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Abstract

Every system at a certain point of its life-cycle requires maintenance, with

the overall aim of restoring its functionalities. However, such intervention

is not always perfect, but could bring the system to an intermediate con-

dition between as-good-as-new and as-bad-as-old: this generalization of the

concept of maintenance is called imperfect maintenance. The present the-

sis aims to bring further insight to this topic applied in a condition-based

maintenance context, which benefited from the developments of sensors tech-

nology and data processing of last years. With this goal in mind, the work

proposes a literature review of the state of the art of the subject. From such

analysis emerged first of all that the publications tend to perform an opti-

mization of the maintenance policies making assumptions about the degra-

dation of the system and the effects of the imperfect maintenance instead

of trying to estimate them. Secondly, most papers lack of a real applica-

tion, focusing more on numerical assessments without detailing the nature

of the asset and the types of maintenance performed. These gaps found in

literature are used to set the objective of the work: the development of a

framework for a condition-based maintenance model which aims to identify

and quantify the degradation pattern and the imperfect maintenance effects

in order to improve the asset prognosis and the recommendation of types

of maintenance intervention. Such operative framework aims to guide the

user in the implementation of a condition-based maintenance model where

the imperfection of the repairs is given by their capability of restoring only

one of the failure modes which cause the degradation, leaving untouched

the others. The main peculiarity of the model consists in the adoption of

machine learning techniques using condition monitoring and historical event

data to characterize the degradation of the asset together with the mainte-

nance effects; this information is utilised in a real time logic with the aim of

improving the present actions. The framework is then assessed starting from

a dataset made available by the Industry 4.0 Lab at Politecnico di Milano;

this part constitutes a practical example of the CBM model too.
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Chapter 0

Executive Summary

0.1 Research motivation

Every system at a certain point of its life-cycle requires maintenance, with

the aim of restoring it to a state in which it can perform its function. Mainte-

nance can therefore be seen as an essential solution to avoid failures, increase

the asset availability, extend its lifetime and allow to operate it in safety.

However, often in practice due to several reasons such intervention does not

restore the system completely but brings it to a state between as-good-as-

new and as-bad-as-old; this kind of repair is called imperfect maintenance

and can be seen as a generalization of the maintenance concept itself.

Imperfect maintenance began to be object of study during the 1970s, gaining

popularity with the years and undergoing the influence of the technological

context. During the last decades it was in fact seen an increased interest

toward models based on a condition-based maintenance policy, based on the

actual conditions of the system, rather than time-based maintenance models

scheduling interventions at predetermined intervals. Such phenomenon was

then enhanced by the advent of the Fourth Industrial Revolution during last

years, which brought a great development to sensors technology and tech-

niques capable of processing and elaborating large amounts of data, tending

to move the condition-based maintenance towards enhanced prognostic ca-

pabilities. In such scenario still in evolution imperfect maintenance can

therefore find new investigation lines, with the overall aim of being able of

better characterizing complex assets and improve their maintenance man-

agement.
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Figure 1: The different degrees of repair/maintenance. Classification according to

Pham et al. [1]

0.2 Methodology

Made the previous considerations, this thesis aims to provide further investi-

gation to the concept of imperfect maintenance applied to a condition-based

maintenance policy. In addition, the study is conducted in a context where

no run-to-failure data about the system are available, since this choice allows

to be closer to reality and to the exigencies of modern industry. To achieve

this goal, first of all is presented a literature review about the topic, with

the aim of individuating possible research areas. Then, basing on the results

obtained, the practical part of the work consists in the formulation of an op-

erative framework illustrating an innovative approach in the application of

imperfect maintenance to a system continuously monitored through sensors.

Finally, the model developed is assessed through a simulated experimental

campaign built on a reference dataset made available by the Industry 4.0

Laboratory of the School of Management of Politecnico di Milano.

0.3 Literature review

The scope of the literature review is to build a wide yet profound knowledge

about imperfect maintenance and describe its state of the art in the context

object of study. To do so, a keywords based research was established with

the aid of Web Of Science and Scopus databases; the initial results were then

progressively filtered, leaving 47 selected papers to be classified according

to specific drivers.

The actual classification was made with the aid of six tables, describing dif-

ferent aspects of the state of the art about the topic. The first table gives

a general overview about the papers, reporting their industrial field, the

application they deal with and their main content. The second one focuses

on the models used to describe the degradation and the inspection policies

applied. The third table shows the maintenance policies in use, specifying
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also what are the types of intervention included and if the model aims to

estimate the remaining useful life of the asset. The fourth describes the

imperfect maintenance itself in terms of its effects on the system. Finally,

the fifth and the sixth tables show, respectively, the optimization targets of

the models and what are the related variables.

What in general emerged from the analysis is a tendency of the publications

to perform an optimization of the maintenance policy rather than using

the data acquired to characterize the system in terms of degradation and

imperfect maintenance effects, updating then the related parameters as new

information arrives; these aspects are in fact usually assumed at priori. This

is particularly true for systems monitored continuously through sensors and

for which the target is to predict their future conditions. In addition, there

emerged a generalised lack of real applications for the models developed and

an absence of details regarding the nature of the assets and the types of

maintenance performed.

0.4 Research objective

Taking into consideration the findings of the literature review and with

the target of contributing in an innovative ways to such research area, the

following research objective is formulated:

”The development of a framework for a condition-based maintenance model

which aims to identify and quantify the degradation pattern and the

imperfect maintenance effects in order to improve the asset prognosis and

the recommendation of types of maintenance intervention.”

To achieve this goal, an operative framework is formulated and then pre-

sented. It has the objective of giving guidance in the implementation of the

CBM model proposed; for this reason, its purpose is to be as general as pos-

sible. After that, the framework is assessed starting from a reference dataset

of the Industry 4.0 Lab and using that data to design a simulated experi-

mental campaign. This part is focused on a specific situation, with specific

modelling choices, and acts as a practical example of the CBM model too.

0.5 Operative framework presentation

The operative framework developed consists in a CBM model in which the

concept of imperfect maintenance is associated to the one of failure mode:

v
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the repairs are imperfect since they restore the degradation corresponding

to one of its failure modes. The main innovation, in addition to some im-

provements in the estimation of the remaining useful life, lies in the ability

of characterizing the effects of the imperfect maintenance actions in order

to expand the prognostic capabilities of the model: thus, the traditional

RUL prediction is accompanied by the estimation (prediction) of the type

of intervention to be executed at the next repair.

Figure 2: The three levels of detail of the operative framework

The framework is represented in a hierarchical model form organised on

three levels, so that each part of the CBM model is progressively explained

and implemented in detail. Figure 2 gives a graphical representation of such

organization.

The first level of detail consists in the general framework itself (ref. Figure

3), which is a macro representation of the relationships between the other

main blocks. It in fact describes the cyclic succession of condition monitor-

ing and maintenance on the asset which usually characterizes its life-cycle;

these two phases are supported by the control data. In addition, the con-

dition monitoring phase is supported by the information elaborated at the

moment of maintenance, with the aim of improving the present actions.

The control data, on the second level, are the ones necessary to execute

correctly the different parts of the CBM model. In particular, they can be

divided into degradation control data, which allow to monitor the health
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Figure 3: General framework of the CBM model

state of the asset; logistic data, needed to schedule and organize the main-

tenance; models inputs, which are specific data required by the different

models part of the framework.

The condition monitoring is the phase in which the degradation of the

asset is supervised, in order to schedule maintenance at the right time and

avoid failures. Here sensor data are collected in real time and elaborated

to acquire information about the present conditions of the asset, with the

target of determining the future ones. This part is further specified in the

third level of detail by creating two other blocks: the RUL prediction and

the maintenance prediction.

The RUL prediction step aims, as the name suggests, to estimate the re-

maining useful life of the asset. In particular, an improvement is made to

this process, i.e. the continuous choice of the degradation model basing on

the sensor data. It is in fact implemented a feature which allows to choose

every time new data are acquired the degradation function most adapted to

represent the deterioration pattern, continuously updating at the same time

the curve coefficients and the RUL estimation.

In the maintenance prediction, which represents another innovation point
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of this work, is decided which is the type of repair to be executed at next

maintenance. This involves the estimation of the failure mode responsi-

ble of the deterioration and a consequent decision-making phase based on

the past experiences recorded. These steps are achieved mainly using two

machine learning approaches: a classification model of the failure modes,

which records how they evolve maintenance after maintenance, allowing to

make predictions about them; the regression of the repair intervals, creat-

ing the mean time between maintenance functions MTBMi(ni) (where i is

the failure mode index) which indicate when each failure mode is going to

reappear after being maintained basing on how many times the same one

was observed (ni). They both represent, in different ways, an expression of

the effects of the types of imperfect maintenance, whose behaviour is thus

captured and used to improve the prognostic step.

The maintenance is the part in which not only is executed the actual

repair on the asset, but also the data gained during the condition monitor-

ing are elaborated a posteriori. In particular, the main innovation here is

the updating of both the classification model and the mean time between

maintenance (MTBM) functions: thus it is obtained a continuous update of

the effects of the imperfect maintenance types, whose aim is to increase the

knowledge of the phenomena occurring in order to do better in the future.

Figure 4: The three assessment steps executed

0.6 Framework assessment

The assessment of the framework is obtained through three main steps (ref.

Figure 4): the analysis and description of the original dataset of reference,

which reports the vibrations along the spindle axis of the drilling machine of

the laboratory, and the extraction of information from it; the manipulation

of such dataset in order to generate another one coherent with the previous

information and suitable for the testing purposes; the execution of the ac-

tual simulations and the presentation of their results.
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Figure 5: Example of fitting of a linear degradation pattern

Three innovative features of the framework were object of testing: the choice

of the degradation function for the remaining useful life estimation, the fail-

ure modes classification model and the regression of the mean time between

maintenance (MTBM) data.

The first feature was tested using different failure modes modelled to have

distinct different patterns: in Figure 5 is for example reported a linear one.

Here, the model showed to be effectively capable of selecting the best func-

tion in order to represent the type of degradation seen. This results in a

more reliable and self-adaptable estimation of the remaining useful life, with

a consequent improvement in the maintenance scheduling process.

For what concerns the failure modes classification model, it was discussed

by means of the behaviour of its validation accuracy training after training

(ref. Figure 6) and in terms of its actual prediction capabilities. In partic-

ular, there emerged that 30-50 observations were necessary to reach a good

accuracy, which however is a feasible number if the monitoring is done across

many assets of the same type; secondly, the classification model was correct

in circa the 85% of the cases. For this reason, such innovative feature results

to be a potentially useful tool to expand the prognostics on the asset, allow-
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Figure 6: Validation accuracy of the classification model based on the number of

observations used for its training

ing the user to know not only when to execute maintenance, but also the

dominant cause of degradation; this additional information could enhance

the decision-making phase about the type of intervention and improve the

maintenance organization process.

Finally, the results of the regression of the mean times between maintenance

data were discussed with the aid of selected images, like for example Figure

7; they demonstrated the feature capability of capturing the general trend,

together with its variability, of the maintenance intervals for the failure

modes. Thence, this innovation results to be another potentially useful

tool, capable of understanding when the imperfect maintenance actions lose

efficacy, making the user to opt for a more complete repair, and allowing to

have a first estimation of the time taken by the failure modes to cause critical

levels of degradation, with further improvements in the asset prognosis and

the maintenance decision-making.

0.7 Future works

The work presented has possible investigation lines which could be expanded

in future studies. In particular, the main ones individuated are:

• Collaborative maintenance: the framework for the CBM model
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Figure 7: Example of Mean Time Between Maintenance curve

presented has the feature of performing a dynamic characterization of

the asset as event and condition monitoring data are acquired. It could

be interesting to integrate such learning process with the concepts of

Social Internet of industrial assets and collaborative prognostics. This

would require to face challenges like the storage of data in a shared

database, their retrieval and their usage between different machines.

• Multiple maintenance lead times: the present work approaches

the maintenance scheduling more from a prognostic perspective, bring-

ing to the assumption of the same lead time for all kinds of inter-

vention. However, such hypothesis is true only in some situations.

Therefore, relaxing such constraint would make possible a generaliza-

tion of the framework and the integration in it of the logistic aspect

of maintenance.

• Maintenance optimization: the literature review showed a strong

presence of publications aiming for an optimization of the maintenance

policy. Following this route, the findings of this work could be used to

explore new aspects of the optimization approach, which would benefit

from an enhanced prognostic on the asset.
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Chapter 1

Research objective

1.1 Research motivation

Every system at a certain point of its life-cycle requires maintenance, with

the aim of restoring it to a state in which it can perform its function. Main-

tenance can therefore be seen as an essential solution to avoid failures, in-

crease the asset availability, extend its lifetime and allow to operate it in

safety. For this reason, different studies have been conducted during the

years about the topic, optimizing the maintenance strategy in order to in-

crease the system performances at the lowest cost. In particular, a branch of

these works which was born in 1970s and has increased in popularity with

time regards the concept of imperfect maintenance, which can be defined

as a kind of repair which brings the system to an intermediate condition

between as-good-as-new and as-bad-as-old. In fact, traditionally mainte-

nance is modelled as a type of intervention able to restore completely the

asset. However, such an approach finds scarce application in reality due to

several factors which can affect the result like human errors, materials qual-

ity, lack of spare parts and time, etc. This is particularly true for complex

systems, where the interventions tend to focus more on the substitution or

repair of single components rather than restoring completely the asset. For

this reason, imperfect maintenance can be seen as a generalization of the

maintenance action, whose study allows to approach more closely real life

applications.

