images that are significantly affected by cloud cover, as clouds can obscure the
Earth’s surface and affect the quality and reliability of the data for further analysis. By excluding such cloudy
images, the data-set becomes more suitable for applications that require cloud-free observations to achieve more
accurate and reliable results. However, some observations could be excluded due to their percentage of cloud
cover, which leads to some gaps in the trend of observations.

They acquire images of the earth in 13 different spectral bands, with a spatial resolution depending on the
band from 10 to 100 meters, from Visible Near Infra-Red (VNIR) to Short Wave Infra-Red (SWIR) of the
electromagnetic spectrum. For this purposes, only the band-4 (Red; 665 nm) and band-8 (NIR; 865 nm) have
been used. Indeed, by knowing these parameters, it is possible to calculate the Normalized Difference
Vegetation Index (NDVI) using the following formula:

NDV I =
NIR−Red

NIR+Red
(1)
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As the name suggests, it is a simple normalized difference that serves as a graphical indicator, used to assess
whether the observed area contains live vegetation, making it a valuable supplementary input alongside VH
and VV polarizations, as suggested by the authors in their study [42]. Several attempts were made to check
whether there was a genuine need for NDVI as an input or if it could be used solely as a kind of ’feasibility
index,’ providing information about the level of vegetation present in the region under examination. It was
observed that using it as an input helps achieve lower RMSE indices, then presented in the section 6.

Normalized Difference Vegetation Index (NDVI) has a range that extends from -1 to 1. Negative values mostly
represent bodies of water, such as rivers, lakes, seas, and oceans. Values close to zero but positive indicate arid
areas with sparse vegetation and a prevalence of sand, rocks, or snow. Values closer to 1 on the positive side
represent areas with predominant vegetation, approaching dense rain forests.

Concluding the discussion, Sentinel1 data were employed to retrieve amplitude values for VH and VV polar-
izations’ observations, while Sentinel2 data were utilized for NDVI computation. For each of the five station
groups, medians of values within their respective regions (table 1) were calculated. This approach aims to stan-
dardize the region’s values, mitigating the impact of features like water bodies or populated areas that might
otherwise result in nonsensical values.

3.2. In-situ measurements

In line with the previous subsection, the chosen time window of interest ranges from 01/01/2018 to 31/12/2021.
Using the ISMN [31], time series data for each of the 40 stations within the TxSON network were obtained.
For each station, information about the type of probe used, their respective coordinates, and soil moisture
measurements at hourly intervals are available. These measurements were taken at a depth between 3 cm and
5 cm for each station with CS655 probes [41], visible in the figure 7 below.

The CS655 sensor [7] consists of two 12 cm long stainless steel
rod electrodes connected to an electronics board. CS655 sen-
sors with short electrodes are easier to install in hard soil. The
CS655 sensors are designed for soils with high electrical con-
ductivity. It measures propagation time, signal attenuation
and temperature. From these values, the dielectric permittiv-
ity, volume water content and volume electrical conductivity
are then derived. The measured signal attenuation is used to
correct the effect of loss on reflection detection and thus to
measure the propagation time. Figure 7: CS655 Probe

The volumetric electrical conductivity of the soil is also calculated from the attenuation measurement. A
thermistor in thermal contact with a probe near the epoxy surface measures the temperature. The horizontal
installation of the sensor ensures accurate measurement of the soil temperature at the same depth as the water
content. Temperature measurement in sensor orientations other than horizontal will sense the temperature near
the inlet of the rods to the sensor body.

Data points that do not meet a specific reliability criterion, indicated by a negative exit-flag, are discarded. In
cases where there are missing readings, they are filled with NaN (Not a Number) values to ensure complete
time series vectors, with a value each hour.

For each of the hourly time series, a daily average was computed, aggregating over 24 data points, with the
intention of "filling in" potential gaps and measurement absences. Subsequently, for each of the five groups,
averages were calculated across all stations within each group. This process further contributes to standardizing
the values across the designated region, thereby facilitating enhancements in the subsequent comparison with
satellite observation values.

In Appendix A (figure 15) , it is possible to find graphs displaying the temporal variations of soil moisture for
each of the five group of stations. These graphs illustrate how soil moisture levels change over time for the
respective sets of stations. It can be observed from the graphs in the appendix A that the minimum value for
the various identified regions is approximately 0.1 millimeters of water per cubic meter of soil (mm/m3), while
the maximum value is around 0.4 mm/m3.

9



4. Machine Learning Algorithms

In the realm of data-driven decision-making, machine learning models stand as the vanguards of computational
intelligence. These models, rooted in the principles of artificial intelligence, provide a systematic approach to
extracting patterns, making predictions, and uncovering insights from vast and complex datasets. In this section,
different landscape of machine learning models have been explored, focusing on their fundamental concepts and
applications, selecting the most suitable model for these specific tasks [16].

Each model among those explored begins from the same starting point. From the dataset described in Section
3, the model’s input and output are identified.

(x(i), y(i)) i = 1, ..., n (2)

Starting from each input-output pair 2, where the input consists of a three-component vector (VH, VV, and
NDVI values) and the output represents the soil moisture value, the task of the model lies in identifying a
function of some kind corresponding to:

y = f(x,w, θ) (3)

Where w is the vector of the weight and θ the set of the optimized hyperparameters.

The primary objective of the research is to identify the most suitable category and structure among various
machine learning model families. The central focus of this optimization and minimization effort revolves around
the root mean square error (RMSE), a critical metric calculated using the following formula:

RMSE =

√∑n
i=1(y

(i)− ŷ(i))2

n
(4)

Where:

⋄ y(i) represents the actual observed value for a particular data point
⋄ ŷ(i) represents the predicted value by the model for the same data point
⋄ n is the total number of data points used for evaluation

Attaining a lower RMSE signifies the establishment of a highly dependable model, proficient in making predic-
tions with remarkable precision and minimal error. This enhanced accuracy should render the model versatile
and aptly suited for an array of diverse applications and tasks.

In the following compilation, a variety of distinct types is listed, with each type accompanied by its corresponding
MATLAB function, used as tool for conducting hyperparameter optimization:

1. Linear Regression model using Matlab fitrlinear function [25]

It is a model that establishes a linear relationship between a dependent variable and one or more inde-
pendent variables. It aims to predict the dependent variable’s value based on the weighted sum of the
independent variables, using a line that minimizes the sum of squared differences between predicted and
actual values.
The objective is to find a function like:

ŷ = w · x+w0 (5)

Where ŷ is the predicted value, through a combination of weights (w and w0) and input x.
To achieve this goal and subsequently determine the optimal hyperparameters, equation 6 is minimized.
This equation calculates the Mean Squared Error (MSE) in addition to a value that depends on the
hyperparameters, which are grouped within the variable θ.

