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Abstract

Tropical cyclones (TCs) are among the most devastating extreme meteorological events,
causing every year dramatic losses both in terms of life and economic damages. Studying
TCs can help minimising their impacts on local economies. In this work, we contribute a
methodology to estimate Tropical Cyclones intensity from brightness temperature images
using Convolutional Neural Networks (CNNs). In particular, we provide new techniques to
alleviate the intrinsic imabalance in existing datasets, which make it difficult for learning
algorithms to generalize to rare classes. This issue is particularly relevant in TC studies,
since high-intensity events are more rare than weaker ones. The dataset considered here is
composed of satellite images from GridSat-B1 and observed intensities from IBTraCS, and
it represents the largest dataset available in the literature. Following the transfer learn-
ing method, we test ResNet, DenseNet and EfficientNet on the original dataset, freezing
the deeper convolutional layers and adapting the head of the network to the particular
regression problem. We use a Gini-inspired coefficient to evaluate how much the distribu-
tion of samples differs from the uniform one and, therefore, to monitor the effects of the
augmented dataset on the trained network performances. Clear trends in performance
are detected according to different combinations of augmentation techniques employed
to build the training dataset. We adapt random erasing and use it in combination with
traditional augmentation approaches, such as horizontal and vertical flipping or random
rotation, demonstrating it to be effective in preventing overfitting. Label distribution
smoothing is also employed here to alleviate the imbalance between contiguous target
labels, coupled with the Focal-R loss function to enhance the learning of less represented
targets. Relevant improvements in performances are obtained in most intense classes on
the test dataset, demonstrating to be a promising technique. The performance obtained
on the different trained models show that the chosen data augmentation strategy has a
relevant impact on the final mean absolute error, suggesting it can enhance the general-
isability of the model. Lastly, a brief discussion of Grad-CAM heatmaps is introduced
as a representation of features used by the CNN to predict new images. Three classes of
features are identified, in which image borders, ring-like shapes or concentrated circular
gradients are highlighted, respectively. These initial observations suggest that in the first
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scenario, the neural network seeks information that crosses the image boundaries. In the
second scenario, it appears that the network is looking for temperature values related to
wind patterns located at a certain radius. In the third scenario, the network seems to
focus on identifying and analyzing particular features within the image, such as the eye
of a tropical cyclone or distinctive cloud patterns, and disregarding other portions of the
image. This is accomplished by applying a focused gradient to the relevant area of the
image.
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Abstract in lingua italiana

I cicloni tropicali (TC) sono tra gli eventi meteorologici estremi più devastanti e causano
ogni anno perdite drammatiche sia in termini di vite umane che di perdite economiche.
Lo studio dei cicloni tropicali può contribuire a migliorare le capacità di previsione e, di
conseguenza, a minimizzare il loro impatto sulle economie locali. Il presente studio af-
fronta il problema della stima dell’intensità dei cicloni tropicali tramite l’interpretazione
delle immagini satellitari con l’utilizzo del machine learning. In particolare, per svolgere
tale compito vengono utilizzate Convolutional Neural Network (CNN), che ricevono come
input immagini relative alla temperatura radiante e restituiscono una stima sulla velocità
massima del vento. Il dataset utilizzato è costituito da un insieme di immagini prese da
GridSat (database del NOAA), rappresentanti cicloni tropicali, di varia intensità e sparsi
su tutto il globo, e dai target presi da IBTraCS. Questo dataset è il più vasto utilizzato
fino ad ora in letteratura. I dati relativi a questo fenomeno climatico sono caratterizzati
dal problema del data imbalance, avendo molti campioni relativi alle intensità meno el-
evate e una scarsa rappresentatività dei fenomeni più estremi. Lo scopo principale dello
studio è quello di proporre nuove tecniche che siano in grado di alleviare questo problema
in modo più efficiente rispetto a quanto fatto fino ad ora. Lápproccio scelto è quello del
transfer learning, grazie al quale è possibile prendere delle reti neurali che sono già state
allenate su dataset notevolmente più grandi e sono state ottimizzate per l’estrapolazione
di elementi dall’immagine. Per adattare la rete neurale allo scopo desiderato è necessario
ricostruire parte dell’architettura, concentrandosi soprattutto sui fully connected layer.
Pertanto, definiti gli ultimi layer della rete, si effettua un training per calibrare i relativi
parametri. Nel frattempo, i parametri degli strati più profondi rimarranno costanti. Per
affrontare questo tema, come prima cosa viene definito un coefficiente ispirato a quello
proposto da Gini, adattandolo a tale scopo. Tale coefficiente è una misura della diver-
sità della distribuzione del dataset ottenuto rispetto alla distribuzione uniforme. Questo
coefficiente si è rivelato particolarmente utile al monitoraggio dell’efficacia delle diverse
tecniche di data augmentation, fornendo un’indicazione più puntuale rispetto al numero
di input. Confrontando varie tecniche di data augmentation, viene proposto un adatta-
mento del random erasing al problema, riproducendo la reale difficoltà della perdita di dati



all’interno delle immagini satellitari. Tale tecnica si è rivelata efficace, soprattutto sulle
classi più intense e meno rappresentate, dimostrandosi una valida alternativa alle tecniche
utilizzate in letteratura. Successivamente, viene proposto un cambiamento nell’approccio
da seguire. Si testa in tal senso l’efficacia delle tecniche Label Distribution Smoothing ac-
coppiate ad una loss function che sia funzione della frequenza dei target. L’LDS, tramite
un filtro gaussiano, allevia le differenze intrinseche presenti nella numerosità dei target
presenti per valore di velocità del vento, trasferendo l’informazione ai label limitrofi. La
loss function testata è la Focal-R, funzione di un peso inversamente proporzionale alla
frequenza assoluta del target all’interno del campione. In questo modo, viene pesato
maggiormente lo scarto tra valore reale e la predizione di una classe meno rappresentata,
inducendo la rete ad imparare maggiormente da questa per abbassare il valore globale
della loss function. Tali tecniche si sono rivelate molto efficaci sulle classi più intense
e meno rappresentate. Infine, vengono brevemente introdotte le heatmaps ispirate alla
tipologia Grad-CAM come metodologia per la visualizzazione di feature importanti per
la rete neurale nella stima dell’intensità. Vengono individuate tre classi principali di im-
magini. Nella prima, la rete pone peso maggiore in prossimità del bordo dell’immagine;
ciò fa sospettare che in alcuni casi l’informazione sia tagliata fuori a valle della scelta
della dimensione. La seconda classe presenta delle strutture ad anello; in tali casi la stima
viene fatta in base a particolari informazioni contenute ad un raggio dal centro del ciclone
più o meno costante. La terza classe presenta delle strutture circolari, con un gradiente
delimitante una zona molto ristretta dell’immagine. In questo caso, quando la rete riesce
a distinguere un elemento importante nell’immagine, come ad esempio l’occhio del ciclone,
si concentra attorno a tale figura, tralasciando il resto.
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Introduction

0.1. The context

Tropical cyclones (TCs), also known as hurricanes in the western North Atlantic (NA)
and eastern North Pacific (NP) regions and typhoons in the west of NP (Emanuel, 2003),
are some of the most devastating natural disasters in the world in terms of both damages
and fatalities. Between 2000 and 2017, TCs caused losses equating to about 946 billion
USD, one-third of the total damages caused by natural disasters in that period (Re,
2018). The risk associated with a TC (as for many other natural disasters) is a function
of hazards, exposure, and vulnerability (WGII, 2014), the latter being mainly related in
the literature to the TC’s maximum wind speed, which is therefore taken as a measure of
their intensity(Schmidt et al., 2010; Murnane and Elsner, 2012; Ye et al., 2020).

Recently, deep learning (DL) algorithms, especially convolutional neural networks (CNN),
have been used to determine the intensity (i.e., wind speed) of TCs, a task referred
to as Tropical Cyclone Intensity Estimation (TCIE). TCIE can be framed as either a
classification problem, in which a TC is assigned to a pre-determined class of intensity
(according to the Saffir-Simpson scale, for example), or as a regression problem, in which
the exact intensity of the TC is estimated. Nowadays, such ML models give results
comparable to (and sometimes better than) state-of-the-art physically based models used
in meteorological centres. Nevertheless, improvements are expected in the following years,
and promising developments have already been registered. In the coming years, the
scientific community aspires to the development of tools that can provide highly accurate
estimations of TC intensity in almost real-time. These tools will overcome the limitations
of current non-ML techniques that rely on human supervision.

0.2. Objectives of the thesis

The availability of large amounts of quality data is a crucial bottleneck for the performance
of deep learning algorithms. In the case of TCIE, very high-intensity events are much
rarer than weaker ones, leading to a severe data imbalance. Thus, it is to be expected
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that deep learning algorithms applied to this task are prone to perform well on weaker
TCs (several examples of which would have been present in the training data) and poorly
on the most intense (and rare) ones, which are, unfortunately, also the most dangerous.
Two potential solutions to this data imbalance issue exist: obtaining more images or
generating new, synthetic ones. For TCIE, the first solution would be ineffective, as the
data imbalance is not due to an improper sampling of the events in climate datasets, but
rather it is intrinsic to the very nature of the phenomenon; in other words, if more data
were gathered (by taking images from multiple satellites, for example), the distribution
of the intensity of the TCs would remain highly imbalanced. On the other hand, data
augmentation could alleviate the imbalance by generating new synthetic images with a
frequency that depends on the rarity of an event; in other words, more synthetic images
could be developed for extreme, rare events than for weak, common ones, thus alleviating
the imbalance. Data augmentation is crucial to many deep learning models (especially
in Computer Vision). In TCIE, however, its use has been sparse and not guided by first
principles but rather by empiricism and trial and error. Indeed, though some authors did
use some form of data augmentation within their deep learning pipelines for TCIE, no
guidelines exist in the literature regarding which methods of data augmentation work best
specifically for this task, nor how the amount of augmentation done affects the ultimate
performance of a given model. The dataset, composed of GridSat-B1 IR channel at
11 µm as input and IBTraCS information on Maximum Sustained Winds as a target,
represents the largest one available in the literature. Taking advantage of transfer learning,
State of The Art (SoTA) deep-CNNs are tested to define the backbone architecture more
suitable for the purpose. Among the ones tested, EfficientNet-B0 was selected since it
provided the best performance in validation. Therefore, this thesis aims to investigate
the effectiveness of different data augmentation methods to address the data imbalance
problem of TCIE. In particular, other than testing common data augmentation methods
such as horizontal/vertical flipping and rotation, this thesis proposes three novelties:

• The use of the Adapted Gini coefficient as a metric to be used as a measure to find
the best distribution of the augmented data;

• Random erasing as a novel data augmentation method for TCIE to specifically
target data quality issues that arise in this field (i.e., random missing data in satellite
images);

• Label Distribution Smoothing (LDS) and Focal Loss (FL) as additional data aug-
mentation methods;

As climatologists often report concerns about the lack of interpretation of deep learning
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Figure 1: Sketch of the integrated approach followed by the CLINT project.

models, following the intuition of Lee et al. (2019), the analyses performed in this thesis
will be visualised through heatmaps, which will give insights into what parts of the images
the machine learning models focus on at any given time.

0.3. The CLINT project

This thesis is developed as part of the Climate Intelligence (CLINT) project. CLINT is
an EU H2020 Programme founded project. It aims to develop an Artificial Intelligence
framework to study Extreme Events (EEs) such as tropical cyclones, heatwaves and warm
nights, droughts, and floods, to improve the detection, causation, and attribution of EEs,
but also to quantify their impacts in relation to climate conditions, considering future
projections. The project’s final objective is to develop AI-enhanced Climate Services to
obtain operative Web Processing Services.
CLINT is organised into four macro components (1):

• Climate Intelligence, related to the development of new Machine Learning algo-
rithms;

• AI-enhanced Climate Science, to enhance the performance of algorithms for the
detection, causation, and attribution of EEs;

• AI-enhanced Climate Services, to develop, at continental and local scales, the water,
energy, and food (WEF) Nexus;



4 | Introduction

• Climate Services Information Systems, to develop web processing services and com-
mercial demos;

This paragraph was broadly taken from CLINT website 1

0.4. Outline of the thesis

The thesis is organised as follows: Chapter 2 provides an introduction to the physics of
TCs physics and their relation with climate and climate change; Chapter 3 reviews the
state of the art of techniques for intensity estimation and the problems of data imbalance
and data augmentation; Chapter 4 details the experiments carried out during this thesis,
and Chapter 5 reports the results; and finally, Chapter 6 discusses the results and potential
future research directions.

1https://climateintelligence.eu/
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1.1. An Introduction to Tropical Cyclones

Tropical cyclones (TCs for short) are extreme meteorological events occurring in most
tropical ocean basins, threatening populations living on the coasts by wreaking havoc on
infrastructures, shipping, and other offshore activities (Seneviratne et al., 2012).

A tropical cyclone is defined by (Gray, 1975) as a "closed circulation system with a warm
core of at least 5◦ diameter, extending through most of the troposphere with a little vertical
slope and whose relative vorticity at lower levels and inner 100-200 km radius is greater
than 100x10−6 s−1, which requires a horizontal wind speed velocity at 100− 200 km radius
between 5−10m/s. Tropical cyclones are fuelled mainly by heat exchange between tropical
oceans and the atmosphere.

Much work has been done trying to model these catastrophic phenomena, but still many
problems persist and full understanding is missing. Predictive skills are limited, especially
in terms of TC genesis, intensity, and risk forecasts (Chen et al., 2020).

The classification of TCs commonly relies upon the time-averaged maximum wind speed
recorded at a 10 m height. The averaging time interval is usually 10 min. Some exceptions
can be found, such as the U.S. convention which uses a time interval of 1 min. One of the
most used classifications follows below (Emanuel, 2003):

1. Tropical depression, with maximum wind speed lower or equal to 17 m s−1;

2. Tropical storms, when their maximum wind speed is in between 18 m s−1 and
32 m s−1;

3. Severe tropical cyclones when their maximum wind speed is above 33 m s−1;

Another common classification of TCs is the so called Saffir-Simpson Hurricane Wind
Scale (Saffir, 1973; Simpson, 1974), which divides TCs into five categories based on max-
imum sustained wind speed:
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Table 1.1: Saffir-Simpson Hurricane Wind Scale (from NOAA site).