As previously said, the concept of imperfect maintenance has increased in

popularity with time, undergoing the influence of the technological context.

During the last decades it was in fact seen an increased interest toward mod-

els based on a condition-based maintenance policy, which aims at scheduling

11



Andrea Puglisi Politecnico di Milano

repairs basing on the actual conditions of the system instead of at prede-

termined intervals, allowing savings in terms of time and costs and more

effective interventions. Such phenomenon was then enhanced by the advent

of the Fourth Industrial Revolution during last years, which brought a great

development to sensors technology and techniques capable of processing and

elaborating large amounts of data. This provoked an evolution of the tra-

ditional condition-based maintenance, which became more prognostic and

focused on assessing the future conditions of the asset. In such scenario

still in evolution imperfect maintenance can therefore find new investigation

lines, with the overall aim of being able of better characterizing complex

assets and improve their maintenance management.

1.2 Objective

Made the previous considerations, this thesis aims to provide further investi-

gation to the concept of imperfect maintenance applied to a condition-based

maintenance policy. In addition, the study is conducted in a context where

no run-to-failure data about the system are available: such datasets in real

cases are in fact difficulty retrievable and their acquisition usually requires

onerous experimental campaigns which in the last years have been often

substituted by simulation approaches. This choice therefore has the target

to bring the research closer to reality and to the modern industry exigences.

To achieve the target of this work, first of all is presented a literature review

about imperfect maintenance in the described context, with the aim of illus-

trating the actual state of the art about the topic and individuate possible

areas of study. Basing on the results obtained, the following research ob-

jective is formulated: the development of a framework for a condition-based

maintenance model which aims to identify and quantify the degradation

pattern and the imperfect maintenance effects in order to improve the asset

prognosis and the recommendation of types of maintenance intervention.

This target is then achieved through the practical part of the work, which

consists in the formulation of such an operative framework, illustrating an

innovative approach in the application of imperfect maintenance to a system

continuously monitored through sensors. Finally, the CBM model developed

is assessed through a simulated experimental campaign based on a reference

dataset made available by the Industry 4.0 Laboratory of the School of

Management of Politecnico di Milano.
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1.3 Structure of the text

The thesis is organised in seven chapters. After the current introduction,

the pillar concepts about Industry 4.0 and maintenance are briefly described

in Chapter 2, in order to contextualise the work and give some basic infor-

mation about its topics. Then, Chapter 3 presents the literature review

conducted, reporting at the end the gaps found. These last ones are used to

formulate in Chapter 4 the research objective and expose the methodology

followed in Chapter 5 and Chapter 6 to, respectively, present the frame-

work and perform its assessment. Finally, Chapter 7 reports the conclusions

of the work, summarizing its contributions and discussing some further re-

search areas available.

13



Andrea Puglisi Politecnico di Milano

14



Chapter 2

Pillar concepts

The current industrial context is characterized by a period of great techno-

logical disruption, usually known with the term of Industry 4.0. Such trans-

formation is based on the possibility of collecting and analysing data across

different machines, resulting in an increased efficiency, flexibility, quality and

speed of processes at reduced costs. This revolution is therefore changing

various aspects of the industry, having influences on the global economy, the

structure of the supply chains and people, intended both as customers and

workforce [2].

One of the manufacturing aspects which is strongly influenced by Indus-

try 4.0 is the maintenance field [3]. The main target of maintenance con-

sists in ensuring the availability of the asset, palliating situations like costly

and unscheduled downtime and unexpected breakdown, which represent ma-

jor threats to the production efficiency. Traditionally, the maintenance ap-

proach was kindly static, based on fixing the equipment at failure or pre-

ventively with the aid of past experiences to estimate its expected lifetime,

with the main risk of substituting good parts and incurring in failure due to

an unforeseen faster degradation. However, with the advent of Industry 4.0

and the consequent availability of massive data from processes and systems,

new maintenance opportunities arise. In particular, it gives the possibility

to operators to monitor the actual conditions of the asset and from that

compute predictions about the future status, thus anticipating failures and

providing benefits in terms of production, logistics, safety and quality [4].

Made such premises, the current chapter aims to illustrate some basic con-

cepts useful for the comprehension of this thesis work. In particular, Section

2.1 reports a brief description of Industry 4.0, introducing its main aspects
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in order to give a vision of the current technological context; Section 2.2

gives an overview on the base theory about maintenance and introduces the

concept of imperfect maintenance, main topic of this work

2.1 Industry 4.0

2.1.1 Introduction

Industry 4.0 is often named as Fourth Industrial Revolution. The term in-

dustrial revolution indicates a period of great technological disruption, which

provokes important and irreversible changes not only to the industrial fields

but to the entire society too. To characterize properly Industry 4.0 is there-

fore first of all necessary to retrace the path which brought to it, starting

from its predecessors.

The First Industrial Revolution happened in Britain by the end of 18th

century (1760-1840). Its main characteristic was the introduction of steam-

powered engines and water as a source of power. These changes were brought

first to agriculture and then to the textile industry, which benefited enor-

mously from the aid of machines in the production in substitution to manual

power [5][6].

The Second Industrial Revolution took place between the 1870 and 1914

and was characterised by the introduction of mass production, represented

as icon by the assembly line. This drastic change was possible mainly thanks

to the electrification of factories, together with the introduction in the facil-

ities of preexisting systems like the telegraph and railroads [5][6].

During the second post-war period (1950-1970) entered the scenes the Third

Industrial Revolution, often named as Digital Revolution or Information

Age. This one resulted from the huge development of computers and in-

formation technology, which brought to a shift from analog and mechanical

systems to digital ones [5].

Finally, the Fourth Industrial Revolution, or Industry 4.0, began to take

place in the early 2010s and is still in progress. It represents a major im-

provement in the automation technology, in which machines are able to

operate independently and/or in collaboration with humans, being able of

collecting and analyzing data to create advises upon them. This change is

making and will make possible a new flexible customer-oriented industrial

field, in which mass production is taken to a new level [5]. In the following

sections the characteristics and components of Industry 4.0 are explained in

greater detail.

16



Politecnico di Milano Andrea Puglisi

Figure 2.1: Overview of industrial revolutions. Based on [5]

2.1.2 Definition and components of Industry 4.0

As already seen in the introductory paragraph, the Fourth Industrial Revo-

lution enables industry, and manufacturing sector in particular, to become

digitized by potentially providing sensing devices to all components, assets

and products, thus creating a fusion between digital data and physical ob-

jects which is going to transform radically all industrial fields.

Tay et al. [7] worked out a literature review about the various definitions of

Industry 4.0 in the last years, from 2013 to 2017. The authors summarized

the results of their research as:

Industry 4.0 describes a future scenario of industrial production that is char-

acterized by new levels of controlling, organizing and transforming the entire

value chain with the life cycle of products,resulting in higher productivity and

flexibility through three types of effective integration which are horizontal,

vertical and end-to-end engineering integration. [7]

As it is possible to see from the previous definition, the authors identify

three major components of Industry 4.0 [7]:

• Horizontal integration: it means that corporations in the supply chain

should both collaborate and compete with others with similar charac-

teristics, in order to increase the efficiency of the production system.

Therefore, this integration regards the connection between company’s

components like manufacturing and materials, economics and finance

and information and knowledge.
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• Vertical integration: it represents the idea to achieve hierarchical sub-

systems, both informational and physical, at the production line in

order to create an easily configurable and flexible production system.

The focus in this case lies in the integration of sensors and actuators

signals with the various levels of automation in the factory or indus-

try, thus creating intelligent machines capable of setup automatically

to the different types of products and process data in a transparent

way. Vertical integration can be represented through the so-called au-

tomation pyramid (shown in Figure 2.2), i.e. a pictorial example of

the different levels of automation previously cited, going from the field

to the management level.

• End-to-end engineering integration: the last component regards the

integration of all product-centric activities like customer requirements

analysis and expression, product design and development, production

activities, dismissing and recycling. This allows both the re-usability

of each stage for the same product model and a greater customization.

Figure 2.2: The automation pyramid, representation of vertical integration in a factory,

is composed by 5 levels (from bottom to top): field, control, supervisory, planning and

management. Figure from [8]

2.1.3 Characteristics

According to Tay et al. [7], there are 9 main characteristics of Industry 4.0:
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• Cyber-Physical System (CPS): derived from the great develop-

ments in communication and computation of the last year, a CPS is a

system in which the physical object is connected to its virtual model

through the use of sensors, allowing them to collect, process, commu-

nicate data and initiate actions. CPSs are also the basis to create

the Internet of Things (IoT). According to Napoleone et al. [9], the

higher level characteristics of Cyber-Physical Systems are: complex-

ity/heterogeneity, being composed by numerous systems of different

nature; interoperability, since constituted by components able to con-

nect, communicate and operate with each other; service orientation,

i.e the capability of providing timely service to manufacturing tasks

keeping a high accessibility between the different entities; modular-

ity, consisting in the capability for a CPS to be modularized, flexibly

changed, and reconfigured in response to changing customer needs and

product characteristics; virtualization and real time capability, mean-

ing that sensor data are acquired in real time and used to link the

physical system to virtual and simulation models; high computational

capability; cooperation and collaboration, intended as the ability of

assigning the entities of a factory to the different tasks in order to op-

timize the performances; dynamic reconfigurability, which can be seen

as the capability of changing structures, functionalities and boundaries

in order to adapt to the market and the industrial context.

• Internet of Things (IoT): IoT consists in an advanced connectivity

between systems, services and products, thus increasing the flow of

information across the production process and allowing data analysis

and decisions making to be held in a decentralized way, improving

response times [10].

• Internet of Services (IoS): based on the Internet of Things, the

Internet of Services delivers the idea of companies providing a large

amount of services through the internet, answering to the various needs

of the customers in a flexible way. Moreover, web services which up

to now are delivered separately, in a future perspective will be com-

bined into an unique and more valuable network, giving benefits to

the various actors of the market [11].

• Big Data and Analytics: as already seen, the presence of sen-

sors and the interconnection between systems generate a huge amount

of data, which cannot be treated with traditional methods. There-

fore, over the last few years have been developing analytic techniques
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to handle these information, establishing the topic of the Big Data,

name given to the technology able to quickly and efficiently manage

constantly growing databases. Commonly, Big Data are described

through four dimensions, the so-called 4V: volume, describing their

amount; variety, meaning the different sources they can come from;

velocity, which is their speed of generation and analysis; value, indi-

cating the importance of the information brought [12].

• Augmented Reality (AR): it consists in the enrichment of the hu-

man perception ability through the use of additional information, usu-

ally delivered by digital devices. Regarding industrial production, AR

can be used as a supportive tool for maintenance, allowing to predict

and adjust the frequency of interventions, reduce errors and save time

and money for this kind of activities [13].

• Autonomous Robots: with the future developments, robots will

be able to interact between them autonomously and collaborate with

human operators, thus providing an increase of efficiency in manufac-

turing operations at a lower cost [14].

• Additive Manufacturing: the implementation of smart production

systems is achieved also through the utilization of smart manufacturing

techniques, like additive manufacturing, which consists in creating ob-

jects by the deposition of subsequent layers of material. This system,

in addition to suitable and new materials, requires also the integration

of information technology along the product development stages [15].

• Cloud Computing: cloud storage consists in keeping data in online

archives instead of the single devices, enhancing a great accessibility

of the information at a lower cost. In addition, in recent times this

technology has begun to be applied not only to single data, but to

software too, enabling online computation [16].

• Simulation: the last characteristic of Industry 4.0 is the simulating

approach. Simulation consists in running virtually a process or a sys-

tem in order to predict its behaviour and outputs. Combined with the

use of real time data and artificial intelligence able to adjust opera-

tions autonomously, it allows to optimize systems going from single

machines up to entire factories, reducing costs, setup times and im-

proving the production quality [17].

Figure 2.3 summarises the different elements analysed. As it is possible to

see from the previous description, the different characteristics and compo-
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Figure 2.3: Characteristics of Industry 4.0 according to Tay et al. [7]

nents of Industry 4.0 are strongly linked between them, so that it is difficult

to consider them as standalone elements. In addition, this industrial rev-

olution is still a process in progress, making hard to distinguish among its

components and leaving uncertainty about the future developments.

2.1.4 Maintenance in Industry 4.0

As previously introduced, one of the manufacturing aspects more influenced

by Industry 4.0 is the maintenance field, changing the way in which inter-

ventions are organised and executed. In this paragraph thence are made

some considerations about how the described characteristics of the Fourth

Industrial Revolution are related to such changes, affecting the maintenance

process.

According to companies like Bosch [18] there are three main changes in the

maintenance process.
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The first one is constituted by the introduction of real time condition mon-

itoring. In fact, Cyber-Physical Systems allow to record and display sensor

data in real time, making then the information available to all the connected

devices and/or stored in the Cloud. This provides a higher accessibility of

data, which now can be visioned not only by the dedicated operators but

also by a variety of experts.

The second change regards the evaluation of the information gained, which

can be performed through the Big Data technology, allowing thus an analysis

based on the specific needs of the user and giving different operative options.

For example, maintenance can be automatically scheduled when some ma-

chine parameters trigger defined limits or some rules can be set in order

to make the operators receive immediate notification when an unscheduled

stoppage happens. Thus, repairs are executed only when necessary and the

downtime is reduced.