L(w, θ) =
1

n

N∑
i=1

(ŷ(i)(w)− y(i))2 + θ∥w∥1 (6)

Where the variables have the same meaning as those in equation 4.
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This model is particularly suitable when the relationship between the variables can be approximated by
a linear equation, which represents a straight line on a graph. Evidently, by also observing the figures
16 in the appendix A, it could serve as an initial step to assess the behavior of various parameters;
however, undoubtedly, further enhancement of the situation will necessitate the exploration of alternative
architectures.

The eligible hyperparameters, in the used built-in function, are:

⋄ Lambda : regularization term strength
The function searches among positive values, by default log-scaled in the range [1e-5/n, 1e5/n],
where n is the number of observations.

⋄ Learner : linear regression model type
The function searches among ’svm’ and ’leastsquares’.

⋄ Regularization : complexity penalty type
The software composes the objective function for minimization from the sum of the average loss
function and the regularization term (last part of the equation 6).

◦ ridge : the function sets the Solver value to ’lbfgs’ by default.
◦ lasso : the function sets the Solver value to ’sparsa’ by default.

2. Support vector machine (SVM) Regression model using Matlab fitrsvm function [27]

It works by finding a hyperplane that best separates data points of
different classes in a high-dimensional space. SVM aims to maxi-
mize the margin between classes, relying on support vectors, data
points nearest to the separating hyperplane, to achieve robust and
accurate predictions. It is shown in the figure 8 below.
It is typically used when there’s a need to classify data points into
different categories or groups. SVMs are versatile and can handle
both linear and non-linear relationships between variables.
It creates a non-probabilistic binary linear classifier. An SVM
model represents examples as points in space, mapped in a way that
examples from the two distinct categories are clearly separated by
the widest possible margin. New examples are then mapped into
the same space, and the prediction of the category they belong to
is made based on the side they fall on.

Figure 8: SVM Method

The eligible hyperparameters, in the used built-in function, are:

⋄ BoxConstraint : constraint for the alpha coefficients (the absolute value of the Alpha coefficients
cannot exceed the value of BoxConstraint).
The function searches among positive values, by default log-scaled in the range [1e-3, 1e3].

⋄ KernelScale : the software divides all elements of the predictor matrix X by the value of KernelScale.
Then, the software applies the appropriate kernel norm to compute the Gram matrix.
The function searches among positive values, by default log-scaled in the range [1e-3, 1e3].

⋄ Epsilon : half the width of the epsilon-insensitive band, a non-negative scalar value.
The function searches among positive values, by default log-scaled in the range [1e-3, 1e2] * iqr(Y)/1.349.

⋄ KernelFunction : function used to compute the Gram matrix.
The function searches among ’gaussian’, ’linear’, and ’polynomial’.

⋄ PolynomialOrder : kernel function order, a positive integer.
The function searches among integers in the range [2, 4].

⋄ Standardize : flag to standardize the predictor data.
The function searches among ’true’(1) and ’false’(0).
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3. Random Forest (RF) Regression model using Matlab fitrtree function [28]

It constructs multiple decision trees during training and combines
their predictions to improve accuracy and reduce over-fitting. Each
tree is built on a subset of the data and features, making the final
prediction by aggregating the outcomes of individual trees, result-
ing in a more robust and accurate model.
It is obtained through the aggregation, called ’bagging’, of decision
trees 9. Random Forests serve as a solution aimed at minimizing
over-fitting of the training set compared to individual decision trees.
’Bagging’ is an ensemble learning technique in which multiple mod-
els of the same type are trained on different datasets, each derived
from an initial dataset through random sampling with replacement. Figure 9: RF Decision Tree

The eligible hyperparameters, in the used built-in function, are:

⋄ MaxNumSplits : maximal number of decision splits (or branch nodes).
The function searches among integers, by default log-scaled in the range [1, max(2,n - 1)], where n
is the number of observations.

⋄ MinLeafSize : minimum number of leaf node observations, a positive integer value.
The function searches among integers, by default log-scaled in the range [1, max(2, floor(n/2))],
where n is the number of observations.

⋄ NumVariablesToSample : number of predictors to select at random for each split.
The function does not optimize over this hyperparameter.

4. Ensemble of learners Regression model using Matlab fitrensemble function [22]

It entails amalgamating the forecasts generated by
multiple models (referred to as learners) to pro-
duce predictions that are not only more accurate
but also more resilient compared to the predictions
of individual models.
It trains regression ensemble model object that
contains the results of boosting 100 regression de-
cision trees, as shown in figure 10.

Figure 10: Ensemble of Decision Tree

The eligible hyperparameters, in the used built-in function, are:

⋄ Method : ensemble aggregation method.
The function searches among ’Bag’ or ’LSBoost’.

⋄ NumLearningCycles : number of ensemble learning cycles, a positive integer.
The function searches among positive integers, by default log-scaled with range [10, 500].

⋄ LearnRate : learning rate for shrinkage.
The function searches among positive reals, by default log-scaled with range [1e-3, 1].

⋄ MinLeafSize : minimum number of leaf node observations, a positive integer.
The function searches among integers log-scaled in the range [1, max(2,floor(n/2))], where n is the
number of observations.

⋄ MaxNumSplits : maximal number of decision splits (or branch nodes).
The function searches among integers, by default log-scaled in the range [1, max(2,n - 1)], where n
is the number of observations.

⋄ NumVariablesToSample : number of predictors to select at random for each split.
The function does not optimize over this hyperparameter.
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5. Multi-layer Perceptron (MLP) Regression model using Matlab fitrnet function [26]

It consists of multiple layers of interconnected nodes (neurons), including an input layer, one or more
hidden layers, and an output layer, with each layer fully connected to the next. Each node is a neuron,
with an activation function and its weighted inputs, allowing the network to learn complex relationships
in data (figure 11).

MLP neural networks are highly flexible but may require careful hyperparameter tuning and a sufficiently
large amount of data to prevent over-fitting, especially for deeper architectures. It is a model of an artificial
neural network that maps sets of input data to appropriate sets of output data. The MLP employs a
supervised learning technique called back-propagation for network training.

