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Abstract

Intrahepatic cholangiocarcinoma (IHC) is an aggressive tumor whose incidence has in-
creased considerably in recent years. The main treatment is surgery, but an optimal
strategy has not yet been characterized and prognostic factors are still debated. Recently,
a quantitative analysis approach based on diagnostic images, called Radiomics, has gained
attention. This technique is able to extract a large amount of high-dimensional and
minable data from diagnostic images, produced by Computed Tomography (CT) scans
in our case, capturing additional information to that usually considered by clinicians to
formulate prognoses. Thanks to the amount of data collected by Humanitas University,
in a multicentre study involving six different hospitals, we have tried to understand the
importance and the role of radiomics in predicting pathology data and survival response
in patients with IHC. We also focused on the multilevel nature of the data, analysing
whether there are differences between the various hospitals. In order to predict, and thus
classify, pathology data taking into account its multicentre aspect, we focused on Gen-
eralized Linear Mixed Effects Models as modelling techniques. For time-to-event data
we employed Cox type regression models with shared frailties, being able to consider the
inherent grouping factor in the data. Furthermore, as we were provided with radiomic
data covering three phases of CT (Arterial, Portal and Late) we have exploited the mul-
tiview aspect of the data by using Multi-view Learning techniques, to understand the
importance of each of the three phases. With the analysis carried out within this thesis,
we have demonstrated the importance of considering all radiomics information, together
with clinical one, in order to have an adequate prognosis in patients with IHC.

Keywords: Intrahepatic Cholangiocarcinoma, Radiomics, Mixed Effects Models, Shared
Frailty Models, Multi-view Learning





Sommario

Il colangiocarcimona intraepatico (IHC) è un tumore aggressivo la cui incidenza è cresci-
uta notevolmente negli ultimi anni. Il trattamento principale è la chirurgia, tuttavia
una strategia ottimale non è ancora stata caratterizzata e i fattori prognostici sono tut-
tora dibattuti. Recentemente, un approccio basato sull’analisi quantitativa di immagini
diagnostiche, chiamato Radiomica, ha guadagnato sempre più attenzione. Con questa
tecnica si è infatti in grado di estrarre dalle immagini diagnostiche, prodotte dagli scan
della Tomografia Computerizzata (TC) nel nostro caso, una grande quantità di high-
dimensional and minable data, riuscendo a catturare informazioni aggiuntive rispetto a
quelle solitamente considerate dai medici per formulare prognosi. Grazie ai dati raccolti
da Humanitas University, in uno studio multicentrico comprendente sei diversi ospedali,
abbiamo cercato di capire l’importanza e il ruolo che ha radiomica nella predizione dei
dati patologici e della risposta di sopravvivenza nei pazienti con IHC. Abbiamo focalizzato
l’attenzione anche sull’aspetto multi-livello del dato, analizzando l’eventuale presenza di
differenze tra i vari ospedali. Per poter predire, e quindi classificare, i dati patologici
tenendo conto dalla natura multicentrica dei dati, ci siamo focalizzati sui modelli lineari
generalizzati a effetti misti come tecnica modellistica. Per i dati time-to-event abbiamo
impiegato modelli di sopravvivenza di tipo Cox con shared frailties, con i quali siamo
riusciti a considerare il fattore di raggruppamento intrinseco nei dati. Inoltre, siccome ci
sono stati forniti dati radiomici riguardanti tre fasi della TC (arteriosa, portale e tardiva),
abbiamo pensato all’aspetto multiview del dato utilizzando tecniche di Multi-view Learn-
ing per poter capire l’importanza di ognuna delle tre fasi. Con le analisi svolte in questa
tesi, abbiamo dimostrato l’importanza di considerare tutte le informazioni fornite dalla
radiomica, insieme a quelle cliniche, al fine di avere una prognosi adeguata nei pazienti
con IHC.

Parole chiave: Colangiocarcinoma Intraepatico, Radiomica, Modelli Cox, Modelli Shared
Frailty, Multi-view Learning
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1

Introduction

In recent years, the incidence of a disease named Intrahepatic Cholangiocarcinoma (IHC)
has increased. IHC is an aggressive tumor that affects the liver and its five-years survival
rate ranges from 25% to 40%. The prognostic factors associated to IHC are still debated,
robust biomakers are lacking and a precision medicine approach with an adequate non-
invasive preoperative assessment of tumor biology is still not available. Recently, a new
technique called Radiomics, that allows to extract a large amount of quantitative data
from diagnostic images, has arisen. With Radiomics we are able to mine information not
currently considered by clinicians to formulate prognoses, that can be used in conjunction
with traditional clinical ones.
The data analysed within this thesis are collected by Humanitas University and are related
to patients that have undergone a liver resection for IHC. These data are embedded in a
multicentre study that aims to understand the importance and the role of radiomics in
predicting the targeted outcomes. The objective of this work is developed robust models
capable of classifying pathology data and predicting survival response in patients with
IHC. Building the models, we want to understand if radiomics usage can be decisive in
increasing their predictive ability, focusing on the importance of every radiomic data pro-
vided. Indeed, at first we aim to investigate whether both tumour radiomics (core) and
peritumour area (margin) contribute to improve performances. Afterwards, as we are
provided with radiomic data covering three phases of Computed Tomography scan (the
technique used for collecting the diagnostic images) we are interested in analyse the im-
portance of each of these three phases. In particular, we want to understand if they carry
the same information or if each one gives its own contribution in prediction. Moreover,
in performing these tasks, the multicentre nature of the data present in this study needs
to be considered, discovering if there are differences among centres.

The rest of this thesis is structured as follows.
In Chapter 1 we describe in detail the problem setting, the dataset used and the clinical
questions we aim to answer within this work. After giving this preliminary information,
we describe data engineering procedures used to prepare our dataset for the analysis.
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In Chapter 2 we deal with the classification of pathology data. In the first part of the
chapter, the methodologies used to build the models for classification are described, i.e.
Logistic Regression and Mixed Effects Models. With Logistic Regression we select the
best models for describing the outcomes, trying several variable selection techniques. With
Mixed Effects Model we take into account the multilevel nature of the data in the best
models determined, understanding if differences between hospitals are present. At the
end, results and conclusion about the classification are provided.
In Chapter 3 we handle Survival Analysis. In the first part of the chapter, the method-
ologies used to build the model for survival responses are described, i.e. Cox Proportional
Hazards (Cox-PH) models and Shared Frailty models. With Cox-PH models we select
the best models for describing the outcomes. With Shared Frailty models we take into
account the multilevel nature of the data in the best models determined, understanding
if differences between hospitals are present. At the end, results and conclusion about the
survival analysis are provided.
In Chapter 4 we consider all the information provided by radiomics, adopting a multi-
view approach to represent the data. In the first part of the chapter, the techniques
adopted to perform Multiview Dimensionality Reduction of the data are described, i.e.
Multiview Canonical Correlation Analysis and Kernel Multiview Canonical Correlation
Analysis. Afterwards, results of classification and survival analysis performed considering
the multiview aspect are provided, together with considerations regarding the usefulness
of exploiting all radiomic information, possibly adopting a multiview approach.
The work is concluded by a discussion of the results obtained, which provides the answer
to the proposed clinical questions.

The analysis present in this thesis are carried out using R [1] and Python [2] programming
languages.
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1| Problem Setting and Data

Engineering

In this Chapter we give an overview of a disease named Intrahepatic Cholangiocarcinoma
(IHC) and describe the associated clinical dataset provided by a collaboration with Hu-
matitas University that is used within this thesis. After introducing the database, we
explain the objectives of this thesis and the techniques used to answer the proposed clin-
ical questions. At the end, we describe the data engineering needed to prepare the data
for further analysis.

1.1. Multicentre Study for Intrahepatic Cholangio-

carcinoma

Intrahepatic Cholangiocarcinoma (IHC) is an aggressive disease that affects the liver aris-
ing from the bile duct epithelium, with anatomical position that is difficult to access.
It is the second most common primary hepatic tumor, accounting for less than 2% of
all malignancies. Its incidence is increasing over last decades and diagnosis is difficult
at early stages, due to IHC complicated biology [3–5]. The main treatment is surgery,
chemotherapy has a limited effectiveness and an optimal strategy for patients with re-
sectable IHC is not well characterized. Five-years survival rate ranges from 25% to 40%
[6–9]. The main factors associated with prognosis are IHC size, number and distribu-
tion; tumor differentiation; vascular invasion; lymph node metastases; metabolic tumor
volume; R status. However, these prognostic factors are still debated, robust biomarker
are lacking and precision medicine approach with an adequate non-invasive preoperative
assessment of tumor biology and prognosis is still not available [10–13].

In recent years, an approach of non-invasive image-based tissue analysis, namely Ra-
diomics, has emerged [14, 15]. Radiomics is able to capture additional information not
currently considered by clinicians in making prognosis, and more specifically, it recog-
nizes patterns which are related to clinical feature. In this way, relevant data are mined
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from any image modalities such as computed tomography (CT) and magnetic resonance
imaging (MRI) and these data can be used jointly to traditional clinical information. In
literature concerning IHC, it has been demonstrated that models including radiomic fea-
tures outperform traditional ones, predicting pathology data and patients’ outcome with
high accuracy [16–18].

In this thesis, we aim to build robust models that are capable to predict pathology data
and survival response in patients with IHC, making use of the information provided by
patients’ clinical history and radiomics. In particular, we want to understand if radiomics
can be an added value in the prognosis of IHC, looking for evidence in our data that
shows that using radiomics together with clinical information leads to improved predictive
performance. We are not only interested in understanding the impact of radiomics in its
entirety, but we also want to comprehend the usefulness of an investigation focused not
only on the core part of the tumour but also on the marginal peritumoral zone.

1.2. IHC Dataset

The data analysed in this thesis are provided by Department of Hepatobiliary and General
Surgery of Humanitas Clinical and Research Center, based in Rozzano. The information
provided concerns patients that have undergone a liver resection for IHC confirmed at final
pathology, from 2009 to 2019. The patients comply strictly inclusion/exclusion criteria
and come from 6 different hospital centres:

• Humanitas Clinical and Research Center (Milano) with 83 patients

• Mauriziano Hospital (Torino) with 73 patients

• Policlinico Rossi (Verona) with 43 patients

• S. Orsola Hospital (Bologna) with 28 patients

• Gemelli Hospital (Roma) with 25 patients

• Ospedale Morgagni-Pierantoni (Forlì) with 9 patients

Therefore, 261 patients are present in the final cohort. Each row of the dataset corresponds
to a patient with an associated anonymous code to identify him/her while maintaining
privacy. In addition, the hospital which they belong to, described by the variable CEN-
TRE, was recorded for each of them. Information collected for each individual concerns
clinical and radiomic characteristics.
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1.2.1. Clinical Variables

Clinical variables include the features illustrated in Table 1.1 and their types are sum-
marised in Table 1.2.

Table 1.1: Description of the clinical variables in the IHC dataset

Variable name Description
CENTRE Hospital of origin of the patient
ID CODE Anonymous code that identifies the patient
AGE Patient’s age
SEX Patient’s sex
HBV Presence of the hepatitis B virus in the patient
HCV Presence of the hepatitis C virus in the patient
CIRRHOSIS Presence of Cirrhosis in the patient
CA 19-9 Value of the tumor maker Ca 19-9
CA 19-9 ≥ 55 Binary variables that identifies when Ca 19-9 is

greater or equal than 55
NEOADJUVANT
CHEMOTHERAPY

Variable that indicates if the patient has undergone
chemotherapy before surgery

FIRST RESECTION Variable that indicates if the patient has undergone
first resection before major surgery treatment

MAJOR HEPATECTOMY Variable that indicates if the patient has undergone
major hepatectomy before major surgery

BILIARY RESECTION Variable indicating whether a biliary resection was
performed during surgery

LYMPHADENECTOMY Variable indicating whether a lymphadenectomy
was performed during surgery

ASSOCIATED RESECTION Variable indicating whether only part of the liver
has been removed during surgery

SEVERE COMPLICATIONS Variable indicating whether the patient experi-
enced severe complications after surgery

PATTERN Variable with values in [0,1,2] that describes the
number and location of tumor

DIMENSION Patient’s IHC maximum dimension in mm
SINGLE NODULE Variables that indicates if there is only one tumor
T VII ed Variables with values in [1a,1b,2,3,4] that indicates

the extension of the tumor
R status Variable with values in [0,1,2] that indicates the

presence of tumor residuals
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M status Variable that indicates the presence of metastasis
N status Variable with values in [0, x ,1] that indicates the

presence and extension of regional lymph nodes.
’x’ indicates between 0 and 1 but correct value im-
possible to determine

GRADING Variable with values in [1,2,3] that indicates the
aggressiveness of the tumor

MICROSCOPIC VASCULAR
INVASION

Variable that indicates the presence of Microscopic
Vascular Invasion

PERINEURAL INFILTRA-
TION

Variable that indicates the presence of Perineural
Infiltration

SATELLITE NODULES Variables that indicates the presence of Satellite
Nodules

ADJUVANT CHEMOTHER-
APY

Variables that indicates if the patient has under-
gone chemotherapy after surgery

MORTALITY Censoring state of death observation
RECURRENCE Censoring state of recurrence observation
OVERALL SURVIVAL Days until death/censoring
RELAPSE FREE SURVIVAL Days until recurrence/censoring

Table 1.2: Types of the clinical variables in the IHC dataset

Variable name Type Timing
CENTRE Categorical Preoperative
ID CODE String Preoperative
AGE Numerical Preoperative
SEX Binary Preoperative
HBV Binary Preoperative
HCV Binary Preoperative
CIRRHOSIS Binary Preoperative
CA 19-9 Numerical Preoperative
CA 19-9 ≥ 55 Binary Preoperative
NEOADJUVANT CHEMOTHERAPY Binary Preoperative
FIRST RESECTION Binary Preoperative
MAJOR HEPATECTOMY Binary Preoperative
BILIARY RESECTION Binary Postoperative
LYMPHADENECTOMY Binary Postoperative
ASSOCIATED RESECTION Binary Postoperative
SEVERE COMPLICATIONS Binary Postoperative
PATTERN Ordinal Preoperative
DIMENSION Numerical Preoperative
SINGLE NODULE Binary Preoperative
T VII ed Categorical Postoperative
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R status Categorical Postoperative
N status Categorical Postoperative
M status Binary Postoperative
GRADING Categorical Postoperative
MICROSCOPIC VASCULAR INVASION Binary Postoperative
PERINEURAL INFILTRATION Binary Postoperative
SATELLITE NODULES Binary Postoperative
ADJUVANT CHEMOTHERAPY Binary Postoperative
MORTALITY Binary Postoperative
RECURRENCE Binary Postoperative
OVERALL SURVIVAL Numerical Postoperative
RELAPSE FREE SURVIVAL Numerical Postoperative

Clinical variables correspond to information that is known to clinicians without the use
of radiomics. Some of these features, called preoperative, correspond to details that are
available prior to the curative surgery, while postoperative covariates are derived from
information obtained from histological pathological samples after surgery.

1.2.2. Radiomics

Nowadays, with high-throughput computing it is possible to rapidly extract quantitative
features from tomographic images. This conversion from digital medical images into
mineable high-dimensional data is called radiomics. This process is motivated by the
fact that the medical image contains underlying pathophysiology information that can be
revealed via quantitative image analysis. This approach is in contrast to the traditional
practice of treating medical images as pictures intended solely for visual interpretation.
Quantitative image features based on intensity, shape, size or volume, and texture have
the potential to offer information on tumor phenotype and microenvironment, that is
distinct from that provided by clinical reports and laboratory test results [19]. Radiomics
features can be used in conjunction with other current information related to clinical
history for the patient, to model clinical outcomes, for evidence-based clinical decision
support. Therefore, radiomics has the potential of improving diagnostic, prognostic, and
predictive accuracy.

Once the diagnostic image is available, the so-called Volume of Interest (VOI) is iden-
tified. It corresponds to the region of the image where tumor and suspected tumor are
present. The most crucial and challenging part of radiomics, i.e. segmentation, takes
place in the area selected by VOI. Segmentation defines the segmented volume in which
feature data are generated. The critical part of this work is that not all tumour types have
the distinct border, and this makes it difficult to make segmentation. Once the contour
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has been defined, using voxels (pixels) information, high-dimension quantitative informa-
tion is extracted producing radiomics features. The procedure employed by radiomics is
represented in Figure 1.1.

Figure 1.1: Flowchart of the radiomic process

In this study, radiomics is applied to patients’ preoperative CT scans. CT is carried out
in three different phases:

• Arterial: it is the first phase that is acquired 20-30 seconds after contrast agent
infusion. It allows to see hypervascularized lesions from branches of the hepatic
artery.

• Portal: it is the second phase that is acquired 60-80 seconds after contrast agent
infusion. It evaluates which lesions are vascularized by branches of the portal vein.

• Late: it is the third phase that evaluates how the contrast medium is discarded.

For each of these phases, tumour segmentation was done by generating a VOI that in-
cluded not only the core part of the IHC, but also the marginal peritumoral zone. In this
way, radiomics is extracted from two different zones, producing two different insight of
the IHC:

• Core: it corresponds to the area where the tumour is identified.

• Margin: it corresponds to the surrounding the tumour.

For each of these phases, for both core and margin, 50 radiomic variables are collected,
producing 300 covariates in total. The procedure is outlined in Figure 1.2.
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Figure 1.2: Representation procedure of radiomic features extraction from the three phases
of CT scan for both core and margin areas

Radiomic variables represents how voxels intensity values are distributed in the target
area and are divided into:

• Basic parameters that are intensity related

• First order parameters that describe how the voxel are distributed in an image

• Second order parameters, i.e. matrices (GLCM, GRLM, NGLDM, GLSZM) that are
obtained imposing filter grids on the image to extract repetitive and nonrepetitive
patterns

The complete set of radiomic variables and the list of filters used for the second order
covariates are given in the Appendix A.
The data recorded for the three CT scan phases produces three different representations
of the tumor. The main representation is the one obtained analysing the Portal phase: it
is used to decide treatment and surgery procedure and make prognosis. It is always taken
into account, possibly, in conjunction with the other phases. For this reason, Portal Phase
is registered for all patients, while the other two phases present several missing records,
whose numbers are detailed in the Table 1.3. Because of this, in the first part of the
work only the Portal phase, with core and margin insights, will be initially be considered.
Afterwards, all three phases of radiomics will be analysed.
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N° Missing Patients (%) N° Available Patients (%)

PORTAL 1 0.4% 260 99.6%

ARTERIAL 32 12% 229 88%

LATE 46 18% 215 82%

PORTAL +
ARTERIAL +
LATE

58 22% 203 78%

Table 1.3: Numbers and percentages of missing and available patients in every phase of
the CT scan, individually and jointly.

1.2.3. Multiview interpretation of Radiomics

The fact of considering all three phases of the CT scan together, which are nothing else
than the description of the same object in three different moments, led us to reflect on
what is the most correct way to represent the patient with this data. The easiest way
to use all information provided by radiomics is to concatenate all covariates belonging
to the three phases producing a very large dataset. However, this concatenation causes
overfitting, since we have a small size training sample, and does not take into account
the fact that the three radiomic phases basically represent, even if in different ways, the
same subject. This led us to think the three radiomic phases as three different views
that describes the same instance, considering Multi-view Learning techniques to model
the data. With Multi-view Learning we are able to exploit the redundant nature of the
views, since it aims to learn one function to model each view and jointly optimizes all
the functions to improve the generalization performance [20]. At the end of this work,
Multi-view representation will be considered in Chapter 4 to describe patients considering
all available information and multiview nature of the data.

1.3. Outcomes and Endpoints

The outcomes that will be analysed within this thesis are the following clinical covariates:

• Microscopic Vascular Invasion (MVI): it is a binary variable that assess the
presence or not of microscopic vascular invasion.

• Grading: it is a categorical variable with values {1, 2, 3} that describes the ag-
gressiveness of the tumor. Even if there are three possible values, we are interested
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in the two classes classification 1-2 vs 3.

• Overall Survival (OS): OS is a numerical variable that represents the overall
survival time of the patient, measured in days. A vector named Mortality defines
the related censoring states of the patient at the end of the study (2019).

• Relapse-Free Survival (RFS): RFS is a numerical variable that represents the
relapse-free time of the patient, measured in days. A vector named Recurrence
defines the related censoring states of the patient at the end of the study (2019).

Given the nature of the outcomes, i.e. binary variables for pathology outcomes and time-
to-event censored data for survival outcomes, two different modelling approaches must
be used: at first we will focus a Classification problem in Chapter 2, then a Survival
Analysis one in Chapter 3. For both Classifications and Survival we need to find robust
models that are capable of predicting the outcomes using clinical and radiomic covariates.
Regarding radiomics, we want to understand if its use can be decisive in increasing the
predictive ability of the model. In particular, we aim to investigated if both radiomics
of tumor (core) and peritumoral area (margin) contribute both in performance improve-
ment. Initially, in Chapters 2 and 3, we only focus on the Portal phase of the CT scan
to answer these questions, as this is the main phase on which decisions are made and as
we have data for all patients. To understand the impact that radiomics may have on the
predictive ability of the model, we test the models with different sets of input covariates:
we start considering the clinical covariates alone, which correspond to the information
used by clinicians to make prognoses, and add the radiomic covariates corresponding to
the tumour and then also those corresponding to the margin area. Once this task is
completed, the next step is to understand whether the different phases of the CT scan
provide the same information or whether each one adds its own value to the prognostic
impact of the model. This aspect is explored in Chapter 4.
In performing these tasks, the multicentre aspect present in this study needs to be con-
sidered, modelling the grouping of the hospitals, to understand if there are differences
among centres.
Classification problem is addressed in Chapter 2 using Logistic Regression and Mixed Ef-
fects Models as modelling techniques. With Logistic Regression we select the best models
for describing MVI and Grading, choosing among different sets of input covariates (re-
ported in Section 2.2) and trying several variable selection techniques (listed in Section
2.1.1). Using Logistic Regression the multicentre aspect present in the data is not consid-
ered, but it is necessary to use this procedure as a preliminary step in order to perform
feature selection identifying which of the covariates are extracted in the best model. Once
these covariates are determined, they enter as input into a Mixed Effects Model. With
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Mixed Effects Models we are able to perform classification taking care of the multilevel
nature of the data, producing the final models. At the end of the Chapter, results are
illustrated and conclusions are drawn analysing predictive performances of the models.
Survival Analysis is addressed in Chapter 3 using Cox Proportional Hazards Models (Cox-
PH) and Shared Frailty Models as modelling techniques. With Cox-PH model we select
the best models for describing OS and RFS, choosing among different sets of input co-
variates (reported in Section 3.2) and using Stepwise Selection to reduce the number of
features. Using Cox-PH models the hierarchy of the data is not considered, but it is nec-
essary to apply this method as a preliminary step to perform variable selection, in order
to identify which of covariates are extracted in the best models. Once covariates present
in the best models are determined, we take care of the multilevel nature of the data using
Shared Frailty Models producing the final models. At the end of the Chapter, results
are reported and clinical questions are addressed analysing predictive performances of the
models.
Multi-view aspect of the data is exploited in Chapter 4. In this chapter two Multi-view
Dimensionality Reduction approaches, Multiview Correlation Analysis and Kernel Mul-
tiview Correlation Analysis, are used to reduce the number of the feature in the dataset
considering all radiomic phases jointly, accounting properly the multiview nature of the
data. Performing Classification and Survival Analysis on Multi-view reduced datasets, we
make conclusions about the usefulness of using all the information provided by radiomics.