Finally, the third important change regards the way in which operators

themselves are notified about the condition of the assets. In fact, once the

need of a maintenance action has been identified, the right maintenance

team can be forwarded about it directly through a digital ticket on their

personal devices (e.g. smartphones and tablets); this is made possible by

the concept of Internet of Services. The presence of such tickets not only

allows to have immediately the necessary information for the task, but per-

mits also to have all the interventions displayed on a unique interface, thus

facilitating the organization and the logistics of the actions.

2.1.5 Benefits and challenges

To complete the brief vision on Industry 4.0 given in the current section

it is useful to make some final considerations about how such process is

going to revolutionise the manufacturing operations and some aspects of the

society, illustrating the major benefits and some possible challenges which

are then summarized in Figure 2.4. To be noticed that these last ones in

particular involve complex themes, which in this work are only touched for

contextualization purposes.

Advantages of Industry 4.0

It is possible to identify three main advantages that the Fourth Industrial

Revolution can bring to companies and society [5]:

• Optimization: the optimization of the processes made possible by the

creation of a smart factory constituted by hundreds of smart devices
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interconnected between them represents a key advantage of Industry

4.0. The implementation of robots and automated machines permits in

fact an increase in efficiency and accuracy, boosting the production and

reducing the errors usually associated to human operators. In addition,

as already seen the real time monitoring of such equipment allows an

increase of the availability and the organization capabilities thanks

to the implementation of a more prognostic maintenance, improving

at the same time the workplace safety [19]. The decrease of costs

which derives from these changes can therefore generate a growth in

the companies profits.

• Customization: the integration of all processes related to the prod-

uct creation, together with the modularity of the systems involved

allow a greater customization for the manufacturing industry. The

concept of the Internet of Services is in fact going to reduce dramat-

ically the gap between companies and customers, enabling a direct

communication of these two entities and faster production and deliv-

ery lead times.

• Pushing research: the advent of Industry 4.0 has been provoking

an exponential acceleration of the technological change and innova-

tion during the last years [20]. This process is in turn pushing the

research in the sectors touched, generating new opportunities in terms

of education and training which reflect the skills needed by such an

industry.

Challenges of Industry 4.0

Finally, below are briefly listed some of the challenges that this revolution

is setting and may set in the future years [5]:

• Security: the online storage and computing of data allowed by the

Cloud technology has the downside of creating IT security risks. In

fact, cybersecurity breaches have been increasing during the years,

compromising not only the networked manufacturing machines but

in some cases the corporate business model too, generating losses of

money and reputation [21]. Therefore, research in this ambit is essen-

tial.

• Capital: despite the operating benefits, the implementation of the

technologies to create smart factories requires huge investment. For
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this reason, it is a choice to be evaluated carefully and which could

exclude smaller manufacturing realities from competition.

• Employment: the automation of production and related devices is

probably going to generate huge changes in the occupation of the work-

force. If on one hand new opportunities and skills will be required, on

the other different sectors of workers may risk to be alienated in this

process.

• Privacy: during last years there has been an increased awareness re-

garding the theme of digital data privacy. However, this not involves

only customers, but manufactures too, which need these data to un-

derstand the market. This topic is therefore probably going to affect

the relationship between producer and end user.

Figure 2.4: Main advantages and possible challenges related to Industry 4.0 according

to Luenendonk [5]

2.2 Maintenance review

2.2.1 Fundamentals

According to the standard UNI EN 13306 [22], maintenance is defined as

“the combination of all technical, administrative, and managerial actions

during the life cycle of an item intended to retain it in, or restore it to, a

state in which it can perform a required function”. Therefore, it consists

in all the activities, direct and indirect, required to conserve the original

condition of an asset, while compensating for normal degradation, so that
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it can deliver its function as long as possible.

Historically, modern maintenance engineering began with the invention of

the steam engine by James Watt (1736-1819) in 1769 in Great Britain, dur-

ing the First Industrial Revolution, and from there it was developed in the

years hand in hand with technological progress; during the last years, in

particular, was developed the concept of e-maintenance, bringing to the in-

tegration of modern information and communication technologies as support

of maintenance activities. As long as the assets became more and more com-

plex, maintenance engineering became a stand-alone field of study, whose

role consists in keeping the various equipment in its primary working con-

dition and, at the same time, minimising the related costs. In particular,

the integration of maintenance management in the entire company planning

became vital in this context, potentially having a big impact on company

competitiveness, on quality of life, on safety and on sustainability in gen-

eral [23]. Therefore, the main objectives of maintenance engineering can be

summarized, according to Pone et al. [24], as follows:

• Preservation of the assets during their useful life-cycle.

• Upkeep assets’ availability at the required target level.

• Safety of the personnel.

• Environmental sustainability.

• Containment of maintenance related costs.

• Technical and economical control of the results.

In order to monitor the capability of the maintenance strategy to achieve

these targets, it is important for a company to set up a performance measure-

ment system, essential to align maintenance management with the organiza-

tion’s strategic objectives. For this reason, different performance indicators

can be established with the aim of fulfilling this mansion, covering both

technical, economical and organizational aspects. Among the others, the

Overall Equipment Efficiency (OEE) is fundamental to monitor and assess

the system’s function [23]; its general expression is:

OEE(%) = Availability · Performance ·Quality (2.1)

As it is possible to see from previous equation, the OEE is composed by

three terms:
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-Availability: it considers the impact of downtime loss (e.g. breakdowns)

and it is defined as the percentage of the total time the asset is able to

perform is function:

Availability(%) =

∑
Tup∑

Tup +
∑
Tdown

(2.2)

-Performance: it takes into account the speed loss and it is defined as the

percentage of production capacity (PC) which can be achieved in a given

amount of time:

Performance(%) =
PCactual
PCideal

(2.3)

-Quality: it considers the quality loss, i.e. the percentage of good production

(so excluding scraps) on the total one:

Quality(%) =
Good pieces

Total production
(2.4)

The next sections are dedicated to the classification and description of

the different maintenance strategies and policies, in order to complete the

overview about the topic.

2.2.2 Classification

Maintenance activities are classified according to the policy adopted. A

maintenance policy can be defined as a management method in order to

achieve the objectives of the maintenance function, basing on types of main-

tenance interventions defined according to well known standards. According

to Crespo Marquez [25], a first fundamental classification can be made dis-

tinguishing between corrective and preventive maintenance.

Corrective Maintenance

Corrective maintenance (CM) is “maintenance carried out after fault recog-

nition and intended to restore an item into a state in which it can perform

a required function” [22]. Different events can trigger the corrective main-

tenance action, like the detection of an issue through condition monitoring,

a fault uncovered by an inspection or the sudden failure of the equipment.

Corrective maintenance can be further classified, considering time dimen-

sion, as immediate or deferred:

• Immediate maintenance: corrective maintenance that is carried out

without delay after a fault has been detected to avoid unacceptable

consequences [22].
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Figure 2.5: Maintenance classification. Classification according to Crespo Marquez [25]

and based on EN 13306 [22]

• Deferred maintenance: corrective maintenance which is not immedi-

ately carried out after a fault detection but is delayed according to

given maintenance rules [22].

This type of maintenance can be effective in situations in which a non-critical

asset can be allowed to run-to-failure, in presence of redundancies (i.e. mul-

tiple components of the same type in parallel) and in general when the

failure of the item can be recovered in an easy and inexpensive way without

compromising safety. However, in most situations, due to the complexity of

the assets and high costs, this is not the case, and corrective maintenance

should be avoided in favour of a preventive maintenance policy.

Preventive Maintenance

Preventive maintenance (PM) is “maintenance carried out intended to as-

sess and/or to mitigate degradation and reduce the probability of failure of

an item” [22]; it can be performed at predetermined intervals or according

to prescribed criteria, in order to reduce the probability of failure or the

excessive degradation of the functioning equipment. Examples of preven-

tive maintenance actions are adjustments, cleaning, lubrication, repairs and

parts replacements.

The first benefit of a preventive maintenance policy is the reduced proba-

bility of incurring in unexpected failures, which translates in improvements
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in terms of cost savings and safety with respect to corrective maintenance.

Another great advantage is the possibility of decreasing downtime: in fact,

with an appropriate PM schedule, managers can efficiently optimize the

costs and time losses. However, it is important to avoid over-maintenance,

since this practice can make the maintenance related costs more relevant

that the actual savings. In addition, preventive maintenance has a number

of other benefits, such as the extension of assets lifetime and the possibility

of optimizing spare parts and resources allocation.

This policy can be further classified in time-based maintenance (TBM) and

condition-based maintenance (CBM), depending on how it is organized [26]:

• Time-based maintenance: also called predetermined maintenance,

it is defined as “preventive maintenance carried out in accordance with

established intervals of time or number of units of use but without

previous condition investigation the maintenance” [22]; intervals can

be at set-times (clock-based TBM) or at fixed age or usage of the

components (age-based TBM). This policy is applicable if the failure

behaviour of the equipment is predictable; usually this assumption is

based on the knowledge of the hazard or failure rate trends, statistical

functions which state the probability of failure at a given time.

The greatest advantage of a time-based maintenance policy is that

it is relatively easy to implement since it does not require condition

monitoring but only the recording of the failure data; this also implies

lower acquisition costs. In addition, once the failure rate distribution

is computed, the obtained function can be theoretically used to obtain

mathematically all the necessary properties and failure characteristics,

necessary to execute the optimization. Finally, the output is a well-

defined maintenance program, with a high predictability about the

future activities and resources required.

On the other hand, failure data can be sometimes very difficult to

obtain, both due to all the issues related to the equipment failure

already discussed for corrective maintenance policy, and due the fact

that some complex assets and machines (e.g. aircraft engines) cannot

be run to failure.

• Condition-based maintenance: it is “preventive maintenance which

include assessment of physical conditions, analysis and the possible en-

suing maintenance actions” [22]. In general, the actual condition as-

sessment of the equipment can be obtained in different ways, through

inspections, non-destructive tests and/or condition monitoring. In
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particular, in condition-based maintenance condition monitoring itself

has a fundamental role: in fact, a signal (usually vibration, tempera-

ture, lubricating oil, contaminants or noise levels) is acquired, periodi-

cally or continuously, and used as a degradation indicator to determine

the health state of the machine; when this indicator reaches a thresh-

old level, sign that the component is out of normal working state, a

set of maintenance actions are triggered.

The greatest advantage of condition-based maintenance over time-

based maintenance is the capability of making decisions basing on

the actual state of the machine, without making assumptions about

its behaviour. In this way, it is possible to follow eventual changes

in the degradation model of the component, better avoiding failures

and over-maintenance. On the other hand, the main drawback of this

approach is the quantity of data required and the costs of sensors and

in general condition monitoring equipment, in addition to a more com-

plex data processing. However, specially the cost issue is being solved

with the introduction of less and less expensive monitoring equipment

thanks to technology evolution.

2.2.3 Predictive Maintenance and Remaining Useful Life

Predictive maintenance is “condition-based maintenance carried out follow-

ing a forecast derived from repeated analysis or known characteristics and

evaluation of the significant parameters of the degradation of the item” [22].

Therefore, it is a type of preventive maintenance which can be considered

as the evolution of condition-based maintenance. As its name suggests, in

this case the PM actions are based on the forecast of the trend of one or

more parameters clearly linked to the degradation process; fundamental in

the process is the extrapolation of the remaining useful life (RUL) of the

component, which can be defined as the length of time the system is likely

to operate before it requires maintenance. It is therefore evident that predic-

tive maintenance is a kind of CBM which highlights the prognostic capability

feature. For this reason, it differs from traditional condition-based mainte-

nance, more diagnostic, for the use of the acquired data of the monitored

parameters in order to find temporal trends: the time in which the compo-

nent is predicted to reach a threshold degradation value is in fact utilized

to decide about the maintenance activities to be performed [25].

As it is possible to deduce from the previous paragraph, remaining useful

life estimation is the last technical process as well as the ultimate goal of
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predictive maintenance, fundamental for the decision-making. In this sec-

tion an overview of the RUL estimation approaches is presented, including

advantages and disadvantages of each method, in order to give a theoretical

basis for the work of the current thesis.

According to Lei et al. [27], there are four basic approaches with the aim

of estimating the remaining useful life: physics approaches, statistical ap-

proaches, AI approaches and hybrid approaches. In the next paragraphs

there follows an overview of them.

Figure 2.6: RUL prediction methods. Classification according to Lei et al. [27]

Physics model-based approaches

Physics model-based approaches describe the degradation process of the

machine by mathematically modelling the failure mechanism or the damage

propagation. Examples of such models are Paris law and its variants, aiming

at describing the crack propagation subject to different stress conditions.

Physics models can provide an accurate estimation of RUL, but only if the

degradation phenomenon is well known, so as the material properties of the

component; in any case it requires an intense and long study in order to

have a complete understanding of it. In addition, for some complex assets

it is almost impossible to reach such a phenomenon comprehension, which

makes this approach restraint to a limited number of applications [27].
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Statistical model-based approaches

Named also empirical-model based approaches, statistical models provide

RUL estimation by fitting available observations into random coefficient

models or stochastic processes under a probabilistic method: in this way,

RUL prediction is generally presented as a conditional probability density

function (PDF) based on data. The introduction of random variances in

model parameters allow to describe the uncertainties which could rise due

to the different variability sources of machine operations and data acqui-

sition; thus, these models are effective in describing the variability of the

degradation process and its subsequent influence on remaining useful life

[27]. Over the years, different statistical models have been developed and

applied for this scope; here are presented the main ones. Some of them will

be then discussed in greater detail in Chapter 3.

• Auto-regressive (AR) models: they assume that the future state value

of machine is a linear function of past observations and random errors.

Despite their simplicity, the high dependency of these models on the

trend information of historical observations may lead to inaccurate

forecast.