The basic computations performed by each neuron are
used to predict the model performance. This is a two-
step process. In the first step, individual inputs of the
neuron (x) and the corresponding weight values (w) are
combined together by a summation function. The out-
put of a summation function is a dot product of weight
vectors and input vectors. A bias (b) is added to the dot
product forming the output (f) according to equation 7.
In the second step, output (f) is fed into the argument
of an activation function, which is then used to calculate
a scalar value.

f =
∑

x ·w + b (7)
Figure 11: MLP Architecture

The neuron input in each hidden layer is constructed as a linear combination of its received input values
that correspond to the output of the previous layers according to equation 8:

al =
∑

wl · xl−1 + bl (8)

where, al is the input of a neuron present at l layer, wl is the weight vector for the neurons present at
l layer, al−1 is the output of a neuron present at l-1 layer, and bl is the bias value at layer l which is
followed by an activation function.

The eligible hyperparameters, in the used built-in function, are:

⋄ Activations : activation functions for the fully connected layers of the neural network model.
The function optimizes Activations over the set ’relu’, ’tanh’, ’sigmoid’, ’none’.

⋄ Lambda : regularization term strength, a non-negative scalar. The software composes the objective
function for minimization from the mean squared error (MSE) loss function and the ridge (L2)
penalty term.
The function optimizes Lambda over continuous values in the range [1e-5, 1e5]/n, where n is the
number of observations.

⋄ LayerBiasesInitializer : type of initial fully connected layer biases.
The function optimizes LayerBiasesInitializer over the two values ’zeros’, ’ones’.
If ’zeros’, each fully connected layer has an initial bias of 0. If ’ones’, each fully connected layer has
an initial bias of 1.

⋄ LayerWeightsInitializer : function to initialize the fully connected layer weights.
The function optimizes LayerWeightsInitializer over the two values ’glorot’, ’he’.

⋄ LayerSizes : sizes of the fully connected layers in the neural network model, a positive integer vector.
The function optimizes over the three values 1, 2, and 3 fully connected layers, excluding the final
fully connected layer. fitrnet optimizes each fully connected layer separately over 1 through 300
sizes in the layer, sampled on a logarithmic scale.
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6. Gaussian Process Regression (GPR) model using Matlab fitrgp function [23]

It models the relationship between input data points and corresponding output values as a Gaussian pro-
cess, which is a collection of random variables. GPR not only provides predictions but also estimates the
uncertainty associated with those predictions. Gaussian Process regression models should be particularly
useful when dealing with small datasets or when uncertainty estimation is important.

The eligible hyperparameters, in the used built-in function, are:

⋄ BasisFunction : if n is the number of observations, the basis function adds the term H ∗ β to the
model, where H is the basis matrix and β is a p-by-1 vector of basis coefficients.
The function searches among ’constant’, ’none’, ’linear’, and ’pureQuadratic’.

⋄ KernelFunction : form of the covariance function
The function searches among ’ardexponential’, ’ardmatern32’, ’ardmatern52’, ’ardrationalquadratic’,
’ardsquaredexponential’, ’exponential’, ’matern32’, ’matern52’, ’rationalquadratic’, and ’squaredex-
ponential’.

⋄ KernelScale : the function uses the KernelParameters argument to specify the value of the kernel
scale parameter, which is held constant during fitting. KernelScale cannot be optimized for any of
the ARD kernels.

⋄ Sigma : initial value for the noise standard deviation of the Gaussian process model, a positive
scalar value.
The function searches among real value in the range [1e-4, max(1e-3,10*ResponseStd)], where Re-
sponseStd = std(Y).

⋄ Standardize : flag to standardize the predictor data.
The function searches among ’true’(1) and ’false’(0).

7. Gaussian Kernel Regression model using Matlab fitrkernel function [24]

It is a non-parametric machine learning technique used for regression tasks. Unlike traditional regression
models that involve fitting a predefined function to the data, kernel regression estimates the target value
for a data point by considering the weighted average of its neighboring points in the feature space.

The eligible hyperparameters, in the used built-in function, are:

⋄ Epsilon : half the width of the epsilon-insensitive band, a non-negative scalar value.
The function searches among positive values, by default log-scaled in the range [1e-3, 1e2] * iqr(Y)/1.349.

⋄ KernelScale : kernel scale parameter, a positive scalar.
The function searches among positive values, by default log-scaled in the range [1e-3, 1e3].

⋄ Lambda : regularization term strength, a non-negative scalar.
The function searches among positive values, by default log-scaled in the range [1e-3, 1e3]/n, where
n is the number of observations.

⋄ Learner : linear regression model type.
The function searches among ’svm’ and ’leastsquares’.

⋄ NumExpansionDimensions : number of dimensions of the expanded space.
The function searches among positive integers, by default log-scaled in the range [100, 10000].
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5. Methodology

In this section, the adopted methodology for conducting the analysis and obtaining the subsequent results will
be presented in detail. The procedures, tools, and techniques employed to address the research questions and
attain the predetermined objectives will be elucidated. [4, 42–44, 49].

5.1. Satellite Data Pre-processing

First and foremost, the satellite data from both Sentinel-1 and Sentinel-2 missions were processed. Each of them
underwent a specific workflow. All the data has been processed using the ESA SNAP (Sentinel Application
Platform) software [2].

It is a powerful remote sensing software designed to process and analyze data from the European Space Agency’s
Sentinel satellites. It offers a range of tools for image manipulation, data pre-processing, and information extrac-
tion. With its user-friendly interface, SNAP facilitates the exploration of Earth observation data, enabling users
to derive valuable insights for various applications, including environmental monitoring, disaster management,
and agricultural assessment.

Processing Sentinel-1 data, which employs Synthetic Aperture Radar (SAR), requires a more elaborate and
time-consuming approach compared to Sentinel-2’s optical data. The SAR data undergoes complex steps like
calibration, speckle filtering, and terrain correction to transform raw signals into usefull images. In contrast,
Sentinel-2’s optical data processing involves tasks such as radiometric calibration and atmospheric correction,
making it relatively less intricate and quicker.

In fact, for Sentinel-1 data, the following steps were followed [18]:

⋄ Apply Orbit File

It is used to apply precise orbit files to Sentinel satellite imagery. It corrects satellite positioning errors,
enhancing the geometric accuracy of the data for further processing and analysis.