1.4. Exploratory Analysis and Preprocessing

As previously mentioned, in our study there are 261 patients coming from 6 different
centres. Moreover, we have 300 radiomic variables plus clinical ones. The large number
of covariates leads to overfitting problems, that are taken into account with features
selection and dimensionality reduction in Chapters 2, 3 and 4. The number of patients
is not enough large to avoid overfitting and there is a risk that, with a high number of
missing values, it could be reduced significantly. We will consider these issues by first
dealing with missing values and possible imputation (Section 1.4.1), then we take care
of possible presence of outliers (Section 1.4.2) and at the end we analyse the correlation
among the radiomic features (Section 1.4.3).

1.4.1. Missing Values and Imputation

The problem of missing data is relatively common in almost all research and can have
a significant effect on the conclusions that can be drawn from the data [21]. Therefore,
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missing values should be handled properly. In both the clinical and radiomic parts of the
study missing data are present, due to the difficulty of collecting information.

At first, we consider missing values in radiomic data. These correspond to patients for
whom there was not the possibility to collect all data concerning the three CT phases.
Hence, in these data, for patients with missing values, all radiomic variables are lacking.
Therefore, it is impossible to impute this data. The number of missing values of radiomic
variables is summarized in Table 1.5. The amount of missing data is consistent. However,
as there is no possibility of doing anything about these values, we focus on the analysis
of the missing values in the clinical variables.
The distribution of this latter among the different features is summarized in Figure 1.3
and Table 1.4.

Figure 1.3: Barplot with percentage of Missing Values in Clinical Features of IHC dataset
with at least one missing data.
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N° Missing Values Missing Ratio

Ca 19-9 35 13.41%

PERINEURAL
INFILTRATION

26 9.96%

ADJUVANT
CHEMOTHERAPY

18 6.90%

RFS (Days) 13 4.98%

RECURRENCE 13 4.98%

MICROSCOPIC
VASCULAR INVASION

3 1.15%

HBV 1 0.38%

HCV 1 0.38%

Table 1.4: Numbers and Percentages of Missing Values in Clinical Features in IHC dataset
with at least one missing data.

N° Missing Values (%) Remaining Patients (%)

PORTAL 1 0.4% 260 99.6%

ARTERIAL 32 12% 229 88%

LATE 46 18% 215 82%

PORTAL +
ARTERIAL +
LATE

58 22% 203 78%

Table 1.5: Number and Percentage of Missing Values in the three phases of radiomics,
individually and jointly.

A first strategy to deal with missing values could be to eliminate every patient in which at
least one missing value is present in clinical variables, namely perform a listwise deletion.
This would eliminate 76 patients, that correspond to 29% of the dataset. The number
of missing values is not negligible and the approach of listwise deletion is not feasible.
The strategy we used to solve the problem is Multiple Imputation. It is a methodology
for the problem of missing data that aims to allow for the uncertainty about the missing
data by creating several different plausible imputed data sets and appropriately combining
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results obtained from each of them [22]. Multiple imputation has potential to improve
the validity of medical research, helping by reducing bias or increasing precision.
In our study only missing values in the input covariates are imputed, while patients
with missing data in at least one of the output coviariates (MVI, RFS and RECIDIVA)
are deleted. To perform the Multiple Imputation from these data the Python package
miceforest is used [23]. It fills the missing data through Multiple Imputation by Chained
Equation. Using this technique 5 imputed datasets were created using almost all most
important covariate and then aggregated into a single one averaging the values. After
having produced the final imputed dataset, we took care to check that the distribution
of imputed variables did not deviate too much from the original one. This was done by
comparing the distribution of the imputed variables through barplots and boxplots.
Concering the numerical variable Ca19-9, results are reported in Table 1.4:

(a) Boxplot of Log(Ca19-9) distribution Original vs Imputed

(b) Histogram of Log(Ca19-9) Original vs Imputed

Figure 1.4: Comparison of Ca19-9 distribution in Original vs Imputed Data, using the
logarithm function for visualization purposes.

For the categorical imputed variables, to assess the correctness of the imputation proce-
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dure, it is aimed that the distribution of the input variables grouped by output covariates
is as similar as possible. To verify this, the following barplots are provided in Figures 1.5,
1.6, 1.7:

(a) Barplots of Perineural Infiltration
Original vs Imputed

(b) Barplots of Adjuvant Chemotherapy
Original vs Imputed

Figure 1.5: Barplots of Perineural Infiltration and Adjuvant Chemotherapy in Original vs
Imputed Data

(a) Distribution of Grading 1-2 vs 3
in Perineural Infiltration

(b) Distribution of Microscopic Vascular Invasion
in Perineural Infiltration

(c) Distribution of Mortality in
Perineural Infiltration

(d) Distribution of Recurrence in
Perineural Infiltration

Figure 1.6: Comparison of distribution of Perineural Infiltration grouped by outcome in
Original vs Imputed Data
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(a) Distribution of Grading 3 vs 1-2
in Adjuvant Chemotherapy

(b) Distribution of Microscopic Vascular Invasion
in Adjuvant Chemotherapy

(c) Distribution of Mortality in
Adjuvant Chemotherapy

(d) Distribution of Recurrence in
Adjuvant Chemotherapy

Figure 1.7: Comparison of distribution of Adjuvant Chemotherapy, thorough barplots
grouped by outcome in Original vs Imputed Data

The result is fulfilling, because the distributions of imputed variables do not change sig-
nificantly after Multiple Imputation. Therefore, the imputed dataset will be used for the
following analysis, thus not significantly reducing the number of patients.
Using this technique to deal with missing values, the number of remaining patients ac-
cording to the different cases of radiomic covariates are:

Remaining Patients (%) Deleted Patients (%)

PORTAL 244 93% 17 7%

PORTAL +
ARTERIAL +
LATE

190 73% 71 27%

Table 1.6: Table with final numbers and percentages of patients left and deleted after
dealing with Missing Values, in case of using only Portal features or all radiomics covariates
jointly with clinical.
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In Chapters 2 and 3 only Clinical and Portal(Core+Margin) covariates are used in the
analysis, with a total of 244 patients; while in Chapter 4 all information is exploited
leading with a number of samples equals to 190.

1.4.2. Outliers Detection

After dealing with the problem of Missing Values, the next step is to analyse outliers. It
is important that these anomalies, if present, are found, because they can create problems
if attention is not paid [24]. For this reason, once the outliers have been found, decisions
about what to do with them must be taken. Most common causes of outliers are data
entry errors, measurement errors, experimental errors, data processing errors and so on.
In this context we decided to use a multivariate and non-parametric method to identify
outliers, namely DBSCAN [25]. DBSCAN is a density-based clustering algorithm, fo-
cused on finding neighbours by density on a multidimensional sphere of a certain radius.
DBSCAN is able to identify three different class of points: Core points, Border points
and Outliers. Outliers, in this context, are points that lie is no cluster and that are not
density reachable nor density connected to any other point. Finding points classified as
Outliers by the DBSCAN is the goal. To use the algorithm hyperparameters, must be set.
These are the minimum of number of points contained in a sphere to consider the point
a Core point and the radius of the sphere. The choice of these parameters can influence
the result.
DBSCAN is applied in our case to identify outliers in numerical clinical features: Ca19-9,
Dimension of IHC, OS and RFS. To be able to visualize the results in order to have feed-
back on the goodness of the process, these covariates are considered pairwise: in every
pair Outliers are searched in a 2-dimensional space. Figure 1.8 suggests the presence of
anomalies in the dataset. Instead of scaling the data, a radius that varies according to
the maximum distance of the points is chosen. After several attempts, hyperparameters
are decided: 4 as a minPoints and 15% of maximum points distance as radius; Euclidian
distance is used.
In this manner, three Outliers are identified in pairs that contain Ca19-9 as a covariate.
In Figure 1.9 it can be seen that these points correspond to high values of the biomarker.
Moreover, it can be noticed the correctness of the outliers identification, thanks to the ac-
curacy of the algorithm and thanks to the fact that DBSCAN is a very intuitive algorithm
with ease of visualizing the result.
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Figure 1.8: Pairwise plot of numerical clinical features of IHC Dataset, i.e. Ca 19-9,
Dimension, RFS and OS

Figure 1.9: Pairwise plot with outliers detected in numerical clinical features of IHC
Dataset
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Once outliers are identified, decisions about them must be taken. The first thing that
comes to mind is that these elevated Ca19-9 values may be due to data entry errors. If this
were the reason, patients with such high numbers should be eliminated from the dataset.
Because the data were retrospectively collected, there was the opportunity to verify the
correctness of the values: the number reported in the dataset are right, no errors have
been made in recording the data. For this reason, since the values are plausible and are
not mistakes, the outliers are not removed from the dataset. In this way, the numerosity
of the patients is preserved.

Outliers are not searched in radiomic covariates because the high dimensionality of the
data and the small sample size make it impossible, even using multivariate outliers de-
tection techniques such as DBSCAN, to address the problem properly. Outliers detection
algorithm performs poorly on dataset with small size and large number of features, which
is our case.

1.4.3. Correlation Analysis

The main issue of our data is the high number of the radiomic features and, for this
reason, techniques of features selection and dimensionality reduction must be used. As
an initial step, a correlation analysis is used to obtain a first skimming of the covariates.
The goal is to eliminate highly correlated features in order to reduce the number of them.
For every group of radiomic covariates, namely Portal, Arterial and Late, separately for
Core and Margin, a clustermap is used to see if correlation is present among variables.
In Figure 1.10 it can be noted that there are groups of highly correlated features in every
case and the strategy is to deleted them. A threshold of 0.85 is used for the removal of the
variables: covariates that are correlated more than 0.85 are eliminated from the dataset
and the further analysis.
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(a) Clustermap of Portal Core
covariates

(b) Clustermap of Portal Margin
covariates

(c) Clustermap of Arterial Core
covariates

(d) Clustermap of Arterial Margin
covariates

(e) Clustermap of Late Core
covariates

(f) Clustermap of Late Margin
covariates

Figure 1.10: Correlation Analysis with Clustermaps of each radiomic covariate subgroup
in IHC Dataset
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Using this approach, many features are deleted and information on changes in their num-
ber is summarised in the Table 1.7:

Remaining Covariates (%) Deleted Covariates (%)

PORTAL
CORE

24 48% 26 52%

PORTAL
MARGIN

30 60% 20 40%

ARTERIAL
CORE

21 42% 29 58%

ARTERIAL
MARGIN

25 50% 25 50%

LATE
CORE

14 28% 36 72%

LATE
MARGIN

24 48% 26 52%

Table 1.7: Final numbers and percentages of remaining and deleted covariates in each
radiomics subgroup after removal subsequent to correlation analysis

In this manner the number of features is significantly decreased, reducing the problem of
overfitting.
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Data

In this Chapter we deal with the classification of pathology data. The outcomes taken
into account are:

• Microscopic Vascular Invasion (MVI): MVI is an established adverse prognos-
tic factor in patients with IHC. It is currently diagnosed on IHC tissue histological
examination typically after surgical resection.

• Grading: it expresses the differentiation of the tumor, describing how much it
deviates from the normal tissue from which it originated. It is an indicator of how
quickly a tumor is likely to grow and spread. This variable is categorical over 3
levels, being:

– Level 1: Well differentiated, i.e. tumours look very similar to surrounding
normal cells

– Level 2: Moderately differentiated. i.e. tumour cells have a clearly abnormal
appearance, but still share some characteristics with surrounding normal cells

– Level 3: Poorly differentiated, i.e. tumours appear very abnormal

According to clinicians suggestion, we dichotomize the variable in two classes clas-
sification coded as 1-2 (0) vs 3 (1).

In order to have an adequate prognosis and treatment, it is crucial to be able to correctly
predict values of MVI and Grading. For this reason, it is important to find a robust model
for classification.

2.1. Methodologies for Classification

In this Section we describe the methodologies used to classify pathology data. In Section
2.1.1 we explain the importance of using variable selection techniques to select the features
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that enter the model, trying to mitigate the problem of overfitting. Then, in Section 2.1.2
we describe Logistic Regression procedure for classification, that is used to find the best
model in which to account for the multilevel nature of the data subsequently. In Section
2.1.3 are illustrated Mixed Effects Models, i.e. modelling techniques to consider the
grouping factor present in the data.

2.1.1. Feature Selection and Dimensionality Reduction

Since in our problem a huge number of radiomic variables are present, Feature Selection
or Dimensionality Reduction are needed. Feature Selection works by keeping only the
most relevant variables from the original dataset, deleting the others; while Dimension-
ality Reduction aims to find a smaller set of new variables, each being a combination of
the input features, exploiting the redundancy of input data. [26]. These methods help in
understanding data, reducing computation requirement, reducing the effect of curse of di-
mensionality, namely the difficulty of dealing with high-dimensional data, and improving
the predictor performance [27]. These potentialities of variable selection techniques make
them suitable for our problem, as we want to obtain a robust and understandable model
for classification starting with a large number of input covariates and a small sample size.
Together with these, we have also tried to examine Regularization techniques. Regulariza-
tion involves fitting a model considering all predictors in which the estimated coefficients
are shrunken towards zero relative to the least squares estimates. This shrinkage has the
effect of reducing variance of the model[28]. Therefore, using Regularization allows us
to increase the generalisation capacity of the model, making the performance in training
more similar to that in test, mitigating overfitting.
Among all these possibilities, the techniques we have used within this work to decrease
the number of covariates where radiomic is included are:

• Forward Selection [29]: to perform Forward Selection within this thesis, we use
the SFS function from mlxtend Python Package. The best model is selected among
models from 3 to 20 covariates using Stratified K-fold Cross-Validation with k=10.

• Backward Selection [29]: to perform Backward Selection within this thesis, we
use the SFS function from mlxtend Python Package. The best model is selected
among models from 3 to 20 covariates using Stratified K-fold Cross-Validation with
k=10.

• Stepwise Selection [29]: to perform Stepwise Selection within this thesis, we use
the SFS function from mlxtend Python Package. The best model is selected among
models from 3 to 20 covariates using Stratified K-fold Cross-Validation with k=10.
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• Ridge Regression [28]

• Lasso Regression [28, 30]

• Principal Component Regression [31, 32]: Principal Components are found
separately for tumour (core) and peritumoral zone (margin) by means of the sklearn
Python Package [33]. The number of components necessary to explain 90% of the
variability in the data for both core and margin was retained.

2.1.2. Logistic Regression

To perform two classes classification we decided to use Logistic Regression as a modelling
technique, because the ratio between sample size and number of features does not al-
low for stability of the results employing other machine learning methods such as KNN,
CART or Random Forest. Moreover, Logistic Regression enables a higher and more
direct explainability of the covariate relevance, that is important to the clinical counter-
part. Logistic Regression is a particular case of Generalized Linear Model in which the
outcome variable Y is binary. Let Y ∼ Be(p(X)) be the binary response variable, where
p(X) = P(Y = 1|X) denotes the probability that Y belongs to the positive class and let
X = [X1, X2, . . . , Xp] be the independent variables. In Logistic Regression model, p(X)

is expressed through logistic function, so that:

p(X) =
eβ0+

∑p
j=1 βjXj

1 + eβ0+
∑p

j=1 βjXj
(2.1)

To find the values of the coefficients β0, β1, . . . , βp maximum likelihood estimation is em-
ployed. The formula of the likelihood is:

L(β0, β1, . . . , βp) =
∏

i:yi=1

p(xi)
∏

i:yi=0

(1− p(xi)) (2.2)

With coefficients found through maximum likelihood maximization, probabilities p̂(xi)

are predicted. Given the values of p̂(xi) and a threshold p̃, the sample xi is assigned to
the positive class if p̂(xi) ≥ p̃

Logistic Regression is used in Section 2.2.1 to find the best model to classify outcomes
considering samples independent and identically distributed. This step is necessary in
order to be able to consider the multilevel nature of the data in the model afterwards.
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2.1.3. Mixed Effects Models

With Logistic Regression, the multicentre aspect of the study has not been considered
and modelled in the analysis: patients were considered independent identically distributed.
Due to the fact that individuals are grouped by hospitals the assumption of independence
may not be respected, therefore the effect of the centre has to be accounted for appropri-
ately. Mixed Effects Models (MEMs) take this aspect into account by providing a flexible
and powerful tool for the analysis of grouped data [34]. MEMs incorporate both fixed
effects, which are parameters associated with an entire population and random effects
related to the grouping factor, that is the same of all observations of the same group
but differs from group to group. Since we are dealing with a classification, a Generalized
Linear Mixed Effects Models (GLMM) has to be considered. In general, a GLM is express
with the following form:

g(E(Y )) = β0 + β1X1 + · · ·+ βpXp (2.3)

where X1, . . . , Xp are the fixed covariates, Y is the outcome, g is the link function, βj with
j ∈ 1, . . . , p are the unknown parameters that we want to estimate. For classification Y
is a Bernoulli random variable, and its mean, which we call p, is the probability that the
outcome is one. The link function is the logarithm of the odds, so that the formula of
this particular case of GLMM for i− th sample belonging to the j − th group is:

log

(
pij

1− pij

)
= β0 + β1X1ij + · · ·+ βpXp − bj (2.4)

bj is the random effect and it is assumed that is normally distributed, namely bj ∼
N (0, σ2

b ). These terms are unobserved and treated as varying randomly among clusters
and their estimates provide a measure of the cluster effect.
To recap, MEMs are able to capture centre-to-centre variations, since patients in the same
group share the same effect. Therefore, with this modelling technique, the multicentre
aspect of this study will be properly modelled in Section 2.2.2.

2.2. Results of Classification

Separately for each outcome, we apply Logistic Regression to clinical and radiomics co-
variates belonging to core and margin of the Portal phase, applying various methods of
variable selection as described in Section 2.1.1. To analyse the importance of the radiomic
features in classification, three scenarios of grouped covariates are considered, following a
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clinical rationale:

• Clinical

• Clinical + Portal(Core)

• Clinical + Portal(Core+Margin)

Numerical features are standardized before the analysis.
Logistic Regression is used in Section 2.2.1 to identify the best model for each of the
above cases, not taking into account multicentre aspect of the data. Then, with covariates
identified in each of the best models centre effect is analysed fitting Mixed Effects Models
in Sections 2.2.2.

The metrics examined for choosing the best model and make considerations about the
importance of radiomics are the following, which notation is defined in Figure 2.1:

Figure 2.1: Schematisation of the confusion matrix, defining the terms with which per-
formance metrics are expressed

• Accuracy = TP+TN
TP+TN+FP+FN

It is the number of correctly predicted data points out
of all the data points.

• Specificity = TN
TN+FP

It is the True Negative Rate that estimates the probability
to correctly identify the elements of the negative class.

• Sensitivity = TP
TP+FN

It is the True Positive Rate that estimates the probability to
correctly identify the elements of the positive class.

• Precision = TP
TP+FP

It is the percentage of items classified as positive that are
actually positive.

• Precision-Recall AUC : It is the Area under Precision-Recall curve that plots preci-
sion against recall.

• ROC AUC : It is the Area under the ROC curve that plots Sensitivity against
Specificity.
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To identify the covariates retained by the various variable selection techniques, the mod-
els have been trained on the entire dataset and the performances tested on the whole
dataset are reported. However, the estimates of the performances on the entire dataset
are overestimated, because samples that have been used for training are also tested. In
order to have a more realistic estimation of the performances, two different techniques of
cross-validation are used to test the Logistic Regression model with the best identified
features:

• Method 1 of Cross-Validation: usually Stratified K-fold Cross-Validation with
k=50. Results are reported in terms of mean and standard deviation.

• Method 2 of Cross-Validation: the data are split into a training set (80%) and
a test set (20%) stratifying the outcome. The validation procedure was repeated
100 times over 100 different samples. The performances for each metric produced
on each individual sample was collected in a dataset of 100 sample for later use in
Section 2.2. Results are reported in terms of mean and standard deviation.

The best models are selected looking at performances in cross-validation.

2.2.1. Logistic Regression for identifying the best model

In this Section results of Logistic Regression models are reported. For each different
grouping of covariates considered, Logistic Regression is used to classify first MVI and
then Grading. For every model, jointly with performances, forest plots of the odds ratios
are provided. To perform Logistic Regression sklearn [33] Python Package is used. For
sake of simplicity, only the best models are reported in this Chapter, while performances
of other attempts are summarized in the Appendix C.

Logistic Model for MVI with Clinical Features only

In the case of clinical features only, no variable selection technique was applied as the
number of covariates is sufficiently small. Results are displayed in the forest plot reported
in Figure 2.2.
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Figure 2.2: Odds ratios with 95% CI obtained applying Logistic Regression for MVI with
Clinical features only

MAJOR HEPATECTOMY is strongly significant in the model and from its odds ratio
can be deduced that the probability of having MVI increases if a patient has undergone
Major Hepatectomy.

Performances are summarized in Figure 2.3 and Table 2.1.

Figure 2.3: Precision-Recall and ROC Curves for MVI LR for Clinical covariates only

(a) (b)

Performance are not particularly impressive, but not bad either.
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Table 2.1: Performances of MVI LR with Clinical features only

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.67 0.659 0.224 0.652 0.062
SPECIFICITY 0.58 0.557 0.366 0.551 0.104
SENSITIVITY 0.74 0.740 0.285 0.727 0.086
PRECISION 0.70 0.709 0.235 0.686 0.056
PR AUC 0.80 0.848 0.139 0.762 0.058
ROC AUC 0.73 0.715 0.256 0.686 0.068

Logistic Model for MVI with Clinical + Portal(Core) Features

The best model is the one obtained applying Backward Selection. Results are displayed
in the forest plot reported in Figure 2.4.

Figure 2.4: Odds ratios with 95% CI obtained applying Logistic Regression for MVI with
Clinical+Portal(Core) features

The model selects basic, first order and second order portal core radiomic covariates (for
the differentiation we refer the reader to Appendix A) and it is inferred that patients that
have undergone MAJOR HEPATECTOMY have an increased risk of developing MVI.
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Performances are reported in Table 2.2 and Figure 2.5.

Table 2.2: Performances of MVI LR with Clinical+Portal(Core) features with Backward
Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.73 0.724 0.200 0.706 0.062
SPECIFICITY 0.64 0.630 0.355 0.609 0.110
SENSITIVITY 0.80 0.800 0.238 0.779 0.076
PRECISION 0.74 0.773 0.203 0.730 0.060
PR AUC 0.81 0.862 0.141 0.788 0.055
ROC AUC 0.77 0.760 0.235 0.748 0.062

Figure 2.5: Precision-Recall and ROC Curves for MVI LR for Clinical+Portal(Core)
covariates with Backward Selection

(a) (b)

Values of all performance metrics increase both in training and cross-validation with re-
spect to the previous case, in which only clinical features are included in the model. The
fact that all values of performance metrics increase by including part of the radiomic
covariates suggests the added value that radiomics can bring to the predictive ability of
the model.