• Random coefficient models: they describe the stochasticity of degrada-

tion processes by adding random coefficients into degradation models,

usually assumed to follow normal distributions. The advantage of

these models is the capability of providing a probability distribution

function of RUL prediction including the variations of the random co-

efficient. On the other hand, the assumption of normal distribution is

not always verified; in addition, they are unable to take into account

the temporal variability in RUL prediction.

• Wiener process models: these models, belonging to one of the most

used classes of stochastic processes, are generally composed by a drift

term plus a diffusion term following Brownian motion. The benefits of

using Wiener type models are the capability of describing the temporal

variability of degradation processes and the possibility of modelling

non-monotonic processes by introducing some random noise following

a Brownian motion. However, the greatest drawback is that they rely

on the Markovian property, i.e. the assumption that the future state of

the system depends only on the current one and not on the history of

the process, which is unlikely to be verified in reality. In addition, for

this class of models is difficult to derive an analytical solution for the
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RUL probability density function, reason for which numerical solutions

are used to approximate it.

• Gamma process models: they assume that the increments of degra-

dation processes at disjoint time intervals are independent random

variables with a gamma distribution. As the Wiener process, Gamma

models are able to consider the temporal variability of the degradation

path, but they are as well restricted to the assumption of the Marko-

vian properties. Moreover, noise is modelled following a Gamma dis-

tribution, which makes them effective in describing only monotonic

processes.

• Inverse Gaussian (IG) process models: this class of models assume that

the degradation process has independent increments following an in-

verse Gaussian distribution. Their biggest advantage is the capability

of incorporating different kinds of random effects, giving them a high

flexibility in describing different degradation processes. However, like

Gamma process models, they are restricted by the Markovian property

and can model only monotonic processes.

• Markov models: they assume that the degradation processes of ma-

chinery transform within a finite state space following the principle of

the Markov property. This class of processes is used since generally it

is possible to describe the health condition of a component as divided

in several stages. However, basing on the Markovian property like the

previous models, they are restrained only to a limited number of real

applications. In addition, the estimation of the transition probabilities

between states requires a large experimental campaign, which is gen-

erally expensive or complex to perform and does not ensure robustness

against unpredictable behaviours of the machines.

• Proportional hazards (PH) models: in this type of models the haz-

ard rate of a system is assumed to be composed of two multiplicative

factors, i.e. a baseline hazard function and a covariate function; this

allows to integrate the information from both the event data and the

condition monitoring data, making the prediction more precise if these

kinds of data are both available. However, usually it is difficult to ac-

quire these two type of data simultaneously. In addition, the covariate

functions need to be described using other statistical models, intro-

ducing all their related issues.
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Figure 2.7: Statistical approaches. Classification according to Lei et al. [27]

AI approaches

Artificial Intelligence (AI) approaches aim to learn the degradation pattern

of a machine using AI techniques from available observations. The popular-

ity of these techniques has increased in recent years, since they are capable of

dealing with prognostics issues of complex assets whose degradation pattern

is difficult to be modelled by physical and statistical approaches. However,

their common drawback consists in a low transparency and general low ca-

pability for the user of understanding the results: in fact, these approaches

are typically black-box methods [27]. The most used ones are:

• Artificial Neural Networks (ANN): probably the most common used

AI technique in the field of RUL prediction, ANNs mimic the working

process of human brains, connecting lots of nodes in a complex layer

structure. These models are able to learn very complex non-linear

relationships by training the multi-layer networks, which makes them

to have good performances in the RUL prediction of complex systems.

However, in addition to the low transparency, their main drawback

is the need of a large amount of good quality training data, which is

difficult to obtain in real applications. Moreover, their generalization

ability among different cases is usually restrained by the fact that
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their structures and parameters are typically initialized randomly or

manually specified.

• Neural Fuzzy (NF) systems: they are fuzzy logic systems whose infer-

ence structures are determined by expertise and membership functions

are optimized by ANNs. The combination of expert knowledge and

artificial neural networks make this class competitive in RUL predic-

tion. However, like ANNs, they still require a large amount of good

quality training data.

• Support Vector Machines (SVM), Relevance Vector Machines (RVM):

SVMs are a class of supervised models which aims to classify data by

finding the optimal plane or hyperplane that separates the observa-

tions. RVMs are an evolution of SVMs, having the same functional

form but providing a full predictive distribution, the lack of which is a

limit to support vector machines. Both the techniques are more able

to deal with the issues of small sample sizes than ANNs, making them

suitable for predictions with only limited measurements available. On

the other hand, their performance is strongly linked with the selec-

tion of the Kernel functions (i.e. functions which allow the mapping

of non-linear observations into a higher dimensional space where they

become separable), for which there is not still a standard method for

selection. Finally, parameters estimation represents a challenge for

these methods.

• Gaussian Process Regression (GPR): this AI technique implements

Gaussian processes (i.e. cumulative damage processes of random vari-

ables with joint multivariate Gaussian distributions) for regression pur-

poses. The greatest advantage of GPR with respect to other methods

is the high adaptability, which makes it suitable for dealing with the

RUL prediction issue of high-dimensional and small size datasets. On

the other hand, it has generally a high computational weight.

Hybrid approaches

Since each of the three categories presented above have advantages and dis-

advantages, hybrid approaches aim to integrate the pros of them through

their combined use. However, despite their potentialities, this type of ap-

proaches is still the least used due to the increased complexity.
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Figure 2.8: AI approaches. Classification according to Lei et al. [27]

2.2.4 Degree of repair and imperfect maintenance

Another way to classify maintenance actions is according to the degree to

which the operating condition of an item is restored. From this point of

view, according to Pham et al. [1] and as illustrated in Figure 2.9, the types

of maintenance are:

• Perfect maintenance: a maintenance action which restores the system

operating condition to as-good-as-new. Upon perfect maintenance, a

system has the same failure and degradation characteristics as a brand

new one. A typical example of this action is generally the replacement

of a component.

• Minimal maintenance: a maintenance action which restores the system

to the same conditions in terms of failure rate or degradation it had

when it failed. An example consists in changing a single component of

a complex system: the system overall degradation remains unchanged.

• Imperfect maintenance: a maintenance action which restores the sys-

tem to an intermediate state between the as-good-as-new and the as-

bad-as-old conditions. It is evident that imperfect maintenance is a

general repair, comprehending as extreme cases the perfect and min-

imal maintenance options, as marked in Figure 2.9. Examples of this
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type of actions are the lubricating, cleaning and fixing of a tool or an

engine tune-up.

• Worse maintenance: a maintenance action which makes the system

failure rate or degradation increase without causing failure. Thus,

upon this action the operating condition becomes worse than before

maintenance.

• Worst maintenance: a maintenance action which undeliberately brings

the system to failure state. In general, causes of worse or worst re-

pair can be the repair of a wrong part, the partial repair of a fault

component, the damage of other parts during maintenance, the incor-

rect assessment of the condition of the unit monitored, performing the

maintenance action off the schedule, the presence of hidden faults not

detected during maintenance, human errors of various type and the

replacement with wrong parts.

Figure 2.9: The different degrees of repair/maintenance. Classification according to

Pham et al. [1]

Like the maintenance policy, also the degree of maintenance depends on the

application and system costs as well as reliability and safety requirements.

Mostly in the past, it has been assumed that the maintenance actions were

limited to the extreme cases of perfect and minimal repairs. However, imper-

fect maintenance has increased in popularity in recent years, since it allows

a generalization of the maintenance action and appears as more realistic.

For this reason, next chapter presents a detailed discussion about imperfect

maintenance and its applications.
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Chapter 3

Literature review

The aim of the this chapter is to illustrate the literature review work ex-

ecuted for the current thesis, using the methodology explained in detail

in Section 3.1. After having given a preliminary overview on the different

imperfect maintenance applications in Section 3.2, Section 3.3 shows the

classification of the most relevant works, explaining one by one the different

drivers applied. Finally the results obtained are analysed in Section 3.4,

highlighting the gaps emerged from the literature review.

3.1 Methodology

The procedure followed to search for, filter and analyse the state of the art

of the literature about imperfect maintenance is shown in Figure 3.1. The

research was conducted using two scientific databases: Web of Science and

Scopus. In order to find relevant articles, a topic related research was estab-

lished by using selected keywords; the choice of these last ones was therefore

crucial for an exhaustive analysis.

Since the main purpose of the thesis is to investigate the application of

imperfect maintenance, this topic was selected as pillar keyword, to be com-

bined with others. Regarding the other topics to be coupled with “imper-

fect maintenance”, the following ones were selected: “reliability”, to have a

wide view of the different contexts in which imperfect maintenance is ap-

plied, since it is a quite general yet fundamental term in maintenance engi-

neering concerning the life of the equipment; “condition-based maintenance

(CBM)”, to search for models based on the actual conditions of the machine,

since such application of imperfect maintenance is one of the specific targets

of this study; “predictive maintenance” and “remaining useful life (RUL)”,

to give more emphasis to the prognostic aspect of the CBM policy, useful
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to take decisions in advance; “condition monitoring” and “continuous mon-

itoring”, in order to consider the monitoring techniques of the equipment,

both in terms of inspections and sensor driven.

Once selected the keywords to be used, a research was established by cou-

pling “imperfect maintenance” at turn with one of the previous other key-

words. The choice of this kind of binary search is twofold: on one hand, it

allows to build a wide but yet profound knowledge about the topic, on the

other it allows to find a greater number of articles, by not excluding a priori

results.

Figure 3.1: Scheme of database search

Following this procedure, and applying it to both Web of Science and Scopus

databases, more than 500 articles were found. At this point, a first selection

was made to choose the ones to effectively read and analyse. Thus, to

select only the most relevant results, papers written out of the industrial

maintenance field (e.g. belonging to medical field) were excluded, followed

by the ones not talking about the topics selected or too aged to be more

relevant than general overviews. In particular, regarding the articles age,

there were excluded papers published before the year 2000 and those ones for

which a more recent version of the same publication was available. Finally,

it is important to underline that the exclusion criteria presented above were

applied case by case, basing on the abstracts of the articles too.

As consequence of the filtering procedure applied, from more than 500 re-

sults found, a total of 154 articles was fully read and analysed, taking notes

of the most relevant aspects of each of them. At this point, the next steps

were the driver analysis (to identify variables driver of classification) and

the actual classification, fundamental passages in order to systematically

analyse the different aspects of the papers and find the gaps in literature.

To proceed with this step, first of all another selection was necessary, with
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Figure 3.2: Selection for reading

the aim of taking only the most topic-related articles. The criteria for this

further selection were found accordingly to the main target of the present

thesis: investigate the application of imperfect maintenance in a context

with CBM applied and with lack of run-to-failure data. Consequently, first

of all the articles not effectively talking about imperfect maintenance but

only mentioning it were excluded, since the application of this type of main-

tenance was only really marginal or almost absent in them. In addition,

papers whose models were based on run-to-failure data were not considered:

this criterion brought for example to the exclusion of the hazard rate based

models. Moreover, only articles based on condition-based maintenance, com-

pletely or partially, were taken into consideration, eliminating in this way

all the pure time-based maintenance models: however, to be noticed that

combinations of CBM and TBM were allowed, as it is possible to see in Sec-

tion 3.3. Finally, all papers consisting in literature overviews or very general

frameworks were excluded, since, although useful, they did not bring any

particular innovation to the already existing state of the art; however, some

articles belonging to this class were used in one or more sections as an aid

to explain some concepts.

The number of articles excluded by each of the criteria is shown in Figure

3.3. It is important to notice that each article is counted only once, ac-

cording to the main reason of its exclusion: some of them could anyway be

placed in more categories.

The previous analysis led to a reduction of the articles considered to a total

of 47 papers, which were fully classified according to selected drivers, in order

to find eventual gaps. This procedure is shown in detail in the dedicated

sections.
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Figure 3.3: Selection for classification

3.2 Preliminary content analysis

Before entering in detail with the classification of the selected papers, it

is useful to give a general overview about the context in which imperfect

maintenance is applied, considering the different results emerged from the

fully read articles.

Looking at the state of the art of literature, a first distinction can be made

between papers talking about a single component system or in general con-

sidering the system as one entity, and others dealing with multi-component

systems. While the first class do not need other distinctions at this level,

regarding the multi-component systems it is possible to find for example

selective maintenance models, whose aim consist in developing a strategy

to select the components to maintain and at which level, balancing the re-

sources available (typically money and/or time). From this point of view, re-

markable is the work by Diallo et al. [28], who during the years have released

numerous works about the topic, considering different assumptions from one

to the other. Another typology of works related to multi-component systems

is linked to the concept of opportunistic maintenance: it is “preventive main-

tenance or deferred corrective maintenance undertaken without scheduling

at the same time as other maintenance actions or particular events to reduce

costs, unavailability, etc...” [22]. In literature, linked to the concept of im-

perfect maintenance, is frequent the application of this particular strategy

to wind turbine farms, where each intervention can be very expensive; an

example is the work by Ma et al. [29]. An extension of multi-component

systems is the fleet of systems, which is however much less frequent than the

above two classes.
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In addition, in literature it is possible to find models integrating imperfect

maintenance not only in a standalone maintenance strategy, but considering

also aspects like production and logistics (spare parts, holding and stock-

out costs, etc...), as exemplified by the work by Bousdekis et al. [30], who

developed a proactive model considering both imperfect maintenance and

logistics using the sensor technology. Finally, there are also papers working

in a leasing context, like the one developed by Wang et al. [31], where a war-

ranty policy for leased equipment is treated by considering both customer

usage and time as policy limits and integrating imperfect maintenance as a

form of intervention.