⋄ Calibration

It involves comparing the observed values with known reference values or standards and making necessary
adjustments to the measurements to remove systematic errors and uncertainties.

⋄ Speckle Filtering

It aims to preserve image details and edges while suppressing the speckle noise to improve the visual
quality and aid in subsequent analysis or interpretation of the images.

⋄ Terrain Flattening

It is used to remove the effects of terrain variations from satellite or aerial imagery. The terrain’s relief
can cause distortions in the image, making it challenging to accurately compare or analyze features.

⋄ Terrain Correction

It corrects geometric distortions caused by Earth’s topography in satellite or aerial imagery using digital
elevation models (DEMs). It produces geo-referenced and accurate representations of the Earth’s surface
for precise analysis and mapping.

⋄ Subset

It is a process used to ’crop’ regions of interest from satellite data images that cover much larger areas.

⋄ Conversion

It is a conversion from the output generated by ESA SNAP to an image format (PNG). This conversion
is done to make the data more easily analyzable during the post-processing phase.

Regarding Sentinel-2 data, the process involved taking Band 4 (red) and Band 8 (near-infrared) into account
and applying the formula 1 to calculate the NDVI index. Afterward, a "Subset" operation was performed to
focus on specific regions of interest within the images. Finally, the data was converted into PNG format for
further analysis and visualization.
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In line with what was previously mentioned in section 3, Sentinel-1A has a revisit time of 12 days, while the
Sentinel-2 constellation combined (Sentinel-2A and Sentinel-2B) has a revisit time of 5 days, with the possibility
of discarding some observations due to predominant cloud cover. This time offset between the two satellites is
evident.

To address this challenge, a strategic approach was implemented, shown in figure 12, involving the correlation of
each of the 115 Sentinel-1 images with the temporally closest available Sentinel-2 image. Through this method,
the acquisitions from both satellite platforms could be effectively synchronized, minimizing temporal disparities
between them.

Consequently, an extensive dataset emerged, encompassing 115 images for VH polarization, an additional 115
for VV polarization, and a corresponding 115 images for NDVI values. This ensured a pairing of data from
both Sentinel-1 and Sentinel-2 satellites, rendering them suitable for subsequent analytical pursuits.

Once these images are ready, the analysis moves on to examine the different stations and their geographical
positions. The approach selected involves using data from nearby stations, approximately enclosed within an
area of 40 square kilometres. The average of the soil moisture temporal trends from each station within this
area is calculated. This process results in the formation of five groups, visible in the figure 2. However, data
originating from stations that are relatively isolated from others were not subjected to analysis. This discrepancy
arises due to the contrasting operational scales of ground stations, which operate on an almost point-wise scale,
and satellite observations, which encompass significantly larger geographical areas.

Within each of these delineated regions, the respective VH and VV polarization images, along with NDVI data,
are extracted through a process of ’cropping’ the primary images into smaller segments, leveraging the precise
station coordinates. Following this, a median value calculation is executed for these three images, strategically
employed to alleviate the potential impact of water bodies or urban locales, which might otherwise disrupt the
SAR and optical signal measurements.

The ultimate objective is to acquire a set of quantitative values for each of the newly defined regions. This
encompasses distinct numeric values for VH polarization, VV polarization, NDVI, and soil moisture. This
iterative procedure is performed for all 115 images spanning the duration of the four-year investigation period.

Concluding the process, a database represented as a 115x4 matrix for each group is assembled. In this matrix,
the first column corresponds to VH, the second to VV, the third to NDVI, and the fourth to soil moisture. This
structured compilation results in a total of five different datasets. These will be treated as separate network,
playing a pivotal role in the training and inference phases of the analysis. This methodology is qualitatively
shown, as an example, in the following figure 12.

Figure 12: S1-S2 Data Match-up
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5.2. Machine Learning Phase (Training and Inference)

Following the pre-processing phase and the creation of the 5-matrices database representing each group, the
subsequent steps involve embarking on the training phase of machine learning model, followed by the inference
one [5, 35].

Each of the five database were divided into distinct ’training’ and ’inference’ subsets. For this instance, a
distribution of 75 % for the first phase and 25 % for the second one was chosen. Before this partition, the rows
in the database underwent shuffling to introduce a higher degree of randomness and to ensure the avoidance of
data solely linked to specific time periods being confined to a single phase.

Subsequent to the creation of the distinct databases, the following step entails the utilization of MATLAB
functions, enumerated in Section 4. A uniform process is employed across all types, commencing with model
training and its refinement through the automated selection of hyperparameters. For each of the architectures,
the process begins with the utilization of three inputs (VH amplitude, VV amplitude and NDVI), culminating
in the generation of a singular output represented by soil moisture [42–44]. An example of the used code is
reported below.

mdl = fitr ****( X_train , Y_train , 'OptimizeHyperparameters ', 'all', ...
'HyperparameterOptimizationOptions ', ...
struct('MaxObjectiveEvaluations ', 200));

Each of the models (mdl) is trained with the corresponding function (fitr**** ), listed in Section 4, taking VH,
VV, and NDVI values as input (X train) and providing moisture values as output (Y train), using 200 iterations
for each training.

Upon the establishment of model hyperparameters, the training database is partitioned into four blocks. Em-
ploying a cyclic approach, one of these blocks is systematically excluded while the model undergoes retraining
(with the unchanged hyperparameters) using the remaining three blocks. This trained model is then tested
against the omitted block. By comparing the resultant predictions to the actual values, the calculation of Root
Mean Square Error (RMSE) transpires, serving as a pivotal discriminating metric. Through this iterative "Leave
One Out" process, a total of 4 indices are determined. By calculating their average, a precise and representative
value for the training phase is derived.

This process is graphically exemplified in the figure 13 below.

Figure 13: Cross-validation Process Diagram
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Following that, the inference phase takes place, wherein the algorithm is tested on the portion of data that had
not been encountered before, constituting the remaining 25 %. By contrasting predictions with actual data, the
Root Mean Square Error value can be computed for each site and configurations, as shown below.

Y_pred = predict(mdl , X_inf);

rmse_inf = rmse(Y_inf , Y_pred);

Here, RMSE for the inference phase is computed using the true (Y inf ) and the predicted (Y pred) values of soil
moisture, evaluated using the optimized model (mdl) and the ’unseen’ input data (X inf ).