Logistic Model for MVI with Clinical + Portal(Core+Margin) Features

The best model is the one obtained applying Backward Selection. Results are displayed
in the forest plot reported in Figure 2.6.
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Figure 2.6: Odds ratios with 95% CI obtained applying Logistic Regression for MVI with
Clinical+Portal(Core+Margin) features

The only clinical covariate that is significant is MAJOR HEPATECTOMY and all ra-
diomic features that are selected belong to the margin.

Performances are reported in Table 2.3 and Figure 2.7.

(a) (b)

Figure 2.7: Precision-Recall and ROC Curves for MVI LR for Clini-
cal+Portal(Core+Margin) covariates with Backward Selection
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Table 2.3: Performances of MVI LR with Clinical+Portal(Core+Margin) features with
Backward Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.76 0.727 0.187 0.730 0.060
SPECIFICITY 0.69 0.647 0.347 0.646 0.102
SENSITIVITY 0.81 0.790 0.221 0.793 0.078
PRECISION 0.77 0.783 0.199 0.752 0.057
PR AUC 0.83 0.869 0.132 0.820 0.050
ROC AUC 0.80 0.777 0.206 0.777 0.062

With respect to the previous case, in which only radiomics of the core is considered,
values of all performance metrics increase. Moreover, the model largely selects variables
belonging to the margin. These facts make it clear that it is crucial to include in the
model not only the radiomics of the tumour, but also those of the margin area, in order
to have better predictions of MVI value.

Logistic Model for Grading with only Clinical Features

In the case of clinical features only, no variable selection technique was applied as the
number of covariates is sufficiently small. Results are displayed in the forest plot reported
in Figure 2.8.

Figure 2.8: Odds ratios with 95% CI obtained applying Logistic Regression for Grading
with Clinical features only
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None of the features has a coefficient significantly different from zero.

Performances are summarized in Table 2.4 and Figure 2.9.

Table 2.4: Performances of Grading LR with Clinical features only

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.68 0.650 0.118 0.658 0.037
SPECIFICITY 0.96 0.948 0.112 0.938 0.051
SENSITIVITY 0.11 0.070 0.224 0.081 0.073
PRECISION 0.60 0.090 0.277 0.361 0.318
PR AUC 0.50 0.598 0.250 0.413 0.079
ROC AUC 0.65 0.570 0.295 0.539 0.078

Figure 2.9: Precision-Recall and ROC Curves for Grading LR for Clinical covariates only

(a) (b)

Performance are not satisfactory in particular providing a very high specificity and a very
low sensitivity, so that the model has difficulty in recognising positive samples.

Logistic Model for Grading with Clinical + Portal(Core) Features

The best model is the one obtained applying Backward Selection. Results are displayed
in the forest plot reported in Figure 2.10.
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Figure 2.10: Odds ratios with 95% CI obtained applying Logistic Regression for Grading
with Clinical+Portal(Core) features

Only PC_GLRLM_SRHGE covariate is significant and it is a radiomic feature of second
order.

Performances are reported in Table 2.6 and Figure 2.13

Figure 2.11: Precision-Recall and ROC Curves for Grading LR for Clinical+Portal(Core)
covariates with BS

(a) (b)
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Table 2.5: Performances of Grading LR with Clinical+Portal(Core) features with BS

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.714 0.200 0.693 0.055
SPECIFICITY 0.96 0.925 0.186 0.905 0.061
SENSITIVITY 0.32 0.320 0.397 0.254 0.108
PRECISION 0.79 0.403 0.476 0.585 0.213
PR AUC 0.60 0.694 0.279 0.489 0.099
ROC AUC 0.67 0.645 0.339 0.583 0.089

Values of all performance metrics increases in training with respect to the previous case, in
which only clinical features are included in the model. In cross-validation the only index
that does not increase is specificity. However, sensitivity increases by 0.25 in method 1
and 0.17 in method 2. The fact that the predictive ability of the model increases includ-
ing part of the radiomic covariates in the model suggests the added value of radiomics in
improving prediction of Grading.

Logistic Model for Grading with Clinical + Portal(Core+Margin) Features

In this case the best model is the one obtained applying Backward Selection. Results
are displayed in the forest plot reported in Figure 2.12.

Figure 2.12: Odds ratios with 95% CI obtained applying Logistic Regression for Grading
with Clinical+Portal(Core+Margin) features
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None of the clinical covariates is significant at 5% level. With regard to radiomics, features
belonging the margin are significant.

Performances are reported in the Table 2.6 and Figure 2.13

Table 2.6: Performances of Grading LR with Clinical+Portal(Core+Margin) features
with Backward Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.73 0.716 0.173 0.716 0.037
SPECIFICITY 0.94 0.925 0.150 0.917 0.044
SENSITIVITY 0.33 0.310 0.386 0.301 0.096
PRECISION 0.73 0.387 0.461 0.650 0.140
PR AUC 0.57 0.685 0.261 0.527 0.088
ROC AUC 0.71 0.663 0.294 0.654 0.074

Figure 2.13: Precision-Recall and ROC Curves for Grading LR for Clini-
cal+Portal(Core+Margin) covariates with Backward Selection

(a) (b)

In this case, in which the margin radiomic covariates are considered, values of all per-
formance metrics increases only in cross-validation2. This, together with the fact that
margin features included are significant, suggests that, also in the case of grading in-
cluding radiomic for the peritumoral area is important in order to have more accurate
predictions of the model in cross validation.
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2.2.2. Mixed Effects Models for accounting multicentre nature

of the data

In this Section results of Mixed Effects Models are reported. For all best models identified
with Logistic Regression, Mixed Effects Models for first MVI and then Grading are fitted
with the covariates selected. With MEMs where the grouped data structure data can be
addressed. To understand how strong the centre effect is present in the data the value of
the Variance Partition Coefficient [35] is examined. It indicates the amount of variability
explained by the grouping factor (the centre here). To fix MEMs the function glmer of
lme4 [36] R package is used.

Before examining the results for MVI, to have a qualitative idea on the possible presence of
a centre effect, proportions of the event, grouped by the different hospitals, are analysed.
From Figure 2.14 it can be seen that distribution of MVI is different among different
centres, suggesting that the random effect describing membership of different hospitals is
present.

(c) (d)

Figure 2.14: Frequency and Percentages of positive and negative cases of MVI in IHC
dataset grouped by variable centre

Mixed Effects Model for MVI with Clinical Features only

These are the results of the MVI MEM with features identified in the best model of Lo-
gistic Regression with clinical variables only. The results of the fixed effect are reported
in the forest plot in Figure 2.15.
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Figure 2.15: Odds ratios with 95% CI obtained applying MEMs for MVI with Clinical
features only

The only variables that are significant are MAJOR HEPATECTOMY and CA 19-9. The
values of the odds ratio indicate that people that have undergone major hepatectomy and
with larger values of Ca19-9 have higher probability to present MVI.

The random effect estimates are illustrated in Figure 2.16.

Figure 2.16: Random Effect in MVI MEM with Clinical Feature only
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The VPC is 21.24 %. The value is very high, meaning that the centre effect is strongly
present.

Performances are summarized in Table 2.7 and Figure 2.17.

Table 2.7: Performances of MVI MEM with Clinical features only

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.77 0.661 0.249 0.701 0.061
SPECIFICITY 0.747 0.645 0.326 0.662 0.082
SENSITIVITY 0.786 0.713 0.266 0.737 0.058
PRECISION 0.82 0.71 0.285 0.748 0.092
PR AUC 0.825 0.818 0.203 0.793 0.063
ROC AUC 0.836 0.762 0.233 0.762 0.063

(a) (b)

Figure 2.17: Precision-Recall and ROC Curves for MVI MEM for Clinical covariates only

Values of all performance metrics in training and cross-validation 2 improve with respect
to the case of Logistic Regression in which the grouping factor is not considered.

Mixed Effects Model for MVI with Clinical+Portal(Core) Features

These are the results of the MVI MEM with features identified in the best model of
Logistic Regression with Clinical+Portal(Core) variables. The results of the fixed effect
are reported in Figure 2.18.
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Figure 2.18: Odds ratios with 95% CI obtained applying MEMs for MVI with Clini-
cal+Portal(Core) features

The only variables that are significant in the model are MAJOR HEPACTECTOMY,
which is a clinical covariate and PC_GLRLM_SRHGE, which is a radiomic covariate.
Odds ratio of MAJOR HEPATECTOMY indicates a higher risk of present MVI for pa-
tients who have undergone major hepatectomy.

The random effect estimas are illustrated in Figure 2.19

Figure 2.19: Random Effect in MVI MEM with Clinical+Portal(Core) Feature



42 2| Classification of Pathology Data

The VPC is 24.4%. The value is very high, indicating that the effect of the centre is
strongly present. In Figure 2.19, it can be seen the effects of the different hospitals: for
Torino, Verona there is the statistical evidence of an increasing risk of MVI, given the
patients conditions.

Performances are summarized in Table 2.8 and Figure 2.20.

Table 2.8: Performances of MVI MEM with Clinical+Portal(Core) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.75 0.651 0.287 0.718 0.056
SPECIFICITY 0.712 0.668 0.293 0.682 0.081
SENSITIVITY 0.779 0.713 0.307 0.75 0.055
PRECISION 0.784 0.677 0.315 0.765 0.077
PR AUC 0.858 0.84 0.203 0.815 0.057
ROC AUC 0.836 0.788 0.225 0.782 0.057

(a) (b)

Figure 2.20: Precision-Recall and ROC Curves for MVI MEM for Clinical+Portal(Core)
covariates

Adding radiomic covariates of the tumor increases values of all performance metrics
in training and cross-validation 2, while in cross-validation 1 only values of specificity,
precision-recall AUC and ROC AUC increase. It indicates that considering radiomics
information regarding the tumor, increases the predictive ability of the model.
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Mixed Effects Model for MVI with Clinical+Portal(Core+Margin) Features

These are the results of the MVI MEM with the features identified in the best model
of Logistic Regression with Clinical+Portal(Core+Margin) variables. The results of the
fixed effect are reported in Figure 2.21.

Figure 2.21: Odds ratios with 95% CI obtained applying MEMs for MVI with Clini-
cal+Portal(Core+Margin) features

Clinical covariates that are significant in the model are CA 19-9 and MAJOR HEPATEC-
TOMY. Odds ratios values indicate that people that have undergone major hepatectomy
and with larger values of Ca19-9 have higher probability present MVI. Among radiomic
covariates only one is significant.

The random effect estimates are illustrated in Figure 2.22

Figure 2.22: Random Effect in MVI MEM with Clinical+Portal(Core+Margin) Feature
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The VPC is 19.91%. This testifies that the centre effect is strongly present in the data
and it can be seen that there is evidence to say that Torino and Milano hospitals have an
effect that is different from zero. Among the various models considering the different sets
of covariates, it can be seen that the estimated random effects are consistent with each
other.

Performances are summarized in Table 2.9 and Figure 2.23.

Table 2.9: Performances of MVI MEM with Clinical+Portal(Core+Margin) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.762 0.674 0.281 0.733 0.058
SPECIFICITY 0.724 0.674 0.261 0.697 0.081
SENSITIVITY 0.791 0.737 0.31 0.768 0.055
PRECISION 0.791 0.673 0.309 0.77 0.086
PR AUC 0.856 0.843 0.193 0.825 0.053
ROC AUC 0.837 0.795 0.219 0.795 0.059

(a) (b)

Figure 2.23: Precision-Recall and ROC Curves for MVI MEM for Clini-
cal+Portal(Core+Margin) covariates

Including margin covariates in the model, all values of performances in cross-validation
improve. The conclusion is that radiomics of the peritumoral area is as important as
radiomics of the tumour for predicting MVI.
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Before examining the results of Grading, to have qualitative feedback on the possible
presence of a centre effect, distribution of the event among different hospitals is analysed.
From the Figure 2.24 it can be seen that distribution of Grading is different among
different centres, suggesting that the random effect describing membership of different
hospitals is present.

(a) (b)

Figure 2.24: Frequency and Percentages of positive and negative cases of Grading in IHC
dataset grouped by variable centre

Mixed Effects Model for Grading with Clinical Features only

These are the results of the Grading MEM with the features identified in the best model of
Logistic Regression with clinical variables only. The results of the fixed effect are reported
in Figure 2.25.

Figure 2.25: Odds ratios with 95% CI obtained applying MEMs for Grading with Clinical
features only
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None of the covariates is significant in the model.

The random effect estimates are illustrated in Figure 2.26

Figure 2.26: Random Effect in Grading MEM with Clinical Feature only

The VPC is 25.97 %. A huge amount of variability of the data is explained by the group-
ing factor. Therefore, the effect of the centre is present.

Performances are summarized in Table 2.10 and Figure. 2.27

(a) (b)

Figure 2.27: Precision-Recall and ROC Curves for Grading MEM for Clinical covariates
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Table 2.10: Performances of Grading MEM with Clinical features only

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.754 0.525 0.362 0.698 0.055
SPECIFICITY 0.78 0.766 0.175 0.745 0.041
SENSITIVITY 0.677 0.423 0.437 0.42 0.433
PRECISION 0.512 0.42 0.568 0.411 0.121
PR AUC 0.614 0.659 0.333 0.514 0.097
ROC AUC 0.78 0.732 0.282 0.709 0.068

With respect to the Logistic Regression case, in which the grouping factor was not con-
sidered, the value of the specificity improves by almost 0.5 in training and by almost 0.4
in cross-validation. Therefore, including the grouping factor in the model increases its
ability to predict positive samples.

Mixed Effects Model for Grading with Clinical+Portal(Core) Features

These are the results of the Grading MEM with the features identified in the best model
of Logistic Regression with Clinical+Portal(Core) variables. The results of the fixed effect
are reported in Figure 2.28.

Figure 2.28: Odds ratios with 95% CI obtained applying MEMs for Grading with Clini-
cal+Portal(Core) features
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None of the clinical covariates are significant, whereas two radiomics are significant at
level 10%.

The random effect estimates are illustrated in Figure 2.29

Figure 2.29: Random Effect in Grading MEM with Clinical+Portal(Core) Feature

The VPC is 29.86%. The value is very high, so that the effect of the centre is strongly
present. In Figure 2.29 can be seen that for Torino and Milano there is statistical evidence
to say that they have random effect different from zero

Performances are summarized in Table 2.11 and Figure 2.30

(a) (b)

Figure 2.30: Precision-Recall and ROC Curves for Grading MEM for Clini-
cal+Portal(Core) covariates
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Table 2.11: Performances of Grading MEM with Clinical+Portal(Core) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.77 0.573 0.362 0.719 0.064
SPECIFICITY 0.788 0.785 0.185 0.765 0.046
SENSITIVITY 0.717 0.503 0.ing 0.598 0.123
PRECISION 0.524 0.5 0.429 0.462 0.125
PR AUC 0.708 0.696 0.345 0.577 0.112
ROC AUC 0.795 0.74 0.322 0.711 0.077

Adding radiomic covariates of the tumor to the model produces an increase in the values
of all performances. Therefore, radiomic covariates belonging to the core are important
in improving the predictive ability of the model.

Mixed Effects Model for Grading with Clinical+Portal(Core+Margin) Fea-
tures

These are the results of the Grading MEM with the features identified in the best model
of Logistic Regression with Clinical+Portal(Core+Margin) variables. The results of the
fixed effect are reported in Figure 2.31.

Figure 2.31: Odds ratios with 95% CI obtained applying MEMs for Grading with Clini-
cal+Portal(Core+Margin) features
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One radiomic variable belonging to the margin is significant, but other variables lose sig-
nificance with respect to the Logistic Regression case because of the presence of the centre.

The random effect estimates are illustrated in Figure 2.32

Figure 2.32: Random Effect in Grading MEM with Clinical+Portal(Core+Margin) Fea-
ture

The VPC is 26.62%. This testifies that the centre effect is strongly present in the data
and it can be seen that there is evidence to say that Torino and Milano hospitals have an
effect that is different from zero. Among the various models considering the different sets
of covariates, it can be seen that the estimated random effects are consistent with each
other.

Performances are summarized in Table 2.12 and Figure 2.33.

Table 2.12: Performances of Grading MEM with Clinical+Portal(Core+Margin) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.775 0.554 0.402 0.748 0.057
SPECIFICITY 0.783 0.794 0.173 0.773 0.042
SENSITIVITY 0.745 0.51 0.454 0.679 0.143
PRECISION 0.5 0.48 0.44 0.456 0.121
PR AUC 0.685 0.709 0.327 0.622 0.105
ROC AUC 0.802 0.765 0.276 0.753 0.066
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(a) (b)

Figure 2.33: Precision-Recall and ROC Curves for Grading MEM for Clini-
cal+Portal(Core+Margin) covariates

As in the case where the grouping factor was not considered, values of all performance
metrics, except precision in cross-validation 2, including margin covariates, improve. This,
joint with the fact the only covariate significant in the model belongs to the margin,
testifies that radiomics of the peritumoral area is important for predicting more accurately
the value of Grading.

2.2.3. Summary for Classification

In order to have a more powerful way of demonstrating the added value of radiomics
and margin than simply looking at the increase in cross-validation performance, that
is nonetheless present, the performances on the test set of the various samples of the
cross-validation 2 are exploited. We have collected the performances on each single test
set sample, producing a new dataset with 100 rows that correspond to a sample and a
column for each performance matrix, 6 in total. This dataset is produced for every MEM
that is fitted and it is used to perform Permutation Tests on the mean. Permutation
tests [37] are nonparametric test procedures to test the null hypothesis that two different
groups come from the same distribution. This type of tool is very useful because it does
not require any assumption about sampling distribution. Permutation tests are used by
us to test, for each performance metric, whether there is statistical evidence to say that,
by including radiomics and margin, the average of a given metric is higher than in the
case where less information is considered.
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Formally, we will do the following one-sided tests for the means:

1. H0 : Clinical ≥ Clinical + Core vs H1 : Clinical < Clinical + Core

2. H0 : Clinical ≥ Clinical + Core + Margin vs H1 : Clinical < Clinical + Core +
Margin

3. H0 : Clinical + Core≥ Clinical + Core + Margin vs H1 : Clinical + Core <
Clinical + Core + Margin

With tests 1 and 2 we want to prove that there is evidence to say that adding radiomic
covariates to the model makes the mean of the performances greater, while with test 3
we want to understand if adding the margin the mean of the performances improves.
The test statistic used to perform the tests on population X1 and X2 is T = mean(X1)−
mean(X2) with null hypothesis H0 : mean(X1) > mean(X2) that we aim to reject. Re-
sult of the test is summarized with the p-value, and are carried out for MVI and Grading
for every performance metric.

The result for MVI are reported in Table 2.13

Table 2.13: P-values of Permutation Tests applied to values of performances obtained in
Cross-validation 2 method while classifying MVI with MEMs

Cliniche vs Core Cliniche vs Core + Margin Core vs Core + Margin
ACCURACY 0.0221 0.0001 0.0301

SPECIFICITY 0.0408 0.0009 0.0935
SENSITIVITY 0.0544 0.0001 0.011
PRECISION 0.0734 0.0473 0.361

PR AUC 0.0043 < 0.0001 0.1126
ROC AUC 0.0066 < 0.0001 0.0549

The result for Grading are reported in Table 2.14

The results of these tests further reinforce what has already been said. In conclusion, we
can say that radiomics bring added value to the predictive performances of the models
they are inserted. In particular, these data also highlight the additional information that
the part of radiomics associated with the area surrounding the tumour brings. It should
also be remembered that in the analysis of pathology data, both for MVI and Grading,
there is a strong centre effect. Therefore, the variable recording the hospital of origin
of the patients is crucial in explaining part of the variability of the data. It is very
important that this aspect is taken into account by clinicians: the centre effect in our case
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Table 2.14: P-values of Permutation Tests applied to values of performances obtained in
Cross-validation 2 method while classifying Grading with MEMs

Cliniche vs Core Cliniche vs Core + Margin Core vs Core + Margin
ACCURACY 0.0068 < 0.0001 0.0004

SPECIFICITY 0.0006 < 0.0001 0.1111
SENSITIVITY 0.0125 < 0.0001 < 0.0001
PRECISION 0.0005 < 0.0001 0.6422

PR AUC <0.0001 < 0.0001 0.0013
ROC AUC 0.4055 < 0.0001 < 0.0001

could be caused by the different case mix between hospitals, but it could also indicate
inhomogeneities between hospitals in the implemented protocols for CT scans and for the
analysis of histological samples.
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3| Survival Analysis

In this Chapter we focus on the study of time-to-event data involving patient survival.
The outcome analysed are:

• Overall Survival (OS): it is the time from either the date of diagnosis or the start
of treatment up to patient’s death or the end of the study [38].

• Relapse-Free Survival (RFS): it is the time from either the date of diagnosis or
the start of treatment up to patient’s recurrence or the end of the study without
any sign or symptoms of cancer [39].

In order to study this type of data Survival Analysis is used. Survival Analysis techniques
are used in order to identify the best model to describe the survival response in the case
of OS and RFS.

3.1. Methodologies for Survival Analysis

In this Section we describe the methodologies used to analyse the time-to-event data. In
Section 3.1.1 a short Introduction of Survival Analysis is given. Section 3.1.2 introduces
Log-Rank Test. In Section 3.1.3 we introduce Cox Proportional-Hazard model to describe
survival response of the patient with independence assumption. In Section 3.1.4 Shared
Frailty model for considering the multicentre nature of the data is illustrated.

3.1.1. Introduction to Survival Analysis

Survival Analysis [40] is a collection of statistical procedures for data analysis for which
the outcome variable of interest is time until an event occurs. It differs from other tech-
niques due to the presence of censoring.

Censoring

In this study, censored data are represented by patients that survived (for OS) or that
did not present tumour recurrence (for RFS) until the follow-up period. Censoring occurs
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because we do not know the survival time exactly, the only thing we are aware of is that
survival time is longer than censoring time. In this case the observations are indicated as
right-censored.
Formally, for each patient i let T ∗

i be the random variable denoting the true event time
and let Ci be the censored time. The survival time observed is:

Ti = min(T ∗
i , Ci) (3.1)

Another piece of information known to us is whether or not the observed data corresponds
to the censored time. For this quantity is defined the indicator random variable:

δi = I(T ∗
i ≥ Ci) (3.2)

Hence, the observation related to the time-to-event data for a patient i is the pair (Ti, δi)

Survival and Hazard Function

To model the survival time, denoted by the random variable T , two equivalent character-
ization are used: survival function and hazard function.

Definition 3.1.1. The survival function of T at time t, denoted by S(t), is the prob-
ability that an individual survives longer that t:

S(t) = P(T > t) = 1−P(T ≤ t) = 1− F (t) (3.3)

where F (t) is the cumulative density function of T .

The survival function S(t) is an estimate of the percentage of individuals in a cohort who
are still event free at time t. Therefore, the property of this function are:

• S(0) = 1: at the beginning of the study all individuals are alive

• S(t) is non-increasing

• S(t) may never reach zero if all the subjects do not experience the event by the end
of the study

The graph of S(t) is the survival curve. To estimate the survival function S(t), the
Kaplan-Meier estimator is used. It is a non-parametric statistic that is defined as the
probability of surviving in a given length of time while considering in small intervals. Un-
der proper assumptions, Kaplan-Meier estimator is computed through the maximization
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of the likelihood estimation of the hazard function.