Another overview of the state of the art about imperfect maintenance can

be given talking about the way to describe the degradation of the system

studied. In particular, the two most frequent approaches are the use of

hazard rate models, which use run-to-failure data to estimate the probabil-

ity of failure as time passes on, and the statistical degradation approaches,

which model the degradation pattern analysing the behaviour of one or more

features. Among the hazard rate approaches, it is worth to mention the pro-

portional hazard rate model, which offers a combination of both historical

run-to-failure data and real time data, in order to have a more precise assess-

ment; this model is implemented for example by Yin et al. [32], considering

the effects of imperfect maintenance as well. On the other hand, it is pos-

sible to further divide the statistical degradation approaches in continuous

(e.g Gamma, Wiener, Inverse Gaussian, etc...) and discrete, modelling the

degradation with a Markov chain. Sometimes, the degradation process de-

scribed by these models is then integrated with the occurrence of random

shocks, which increase the level of deterioration according to their magni-

tude.

Various examples of each of these last models are given in Section 3.3. There-

fore, as it is possible to see, in literature both condition-based and time-based

maintenance oriented approaches are developed, sometimes combining them

in order to have a more complete description of the phenomenon and the

related maintenance strategy.

Finally, looking at the totality of articles collected, the integration of im-

perfect maintenance is developed with different purposes. The majority of

papers, in fact, have as main target the optimization of the maintenance pol-

icy basing on one or more objective functions. On the other hand, a relevant

number of articles focuses on the parameters estimation, which is usually

done using likelihood functions or Bayesian classification methods. Lastly,
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in literature are also present papers presenting general overviews about dif-

ferent topics, description of new developed models or giving an operational

framework. Again, this last topic is better discussed in the classification

section (i.e. Section 3.3), giving various examples of applications too.

3.3 Classification

As stated in the previous paragraphs, the method adopted led to the selec-

tion of 47 papers to be classified in detail. In order to achieve this target,

the articles were listed using six classification tables: each of them aims to

mark different types of content, so that a deep yet complete classification is

given. For each table is reported the reference number of each paper and the

corresponding publication year; regarding the last one, to be noticed that all

the selected articles were published between 2012 and 2020, with a greater

number in the more recent years (ref. Figure 3.4). Thus, this classification

section allows to have effectively a presentation of the actual state of the art

of the searched topic, fundamental to look for gaps in literature.

In the next paragraphs the different classification tables are explained in

detail, with a particular attention to the description of the drivers used.

Figure 3.4: Number of selected papers per year.

∗considered till the end of February
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Table Section Topic

3.2
3.3.2 Industrial field and application

3.3.3 Paper main content

3.3
3.3.4 Deterioration process

3.3.5 Inspection policy

3.4 3.3.6 Maintenance policy and RUL

3.5 3.3.7 Imperfect maintenance

3.6 3.3.8 Optimization target

3.7 3.3.9 Decision variables

Table 3.1: Summary of the topics touched by each classification table and related

sections

3.3.1 Overview of the classification work

Prior to beginning with the actual presentation of the classification work,

it is useful to give a general overview of it, explaining the contents of the

different tables and subsections together with the main points of analysis.

Thus the reader can be more easily oriented across the topics reported and

focus on the ones of main interest. An index of the contents with the related

tables and sections is shown in Table 3.1.

Table 3.2 presents an overview of the papers object of classification. It

specifies first of all the industrial field articles refer to and their specific ap-

plications, which are then treated more in detail in Section 3.3.2.

Secondly, the table reports the main content of the papers, analysed then

in Section 3.3.3. Such content is divided into three parts: the description of

the model, the estimation of degradation and maintenance parameters and

the optimization of the maintenance policy.

Table 3.3 aims to describe how the degradation is modelled and how is

monitored. It specifies the deterioration processes used in the models (e.g

Gamma, Wiener, Markov, etc.), which are then analysed in Section 3.3.4,

reporting a brief description of them and explaining how they are applied

in the papers.

Similarly, the table then reports the inspection policies applied, distinguish-

ing it between periodic, non periodic and continuous (i.e. through sensors).

As before, the three types are analysed in Section 3.3.5.

Table 3.4 and the related Section 3.3.6 present the maintenance policies

43



Andrea Puglisi Politecnico di Milano

adopted by the models. In particular, their description is structured by

specifying first of all if they implement a pure CBM policy or a combination

between CBM and TBM, noting then if they aim to estimate the remaining

useful life. Secondly, there are reported the types of maintenance action

included in the models developed, which can be perfect or imperfect and

preventive or corrective.

Table 3.5 describes how imperfect maintenance is modelled in the classified

papers, specifying its effects and their characteristics. The related expla-

nation is reported in Section 3.3.7, dividing in the descriptions the effects

applied to multi-state (e.g. Markov) and continuous (e.g. Gamma) deterio-

ration models.

Finally, Table 3.6 and Table 3.7 indicate, respectively, the optimization tar-

gets and the decision variables considering the papers whose aim is to find

an optimal solution to the maintenance strategy problem. These two aspects

are then described in Section 3.3.8 and Section 3.3.9.

3.3.2 Industrial field and application

The first two classification drivers of Table 3.2 are useful to comprehend the

industrial field papers refer to and their specific machinery application.

At a first glance, it is possible to notice that the imperfect maintenance

models in the selected papers are applied to a wide range of industrial sec-

tors. In particular, among the ones for which the industrial field is specified,

a good number belong to the production sector: for example [33], [34] and

[35] focus on a single stage production system, while Wu et al. [36] imple-

ment imperfect maintenance in a context with two production lines working

simultaneously; finally, Chen et al. [37] develop a selective maintenance

model for an engine cylinder head manufacturing system, entering in this

way more in detail regarding the type of production performed.

Another sector with some applications is the extractive one, where by ex-

tractive industry is meant here both the raw materials mining with its sub-

sequent processes until the steel industry and the oil extraction. In fact,

for example Bousdekis et al. [30] develop a joint maintenance and logistics

optimization model referring to a drilling oil machine; in [38] is presented a

selective maintenance strategy for a coal transportation system; Wang et al.

[39] propose a RUL estimation model applied to draught fans in steel mills,

referring so to the steel making industry.
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Among other sectors in which publications are present, it is possible to cite

the maritime one, where both [40] and [41] develop a CBM model focusing

on a gyroscope, a device used for measuring orientation and angular veloc-

ity and implemented in navigation systems for ships and submarines. Other

types of applications belong to the energy sector, intended both as energy

production, like in the work by Atashgar et al. [42] about an opportunistic

maintenance strategy for a wind farm, and as energy distribution, like the

publication by Zhao et al. [43], who optimize a maintenance strategy taking

as case of study some electricity distribution devices. In the infrastructure or

construction sector, Shi et al. [44] develop a multi-level preventive mainte-

nance model referring to the degradation of a road pavement. Finally, there

are some applications in both the aeronautical and automotive industries,

respectively made by Wang et al. [45] on an aircraft gas turbine engine and

by Liu et al. [46] on a diesel engine.

There are then some papers in which only the application is specified but

not the industrial field: in this case, in fact, the models are developed taking

as reference devices which can be used in a wide range of different sectors or

very general entities. For example, [47] focuses on a micro electro-mechanical

system (MEMS), [48] on a control unit, [70] on an actuator and, finally, [56]

refers to a general mechanical system, without giving further information

about its nature.

A general overview of the different sectors which the publications analysed

refer to is shown in Figure 3.5, where to each sector is associated the number

of papers in that field. Until now the description was focused on the articles

which have sector or application of reference. However, from the histogram

in Figure 3.5 as well from Table 3.2 emerges a very important data: for

the greatest part of publications (28 out of 47) no application is specified,

neither as a case of study nor as an example. The reason behind this fact

is that many papers develop models with the main target of a numerical

application only, useful to verify their correct working with given data but

lacking of a practical feedback from reality.

Another consideration connected to the previous one regards the entity of

the subjects of the models, intended as system level to distinguish between

components, multi-component systems or fleets of systems. In fact, as for

the industrial sector, also in this case for the greatest part of the articles

no indication is given in this sense, with only few articles specifying that

the object is a multi-component asset or a fleet and with the majority of
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Figure 3.5: Industrial fields of analysed papers

them referring to it with the generic term of “system”. Although such

word is widely used also in the current thesis, in this precise context it

acts like a cryptic term, making impossible to understand the real entity

of the equipment the articles refer to. As mentioned at the beginning of

the paragraph, this is linked to the previous consideration about the lack of

real applications: the missing information about the system level enhances

the hypothesis that a great part of the models are developed without any

practical application in mind or, at least, considering it as a further step.

From this consideration the decision of non including the system level as a

classification driver, since it would not have brought any additional relevant

information.

3.3.3 Paper main content

To conclude with the general overview of the selected papers, another as-

pect which is worth taking a look at is the main content of the articles, as

shown in Table 3.2. In order to perform this classification, the content was

divided into three columns: model description, parameters estimation and

optimization.
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For model description is intended not only the actual description of the

model, including its purpose, the assumptions and the explanation of it, but

also the analysis of the results obtained, the explanation of the structural

properties of the model and the measuring of its performances. Although

all papers have this content, the column was included in order to distinguish

between articles for which the description is only a section and others for

which it is the main and only content. For example, in the work by Li et

al. [48] the multi-state model developed is only described and then used to

compare the results between different possible strategies; Castro et al. [63],

after a description of the deteriorating system and its maintenance policy,

find some important performance measures, like the expected uptime of the

system or its reliability, and then run a simulation of the model to verify

the results; another descriptive model is the one developed by Lu et al.

[73], who create a health integrated model with the inclusion of imperfect

maintenance and present the evolution of the state of the machine with time.

The pure descriptive models, as it is possible to see from Table 3.2, are very

few (only 3 out of 47). In fact, usually the description is accompanied by an

optimization of the variables introduced to describe the maintenance strat-

egy. More details about the optimization target and the decision variables

are given, respectively, in Tables 3.6 and 3.7 and in the dedicated para-

graphs. In general, since the target function is usually in a complex form,

the solution is found by using special algorithms like the genetic ones, de-

veloping some algorithms ad hoc, or by simulation methods like the Monte

Carlo one, for example used in [40]. It is important to notice that an opti-

mization method is performed in the greatest part of the papers.

Finally, another possibility for the main content of the articles is the es-

timation of the parameters. In a couple of publications this is the main

scope of the paper after the model description: in both [77] and [39], after

having derived the expression for the probability distribution function of

the RUL, the parameters for the residual degradation after imperfect main-

tenance, for the degradation pattern and for the maintenance policy are

estimated using likelihood functions. The work done by Letot and al. [58]

on the other hand proposes the estimation of the degradation parameters

but at the same time develops a system to choose dynamically if performing

a maintenance action or not and if this one should be perfect or imperfect.

In that sense, although it does not perform a real optimization together with

the parameters estimation, it is still a model which acts on the decision vari-

ables selecting the best thing to do at each time.
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Regarding all the other publications which have a part of parameters es-

timation, this last one is accompanied by an optimization and the model

description. However, it is possible to notice that only a total of 9 articles

among the 47 classified develop the estimation of the parameters given some

historical data: in the other cases, the different parameters are already given

as an input information for the problem, a situation which could be quite

difficult to have in real applications, where at the beginning of an asset life

cycle the degradation or maintenance parameters are usually unknown. This

fact can be linked one more time to the scarce presence of real applications

or, in general, of a method to effectively apply the models developed to real

equipment.

Finally, about the parameter estimations a further consideration can be done

about the estimation methodology: in fact, there are very few papers (only

3) which, once estimated the parameters, update them given new data from

inspections. Among these three articles, in [77] the parameters regarding

maintenance effects on degradation model are updated after every action;

in [58], the updating is done on the deterioration pattern and until the ac-

quisitions are enough to have a good estimate, but then the paper assumes

to have already all the values known for the numerical example, making the

estimation only a framework step; [53] is the only article which effectively

uses the parameters updating in order to estimate better the RUL.

3.3.4 Deterioration process

Table 3.3 performs a classification based on the processes used to model the

degradation pattern of the equipment and the inspection policies adopted.

Regarding the deterioration process, its description was split into two columns:

one reporting the degradation model adopted and the other specifying if the

chosen process uses random coefficients, which means that the parameters

of the model follow some specific distributions instead of being fixed.

Gamma process

As already stated in Chapter 2, Gamma process is a type of statistical model

which assume that the increments of degradation at disjoint time intervals

are independent random variables with a gamma distribution.

Given an interval of time h, the probability distribution function of a dete-

rioration jump in such interval is [58]:
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f(x) =
βm(h)

Γ(m(h))
xm(h)−1e−βx (3.1)

Where m(h) is the shape parameter, controlling the rate of arrival of the

jumps, and β is the scale parameter, defining the jump size; Γ is the gamma

function, defined as:

Γ(m(h)) =

∫ ∞
0

xm(h)−1e−xdx (3.2)

From Figure 3.6 it is possible to see that it is the most used model in the

selected literature, with 18 papers out of 47 implementing it. The reason

behind its popularity lies in the fact that it is strictly monotone increasing,

property which is well suitable to represent physical degradation mechanisms

as wear, creep, or crack growth; moreover, being a discontinuous process,

it can be seen as the accumulation of small shocks over time, as observed

in [51]. Linked with this last concept is the consideration that this process

presents a time dependency, meaning that the longer the time elapsed the

higher the degradation jumps; for this reason, as stated in [58], it should be

used only in applications where the deterioration jumps are proportional to

the elapsed time. Finally, Khatab et al. [57] notice that its mathematical

modelling is quite straightforward, making it easier than other processes to

be implemented and analysed.