Enhanced performance is denoted by decreased RMSE values in this phase. Hence, identifying the optimal
architecture is synonymous with uncovering the one displaying the minimal disparity between predictions and
actual values. Prudence should be exercised in refraining from employing RMSE from the training phase,
as specific types of model could overly train the system, resulting in over-fitting issues: the model becomes
exceptionally proficient with the training data, yet falters when confronted with new data due to the acquisition
of noise and idiosyncrasies.

Ensuring an ample quantity of measurements is crucial, as an insufficient dataset could lead to outcomes
disproportionately influenced by the limited sample size. Inadequacies in complexity may hinder the network’s
capacity to grasp essential relationships, ultimately yielding diminished accuracy.

Both the problem concerning the phenomenon of over-fitting and the limited amount of data will be addressed
in the sections 6 and 7.
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6. Results

This section is dedicated to presenting the outcomes emerged from the research conducted in this study’s
domain. Before delving into the details, it is essential to observe, through the graphs presented in the Appendix
A (figure 16), the intricate interdependence existing among the three distinct inputs (VH, VV, and NDVI) and
the resultant output.

It becomes evident that some of the three inputs (mainly VV and VH polarization), in specific site, when
considered individually rather than collectively, exhibit a promising correlation. Therefore, the use of ma-
chine learning models is expected to yield at least satisfactory results. Their application holds the promise of
potentially uncovering intricate connections and patterns that might remain otherwise elusive.

For each of the individual categories, it is feasible to extrapolate the projected outcomes from both the training
phase and the subsequent inference phase. These projections can then be graphically represented using parity
plots, wherein actual values are positioned along the x-axis and predicted values along the y-axis. The presence
of a diagonal line on the plot signifies perfect prediction, a scenario in which each predicted value impeccably
aligns, in an ideal way, with its corresponding actual value.

Concluding the analysis, each of the specified categories presents an associated Root Mean Square Error (RMSE)
value for both the training and inference phases, computed following the formula 4. These values serve as
essential metrics, providing insights into the model’s accuracy and performance during distinct phases of the
analysis.

For every set of the five groups, treated individually as if they were completely separate networks, each architec-
ture outlined in Section 4 is utilized, and the corresponding parity plots are reported in Appendix A, together
with a table containing the RMSE indices relative to each phase.

Figure 14 depicts the outcomes arising from the conducted process. In these histograms, each bar corresponds
to a group (represented by a distinct color), with differentiation for each of the selected models, both for training
and inference phase. Additionally, it is feasible to observe the numerical values for each model and group, along
with the chosen hyperparameters, in Appendix A.
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Figure 14: ML Models RMSEs

The superiority of the result obtained from the GPR architecture, particularly for site 4, is clearly evident,
even when represented graphically. Notably, the Random Forest architecture’s incongruity with the task (as
evidenced in figure 19) further accentuates its unsuitability, so its value can be discarded.

Table 2 displays the architecture-wise results, highlighting the group with the most minimal RMSE, relative at
the inference phase, for each configuration.
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Machine Learning Algorithm Group RMSE Inference Phase
Linear 4 0.043
SVM 4 0.043

Random Forest 4 0.030
Ensemble 1 0.038

Multi-Layers 1 0.038
GPR 4 0.031

Kernel 4 0.035

Table 2: Minimal RMSEs for each architecture

Table 2 underscores the discernible advantage held by groups 1 and 4, offering databases that excel in supporting
various models use cases, outshining their counterparts. Although the RMSE values range from 0.03 to 0.045,
which doesn’t quite reach the optimal range, they still achieve a satisfactory level of performance.

The GPR architecture emerges as the best one, boasting an unequivocal RMSE low of 0.031, relative at the
group 4. This result can be deemed highly satisfactory.

In the appendix plots, particularly within the training phase of the Gaussian Process Regression model (figure
22), a distinct manifestation of over-fitting becomes evident, even visible in figure 14a, in group 2, 3 and 5.
This arises as the network excessively tailors itself to the available data, driven by an abundance of parameters
compared to the limited observations. Despite this side effect, the model manages to maintain its superiority
in terms of performance during tests also in the inference phase, as evident in table 2.

Once the ’best’ group was identified, looking at the minimum RMSE, a comparison was conducted with a
simple linear regression, using the dataset associated with it (group 4). Table 3 displays the differences in
RMSE, between the minimal one (GPR Model) and the linear regressions of single input (VH and VV) against
the moisture. It is evident that a simple linear regression of the individual input alone is not satisfactory,
justifying the use of the selected machine learning models.

GPR Model L.R. VH-SM L.R. VV-SM
0.031 0.046 0.042

Table 3: Optimized Models vs Linear Regression

Upon scrutinizing the presented plots, it becomes evident that even in cases like the ones observed in groups
3 and 5, the incorporation of supplementary inputs (VH and NDVI) to the single correlation VV-SM helps
reasonably the moisture predictions.
However, the most favorable outcomes materialize predominantly within group 4, and to a somewhat lesser
degree in group 1. In these instances, the correlations are visibly pronounced (positive for the former and
negative for the latter), discernible even without sophisticated analysis, encompassing both VV and VH data.

Nevertheless, it remains crucial to emphasize that attaining these values relies on training and inference archi-
tectures with site-specific data. Employing an architecture trained on one area and tested on another fails to
produce satisfactory outcomes. In order to predict the soil moisture of a given region, it is necessary to have
access to historical data for that region. However, it cannot be assumed that every region exhibits a correlation,
as is evident in the cases of groups 3 and 5 of this study. Therefore, the creation of software that can be used
universally in every part of the globe is not possible.
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7. Conclusions

In conclusion, as previously expounded upon in the introductory section (see section [1]), the fundamental
objective of this research was to analyze the intricate dataset procured from the Sentinel Program’s satellites
and to create a globally applicable, universally adaptable tool. The goal was to delve into the dataset’s depths
and unearth potential correlations that may exist between the observations gleaned from these satellites and
the levels of soil moisture content found within the diverse regions under investigation.

Upon examination of the minimum RMSE values, outlined in table 2, it becomes evident that these values,
while moderately satisfactory, exhibit inherent variability only across individual sites. This variability is a
crucial consideration due to the site-specific nature of RMSE values during the training and inference stages of
each model. This underscores the infeasibility of training a model in one location to predict soil moisture in
another, different one.