Category Sustained Winds Damages

1 64-82 kt (112-153 km/h) Very dangerous winds will
produce some damage:
Well-constructed frame
homes could have damage
to roof, shingles, vinyl
siding and gutters. Large
branches of trees will snap
and shallowly rooted trees
may be toppled. Extensive
damage to power lines and
poles likely will result in
power outages that could
last a few to several days.

2 83-95 kt (154-177 km/h) Extremely dangerous winds
will cause extensive dam-
age: Well-constructed
frame homes could sustain
major roof and siding dam-
age. Many shallowly rooted
trees will be snapped or
uprooted and block nu-
merous roads. Near-total
power loss is expected with
outages that could last from
several days to weeks.

Continued on next page
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Table 1.1 – continued from previous page
Category Sustained Winds Damages
3 (Major) 96-112 kt (178-208 km/h) Devastating damage will

occur: Well-built framed
homes may incur major
damage or removal of roof
decking and gable ends.
Many trees will be snapped
or uprooted, blocking nu-
merous roads. Electric-
ity and water will be un-
available for several days
to weeks after the storm
passes.

4 (Major) 113-136 kt (209-251 km/h) Catastrophic damage will
occur: Well-built framed
homes can sustain severe
damage with loss of most
of the roof structure and/or
some exterior walls. Most
trees will be snapped or
uprooted and power poles
downed. Fallen trees and
power poles will isolate res-
idential areas. Power out-
ages will last weeks to pos-
sibly months. Most of the
area will be uninhabitable
for weeks or months.

Continued on next page
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Table 1.1 – continued from previous page
Category Sustained Winds Damages
5 (Major) 137 kt or higher (252 km/h or higher) Catastrophic damage will

occur: A high percentage
of framed homes will be
destroyed, with total roof
failure and wall collapse.
Fallen trees and power poles
will isolate residential areas.
Power outages will last for
weeks to possibly months.
Most of the area will be
uninhabitable for weeks or
months.

Globally, approximately 80 TC develop each year, most of which form during summer and
early autumn. Some difference in timing can be detected among different ocean basins;
thus, the respective TC seasons can be summed up as follows (Emanuel, 2003):

• In the North Atlantic (NA): June-November (peak in September);

• In the Eastern North Pacific (ENP): peak activity in July and August;

• In the Western North Pacific (WNP): peak activity in late Summer, but their ac-
tivity has been detected year round;

• In South Pacific (SP) and South Indian (SI) Oceans: October-June;

1.2. Basics of Tropical Cyclone physics

The cyclonic flow (i.e., a clockwise (in the Southern Hemisphere) or counterclockwise (in
the Northern Hemisphere) circulation of wind) of a TC does not involve its entire volume,
and is actually inverted near the top of the storm. Moving radially from the centre, wind
speed first increases rapidly, reaching a maximum at 10-100 km from the center; it then
decreases with a r−1/2 law before a sudden decrease at further radii. At 100-1000 km
from the center, wind speed is indistinguishable from that of the environment (Emanuel,
2003).
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Figure 1.1: Cutaway of the structure of a tropical cyclone (from Emanuel (2003)). On
the right, the results from numerical simulation of vertical component of the velocity. On
the left, the tangential component measured by aircraft reconnaissance.

The structure of TCs is so that maximum wind speeds occur near the surface, decays
slowly along the height of the TC, and reverses its direction at the top. The vertical
velocity (5-10 ms−1) has its maximum in the eyewall, a ring of deep convection between
the outer limit of the eye and 20-50 km in external radial direction (Emanuel, 2003).
The maximum value is usually located in the upper part of the troposphere (Margaret
A. Jorgensen, 1985).

The eye of a TC is an almost cloud-free region which is usually observable in well-
developed, stronger storms. Inside the eye, air is slowly subsiding, whereas outside it
the slow, descending motion can be interrupted and inverted by a spiral band of cumu-
lonimbus clouds (Emanuel, 2003).

TC physics are characterized by the conservation of the angular momentum (M) per unit
mass around the axis of the storm.

M = rV +
1

2
fr2 (1.1)
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The first term is proportional to a component rV (radius of the storm times tangential
velocity) and 1/2 fr2 which represents the contribution of the rotation of Earth to the
angular momentum. The angular momentum decreases upward and inward, having the
greatest variation in the eyewall. The specific entropy is a variable dependent on temper-
ature, pressure and water concentration. It increases proceeding radially to the center of
the cyclone and reaching a maximum inside the eyewall. Looking at the vertical trend and
proceeding from near the surface to the top layers, this variable experiences a decrease
and then an increase.

Also the specific entropy, function of temperature, pressure and water concentration is
conserved (Emanuel, 2003).

1.3. Basics of Tropical Cyclones Energetics

In Emanuel (1986), mature TCs are compared to an idealized Carnot engine, in which
air parcels follow a path that can be summed up into isothermal expansion, adiabatic
expansion, isothermal compression, and adiabatic compression.An air parcel approaching
the center of the cyclone, is subjected to a pressure drop and an increase in entropy, due
to both enthalpy transfer from the sea surface and dissipation of kinetic energy (Bister
and Emanuel, 1998). The most relevant sink of energy is given by the angular momentum
decrease provoked by frictional torque with the sea surface. Once the eyewall is reached,
the movement becomes ascending and is nearly adiabatic and without frictional torque,
moving from higher to lower pressure levels. At this point the movement becomes nearly
horizontal and ideally continues without closing the cycle (Emanuel, 1986).
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Figure 1.2: Results of a numerical models of a Tropical Cyclone seen as a Carnot engine
(from Emanuel (2003). Shading of colours represents the measure of specific content of
air entropy (the warmer the colour, the higher the entropy content. Black curves denote
contours of constant angular momentum per unit mass (increasing with radius). Arrows
qualitatively quantify air motion.

Emanuel (1986) also argues that even if in numerical modelling it is necessary to force
the Carnot engine to be closed, it appears to well represent real phenomena. Thus, it
is ideally closed at a point where air starts its descending movement of entropy capture
thanks to electromagnetic radiation, and, because of mixing with the surroundings, an-
gular momentum is gained. This portion of the cycle is nearly isothermal. Then, mixing
with moist and dry air, the air parcel looses entropy in a path which closes the cycle and
in which the angular momentum is conserved. The work produced is then transformed
back into heat through turbulent dissipation in the boundary layer.

Emanuel (2003) derives in his paper an approximated formula which links the square
of maximum wind speed with the deviation of the sea surface temperature and a "cold
source" in the environment surrounding the TC, and the difference of enthalpy of air
close to the surface and the air in contact with the ocean(assumed to be saturated with
water vapour characterised by a temperature equal to the temperature of the ocean).
He speculates that the energy transfer occurs because of this enthalpy difference which
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endorses convection. The greenhouse effect hinders net long-wave radiative flux from the
sea, thus since the squared velocity of the wind speed is directly proportional to the sea
surface temperature, there is concern that climate change could provoke an increase of
TC intensity (Emanuel, 2003).

1.4. Tropical cyclones genesis

Historically, modelers were focused on reproducing the growth of an already existing
tropical cyclone rather than the study of its genesis, highlighting the role (among other
variables) of frictional convergence, condensation heating, and ocean energy exchange.
Tropical cyclone intensification is indeed quite well understood: after the formation of cy-
clones, lateral energy dissipation is undermined and energy builds up in the inner region.
Momentum, energy, and vapour are attracted to the central part, thanks to frictionally
forced convergence processes. The conditions favourable for TC genesis are not widespread
throughout the whole globe (Gray, 1975, 1998).

According to historical observations, we can narrow the search for the drivers of TC
genesis to within the following limits (Gray, 1975):

1. TCs form far 4-5◦ from the equator and are more probable in the belts of 5-15◦

latitude. Moreover, they are limited to below 22◦ and 35◦ latitude in the Southern
Hemisphere and Northern Hemisphere respectively;

2. The majority of all TCs are found in the Eastern Hemisphere and are especially
favoured for genesis in the regions centered at 90◦E, 140◦E and 105◦W;

3. The majority of TCs are generated in summer, even if in the WNP they can occur
throughout the year;

4. In the North Indian Ocean (between 5◦ and 15◦) there are two main seasons favourable
for TCs formation;

5. TCs do not form in Southeast Pacific and South Atlantic oceans;

6. In the Inter-Tropical Convergence Zone (ITCZ), TCs formation is especially likely;
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Figure 1.3: Distribution of TCs’ origin by longitude. Image taken from Gray (1975).

Interestingly, about 80-85% of TCs originate near the ITCZ, (Gray, 1975), meanwhile
almost all the remaining ones form in association with the trade winds and an upper
atmospheric trough to their northwest (Sadler, 1967, 1976).

Figure 1.4: TCs’ formation ocean basins. Image taken from NOAA site.

This wide share of TC percentage is caused by weak tropospheric vertical wind shear and
the close similarity of 200-500 mb wind and cloud cluster velocities.Gray (1975, 1979)
Moreover, favourable conditions are met if in the surroundings anticyclonic vertical wind
shear assumes large values (Gray, 1968; McBride, 1981; McBride and Zehr, 1981). In
addition, the large-scale low-level tropospheric winds at a certain distance (300 to 600
km) often have larger values in developing systems (Gray, 1968; McBride, 1981). This is
because this is favourable to spin up of the outer growing radius tangential winds (Gray,
1998).

The genesis of TCs starts from the accumulation of enthalpy in the upper troposphere
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(500-300 mb) over a small area of 200-300 km, producing a thickness increase (the top
of the system reaches 100 mb) and a small surface decrease. It is clear that in order
to understand cyclone genesis it is crucial to understand the reasons for this enthalpy
accumulation.

As the cumulus convection proceeds, evaporating the water, the latent heat absorption
induces a cooling effect in the environment. This cloud re-evaporation is especially large
in the lower troposphere (Lopez, 1973; Gray, 1973; Yanai et al., 1973). The latent heat
is then exported as potential energy to the surrounding environment. Sinking motions
arise from the cumulus: part in the surrounding environment and removed from it, and
part in the surrounding clear regions or in the distant anticyclones where the adiabatic
sinking balances the atmospheric radiational losses. Furthermore, for the genesis of a TC
it is fundamental that the compensation for the upward movement of the cumulonimbus
(Cb) occurs in the local environment and that a sufficient amount of enthalpy is not dissi-
pated horizontally by ventilation or divergence. It is indeed necessary that the downward
return flow of the Cb induces a compressional sinking motion able to heat up the upper
troposphere (Gray, 1975).

On one hand, in the cloud clusters the gradient of temperature has a linear correlation
with the pressure, which causes equal amounts of enthalpy at any pressure level for equal
amounts of mass subsidence. On the other, a non-linear relation links specific humidity
and pressure, which means that the lower troposphere is drier than the upper layers for
same magnitudes of mass subsidence (Gray, 1975).
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Figure 1.5: Potential temperature (θ) and specific humidity (q) in tropical cloud clusters.
Image taken from Gray (1975).

There is a vertical variation in net tropospheric warming due to sinking-drying promoted
vapor loss: in the lower troposphere evaporational cooling is dominant, while in the upper
troposphere the sinking-drying is larger than the required evaporational cooling. As a
consequence, middle and upper layer of the troposphere are the most favourable portions
in which Cb induced enthalpy increase can occur (Gray, 1975).

Cloud clusters are organised in an extensive layered cloud structure. This kind of struc-
ture is responsible for another enthalpy gain, since the radiational loss is reduced. In
cloud clusters, a significant portion of the upward-moving mass sinks locally, causing an
up-moist and down-dry recycling circulation. This recirculation pattern is more dominant
in the lower troposphere than in other layers. The sinking-drying motion promotes vapor
replacement from direct transport from the cumulus (Gray, 1973).

If the accumulation of energy in the upper level of the atmosphere is inhibited by di-
vergence or advection and ventilation, TC formation is hampered. Indeed, Gray (1975)
finds that advection and ventilation are fundamental in understanding whether TCs can
complete the formation process

Gray devoted part of his studies to the research of parameters correlated with seasonal
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tropical cyclone frequency. This statistic is correlated to the combination of six parame-
ters:

1. Coriolis parameter (f);

2. Low-level relative vorticity (ζr);

3. Inverse of the tropospheric vertical wind shear (1/Sz);

4. Ocean thermal energy (E) ;

5. Difference in equivalent potential temperature between the surface and 500 mb (∆θe);

6. Relative humidity (RH) in the mid-troposphere;

Multiplying these parameters between each other, the seasonal frequency of TC formation
(Seasonal Genesis Frequency, SGF) at any location can be estimated.

SGF ∝ ζr · f · 1

Sz

· E ·∆θe ·RH

The equation can be divided into two sub-products:a dynamic potential, given by the
product of the first three parameters, and a thermal potential, given by the product of
the remaining parameters listed above.

However, as highlighted by Gray, the information conveyed by his index is only an esti-
mate of the long-term frequency of occurrence, with no further information to be used
in TC forecasting which has day-to-day requirements in the formation prediction. These
parameters are neither varying on a daily basis, nor assume values that allow us to dis-
tinguish between developing and non developing phenomena (Gray, 1975).

In his research, Gray noticed that environmentally induced asymmetric lower tropospheric
wind surge plays a crucial role and that concentrated mesoscale deep convection must be
present. In particular TC formation is more probable if low-level wind surges penetrate
a cloud cluster or a tropical disturbance, where conditions of concentrated high vorticity
are present (Gray, 1975).

TC formation is a complex process in which many factors contribute simultaneously. Even
when the climatological requirements are met, some tropical disturbances evolve into TCs,
but most do not. Indeed, even if favourable conditions are present, a TC may still fail to
develop. Generally, three basic requirements must be present to make TC formation at
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least a possibility:

1. Favourable climatology (in terms of region, season, SST,...);

2. Correct Synoptic Flow pattern (monsoon trough or high vorticity with small vertical
wind shear, etc);

3. Active Mesoscale Convection System (MCS) within a cloud cluster system;

As previously said, these conditions are necessary but not sufficient, meaning some param-
eters are still missing from the equation. For example, the presence or lack of concentrated
wind convergence at the center of a tropical disturbance plays a key role. Further, en-
vironmentally driven asymmetrical wind surges must occur to trigger intense convective
outbreaks at locations where MCS induced previously high relative vorticity. These con-
ditions may evolve in raising Convective Vortices (CVs) which concentrate vorticity, and
if a second wind surges occur, it favours the wind spin-up.