Definition 3.1.2. Given j ∈ 1, . . . , J as the failure event index, 0 < t∗1 < · · · < t∗J < ∞
as the observed ordered times of deaths, nj as the number of individuals alive just before
t∗j , dj as the number of observed events at t∗j and pj as the conditional probability of
surviving time t∗j , the Kaplan-Meier estimator of the survival function S(t) is:

Ŝ(t) =
∏
j:t∗

pj =
∏
j:t∗

(
1− dj

nj

)
(3.4)

With the Greenwood’s formula for the estimated variance, which is:

V̂ ar

(
Ŝ(t)

)
=

[
Ŝ(t)

]2∑
j:t∗

dj
nj(nj − dj)

(3.5)

the 95% confidence interval for the Kaplain-Meier survival estimator is expressed as:

CI0.95
(
S(t)

)
=

[
Ŝ(t)± z0.975ŝe(t)

]
(3.6)

This procedure produces the Kaplan-Meier curve which is a step function with jumps at
the observed death times.

The other characterization used to model the survival time T is the hazard function.

Definition 3.1.3. The hazard function of T, denoted by h(t), is the instantaneous risk
of failure at time t, conditional on survival to that time:

h(t) = lim
∆t→0

P(t ≤ T < t+∆t|T ≥ t)

∆t
(3.7)

Hazard function can be expressed in terms of survival function S(t) and probability density
function f(t) of T as:

h(t) =
f(t)

S(t)
(3.8)

It is a measure of the proneness to failure as a function of the age of the individual [41].

Another measure that is important in Survival Analysis is the cumulative hazard function,
that can be interpreted as the cumulative force of mortality.



58 3| Survival Analysis

Definition 3.1.4. The cumulative hazard function of T at time t, denoted by H(t),
is:

H(t) =

∫ t

0

h(u)du = −ln[S(t)] (3.9)

3.1.2. Log-Rank Test

The Log-Rank test is the most commonly-used non-parametric statistical test for compar-
ing the survival distribution of two or more groups. With this test, we try to disprove the
null hypothesis that all survival curves of the various groups are equal. Formally:

H0 : S1(·) = · · · = SK(·) vs H1 : Survival curves are not identical

To perform the test, the test statistic must be found. Its calculation is based on a con-
tingency table of group by status at each observed survival time, as shown in Table 3.1
[42]. In this Table nkj is the number at risk in group k at observed survival time t∗j , dkj
is the number of observed death in group k, nj is the total number at risk and dj is the
total number of deaths.

Event/Group K . . . 1 0 Total

Die dKj . . . d1j d0j dj

Not Die nKj − dKj . . . n1j − d1j n0j − d0j nj − dj

At Risk nKj . . . n1j n0j nj

Table 3.1: Table Used for Log-Rank Test in K groups at Observed Survival time t∗j

With these quantities just introduced, we can define the number of expected events in
group k at time t∗j as:

ekj =
dj
nj

nkj (3.10)

We can now state the formula and the distribution of the approximated Log-Rank test
statistic:

χ2 =
K∑
k=1

(Ok − Ek)
2

Ek

∼ χ2
K−1 with OK =

J∑
j=1

dkj and EK =
J∑

j=1

ekj (3.11)
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H0 is rejected at statistical level α if χ2 > χ2
K−1,α.

In our analysis clinical covariates are many, particularly categorical ones. We use Log-
Rank Test in Section 3.2.1 to have a reduction in the number of categorical clinical
covariates, eliminating those for which there is no evidence to say that the survival curves
are different.

3.1.3. Cox Proportional Hazard Model

Since in our case we are provided with censored observation, we cannot apply a stan-
dard regression method; but survival methods are able to handle censored data which
are not considered in traditional models. The Cox Proportional Hazard (Cox-PH) [43]
is the mostly used mathematical model for doing regression with time-to-event data. It
also allows exploring the relationship between the survival of an individual and several
explanatory variables. In this setting, individuals are considered independent and identi-
cally distributed.
The Cox-PH model is written in terms of the hazard function. Let xi be the vector of
the predictor variables, let h0(t) be a non-negative function of time called baseline hazard
and let β be the vector of the coefficients that need to be estimated, the Hazard function
in Cox-PH model is assumed to have the following formula:

hi(t|xi) = h0(t)exp(x
T
i β) (3.12)

The model is semiparametric because of the presence of the unspecified function h0(t).
The assumption on which the Cox-PH model is based is that the ratio of the hazard
function of two patients with fixed covariates is constant over time. This quantity is
called Hazard Ratio:

HR =
hi(t|xi)

hk(t|xk)
= exp(xi − xk)

Tβ (3.13)

With Hazard Ratio we can assess the effect of a change in a predictor variable, since we
are able to quantify the change of the Hazard Ratio as one covariate increases by one
unit:

HRk =
h(t|x1, . . . , xk, . . . , xp)

h(t|x1, . . . , xk + 1, . . . , xp)
= eβk (3.14)

Depending on the value of the HRk, the interpretation of the effect of the predictor
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variable is different:

• HRk = 1 means that the k-th covariate has no effect

• HRk < 1 results into a reduction in the hazard, so that the k-th covariate is a good
prognostic factor

• HRk > 1 results into an increase in the hazard, so that the k-th covariate is a bad
prognostic factor

The Cox-PH model parameters β are derived by maximizing the likelihood function. In the
case of Cox-PH model we talk about partial likelihood, because it considers probabilities
only for those subjects who fail and does not explicitly consider probabilities for subjects
who are censored.
The Cox partial likelihood is express as the product of several likelihoods, one for each
failure time. Let J be the total number of deaths, let 0 < t∗1 < · · · < t∗J be the ordered
observed deaths times and let R(t∗j) be the risk set just before t∗j , we define:

Lj =
exp(xT

j β)∑
k∈R(t∗j )

exp(xT
k β)

(3.15)

as the conditional probability that the individual j-th dies at t∗j given that one individual
from the risk set on R(t∗j) dies at t∗j . The Cox partial likelihood L(β) is the product of
these latter conditional probabilities Lj:

L(β) =
J∏

j=1

Lj =
J∏

j=1

exp(xT
j β)∑

k∈R(t∗j )
exp(xT

k β)
(3.16)

The parameters are found through log-likelihood maximization, namely:

β̂ = argmax
β∈Rp

ln(L(β)) (3.17)

In the context of Cox-PH model, in which several covariates are present, it is interesting
to study the effect of the explanatory variable via adjusted survival curves. These
are curves obtained through the Cox model that adjust for the explanatory variables.
Adjusted survival function formulation is the following:

Si(t|xi) = [S0(t)]
exp(xT

i β) with S0(t) = exp

{
−
∫ t

0

h0(u)du

}
(3.18)

where S0(t) is the baseline survival curve.
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Its estimate is given by the formula:

Ŝi(t|xi) =
∏

j:t∗j<t

(
1− 1∑

k(t∗j )
exp(xT

k β)

)
(3.19)

Cox-PH models are used in Section 3.2.2 to find the model best that describes survival
response of the patients, considering them independent and identically distributed pa-
tients. This is a preliminary step, which is necessary in order to be able to consider the
multicentre nature of the data in the model afterwards.

3.1.4. Shared Frailty Model

With Cox-PH models we are not able to focus on the multicentre nature of our data.
Cox-PH models consider patients independent and identically distributed, but the fact
that the patients in the study came from different hospitals might not guarantee the as-
sumption of statistical independence. To overcome this aspect and to explore the centre
effect we introduce Shared Frailty Models.
The concept of frailty provides a convenient way of introducing unobserved heterogene-
ity and association [44]. Without this modelling technique the population is implicitly
assumed homogeneous, meaning that the individuals share the same risk of death. The
aim is therefore to investigate whether the centre effect is a determinant of heterogeneity.
Frailty model is a random effect model for time-to-event data, where the random ef-
fect (frailty) has a multiplicative effect on the baseline Hazard. Frailty represents an
unobservable random effect shared by subjects with similar (unmeasured) risks in the
analysis of mortality rates [45]. To model the frailty, a proportional hazard structure
that is conditional on the random effect is assumed: the hazard function depends on the
time-independent random variable Z. It enters the function in a multiplicative way so
that:

h(t|Z) = Zh0(t) (3.20)

Z is a nonnegative random mixture variable, that varies across groups. Frailty is a
measure of relative risk: the greater the frailty, the greater is the susceptibility to the
cause of death. The variability of Z determines the degree of the heterogeneity among
the groups [46]. Introducing the presence of predictors variable into the model, as in the
Cox-PH model, the formula is:

h(t|xi, Z) = Zh0(t)exp(x
T
i β) (3.21)
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In shared frailty model [47] individuals in the same group share the same risk, so that
the frailty is associated with the group. The value of the frailty term is common to all
individuals in the cluster and all failure times in a cluster are conditionally independent
given the frailties and event times from different clusters are considered to be independent.
Let n be the number of clusters and let j cluster has nj observation associated with the
same unobserved frailty Zj and let xji the vector that contains the information about the
i-th observation in the j-th cluster, the hazard function of the survival times in cluster j
conditional on the frailty Zj is:

h(t|xji, Zj) = Zjh0(t)exp(x
T
jiβ) (3.22)

the frailties Zj are assumed to be independent and identically distributed with density
function f(z). From equation 3.22 the joint conditional multivariate survival function for
the individuals in the j-th cluster can be derived. It holds that:

S(tj1, . . . , tjnj
|xj, Zj) = S(tj1|xj1, Zj) . . . S(tjnj

|xjnj
, Zj) = exp

(
− Zj

nj∑
i=1

H0(tji)e
xT
jiβ

)
(3.23)

where H0(t) =
∫ tji

0
h0(u)du. With this step we can derive the unconditional joint sur-

vival function. Averaging 3.23 with respect to Zj the marginal survival function can be
obtained:

S(tj1, . . . , tjnj
|xj) = E

[
S(tj1, . . . , tjnj

|xj, Zj)
]
= L

( nj∑
i=1

H0(tji)e
xT
jiβ

)
(3.24)

where L is the Laplace transformation of the frailty variable. Because of the assumption
of independence between cluster, we have that:

S(t11, . . . , tnnj
|x1, . . . ,xn) =

n∏
j=1

L
( nj∑

i=1

H0(tji)e
xT
jiβ

)
(3.25)

The univariate unconditional survival functions can be expressed with Laplace transfor-
mation:

S(tji|Xji) = E
[
S(tji|Xji, Zj)

]
= L

(
H0(tji)e

xT
jiβ

)
(3.26)

In this work we assume that the frailty follows a gamma distribution [47]. Despite the
fact that there are no biological reasons for preferring the gamma distribution over the
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others, it is nevertheless better for mathematical and computational aspects. It is usually
used because of its simplicity of the derivatives of the Laplace transform [48].
Assuming for the frailty a gamma distribution with mean 1 and variance σ2 the survival
function is:

S(tj1, . . . , tjnj
|xj) =

(
1 + σ2

nj∑
i=1

H0(tji)e
xT
jiβ

)− 1
σ2 (3.27)

Since frailties are unobserved, Expectation Maximization (EM) algorithm is used to esti-
mate the model. It is a combination of Expectation step (E-step), in which the expectation
of the full likelihood is found given the current estimates of the parameters, and Maxi-
mization step (M-step), in which the parameters are updated maximizing the expected
value. The full likelihood of which the expected value is calculated is:

Lfull =
n∏

j=1

nj∏
i=1

Z
δji
j ho(tji)

δjiexp(δjix
T
jiβ)exp

(
− Zj

nj∑
i=1

H0(tji)e
xT
jiβ

)
f(Zj) (3.28)

The full likelihood is the product of the conditional and the density of the frailty. The
information that we assume of the frailty is that it has distribution f(z) with the unknown
parameter θ.
Therefore, the steps of the EM algorithm are:

Algorithm 3.1 EM Algorithm for estimation of frailty model
1: Provide initial values of β, h0 and θ

2: In the E-step plug values of β,h0 and θ into the Lfull and calculate the conditional
expectation of Zj

3: In the M-step plug the expectation in the partial likelihood L(β) and update the
parameters β and h0, and plug into Lfull to update the estimate of θ

4: Repeat E-step and M-step until convergence

Summarizing, with heterogeneity some unexpected results can be explained and centre-
to-centre variations can be described by the frailty [44]. In particular, in Shared Frailty
models individuals in the same group share the same risk. Therefore, we use Shared Frailty
models in Sections 3.2.3 to take into account the grouping present in our multicentre study.

3.2. Results of Survival Analysis

In the case of this study, in the first part, Survival Analysis is applied only to radiomic
covariate belonging to Portal phase, jointly with clinical ones. Apart from the primary
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objective of finding the best model capable of describing the survival response and iden-
tifying important features, in these analyses we want to understand the radiomics role,
and thus the importance of tumor (Core) and peritumoral area (Margin) in predicting
outcome. In addition, in order to understand whether radiomics can provide adequate
non-invasive preoperative assessment, we decided to consider preoperative and postoper-
ative clinical covariates separately, following a clinical rationale (for the differentiation we
refer the reader to Section 1.2.1 and Appendix A). To answer these questions, in order
to study the prognostic impact of the radiomic features on the responses, six scenarios of
grouped covariates are analysed:

• Clinical Preoperative

• Clinical Preoperative + Portal(Core)

• Clinical Preoperative + Portal(Core+Margin)

• Clinical Postoperative

• Clinical Postoperative + Portal(Core)

• Clinical Postoperative + Portal(Core+Margin)

As a first step, to reduce the number of input variables in the model, we use Log-Rank
Test and the results of the skimming can be seen in Section 3.2.1. Afterwards, for each
of the above cases, in the Section 3.2.2, not taking into account the multicentre nature of
the data (summarized in the variable centre), Cox Proportional Hazard models are fitted,
in order to find the best model. With the covariates given by the latter, a Shared Frailty
model is used in Section 3.2.3 to study the grouping effect.

3.2.1. Log-Rank Test for Variables Skimming

In this Section, since in our analysis clinical covariates are many, particularly categorical
ones, we proceed by reducing the number of the latter, using Log-Rank Test. It is carried
out for each of categorical covariates: with this test we can see for which one we have
evidence to state that the Kaplan-Meier curves are different, depending on the value
assumed by the variable. Features for which we cannot say that there is a difference in
the curves will be removed in subsequent Survival Analysis, in order to have a first skim
of the variables. The p-values of the tests are summarized in Table 3.2 and plots of the
curves for all categorical variables are provided in Figures 3.1 and 3.2. Only variables
with p-value less than 0.10 are considered in subsequent analysis, reducing the number of
clinical postoperative covariates by approximately 40% for both OS and RFS.
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Table 3.2: P-values of Log Rank Tests performed for OS and RFS for each clinical cate-
gorical feature in IHC dataset

Feature P-value (OS) P-value (RFS)
SEX 0.7 0.8
HCV 0.3 0.9
HBV 1 0.3

Ca19-9 ≥ 55 3e-10 1e-05
NEOADJUVANT CHEMOTHERAPY 1 0.08

FIRST RESECTION 0.7 0.04
MAJOR HEPATECTOMY 1e-03 0.4

BILIARY RESECTION 1e-04 0.8
LYMPHADENECTOMY 0.06 0.2

ASSOCIATED RESECTION 0.2 1e-03
SEVERE COMPLICATIONS 2e-07 0.03

CIRRHOSIS 0.6 1
PATTERN 1e-05 3e-06

SINGLE NODULE 1e-03 1e-06
T VIII ed 2e-04 1e-03

N 2e-06 2e-05
M 1e-08 5e-06

GRADING(1-2 vs 3) 0.02 0.3
R 8e-05 1e-03

MICROSCOPIC VASCULAR INVASION 1e-03 4e-03
PERINEURAL INFILTRATION 2e-04 7e-03

SATELLITE NODULES 3e-06 1e-04
ADJUVANT CHEMOTHERAPY 0.2 0.04

Figure 3.1: OS Kaplain-Meier Curves Estimates with 95% CI for clinical categorical
feature in IHC dataset

(a) SEX (b) HCV (c) HBV
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(d) Ca19-9≥55 (e) NEOADJUVANT
CHEMOTHERAPY

(f) FIRST RESECTION

(g) MAJOR
HEPATECTOMY

(h) BILIARY RESECTION (i) SEVERE
COMPLICATIONS

(j) CIRRHOSIS (k) PATTERN (l) SINGLE NODULE

(m) T VIII ed (n) N (o) M

(p) GRADING (1-2 vs 3) (q) R (r) MICROSCOPIC
VASCULAR INVASION



3| Survival Analysis 67

(s) PERINEURAL
INFILTRATION

(t) SATELLITE
NODULES

(u) ADJUVANT
CHEMOTHERAPY

Figure 3.2: RFS Kaplain-Meier Curves Estimates with 95% CI for clinical categorical
feature in IHC dataset

(a) SEX (b) HCV (c) HBV

(d) Ca19-9≥55
(e) NEOADJUVANT

CHEMOTHERAPY (f) FIRST RESECTION

(g) MAJOR
HEPATECTOMY (h) BILIARY RESECTION

(i) SEVERE
COMPLICATIONS
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(j) CIRRHOSIS (k) PATTERN (l) SINGLE NODULE

(m) T VIII ed (n) N (o) M

(p) GRADING (1-2 vs 3) (q) R (r) MICROSCOPIC
VASCULAR INVASION

(s) PERINEURAL
INFILTRATION

(t) SATELLITE
NODULES

(u) ADJUVANT
CHEMOTHERAPY

3.2.2. Cox-PH Models for identifying the best models

In this Section, results of Cox-PH models are reported. For each different grouping of
covariates considered, Cox-PH models are used to estimate survival curves first for OS
and then for RFS, combined with the Stepwise Algorithm as a feature selection technique.
For each model, statistics about coefficients are provided, jointly with Hazard Ratio and
Estimate of the Baseline Survival Curve.
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The Concordance index (C-Index) [49] is used as evaluation metric, since it validates the
predictive ability of a survival model. The model selected is the one with the highest
C-index.
For sake of simplicity, only the best models are reported in this Chapter, while other
attempts are summarized in the Appendix D.

Overall Survival Cox-PH Best Model

The best model for representing OS response is the one in which all clinical and por-
tal covariates (tumor and peritumor area) enters as input, namely Postoperative +
Portal (Core + Margin) case. The model selects clinical, core and margin covariates
in different percentages:

• CLINICAL: 9 features selected among all clinical covariates (53%)

• PORTAL CORE: 1 features selected in core (4%)

• PORTAL MARGIN: 7 features selected in margin (23%)

The coefficients of the model are summarized in Table 3.3:

coef exp(coef) se(coef) z Pr(>|z|)
AGE 5.885e-02 1.061e+00 9.928e-03 5.928 3.06e-09

CA 19-9 2.132e-05 1.000e+00 1.225e-05 1.741 0.081759
MAJOR HEPATECTOMY=1 3.684e-01 1.445e+00 2.296e-01 1.604 0.108668

N=1 1.346e+00 3.841e+00 2.848e-01 4.725 2.30e-06
N=x 4.400e-01 1.553e+00 2.493e-01 1.765 0.077506
R=1 4.987e-01 1.647e+00 2.235e-01 2.231 0.025659

SEVERE COMPLICATIONS=1 9.122e-01 2.490e+00 2.290e-01 3.984 6.79e-05
PATTERN=1 5.398e-02 1.055e+00 3.732e-01 0.145 0.885000
PATTERN=2 1.232e+00 3.427e+00 3.510e-01 3.509 0.000450

SATELLITE NODULES=1 8.276e-01 2.288e+00 3.511e-01 2.357 0.018420
BILIARY RESECTION=1 6.725e-01 1.959e+00 3.110e-01 2.162 0.030597

CORE GLRLM SRHGE -4.669e-01 6.269e-01 1.385e-01 -3.370 0.000751
MAR CONV HUKurtosis 2.387e-01 1.270e+00 7.853e-02 3.040 0.002369
MAR SHAPE Compacity 4.794e-01 1.615e+00 1.111e-01 4.317 1.58e-05

MAR GLRLM SRHGE 4.385e-01 1.550e+00 1.526e-01 2.874 0.004055
MAR GLRLM GLNU 4.134e-01 1.512e+00 9.199e-02 4.494 6.98e-06

MAR GLZLM ZP -5.138e-01 5.982e-01 1.410e-01 -3.643 0.000269
MAR GLZLM LZLGE -6.370e-01 5.289e-01 2.172e-01 -2.933 0.003353
MAR GLRLM LGRE 4.613e-01 1.586e+00 1.892e-01 2.438 0.014776

Table 3.3: Coefficient Summary of Cox-PH model for OS with Postopera-
tive+Portal(Core+Margin) covariates
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The Hazard ratios with corresponding 95% CI and Estimated Baseline Survival Curve are
reported in Figure 3.3:

(a) Hazard Ratio

(b) Estimated Baseline Survival Curves with 95% CI

Figure 3.3: Hazard ratios with corresponding 95% CI and Estimated Baseline Survival
Curve for Cox-PH model with OS Postoperative+Portal(Core+Margin) covariates.



3| Survival Analysis 71

The C-index of the model is 0.797. The value is sufficiently high: the model provides
good predictive performances.
From Table 3.3 it can be seen that there is statistical evidence to say that almost all co-
efficients are significant. From Hazard Ratio in Figure 3.3b, regarding clinical variables,
it can be deduced that the presence of metastases (described by variable M), nodules
(Pattern and satellite nodules) and residual of the tumour (R status), complications and
biliary resection increase the risk of death.

Relapse Survival Cox-PH Best Model

The best model for representing RFS response is the one in which all clinical and portal
covariates (tumor and peritumor area) enters as input, namely Postoperative + Por-
tal(Core + Margin) case. The coefficients of the model are summarized in Table 3.4:

coef exp(coef) se(coef) z Pr(>|z|)
CA 19-9 4.271e-05 1.000e+00 1.252e-05 3.411 0.000648

PATTERN=1 4.631e-01 1.589e+00 2.107e-01 2.198 0.027929
PATTERN=2 9.924e-01 2.698e+00 2.359e-01 4.207 2.58e-05

N=1 7.119e-01 2.038e+00 2.378e-01 2.994 0.002751
N=x 3.303e-01 1.391e+00 2.139e-01 1.544 0.122655
M=1 1.149e+00 3.155e+00 5.155e-01 2.229 0.025800
R=1 3.019e-01 1.352e+00 1.981e-01 1.524 0.127545

CORE SHAPE Sphericity 2.673e-01 1.306e+00 1.115e-01 2.398 0.016495
CORE GLRLM LGRE 2.875e-01 1.333e+00 9.104e-02 3.158 0.001586

CORE GLZLM LZE 3.253e-01 1.385e+00 1.016e-01 3.201 0.001367
MAR SHAPE Sphericity -1.910e-01 8.261e-01 1.316e-01 -1.452 0.146600

MAR GLZLM SZHGE 3.197e-01 1.377e+00 8.354e-02 3.827 0.000130
MAR GLZLM LZLGE -6.300e-01 5.326e-01 2.162e-01 -2.914 0.003573

MAR GLZLM ZP -3.211e-01 7.253e-01 1.129e-01 -2.845 0.004439
MAR GLRLM GLNU 2.856e-01 1.331e+00 9.326e-02 3.062 0.002197

MAR GLCM Correlation -2.162e-01 8.055e-01 9.720e-02 -2.225 0.026104

Table 3.4: Coefficient Summary of Cox-PH model for RFS with Postopera-
tive+Portal(Core+Margin) covariates

The model selects clinical, core and margin covariates in different percentages:

• CLINICAL: 5 features selected among all clinical covariates (29%)

• PORTAL CORE: 3 features selected in core (12%)
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• PORTAL MARGIN: 6 features selected in margin (20%)

The Hazard ratios with corresponding 95% CI and Estimated Baseline Survival Curve are
reported in Figure 3.4:

(a) Hazard Ratio

(b) Estimated Baseline Survival Curves with 95% CI

Figure 3.4: Hazard ratios with corresponding 95% CI and Estimated Baseline Survival
Curve for Cox-PH model with RFS Postoperative+Portal(Core+Margin) covariates.
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The C-index of the model is 0.733. The value is fulfilling: the model provides good
predictive performances.
From Table 3.4 it can be seen that there is statistical evidence to say that almost all
coefficients are significant. From Hazard Ratio in Figure 3.4b, regarding clinical variables,
it can be deduced that the presence of metastases (described by variable M and N), nodules
(Pattern) and residual of the tumour (R status) increase the risk of relapse.