This observation aligns with the insights gleaned from figure 16 in appendix A.2, where the strong site-dependent
correlation between input parameters (VH and VV polarizations) and output (soil moisture) is visually evident
across distinct color-coded groups. This correlation, particularly pronounced in VV polarization, highly respon-
sive to moisture changes, showcases negative correlation in the first group, neutrality in groups 3 and 5, and
positive correlation in groups 2 and 4. These trends are further substantiated in the parity plots expounded in
section A.3 of the appendix, outlining the results of linear regression.

Significantly, the introduction of supplementary inputs (VH and NDVI) presents a scenario where discrete
outcomes seemed improbable (groups 3 and 5). However, tangible results are still achievable, as exemplified in
figures in section A.6 pertaining to the ensemble for decision tree model.

It is important to highlight the notable inadequacy of the Random Forest model in both the training and
predictive aspects of its model architecture. The graphs elucidated in appendix A.5 provide unmistakable
evidence of the model’s inefficacy, as it manages to generate predictions for just some values, regardless of the
specific values it endeavors to approximate.

This performance can potentially be attributed to several contributing factors. One could be the relatively
limited size of the dataset employed for training, as the Random Forest model typically excels with more
extensive datasets. As a consequence, while the reported value in table 2 might appear to be the best in
absolute terms for this model type, it is essentially a result of a ’flaw’ in the code, rendering it incapable of
visually detecting instances when the network is evidently malfunctioning.
Consequently, the ’Random Forest’ architecture proves to be incapable of providing meaningful assistance in
this context, highlighting its inherent limitations in this scenario.

Another noteworthy observation pertains to the MLP architecture. The graphs in appendix A.7 distinctly
portray how the network, within each group, is proficient at predicting values only surpassing a certain threshold.
This recurring pattern might indeed originate from the relatively constrained dataset size, underscoring the
contrast with the expansive datasets typically leveraged for such architectures.

In contrast, the GPR architecture emerges as prominently advantageous across nearly all examined sites. Its
capability to discern correlations and patterns with fewer data points, compared to what conventional models
necessitate for accurate modeling, contributes to its superiority.

The examination of table 2 brings to light that the sites with the most favorable RMSE values are the first
and the fourth. This outcome aligns with the visual analysis of Figure 16, where both group 1 and group 4
demonstrate correlations manifested through steeper regression lines. This correlation is particularly pronounced
in the context of VV polarization, but also extends to VH polarization.

In summarizing the findings from this undertaken study, it is evident that the utilization of machine learning
algorithms can yield moderately satisfactory results in the realms of soil moisture data training and prediction.
However, these achievements are notably constrained only to a ’local ’ context, a factor not documented in any
literary source. Presently, the ambition of training a single model applicable across diverse global locations
remains unattainable, diverging from the initial overarching goal of this endeavor.

Nevertheless, it’s important to recognize that this conclusion bears a positive undertone, as it establishes the
practicability of implementing these methodologies at a local scale. For instance, when armed with existing
moisture data from a specific region and armed with a substantial pool of samples, the process outlined in this
study can be replicated. This replication could effectively facilitate the estimation of moisture levels for that
designated area, obviating the necessity for intrusive sensors and exhaustive measurements.
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Indeed, there lie ample prospects for augmenting the undertaken work. A notably promising avenue involves
diverging from the reliance on ISMN data for in-situ measurements. Instead, one could opt for the collection
of self-curated data from delineated and precisely tailored areas. This approach, akin to that pursued by the
authors of the article [42–44], has the potential to yield richer and more contextually relevant datasets.

Moreover, the expansion of the operating dataset could encompass the assimilation of data from Sentinel-1 and
Sentinel-2 satellites, encompassing diverse relative orbits. This augmentation should also consider the angle of
incidence, an aspect remained unexplored in this study. This because all satellite data were stemmed from a
uniform orbit, making the introduction of this variable somewhat redundant, as it would have remained constant
for all observations.

Lastly, advancing the methodology could involve the integration of more sophisticated machine learning models,
emphasizing each hyperparameter’s role. This entails discerning which hyperparameters to optimize and which
to withhold from optimization, fostering a more refined and accurate modeling process.

Certainly, with these available data, namely Sentinel1’s SAR and Sentinel2’s optical data to retrieve VH and VV
polarizations along with NDVI, coupled with data extracted from the ISMN hub, it appears unfeasible to create
a general model capable of being trained on a region for which historical data is available and subsequently
applied to any other site.

The only viable operation, nonetheless of utmost significance, that could lead to significant advancements in
this field, remains the training of models on a specific network and subsequently predicting values within the
same network.

Undoubtedly, the pursuit of harmonizing two seemingly divergent domains, agriculture and space science, via
the infusion of AI, a force present in all realms, stands as a commendable accomplishment. This study harbors
the power to inaugurate a sequence of research endeavors and partnerships among universities and scholars who
share a mutual aspiration: to augment and propel advancements across a spectrum of disciplines. This synergy
bears the potential to drive innovation and catalyze progress in unanticipated ways.
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A. Appendix A

A.1. Soil Moisture Time Series

In the following plots, it is possible to observe the time series data spanning from January 1, 2018, to December
31, 2021, for each of the five identified regions. These time series consist of daily values, representing the average
values from each station within the respective group. A discernible pattern emerges, characterized by peaks
followed by declining segments. These peaks correspond to instances of atmospheric precipitation, succeeded
by periods of clear weather during which the terrain undergoes drying.
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Figure 15: Groups Time Series
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A.2. Input vs Output Dependencies

Within this subsection, the graphical depictions at hand allow for the observation of correlations among the
three fundamental inputs of the machine learning algorithms, namely, VH and VV polarization amplitudes,
along with NDVI values, contrasted against the resulting output denoting soil moisture.

It is clear that discerning patterns within specific groups reveals certain dependencies. Yet, when examining
the entire database indiscriminately, the complexity significantly deepens. Consequently, adopting a strategic
approach by addressing individual station groups consecutively is the most prudent path forward during the
ML phase.

In the initial two graphs representing VH and VV amplitudes, additional regression lines have been integrated
for each of the five groups. These lines effectively illustrate the qualitative nature of the correlation between
the input (VH or VV) and the output (soil moisture), whether it is positive, neutral, or negative.