Another key factor is the presence of bursts of low-level wind convergence in areas of
previously developed relative vorticity, such as areas characterised by CVs. If this occurs,
a rapid increase in vorticity is allowed; this is possible only if a strong Externally Forced
Convergence (EFC) process is activated (Gray, 1998). Moreover, another important fea-
ture is related to the movement of a disturbance into a quasi-stationary wind field in a way
that is able to bring a rapid increase in the convergence near the center of the disturbance
(Gray, 1998). The tropical disturbance then shall intensify. This step is more efficient if
the externally forced mass convergence is concentrated over a small central area of the
disturbance. The rapid wind spin up can then spread outward (Gray, 1998).

Once a strong enough second surge breaks out, an upward movement arises that drives
air parcels near saturation conditions. If this happens, these near-saturation conditions
may cause the suppression of strong downdrafts and the influences of entrainment. This
causes the establishment of Extreme Convection (EC) areas, inducing a sustained updraft
motion and then initiating the Internally Forced Convergence (IFC) process. As a result,
a persistent pressure drop of 5-10 mb per day begins and a rapid wind spin-up in the
inner region begins. This phase of TC formation is called by Gray ’take-off’ or ’ignition
point’, and it can occur only near the center of the disturbance, where the cumulus cloud
updraft buoyancy can be sustained (Gray, 1998). Such an EC outbreak in a small region
near a CV is less probable and is often missing in non-developing systems.
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Figure 1.6: EC area formed by concentrated convection within an MCS by additional
convergence caused by wind surge. Image taken from Gray (1998).

Once initiated, the IFC becomes a self-sustained process. The surface pressure drop con-
tinues over a small area beneath the cumulonimbus clouds, causing an increase in the
horizontal acceleration of low-level winds. As a result, an intense upward motion is es-
tablished (Gray, 1998). The combination of the vertical profiles of cloudiness, slope of
pressure surfaces with temperature anomalies, and divergence profiles in MCS cause max-
imum convergence in the middle level of the troposphere. This motion is enhanced in later
stages, promoted by evaporating and cooling downdrafts and frozen cloud melting. After
6-12 hours, MCSs weaken and die.
However, middle-level cyclonic circulations persist and can expand their influence down-
ward to the surface, although weaker and of a smaller size. As a consequence, it is possible
to notice a cold-core lower-level circulation and upper-level warm core. Since a residual
MCS convective burst is present, the effect of the second EFC wind surge is different and
is able to enhance with more efficacy low-level wind spin-up. Finally, this second wind
surge is able to transform the disturbance’s low levels from a cold-core into a warm-core
system. Once this system is formed, the cyclone starts to organise into an eye-wall type
convection system and the surrounding environment starts loosing his influence (Gray,
1998).

In their work, Chen and Frank (1992) highlighted how IFC initiation requires that the
relative humidity be close to saturation condition (RH>95%), as in these conditions down-
draft development and updraft weakening are inhibited (Chen and Frank, 1992). When
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penetrating the small inner-core area, the second wind surge seems to be able to raise
the water vapour content to near saturation even if a large percentage of the converging
water vapour condenses and rains out. Although some downward motion can occur due
to the water loading and ice melting, a general updraft buoyancy can be maintained.

The second wind surge plays a role also in mechanically forcing convergence and upward
vertical motion in the EC region to the condition of near saturation. From the increase of
the humidity of the upper levels, the initiation of multi-cloud sustained updraft buoyancy
can take place until the start of the IFC (or CISK) intensification process (Gray, 1998).
As mentioned earlier, TC formation and subsequent intensification are favoured by min-
imum values of vertical wind shear over the center of the convective system. Moreover,
anticyclonic flow in the upper troposphere at 300-600 km radius is another enhancing
factor for TC genesis.

Other studies (Dvorak, 1975) have brought evidence to how unidirectional upper-tropospheric
flow over a disturbance exports negative tangential momentum, depleting the spin up of
the tangential winds of the outer radius of the TC. Also, the Tropical Upper-Tropospheric
Trough (TUTT), even if not being able to initiate the formation, can contribute to the
development of TCs. TUTTs play a double role: they can create upper-level anticyclonic
circulation, and they can also reduce the vertical tropospheric wind shear near the center
of the disturbance (Gray, 1998). Gray (1998) states that equivalent potential temperature
is a variable which cannot help distinguish between non-developing and developing distur-
bances, and that mechanical factors are indeed much more relevant than thermodynamic
ones.

In conclusion, TC formation can be understood as a two-stage process separated by an
intermediate 1-3 day quiescent period. Most forming storms cannot develop into TCs
because they dissipate between the first and the second stage.

In the second, stage a small area of EC must arise within a MCS. Thanks to the EC area,
humidity rises to near saturation conditions, weakening the downdraft and inhibiting the
entrainment cooling of updrafts. The IFC is promoted by intense and concentrated cumu-
lonimbus convection, which is caused mainly by EFC. The rapid growth of cyclonic wind
is allowed only if concentrated within a small central region. Only in a second moment
the area of high winds can spread outward in surrounding areas. The inner core is the
first portion which spins up. Moreover, the negative tangential wind shear from the centre
to outside is large while the inertial stability is small, and thus the radial movement of
the air is unhindered. This causes a convergence to the central portion, enhancing an
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in-up-out circulation. (Gray, 1998) The developed storms continue their path moving
westward and slightly poleward with a translation speed of 2-10 ms−1, after which they
either quickly dissipate (after encountering land, cold water, or because of unfavourable
interactions with other atmospheric wind system); or they recurve poleward and eastward
and are subjected to accelerations once entrained in the strong extratropical west-to-east
winds of the middle and upper troposphere (at 2-10 km height).

Figure 1.7: Westward propagating sequence of TC formation. Image taken from Gray
(1998).

1.5. Tropical cyclones and global warming

1.5.1. Tropical cyclones and climate

Tropical cyclones are strongly related to climate conditions. Strong correlations can be
detected between inter-annual fluctuations of Atlantic hurricane activity and changes in
the general circulation (Namias, 1955) and climatic parameters such as the phase of the
quasi-biennial oscillation and Sea Surface Temperature (SST) in west Africa(Shapiro,
1982a,b). El Nino was shown to be related to Atlantic hurricane activity, as wind shear is
greater in this basin during El Nino years, preventing the formation of TCs (Gray, 1984;
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Goldenberg and Shapiro, 1996). Landsea and Gray (1992) found a relevant correlation be-
tween hurricane activity and sub-Saharan Africa rainfalls. The abnormally high hurricane
activity in 1995 was detected by Saunders and Harris (1997) to be related to very high
SSTs. A year later, Shapiro and Goldenberg (1998) noted that the real cause of the 1995
TC activity was more related to the SST gradient and vertical wind shear. Thanks to the
work of Goldenberg et al. (2001), it was also discovered how Atlantic hurricane activity
is linked to the North Atlantic Oscillation. Even the Madden-Julian Oscillation has an
influence on both TC genesis at a global scale and their rapid intensification (Klotzbach,
2014).

1.5.2. Tropical cyclones and climate change

TCs are characterized by a natural variability that hampers the detection of any ongoing
trend. Although Henderson-Sellers et al. (1998) were unable to detect any changing trend
in the number of cyclones or differences in locations with respect to past years because
of limitations of Climate Models, there are results pointing towards the possibility of an
increase in Maximum Potential Intensities (MPI) of TCs proportional to increases in CO2

concentrations. These results were also confirmed in the Third Assessment Report of the
IPCC, where it was noted that a change in numbers could be related to changes in the
behaviour of the El-Niño Southern Oscillation (ENSO). At the time it was accepted that
with a doubling of carbon dioxide concentration the MPI of TCs was likely to increase
by 5-10% followed by an increase in peak precipitation rates of 20-30% (YDJG Houghton
et al., 2001). These result were based on the estimation of the MPI of TCs based on
average climate conditions (Emanuel, 1988; Holland, 1997; Tonkin et al., 2000) and a few
modelling studies (Knutson and Tuleya, 1999; Walsh and Ryan, 2000; Knutson et al.,
2001). Even if the result were compliant with modelling studies, the resolution of these
models is too coarse to make these results conclusive.

Earlier studies which were questioning whether there would be more TCs in a warmer
climate did not converge to a unique answer, as they were unable to reproduce TC for-
mation without large discrepancy from the reality in some basins (Walsh, 2004).
Neither global (Webster et al., 2005) nor regional trends in specific ocean basins (Chan
and Xu, 2008; Kubota and Chan, 2009; Callaghan and Power, 2011) have been detected.
Some trends have been discovered in the North Atlantic, but still their reliability is under
discussion (Holland and Webster, 2007; Landsea, 2007; Mann et al., 2007).

One of the main issues in determining the influences of climate change on tropical cyclones
is that they are characterised by a strong inter-annual and decadal variability, making
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trends hard to detect. Since accurate TC intensity estimation needs several measurements
over the lifetime of a TC, data about it are particularly sensitive to the technology and
methodology applied (Seneviratne et al., 2012).

While Kossin et al. (2007) were doing global reanalyses of TC intensities using homo-
geneous satellite records, they found that using different technologies through the years
introduced a non-stationary bias, inflating trends of intensities. However, an increasing
trend in TC intensities can be detected even if this bias is removed. Further studies Elsner
et al. (2008) have indeed revealed significant trends for higher quantiles, especially for the
90th percentile, indicating that the strongest TCs are getting stronger due to increasing
SSTs, which is qualitatively consistent with the heat-engine theory of TC intensities (El-
sner et al., 2008). This suggests a link between SST and climate change, even if this is
not proven because of the limited data available (Seneviratne et al., 2012).

Since the greenhouse effect is able to enhance the imbalance between atmosphere and
ocean energy content, hindering the net long-wave radiative flux, Emanuel (1987) worried
about the effects an increase in GHGs content induced by human emissions could have
on this equilibrium and on TC intensities. His estimates on TC intensities for increasing
SST of tropical oceans were based on a simple equation relating SST, mean temperature
of a cold source at a certain distance from the center of TC, specific enthalpy near the
surface, enthalpy of air parcels near the sea surface, and dimensionless transfer coefficients
of momentum and enthalpy. According to his estimates, an increase of 3◦C of SST at the
tropics would increase the wind speed by 15-20%.

Another line of research was carried out by Emanuel (2007), who investigated time series of
the previous 25 years of power dissipation, which is an indicator that aggregates cyclone
frequency, duration, and intensity and is a measure of TC power consumption. This
indicator showed upward trends in the North Atlantic and less relevant upward trends
in the North Pacific. Emanuel also found that these trends could be related to SST,
tropopause temperature, and vertical wind shear, even though other scientists questioned
whether the local SST or the difference with local SST and mean SST are the more
relevant variable (Swanson, 2008). In the Summary for Policymakers of the AR4 of IPCC
it was reported that there likely has been the increase in intense TC activity in some
regions since the 1970s (Alley et al., 2007). Afterwards, Kunkel et al. (2008) found that
also frequencies in the North Atlantic likely have increased in the last 100 years, noting
that in the same period the average SST has increased as well. In the same report, also
an increase in power dissipation is noted as likely substantial since the 1950s. However,
Knutson et al. (2010) asserted that the confidence in these detected trends are not trusted
completely since it is not demonstrated (due to lack of data) that they exceed the natural
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variability that has been detected through the past millennia.

There is also a branch of climatology which studies the link between the increase of
tropical SST and greenhouse gases increase. Some studies reported that there is a di-
rect correlation between these two variables (Karoly and Wu, 2005; Knutson et al., 2006;
Santer et al., 2006; Gillett et al., 2008). Moreover, Kunkel et al. (2008) stated that the
anthropogenic influence on greenhouse gases increase has very likely impacted SST in-
crease in the North Atlantic and on TC genesis in North West Pacific. The potential
intensity theory by Bister and Emanuel (1998) endorses the link between TC variability
and the thermodynamic state of the tropics, since with an increase in the ambient po-
tential intensity a shift toward greater intensities is expected to follow (Emanuel, 2000;
Wing et al., 2007). Thus, understanding completely the relationship between SST and
potential intensity appears to be a research milestone to be achieved (Seneviratne et al.,
2012). More recent studies suggest that the correlation between potential intensities and
differences between local SST and spatially averaged SST in the tropics is more important
than the SST itself (Vecchi and Soden, 2007b; Xie et al., 2010; Ramsay and Sobel, 2011).
In this perspective, the increasing SST gradients are not expected to continuously grow
together with global warming. This suggests that the physical link has not yet been fully
understood (Seneviratne et al., 2012).

TC intensity is, among the variety of metrics of tropical cyclone activity, the most phys-
ically linked to climate variability in the potential intensity theory framework (Kossin
and Vimont, 2007). A reason of concern is whether the detected statistical relationship
between ambient environmental conditions (reported in the above paragraphs) and TCs
genesis (DeMaria et al., 2001) remains valid in future conditions of increased GHGs con-
centrations (Seneviratne et al., 2012). As an example, the increase of SST above the
threshold of 26◦C could either lead to an increase of TCs frequencies or to an increase of
the SST threshold itself (Ryan et al., 1992; Dutton et al., 2000; Yoshimura et al., 2006;
Bengtsson et al., 2007; Knutson et al., 2008; Johnson and Xie, 2010).