3.2.3. Shared Frailty Models for considering the grouping factor

In this Section results of Shared Frailty models are reported first for OS, then for RFS.
For both best models identified with Cox-PH, a Shared Frailty Model for OS and RFS
is fitted with the covariates selected. With Shared Frailty the multicentre nature of the
data is considered. In addition, the Commenges-Andersen test is carried out to assess the
presence of heterogeneity [50]. For these analyses the R package frailtyEM is used [51].

Shared Frailty Model for OS

As a first step, in order to have a qualitative feedback on the possible presence of a centre
effect, a boxplot of the OS, grouped by the different hospitals, is analysed in Figure 3.5.

Figure 3.5: Boxplot of OS grouped by Centre

From Figure 3.5, it can be seen that the distributions of OS among the various centres
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do not differ significantly between them. To check for heterogeneity the Shared Frailty
model is used. In Tables 3.5, 3.6 and 3.7 most important information about the fitted
model are reported.

Table 3.5: Coefficient Summary of Shared Frailty model for OS with covariates identified
in the best Cox-PH model

coef exp(coef) se(coef) adj se z Pr(>|z|)
AGE 6.13e-02 1.06 1.00e-02 1.01e-02 6.08 < 0.001

CA 19-9 1.93e-05 1.00 1.25e-05 1.25e-05 1.54 0.12
HEPATECTOMY=1 3.89e-01 1.47 2.45e-01 2.45e-01 1.58 0.11

N=1 1.57e+00 4.81 2.91e-01 3.00e-01 5.24 < 0.001
N=x 3.33e-01 1.39 2.76e-01 2.76e-01 1.21 0.23

R status=1 5.57e-01 1.75 2.42e-01 2.46e-01 2.27 0.02
COMPLICANZE=1 8.96e-01 2.45 2.31e-01 2.31e-01 3.88 < 0.001

PATTERN=1 4.07e-01 1.50 3.91e-01 4.08e-01 0.998 0.32
PATTERN=2 1.58e+00 4.86 3.70e-01 3.89e-01 4.07 < 0.001

SATELLITE NODULES1 6.18e-01 1.85 3.66e-01 3.74e-01 1.65 0.10
BILIARY RESECTION=1 1.06e+00 2.90 3.42e-01 3.58e-01 2.98 < 0.001

CORE GLRLM SRHGE -3.80e-01 0.684 1.40e-01 1.41e-01 -2.70 0.01
MAR CONV HUKurtosis 2.27e-01 1.25 8.26e-02 8.31e-02 2.73 0.01
MAR SHAPE Compacity 1.94e-01 1.21 1.65e-01 1.93e-01 1.00 0.32

MAR GLRLM SRHGE 3.42e-01 1.41 1.61e-01 1.61e-01 2.12 0.03
MAR GLRLM GLNU 5.11e-01 1.67e 9.53e-02 9.91e-02 5.16 < 0.001

MAR GLZLM ZP -4.42e-01 0.643 1.38e-01 1.39e-01 -3.18 < 0.001
MAR GLZLM LZLGE -4.57e-01 0.633 2.15e-01 2.22e-01 -2.06 0.04
MAR GLRLM LGRE 3.07e-01 1.36 1.88e-01 1.93e-01 1.59 0.11

Table 3.6: Frailty Summary of Shared Frailty model for OS with covariates identified in
the best Cox-PH model

estimate lower 95% upper 95%
Var[Z] 0.350 0.000 1.620

Kendall’s tau 0.149 0.000 0.448
Median concordance 0.145 0.000 0.455

E[logZ] -0.185 -0.997 0.000
Var[logZ] 0.418 0.000 3.473

theta 2.861 0.617 Inf
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Table 3.7: Fit Summary of Shared Frailty model for OS with covariates identified in the
best Cox-PH model

Commenges-Andersen test p-val 0.654
no-frailty Log-likelihood -526.406

Log-likelihood -525.258
LRT p-val 0.0648

From Table 3.7, through the p-value of the Commongen-Andersen test of heterogeneity,
which value is 0.654, it can be deduced that there is no statistical evidence to say that
the effect of the centre is significant. Consistently with this, comparing the coefficient in
Table 3.3 and Table 3.5, it can be noticed that they are very similar.
Since there is no obvious difference between the COX-PH model and the Shared Frailty
Model, and the centre effect is not present, we decide to keep the most parsimonious
model, namely the Cox-PH model.

Shared Frailty Model for RFS

Also in this case, in order to have a qualitative view of the possible presence of hetero-
geneity, a boxplot of the RFS, grouped by the different centres, is observed.

Figure 3.6: Boxplot of RFS grouped by Center
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From Figure 3.6 it can be seen that the distributions of RFS among the various hospital
do not differ significantly between them. To check for the centre effect the Shared Frailty
model is employed. In the Tables In Tables 3.8, 3.9 and 3.10 below most important
information about the fitted model are summarized.

Table 3.8: Coefficient Summary of Shared Frailty model for RFS with covariates identified
in the best Cox-PH model

coef exp(coef) se(coef) adj se z Pr(>|z|)
CA 19-9 4.28e-05 1.00 1.25e-05 3.41 < 0.001

PATTERN=1 4.62e-01 1.59 2.11e-01 2.19 0.03
PATTERN=2 9.91e-01 2.69 2.36e-01 4.20 < 0.001

N=1 7.11e-01 2.04 2.38e-01 2.99 < 0.001
N=x 3.30e-01 1.39 2.14e-01 1.54 0.12
M=1 1.15e+00 3.14 5.15e-01 2.22 0.03

R status=1 3.01e-01 1.35 1.98e-01 1.52 0.13
PC SHAPE Sphericity 2.67e-01 1.31 1.11e-01 2.39 0.02

PC GLRLM LGRE 2.87e-01 1.33 9.10e-02 3.16 < 0.001
PC GLZLM LZE 3.25e-01 1.38 1.02e-01 3.20 < 0.001

PM SHAPE Sphericity -1.91e-01 0.826e 1.32e-01 -1.45 0.15
PM GLZLM SZHGE 3.19e-01 1.38e 8.35e-02 3.82 < 0.001
PM GLZLM LZLGE -6.28e-01 0.533 2.16e-01 -2.91 < 0.001

PM GLZLM ZP -3.21e-01 0.726 1.13e-01 -2.84 < 0.001
PM GLRLM GLNU 2.84e-01 1.33 9.33e-02 3.05 < 0.001

PM GLCMCorrelation -2.16e-01 0.806 9.73e-02 -2.22 0.03

Table 3.9: Frailty Summary of Shared Frailty model for RFS with covariates identified in
the best Cox-PH model

estimate lower 95% upper 95%
Var[Z] 0.0 0.000 0.233

Kendall’s tau 0.0 0.000 0.104
Median concordance 0.0 0.000 0.102

E[logZ] 0.0 -0.121 0.000
Var[logZ] 0.0 0.000 0.263

theta 25816.3 4.285 Inf
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Table 3.10: Fit Summary of Shared Frailty model for RFS with covariates identified in
the best Cox-PH model

Commenges-Andersen test p-val 0.865
no-frailty Log-likelihood -720.252

Log-likelihood -720.252
LRT p-val >0.5

From Table 3.10, through the p-value of the Commongen-Andersen test of heterogeneity,
which value is 0.865, it can be deduced that there is no statistical evidence to say that
the effect of the centre is significant. Coherently, comparing the coefficient in Table 3.8
and Table 3.4, it can be observed that they are basically the same.
Since there is no obvious difference between the COX-PH model and the Shared Frailty
Model, and the centre effect is not present, it is decided to keep the most parsimonious
model, the COX Proportional Hazard.

3.2.4. Summary of Survival Analysis

First of all, in Appendix D, it can be observed that the variables selected in the different
models for OS and RFS are consistent with each other. This reinforces the correctness of
the feature selection performed by the Stepwise Algorithm. In addition, the best model
is the one with CLINICAL POSTOPERATIVE+PORTAL(CORE+MARGIN) covariates
in both cases.
In order to have a unified view of the results, Table 3.11 was produced with the C-index
values for each model.

Table 3.11: Summary of Cox-PH models results with C-Index

OS RFS
CLINICAL PREOP 0.682 0.66
PREOP+CORE 0.713 0.668
PREOP+CORE+MARGIN 0.752 0.71
CLINICAL POSTOP 0.755 0.677
POSTOP+CORE 0.766 0.716
POSTOP + CORE +MARGIN 0.797 0.733

From Table 3.11 different conclusions can be drawn. As a first step, it can be seen that,
by adding radiomic covariates to clinical ones, the C-index value increases in both cases.
Therefore, radiomics gives added predictive value in Survival Analysis.
Secondly, it can be noticed that, by adding MARGIN covariates to clinical and CORE,
the C-index rises. Hence, the features belonging to MARGIN are important for predictive
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purposes, as they give added value compared to CORE variables.
Lastly, C-Indexes in PREOP+CORE+MARGIN and POSTOP+CORE cases are compa-
rable. This not only testifies to the additional value of the MARGIN, as already observed
in the previous case; but shows how preoperative information integrated with radiomics
can achieve similar performance to the postoperative case. Thus, an adequate non-invasive
preoperative assessment is possible taking into consideration both tumour and margin ra-
diomics information.
Therefore, radiomics not only of the tumour but also of the peritumoral area, is very
informative about the outcome and it can increase the prognostic impact. At the end, a
final model with a sufficiently high C-Index is obtained for both OS and RFS, in which
the covariates predicting the outcome are identified.
Subsequently, it is observed that the centre effect is not evident: the variability of out-
comes between centre is not high and the estimated one is not significant. This could be
because an outcome that is long-term is analysed and it is probably more related to the
characteristics of the disease than to the protocol of the multicentre study. Since the es-
timates between the models with and without frailty are similar, for reasons of simplicity
and parsimony the Cox-PH models are used to describe OS and RFS.
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Reduction

In Chapters 2 and 3 we have considered radiomic data belonging to core and margin of the
Portal phase only within the presented models. Doing this way had a twofold motivation:

1. Portal phase is the reference phase.

2. Our aim was to assess the presence of the added value of including the set of margin
information, using only one CT phase as a benchmark.

In this Chapter we consider, for both core and margin, all three radiomic phases of CT
scan, i.e. Arterial, Portal and Late, for both pathology data classification and survival
analysis. The aim is to assess whether each of the phases can enrich the prediction, under-
standing whether the phases carry out the same information or whether each is decisive
for modelling the outcomes.
In fact, Portal, Arterial and Late phases of the CT scan can be considered as a multiple
view representations of the tumor and its surrounding area, as explained in Section 1.2.3,
so that Multiview Learning techniques are natural candidate to properly account for these
kinds of data. Since considering all radiomics involves a very large number of features, in
this Chapter we consider Multiview Dimensionality Reduction techniques to decrease the
number of input covariates in the models, considering the multiview aspect of the data.
The two techniques that we analyse within this thesis are Multiview Canonical Correla-
tion Analysis (MCCA) and Kernel Multiview Canonical Correlation Analysis (KMCCA),
respectively described in Sections 4.1 and 4.2.

4.1. Multiview Canonical Correlation Analysis

Multiview Canonical Correlation Analysis (MCCA) is the extension of Canonical Corre-
lation Analysis (CCA), that allows the simultaneous consideration of more than two sets
of random variables [52]. MCCA is an unsupervised method that searches for a lower-
dimensional common subspace to represent multiview data [20], finding a set of directions
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(one per view) which maximize the average correlation, computed for each pair of views
[53].

Let X ∈ RP be a random vector, where X is composed of m subset of random variables
referred to a view, so that X = [X(1),X(2), . . . ,X(m)], and X(j)′ = [X

(j)
1 , X

(j)
2 , . . . , X

(j)
pj ]

indicates the j-th set of variable. Each set of variables has got pj covariates, with p1 ≤
· · · ≤ pm and P =

∑m
j=0 pj.

Given w = [w(1), . . . , w(m)] ∈ RP , we derive m variables Z1,Z2, . . . ,Zm, where Zj identified
as:

Zj :=

pj∑
i=1

X
(j)
i w

(j)
i = X(j)T · w(j) (4.1)

To the problem formulation, we need to define the correlation coefficient between Zi and
Zj. It can be expressed as:

ρ(Zi,Zj) =
w(i)TCov(X(i),X(j))w(j)√

w(i)TCov(X(i),X(i))w(i)
√

w(j)TCov(X(j),X(j))w(j)
(4.2)

The initial formulation of the MCCA problem can be stated as finding the set of vectors
w(i) which maximize the sum of Correlations (SUMCOR), namely:

m∑
i=1

m∑
j=i+1

ρ(Zi,Zj) (4.3)

If we expand the SUMCOR expression, we get the following maximization problem:

max
w∈RP

m∑
i=1

m∑
j=i+1

w(i)TCov(X(i),X(j))w(j)√
w(i)TCov(X(i),X(i))w(i)

√
w(j)TCov(X(j),X(j))w(j)

(4.4)

From this formulation of the problem, it can be seen that the solution is invariant to block
scaling, so that only the direction of the solutions matters. Therefore, if (w(1), . . . , w(m))

is a solution then (αiw
(1), . . . , αmw

(m)) is also a solution for αi > 0. For this reason,
the constraints w(i)TCov(X(i),X(i))w(i) = 1 is imposed to the problem. This yield to the
following equivalent constrained problem:

maximize
w∈RP

m∑
i=1

m∑
j=i+1

w(i)TCov(X(i),X(j))w(j)

subject to w(i)TCov(X(i),X(i))w(i) = 1 ∀i = 1, . . . ,m.

(4.5)

The optimal solution is not affected even if the objective is manipulated by multiplying
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it by 2 and adding a constant m.
Joint with the fact that the equalities w(i)TCov(X(i),Xj))w(j) = w(j)TCov(X(j),X(i))w(i)

and w(i)TCov(X(i),X(i))w(i) = 1 hold, we obtain:

maximize
w∈RP

m∑
i=1

m∑
j=1

w(i)TCov(X(i),X(j))w(j)

subject to w(i)TCov(X(i),X(i))w(i) = 1 ∀i = 1, . . . ,m.

(4.6)

In this way we get the final formulation of the problem in which the objective function is
transformed into a quadratic form, so that the problem can be solved [53].

We will use MCCA in Section 4.3 to perform Multiview Dimensionality Reduction on
both core and margin of all three radiomic phases, in order to be able to reduce the
dimensionality of the radiomics covariates considering the multiview aspect of the data.
To implement the method, the mvlearn Python Package [54] has been used.

4.2. Kernel Multiview Canonical Correlation Analy-

sis

Kernel Multiview Canonical Correlation Analysis (KMCCA) is the extension of MCCA
to use kernels. In fact, the traditional MCCA aims to find useful projections of covariates,
computing a weighted sum, but may not extract useful descriptor of the data because of
its linearity. KMCCA allows to first project the data onto a higher dimensional feature
space before performing MCCA in the new feature space:

Φ : x = (x1, . . . , xm) 7→ Φ(x) = (z1. . . . , zN), (m << N) (4.7)

Kernel function is defined as scalar product between the feature vectors of two data
samples:

k(x, x′) = Φ(x)TΦ(x′) (4.8)

Kernels can be interpreted as a similarity measure between x and x’ that computes inner
products in the higher dimensional feature space, with a method known as Kernel trick.
With Kernel trick it is not required to explicitly compute the feature mapping, because
it uses the similarities between each pair of samples.
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A commonly used kernel is the Gaussian Kernel that is defined as:

k(x, x′) = exp

(
− ∥x− x′∥2

2σ2

)
(4.9)

In Equation 4.6 we focused only on manipulating the covariance matrices, but to be able
to apply the Kernel Trick the expression of their estimation based on finite samples is
required.
Let X ∈ Rnxp represent a sample of n observation of X. The empirical covariance of X,
computed using regularization techniques, is:

Cov(X) = (1−K)
1

n− 1
XXT +K IP (4.10)

where K ∈ [0, 1]. The higher the value of K, the better is the numerical stability, but less
optimal the solutions, since the problem is different from the originally posed. Substituting
the expression of covariance in Equation 4.5, the problem becomes:

max
w∈RP

1

n− 1

m∑
i=1

m∑
j=i+1

w(i)TX(i)X(j)Tw(j)

subject to w(i)T

(
1−K
n− 1

X(i)X(i)T +K IP

)
w(i) = 1 ∀i = 1, . . . ,m.

(4.11)

Let y(i) ∈ Rn be a block of the dual variable y ∈ Rm·n, so that we can express each
component w(i) in terms of columns of X(i). We obtain:

w(i) = X(i)y(i) (4.12)

Letting K(i) = X(i)TX(i) ∈ Rnxn be the Gram matrix, we express the problem in terms of
the dual variables:

max
y∈Rm·n

1

n− 1

m∑
i=1

m∑
j=i+1

y(i)TK(i)K(j)Ty(j)

subject to y(i)T
(
1−K
n− 1

K(i)K(i)T +K K(i)

)
y(i) = 1 ∀i = 1, . . . ,m.

(4.13)

Typically, K(i) matrices are ill conditioned or even singular. This problem is addressed
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by introducing the following quantity:

K̃(i) :=

(√
1−K
n− 1

K(i) +
K
2

√
n− 1

1−K
In

)
(4.14)

that makes possible the approximation:

Cov(X(i))K =
1−K
n− 1

K(i)K(i)T +K K(i) ≈ K̃(i)K̃(i)T (4.15)

With this approximation, that is invertible and in a factorized form the optimization
problem becomes:

max
y∈Rm·n

1

n− 1

m∑
i=1

m∑
j=i+1

y(i)TK(i)K(j)Ty(j)

subject to y(i)T K̃(i)K̃(i)
T

y(i) = 1 ∀i = 1, . . . ,m.

(4.16)

Expressing the problem in terms of Gram matrices makes us able to use Kernel methods.
In this way we get the final formulation in which the objective function is transformed into
a quadratic form and solving this problem we obtain a one-dimensional representation for
each view. However, one component is not sufficient to capture all the information present
in the data, so that higher dimensional subspaces are needed. After computing the first
set of canonical vectors we proceed to computing the next set of components. The next
set should be almost as highly correlated as the first one, but essentially different from the
first one. To obtain the desired number of components we impose additional constraints
for every view.
Formally, letting Y = [y1, . . . , yk] ∈ Rm·n×k represent the k sets of canonical vectors where
for each view Y (ℓ)TK2

ℓ Y
(ℓ) = Ik ∀ℓ = 1, . . . ,m, the formulation of the problem for k sets

of canonical components is:

max
y∈Rm·n

1

n− 1

m∑
i=1

m∑
j=i+1

y(i)TK(i)K(j)Ty(j)

subject to y(i)T K̃(i)K̃(i)
T

y(i) = 1 ∀i = 1, . . . ,m.

Y (i)T K̃(i)K̃(i)
T

y(i) = 1 ∀i = 1, . . . ,m.

(4.17)

Solving the problem in 4.17, we are able to compute the desired number of canonical
components.

We will use KMCCA in Section 4.3 to perform Multiview Dimensionality Reduction on
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both core and margin of all three radiomic phases, trying to understand if using Kernels
we are able to find a more suitable mapping to extract information. To implement the
method, the mvlearn Python Package [54] has been used.

4.3. Results of Multiview Learning

In this Section we illustrate the results of analysing clinical and radiomic data concerning
all three phases of CT scan using Multiview techniques. In order to study the effect of
considering all radiomics information and multiview modelling on the prediction perfor-
mances, four settings of different covariates are considered:

• BASELINE - Only Portal Covariates: this case is the baseline adopted to see if it
is worth considering the three radiomic phases, instead of just the Portal one.

• ALL - All Radiomic covariates (Portal + Arterial + Late) simply concatenated: in
this case the Multiview aspect of the data is not considered, as the dimensionality
reduction is not optimized considering all the views jointly. This setting is adopted
in order to be able to understand the difference made by using a Multiview approach
to model the problem or a simpler one.

• MCCA: in this case the results of MCCA method applied on both core and margin
of all three radiomic phases are analysed. In performing MCCA, we consider core
and margin separately, because they are two different regions that provide different
insights. Hence, the process is repeated twice, once for the core and once for the
margin. In each of the two areas, there are three views related to the three phases
of CT scan. We reduce the dimensionality of each view considering 10 components
per view, taking into account all phases simultaneously. At the end, the results
of the reduction for core and margin are concatenated. In this way, for radiomics,
a dataset of 60 features, 10 for each of the 3 views for both core and margin, is
produced. The process is schematised in Figure 4.1.

• KMCCA: in this case the results of KMCCA applied on both core and margin of
all three radiomic phases are analysed. The procedure by which the dataset has
been reduced is the same as the one employed for MCCA. The difference in this
case is that a Gaussian Kernel used. The expression of the Kernel is:

k(x, x′) = exp(−γ∥x− x′∥)withγ =
1

n° of features
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Figure 4.1: Schematisation of MCCA process performed separately on both core and
margin of all the three radiomic phases

For each of these cases, always jointly considering clinical information, the results and
performances of both Classification and Survival Analysis are analysed. In Section 4.3.1,
results of Classification are reported. Classification is performed employing Logistic Re-
gression and Mixed Effects Models, jointly with Backward Selection as a feature selection
technique. In Section 4.3.2 results of Survival Analysis are illustrated. Survival Analysis
is carried out using Cox-PH model with Stepwise Algorithm of variable selection. Since
in Chapter 3 we have deduced that the grouping factor present in the data is not relevant
to the analysis of the survival response, Shared Frailty models have not been applied.
Considering all radiomics, the number of patients, due to missing values, drops to a total
of 190 individuals, so that all this following analysis are carried out with 190 samples.

4.3.1. Classification with Multiview Dimensionality Reduction

In this section the result for MVI and Grading outcomes are illustrated. For sake of
simplicity, only the MEMs results are reported, illustrating odds ratios with 95% CI and
performances.
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Mixed Effects Model for MVI with Only Portal covariates - BASELINE case

These are the results of the MEM for MVI, with the features identified in Logistic Re-
gression with Backward Selection on Portal phase covariates only. The results of the fixed
effect are reported in Figure 4.2.