Among the articles using this model, Shen et al. [54] add the peculiarity of

having different Gamma processes to simulate different degrading environ-

ments; in [57], in the context of a selective maintenance model, the authors

make each component follow its own deterioration path; both [59] and [62]

modify its expression adding the influence of random effects, useful to sim-

ulate the heterogeneity in degradation between different units.

Wiener process

Wiener process is another type of statistic model, generally composed by

a drift term plus a diffusion term following Brownian motion. Its general

expression for the overall degradation at a time t is [53]:

X(t) = X0 + µtα + σW (t) (3.3)

Where X0 is the initial degradation of the system, µ is the slope of the

non-linear (when α 6= 1) or linear (when α = 1) drift, σ is the diffusion

coefficient and W (t) a standard Brownian motion, i.e. W (t) ∼ N(0, t).

As well as the Gamma process, the Wiener one is widely used in literature,
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Figure 3.6: Deterioration processes used in the analysed papers

as shown in Figure 3.6. Similarly to the Gamma, in fact, it has a quite good

mathematical tractability and a flexible modelling structure. As stated by

Do Van et al. [53], who implement it in their paper, it is mostly suitable

for all applications where the deterioration level increases linearly or non-

linearly in time with random noise, which is likely to occur when acquiring a

signal through sensors. In addition, it is a non-monotone process, although

its mean increment (represented by µ) is monotonically increasing; however,

it is possible to have an approximation of a monotonic behaviour by setting

the drift parameter much higher than the diffusion one, as done in [47].

In some publications ([47], [61] and [78]) the Wiener process is used in

concomitance with the presence of random shocks whose arrival times follow

a Poisson distribution, in order to simulate sudden degradation increments

due to the external and operating conditions. Finally, in the work by Wei

et al. [47], where the deterioration process is divided into two overall states

(i.e. normal and weakened) a two phase Wiener process is implemented,

with larger drift and diffusion parameters for the weakened state such that

the system deteriorates faster when it has a high degradation level.

Inverse Gaussian process

Another statistic model used is the inverse Gaussian, which assume that

the degradation process have independent increments following an inverse
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Gaussian distribution. The probability density function of the degradation

path at time t is given by the following expression:

f(x) =

√
λΛ2t

2πx3
exp

[
−λΛ2t(x− µΛt)2

2(µΛt)2x

]
(3.4)

Where µΛ(t) is the shape parameter and λΛ(t)2 is the scale parameter [49].

Although less popular than the previous models (it appears only in [49]

and [67] in Table 3.3), it is a monotone process which, as stated in [67],

has some good properties: an appreciable fitting effect when dealing with

historical data; a clarity in the physical meaning comparable to Gamma

process; the possibility of incorporating parameters randomization methods.

In particular, regarding this last possibility, it is implemented in the work

by Wu et al. [67], with the introduction of a stochastic shape parameter

following a normal distribution and whose variance decreases with time,

simulating so the effect of an improvement of the parameters estimation

given the greater amount of acquired data.

Markov process

In the Markov processes it is assumed that the degradation pattern of ma-

chinery transforms within a finite state space following the principle of the

Markov property, i.e. the probability of next state transition depends only

on the current state and not on the process history. As it is possible to

see, the greatest difference with respect to the previous models is the dis-

cretization in states of the deterioration process. Figure 3.7 shows a typical

Markov state transition diagram, where λij and uij represent, respectively,

the degradation ad repair intensities from state i to state j.

In general, the Markov model can be discrete, if at every time step the

possibility of transition between states is described by a probability matrix

(e.g. in [48]), or continuous, for which a transition rate matrix determines

the average number of jumps from a state to another per unit of time, like

for example in [37] and [38]. As it is possible to see in Figure 3.6, the Markov

process is quite popular for describing a degradation pattern. According to

Li et al. [48] its wide usage is due to the fact that the number of failures

in a arbitrary time interval can be described according to a Poisson process

and the times for state transitions (both for degradation and repair) are

assumed to obey to an exponential distribution, which makes the problem

mathematically very tractable. In addition, it is easy to implement in this

type of process the economic dimension, by associating to each state a cost,

which is influenced by the type of action performed too: in this case, the
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Figure 3.7: Example of a Markov state transition diagram. Figure from [48]

result is a Markov decision process (MDP), which allows, with appropriate

algorithms, to find the best action to take given the current state; examples

of such implementation are [30] and [44], which have also the peculiarity of

transition probabilities that change with time, making the policy an action-

time pair one.

Some papers in the selected literature use the so-called Semi-Markov models,

like [36] and [71]: the difference with respect to the original Markov process

is the relaxing of the hypothesis of exponential sojourn times, which in this

case can follow any distribution. In this way, it is possible a greater process

generalization, at the expenses of a more complex mathematical model.

Finally, another variant is represented by the work by Fan et al. [69], in

which it is not possible to know exactly the state the process is in, making

it a Partially Observable Markov decision process (POMDP); however, this

kind of problem can be solved with an appropriate states reformulation,

which makes it similar to a standard MDP.

Exponential process

Continuous degradation can be represented also by exponential processes.

Among the selected papers, it appears only in two of them ([72] and [75]),

58



Politecnico di Milano Andrea Puglisi

which have the peculiarity of implementing this form with random coeffi-

cients. According to these papers, the cumulative degradation of equipment

at time ti is represented by the following expression:

X(ti) = Φ + θeβti+ε(ti) i = 1, 2, ...; 0 ≤ t1 ≤ t2 ≤ ... (3.5)

Where Φ is the initial degradation, θ and β are parameters mutually in-

dependent and represent characteristics common to all individual systems

in the population and ε(ti) is the error term representing the degradation

characteristics unique to an individual system. In particular, log θ has a

normal distribution and the error term follows a Markov process. This last

property about error terms implies that any two increments in log degrada-

tion are independent from each other and so are the increments in original

degradation values [75].

Other processes

Here are presented those processes which appear only once in the classified

literature and consequently are less popular than the previous ones.

Rafiee et al. [65] adopt a linear degradation model with random coefficients

and with the occurrence of random shocks which, as already seen in the

previous paragraphs, increase suddenly the deterioration level by a quantity

according to their magnitude.

Another example of standalone model is present in the paper by Ma et

al. [68], where a Random Fuzzy Accelerated Degradation (RFAD) process

is used. According to the authors, this model considers the time-stress-

dependant structure, the random uncertainties caused by random effects in

time dimension and unit-to-unit variations, and the epistemic uncertainty

caused by the small sample problem simultaneously.

Lu et al. [73] describe the degradation in their work by using a so-called

integrated health function, which combine the information about age and

operational and environmental conditions to assess the state of the machine.

To conclude, Hu et al. [77] utilize a diffusion process (so belonging to the

same family of the Wiener model) in which it is comprehended the influence

of imperfect maintenance in the degradation expression and characterized

by random coefficients.

Not specified processes

Finally, there are some papers in which the deterioration process is not

specified, although in this case it happens only for 4 papers out of the 47

59



Andrea Puglisi Politecnico di Milano

classified. Among these ones, three of them ([45], [42] and [60]) are multi-

state models in which it is not stated the assumption of the Markovian

property, while in [50] there is a continuous degradation model of unknown

nature.

3.3.5 Inspection policy

In order to verify the degradation level of an asset it is necessary to make

inspections on it. According to the classification performed in Table 3.3

and as shown in Figure 3.8, there are three main types of inspection policies

used in the selected papers: periodic, non periodic and continuous. The first

two are performed at discrete times and usually involve manual operations;

the last one, as the name says, happens continuously in time and is usually

performed by sensors. There are then some papers in which the inspection

policy is not specified, although it is a minor part of the totality (only 4 out

of 47).

Periodic inspections

In this type of policy, which is the most frequently used in literature (23

out of 47 papers), the asset is examined at predefined times according to a

periodic schedule. An advantage of this policy is its ease in planning and

organizing inspection activities, to be added to the cost savings in sensors

technology. On the other hand, like the scheduled maintenance, it reduces

flexibility and can lead to a lost in information if the inspection period is

too long or, at the contrary, in an excess of activities if it is too short, with

consequent higher costs. Often, as it is possible to see in the paragraphs

about the classification of the decision variables (ref. Section 3.3.9), the

inspection period is an important optimization parameter.

Non periodic inspections

Under this category there were grouped all inspection policies in which the

observations are made at discrete times but not following a periodic schedule:

in this case, activities can be organized according to specific inspection time

laws, depending on some events or by management decision. In order to be

more precise about the nature of this policy in the various cases, a further

column in Table 3.3 was added, giving details about the non periodic type.

In particular, in the work by Zhao et al. [43] inspections are programmed at

intervals which follow a geometrically decreasing law, since it is necessary to

observe more frequently the equipment when its age increases. In the paper
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Figure 3.8: Overview of the inspection policies used in the classified papers

by Wang et al. [33], in which the subject is a production system, inspections

are programmed according to the lot size. Similarly, in other articles ([52],

[38] and [61]), the asset is inspected at the end of missions with a determined

or stochastic duration. In [51] and [58], the remaining useful life of the

system is computed and the information is used to program efficiently the

inspection time, doing the activities only when necessary. Finally, in some

publications like [69] and [76] the moment in which observe the asset is a

decision to be taken by the management before any action according to some

criteria.

Continuous monitoring

In regime of continuous monitoring, the system is inspected continuously

through a flow of data coming from sensors. As it is possible to see from

Figure 3.8, in comparison with the discrete time inspections this type of

policy is less used but still quite represented with 12 papers out of 47 im-

plementing it. Its main advantage is the capability of giving a continuous

assessment of the asset, which can be very useful in order to decide which ac-

tions to take and when. On the other hand, for years the main disadvantage

of implementing sensors was their cost, although in recent times this has

become less and less relevant due to technological progress. Another issue

this method can have is the amount of data to analyse, for which industrial

analytic and Big Data techniques may be necessary.
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Among the papers which implement it, the work by Le et al. [76] presents

the peculiarity of combining continuous monitoring with a non-periodic pol-

icy: in fact, it is assumed in the publication that the sensors are only able

to give a partial assessment of machinery condition, which therefore must

be inspected manually; whether to perform the inspection and its time con-

stitute a decision variable of the paper.

3.3.6 Maintenance policy

In Table 3.4 the selected papers are classified basing on the maintenance

policy adopted. In order to achieve a complete classification of this aspect,

three columns have been created, specifying respectively the type of pol-

icy, the presence of RUL estimation and the maintenance actions which is

possible to do.

Type of maintenance policy and RUL estimation

Regarding the type of policy, it is appropriate to remember that one of the

classification criteria is to include only papers which adopt a condition-based

maintenance (CBM) policy. However, at this stage it is necessary to distin-

guish between publications which have a pure CBM policy and others that

integrate it with a time-based maintenance (TBM) one. In this case both

approaches are quite widely used in literature.

With a pure CBM policy is intended a maintenance strategy in which every

action is triggered by the condition of the machine, whose assessment is done

by the methods explained in the previous paragraphs. On the other hand,

sometimes the moments for specific actions like the preventive replacement

of the system with a new one are planned a priori according to some time-

related criteria, leading to a combination between condition and time-based

maintenance policies; usually this is done for safety reasons. For example,

some models allow a maximum number of imperfect maintenance actions be-

fore replacing the machine, like the one by Wei et al. [47], in which partial

repair is allowed only once, or like in [49], for which the number of actions

before replacement is a decision variable. In [52] the limit is represented

by a maximum number of operating missions after which it is necessary to

substitute the system. In the work by Ponchet et al. [74] instead there is

a predefined time limit for the renewal cycle (i.e. the maintenance cycle

between two consecutive replacements) duration.

Particular is finally the publication by Mercier et al. [55] which develop two

models, one purely CBM and the other combining CBM and TBM with a
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maximum number of imperfect actions, in order to compare them.

The column right to the type maintenance policy in Table 3.4 specifies the

presence of remaining useful life estimation. In this case, it is interesting to

notice that only a small part of the papers analysed (7 out of 47) integrate

the RUL prevision in their work: this is usually done in order to program

better maintenance and inspection activities, in order to take an action only

when really necessary.

Type of actions

Finally, the last column of Table 3.4 lists the types of action allowed by

the model. There are four types: imperfect preventive maintenance (IPM),

preventive replacement (PR), imperfect corrective maintenance (ICM) and

corrective replacement (CR). As it is possible to see, the actions are divided

in preventive and corrective ones which, in turn, can be imperfect or perfect

(i.e. a replacement). To be noticed that the replacement action is always

assumed to be perfect by definition, concluding a maintenance cycle.

Looking at Table 3.4, only 8 papers implement all the actions in their mod-

els; in fact the most frequent combination is IPM, PR and CR: this means

that only preventive maintenance can be imperfect and if the machine fails

it is replaced with a new one. In the work by Bousdekis et al. [30] only

preventive actions are allowed; this is probably because failure of the equip-

ment is considered very rare and so the corrective actions are not normally

contemplated. On the opposite, in [54] and [56] only corrective maintenance

is implemented, perfectly or imperfectly, since a run-to-failure strategy is

considered. Another example is [36], in which only imperfect maintenance

is allowed, both preventive and corrective. Finally, some papers consider

only imperfect preventive actions while the asset is running, to replace it

perfectly at the moment of failure.