Moreover, uncertainties in reanalysis data related to areas of development and evolution
of TCs introduce another variable in the complex task of cause identification of cycloge-
nesis changes (Bister and Emanuel, 2002; Emanuel, 2010). Knutson and Tuleya (2004)
concluded that detectable increases in of TC intensity may not occur before decades even
if an SST increase due to global warming is expected in long-term evolution model sim-
ulations. Furthermore Bender et al. (2010) confirmed such results in a study involving
high-resolution dynamical down-scaling of the SRES A1B scenario and concluded that
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the strongest Atlantic storms could not show a statistically significant trend before 2050.
Another contribution of Bengtsson et al. (2007) further explored the possible evolution
of TCs in a changing climate using coupled climate models at different resolutions using
the IPCC SRES A1B scenario and evaluated for the end of 19th, 20th, and 21th century.
The results showed that the number of TCs is expected to decrease, while the number
of intense storms showed a significant increase in the 21st century with respect to the
previous one. In particular, the number of storms with maximum wind speeds greater
than 50ms−1 is expected to increase by 30%.

Another issue is related to the availability and reliability of data records. Ocean data
records are limited to the period from the second half of the 20th century to the present.
The reliability of TC data is also not constant throughout this period, since technologies
and methods of measurement have changed. Also, TCs are characterized by intrinsic
random variability and variability related to climate modes such as El-Niño, making it
difficult to detect trends. IPCC AR4 asserts that it is more likely than not that human
activities had some influence on the increase in more intense TCs. However, further stud-
ies downgraded this statement to low confidence, since the understanding of the process is
hampered by the entities of the above explained uncertainties (Knutson et al., 2010). Fac-
ing questions about the interaction between TCs and climate change, the considerations
are usually focused on whether climate changes have already affected TCs and how can
these impact the future (Walsh et al., 2016). This field of the research uses information
coming from different approaches. The data are obtained from Paleotempestology, whose
purpose is to detect (by using proxy variables) over different geological eras if there have
been variations in TC number or intensity. This could be helpful to have a longer dataset
which can be used to understand the dependency of TCs on climate (Walsh et al., 2016).
Paleotempestology is limited since it is based on data related to single basins. Thus, it is
unable to discern basin-wide trends or variability from systematic changes in TC tracks
(Simon Banholzer, 2014). Analyzing stalagmites’ oxygen isotopes, Haig et al. (2014) dis-
covered that TC activities in the Australian region are at their minimum since 1,500 years
ago. Brandon et al. (2013) analyzed over-wash deposits, discovering that the decrease in
intense hurricane frequency from 2,500 years ago up to nowadays was interrupted from
only from 1,500 to 600 years ago. These variations in TC climatology remain unexplained.
Korty et al. (2012a) and Korty et al. (2012b) were able to show how in past geological
eras, and especially during the Last Glacial Maximum and Holocene, even if the climate
was characterized by lower temperatures, TC activity did not seem to be less relevant
with a clear trend.

Sugi et al. (2015), running a General Circulation Model (GCM) with a climate cooler by 4
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K, obtained significantly increased TC frequency. In his simulations, TC formation could
occur even where SSTs were well below 26◦C (most of them form over oceans with SST
> 24◦C and some of them even with 22 ◦C < SST < 24◦C. Since the 19th century, large
amounts of data have been recorded from ship observations. These data are constantly
under review and allow us to have information relative to TC positions and intensities.
The IBTrACS dataset (described in detail in 3) represents in this sense a helpful tool
which can facilitate global climate trend analysis. Creating a homogeneous dataset is a
challenging task, since the estimates of TC intensities especially are continuously improv-
ing (Walsh et al., 2016). More recently, some studies detected trends over the past few
decades thanks to satellite-based temporally homogenized datasets. Significant results are
obtained at the basin level. The most significant trends are detected in the North Atlantic
and Western North Pacific basins, increasing and decreasing, respectively. In the South
Pacific and South Indian basins, the trends are less significant, while in the East North
Pacific no trend was detected. Last, in the North Indian basin (NI) there was insufficient
data to draw conclusions (Walsh et al., 2016). Globally, a significant movement poleward
of the path of TCs was discovered between 1982-2012 (Kossin et al., 2014). Also, an in-
crease in the proportion of intense hurricanes was detected both globally and at the basin
level in almost all locations, due to a link between a global warming indicator and the
proportion of intense hurricanes (Holland and Bruyère, 2014). ENSO was shown to be
strongly connected with TCs (Camargo et al., 2010), but the projected changes of ENSO
are still characterized by a low confidence and so the same holds for the projected effects
on TC activity (Christensen et al., 2013).

In summary, here are reported the conclusions of the IPCC SREX report on the projected
changes and uncertainties in TC activity:

1. Meehl et al. (2007) states that a number of models indicate a likely increase in the
intensity of winds and precipitations related to TCs; also (with a lower confidence)
a decrease (increase) in the frequency of weak (intense) storms;

2. Knutson et al. (2010) confirmed the above conclusions and their statistical confi-
dence. The increase of maximum wind speed and rainfall rates are found to be
likely, the frequency increase of most intense storms in some basin are more likely
than not and the overall decrease (6 - 34%) or stability of overall TC frequency is
found to be likely. Greater uncertainties are detected at the individual basin scale.
Rainfalls in TC areas are projected to increase by 3-37%;

3. An increase in TC intensity in a warming climate is endorsed by both theoretical
considerations of Emanuel (1987) and results from idealized dynamical models of
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(Knutson and Tuleya, 2004); with an increase in mean maximum wind speed of
2-11% globally (Seneviratne et al., 2012).

4. The same studies showed little to no change in the frequency of TC genesis at a
global scale, Gualdi et al. (2008); Sugi et al. (2009); Murakami et al. (2011) together
with an increase of frequencies of stronger events;

5. Randall et al. (2007) state that spatial resolution of current ocean-atmosphere mod-
els should not be considered high enough to capture TC intensities;

6. Some other studies reported that higher-resolution global model are able to repro-
duce only coarser characteristics of global models (Chauvin et al., 2006; Oouchi
et al., 2006; Zhao et al., 2009);

7. Downscaling techniques using boundary conditions provided by either reanalysis
datasets or coarser resolution models can provide some advances in this research
field (Knutson et al., 2007; Emanuel et al., 2008; Knutson et al., 2008; Emanuel,
2010);

8. Bender et al. (2010) obtained promising results applying a cascading technique
involving models at global and regional scales whose results were fed to a very
high-resolution hurricane model. Among the results, the simulation projected a
28% overall reduction in frequencies and an 80% increase in frequency of strongest
storms;

9. Major limitations in TC projections are represented by the inability of capturing
natural climate patterns which are known to be influential on them, such as ENSO
or MJO (Seneviratne et al., 2012);

10. The decrease in frequency is to trace back to an increasing vertical wind shear
(Vecchi and Soden, 2007a; Zhao et al., 2009; Bender et al., 2010), a weakening
tropical circulation (Sugi et al., 2002; Bengtsson et al., 2007) or an increasing middle
troposphere saturation deficit (Emanuel et al., 2008);

11. The increase in tropics water vapour is expected to evolve into an increase in rainfalls
related to TCs (Trenberth et al., 2005; Held and Soden, 2006);

12. Caution on the validity of statistical relationships detected in present and past
observation needs to be taken, since they could probably be no longer valid in a
warming climate (Emanuel, 2007; Vecchi et al., 2008; Knutson et al., 2010; Vecchi
and Soden, 2007b; Vecchi et al., 2006; Ramsay and Sobel, 2011);

"The proportion of tropical cyclones that are intense is expected to increase (high confi-
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dence), but the total global number of tropical cyclones is expected to decrease or remain
unchanged (medium confidence)" (IPCC, 2022). In the Technical Summary of IPCC it
is also reported that intense tropical cyclones are expected to increase by 10%, 13%,
30% as consequence of an increase of global average temperature of 1.5◦C, 2◦C and 4◦C
respectively.

1.6. How TC data are collected

Before World War II, the records regarding TC data were compiled locally by coastal
stations, islands, and ships at sea. Therefore, many events escaped entirely or were
observed only once, towards the end of their life (as TCs dissipate upon making landfall).
Furthermore, the availability of records was not homogeneously widespread in different
ocean basins, since shipping was more focused in certain ocean basins. Also, many storms
which never made landfall have never been detected.

An increasing effort arose during the war because of the interest in naval operation security.
Aircraft reconnaissance began at that time. While the first operations did not penetrate
storms, on the 27th of July 1943 an AT-6 trainer was able to enter a hurricane in the Gulf
of Mexico. In following years, TC reconnaissance via airplane became routine in the WP
and NA basins.

Another step forward was achieved in the late 1940s, when Wexler (1947) analysed the
very first radar image of a TC, from which it was possible to obtain information about
the structure of TCs. This allowed the detection of TCs located far from coasts, up to
several hundred kilometers offshore.

Doppler radar in late 1950s allowed trustworthy estimates of ground speed of aircraft.
After that, wind speed estimates quality increased.

A great innovation occurred in 1960, when from a polar orbiting satellite a TC was
captured for the first time. From the 1970s, virtually all TCs have been captured thusly.
Moreover, techniques were developed to evaluate their intensities by recognising patterns
or by performing measurement of infrared radiance. Although most of our knowledge
about the structure of TCs derives from reconnaissance aircraft measurements (and the
dropwindsondes which they deploy) and from ground-based or airborne radar, satellites
and simulation models have greatly enriched the information available.

The historical records of TCs have issues such as the continuously changing technology
and reporting protocols within the agencies reporting this type of data (Seneviratne et al.,
2012). Recently, there have been efforts to obtain more homogeneous records of TC
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intensity globally. This is achieved through satellite imagery—which, however, are quite
limited, as they started only in 1970s (Knapp and Kossin, 2007; Kossin and Vimont,
2007).

1.7. Tropical Cyclones Damages Modelling

It is well established how the extreme winds of TCs can cause devastating damage. How-
ever, most of the damages and deaths caused by TCs are due primarily to the flooding
associated with TC-induced storm surge and extreme rainfall. Before comparing histori-
cal losses, it is necessary to normalize them to account for changes in population, wealth,
and inflation (Neumayer and Barthel, 2011; Pielke et al., 2008; Pielke and Landsea, 1998).
Pielke et al. (2008) made an effort in establishing whether over the past century there
has been an increase in damages of TCs in terms of economic and life loss in the US.
After normalization of the data available considering inflation, wealth of the nation, and
changes in urbanization of the coasts, no trends were noticed. These results are supported
by the lack of a trend of increasing TC landfall frequency or intensity in the same period
(Seneviratne et al., 2012).

The damages caused by TCs are extremely relevant and globally they represent a leading
cause of damage in economic terms (Klotzbach et al., 2018). For example, Hurricane
Katrina in 2005 costed approximately $108 billions NOAA, while in Bangladesh, in 1970
a storm killed almost 500 thousands people (Emanuel, 2003).

Throughout the years, some indexes have been developed to correlate TC-induced dam-
ages and their intensities measured as maximum wind speed, especially linking damages
to some exponential of the maximum wind speed of a TC. For example, damages were
hypothesized to be proportional to the square (Pielke and Landsea, 1999), the third power
(Emanuel, 2005), or the ninth power of the maximum wind speed (Nordhaus, 2010). To
model these dependencies into a unique formula, the damage of a TC (L) can be expressed
as (Murnane and Elsner, 2012):

L = αV β (1.2)

Where β = 3− 9.

Other relationships of the loss with some other important measures such as TC size,
its speed of motion, the induced precipitation, or factors such as building construction,
roughness of the surface, or some other effects such as storm surge are possible but less
easily adopted by decision makers and stakeholders (Murnane and Elsner, 2012). Murnane
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and Elsner (2012) proposed an exponential relationship between aggregate normalized
economic losses and wind speed at landfall, providing better results for the U.S, and
found an increment of 5% for each ms−1 increase in wind speed. There are a number of
indexes which attempt to estimate the potential damage caused by TCs. Among others,
the Saffir-Simpson Scale (Simpson and Riehl, 1981), the already cited PDI (Emanuel,
2005), the Hurricane Intensity Index (HII) and Hurricane Hazard Index (Kantha, 2006),
the Hurricane Severity Index (HSevI) (Hebert et al., 2010), the Carvill Hurricane Index
(CHI) (Smith, 2010), the Integrated Kinetic Energy (IKE) (Powell and Reinhold, 2007;
Kozar and Misra, 2014), and the Cyclone Damage Potential (CDP) (Holland et al., 2019).
The dependence on storm intensity is different among the indices. Some of them are
connected to maximum wind speed, others to its square or cube. Also, they can include
shape and translation speed (Holland et al., 2019).
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Estimation: State of the Art

2.1. Dvorak Technique

This section introduces the Dvorak Technique (DT), one of the most used method for
tropical cyclone intensity estimation.
The following paragraph is broadly taken from Dvorak (1984), which represents the last
update of the technique developed by Vernon Dvorak. Thus, for readability purpose it is
cited here once.
Before Dvorak introduced his technique, others used satellite images for TC monitoring.
For example, Fett (1964) and Timchalk et al. (1965) provided tools for intensity estimation
based on patterns of cyclones such as the appearance of the eye, its banding, and size of
cloud patterns. However, these first methods, used to have poor performance on cyclones
with unclear features or sudden changes. The availability of more data and the emergence
of infrared (IR) sensors have created new opportunities for analyzing tropical cyclones
(TCs) using satellite imagery. In particular, it became possible to detect clear, subsequent
steps of TC development, and to model their variability to aid recognition. By the late
1960s, the first models were developed to forecast the intensity of a TC 12-36 hours in
advance based on its current and past features.

The Dvorak technique consists of a set of methods and rules which allows for TC intensity
estimation and forecasting by using visible (VIS), enhanced infrared (EIR), and digital
infrared images captured from satellites. These images are used to build a model of the
development of the cyclones which leads to estimation of current and future intensity.The
primary advantage of IR technology is its ability to facilitate continuous monitoring. Un-
like VIS images, IR images can be captured at night, allowing for uninterrupted surveil-
lance. The model contains both cloud pattern descriptions and information regarding
detected changes during subsequent steps.
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Figure 2.1: Patterns searched in image processing for T-number attribution.

The Dvorak technique consists of ten steps (Dvorak, 1984).