Upon examination, the first VH plot reveals a generally minor positive reliance across all groups, barring the
first group which exhibits a mostly neutral to slightly negative correlation. Conversely, in the subsequent VV
plot, the first group distinctly showcases a negative dependency, the second and fourth groups indicate a positive
correlation, whereas the third and fifth groups seem to exhibit nearly neutral correlations.

As for the NDVI aspect, the omission of regression lines is deliberate due to the notably intricate nature of the
overall pattern. Unlike VH and VV, which display distinct correlations within certain groups, the NDVI data
lacks specific discernible patterns across the examined groups, rendering the incorporation of regression lines
less meaningful in this context. However, this value is subsequently helpful as input in training the model to
achieve better results.
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Figure 16: Input vs Output Dependencies
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A.3. Linear Regression Model Results

Within this section, parity plots pertaining to the linear regression model can be observed. These plots illustrate
the predicted values against the true ones between training and inference phases across the five established
groups.
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Figure 17: Linear Regression Model Parity Plots
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By employing the ’fitrlinear’ function, for each of the five groups, the hyperparameters were established and
listed in the table 4.

Group Lambda Learner Regularization
1 1.8499e-07 ’leastsquares’ ’ridge’
2 0.00037705 ’svm’ ’ridge’
3 0.00058512 ’leastsquares’ ’ridge’
4 0.0047878 ’svm’ ’ridge’
5 2.7948e-05 ’leastsquares’ ’lasso’

Table 4: Optimized Hyperparameters for Linear Regression Model

The following table 5 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.040 0.051
2 0.050 0.045
3 0.051 0.053
4 0.037 0.043
5 0.045 0.055

Table 5: RMSEs for Linear Regression Model

In the graphs 17, some promising correlations are beginning to emerge; however, it is undoubtedly necessary to
employ more sophisticated and robust models in order to achieve improved results.

In Table 4 it is shown how the regularization function varies from site to site, emphasizing the previously
mentioned ’site-specific’ nature of the correlations. Finding general hyperparameters is not feasible in this
context.
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A.4. Support Vector Machine Regression Model Results

Within this section, parity plots pertaining to the SVM regression model can be observed. These plots illustrate
the predicted values against the true ones between training and inference phases across the five established
groups.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(a) 1st Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(b) 2nd Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(c) 3rd Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(d) 4th Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(e) 5th Group

Figure 18: SVM Regression Model Parity Plots
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By employing the ’fitrsvm’ function, for each of the five groups, the hyperparameters were established and listed
in the table 6.

Group BoxContraint KernelScale Epsilon KernelFunction PolynomialOrder Standarize
1 0.58497 NaN 6.7827e-05 ’linear’ NaN ’true’
2 0.69526 NaN 0.021047 ’polynomial’ 3 ’false’
3 0.57301 NaN 0.0052056 ’linear’ NaN ’true’
4 27.291 NaN 0.014181 ’linear’ NaN ’false’
5 10.513 NaN 0.00023875 ’linear’ NaN ’false’

Table 6: Optimized Hyperparameters for Support Vector Machine Regression Model

The following table 7 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.044 0.049
2 0.047 0.052
3 0.050 0.055
4 0.037 0.043
5 0.048 0.051

Table 7: RMSEs for Support Vector Machine Regression Model

Similarly to the previous case, here too discrete results are provided, but yet far from the desired objective.
Furthermore, it is evident that hyperparameters vary from site to site in this context as well.
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A.5. Random Forest Regression Model Results

Within this section, parity plots pertaining to the Random Forest regression model can be observed. These
plots illustrate the predicted values against the true ones between training and inference phases across the five
established groups.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(a) 1st Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(b) 2nd Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(c) 3rd Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(d) 4th Group

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True Soil Moisture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

te
d

 S
o

il 
M

o
is

tu
re

Training

Inference

(e) 5th Group

Figure 19: Random Forest Regression Model Parity Plots
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By employing the ’fitrtree’ function, for each of the five groups, the hyperparameters were established and listed
in the table 8.

Group MaxNumSplits MinLeafSize NumVar
1 17 6 3
2 5 5 3
3 2 2 3
4 31 8 3
5 32 18 3

Table 8: Optimized Hyperparameters for Random Forest Regression Model

The following table 9 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.045 0.056
2 0.040 0.043
3 0.045 0.051
4 0.042 0.030
5 0.050 0.043

Table 9: RMSEs for Random Forest Regression Model

Observing figure 19, it is evident that this model is not functioning as expected. It can only predict just some
values, regardless of the input data. This is likely due to the relatively small amount of data, as this model is
accustomed to and more efficient with large datasets. Therefore, despite the lowest RMSE value in overall (0.03
relative to group 4) being present here, it can be safely discarded.
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A.6. Ensemble of Learners Regression Model Results

Within this section, parity plots pertaining to the ensemble of learners regression model can be observed. These
plots illustrate the predicted values against the true ones between training and inference phases across the five
established groups.
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Figure 20: Ensemble of Learners Regression Model Parity Plots
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By employing the ’fitrensemble’ function, for each of the five groups, the hyperparameters were established and
listed in the table 10.

Group Method NumLearnCycles LearnRate MinLeafSize MaxNumSplits NumVar
1 ’LSBoost’ 138 0.16062 1 1 2
2 ’Bag’ 69 NaN 1 80 2
3 ’Bag’ 11 NaN 2 81 3
4 ’LSBoost’ 38 0.086582 1 5 3
5 ’Bag’ 10 NaN 21 1 2

Table 10: Optimized Hyperparameters for Ensemble of Learners Regression Model

The following table 11 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.033 0.038
2 0.028 0.040
3 0.027 0.072
4 0.022 0.040
5 0.048 0.046

Table 11: RMSEs for Ensemble of Learners Regression Model

This model demonstrates promising results, particularly in groups 1, 2, and 4, as evident in Table 11 and Figure
20. These outcomes align with expectations, given that groups 3 and 5 did not exhibit visible correlations even
at a cursory examination.
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A.7. Multi-Layer Perceptron Regression Model Results

Within this section, parity plots pertaining to the MLP model can be observed. These plots illustrate the
predicted values against the true ones between training and inference phases across the five established groups.
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Figure 21: MLP Model Parity Plots
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By employing the ’fitrnet’ function, for each of the five groups, the hyperparameters were established and listed
in the table 12.