Figure 4.2: Odds ratios with 95% CI obtained applying MEMs for MVI with Portal phase
features only

The only feature that is significant in the model is CA 19-9. Its odds ratio values indicates
that people with larger value of CA 19-9 have higher risk to present MVI.

Performances are summarized in Table 4.1.

Table 4.1: Performances of MVI MEM with Portal Features only

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.784 0.726 0.27 0.663 0.068
SPECIFICITY 0.785 0.647 0.341 0.652 0.11
SENSITIVITY 0.784 0.767 0.339 0.684 0.094
PRECISION 0.792 0.695 0.347 0.639 0.122
PR AUC 0.867 0.786 0.283 0.744 0.08
ROC AUC 0.863 0.726 0.315 0.729 0.071

These performances are considered as baseline to understand if including all radiomic
features could lead to an improvement in predictive ability of the model.
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Mixed Effects Model for MVI with all radiomics concatenated - ALL case

These are the results of the MEM for MVI, with the features identified in Logistic Regres-
sion with Backward Selection applied on all radiomics features concatenated. The results
of the fixed effect are reported in Figure 4.3.

Figure 4.3: Odds ratios with 95% CI obtained applying MEMs for MVI with all radiomic
features concatenated

Regarding Clinical features, CA 19-9 and MAJOR HEPATECTOMY are significant. It
can be deduced that patients with larger values of CA 19-9, that have undergone major
hepatectomy have higher risk to present MVI. Regarding Radiomics, the model selects
variable both of core and margin, that belong to every of the three different phases. This
suggests that it is important to consider all the three phases of CT scan, because they
contain some feature that are informative in predicting the presence of MVI.

Performances are summarized in Table 4.2. All values of performances increase both in
training and validation, with respect to the case in which only portal phase covariates
are included. Therefore, we can guess that including all radiomics, instead of only Portal
phase, improves the prognostic impact of the model, predicting the presence of MVI more
accurately.
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Table 4.2: Performances of MVI MEM with all radiomic features concatenated

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.805 0.762 0.242 0.738 0.056
SPECIFICITY 0.8 0.679 0.315 0.726 0.089
SENSITIVITY 0.811 0.806 0.317 0.75 0.091
PRECISION 0.802 0.741 0.322 0.727 0.096
PR AUC 0.889 0.816 0.292 0.805 0.077
ROC AUC 0.88 0.76 0.327 0.795 0.063

Mixed Effects Model for MVI with MCCA - MCCA case

These are the results of the MEM for MVI, with the features identified in Logistic Regres-
sion with Backward selection applied on the result of MCCA dimensionality reduction.
The results of the fixed effect are reported in Figure 4.4.

Figure 4.4: Odds ratios with 95% CI obtained applying MEMs for MVI on MCCA di-
mensionality reduction result

The variables selected by the model are components belonging to all views of core and
margin. This indicates that the information conveyed by radiomics is not the same for
each view, but all of them bring added value to the prediction.
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Performances are summarized in Table 4.3.

Table 4.3: Performances of MVI MEM applied on MCCA dimensionality reduction result

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.789 0.738 0.259 0.709 0.071
SPECIFICITY 0.77 0.668 0.335 0.696 0.106
SENSITIVITY 0.811 0.759 0.327 0.73 0.095
PRECISION 0.76 0.75 0.325 0.686 0.118
PR AUC 0.884 0.795 0.298 0.775 0.082
ROC AUC 0.882 0.756 0.32 0.765 0.072

All performance metrics value increases in validation, except sensitivity in cross-validation
1, with respect to the case in which only the portal covariates are included. From this
fact we can conclude that it is important to consider all radiomics information in the pre-
diction of MVI value, in order to increase the predictive ability of the model. As regards
comparison with the performance of radiomics concatenated, in this case, performances
in cross-validation 2 are worse for every index.

Mixed Effects Model for MVI with KMCCA - KMCCA case

These are the results of the MEM for MVI, with the features identified in Logistic Regres-
sion with Backward selection applied on the result of KMCCA dimensionality reduction.
The results of the fixed effect are reported in Figure 4.5.

Figure 4.5: Odds ratios with 95% CI obtained applying MEMs for MVI on KMCCA
dimensionality reduction result
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The variables selected by the model are components belonging to all views of core and
margin. This indicates that the information conveyed by radiomics is not the same for
each view.

Performances are summarized Table 4.4.

Table 4.4: Performances of MVI MEM applied on KMCCA dimensionality reduction
result

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.821 0.718 0.217 0.73 0.065
SPECIFICITY 0.8 0.672 0.322 0.722 0.096
SENSITIVITY 0.844 0.752 0.298 0.741 0.094
PRECISION 0.792 0.744 0.291 0.724 0.096
PR AUC 0.888 0.816 0.268 0.794 0.089
ROC AUC 0.881 0.786 0.271 0.78 0.067

All values of performances in cross-validation 2 increase with respect to the case in which
only portal phase features are considered. Moreover, they are comparable to the case
of all radiomics concatenated. This testifies the importance of considering all CT scan
phases in MVI prediction, since all of them contain useful information.

Mixed Effects Model for Grading with only Portal covariates - BASELINE case

These are the results of the MEM for Grading, with the features identified in Logistic
Regression with Backward Selection on Portal phase covariates only. The results of the
fixed effect are reported in Figure 4.6. The only coviariate that is significant in the model
is AGE. Its odd ratio indicates that older people have higher risk to present a IHC of
grading equal to 3.
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Figure 4.6: Odds ratios with 95% CI obtained applying MEMs for Grading with Portal
phase features only

Performances are summarized in Table 4.5.

Table 4.5: Performances of Grading MEM with Portal phase covariates only

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.789 0.667 0.224 0.722 0.062
SPECIFICITY 0.791 0.69 0.174 0.766 0.072
SENSITIVITY 0.781 0.611 0.467 0.561 0.175
PRECISION 0.431 0.463 0.393 0.384 0.136
PR AUC 0.684 0.619 0.369 0.502 0.147
ROC AUC 0.802 0.648 0.364 0.671 0.096

These performances are considered as baseline to understand if including all radiomic
features could lead to an improvement in predictive ability of the model.

Mixed Effects Model for Grading with all radiomics concatenated - ALL case

These are the results of the MEM for Grading, with the features identified in Logistic
Regression with Backward Selection applied on all radiomics features concatenated. The
results of the fixed effect are reported in Figure 4.7.
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Figure 4.7: Odds ratios with 95% CI obtained applying MEMs for Grading with all
radiomic features concatenated

The model selects variables both of core and margin, that belong to every of the three
different phases. This suggests that it is important to consider that all the three phases
of CT scan, because they contain some feature that are informative in predicting the
presence of MVI.

Performances are summarized in Table 4.6.

Table 4.6: Performances of Grading MEM with all Radiomics concatenated

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.816 0.747 0.196 0.716 0.07
SPECIFICITY 0.817 0.734 0.201 0.758 0.072
SENSITIVITY 0.811 0.722 0.383 0.568 0.205
PRECISION 0.517 0.653 0.39 0.355 0.144
PR AUC 0.754 0.703 0.363 0.537 0.143
ROC AUC 0.823 0.656 0.399 0.656 0.104
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Performances in cross-validation 2 are very similar to the one in which only portal phase
covariates are considered.

Mixed Effects Model for Grading with MCCA - MCCA case

These are the results of the MEM for Grading, with the features identified in Logis-
tic Regression with Backward selection applied on the result of MCCA dimensionality
reduction. The results of the fixed effect are reported in Figure 4.8.

Figure 4.8: Odds ratios with 95% CI obtained applying MEMs for Grading on MCCA
dimensionality reduction result

Regarding clinical covariates, the only one that is significant is SEX. The odd ratio associ-
ated to SEX indicates that males (coded as SEX=1) have higher risk to present Grading
equal to 3. Regarding radiomics, variables selected by the model are components be-
longing to all views of core and margin. This indicates that the information conveyed by
radiomics is not the same for each view, but all of them bring added value to the prediction.
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Performances are summarized in Table 4.7.

Table 4.7: Performances of Grading MEM on MCCA dimensionality reduction result

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.816 0.777 0.221 0.732 0.063
SPECIFICITY 0.817 0.74 0.217 0.774 0.067
SENSITIVITY 0.811 0.727 0.382 0.595 0.192
PRECISION 0.517 0.7 0.382 0.403 0.143
PR AUC 0.738 0.658 0.368 0.57 0.146
ROC AUC 0.816 0.679 0.362 0.692 0.093

All performance metrics values increase in training and cross-validation, with respect to
the case in which only the portal covariates are included. From this fact we can conclude
that it is important to consider all radiomics information in the prediction of Grading
value, in order to increase the predictive ability of the model. As regards comparison
with the performance of radiomics concatenated, in this case performances in training are
very similar, while in cross-validation 2 they increase. This indicates that the Multiview
Dimensionality Reduction is able to mitigate the overfitting.

Mixed Effects Model for Grading with KMCCA - KMCCA case

These are the results of the MEM for Grading, with the features identified in Logis-
tic Regression with Backward selection applied on the result of KMCCA dimensionality
reduction. The results of the fixed effect are reported in Figure 4.9.

Figure 4.9: Odds ratios with 95% CI obtained applying MEMs for Grading on KMCCA
dimensionality reduction result
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The variables selected by the model are components belonging to all views of core and
margin. This indicates that the information conveyed by radiomics is not the same for
each view.

Performances are summarized Table 4.8

Table 4.8: Performances of Grading MEM with KMCCA

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.863 0.775 0.24 0.769 0.058
SPECIFICITY 0.868 0.772 0.223 0.824 0.066
SENSITIVITY 0.848 0.694 0.411 0.629 0.147
PRECISION 0.672 0.717 0.411 0.579 0.136
PR AUC 0.86 0.778 0.333 0.627 0.147
ROC AUC 0.903 0.817 0.296 0.781 0.077

All values of performances, except sensitivity in training and cross-validation 1, increase.
Therefore, we can deduce that, with KMCCA dimensionality reduction, considering all
views simultaneously, we are able to find a lower dimensional subspace that it is able to
capture additional information about Grading with respect to the one contained in all
radiomics simply concatenated.

As it has been done in Section 2.2.3, Permutation tests are used by us to test, for each
performance metric, whether there is statistical evidence to say that by including all
radiomics information the average of a given metric is higher than in the case where only
Portal phase is considered. Formally, we do the following one-sided tests for the means:

1. H0 : Portal > (=) KMCCA vs H1 : Portal ≤ (̸=) KMCCA

2. H0 : Portal > (=) MCCA vs H1 : Portal ≤ ( ̸=) MCCA

3. H0 : Portal > (=) All Radiomics vs H1 : Portal ≤ (̸=) All Radiomics

4. H0 : All Radiomics > (=) KMCCA vs H1 : All Radiomics ≤ ( ̸=) KMCCA

5. H0 : All Radiomics > (=) MCCA vs H1 : All Radiomics ≤ (̸=) MCCA
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With tests 1, 2 and 3 we want to prove if there evidence to say that considering all
radiomics information in the model makes the mean of the performances greater, while
with test 4 and 5 we want to understand if employing Multiview Learning techniques can
be more powerful for prediction and modelling purposes.
The test statistics used to perform the tests on population X1 and X2 are T = mean(X1)−
mean(X2) when null hypothesis is H0 : mean(X1) > mean(X2) and T = |mean(X1) −
mean(X2)| when null hypothesis is H0 : mean(X1) = mean(X2) . Result of the tests
are summarized with the p-value, and are carried out for MVI and Grading for every
performance metric.
The result for MVI are reported in Figure 4.10

Figure 4.10: Permutation Tests results for MVI MEMs considering multiview aspect of
radiomics
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The result for Grading are reported in Figure 4.11

Figure 4.11: Permutation Tests results for Grading MEMs considering multiview aspect
of radiomics

4.3.2. Survival Analysis with Multiview Dimensionality Reduc-

tion

In this Section the results of Survival for both OS and RFS are illustrated. For each
model, Hazard ratios with 95% CI and C-Index value are provided.

Cox-PH Model for OS with Portal phase features only - BASELINE case

These are the results of the Cox-PH model for OS with Portal phase covariates only.
The Hazard ratios are reported in Figure 4.12.
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Figure 4.12: Hazard ratios with 95% CI obtained applying Cox-PH model for OS with
Portal phase features only

The C-index of the model is 0.807. The value is sufficiently high: the model provides
good predictive performances. From Figure 4.12, it can be seen that there is statistical
evidence to say that most of the coefficients are significant. Regarding clinical variables,
it can be deduced that older age, complications after surgery, nodules (Pattern) and ex-
tended tumor (T VII ed and N), increase the risk of death.

Cox-PH Model for OS with all radiomics concatenated - ALL case

These are the results of the Cox-PH model for OS with all radiomics features concate-
nated. The Hazard ratios are reported in Figure 4.13. The C-index of the model is 0.838.
The value is higher than the one provided by the model that considers only Portal phase.
This indicates that considering all radiomics we have better predictive performances.
From Figure 4.13, it can be seen that radiomics features that are selected by the model
belong to core and margin of all three phases of the CT scan. This reinforces the fact
that all radiomic information must be exploited to predict OS more accurately. Regarding
clinical variables, it can be deduced that older age, complications after surgery, multiple
nodules (SINGLE NODULE and SATELLITES NODULES) and extended tumor (T VII
ed and N), increase the risk of death.



4| Multiview Dimensionality Reduction 99

Figure 4.13: Hazard ratios with 95% CI obtained applying Cox-PH model for OS with all
radiomics features concatenated

Cox-PH Model for OS with MCCA - MCCA case

These are the results of the Cox-PH model for OS with MCCA dimensionality reduc-
tion result. The Hazard ratios are reported in Figure 4.14. The C-index of the model is
0.821. The value is higher than the one provided by the model that considers only Portal
phase. This indicates that, considering all radiomics, we have better predictive perfor-
mances. However, the value of C-Index is less than that with all radiomics concatenated.
From Figure 4.14, it can be seen that radiomics features that are selected by the model
belong to components extracted from margin of all three phases of the CT scan and from
core of Portal and Late. This reinforces the fact that all radiomic information must be
exploited to predict OS more accurately. Regarding clinical variables, it can be deduced
that older people who have undergone complications after surgery, with multiple nodules
(PATTERN and SATELLITES NODULES) and extended tumor(N), have a higher risk
of death.
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Figure 4.14: Hazard ratios with 95% CI obtained applying Cox-PH model for OS with
MCCA dimensionality reduction result

Cox-PH Model for OS with KMCCA - KMCCA case

These are the results of the Cox-PH model for OS with KMCCA dimensionality reduction
result. The Hazard ratios are reported in Figure 4.15. The C-index of the model is 0.838.
The value is higher than the one provided by the model that considers only Portal phase.
This indicates that, considering all radiomics, we have better predictive performances.
Moreover, the value of C-Index is equal to that with all radiomics concatenated.
From Figure 4.14, it can be seen that radiomics features that are selected by the model
belong to components extracted from margin of all three phases of the CT scan and from
core of Portal and Late. This reinforces the fact that all radiomic information must be
exploited to predict OS more accurately. Regarding clinical variables, it can be deduced
that older people that have undergone complications after surgery with multiple nodules
(PATTERN and SATELLITES NODULES) and extened tumor (N), have a higher risk
of death.
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Figure 4.15: Hazard ratios with 95% CI obtained applying Cox-PH model for OS with
KMCCA dimensionality reduction result

Cox-PH Model for RFS with Portal phase features only - BASELINE case

These are the results of the Cox-PH model for RFS with Portal phase covariates only.
The Hazard ratios are reported in Figure 4.16. The C-index of the model is 0.763. The
value is sufficiently high: the model provides good predictive performances.
From Figure 4.16 it can be seen that there is statistical evidence to say that most of the
coefficients are significant. Regarding clinical variables, it can be deduced that people
with nodules (SINGLE NODULE), metastasis (M) and extended tumor (N), have an
increased the risk of recurrence.
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Figure 4.16: Hazard ratios with 95% CI obtained applying Cox-PH model for RFS with
Portal phase features only

Cox-PH Model for RFS with all radiomics concatenated - ALL case

These are the results of the Cox-PH model for RFS with all radiomics features con-
catenated. The Hazard ratios are reported in Figure 4.17. The C-index of the model
is 0.811. The value is higher than the one provided by the model that considers only
Portal phase. This indicates that, considering all radiomics, we have better predictive
performances.
From Figure 4.17, it can be seen that radiomics features that are selected by the model
belong to core and margin of all three phases of the CT scan. This reinforces the fact that
all radiomic information must be exploited to predict OS more accurately. Regarding clin-
ical variables, it can be deduced that people with multiple nodules (SINGLE NODULE),
metastasis (M) and extended tumor (T VII ed and N) have higher the risk of recurrence.
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Figure 4.17: Hazard ratios with 95% CI obtained applying Cox-PH model for RFS with
all radiomics features concatenated

Cox-PH Model for RFS with MCCA - MCCA case

These are the results of the Cox-PH model for RFS with MCCA dimensionality reduc-
tion result. The Hazard ratios are reported in Figure 4.18. The C-index of the model is
0.779. The value is higher than the one provided by the model that considers only Portal
phase. This indicates that considering all radiomics we have better predictive perfor-
mances. However, the value of C-Index is less than that with all radiomics concatenated.
From Figure 4.18 it can be seen that radiomics features that are selected by the model
belong to components extracted from core and margin of all three phases of the CT scan.
This reinforces the fact that all radiomic information must be exploited to predict OS.
Regarding clinical variables, it can be deduced that people with multiple nodules (SIN-
GLE NODULE), metastasis (M) and extended tumor (T VII ed and N) have higher the
risk of recurrence.
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Figure 4.18: Hazard ratios with 95% CI obtained applying Cox-PH model for RFS with
MCCA dimensionality reduction result

Cox-PH Model for RFS with KMCCA - KMCCA case

These are the results of the Cox-PH model for RFS with KMCCA dimensionality re-
duction result. The Hazard ratios are reported in Figure 4.19. The C-index of the model
is 0.729. The value is less than the one provided by the model that considers only Por-
tal phase. This indicates that the Multiview Dimensionality Reduction with Gaussian
Kernel is not effective in finding a lower dimensional subspace capable to synthesise the
RFS. Regarding clinical variables, it can be deduced that people with multiple nodules
(SINGLE NODULE), metastasis (M), extended tumor (N) and that present MVI have
higher the risk of recurrence. Moreover, people that have undergone chemotherapy before
the surgery have lower risk of recurrence.
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Figure 4.19: Hazard ratios with 95% CI obtained applying Cox-PH model for RFS with
KMCCA dimensionality reduction result

4.3.3. Summary of Multiview Dimensionality Reduction

In this Section we summarize the results about Classification and Survival Analysis, ap-
plied considering Multiview Dimensionality Reduction techniques. Regarding Classifica-
tion, it can be concluded that considering all information provided by the three different
phases of radiomics is important in order to improve the predictive ability of the model.
Depending on how all radiomic information is considered, whether or not the Multiview
aspect of the data is taken into account, there is a greater or lesser increase in the pre-
dictive performance of the model. In the case of MVI, using multiview techniques does
not exceed the performance of the model in which all radiomics is simply concatenated.
In the case of Grading, accounting for the multiview nature of the data using KMCCA,
performance improve consistently compared to all other cases.
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Regarding Survival Analysis, all values of C-Index are summarized in Table 4.9.

Table 4.9: C-Indexes of Cox-PH models fitted to analyse the benefit of using Multiview
Dimensionality Reduction techniques for radiomics

OS RFS
PORTAL PHASE ONLY 0.807 0.763
ALL RADIOMICS CONCATENATED 0.838 0.811
KMCCA 0.838 0.729
MCCA 0.821 0.779

From Table 4.9, it can be concluded that information supplied by the three phases of ra-
diomics are different from each other, as every phase offers and added value to the model,
increasing predictive performances. For survival analysis, considering the multiview na-
ture of the data does not increase the predictive ability of the model, which is at best
equalled for OS with KMCCA, compared to the case where all radiomics is considered
concatenated. However, it must be remembered that in this case we are not doing vali-
dation and the number of starting variables in the case of all radiomics concatenated is
very high, unlike the other cases, so that performances may be slightly overestimated.
After all these considerations, we can state that MCCA and KMCCA are valuable methods
to perform dimensionality reduction considering the multiview nature of data. However,
it must be remembered that using this type of method to decrease the size of the dataset
leads to a loss of interpretability of the result. That is because with MCCA and KMCCA
we do not deal with original covariates but with a transformation of them.
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Within this work, we developed robust models capable to classify pathology data and
predict survival response in patients with IHC, using a multicenter trial provided by Hu-
manitas University. In the proposed models we tried to assess the role of radiomics,
together with clinical variables, in order to provide clinicians with some relevant and ac-
tionable insights. For what concerns Classification, we first employed Generalized Linear
Models. Then, we used their random effect version, in order to properly account for hi-
erarchy of the data in the best models obtained. The same approach was followed for
time-to-event data: initially we used Cox type regression models to find the best set of
covariates among several at disposal. Afterwards, we employed Shared Frailty models
with features selected in the best model. At the end of the work, in order to better
consider the multiview aspect of the radiomic information available, we used Multiview
Canonical Correlation Analysis and Kernel Multiview Canonical Correlation Analysis as
dimensionality reduction techniques. With these methods, we were able to decrease the
number of covariates to be given as input to the model with respect to optimising the
process by considering all views simultaneously. The results of the dimensionality reduc-
tion were used in Classification and Survival Analysis to understand the advantages of
using all radiomic information with a multiview approach.
We highlighted the importance of considering the information provided by radiomics, in
conjunction with clinical data, to have an adequate prognosis in patients with IHC. Using
radiomics, predictive performances of classification and survival models improve up to a
ROC AUC of 0.795 for MVI and 0.753 for Grading, and up to a C-Index of 0.797 for OS
and 0.733 for RFS, so that we are capable of predicting more accurately quantities that
are relevant to know in order to find the proper treatment. Moreover, we discovered that
both the radiomics of the core tumor zone and surrounding peritumoral area are relevant
for the analysis, as together contribute in prediction of the outcomes. With regard to
the three different phases of the CT scan, we showed the importance of considering them
together, as they are not redundant descriptions of the same subject, but each provides
added value to the analysis. How to take this information into account, whether with a
multiview approach or not, depends on the modelled outcome, as there is no technique
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that always outperforms the others. Furthermore, we pointed out that when modelling
pathology data, it is necessary to consider the grouping factor present in the data, since
in MEMs the centre-related random effect is strongly present. On the other hand, for
Survival Analysis, hospital grouping may not be taken into account as it is not significant
in the model, probably because long-term outcomes are examined.

A possible future development of this work could be to explore other Multiview dimen-
sionality reduction/ feature selection techniques. The ideal would be to develop a variable
selection technique able to reduce the number of covariates in each view, optimising the
procedure by considering all the views jointly. This procedure should produce as output
the actual features, not a transformation of them. In this way it would be possible to
maintain the interpretability of the results, even when using Multiview techniques.
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In this Appendix we report detailed information about radiomics covariates.