1. Locate the Cloud System Center (CSC), which is determined as the point through
which all curved cloud lines or bands are converging to;

2. T-number estimation from cloud feature measurement. Through these measurement
on cloud features, which could be performed when can be clearly recognised, a
Tropical cyclone number (T-num) is identified. This number is related to intensity
through given tables, as explained later on. T-numbers series, obtained from the
analysis of successive images, define the model of TC development, through which
it is possible to define the rate of growth of its intensity;

3. T-number estimate from pattern comparison with model. When a Central Cold
Cover (CCC) appears, the TC arrests its development. In such case, the analysis
considers the past T-num and, if T-num<=3.0, it maintains the model trend for 12
hours, while if T-num>=3.5, it maintains T-num. The T-num determined is used
for the final estimate and the analyst can proceed to step nine;
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If step two was followed, a second estimate of the T-num is performed.

4. Determine past 24-hour trend.It is determined whether the TC is developing or
weakening;

5. Determine Model Expected T-num. This estimate is provided after a comparison
between the current and the previous pictures, determining whether TC is following
its development path. This comparison is done on selected cloud features such as
band curved. Considering these, a second intensity estimation is provided, according
to an extrapolation of the intensity change curve of the development model;

6. Determine the pattern T-num. A refinement of previous estimate is obtained by
comparing current picture with patterns representing the stage of development re-
ported in Fig.2.1.The adjustment of the intensity estimate can be performed through
the analysis of differences;

From Step 7 to 9, the T-number estimate is chosen, constraints are applied and the
Current Intensity is determined.

7. T-number determination. According to the different situations, chosen T-num de-
termined in Step 2 or MET determined in step 5-6;

8. Final T-number Constraints. Several rules are applied, determining the maximum
T-number that could be defined according to the number of days passed from its
formation and to the maximum change that can be obtained in two successive
images;

9. Current Intensity (CI) number rules. When the TC is intensifying, one should select
the T-num. On the other hand, if the TC is starting to weaken, one should choose
the previous CI. For successive stages, a CI that is either equal to 1/2 or 1 higher
than the T-num should be chosen;

The last step is related to forecasting.

10. 24-hours forecast. From past trends a 24-h forecast is obtained, unless it is clear
that environmental conditions are changing;

Once determined the CI through tables of conversion, estimates of MSW or MSLP are
obtained. A detail from Velden et al. (2006) of these conversions is reported in the
following table.
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Table 2.1: Summary of Dvorak (1984) Atlantic and West Pac wind pressure relationships
(Velden et al., 2006).

CI MSW (kt) Atlantic MSLP (hPa) West-Pac MSLP (hPa)
1.0 25 - -
1.5 25 - -
2.0 30 1009 1000
2.5 35 1005 997
3.0 45 1000 991
3.5 55 994 984
4.0 65 987 976
4.5 77 979 966
5.0 90 970 954
5.5 102 960 941
6.0 115 948 927
6.5 127 935 914
7.0 140 921 898
7.5 155 906 879
8.0 170 890 858

Figure 2.2: Graph representing a model of TC development; used by the analyst to
monitor if TC is developing or decaying.

Latest version of the Dvorak technique introduced innovations which enhanced the relia-
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bility of cloud feature measurements (Velden et al., 2006):

1. Introduction of patterns such as curved band (CB) and shear patterns enabled the
analysis of eye-free or central dense overcast (CDO) TCs;

2. The use of IR imagery enabled the use of embedded center (EMBC) pattern recog-
nition in place of CDO;

3. Enhanced Infrared (EIR) is used for eye pattern analysis, using cloud-top IR tem-
peratures difference between the center of the cyclone and its surroundings. This is
especially relevant, being a strictly objective measurement which lays the founda-
tions for automating the analyses (Zehr, 1989; Velden et al., 1998);

Although the Dvorak technique once was a groundbreaking innovation in this field and it
is still used by many meteorological agencies, limitations have been identified throughout
the years (Velden et al., 2006):

1. It suffers from two intrinsic sources of errors. First, measures of intensity such as
wind and pressure are not direct, but rather inferred from cloud patterns. Second,
the analyst must make subjective interpretations, limiting the objectivity of the
whole method Zehr (1989),Velden et al. (1998),Olander et al. (2004),Olander and
Velden (2007);

2. The use of IR images can be misleading in presence of cirrus, since they obscure
cloud patterns beneath them. Central Dense Overcasts (CDOs) captured by an IR
could be concealing weak eyes or developing eye-walls. The analysis of Embedded
Centers (EMBCs) tries to solve this issue but it is difficult and not reliable at present.
Moreover, IR cannot capture concentric eyes and eye-wall replacement cycles, which
are found to be indicative of intensity changes (Willoughby et al., 1982);

3. When using geostationary satellites, large scan angles underestimate TCs with small
eyes since they are hidden by the eye-wall;

4. The technique shows limited skill for rapidly weakening TCs moving over strong
SST gradients;

5. The technique cannot be applied either in case of particularly small TCs, since cloud
pattern measurement is not possible, or in the case of large monsoon depression,
because of the lack of central deep convection;

6. It does not account for TC motion;
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2.2. Dvorak-based Techniques

The Dvorak technique inspired through the years other methods, aiming at the reduction
of the influence of the analyst on the estimation. The first attempt came from Dvo-
rak (1984), who proposed to provide an estimate of intensity by measuring the gradient
between the warmest IR pixel within the eye and the warmest at 55-km radius. In partic-
ular, it was found that the T-number increases with decreasing surrounding temperature
and increasing eye temperature. Some improvements were proposed by Zehr (1989) and
Dvorak (1995):

1. the reference radius value was substituted with a range (25-125 km);

2. it was preferred to average computations over time intervals to reproduce more
realistic trends;

3. some modifications were introduced to include also cases with colder eyes;

Zehr (1989) proposed the Digital Dvorak technique (DDT), an objective method on which
modern versions of the Dvorak technique are based. It is "objective" in the sense that
it removes the subjectivity introduced by an analyst. This technique was found to be
satisfactorily accurate for well-organized TCs with low intensities (Velden et al., 1998).
Velden et al. (1998) introduced the Objective Dvorak Technique (ODT), which involves
Fourier transform analysis of the center and cloud-top regions in IR imagery. In the
ODT, T-numbers are replaced by their time average, to smooth out their variability.
The accuracy of ODT is on par with that of the subjective EIR technique Velden et al.
(2006), but it has two crucial limitations. First, it can be applied only to storms above
an intensity threshold of hurricane strength (i.e. T-4.0, 65 kt). Second, it still requires
human intervention in the location of the TC center. The Advanced Objective Dvorak
Technique (AODT) by Olander et al. (2004) made further progress by automating the
localisation of the TC center. The idea behind it is to start from a first guess using short-
term track forecasts, which are taken as an objective estimation of the centre from which
to search for curvature patterns and strong gradients in the brightness temperature (BT)
field. The performance of this technique is only slightly worse than that of the manual
Dvorak technique, but with the added benefit of skipping the subjective identification of
the storm centre (Olander et al., 2004).
Olander and Velden (2007) further improved on the AODT by introducing new rules to
govern the time-averaging scheme of T-numbers, intended to hamper or allow intensity
changes in specific time periods. Also, they introduced a bias adjustment for MSLP
noticed by Kossin and Velden (2004). Furthermore, they introduced a regression-based
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equation that uses a set of large-scale environmental variables to determine the intensity
from eye and CDO imagery. Still, even this more advanced technique struggles to estimate
the intensity of TCs with small eyes, as the IR images have too low resolution to capture
them fully (Olander and Velden, 2007).

2.3. Other traditional techniques

Another popular technique for TC intensity estimation is the Deviation Angle Variance
technique (DAV-T), developed by Pineros et al. (2008),Pineros et al. (2010), and Pineros
et al. (2011). Originally (Pineros et al., 2008), the technique consisted of a set of opera-
tions:

1. Computation of the gradient of IR image and definition of the IR gradient field in
vector form;

2. Choice of reference pixel and computation of the deviation angle between the vector
representing the gradient and the radial line. Deviation angles are determined for
all pixels up to a certain distance from central ones;

3. Definition of the distribution of angles and variance determination (DAV). This is
a measure of cloud organization: the more they are organised in an axisymmetric
structure, the lower the variance;

Pineros et al. (2010) improved the technique by adding a map of DAVs, reporting variance
values in reference to the centre of the storm, to identify forming cyclones. In Pineros
et al. (2011), this map was used to estimate the intensity of TCs by means of a parametric
curve related to DAV values. The relationship was formalised as a sigmoid function with
two parameters (α and β) fitted to input data and one (σ2) representing the filtered DAV
value to smooth out the signal. In this technique, DAV values are computed at each
pixel, and the pixel corresponding to minimum variance is used for intensity estimation.
Ritchie et al. (2014) further improved the DAV-T technique by quantifying the level of
organization of clouds and relating this to the intensity of the TC.

2.4. Machine learning and Tropical Cyclone Intensity

Estimation

Machine learning (ML) techniques are used more and more often in the field of climatology,
partly due to their widespread success in most scientific fields, and partly because they
appear to be able to solve some of the intrinsic limitations of traditional methods such
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as the Dvorak and DAV techniques. In particular, Pradhan et al. (2018) highlighted four
major limitations of traditional techniques that ML could alleviate:

1. Inconsistency of RMSE in different regions of an image;

2. Significant effort/resources needed for pre-processing, such as detection and mea-
surement of specific patterns and their changes over time;

3. Complexity of their applications (requiring analyst expertise);

4. Poor generalisation, as traditional techniques are usually tuned to specific basins
and latitudes;

One of the first attempts to use ML for TCIE were by Bankert and Tag (2002), who
used the k-nearest neighbor (k-NN) algorithm to analyse data from the Special Sensor
Microwave Imager (SSM/I); and by Kulkarni et al., who trained two neural networks (on
the same data as Bankert and Tag (2002)): a two-layer perceptron used for classifica-
tion, and a three-layer perceptron used for intensity estimation (i.e. solving a regression
problem). Similarly, Sakuragi et al. used multi-channel Tropical Rainfall Measurement
Mission Microwave Imager (TRMM/TMI) Brightness Temperature for classification with
the k-means algorithm.

The advent of more powerful architectures, and especially the transition from the CPU to
the GPU as the main processing unit, produced increased interest in Deep Learning (DL)
architectures for image processing tasks (He et al., 2016). Pradhan et al. (2018) were the
first to use deep convolutional neural networks (deep-CNNs) for the problem of TC inten-
sity classification. Their model was not only orders of magnitude faster than previously
available ones, but also beat them in terms of RMSE (Pradhan et al., 2018). For training,
their model used hurricane images from the TC repository of the Marine Meteorology
Division of the U.S. Naval Research Laboratory 1 labelled through HURDAT2 data 2;
for testing it used a recon-only dataset 3 composed of 2,646 images. Since their training
dataset was unbalanced, they performed over-sampling on hurricanes of Saffir-Simpson
categories H3 or higher. The over-sampling was done by interpolating data from 6h to
2h. Other data augmentation techniques were applied, such as horizontal and vertical
flips and image rotation (90◦, 180◦, and 270◦). The dataset obtained consisted of 48,828
images. They also speculated that two other data augmentation techniques, brightness
and contrast enhancing, could be beneficial for this task. However, since the network
learns to predict intensity from values of BT represented in the input pixels, modifying

1http://www.nrlmry.navy.mil
2http://www.nhc.noaa.gov/data/#hurdat
3http://www.nhc.noaa.gov/recon.php
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the relationships between pixels is not believed to be an effective augmentation technique.
Thus, these techniques are not explored in this thesis.

Combinido et al. (2018) provided an interesting example of how transfer learning could
help researchers. They used the Visual Geometry Group 19-layer CNN (VGG19) (Si-
monyan and Zisserman, 2014) pretrained on ImageNet to regress TC intensity from IR
images, and they obtained results comparable to methods requiring human interventions
for feature extraction. They used IR images with a time resolution of 6 hours from
the Weather Home archives (University, 2015) and best track data from RSMC Tokyo-
Typhoon Center of the Japan Meteorological Agency (JMA). The dataset consisted of
10,015 images from 493 TCs. The authors maintained the pre-trained weights of the
VGG19 except for those of the last few fully connected layers, which they re-trained on
their TC data. Interestingly, the trained network was found to extract features considered
important in manual TC intensity estimation, such as organised cloud circulation and the
eye of the TC.

Another interesting contribution for regressing TC intensity with DL was provided by
Chen et al. (2018). First, they released a benchmark dataset (named TCIR) to make it
easier for researchers to compare the performance of their algorithms 4. Observational
data were taken from the GridSat (channel IR1, WV, and VIS) satellite mission for
brightness temperature (Knapp et al., 2011), the CMORPH dataset for information on
global precipitation (Joyce et al., 2004), and the Joint typhoon Warning Center (JTWC)
and revised Atlantic Hurricane database (HURDAT2) for TC best tracks. Nevertheless,
in their studies they used only the IR1 channel of the GridSat data, as they found WV
added little value (and potentially could cause overfitting, being so similar to the IR1
channel) and the VIS channel was unstable, being dependent on daylight. The CNNs
they used were AlexNet (Krizhevsky et al., 2012) and VGG19 (Simonyan and Zisserman,
2014). Interesting findings of the experiments are reported below:

1. The difference between the discrete output searched by classification models and
the continuous one of regression results in a need for different loss functions. For
classification, a cross-entropy loss function is commonly used, while for regression
MSE is more appropriate;

2. They argued that max-pooling layers, commonly used inside CNNs for classification,
could be deleterious for TCIE regression. For this reason, they decided to remove

4https://www.csie.ntu.edu.tw/~htlin/program/TCIR
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them from their models;

3. Although random cropping is frequently used in classification tasks, they chose not
to use this data augmentation technique, arguing that it may cause some key features
of the TC to be missed. Instead, they chose to perform data augmentation using
random rotations;

4. They removed all dropout layers from their networks, showing increased performance
compared to models that used them;

With these considerations, they modified AlexNet into a network they called they termed
CNN-TC, which at the time was state of the art compared to other traditional techniques.
Lee et al. (2019) developed a two-dimensional and a three-dimensional CNN. They used
grid search to optimize the filter size and the depth of the convolutional layers. Also, they
tested different evaluation metrics, and in the end used MAE and RMSE to select the
most optimised version of CNN-based model, since more significant for the identification
of their overall accuracy. They were also the first authors to use heat maps (Zeiler and
Fergus, 2014) to visualize the patterns learned by a CNN trained for TCIE. Interestingly,
it was noted that the architecture was searching for patterns similar to those identified in
the Dvorak technique.