3.3.7 Imperfect maintenance

Table 3.5 is dedicated to the description of imperfect maintenance in the

selected literature. In order to analyse the various aspects of this type of

intervention, the table is organized in four columns: the first describes what

is the effect of imperfect maintenance, the second specifies if this effect is

deterministic or stochastic, the third gives details about the stochasticity

of the effect, when it is present, and, finally the last column reports some

particular aspects of the imperfect maintenance model. To be noticed that

in the rows in which multiple effects are present these ones can be preceded
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by a number: this is done in order to link each effect with its specifications

in the other column when these ones are different. For example, this method

is used in the row corresponding to paper [51], since the two different effects

belong to different distributions: on the other hand, it is not done for ex-

ample for article [53], because both the effects have the same characteristics.

In order to understand the various effects of imperfect maintenance mod-

elled in literature, first of all it is necessary to make a distinction between

the multi-state degradation models (e.g. Markov) and the continuous ones,

like the Gamma or the Wiener processes. The choice for this division is

to be found in the mechanics which describe both the degradation and the

maintenance action effects. In fact, while in multi-state models these pro-

cesses are translated into passages between discrete states, in the other ones

the degradation is represented by a continuous function and it is more ap-

propriate to talk about deterioration levels, with the repair action removing

in most cases a percentage of the degradation accumulated over time. As it

will be possible to see from the next paragraphs, there are also some cases in

which imperfect maintenance acts in a similar way for both types of models:

it happens primarily when the effect of repair is to bring the deterioration

to a precise previous state or level. However, this is a particular case which

does not make the division less effective in describing the general differences

in the respective mechanics.

Multi-state models

Starting with the multi-state models, in this case the maintenance action

overall effect is a transition to a better deterioration state, which can be de-

terministic, if it is possible to know in advance which state the system will

reach after maintenance, or stochastic, if the outcome is uncertain. Usually,

in this last case the transition is ruled by a probability matrix, which links

the current state to the possible better ones.

Particular cases are constituted by the work by Atashgar et al. [42] in which

maintenance brings the system to a given state: the difference between the

standard situation of a better state transition is that the arrival state is

always the same, independently on the starting point or the decision of the

user. Another peculiar case in represented by [71], where the asset is brought

only to the previous deterioration state: this event is stochastic since there

is the possibility that the intervention has no effect, leaving the system to

the current state, or can provoke failure in the worst case. Finally, in [36]
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maintenance action brings always the system to the best state: in this case,

in fact, the imperfection is given by an accelerated degradation rate after the

intervention; it is possible to notice that the increment in the deterioration

speed is present in [44] too, where it is deterministic, unlike the transition

to a better state which is stochastic and ruled by a probability matrix.

Considering now the particular rules for the multi-state models, a frequent

one is the selection of the Imperfect Preventive Maintenance (IPM) level,

which is the effort given to the action. Such situation can happen, for

example, when it is possible to choose between different maintenance actions

(like lubricating, tightening screws, cleaning, etc...): the type of intervention

chosen will have a different influence on the resulting effect of maintenance,

like in [30]. In other cases, like in [48], it is possible to choose between

minor repair, bringing the system only to the previous degradation state,

and major repair, restoring the asset to a range of better states according

to a probability matrix.

Similar to the previous one, another quite frequent rule is the dependency of

the maintenance effect on the resources allocated; for resources is in general

intended time and money. In particular, when the effect is indicated to

be deterministic, it means that the allocation of resources determine the

outcome of the intervention with certainty; on the opposite, in presence of

a stochastic effect, the resources allocation only increases the probability of

some results. An example of this rule is [76]. When it is present a selection

of the maintenance level, usually each action has a specific cost: this is

indicated in Table 3.5 with “IPM level dependant on resources”, like in [30]

and [37], in order to differentiate it from the other situation.

Finally, in some works the effect of maintenance decreases with time. For

example, in the one by Wang et al. [45] the actions are less effective as the

age of the asset increase; in a similar way, in [69] the effect decreases with

the number of imperfect maintenance actions. This last article present also

the peculiarity of having a maximum number of IPM interventions before

replacement which, as already discussed in the previous paragraphs, makes

the policy a combination between CBM and TBM.

Continuous degradation models

Regarding the continuous degradation models, in literature the capability of

restoration of the imperfect maintenance action can be classified into three

main effects:

• Degradation reduction: in this case, the maintenance action re-
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moves a portion of the degradation accumulated until that time. In

general, this effect is the most used.

Let the degradation in time be represented by the function X(t). Ac-

cording to the degradation reduction effect, the new deterioration level

after the intervention is X ′(t) = αX(t), where 0 < α < 1 is called

restoration factor, describing the percentage of residual degradation.

It is possible to see that the new deterioration level is proportional to

the condition before maintenance: the more the machine is deterio-

rated, the higher the residual degradation after the action, if the same

restoration factor is used.

Again, the effect can be deterministic or stochastic: the former, when

the restoration factor is fixed or known nonetheless, like in [33]; the lat-

ter, when it belongs to a certain distribution, as done in [49]. Regard-

ing the type of distribution, several are implemented, as it is possible

to see in Table 3.5 in the dedicated column.

• Virtual age reduction: this kind of effect acts, instead of on the

degradation itself, on the age of the machine, bringing it back to the

condition it was at a given time.

Considering again the degradation function introduced before, let β

be the age restoration factor. Therefore, the new deterioration level

after the intervention is X ′(t) = X(βt), with 0 < β < 1 having a

similar function to the previously considered degradation factor. The

same considerations as before hold for the proportionality between

the new age of the machine and the one before the intervention, as

well as for the stochasticity of the age reduction factor. However, the

main difference is that this time the maintenance action brings the

machine to exactly the same state it was at that age: this means that

the restoration, in this case, depends on the pattern followed by the

deterioration process and not only on its overall amount at the moment

of maintenance.

This effect is used, for example, in [66]; on the other hand, Do Van

et al. [53] implement in their imperfect maintenance model both the

virtual age and degradation reduction effects, introducing two factors.

• Reduction to a given level: in this case, the maintenance action

brings the asset to a given deterioration level, independently on the

state the machine was before the intervention. It means that the degra-

dation function is transformed in the following way: X ′(t) = H, where

H is the given level the maintenance action brings always the system

to.

73



Andrea Puglisi Politecnico di Milano

The stochasticity of this effect is therefore linked to the new deterio-

ration level, which can be known in advance and fixed (deterministic)

or belonging to a random distribution (stochastic). Examples of re-

duction of the degradation to a given level are constituted by [47] and

[50].

Appearing in only two papers ([59] and [62]), another effect that the main-

tenance action can have is the complete restoration: in this case, the im-

perfection lies in the fact that such regeneration is not certain, but the

intervention can also leave the asset in its original condition with a given

probability, having so no effect at all.

Moreover, it is quite frequent that imperfect maintenance has one or more

additional effects contemporaneously with the previous ones. For example,

many papers model a change in the deterioration rate, which is usually an

increase of it, like in [51], but that can also be a random change, as done

in [67]. In the work by Huynh et al. [40] in addition to the degradation

reduction and the increase of deterioration speed is implemented also the

increase of degradation variance. Another peculiar effect is the one modelled

by Guo et al. [52], for which the time taken by every maintenance action

increases with the number of interventions.

Finally, many continuous degradation models are implemented with various

particular rules. Some of them are the same ones of the multi-state models:

many papers give a maximum limit to the number of imperfect maintenance

action or, in general to the time before replacement, forming a combination

between CBM and TBM (e.g [67]); quite often, the maintenance effect de-

pends on the resources allocated, like in [56]; in some articles, the effect

decreases with the number of actions and with the age of the asset, like in

[53]; in [64] it is possible to select the maintenance level, exactly as for some

of the multi-state models.

Finally, there are some peculiar rules which happen very rarely. In [40] and

[41], for example, the new degradation level after repair is always worse than

the one after the previous maintenance. In the work by Chen et al. [70]

there is a minimum interval between two imperfect maintenance actions to

respect; if this is not possible, a replacement occurs.

To conclude, it is clear now that imperfect maintenance is modelled in liter-

ature in many different ways, with multiple effects that can depend on the

degradation process. However, the drawback of this approach is the quan-

tity of assumptions necessary before actually running the model. In fact, as
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already seen, only a small number of papers try to estimate the maintenance

parameters and even less update these coefficients as the asset is observed.

The greatest part of publications, instead, start with given values, which can

be found from historical data, if an application is present, or simply used for

numerical examples, probably considering their estimation as a further step

once the target application is known. This makes the models less flexible

to be used on different assets and in presence of different behaviours of the

maintenance actions, with a consequent loss of applicability.

3.3.8 Optimization targets

Table 3.6 presents an overview of the optimization targets used by the clas-

sified literature, when of course an optimization is performed. However, it

is necessary to remember from the main content section that the greatest

part of papers perform an optimization.

Maintenance cost

The optimization of the maintenance cost is in absolute the most used target.

Very often, for maintenance cost is intended the cost per time unit: this is

obtained, according to the renewal theory, by dividing the total maintenance

cost (considering imperfect maintenance, preventive replacement, corrective

actions, inspection cost, downtime, etc...) in a renewal cycle by the length

of the cycle itself, which is the time elapsed between two replacements. Ex-

amples of paper which consider the maintenance cost rate are [40] and [47].

In other cases, it is considered the total cost spent until the moment consid-

ered, like in [46]. In the work by Van et al. [35], then, the maintenance cost

is computed per piece produced. In general, this target can be standalone

or part of a joint optimization, as shown with the next objectives.

Production cost

In this case the target is to minimise the cost of the production. The pro-

duction cost optimization is present in only two papers ([33] and [34]). In

both publications, a joint optimization is performed: Wang et al. [33] con-

sider simultaneously production and maintenance cost to find an optimal

production planning and maintenance policy; Cheng et al. [34] add to these

two optimization target the minimisation of logistics cost for a production-

inventory system.
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Logistics cost

As introduced in the previous point, some papers integrate the logistics

cost in the optimization targets. For logistics are intended all the activities

which act as support for the production system, like product inventory and

spare parts; for simplicity under this category is considered the shortage cost

too, since strictly linked to the previous functions. As for the production

cost, the minimisation of the logistics cost is performed simultaneously with

the maintenance one. The two papers which implement it are [30] and, as

already seen, [34].

Profit/Net value

Instead of minimising the cost, some publications decide to maximise the

profit of the system or the net value of the maintenance strategy. For exam-

ple, Xiang et al. [59] develop an imperfect maintenance model for a leased

equipment and perform a single-objective optimization trying different tar-

gets; one of the tested target is the maximisation of the profit from the

leasing contract. In [75], on the other hand, is computed the net value of

the maintenance strategy, with the aim of optimising it. Finally, Mercier et

al. [55] assume that the system provides a reward which decreases with the

deterioration level and provide to maximise this reward function finding an

optimal maintenance policy.

Reliability

Another used target is the maximisation of the reliability of the system. Just

to recall the meaning of this term, for reliability is intended the “ability of

an item to perform a required function under given conditions for a given

time interval” [22]; usually it is expressed as a probability. In the selected

literature, this target is always standalone. In particular, it appears in three

papers ([37] [38] and [60]) in concomitance with missions to be completed

successfully by the system.

Availability

The availability is the “ability of an item to be in a state to perform as and

when required, under given conditions, assuming that the necessary external

resources are provided” [22]; it can also be seen as the fraction of time the

equipment is able to operate. The maximisation of availability is a target

quite used in the selected literature, usually as standalone objective, like in
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[49], but also as part of a multi-objective optimization, as done in [62]. In

general, it is applied to various types of contexts.

3.3.9 Decision variables

The last classification driver regards the decision variables object of opti-

mization, when this one is present. Since the amount and variety of these

parameters is quite large, they were grouped in categories, as shown in Table

3.7; usually papers use more than one of these variables in their optimization

models. In the next paragraphs, each category is explained in detail, citing

the different examples.

Inspection time

Under inspection time are grouped all the decision variables which influence

the inspections schedule, when continuous monitoring is not implemented.

In most cases, it is applied when periodic inspections are adopted, with the

aim of finding the optimal period to them; examples are, among the others,

[62] and [65]. In the work by Zhao et al. [43], where there is a non periodic

inspection schedule with geometrically decreasing intervals, the target is to

find the related law’s parameters. Finally, another particular example is the

paper by Le et al. [76], in which making an inspection is a decision to take

associated to the state of the machine in the context of a Markov decision

process.

Maintenance degradation threshold

With maintenance degradation threshold are intended all the decision vari-

ables that consist in a deterioration level over which an action is imple-

mented; it is easy to notice that this type of variables is applicable only

for continuous degradation models. Typically, the parameter to determine

is the optimal imperfect preventive maintenance threshold, i.e. the dete-

rioration level which triggers an IPM action, like for example in [49] and

[50]. There are also cases in which a level for the preventive replacement

is decided, as in [40] and [47]. Among the other decision variables of this

type, Zhao et al. [43] introduce a threshold after the intervention to decide

which action will be the next: if the degradation level after an IPM is below

this threshold, the next intervention will be an IPM too; otherwise, it will

be a replacement. Atashgar et al. [42], in their multi-component system,

find an opportunistic maintenance threshold for each of the elements of the

asset, to determine on which other components execute maintenance if one
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of them already requires it. Wu et al. [67] develop a dynamic maintenance

threshold, i.e. an IPM threshold which is function of time: in this case, the

parameters of this function are the decision variables.