Table A.1: Types of radiomic variables present in IHC dataset

Radiomic Variable Type
CONVENTIONAL HUmin Basic
CONVENTIONAL HUmean Basic
CONVENTIONAL HUstd Basic
CONVENTIONAL HUmax Basic
CONVENTIONAL HUQ1 Basic
CONVENTIONAL HUQ2 Basic
CONVENTIONAL HUQ3 Basic
CONVENTIONAL HUSkewness Basic
CONVENTIONAL HUKurtosis Basic
CONVENTIONAL HUExcessKurtosis Basic
DISCRETIZED HISTO Entropy log10 First Order
DISCRETIZED HISTO Entropy log2 First Order
DISCRETIZED HISTO Energy Uniformity First Order
SHAPE Volume mL First Order
SHAPE Volume vx First Order
SHAPE Sphericity onlyFor3DROI First Order
SHAPE Surface mm2 onlyFor3DROI First Order
SHAPE Compacity onlyFor3DROI First Order
GLCM Homogeneity InverseDifference Second Order
GLCM Energy AngularSecondMoment Second Order
GLCM Contrast Variance Second Order
GLCM Correlation Second Order
GLCM Entropy log10 Second Order
GLCM Entropy log2 JointEntropy Second Order
GLCM Dissimilarity Second Order
GLRLM SRE Second Order
GLRLM LRE Second Order
GLRLM LGRE Second Order
GLRLM HGRE Second Order
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Radiomic Variable Type
GLRLM SRLGE Second Order
GLRLM SRHGE Second Order
GLRLM LRLGE Second Order
GLRLM LRHGE Second Order
GLRLM GLNU Second Order
GLRLM RLNU Second Order
GLRLM RP Second Order
NGLDM Coarseness Second Order
NGLDM Contrast Second Order
NGLDM Busyness Second Order
GLZLM SZE Second Order
GLZLM LZE Second Order
GLZLM LGZE Second Order
GLZLM HGZE Second Order
GLZLM SZLGE Second Order
GLZLM SZHGE Second Order
GLZLM LZLGE Second Order
GLZLM LZHGE Second Order
GLZLM GLNU Second Order
GLZLM ZLNU Second Order
GLZLM ZP Second Order

Second order parameters are found imposing filter grids on the image. The filters are the
following:

• GLCM: It stands for Gray Levels Co-occurrence Matrix. The matrix describes the
second-order joint probability function of an image region constrained by the mask
and is defined as P (i, j|δ, θ). The (i, j)th element of this matrix represents the
number of times the combination of levels i and j occur in two pixels in the image,
that are separated by a distance of δ pixels along angle θ [55].

• GLRLM: It stands for Gray Level Run Length Zone Matrix. The matrix quantifies
gray level runs, which are defined as the length in number of pixels, of consecutive
pixels that have the same gray level value. In a gray level run length matrix P (i, j|θ),
the (i, j)th element describes the number of runs with gray level i and length j occur
in the image (VOI) along angle θ [56].

• NGLDM: It stands for Neighboring Gray Level Difference Matrix. The matrix quan-
tifies the difference between a gray value and the average gray value of its neighbours
within distance δ [57].
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• GLZLM: It stands for Gray Level Zone Length Matrix. The matrix quantifies gray
level zones in an image. A gray level zone is defined as the number of connected
voxels that share the same gray level intensity. In matrix P (i, j) the (i, j)th element
equals the number of zones with gray level i and size j appear in image [58].
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In this Appendix the main parts of the code used to develop this work are reported.

B.1. Classification Code

The following code contains the function used to compute the performances of Logistic
Regression models without cross-validation.

1 def performace_LR(model , X_train , y_train , X_test , y_test):
2 model.fit(X_train , y_train);
3 yp=model.predict(X_test)
4 yprob = model.predict_proba(X_test)
5 #Compute performances
6 accuracy=model.score(X_test , y_test)
7 cm = confusion_matrix(y_test , yp)
8 PrintConfusionMatrix(y_test , yp)
9 Specificity = cm[0 ,0]/(cm[0,0]+cm[0,1])

10 Sensitivity = cm[1 ,1]/(cm[1,0]+cm[1,1])
11 precision=precision_score(y_test ,yp, pos_label=’1’)
12 recall=recall_score(y_test ,yp,pos_label=’1’)
13 pr_auc= average_precision_score(y_test , yprob [:,1], pos_label=’1’)
14 roc_auc = roc_auc_score(y_true=y_test , y_score = yprob [:,1])
15 print("Accuracy %3.2f" % accuracy)
16 print("Specificity %3.2f" % Specificity)
17 print("Sensitivity %3.2f" % Sensitivity)
18 print("Precision %3.2f" % precision)
19 print("Precision -Recall AUC %3.2f" %pr_auc)
20 print("ROC AUC %3.2f" %roc_auc)
21 precision , recall , thresholds = precision_recall_curve(y_true=y_test ,

probas_pred=yprob[:,1], pos_label=’1’)
22 auc = average_precision_score(y_test , yprob[:,1], pos_label=’1’)
23 #Plot Precision -Recall Curves
24 plt.figure(1, figsize =(8, 6));
25 font = {’family ’:’sans’, ’size’:24};
26 plt.rc(’font’, **font);
27 plt.plot(recall , precision , label="Precision -recall curve");
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28 plt.xlabel(’Recall ’);
29 plt.ylabel(’Precision ’);
30 plt.ylim ([0.5 ,1.1])
31 plt.yticks(np.arange (0.5 ,1.01 ,.1))
32 plt.title(’Precision -Recall Curve (AUC =%3.2f)’%auc);
33 plt.plot(recall [:-1], thresholds , label="Threshold");
34 plt.legend ()
35 plt.show()
36 fpr , tpr , thresholds = roc_curve(y_true=y_test , y_score = yprob[:,1],

pos_label=’1’)
37 #Plot ROC Curve
38 plt.figure(1, figsize =(8, 8));
39 font = {’family ’:’sans’, ’size’:24};
40 plt.rc(’font’, **font);
41 plt.xlabel(’FPR’);
42 plt.ylabel(’TPR’);
43 plt.plot(fpr ,tpr ,label=’Classifier ’)
44 #plt.plot(fpr ,thresholds ,label=’Thresholds ’)
45 plt.plot ([0.0 ,1.0] ,[0.0 ,1.0] , label=’Baseline ’)
46 plt.yticks(np.arange (0.0 ,1.01 ,.2))
47 plt.title(’ROC Curve (AUC =%3.2f)’%roc_auc)
48 plt.ylim ([0.0 ,1.0])
49 plt.xlim ([0.0 ,1.0])
50 plt.legend ()
51 plt.show();
52

53 return accuracy , Specificity , Sensitivity , precision , recall , pr_auc ,
roc_auc

Logistic Regression model is identified with sklearn function
LogisticRegression(solver=’liblinear’, random_state=0, max_iter=500)

The following code contains the function used to compute performances with Cross-
validation Method 1.

1 def cross_validation1(model , X, y, n_split):
2 cv = StratifiedKFold(n_splits=n_split , random_state =0, shuffle=True)
3 kfold = cv.split(X, y)
4

5 accu =[]
6 spec =[]
7 sens =[]
8 prec =[]
9 rec =[]
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10 pr_auc =[]
11 roc_auc =[]
12

13 for k, (train , test) in enumerate(kfold):
14 result=performace_LR(model , X.iloc[train , :], y.iloc[train], X.iloc[

test , :], y.iloc[test])
15 accu.append(result [0])
16 spec.append(result [1])
17 sens.append(result [2])
18 prec.append(result [3])
19 rec.append(result [4])
20 pr_auc.append(result [5])
21 roc_auc.append(result [6])
22

23 print(’\n Cross -Validation 1 Accuracy: %.3f +/- %.3f’ %(np.mean(accu),
np.std(accu)))

24 print(’\n Cross -Validation 1 Specificity: %.3f +/- %.3f’ %(np.mean(
spec), np.std(spec)))

25 print(’\n Cross -Validation 1 Sensitivity: %.3f +/- %.3f’ %(np.mean(
sens), np.std(sens)))

26 print(’\n Cross -Validation 1 Precision: %.3f +/- %.3f’ %(np.mean(prec)
, np.std(prec)))

27 print(’\n Cross -Validation 1 ecall: %.3f +/- %.3f’ %(np.mean(rec), np.
std(rec)))

28 print(’\n Cross -Validation 1 PR_AUC: %.3f +/- %.3f’ %(np.mean(pr_auc),
np.std(pr_auc)))

29 print(’\n Cross -Validation 1 ROC_AUC: %.3f +/- %.3f’ %(np.mean(roc_auc
), np.std(roc_auc)))

The following code contains the function used to compute performances with Cross-
validation Method 2.

1 def cross_validation2(model , X, y, n_test , percentage):
2 accu =[]
3 spec =[]
4 sens =[]
5 prec =[]
6 rec =[]
7 pr_auc =[]
8 roc_auc =[]
9

10 for i in range(n_test):
11 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size

=percentage , random_state=i, stratify=y)
12 result=performace_LR(model , X_train , y_train , X_test , y_test)
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13 accu.append(result [0])
14 spec.append(result [1])
15 sens.append(result [2])
16 prec.append(result [3])
17 rec.append(result [4])
18 pr_auc.append(result [5])
19 roc_auc.append(result [6])
20

21 print(’\n Cross -Validation 2 Accuracy: %.3f +/- %.3f’ %(np.mean(accu),
np.std(accu)))

22 print(’\n Cross -Validation 2 Specificity: %.3f +/- %.3f’ %(np.mean(
spec), np.std(spec)))

23 print(’\n Cross -Validation 2 Sensitivity: %.3f +/- %.3f’ %(np.mean(
sens), np.std(sens)))

24 print(’\n Cross -Validation 2 Precision: %.3f +/- %.3f’ %(np.mean(prec)
, np.std(prec)))

25 print(’\n Cross -Validation 2 Recall: %.3f +/- %.3f’ %(np.mean(rec), np
.std(rec)))

26 print(’\n Cross -Validation 2 PR_AUC: %.3f +/- %.3f’ %(np.mean(pr_auc),
np.std(pr_auc)))

27 print(’\n Cross -Validation 2 ROC_AUC: %.3f +/- %.3f’ %(np.mean(roc_auc
), np.std(roc_auc)))

28

29 return accu , spec , sens , prec , rec , pr_auc , roc_auc

The following code concerns the fitting of the Mixed Effects Model in the case for IVM
with Clinical+Portal(Core+Margin). For Grading and other cases of covariates, the code
is basically the same.

1 #Setting the working directory
2 setwd("C:/Users/N/Desktop/Polimi/Magistrale/Tesi/Materiale/Datasets")
3

4 #Prepare the dataset
5 X <- read_excel("IVM.xlsx")
6 X$CENTRO <-as.factor(X$CENTRO)
7 X$‘MAJOR HEPATECTOMY ‘<-as.numeric(X$‘MAJOR HEPATECTOMY ‘)
8 X$SEX <-as.numeric(X$SEX)#lo considero numerico p e r c h ne voglio solo uno

se no sono correlati e da problemi
9 X$INVASIONE.VASCOLARE.MICROSCOPICA <-as.factor(X$INVASIONE.VASCOLARE.

MICROSCOPICA)
10

11 #Fit the model
12 ivm_mem = glmer(INVASIONE.VASCOLARE.MICROSCOPICA ~ 0+SEX+‘CA 19-9‘+‘

MAJOR HEPATECTOMY ‘+PM_CONVENTIONAL.HUQ2+
13 PM_SHAPE.SphericityonlyFor3DROI+PM_GLCM.Correlation+PM



B| Appendix B 123

_NGLDM.Contrast+
14 PM_GLZLM.LZE+PM_GLZLM.SZHGE +(1| CENTRO),
15 data=X,
16 family = binomial ,
17 control=glmerControl(optimizer="bobyqa",optCtrl=list(

maxfun =2e5)))
18

19 plot_model(ivm_mem)
20 summary(ivm_mem)
21

22 #Compute VPC
23 print(vc <- VarCorr(ivm_mem), comp = c("Variance", "Std.Dev."))
24 sigma2_eps <- as.numeric(get_variance_residual(ivm_mem))
25 sigma2_eps
26 sigma2_b <- as.numeric(get_variance_random(ivm_mem))
27 sigma2_b
28 VPC <- sigma2_b/(sigma2_b+sigma2_eps)
29

30 #Plot the random effects
31 library(lattice)
32 rand_intercept = ranef(ivm_mem , condVar=TRUE)
33 lattice :: dotplot(rand_intercept ,strip=T, lty= 4)
34

35 #Performance on all the dataset
36 pred <- predict(ivm_mem ,type=’response ’)
37 class_pred <- ifelse(pred >0.5,1 ,0)
38 tb <- table(true=X$INVASIONE.VASCOLARE.MICROSCOPICA , assigned=class_pred

)
39 accuracy <- (tb[1]+tb[4])/sum(tb)
40 spec <-tb[1]/(tb[1]+tb[2])
41 sens <-tb[4]/(tb[3]+tb[4])
42 prec <-tb[4]/(tb[4]+tb[2])
43

44 #Plot ROC Curve
45 prob <- predict(ivm_mem , type="response")
46 pred <- prediction(prob , X$INVASIONE.VASCOLARE.MICROSCOPICA)
47 roc_auc <- performance(pred , measure = "auc")
48 roc_auc <- roc_auc@y.values [[1]]
49 roc_auc
50 prob <- predict(ivm_mem , type="response")
51 pred <- prediction(prob , X$INVASIONE.VASCOLARE.MICROSCOPICA)
52 perf <- performance(pred , measure = "tpr", x.measure = "fpr")
53 plot(perf , main= paste0("ROC Curve (AUC: ", round(roc_auc , 2), ")"))
54
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55 #Plot Precision -Recall Curve
56 perf_pr <- performance(pred ,"prec","rec")
57 x = perf_pr@x.values [[1]]
58 y = perf_pr@y.values [[1]]
59 idx = 2: length(x)
60 testdf=data.frame(recall = (x[idx] - x[idx -1]), precision = (y[idx] + y[

idx -1]))
61 testdf = subset(testdf , !is.na(testdf$precision))
62 pr_auc = sum(testdf$recall * testdf$precision)/2
63 plot(perf_pr , main= paste0("Precision -Recall Curve (AUC: ", round(pr_auc

, 2), ")"))
64

65 print(paste0(" Accuracy: ", round(accuracy , 3), " "))
66 print(paste0(" Specficity: ", round(spec , 3), " "))
67 print(paste0(" Sensitivity: ", round(sens , 3), " "))
68 print(paste0(" Precision: ", round(prec , 3), " "))
69 print(paste0(" ROC AUC: ", round(roc_auc , 3), " "))
70 print(paste0(" PR AUC: ", round(pr_auc , 3), " "))

B.2. Survival Analysis Code

The following code is about using Log Rank Tests for skimming the clinical categorical
variables before Survival Analysis

1 library(readxl)
2 library(car)
3 library(caret)
4 library(survival)
5 library(survminer)
6

7 set.seed (1)
8

9 main <- read_excel("main_imputed.xlsx")
10 main <-main[-261,]
11 main[which(main [ ,21]==’X’) ,21]<-’x’
12 main <- na.omit(main)
13

14 main$OS<-as.numeric(main$OS)
15 main$RFS <-as.numeric(main$RFS)
16 main$RECIDIVA <-as.numeric(main$RECIDIVA)
17 main$STATO.VM<-as.numeric(main$STATO.VM)
18

19 survdiff(Surv(main$OS, main$STATO.VM) ~ main$SEX , data = main)
20 survdiff(Surv(main$OS, main$STATO.VM) ~ main$HCV , data = main)
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21 survdiff(Surv(main$OS, main$STATO.VM) ~ main$HBV , data = main)
22 survdiff(Surv(main$OS, main$STATO.VM) ~ main$‘Ca19 -9gt55 ‘, data = main)
23 survdiff(Surv(main$OS, main$STATO.VM) ~ main$CHEMIOTERAPIA.NEOADIUVANTE ,

data = main)
24 survdiff(Surv(main$OS, main$STATO.VM) ~ main$PRIMA.RESEZIONE , data =

main)
25 survdiff(Surv(main$OS, main$STATO.VM) ~ main$Major.Hepatectomy , data =

main)
26 survdiff(Surv(main$OS, main$STATO.VM) ~ main$RESEZIONE.VIA.BILIARE , data

= main)
27 survdiff(Surv(main$OS, main$STATO.VM) ~ main$LINFOADENECTOMIA , data =

main)
28 survdiff(Surv(main$OS, main$STATO.VM) ~ main$ASSOCIATED.RESECTION , data

= main)
29 survdiff(Surv(main$OS, main$STATO.VM) ~ main$COMPLICANZE.SEVERE , data =

main)
30 survdiff(Surv(main$OS, main$STATO.VM) ~ main$CIRROSI , data = main)
31 survdiff(Surv(main$OS, main$STATO.VM) ~ main$PATTERN , data = main)
32 survdiff(Surv(main$OS, main$STATO.VM) ~ main$SINGLE.NODULE , data = main)
33 survdiff(Surv(main$OS, main$STATO.VM) ~ main$T.VIII.ed, data = main)
34 survdiff(Surv(main$OS, main$STATO.VM) ~ main$N, data = main)
35 survdiff(Surv(main$OS, main$STATO.VM) ~ main$M, data = main)
36 survdiff(Surv(main$OS, main$STATO.VM) ~ main$GRADING.RAGGR , data = main)
37 survdiff(Surv(main$OS, main$STATO.VM) ~ main$R.status , data = main)
38 survdiff(Surv(main$OS, main$STATO.VM) ~ main$IVM , data = main)
39 survdiff(Surv(main$OS, main$STATO.VM) ~ main$INFILTRAZIONE.PERINEURALE ,

data = main)
40 survdiff(Surv(main$OS, main$STATO.VM) ~ main$NODULI.SATELLITI , data =

main)
41 survdiff(Surv(main$OS, main$STATO.VM) ~ main$CHEMIOTERAPIA.ADIUVANTE ,

data = main)
42

43 fit1 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$SEX , data = main)
44 fit2 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$HCV , data = main)
45 fit3 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$HBV , data = main)
46 fit4 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$‘Ca19 -9gt55 ‘, data =

main)
47 fit5 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$CHEMIOTERAPIA.

NEOADIUVANTE , data = main)
48 fit6 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$PRIMA.RESEZIONE , data

= main)
49 fit7 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$Major.Hepatectomy ,

data = main)
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50 fit8 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$RESEZIONE.VIA.BILIARE ,
data = main)

51 fit9 <-survfit(Surv(main$OS, main$STATO.VM) ~ main$LINFOADENECTOMIA , data
= main)

52 fit10 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$ASSOCIATED.RESECTION ,
data = main)

53 fit11 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$COMPLICANZE.SEVERE ,
data = main)

54 fit12 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$CIRROSI , data = main)
55 fit13 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$PATTERN , data = main)
56 fit14 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$SINGLE.NODULE , data =

main)
57 fit15 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$T.VIII.ed, data =

main)
58 fit16 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$N, data = main)
59 fit17 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$M, data = main)
60 fit18 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$GRADING.RAGGR , data =

main)
61 fit19 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$R.status , data = main

)
62 fit20 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$IVM , data = main)
63 fit21 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$INFILTRAZIONE.

PERINEURALE , data = main)
64 fit22 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$NODULI.SATELLITI ,

data = main)
65 fit23 <-survfit(Surv(main$OS , main$STATO.VM) ~ main$CHEMIOTERAPIA.

ADIUVANTE , data = main)
66

67 splots <- list()
68 splots [[1]] <-ggsurvplot(fit1)
69 splots [[2]] <-ggsurvplot(fit2)
70 splots [[3]] <-ggsurvplot(fit3)
71 splots [[4]] <-ggsurvplot(fit4)
72 splots [[5]] <-ggsurvplot(fit5)
73 splots [[6]] <-ggsurvplot(fit6)
74 splots [[7]] <-ggsurvplot(fit7)
75 splots [[8]] <-ggsurvplot(fit8)
76 splots [[9]] <-ggsurvplot(fit9)
77 splots [[10]] <-ggsurvplot(fit10)
78 splots [[11]] <-ggsurvplot(fit11)
79 splots [[12]] <-ggsurvplot(fit12)
80 splots [[13]] <-ggsurvplot(fit13)
81 splots [[14]] <-ggsurvplot(fit14)
82 splots [[15]] <-ggsurvplot(fit15)
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83 splots [[16]] <-ggsurvplot(fit16)
84 splots [[17]] <-ggsurvplot(fit17)
85 splots [[18]] <-ggsurvplot(fit18)
86 splots [[19]] <-ggsurvplot(fit19)
87 splots [[20]] <-ggsurvplot(fit20)
88 splots [[21]] <-ggsurvplot(fit21)
89 splots [[22]] <-ggsurvplot(fit22)
90 splots [[23]] <-ggsurvplot(fit23)
91

92 arrange_ggsurvplots(splots [1:6] , print = TRUE , ncol = 3, nrow = 2)
93 arrange_ggsurvplots(splots [7:12] , print = TRUE , ncol = 3, nrow = 2)
94 arrange_ggsurvplots(splots [13:18] , print = TRUE , ncol = 3, nrow = 2)
95 arrange_ggsurvplots(splots [19:23] , print = TRUE , ncol = 3, nrow = 2)

The following code concerns the fitting of the Cox-PH model in the case of Postopera-
tive+Portal(Core +Margin) covariates for OS. For the other cases of covariates and for
RFS the code is basically the same.

1 library(readxl)
2 library(car)
3 library(caret)
4 library(survival)
5 library(survminer)
6

7 set.seed (1)
8

9 X <- read_excel("X_no_c_scale.xlsx")
10 X[which(X[ ,21]==’X’) ,21]<-’x’
11 X[which(X[ ,33]==’1-2’) ,33]<-’0’
12 X[which(X[ ,33]==’3’) ,33]<-’1’
13 X$PATTERN.<-as.factor(X$PATTERN .)
14 X$OS.Days <-as.numeric(X$OS.Days)
15 X$STATO.VIVO.MORTO <-as.numeric(X$STATO.VIVO.MORTO)
16

17 #Elimino
18 X$CENTRO <-NULL
19 X$‘Codice.PAZ ‘<-NULL
20 X$SEX <-NULL
21 X$HCV <-NULL
22 X$HBV <-NULL
23 X$CHEMIOTERAPIA.NEOADIUVANTE <-NULL
24 X$PRIMA.RESEZIONE <-NULL
25 X$ASSOCIATED.RESECTION <-NULL
26 X$CIRROSI <-NULL
27 X$GRADING <-NULL
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28 X$CHEMIOTERAPIA.ADIUVANTE <-NULL
29 X$RECIDIVA <-NULL
30 X$RFS.Days <-NULL
31 X$Ca19.9gt55 <-NULL
32

33 surv_obj <- Surv(X$OS.Days , X$STATO.VIVO.MORTO)
34

35 X$STATO.VIVO.MORTO <-NULL
36 X$OS.Days <-NULL
37

38 m_null <- coxph( surv_obj ~ 1, data = X)
39

40 mod.cox <- coxph( surv_obj ~ .,
41 data = X,
42 control = coxph.control(iter.max = 100))
43 summary(mod.cox)
44

45 step(m_null , trace = F, scope = list(lower=formula(m_null), upper=
formula(mod.cox)),

46 direction = ’both’, data = X)
47

48 cox.reduced <- coxph( surv_obj ~ AGE + Ca.19.9 + Major.Hepatectomy + N +
R.status+ COMPLICANZE.SEVERE + PATTERN. + NODULI.SATELLITI +

RESEZIONE.VIA.BILIARE + GLRLM_SRHGE+ CONVENTIONAL.HUKurtosis+SHAPE.
CompacityonlyFor3DROI + GLRLM.SRHGE + GLRLM.GLNU + GLZLM.ZP + GLZLM.
LZLGE + GLRLM.LGRE ,

49 data = X,
50 control = coxph.control(iter.max = 100))
51

52 summary(cox.reduced)
53

54 #Hazard Ratio and CI plot
55 x11()
56 ggforest(cox.reduced , data=X)
57

58 prediction = predict(cox.reduced , X)
59 score = survConcordance(surv_obj ~ prediction , data = X)$concordance
60 print(paste(’Concordance index’,score))
61

62 # Plot martingale residuals
63 x11()
64 ggcoxdiagnostics(cox.reduced , type = "martingale")
65

66 x11()
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67 ggcoxdiagnostics(cox.reduced , type = "deviance")
68

69 x11()
70 ggcoxdiagnostics(cox.reduced , type = "schoenfeld")
71

72 print(’Proportional Hazard assumption ’)
73 test.ph <- cox.zph(cox.reduced)
74 test.ph
75

76 print(’schoenfeld residuals ’)
77

78 par(mfrow=c(2,3))
79 for(i in 1:17){
80 plot(test.ph[i])
81 abline(h=0, col=’red’)
82 }
83

84 #### Estimated Baseline Survival Curves ####
85 ####------------------------------------####
86 fit <-survfit(cox.reduced , data=X)
87

88 x11()
89 plot(fit , conf.int=TRUE ,
90 col=c(’dodgerblue2 ’,’mediumseagreen ’,’orangered ’), lwd=2, lty=1,
91 xlab=’Time [days]’, ylab=’Survival Probability ’,
92 main=’Estimated Baseline Survival Probabilities ’)
93 grid()

The following code concerns the fitting of the Shared Frailty model in the case for OS.
For the case of RFS the code is basically the same.