2.5. Data imbalance and image augmentation

Data imbalance is problematic for deep neural networks, in terms of both convergence
in training and generalization (Buda et al., 2017), He and Garcia (2009). Having classes
of data with wildly different samples sizes hampers network performances (Buda et al.,
2017), as the network will tend to learn to predict the most represented class regardless
of the input. If the data imbalance is severe enough, it also affects regression algorithms,
as they would be biased towards the skew in the distribution of the samples. In TCIE,
the relative scarcity of data due to the temporal resolution and the methodologies for
maximum wind speed estimation cause strong heterogeneity in the data. For example, a
dataset could have a high number of samples characterised by wind speed velocity of x,
but zero samples with a velocity of x+-1. In this case, even if we split the dataset into
classes of one unit, we still would have strong data imbalance.

There are three main approaches to tackle data imbalance (Krawczyk, 2016):

1. Data-level methods, which imply the modification of the distribution of the data
and/or the removal of difficult/extremely undersampled classes;
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2. Algorithm-level methods, which modify the learning algorithms themselves (for ex-
ample at the level of the loss function), alleviating the intrinsic bias towards majority
classes;

3. Hybrid methods, which combine the other two;

Data-level methods, also referred to as data augmentation techniques, generally involve
oversampling of the underrepresented classes or undersampling most represented classes,
or both. In particular, oversampling is robust in most of the cases, while undersam-
pling is typically used only in cases of extreme data imbalance (expressed as the ratio
between the most and the least numerous class) and when only a few classes are heavily
over-represented (Buda et al., 2017). Data-level methods are usually random, thus in-
troducing risks of deleting important data or adding redundant information (Krawczyk,
2016), (Seiffert et al., 2010). Data-level methods can be subdivided into two categories of
transformation: geometric transformations and pixel-level transformations. Examples of
traditional geometric data augmentation techniques are as follows:

• Horizontal and vertical flipping: the image is mirrored along horizontal or vertical
axis;

• Random rotation: the image is rotated according to an angle of random amplitude
within a certain interval;

• Random shifting: the center of the image is shifted by a random number of pixels,
in order to obtain an image of the same dimension of the input one, a zero padding
can be applied;

• Random cropping: the image is cropped around a random point and within a rect-
angle of random size;

Examples of pixel-level data augmentation techniques are as follows:

• Image noising: the values in random pixels are substituted with random values;

• Random brightness change: pixel values are substituted with higher ones, increasing
the overall brightness;

• Image blurring: filters of different shapes are applied to the image, averaging the
pixel values with the neighbour ones;

Algorithm-level techniques, on the other hand, try to deal with skewed distributions by
modifying the learning algorithm directly (Krawczyk, 2016). An example would be to use
a loss function with weights that are proportional to the sample size of a class: the lower
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the number of samples in the class, the higher the weight used in the loss function (Zhou
and Liu, 2010). In doing so, the importance of different samples is regulated increasing
the skill in learning rarer data. Other algorithm-level methods, such as one-class learning
(Japkowicz et al., 1995) exist in literature, but they are less relevant for the purposes of
the thesis and therefore will not be discussed further.

The issue of data imbalance is seldom discussed or addressed directly in papers dealing
with TCIE. When authors do mention the use of data augmentation techniques, they
typically follow guidelines for their use that come from different areas of computer vision—
and, more often than not, that are designed for classification algorithms. However, not
all data augmentation techniques described above are appropriate for TCIE regression.
For example, altering the brightness of satellite images or shifting them could alter the
contents of the images in an unwanted way. There currently are no guidelines in the
literature for which data augmentation methods are most appropriate for TCIE, which is
a gap this thesis attempts to fill.
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The flowchart in 3.1 provides an overview of the experiment sequence. First, the optimal
combination of backbone architecture and image crop dimension is searched. By doing
so, it is possible to minimise the validation loss measured during training on the dataset
which is chosen as input. Then, entering the core of the experiments, the same dataset is
augmented, testing different combinations of the augmentation techniques (horizontal and
vertical flipping, random rotation and random erasing), monitoring the input distribution
with a Gini-inspired coefficient which is described in the following paragraphs. The trained
models are further evaluated in terms of mean absolute error on test dataset. Once the
augmented dataset providing best performances is defined, a novel approach is proposed,
introducing Label Distribution Smoothing coupled with a loss function named Focal-R,
devoted to alleviate the imbalance of input dataset, by weighting more the losses on
the represented classes samples. Lastly, Grad-CAM heatmaps are obtained to visualise
patterns of the image used for predictions. This chapter begins by describing the data
used and the choice of a backbone DL architecture. As transfer learning has been shown
to be effective for TCIE, some state-of-the-art deep-CNNs are tested in training and
validation with different resolutions of input images. Once the model and resolution of
the image are chosen, the selected augmentation techniques are tested. A Gini-inspired
coefficient is introduced, as a metric to measure the effects of the augmentation on the
original distribution of the data.
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Figure 3.1: Methods flowchart.

Next, the random erasing augmentation technique is described, motivating the changes
applied to the original algorithm by Zhong et al. (2017). Afterwards, two techniques
for resolving data imbalance are described that have never been applied to TCIE before,
namely Label Distribution Smoothing (LDS), to obtain the effective distribution of target
dataset Yang et al. (2021), and Focal-R, a loss function that enables neural networks to
learn better under-represented samples Yang et al. (2021). Finally, GradCAM heatmaps
are proposed as a tool to "explain" the final neural network topology, gaining information
on how they use inputs to predict the output.
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3.1. Data

3.1.1. GridSat

The Gridded satellite-B1 (GridSat-B1) data (Knapp et al., 2011) is a calibrated and
mapped geostationary dataset built to overcome difficulties characterising previous data
records. GridSat was built upon ISCCP B1 data (Knapp, 2008), being processed to enable
their use by a wider part of the research community. The resulting product has three
channels: infrared (IR) at 11 µm (IR); visible (VIS) at 0.6 µm; and water vapour (WV)
at 6.7 µm. In this thesis the IR channel at 11 µm is used as the only input, following the
recommendations by (Chen et al., 2018), who found that WV channel provides information
similar to IR, and that the VIS channel was very unstable due to the daylight variation.
The spatial resolution of the dataset is 0.07 ◦ latitude (8 km at the equator) and the
temporal resolution is 3 h. The dataset begins from 1980 and reaches the present day,
with some lag not being real-time, and covers the globe from 70◦S to 70◦N. Throughout
the years, the coverage has not been constant, with the Indian Ocean being the last gap
to be filled (Fig. 3.2).
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Figure 3.2: GridSat coverage (from Knapp et al. (2011). On the left: ISCCP B1 coverage.
On the right, details on typical coverage of different periods and a different number of
satellites. B: 1980; C: 1982-1998 with four satellites; D: 1985-87 or 1989-92 with three
satellites; E: five-satellites coverage, 1998-present.

3.1.2. IBTraCS

The International Best Track archive for Climate Stewardship IBTraCS (Knapp et al.,
2010) dataset represents a unification of best-track data coming from agencies throughout
the globe. "Best-track" data are obtained by the postseason reanalysis of TC information
coming from ships, surface stations, and satellites. These data, which are heterogeneous
in the way they are collected and stored, are then converted into a common data format
(netCDF) and merged in a way that compensates their different original formats and
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makes them uniform. To do this, several operations are performed, from the elimination
of duplicate or spurious data to the homogenization of differences in storm localisation
to the conversion of maximum sustained wind (MSW) measurements to a common unit
of measure. IBTraCS contains storm tracks at 6 h temporal resolution across all ocean
basins. For each track, it reports the position (in terms of latitude and longitude coor-
dinates) of the TC every 6 hours, its maximum sustained wind speed (MSW) and mean
sea level pressure, and measures of its size and translation speed. For this thesis, we use
only data relative to the position and MSW of each cyclone. In particular, we use the
latitude/longitude coordinates to localize the TCs in GridSat images and the MSWs as
the targets.

3.2. Choosing a backbone architecture

The first step was the choice of a pre-trained backbone architecture, leveraging the benefits
of transfer learning discussed earlier. Due to the limited computational power available
for this thesis, the performance of the architectures tested was evaluated on the non-
augmented dataset, in terms of training and validation loss (which was the Mean Absolute
Error). The following architectures were chosen for testing, as they represent the state
of the art of many computer vision benchmarks, including ImageNet (Deng et al., 2009),
MS COCO (Lin et al., 2014), and CIFAR (Krizhevsky, 2009):

• ResNet (He et al., 2015): a deep-CNN introducing the use of residual blocks, which
are shortcut connections linking non-adjacent layers. Introducing these "skip con-
nections", it is possible to overcome the problem of "vanishing gradient", where
gradients become so small they cannot update weights. ResNet is widely used as
backbone architecture in a variety of research fields. Its first version, ResNet50,
achieved state-of-the-art performance in many tasks. Later on, other two versions
of ResNet, with increasing depth, have been released: ResNet101 and ResNet 152;

• DenseNet (Huang et al., 2016): designed for image classification, this architecture
introduces the use of dense blocks. These blocks are built to be connected to all
feature maps from deeper layers and to provide input to all shallower ones. Reusing
all features already extracted, each layer benefits from a reduction of the number
of parameters to be tuned. The architecture can be scaled in the number of lay-
ers and parameters. The most common variants are DenseNet-121, DenseNet-169,
DenseNet-201, and DenseNet-264;

• EfficientNet (Tan and Le, 2019): a family of state-of-the-art deep-CNNs in image
recognition designed to be more efficient than some of their counterparts. The focus
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is on a scaling approach which enables balanced tuning of the width, depth, and
resolution of the network. By doing so, it is possible to achieve better performance
in image recognition, reducing computational costs and the risk of overfitting. There
are six variants of EfficientNet (from B0 to B6);

All these architectures are designed to perform classification tasks. Therefore, their top
layers (the head), which are the ones specialized for classification, must be rebuilt so that
they output a single number (needed for regression). To allow for a fair comparison, the
same structure is used for fine-tuning the new head:

• The pre-trained model is loaded with weights derived from training on ImageNet;

• A 2-D Global Average Pooling layer is added after the last convolutional layer of
the pre-trained model, obtaining a 1D vector from the feature map;

• A Batch Normalization layer is added to obtain a normalization of the activation
function;

• Top dropout rate at 40% of the feature to prevent overfitting;

• A dense layer with a single output is added to produce the final prediction in re-
gression mode.

With the above modifications, ResNet50, DenseNet121, EfficientNet-B0, and EfficientNet
B2 were trained using different cropping of the images (250 km, 500 km, and 750 km from
the centre). EfficientNet-B0 reached the lowest loss on the validation data (Fig.3.4), and
therefore was selected for all further analyses. Furthermore, it was found that the best
performance was reached when images were cropped within a 750 km box from the centre
(Fig.3.3); therefore, all subsequent experiments used this crop. Interestingly, validation
loss consistently decreases with the increase of the cropping dimension, highlighting that
useful information is contained at a higher distance from the centre.

Figure 3.3: Different crops applied in the choice of the deep-CNN architecture.
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It should be noted that there is still room for improvement on the chosen architecture, for
example by tweaking its hyper-parameters or increasing/decreasing the depth of its layers.
However, due to resource limitations in terms of computational power, it was decided to
proceed with this layout, especially as it has been validated extensively in the literature.

Figure 3.4: Results of preliminary tests on backbone structure.

3.3. Data augmentation

Having chosen the backbone model, several experiments were performed on different aug-
mentation scenarios.

3.3.1. A new Gini-inspired coefficient

The coefficient here introduced is an economic coefficient. However, it can be a powerful
instrument to measure the distribution under study is similar to the uniform one. To the
authors’ knowledge, this application of the Gini coefficient has never been developed so
far. Comparing this metric for the distribution of the original dataset and the distribution
of the augmented dataset, one has the feeling of whether the resulting sample is closer
to a uniform distribution than it started. Using this coefficient it is possible to find an
optimal combination of augmentation techniques applicable to the dataset.

The Gini coefficient, proposed by Corrado Gini, is defined as a measure of statistical
dispersion of a distribution of a social group, measuring income inequality or wealth
inequality within a nation or a social group. The Gini coefficient provides a consistent
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measure of how well distributed a certain resource is (Farris, 2010). This coefficient was
derived from speculations made on the Lorenz curve (Lorenz, 1905), which was intended
to be a visual representation of a certain quantity in a population. Following the paper of
Farris (2010), the principles of these two statistical subjects are described below. Defining
the quantity as Q, ordering the population in ascending order of the share of Q given a
certain class width the Lorentz curve y = L(p) we have that the fraction of population
characterized by low values of p is the poorest, with associated low values of L(p), which
are low values of the shares of the total Q. For the computation of the Gini coefficient, it is
necessary to compute the line of perfect equality, which is simply given by L(p) = p, which
represents a uniform distribution in which each member of the population accounts for
the same share of quantity to the total amount. At this point the Gini index is computed
as an integral which quantifies the distance between the Lorentz curve and the curve of
perfect equality:

G := 2

∫ 1

0

[p− L(p)] dp (3.1)

The index is scaled by a factor of 2 so that in case of perfect inequality (where one person
has 100% of the share of Q) G = 1. On the other hand, in case all the individuals share
the same amount of the total, G = 0. In Fig.3.5, the Lorenz curve for a population divided
into two classes is represented.

Figure 3.5: Lorenz curve for a population divided into two classes. Image taken from
Farris (2010).
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For a discrete distribution, the Gini coefficient is equal to half the relative absolute differ-
ence divided by the mean of values, and it is obtained according to the following formula:

G =

∑n
i=1

∑n
j=1 |xi − xj|

2
∑n

i=1

∑n
j=1 xj

=

∑n
i=1

∑n
j=1 |xi − xj|

2n
∑n

i=1 xj

=

∑n
i=1

∑n
j=1 |xi − xj|
2n2µ

(3.2)

Where xi is the frequency of class i.