Group Activation Standardize Lambda LayerWeights LayerBiases LayerSizes
1 ’sigmoid’ ’true’ 6.2816e-06 ’glorot’ ’zeros’ [1 3]
2 ’relu’ ’true’ 0.016303 ’glorot’ ’ones’ [2]
3 ’none’ ’false’ 6.2626e-05 ’glorot’ ’zeros’ [169]
4 ’sigmoid’ ’true’ 0.00020994 ’he’ ’zeros’ [1]
5 ’relu’ ’true’ 0.0031493 ’glorot’ ’zeros’ [227 8]

Table 12: Optimized Hyperparameters for Multi-Layer Perceptron Regression Model

The following table 13 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.040 0.038
2 0.044 0.052
3 0.050 0.048
4 0.036 0.046
5 0.047 0.046

Table 13: RMSEs for Multi-Layer Perceptron Regression Model

The various networks identified through the optimization of this model all share a common issue: they are unable
to predict values below a certain threshold, as if there were a virtual barrier (figure 21). This phenomenon could
be attributed to the relatively small amount of data, as this family of models is better suited to handling large
volumes of data, similar to what was observed in the Random Forest architecture (see A.5).
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A.8. Gaussian Process Regression Model Results

Within this section, parity plots pertaining to the Gaussian Process Regression model can be observed. These
plots illustrate the predicted values against the true ones between training and inference phases across the five
established groups.
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Figure 22: Gaussian Process Regression Model Parity Plots
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By employing the ’fitrgp’ function, for each of the five groups, the hyperparameters were established and listed
in the table 14.

Group Sigma BasisFunction KernelFunction KernelScale Standardize
1 0.09241 ’linear’ ’ardmatern32’ NaN ’false’
2 0.0076331 ’linear’ ’exponential’ 0.00092669 ’false’
3 0.00010204 ’none’ ’ardrationalquadratic’ NaN ’false’
4 0.015045 ’linear’ ’matern32’ 0.024048 ’true’
5 0.00010414 ’none’ ’rationalquadratic’ 0.0011248 ’true’

Table 14: Optimized Hyperparameters for Gaussian Process Regression Model

The following table 15 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.045 0.038
2 0.001 0.054
3 0.00002 0.047
4 0.005 0.031
5 0.00002 0.052

Table 15: RMSEs for Gaussian Process Regression Model

Figure 22 exhibits clear signs of overfitting across virtually all groups, as visually evident in Figure 14a. Nev-
ertheless, the optimized model for group 4 stands out as the overall best performer with a value of 0.031. The
success of this architecture can be attributed to its ability to identify patterns and relationships even with
relatively small quantities of data.
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A.9. Gaussian Kernel Regression Model Results

Within this section, parity plots pertaining to the Gaussian Kernel Regression model can be observed. These
plots illustrate the predicted values against the true ones between training and inference phases across the five
established groups.
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Figure 23: Gaussian Kernel Regression Model Parity Plots
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By employing the ’fitrkernel’ function, for each of the five groups, the hyperparameters were established and
listed in the table 16.

Group Learner Lambda NumExpansionDimensions KernelScale Epsilon
1 ’leastsquares’ 1.3521e-05 105 2.9955 NaN
2 ’svm’ 0.10768 174 0.096751 0.0010527
3 ’leastsquares’ 1.2422e-05 137 2.8916 NaN
4 ’svm’ 1.2065e-05 291 6.7998 0.017079
5 ’svm’ 0.15656 101 0.019773 0.0045992

Table 16: Optimized Hyperparameters for Gaussian Kernel Regression Model

The following table 17 presents the RMSE corresponding to the various stages of network training, namely the
training and inference phase.

Group RMSE Training Phase RMSE Inference Phase
1 0.043 0.050
2 0.042 0.042
3 0.047 0.054
4 0.040 0.035
5 0.032 0.043

Table 17: RMSEs for Gaussian Kernel Regression Model

Following a similar path as the previous model (see A.8), here too, the architecture optimized for group 4
exhibits a very satisfactory RMSE value, albeit slightly higher than the absolute best result.
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Abstract in lingua italiana

L’obiettivo di questo studio è valutare e confrontare diversi tipi di algoritmi di machine learning per stimare con
precisione l’umidità superficiale del suolo utilizzando dati satellitari. Il lavoro mira a identificare l’architettura
più efficace per questo scopo, cercando di creare uno "strumento" globalmente applicabile che possa essere
utilizzato in aree dove non sono presenti stazioni in-situ.

L’area di studio scelta è il network di TxSON in Texas, USA, caratterizzato da condizioni aride, caratteristiche
uniformi e vegetazione scarsa. La ricerca copre un periodo di quattro anni, dal 1 gennaio 2018 al 31 dicembre
2021.

Per condurre questa analisi, sono state estratte immagini con retrodiffusione radar a doppia polarizzazione
(polarizzazioni VH e VV) da Sentinel-1, mentre le bande del rosso e del vicino-infrarosso da Sentinel-2 sono
state utilizzate per calcolare l’Indice di Vegetazione della Differenza Normalizzata (NDVI). In totale sono state
raccolte 115 osservazioni satellitari.

Oltre ai dati satellitari, lo studio incorpora anche le serie temporali orarie di umidità del suolo presenti sul
database ISMN. Questi dati vengono successivamente utilizzati per addestrare i modelli di machine learning.

Successivamente, i dati raccolti sono stati suddivisi in subset di addestramento e di inferenza. Il lavoro valuta
diversi algoritmi di machine learning, tra cui Lineare, Random Forest (RF), Support Vector Machine (SVM),
Gaussian Process Regression (GPR), MultiLayer Perceptron (MLP) e altri, con l’obiettivo di ottimizzare i
loro iperparametri per ottenere il più basso Errore Quadratico Medio (RMSE) possibile, che funge da misura
dell’accuratezza delle previsioni dei modelli.

Tuttavia, dopo aver condotto l’intero processo e analizzato i risultati, si è notato che i risultati non sono in linea
con gli obiettivi prefissati. In realtà, la scoperta più significativa è che questo flusso di lavoro dimostra la sua
efficacia quando viene applicato in un approccio "localizzato". L’addestrare un modello di machine learning
per un sito specifico e utilizzarlo per prevedere con precisione i valori in un’area diversa, al fine di raggiungere
l’obiettivo iniziale di creare uno strumento globale, sembra essere apparentemente impossibile.

Parole chiave: Umidità del suolo, Sentinel-1, Sentinel-2, Polarizzazioni VH & VV, Algoritmi di ML
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