1 library(readxl)
2 library(car)
3 library(caret)
4 library(survival)
5 library(survminer)
6 library(frailtypack)
7 library(frailtyEM)
8 library(frailtySurv)
9

10 set.seed (1)
11

12 X <- read_excel("X_no_c_scale.xlsx")
13 X[which(X[ ,21]==’X’) ,21]<-’x’
14 X[which(X[ ,33]==’1-2’) ,33]<-’0’
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15 X[which(X[ ,33]==’3’) ,33]<-’1’
16 X$PATTERN.<-as.factor(X$PATTERN .)
17 X$N<-as.factor(X$N)
18 X$OS.Days <-as.numeric(X$OS.Days)
19 X$STATO.VIVO.MORTO <-as.numeric(X$STATO.VIVO.MORTO)
20

21 #Elimino
22 X$‘Codice.PAZ ‘<-NULL
23 X$SEX <-NULL
24 X$HCV <-NULL
25 X$HBV <-NULL
26 X$CHEMIOTERAPIA.NEOADIUVANTE <-NULL
27 X$PRIMA.RESEZIONE <-NULL
28 X$ASSOCIATED.RESECTION <-NULL
29 X$CIRROSI <-NULL
30 X$GRADING <-NULL
31 X$CHEMIOTERAPIA.ADIUVANTE <-NULL
32 X$RECIDIVA <-NULL
33 X$RFS.Days <-NULL
34 X$Ca19.9gt55 <-NULL
35

36 # library
37 library(ggplot2)
38

39 # grouped boxplot
40 ggplot(X, aes(x=CENTRO , y=OS.Days)) +
41 geom_boxplot ()
42

43 surv_obj <- Surv(X$OS.Days , X$STATO.VIVO.MORTO)
44

45 mod.frailty <- emfrail(surv_obj ~ AGE + Ca.19.9 + Major.Hepatectomy + N
+ R.status+ COMPLICANZE.SEVERE + PATTERN. + NODULI.SATELLITI +
RESEZIONE.VIA.BILIARE + GLRLM_SRHGE + CONVENTIONAL.HUKurtosis+SHAPE.
CompacityonlyFor3DROI + GLRLM.SRHGE + GLRLM.GLNU + GLZLM.ZP + GLZLM.
LZLGE + GLRLM.LGRE + cluster(CENTRO), data = X)

46

47 summary(mod.frailty)

B.3. Multiview Dimensionality Reduction Code

The following code is about the Multiview Dimensionality reduction of radiomic covariates
performed with MCCA.

1 !pip install mvlearn
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2 !pip install scipy --upgrade
3

4 from IPython.core.interactiveshell import InteractiveShell
5 InteractiveShell.ast_node_interactivity = "all"
6

7 # Run this cell only if you are using Colab with Drive
8 from google.colab import drive
9 drive.mount(’/content/drive’)

10

11 import pandas as pd
12 import numpy as np
13 from numpy import where
14 import matplotlib
15 import copy
16 import random
17 import matplotlib.pyplot as plt
18 from scipy import stats
19 from sklearn.preprocessing import StandardScaler
20

21 # %config InlineBackend.figure_format = ’retina ’ #set ’png’ here when
working on notebook

22 # %matplotlib inline
23

24 data_types ={"SEX": np.str ,"HCV": np.str ,"HBV": np.str ,"Ca19 -9 55 ": np.
str ,"CHEMIOTERAPIA NEOADIUVANTE": np.str ,"PRIMA RESEZIONE": np.str ,"
Major Hepatectomy": np.str ,"RESEZIONE VIA BILIARE": np.str ,"
LINFOADENECTOMIA": np.str ,"ASSOCIATED RESECTION": np.str ,"COMPLICANZE
SEVERE": np.str ,"CIRROSI": np.str ,"PATTERN": np.str ,"SINGLE NODULE":
np.str ,"T VIII ed": np.str ,"N": np.str ,"M": np.str ,"GRADING": np.str

,"R status": np.str ,"INVASIONE VASCOLARE MICROSCOPICA": np.str ,"
INFILTRAZIONE PERINEURALE": np.str ,"NODULI SATELLITI": np.str ,"
CHEMIOTERAPIA ADIUVANTE": np.str ,"STATO VIVO/MORTO": np.str ,"RECIDIVA
": np.str ,"GRADING RAGGR": np.str}

25

26 #Import the dataset
27 main= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/main_imputed

.xlsx’)
28 portal_core= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/

NO_CORR/portal_core_nocorr.xlsx’)
29 portal_margin= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/

NO_CORR/portal_margin_nocorr.xlsx’)
30 arterial_core= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/

NO_CORR/arterial_core_nocorr.xlsx’)
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31 arterial_margin= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/
NO_CORR/arterial_margin_nocorr.xlsx’)

32 late_core= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/NO_CORR
/late_core_nocorr.xlsx’)

33 late_margin= pd.read_excel (’/content/drive/My Drive/TESI/DATASETS/
NO_CORR/late_margin_nocorr.xlsx’)

34

35 #Join the dataset
36 portal=pd.concat ([ portal_core , portal_margin],axis =1)
37 arterial=pd.concat ([ arterial_core , arterial_margin],axis =1)
38 late=pd.concat ([late_core , late_margin],axis =1)
39 temp=pd.concat ([portal , arterial],axis =1)
40 radiomics=pd.concat ([temp , late],axis =1)
41 X=pd.concat ([main , radiomics], axis =1)
42

43 #Delete missing ravlues
44 X.dropna(inplace=True)
45

46 #Standardize the data
47 numeric_feats = X.dtypes[X.dtypes != "object" ].index
48 scaler = StandardScaler ()
49 X[numeric_feats ]= scaler.fit_transform(X[numeric_feats ])
50

51 #Go back to single radiomics data
52 main_new=X.iloc [: ,0:33]
53 portal_core_new=X.iloc [: ,33:57]
54 portal_margin_new=X.iloc [: ,57:87]
55 arterial_core_new=X.iloc [: ,87:108]
56 arterial_margin_new=X.iloc [: ,108:133]
57 late_core_new=X.iloc [: ,133:147]
58 late_margin_new=X.iloc [: ,147:172]
59

60 #Reduce core and margin separately with MCCA dimensionality reduction
61 from mvlearn.embed import MCCA
62 mcca_core = MCCA(n_components =10, regs=’lw’)
63 mcca_core.fit([ portal_core_new , arterial_core_new , late_core_new ])
64 Xs_core = mcca_core.transform ([ portal_core_new , arterial_core_new ,

late_core_new ])
65 mcca_margin = MCCA(n_components =10, regs=’lw’)
66 mcca_margin.fit([ portal_margin_new , arterial_margin_new , late_margin_new

])
67 Xs_margin = mcca_margin.transform ([ portal_margin_new ,

arterial_margin_new , late_margin_new ])
68
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69 #Using invariant propertu of MCCA solution , modify the scale of the
components , in order to have values with the same magnitude of
clinical standardized variables

70 Xs_pc=pd.DataFrame (100* Xs_core [0])
71 Xs_ac=pd.DataFrame (100* Xs_core [1])
72 Xs_lc=pd.DataFrame (100* Xs_core [2])
73 Xs_pm=pd.DataFrame (100* Xs_margin [0])
74 Xs_am=pd.DataFrame (100* Xs_margin [1])
75 Xs_lm=pd.DataFrame (100* Xs_margin [2])
76 X_core=pd.concat ([Xs_pc , Xs_ac , Xs_lc],axis =1)
77 X_margin=pd.concat ([Xs_pm , Xs_am , Xs_lm],axis =1)
78

79 radiomics_new=pd.concat ([X_core , X_margin],axis =1)
80 main_new.reset_index(drop=True , inplace=True)
81 radiomics_new.reset_index(drop=True , inplace=True)
82 X_new=pd.concat ([main_new , radiomics_new], axis =1)
83

84 X_new.to_excel(’/content/drive/My Drive/TESI/DATASETS/MULTIVIEW/
Dataset_MCCA.xlsx’, index= False)

The following code is the part to change in the above, from line 61 to 77, to perform
KMCCA, instead of MCCA.

1 #Reduce core and margin separately with MCCA dimensionality reduction
2 from mvlearn.embed import KMCCA
3 X_core =[ portal_core_new , arterial_core_new , late_core_new]
4 X_margin =[ portal_margin_new , arterial_margin_new , late_margin_new]
5 mcca_core = KMCCA(n_components =10, kernel=’rbf’)
6 mcca_core.fit([ portal_core_new , arterial_core_new , late_core_new ])
7 Xs_core = mcca_core.transform ([ portal_core_new , arterial_core_new ,

late_core_new ])
8 mcca_margin = KMCCA(n_components =10, kernel=’rbf’)
9 mcca_margin.fit([ portal_margin_new , arterial_margin_new , late_margin_new

])
10 Xs_margin = mcca_margin.transform ([ portal_margin_new ,

arterial_margin_new , late_margin_new ]) Xs_pc =10000*+ Xs_core [0]
11

12 #Using invariant propertu of MCCA solution , modify the scale of the
components , in order to have values with the same magnitude of
clinical standardized variables

13 Xs_pc=pd.DataFrame (10000* Xs_core [0])
14 Xs_ac=pd.DataFrame (10000* Xs_core [1])
15 Xs_lc=pd.DataFrame (10000* Xs_core [2])
16 Xs_pm=pd.DataFrame (10000* Xs_margin [0])
17 Xs_am=pd.DataFrame (10000* Xs_margin [1])
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18 Xs_lm=pd.DataFrame (10000* Xs_margin [2])
19 X_core=pd.concat ([Xs_pc , Xs_ac , Xs_lc],axis =1)
20 X_margin=pd.concat ([Xs_pm , Xs_am , Xs_lm],axis =1)
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In this Appendix the performances of the Logistic Regression models with the various
variable selection techniques are reported.

Table C.1: Performances of MVI LR with Clinical+Portal(Core) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.652 0.214 0.652 0.063
SPECIFICITY 0.68 0.610 0.387 0.589 0.099
SENSITIVITY 0.79 0.690 0.273 0.700 0.090
PRECISION 0.76 0.726 0.267 0.696 0.057
PR AUC 0.85 0.843 0.162 0.745 0.058
ROC AUC 0.81 0.713 0.284 0.691 0.067

Table C.2: Performances of MVI LR with Clinical+Portal(Core) features with Stepwise/
Forward Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.72 0.721 0.209 0.708 0.060
SPECIFICITY 0.66 0.647 0.341 0.628 0.117
SENSITIVITY 0.77 0.783 0.250 0.769 0.081
PRECISION 0.75 0.776 0.201 0.738 0.061
PR AUC 0.81 0.873 0.136 0.798 0.051
ROC AUC 0.77 0.772 0.233 0.751 0.059
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Table C.3: Performances of MVI LR with Clinical+Portal(Core) features with Ridge
Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.652 0.214 0.652 0.063
SPECIFICITY 0.68 0.610 0.387 0.589 0.099
SENSITIVITY 0.79 0.690 0.273 0.700 0.090
PRECISION 0.76 0.726 0.267 0.696 0.057
PR AUC 0.85 0.843 0.162 0.745 0.058
ROC AUC 0.81 0.713 0.284 0.691 0.067

Table C.4: Performances of MVI LR with Clinical+Portal(Core) features with Lasso
Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.72 0.670 0.213 0.671 0.060
SPECIFICITY 0.65 0.630 0.393 0.610 0.104
SENSITIVITY 0.77 0.707 0.262 0.718 0.089
PRECISION 0.74 0.753 0.251 0.713 0.057
PR AUC 0.84 0.867 0.150 0.780 0.055
ROC AUC 0.80 0.757 0.264 0.721 0.065

Table C.5: Performances of MVI LR with Clinical+Portal(Core) features with Principal
Components Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.73 0.687 0.227 0.677 0.064
SPECIFICITY 0.67 0.647 0.381 0.615 0.107
SENSITIVITY 0.78 0.647 0.381 0.723 0.091
PRECISION 0.76 0.767 0.252 0.718 0.062
PR AUC 0.84 0.862 0.156 0.782 0.056
ROC AUC 0.79 0.752 0.261 0.723 0.064
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Table C.6: Performances of MVI LR with Clinical+Portal(Core+Margin) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.589 0.224 0.619 0.062
SPECIFICITY 0.69 0.543 0.407 0.549 0.110
SENSITIVITY 0.78 0.627 0.290 0.672 0.083
PRECISION 0.77 0.681 0.292 0.668 0.057
PR AUC 0.88 0.815 0.177 0.736 0.058
ROC AUC 0.84 0.673 0.297 0.662 0.067

Table C.7: Performances of MVI LR with Clinical+Portal(Core+Margin) features with
Forward/Stepwise Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.73 0.736 0.199 0.717 0.056
SPECIFICITY 0.65 0.647 0.347 0.629 0.098
SENSITIVITY 0.80 0.810 0.245 0.783 0.078
PRECISION 0.75 0.788 0.199 0.740 0.053
PR AUC 0.83 0.877 0.126 0.813 0.052
ROC AUC 0.78 0.787 0.210 0.755 0.060

Table C.8: Performances of MVI LR with Clinical+Portal(Core+Margin) features with
Ridge Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.641 0.216 0.654 0.063
SPECIFICITY 0.69 0.610 0.387 0.592 0.112
SENSITIVITY 0.78 0.667 0.287 0.701 0.085
PRECISION 0.77 0.726 0.277 0.699 0.061
PR AUC 0.88 0.851 0.145 0.784 0.053
ROC AUC 0.84 0.737 0.247 0.716 0.063
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Table C.9: Performances of MVI LR with Clinical+Portal(Core+Margin) features with
Lasso Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.76 0.641 0.216 0.654 0.063
SPECIFICITY 0.67 0.610 0.387 0.592 0.112
SENSITIVITY 0.83 0.667 0.287 0.701 0.085

PRECISION 0.77 0.726 0.277 0.699 0.061
PR AUC 0.87 0.851 0.145 0.784 0.053
ROC AUC 0.83 0.737 0.247 0.716 0.063

Table C.10: Performances of MVI LR with Clinical+Portal(Core+Margin) features with
Principal Components Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.75 0.643 0.196 0.657 0.064
SPECIFICITY 0.70 0.627 0.355 0.592 0.103
SENSITIVITY 0.78 0.660 0.273 0.706 0.091
PRECISION 0.78 0.722 0.261 0.700 0.058
PR AUC 0.86 0.854 0.137 0.773 0.056
ROC AUC 0.82 0.740 0.235 0.705 0.071

Table C.11: Performances of Grading LR with Clinical+Portal(Core) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.72 0.637 0.193 0.635 0.057
SPECIFICITY 0.92 0.847 0.197 0.832 0.076
SENSITIVITY 0.33 0.230 0.349 0.229 0.102
PRECISION 0.68 0.287 0.424 0.412 0.165
PR AUC 0.62 0.614 0.266 0.415 0.086
ROC AUC 0.71 0.580 0.323 0.521 0.086
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Table C.12: Performances of Grading LR with Clinical+Portal(Core) features with For-
ward Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.71 0.690 0.188 0.684 0.043
SPECIFICITY 0.96 0.927 0.170 0.921 0.052
SENSITIVITY 0.23 0.240 0.377 0.197 0.081
PRECISION 0.76 0.297 0.446 0.572 0.218
PR AUC 0.55 0.646 0.273 0.467 0.092
ROC AUC 0.66 0.603 0.305 0.554 0.093

Table C.13: Performances of Grading LR with Clinical+Portal(Core) features with Step-
wise Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.73 0.710 0.165 0.692 0.046
SPECIFICITY 0.97 0.950 0.126 0.936 0.054
SENSITIVITY 0.24 0.250 0.364 0.189 0.086
PRECISION 0.80 0.330 0.454 0.611 0.242
PR AUC 0.54 0.638 0.269 0.461 0.099
ROC AUC 0.63 0.595 0.314 0.548 0.096

Table C.14: Performances of Grading LR with Clinical+Portal(Core) features with Ridge
Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.72 0.637 0.193 0.635 0.057
SPECIFICITY 0.92 0.847 0.197 0.832 0.076
SENSITIVITY 0.33 0.230 0.349 0.229 0.102
PRECISION 0.68 0.287 0.424 0.412 0.165
PR AUC 0.62 0.614 0.266 0.415 0.086
ROC AUC 0.71 0.580 0.323 0.521 0.086
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Table C.15: Performances of Grading LR with Clinical+Portal(Core) features with Lasso
Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.645 0.178 0.646 0.060
SPECIFICITY 0.96 0.867 0.194 0.844 0.075
SENSITIVITY 0.32 0.220 0.334 0.239 0.100
PRECISION 0.79 0.287 0.424 0.441 0.178
PR AUC 0.61 0.618 0.265 0.436 0.091
ROC AUC 0.70 0.587 0.318 0.546 0.087

Table C.16: Performances of Grading LR with Clinical+Portal(Core) features with Prin-
cipal Components Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.68 0.640 0.177 0.637 0.048
SPECIFICITY 0.93 0.887 0.182 0.869 0.068
SENSITIVITY 0.20 0.170 0.326 0.158 0.076
PRECISION 0.59 0.210 0.388 0.396 0.201
PR AUC 0.53 0.587 0.247 0.392 0.082
ROC AUC 0.67 0.543 0.298 0.525 0.083

Table C.17: Performances of Grading LR with Clinical+Portal(Core+Margin) features

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.79 0.628 0.202 0.641 0.056
SPECIFICITY 0.93 0.793 0.252 0.789 0.076
SENSITIVITY 0.51 0.320 0.384 0.334 0.113
PRECISION 0.78 0.317 0.393 0.443 0.119
PR AUC 0.75 0.641 0.277 0.459 0.083
ROC AUC 0.83 0.598 0.328 0.587 0.077
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Table C.18: Performances of Grading LR with Clinical+Portal(Core+Margin) features
with Forward Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.724 0.190 0.706 0.048
SPECIFICITY 0.92 0.900 0.175 0.880 0.061
SENSITIVITY 0.39 0.360 0.400 0.348 0.107
PRECISION 0.71 0.430 0.458 0.598 0.138
PR AUC 0.63 0.668 0.283 0.531 0.092
ROC AUC 0.73 0.642 0.328 0.649 0.076

Table C.19: Performances of Grading LR with Clinical+Portal(Core+Margin) features
with Stepwise Selection

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.74 0.715 0.182 0.710 0.044
SPECIFICITY 0.93 0.900 0.175 0.890 0.054
SENSITIVITY 0.73 0.330 0.395 0.338 0.098
PRECISION 0.71 0.393 0.452 0.610 0.138
PR AUC 0.59 0.683 0.274 0.531 0.086
ROC AUC 0.73 0.662 0.308 0.673 0.069

Table C.20: Performances of Grading LR with Clinical+Portal(Core+Margin) features
with Ridge Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.79 0.628 0.202 0.641 0.056
SPECIFICITY 0.93 0.793 0.252 0.789 0.076
SENSITIVITY 0.51 0.320 0.384 0.334 0.113
PRECISION 0.78 0.317 0.393 0.443 0.119
PR AUC 0.75 0.641 0.277 0.459 0.083
ROC AUC 0.83 0.598 0.328 0.587 0.077
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Table C.21: Performances of Grading LR with Clinical+Portal(Core+Margin) features
with Lasso Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.76 0.658 0.197 0.659 0.054
SPECIFICITY 0.93 0.825 0.242 0.811 0.070
SENSITIVITY 0.41 0.340 0.380 0.347 0.111
PRECISION 0.76 0.367 0.419 0.478 0.119
PR AUC 0.72 0.684 0.267 0.497 0.088
ROC AUC 0.82 0.678 0.274 0.633 0.075

Table C.22: Performances of Grading LR with Clinical+Portal(Core+Margin) features
with Principal Components Regression

Metrics Entire Dataset Cross-Validation 1 Cross-Validation 2
Mean Std Mean std

ACCURACY 0.75 0.657 0.183 0.647 0.054
SPECIFICITY 0.91 0.835 0.195 0.805 0.073
SENSITIVITY 0.43 0.310 0.386 0.321 0.105
PRECISION 0.70 0.327 0.407 0.456 0.122
PR AUC 0.66 0.650 0.283 0.458 0.073
ROC AUC 0.77 0.620 0.314 0.599 0.072
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In this Appendix the Hazard Ratios with 95% CI and Estimates of the Baseline Survival
Curves of the various Cox-PH models for OS and RFS are reported.

Figure D.1: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
OS with Clinical Preoperative features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves

Figure D.2: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
OS with Clinical Postoperative features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves
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Figure D.3: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
OS with Clinical Preoperative + Portal(Core) features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves

Figure D.4: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
OS with Clinical Postoperative + Portal(Core) features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves
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Figure D.5: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
OS with Clinical Preoperative + Portal(Core+Margin) features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves

Figure D.6: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
RFS with Clinical Preoperative features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves
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Figure D.7: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
RFS with Clinical Postoperative features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves

Figure D.8: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
RFS with Clinical Preoperative +Portal(Core) features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves
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Figure D.9: HR with 95% CI and estimated baseline survival curves of Cox-PH model for
RFS with Clinical Postoperative +Portal(Core) features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves

Figure D.10: HR with 95% CI and estimated baseline survival curves of Cox-PH model
for RFS with Clinical Preoperative +Portal(Core+Margin) features

(a) Hazard Ratio (b) Estimated Baseline Survival Curves
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