The Gini coefficient corresponds to a geometric interpretation of the Lorenz curve. It is
equal to the ratio between the area below the line of perfect equality limited by the axes,
and the area delimited by the line of perfect equality and the Lorenz curve.

Considering a population of images of tropical cyclones, we can view them as belonging
to different categories of intensity, where weaker TCs are detected with the higher ab-
solute frequency with respect to stronger ones. The concepts of Gini and Lorentz can
therefore be applied in the following terms. The earning of the "social classes" can be
substituted with the intensity classes in terms of discretized maximum wind velocities
(e.g. 0 − 10, 10 − 20, . . . kt) and the quantity Q as the percentage of images depicting
a cyclone classified with a certain velocity belonging to the class. In so doing, the Gini
index becomes 0 in the case of perfect equality and 1 in the case of perfect inequality, and
the Lorentz curve can be used as a graphical representation of the inequalities of shares
in the population.

In the case of right-hand-tailed distributions (which is the case of the dataset used here),
the Lorenz curve lies above the line of perfect equality. As a consequence, the mathemat-
ical meaning of the Lorenz curve itself is lost, and the graph obtained is thus a common
P-P plot. Nevertheless, the Gini-inspired coefficient described above preserves the use-
fulness of the original coefficient, still varying between 0 (perfect equality) and 1 (perfect
inequality). In other words, the more G tends towards 0, the more the distribution is
similar to a uniform. Also, the area between the curve of the distribution and the line
of perfect equality is still a graphic representation of the distances between the actual
distribution and the uniform distribution. Fig.3.7 shows a graphical representation of
how the Gini-inspired coefficient and the P-P plot change after data augmentation.
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Figure 3.6: Original dataset (Gini coefficient = 0.68) and augmented dataset (Gini =
0.22).
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Figure 3.7: P-P plot of the original and augmented datasets.

The Gini-inspired coefficient is thus a quantitative measure of the distribution obtained,
giving more useful information than just the number of images in each class. In particular,
it makes it easy to compare the efficacy of different augmentation scenarios:

• Fixing the distribution (monitored by the Gini-inspired coefficient) and changing the
augmentation techniques used, it is possible to determine the efficacy of different
augmentation techniques with respect to the decided target distribution;

• Fixing the augmentation techniques to be tested and changing the distribution, it
is possible to control whether increasing the degree of augmentation, performance
improvement is achieved.

These considerations open the possibility to choose from the start the most suited aug-
mentation scenario depending on the problem. It may be the case that an augmentation
technique reveals to improve model performance when applied to obtain a certain distri-
bution (characterised by a certain G), but worsen performance when G decreases further.
Or, it could happen that improvements are achieved only when G gets lower. As a con-
sequence, it could be better to use the first technique in case of a lower degree of data
imbalance, the second one in case of deep imbalance.



54 3| Data and Methods

3.3.2. Data augmentation techniques

By using the Gini-inspired coefficient as a guide, several augmentation scenarios were
tested to improve the generalization of EfficientNet-B0, with the goal of understanding
which augmentation techniques worked best. The techniques employed were random
rotation, horizontal and vertical flipping, horizontal and vertical random erasing. For
random rotation (Fig. 3.8), the images were rotated by an angle varying randomly between
+270◦ and -270◦, with a step of 5◦. Horizontal (Fig. 3.9) and vertical (Fig. 3.10) flipping,
as previously mentioned, apply a mirroring with respect to the vertical or horizontal axis
respectively. These techniques have been used before for TCIE, but their usefulness has
not been quantified.

Figure 3.8: Example of random rotation applied to an image.

Figure 3.9: Example of horizontal flipping applied to an image.
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Figure 3.10: Example of vertical flipping applied to an image.

The use of random erasing, on the other hand, is a novelty for TCIE. In its original for-
mulation, random erasing was conceived as an augmentation technique that superimposes
the image squares of random dimensions in random positions, filled with random values
Zhong et al. (2017). Its effect is to encourage the network to not overly rely on any single
feature in images, and to learn to adapt to occlusions. Moreover, it does not introduce
any new parameter to be tuned and it does not require additional memory consumption,
as it can be performed before training the network. As it is known that satellite images
can present missing data (which appear as stripes of missing values) due to sensor errors,
it is reasonable to assume that random erasing could make the network invariant to this
source of error. Therefore, an adaptation of the random erasing algorithm is proposed
here (Fig. 3.11), as follows:

• Before training, each image is subjected to a random erasing transformation with a
prefixed probability;

• For images randomly selected for random erasing, a random point along the edge
of the image is selected;

• A rectangle of random width (maximum 0.1 x image width) is drawn from that
point to the opposing edge of the image and filled with random values.

• Optionally, this is repeated in the opposing direction (i.e., if a horizontal bar of
random values is created, a vertical one can be created afterwards, as shown in Fig.
3.12).
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Figure 3.11: Example of vertical random erasing.

Random rotation, horizontal and vertical flipping, and random erasing were applied to
images according to a pre-determined probability. In other words, each image in the
dataset had a random chance of receiving one or more of the transformations.

Figure 3.12: Example of horizontal and vertical random erasing.

Having established which data augmentation techniques to use and how to implement
them, different augmentation scenarios (i.e., combinations of possible augmentation tech-
niques applied to images) were chosen:

• Business as usual : random rotation, horizontal and vertical flipping;

• All augmentations : random rotation, horizontal and vertical flipping, vertical ran-
dom erasing;
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• Flipping and erasing : horizontal and vertical flipping, vertical random erasing;

• Rotating and erasing : random rotation, vertical random erasing;

• Rotating and double erasing : random rotation, horizontal and vertical erasing;

Similarly, different distribution scenarios were chosen, and monitored by the Gini-inspired
coefficient:

• G = 0.28, with random undersampling of classes representing more than 15% of
the total dataset, and augmentation of images of underrepresented classes up to a
maximum of 10 times;

• G = 0.24, with random undersampling of classes representing more than 10% of
the total dataset, and augmentation of images of underrepresented classes up to a
maximum of 10 times;

• G = 0.23, with random undersampling of classes representing more than 10% of
the total dataset, and augmentation of images of underrepresented classes up to a
maximum of 12 times;

• G = 0.22, with random undersampling of classes representing more than 10% of
the total dataset, and augmentation of images of underrepresented classes up to a
maximum of 14 times;

The regulation on the augmentation was so gradual because the most intense class is
very little represented. In the original dataset (G = 0.60), only four images out of 91,472
belong to this class. Below, the absolute frequency of images for the highest represented
classes is reported:

3.3.3. Label Distribution Smoothing (LDS) and Focal Loss for
Regression

In a recent paper, Yang et al. (2021) highlighted the need for a radical change of view
when dealing with deep imbalanced regression, questioning the applicability of classifica-
tion loss functions to regression tasks. Their main concern was related to the difference
between categorical and continuous label spaces. In Deep Imbalanced Regression (DIR),
the aim is to learn continuous targets from an imbalanced dataset. Thus, the division into
classes loses meaning. Moreover, the imbalance is not constant throughout the frequency
distribution since two samples could have the same associated frequency but be in two
very differently represented neighbourhoods. Finally, values belonging to a class could be
not represented at all. It is thus necessary to implement interpolation or extrapolation
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Table 3.1: Absolute frequency of images by class with varying Gini-inspired coefficient.

Intensity class G = 0.60 G = 0.28 G = 0.24 G = 0.23 G = 0.22
[10, 20) 753 8283 7317 7317 7317
[20, 30) 12758 10976 7317 7317 7317
[30, 40) 16452 10976 7317 7317 7317
[40, 50) 12117 10976 7317 7317 7317
[50, 60) 9386 10976 7317 7317 7317
[60, 70) 6683 10976 7317 7317 7317
[70, 80) 5215 10976 7317 7317 7317
[80, 90) 4019 10976 7317 7317 7317
[90, 100) 2714 10976 7317 7317 7317
[100, 110) 1519 10976 7317 7317 7317
[110, 120) 903 9933 7317 7317 7317
[120, 130) 432 4752 4752 5616 6480
[130, 140) 125 1375 1375 1625 1875
[140, 150) 77 847 847 1001 1155
[150, 160) 22 242 242 286 330
[160, 170) 4 44 44 52 60

of values. For this, they proposed two main techniques: Label Distribution Smoothing
(LDS) and Feature Distribution Smoothing (FDS).

In LDS, the basic idea is to smooth out differences in the original density distribution of
labels among close labels. This is done by applying a kernel density function, such as a
Gaussian kernel.

The basic idea of FDS is to smooth out outliers and noise in the feature values. This is
done again with a kernel function such as a Gaussian kernel. Unfortunately, for a matter
of time, FDS was not explored in this thesis.
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Figure 3.13: Empirical label distribution of targets.

Detailing LDS, a symmetric kernel is applied to the distribution of the labels, to smooth it
and thus extend the information of more represented labels to nearby, potentially poorly
represented, ones. The operation performed is the following:

p̃(y′) =

∫
k(y, y′)p(y)dy

Where:

• p(y) is the empirical number of occurrences of a label;

• p̃(y’) is the label density, which is called effective because a representative of the
real phenomena;

In the experiment done in this thesis, a Gaussian kernel with kernel size of 5 and a standard
deviation of 3 was applied. The resulting effective distribution is reported below.
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Figure 3.14: Effective label distribution of targets.

Yang et al. (2021) noted how the effective density function is much more correlated with
the distribution of errors than the empirical one, meaning that the resulting distribution
better represents the real imbalance.

The use of LDS is particularly appropriate for TCIE, as the empirical distribution of
TC intensities in IBTrACS is little representative of the underlying phenomenon: the
sparse distribution is more related to measurement (and potentially post-processing, as
performed by IBTrACS to standardise data coming from different agencies) than of reality.
This is immediately evident when looking at the empirical distribution (Fig. 3.13, in which
the highest occurrences are for classes that are multiples of five. This is clearly related
to approximations decided during the estimation of the maximum wind speed velocity.
Thus, smoothing out the distribution using LDS could help the deep-CNN implemented
to better capture the real (supposedly continuous) distribution of the labels.

All this reasoning is preparatory to the implementation of a Cost-Sensitive Loss Function
(C-SLF). C-SLF, commonly used in ML classification tasks, are used to alleviate class
imbalance problems, assigning different misclassification costs to different classes, based
on their rarity. Yang et al. (2021), took inspiration from the loss function introduced by
Lin et al. (2017): Focal Loss (FL). FL is a dynamically scaled cross-entropy loss, governed
by a scaling factor decaying to zero and thus down-weighting the contribution to the loss
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for well-classified samples, while increasing the weight for hard ones. Yang et al. (2021)
adapted the Focal Loss for regression tasks, introducing Focal-R. They substituted the
scaling factor by a continuous function which normalises L1 distance into an interval
between 0 and 1. The Focal-R is constructed as follows:

Focal −R =
1

n

n∑
i=1

wiσ(|βei|)γ =
1

n

n∑
i=1

1

pi
σ(|βei|)γ

Where:

• ei is the L1 distance for the i-th sample;

• σ(·) is the sigmoid function;

• β,γ are hyper-parameters;

• wi are the weights, inversely proportional to target value occurrences;

• pi is the smoothed label distribution value;

Focal-R can handle dataset imbalance more effectively, improving the performance of the
model on the minority class. The use of this loss function is received as an effective tool
which helps to overcome the intrinsic limits of loss functions such as MAE which has no
power to contrast deep data imbalance. In the experiments, Focal-R hyper-parameters
β,γ were set to 0.2 and 1 respectively, as proposed by Yang et al. (2021).

Focusing on the case study, here the weights are set as the inverse of the frequencies in
effective label distribution. The distribution of wi for the GridSat-B1 dataset is shown in
Fig. 3.15.
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Figure 3.15: Weights (wi) of the Focal-R.

3.4. Unboxing black-box models: heatmaps

Although CNNs have been shown to outperform traditional algorithms in most computer
vision tasks, they are essentially "Black-box" (i.e., not interpretable) models, meaning
their adoption by the scientific community at large has been met with some reluctance.
Some authors proposed to use heatmaps in this field, as Lee et al. (2019). For TCIE,
Zeiler and Fergus (2014) proposed to use heatmaps based on the sum of the activation
maps in the last convolutional layer of a CNN. With resizing, they adapted heatmaps
dimensions to match the size of the original image, to visualize what features the network
focused on before making the final prediction. They observed how the eye region becomes
more relevant as the intensity of the cyclones increases, reflecting the structure of weaker
TCs which do not have well-defined eyes. A different approach to visualize heatmaps was
proposed by Selvaraju et al. (2016), who developed the popular Gradient-based localisa-
tion Class Activation Mapping (Grad-CAM). The rationale behind it is to compute the
gradient of the predicted class score with respect to the feature map corresponding to the
last convolutional layer. Gradients are then weighted by the global average pooling of the
same feature maps.
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The result obtained is then summed and a ReLU activation function is applied, obtaining
the heatmap.

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (3.4)

The algorithm used here is inspired by Grad-CAM, with small modifications:

1. Gradients of output are computed with respect to input for each channel of the
output of the last feature map;

2. Gradient tensors pass through global average pooling;

3. The obtained pooled gradients are used to weigh the feature maps;

4. The final heatmap is obtained by summing the weighted feature maps.

In the following chapter, a few heatmaps are analyzed from the best model found. A
preliminary classification of features is identified, highlighting the need for further analysis.

3.5. Implementation details

In this section, further details are provided, ensuring that the experiments can be repro-
duced subsequently. For the sake of readability, all details are provided as bullet points.

• Experiments leaned on a TensorFlow Framework, which supports CUDA;

• Networks were trained on NVIDIA GeForce GTX 1650 (4 GB) GPU;

• The batch size was set at 16;

• Top layers of networks were rebuilt, adding a Global Average Pooling (2D) to reduce
spatial dimension to a single vector, Batch Normalization layer to normalise the
activation functions, Dropout with a dropout rate fixed at 0.4 to regularise the
model, and a final single output unit to make regression;

• The loss function chosen was Mean Absolute Error (except for the experiment in-
volving Focal-R) and the optimizer was RMSprop;
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• The starting learning rate was 0.0001, setting the decay at 0.1 every time the vali-
dation loss did not improve by at least 10−4 in 5 consecutive epochs;

• An early stopping was set to prevent overfitting and save time in training. The
parameter monitored was validation loss, stopping the training after 6 epochs not
reaching a minimum improvement of 10−4;

• The training/validation split of the input dataset was set respectively at 0.8/0.2;

• A normalisation of inputs was applied using batch mean and standard deviation;
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4.1. Data augmentation tests

The following graphs report the results achieved by the different augmentation scenarios,
in terms of mean absolute error on the test set, averaged over all predictions and grouped
by the value of the labels. To improve their visual quality, the displayed curves were
smoothed using a moving average to filter out outliers and reduce the noise.

Figure4.1 shows how different augmentation scenarios impact model performance differ-
ently. Several augmentation scenarios, among which the combination of horizontal and
vertical flipping, random rotation and vertical random erasing, decreased the performance
on intensities higher than 125 kt. Furthermore, all combinations decreased the perfor-
mance for the most represented classes (i.e., weak TCs), which is an inevitable trade-off
that happens when re-balancing the data (especially when undersampling the most rep-
resented classes).
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Figure 4.1: Comparison of MAE obtained in all the experiments.

Figure 4.2: MAE obtained on test datasets in models trained on datasets with G = 0.28.

By isolating some of the augmentation scenarios (Fig.4.2) and fixing the Gini coefficient
at G = 0.28, a comparison of MAE on most intense classes is made possible. In partic-
ular, flipping + random erasing and random rotation + random erasing scenarios show
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divergent trends starting from intensities around 125 kt. The MAE measured in intensity
classes higher than 100 kt increases by 4 kt between the first and the second scenario.
Here, random rotation + random erasing are clearly disturbing the network in training,
worsening its performance systematically in most intense classes. On the other hand, the
combination of random erasing and flipping is slightly improving the MAE in prediction
with respect to the business as usual.

The combination of flipping and random erasing was further explored, considering a dis-
tribution with a Gini-inspired coefficient of 0.22. Results of MAE obtained are reported in
Fig.4.3. As can be seen, performances worsen systematically from intensity equal to 125
kt. A possible explanation could be linked to the fact that an image can be transformed
three times by flipping without repetition: horizontal, vertical and combined horizontal
and vertical transformations. As a consequence to a number of images, the same flipping
transformation will be applied, and the only difference will be the width and location of
erasing window. These decreasing performances can be linked to the fact that there is a
lower amount of information introduced in the training by augmentation-derived images
and the network is overfitting the dataset.

Figure 4.3: Comparison of MAE obtained by models trained on dataset augmented with
random erasing and flipping with different Gini-inspired coefficient values.

Once noticed the different trends obtained varying the Gini-inspired coefficient, it was
decided to explore deeply the effect of different distributions on the scenario random eras-
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ing coupled with random rotation. First, the distribution with G = 0.22 was tested.
The outcomes of this are reported in Fig.4.4. Surprisingly, the new dataset fed during
training provided a model with increased performances measured on the test dataset.
Performance in the most intense classes appears to improve consistently as the Gini coef-
ficient decreases. This increase in performance is even more evident in classes with labels
above 160 kt, which are not present in the training and validation sets. To conclude the
experiment on the combination random erasing and random rotation, another training
and testing was performed on an augmented dataset characterised by a G = 0.24. Perfor-
mances obtained are overlapping G = 0.22 scenario for most of the intensity values, with
a relevant deterioration between 110 and 125 kt, and a smaller deterioration for intensities
higher than 160 kt. The decrease in performance in classes between 110 kt and 125 kt
is hardly explained because it corresponds to classes characterised by the same number
of images. The decrease in performance in intensity classes higher than 160 kt is better
explained because the difference between G = 0.24 and G = 0.22 distributions are linked
to classes with intensities higher than 120 kt, as reported in Tab. 4.1.

Figure 4.4: Comparison of MAE obtained by targets obtained by models trained on
datasets augmented with random erasing and rotation with different Gini-inspired coeffi-
cient values.
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Figure 4.5: Comparison of MAE obtained by a model trained on datasets augmented with
horizontal and vertical flipping and random rotation with different G values.

Focusing on the effects of different G values for augmented dataset in the business-as-usual
scenario, the Gini coefficient was decreased to a value of 0.22. In the graph in Fig.4.5
it is clear that the performance deteriorated. In particular, a decrease in MAE equal to
4.03 kt is detected for intensities higher than 100 kt, with the highest loss in performance
around 155 kt (the delta between the MAE of G = 0.22 scenario with respect to G = 0.28
is equal to -9 kt).

Comparing the results obtained for the scenario in which random rotation and random
erasing (G = 0.22) with the business as usual in its best-performing distribution (G =
0.28), there is no clear improvement in performance, as can be seen in Fig.4.6, except for
classes with intensities higher than 150 kt.
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Figure 4.6: Comparison of MAE by models trained on datasets augmented with traditional
techniques (flip_rot_28) and with rotation and vertical random erasing (rot_er_22).

Figure 4.7: Comparison of MAE obtained in business as usual scenario (flip_rot_28);
random rotation and random erasing scenario (rot_er_22); random rotation, and double
random erasing scenario (rot_2er_22).
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Having noticed the impact on TCs with maximum sustained winds higher than 150 kt,
also horizontal random erasing was introduced. Unexpectedly, as reported in Fig.4.7,
performances were systematically improved with respect to both business as usual and
random rotation + random erasing. Having established this last scenario as the best-
performing one, the effect of LDS and the new loss function were examined. In the graph
in Fig.4.8 it is evident that the performance on classes greater than or equal to 125 kt
is systematically better. Also, apart from a small interval around 110 kt, from 55 kt
to the end of the dataset, the performance is consistently better than the business-as-
usual scenario, with a considerable improvement, especially for the most intense classes.
Entering the details, this last scenario outperforms business as usual, with relevant effects
on MAE of classes with intensities higher than 100-110 kt (-3.99 kt) and the most relevant
effect on class 150-160 kts (-9.25 kt).

Figure 4.8: Comparison of MAE obtained models trained on datasets augmented with
business as usual scenario (flip_rot_28); random rotation and double erasing and Focal-R
as loss function (rot_2er_LDS_22).
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Figure 4.9: MAE improvement obtained in the scenario with random rotation, double
random erasing and Focal-R as loss function with respect to business as usual scenario.

To conclude, Fig.4.9 shows a graph highlighting the MAE differences between business as
usual scenario (random rotation and flipping with G = 0.28) and the best model obtained
(trained on dataset augmented with random rotation, double random erasing with G
= 0.22 and Focal-R as loss function). When the curve is above y = 0, there is a gain
in performance. It can be seen how model performance improves for winds with MSW
bigger than 55 kt, with a limited exception for TCs with intensities between 100 and
115 kt, where performances are comparable. Obtaining better performances in TC with
intensities of MSW bigger than 160 kt is one of the most promising results since these
TCs are not present in the training and validation data.
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Figure 4.10: Prediction values and respective confidence interval for best-performing
model (training dataset augmented of G = 0.22 by random rotation and double ran-
dom erasing, processing targets with LDS and Focal-R as loss function).

Figure 4.11: Prediction values and respective confidence interval for traditional model
(training dataset augmented of G = 0.28 by random rotation and horizontal, vertical
flipping, and MAE as the loss function).

Improving performance in these classes implies that the proposed augmentation strategy
can make the model generalise even for previously unseen class intensities. The relevant
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impact of the new approach proposed is captured when looking at the confidence intervals.
The trend of predictions and the associated confidence interval at 95% are represented
in Fig.4.10 and Fig.4.11. From this plot, one can see the effects of the two different
augmentation scenarios on the final uncertainties associated with predictions. Especially
in the range between 60 kt and 110 kt, there is a decrease in the range of values predicted
by the network, making the network more reliable in estimation. Even wind speeds up to
160 kt show a detectable effect, regardless of their higher intensity values.

4.2. Preliminary results on heatmaps

Finally, a brief analysis of the heatmaps is reported below. Three pictures (Fig.4.12,
Fig.4.13, and Fig.4.14 ) are represented, among the ones obtained from a subsample of
predictions characterised by an absolute error smaller than 1 kt with respect to the target.
Please note that the visible shapes in these heatmaps do not represent the TC intensity
class. Indeed, these shapes are mainly found across all predicted intensities, indicating how
the network routinely looks for the same types of patterns to make its estimation: border
features (Fig.4.12) along the outskirts of the TC; spiral bands features (Fig.4.13); and
cyclone eye features (Fig.4.14). The features selected along the border of the image bring
into question the choice of crop size of the images; further experiments should investigate
whether, by using a larger crop size, these border features assume more prominence,
indicating relevant information at the edge of a TC. This is a reasonable assumption, as
TC size is strongly linked to TC intensity.

Figure 4.12: Example of heatmap highlighting the picture border.

After analyzing additional examples (not presented here) of similar heatmaps, it seems
that the ring-shaped features emphasized in Fig.4.13 are more common when the cyclone’s
eye is not clearly defined. This can happen when the TC eye is occluded (as in Fig. 4.13),
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but also when it is not fully formed, which occurs for weaker TC. As a result, in the
absence of a distinct eye that would facilitate intensity estimation, the network adapts by
searching for alternative features located further away from the center.

Figure 4.13: Example of heatmap highlighting a ring-like shape.

Finally, if an eye is visible (Fig. 4.14), the network identifies it as a key source of infor-
mation to make its estimation. In a somewhat peculiar behaviour, the type of heatmap
shown in Fig. 4.14 is occasionally found (not shown here) to not coincide with the eye
but rather with some particular feature in the image. The flowchart of how the network
interprets images, therefore, seems to be the following:

1. Look for a well-defined eye;

2. Look for well-defined features near the core of the TC;

3. Look for well-defined spiral bands within the main vortex;

4. Look for border features, possibly indicating TC size;

Figure 4.14: Example of heatmap highlighting a circular shape.
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In this thesis, we propose new approaches for alleviating deep imbalanced dataset.

With the use of transfer learning, it was possible to train and validate several networks rep-
resenting the SoTA of image processing. Being pre-trained on ImageNet, deep CNNs were
already optimised for feature extraction and only the rebuilt top fully connected layers
were re-trained. ResNet, DenseNet, EfficientNet-B0 and EfficientNet-B2 were compared,
and EfficientNet-B0 was found to perform better than the others in terms of validation
loss.

A Gini-inspired coefficient was introduced, measuring the distance of the actual distribu-
tion of data samples from the uniform distribution. In particular, the closer the coefficient
is to zero, the more similar the actual distribution is to the uniform one. Vice versa, the
closer to one the coefficient, the more imbalanced the distribution. The coefficient pro-
posed was particularly useful when comparing the performance of the CNN on different
datasets: if the Gini-inspired coefficient remained the same, one can be certain that the
network was trained on datasets with same distribution (and thus the same level of data
imbalance).

Two innovations were introduced for TCIE regression with deep learning. First, random
erasing, which was thoroughly tested in both its vertical and horizontal and vertical con-
figuration. It was shown to be an effective technique, especially for the least represented
and most intense classes, where an increased amount of augmentation is necessary to have
an effect. Second, Label Distribution Smoothing and Focal-R loss function. Thanks to
this approach it is possible to transfer knowledge from over-represented targets to adja-
cent ones. In order to exploit this information, Focal-R loss function was adapted for the
specific task, making the network give higher weights to the least represented classes, and
thus enhancing the learning from their targets.

Finally, heatmaps inspired by Grad-CAM were visualised and interpreted, to understand
what the CNN looks for in images of TCs. Preliminary observations allowed to classify
heatmaps into three identified classes. In the first class, the network seems to consider
peripheral regions, which prompted suspicions that the chosen crop is cutting off part of
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the image which could contain relevant information. In the second class, ring-shaped fea-
tures are clearly distinguishable in the heatmap, highlighting a circular structure around
the TC’s eye. In the third class, the focus of the network is limited to a very small region
characterised by a strong localised gradient of weights and ignoring the vast majority of
the region; in some cases, this region corresponds exactly with the TC’s eye.

This thesis could be the starting point for a number of future studies. First, the dataset
used in this thesis is proposed for further studies concentrating on the issue of TCIE at a
global scale; it is the largest available in literature related to ML applications for TCIE.

Second, in light of the fact that several heatmaps highlight as relevant the borders of
pictures and considering that the MAE in training and validation loss is decreasing with
increasing crop dimensions, further research should be done considering broader scales.

Third, because of time constraints, only few values of the Gini coefficient were considered
here. However, when considering random erasing (single or double) and rotation, it was
noticed that in generalisation with decreasing G, there was a general decrease of MAE.
Further experiments should consider decreasing G further, identifying whether a minimum
MAE could be achieved, in order to quantify the capability of this new technique to mimic
new images and thus prevent overfitting.

Fourth, the promising results achieved with the introduction of LDS and Focal-R suggest
that moving towards a pure regressive network may be the correct intuition to overcome
deep imbalance issues in TCIE. Future research may discover whether different frequency-
weighted loss functions can achieve better performance. Also, further discoveries may be
found dealing with Focal-R hyper-parameter optimization. Once LDS have proven to
be effective for the purpose, further developments may consider the implementation of
Feature Distribution Smoothing (FDS), which demonstrated to be very effective in Yang
et al. (2021) paper, and its coupling with LDS.

Further experiments must be undertaken to confirm the outcomes of this study. Specif-
ically, K-fold cross validation will be performed to better interpret the differences in
performances obtained by the various models tested. K-fold cross-validation is a common
technique used in ML, performed as follows:

1. The dataset is divided into K equal parts;

2. The model is trained on K-1 folds and tested on the remaining fold;

3. By repeating this procedure K times, each fold is used exactly once as test set;

4. The results of the K experiments are averaged.
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By following this procedure, the reliability of the results obtained is thus better assessed,
and the validity of the findings better quantified.

Finally, further studies should focus on heatmaps. In this study we focused only on
heatmaps belonging to well-predicted images. A better understanding of the relationship
between heatmaps and prediction accuracy could help us to better interpret underlying
mechanism followed by the CNN to estimate intensity.
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