Type of action/maintenance

In this case the decision variable consists in the choice of the action or

maintenance type to do at a given time. In some models, this decision is

made time by time at given instants, like in [33] and [58], and the type of

action chosen is the one which guarantees in that moment the lower expected

cost: this decision is thence dynamic. For most multi-state models, however,

usually this variable traduces in an optimal action-state pair, i.e. the best

action to do in a given state in determined conditions, which is found by

solving the related Markov decision process (e.g. [30] and [44]). In selected

maintenance problems, like in [37] and [45], usually the decision variable is

the level of maintenance to execute on each component, ranging from no

action to a perfect replacement. In other publications, the optimal decision

regards the residual degradation after the maintenance action: it can be a

target level for continuous degradation models ([46]) or a target state for

multi-state models ([42]). Zhao et al. [56] have as their decision variable

the effort of the maintenance action, which is a variable part of the overall

effect to be optimised.

Maximum failure probability

Not representing an actual category, but placed standalone due to its dif-

ferences in comparison with the other ones, this decision variable is the

maximum failure probability which is tolerated with respect of an interval

of time, according to the degradation pattern trend. In the work by Wang

et al. [33], for example, the failure probability is referred to the production

time to complete a batch, while in other papers, like in [51] and [53], it is

referred to a generic mission time.

Renewal cycle duration

As already seen in the section dedicated to the maintenance policy, some of

the models analysed implement a combination between condition and time-

based maintenance, giving a limit to the duration of the renewal cycle. For

some of these papers, the optimal cycle length represents a decision variable:

the target is to find the optimal number of imperfect maintenance actions to

minimise (maximise) the objective function, like for example in [49] and [51].
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To be noticed that this is not the only type of event which can end a cycle:

other examples are a predetermined time for replacement or a maximum

number of mission. However, in these cases they are given data and not

variables to be optimised.

Time/state to maintenance

Under this category are grouped all the decision variables which influence the

time or state to make a maintenance action. For multi-state models, like in

[30] and [44], usually the optimal state for doing a determined intervention is

given by a Markov decision process, as already explained. In other cases, for

continuous degradation models, the optimal time to maintenance is decided

dynamically at predetermined times, in other to choose the instant which

minimises the expected cost, as done in [58] and [46]. In the work by Mercier

et al. [55] the decision variable is the imperfect maintenance period: in this

case, although maintenance is scheduled, the policy is still a CBM one since

this value is optimized with respect to the expected conditions of the asset.

Similar in this way is the article by Zhao et al. [43] which optimise the

inspection law parameters, as stated in the previous paragraphs: however it

is necessary to cite it into this category too since in this case inspection and

maintenance happens at the same time. Finally, Wu et al. [36] determine

the optimal maximum continuous production time after which the line has

to be stopped to execute maintenance: to be noticed that this variable was

not inserted into the renewal cycle duration category since maintenance in

this case is not necessarily a replacement.

Production and logistics

For production and logistics are intended all those decision variables which

are related to the production, its support activities and their management.

For example, in [33] is determined the optimal production plan; in the work

by Bousdekis et al. [30] the variable is the number of spare parts to order;

in [36] a production capacity threshold is optimised, under which a main-

tenance action is needed; in [42] the decision regards the number of main-

tenance facilities; finally, Xiang et al. [62] optimise the burn-in time of the

machine, which was inserted under this category for its asset management

characteristic.
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Resources allocation

The last category is related to the allocation of limited resources among dif-

ferent components or maintenance actions. Typically, this decision variable

is implemented in selective maintenance problems due to its nature, allow-

ing to find the optimal quantity of resources (money and time) to allocate

in multi-component systems (like in [45]) but also for a fleet of machines, as

in [37]. Peculiar is the work by Chen et al. [70], in which the resources are

allocated among sequential maintenance actions acting on the same system,

with a given budget.

3.3.10 Summary of the classification work

This section analysed the state of the art of imperfect maintenance applied to

a context with a condition-based maintenance (CBM) policy implemented,

at least partially, and with no availability of run-to-failure data. In partic-

ular, the selected literature was classified according to appropriate drivers

and the results were reported in six different tables, in order to divide the

information basing on the subject.

Table 3.2 reported a general overview of the selected papers. First of all,

the articles were classified according to the industrial field they belong to

and the particular application, whenever it was present. On one hand, this

driver highlighted the presence of imperfect maintenance in a wide range of

industrial sectors, on the other it also showed a generalized lack of industrial

references and applications, with a great part of the papers implementing

models verified only by numerical examples. This fact has to be added to a

very diffused absence of details about the systems treated.

The overview was then completed by classifying the papers according to

their main content. In particular, this one was divided into three categories:

model description, parameters estimation and optimization. From this anal-

ysis emerged a strong prevalence of optimization models and, at the contrary,

a small number of papers performing an estimation of the parameters, with

only a couple of them providing an update of these coefficients as new data

are acquired.

Table 3.3 provided a classification in terms of degradation pattern and in-

spection policy. Regarding the first, it was divided into the description of

the deterioration process adopted, which showed various models used with

the predominance of Gamma and Markov ones, and into the presence or not

of random coefficients: in this case, few models utilized such feature.
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Secondly, the inspection policy was first of all classified according to three

types: periodic, non periodic and continuous. While the first two classes

execute inspections at discrete time instants, the last one aims to monitor

continuously the asset through the use of sensors. The classification showed

a predominance of the first two categories, although in this case all of them

are quite used. Moreover, the non periodic policy was further characterized

by defining the mathematical laws or events which determine when to check

the machine.

Table 3.4 aimed to give further details about the maintenance policy. In

particular, it was specified if the one implemented is a pure CBM policy

or a hybrid between condition and time-based maintenance. Secondly, it

was detailed the presence of a remaining useful life (RUL) prediction, driver

which highlighted a small number of this type of models. Then, further

detailing was given by specifying the types of actions that each article takes

into consideration, which in general can be preventive or corrective and per-

fect or imperfect.

Table 3.5 provided an overview of the different ways in which imperfect

maintenance is formulated and applied. For this purpose, the greatest at-

tention was paid in detailing the types of effect of the maintenance action

on the assets, specifying after that if those consequences are deterministic

or stochastic and, in the last case, what is the distribution they belong to.

Finally, the last column gave some additional information about imperfect

maintenance reporting particular rules used in the various models, if any.

From the analysis emerged a large quantity of assumptions made a priori

about the results of imperfect maintenance; only in few cases, as already

seen, these hypotheses are accompanied by the related parameters estima-

tion.

Table 3.6 reported a classification of the optimization targets present in

those papers which aim to find an optimal policy or at least to take opti-

mal decisions to improve the current one. Different targets were presented,

of which the minimisation of the maintenance cost demonstrated to be the

most used one.

Finally, Table 3.7, referring to the same type of papers of the previous

paragraph, gave an overview of the different decision variables object of

optimization. Once again, this highlighted in particular how much the op-

timization approach is used and the large number of forms it assumes, both
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in terms of targets and variables.

3.4 Literature gaps

Concluded the classification part of the current thesis, the current section

aims to elaborate and formalize the main gaps found in the analysis; these

ones will be then used to formulate the research objective developed in the

thesis.

The first information which emerged is the lack of details given to the sys-

tems studied in the models. In fact, presenting an overview of the industrial

fields and specific applications on which the papers operate, it was possi-

ble to notice that in the greatest part of them this data was not specified,

at least with no precision. In addition, in few articles were given details

about the nature of the system, leaving unknown in most of the works if

the object of study was a single component, a multi-component asset or a

fleet of machines. These two factors, combined to the fact that often papers

give only numerical examples to validate their models, make the word ”sys-

tem” a cryptic concept, on which are executed generic maintenance actions.

Therefore, the previous sentences can be summarized as a generalised lack

of models built around a real asset or fleet of machines, giving furthermore

precise details about the nature of maintenance actions and the components

object of intervention.

Another point which is necessary to underline regards the parameters esti-

mation. As already marked in the dedicated section of the chapter, there is

only a limited number of models which provide an estimation of the coeffi-

cients describing the degradation pattern (i.e. the parameters of the function

chosen to describe it) and/or the imperfect maintenance effect. In addition,

the papers which update the parameters as new data are acquired are even

less. Regarding these last ones, then it is possible to notice that first only

one paper computes the remaining useful life in order to decide when to

carry out the next intervention; secondly, no article updates both main-

tenance and deterioration (in this work used as synonym of degradation)

parameters, but only one of them; finally, all these publications work under

a periodic inspection policy, without implementing continuous monitoring.

Summing up, from this analysis emerges a lack of models which, work-

ing in a continuous monitoring environment, provide a continually updated

estimation of the parameters of both deterioration pattern and imperfect

maintenance effects, in order to determine the remaining useful life of the
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asset and decide about future actions.

Regarding the degradation pattern, in Section 3.3 several models were pre-

sented, as they were adopted by the articles. However, looking at the differ-

ent papers, it is possible to notice that the type of model selected to represent

the deterioration of the asset is always an initial assumption of the author

rather than a decision made after the analysis of data. Consequently, this

fact underlines the lack of a model which, using the data acquired from the

asset, aims to estimate which is the most appropriate function to represent

the degradation pattern.

Finally, a further consideration regards the imperfect maintenance effects.

As already stated, usually papers make a large variety of assumptions about

the results of maintenance action; then, as seen before, in some cases the pa-

rameters used to represent these effects are estimated using historical data.

This approach, useful in a context in which a certain knowledge of the asset

is already present, risks to be ineffective when it is necessary to test and

work with a new machine. Therefore, it is possible to mark a lack of models

which identify and quantify the effects of imperfect maintenance only once

the related data are acquired, starting from no previous knowledge about

how the asset behaviour will evolve after these interventions.

In conclusion, the gaps found in literature can be summarized as:

• GAP 1 : Lack of models focusing on a real asset or fleet of machines

and giving detailed information about its nature, level and the type of

maintenance actions executed.

• GAP 2 : Lack of models which use the data from the asset, acquired in

regime of continuous monitoring, to estimate and continually update

the parameters of both degradation pattern and imperfect mainte-

nance, in order to determine the remaining useful life of the machine.

• GAP 3 : Lack of models which, using the data acquired from the asset,

aim to estimate which is the most appropriate function to represent

the degradation pattern.

• GAP 4 : Lack of models which, aim to identify and quantify the effects

of imperfect maintenance actions through the acquired data, starting

from no previous knowledge of these effects.

In the next chapter, the gaps highlighted will be used to formulate the

research objective of the thesis.
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Chapter 4

Practical research design

Formalized the gaps emerged from the literature review (ref. Chapter 3),

the current chapter aims to formulate the research objective of the thesis

and illustrate the methodology adopted to fulfill it.

4.1 Research objective

As already stated in the previous chapters, the overall target of the present

thesis is to study the application of imperfect maintenance in a context

with a CBM policy applied and no availability of run-to-failure data. For

this reason, subject-related literature was selected and classified in order to

find the above presented gaps. In the light of what discovered, since this

work aims to bring innovation in this field of scientific studies, the following

research objective is formulated:

”The development of a framework for a condition-based maintenance model

which aims to identify and quantify the degradation pattern and the

imperfect maintenance effects in order to improve the asset prognosis and

the recommendation of types of maintenance intervention.”

In particular, the present thesis aims to dedicate mostly to GAP 2, GAP 3

and GAP 4.

4.2 Methodology

In order to achieve the research objective, the work is organised into two

parts: the presentation of the operative framework elaborated and its as-

sessment.
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4.2.1 Operative framework presentation

The first step consists in the development of an operative framework in or-

der to illustrate the functioning of the model worked out in this thesis. In

particular, this one consists in a CBM model in which the concept of im-

perfect maintenance is associated to the one of failure mode: the repairs

are imperfect since they restore the degradation corresponding to one of its

failure modes. The main innovation, in addition to some improvements in

the estimation of the remaining useful life, lies in the ability of characteriz-

ing the effects of the imperfect maintenance actions in order to expand the

prognostic capabilities of the model: thus, the traditional RUL prediction

is accompanied by the estimation (prediction) of the type of intervention to

be executed at the next repair.

Therefore, the objective of this framework is to give guidance in the imple-

mentation of such a model. For this reason, its purpose is to be as general

as possible, making it usable in more industrial applications and allowing

the user possibility of choice about some aspects, depending on the specific

problem setting.

The framework is represented in a hierarchical model form organised on three

levels, so that each part of the CBM model is progressively explained and

implemented in detail. Figure 4.1 gives a graphical representation of such

organization, specifying the hierarchical relationships between the blocks

component, at the different hierarchy levels, of the framework.

Figure 4.1: The three levels of detail of the operative framework
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The first level of detail consists in the general framework itself, which is a

macro representation of the relationships between the other main blocks. It

in fact describes the cyclic succession of condition monitoring and mainte-

nance on the asset which usually characterizes its life-cycle; these two phases

are supported by the control data, containing the information for their cor-

rect execution.

The second level explains the main blocks constituting the general frame-

work. These ones are, as previously introduced: control data, condition

monitoring and maintenance.

The control data are the ones necessary to execute correctly the different

parts of the CBM model. In particular, they can be divided into degra-

dation control data, which allow to monitor the health state of the asset;

logistic data, needed to schedule and organize the maintenance; models in-

puts, which are specific data required by the different models part of the

framework.

The condition monitoring is the phase in which the degradation of the

asset is supervised, in order to schedule maintenance at the right time and

avoid failures. Here sensor data are collected in real time and elaborated

to acquire information about the present conditions of the asset, with the

target of determining the future ones. This part therefore contains the prog-

nostic steps of the remaining useful life estimation and the prediction of the

type of repair, which aim to assist the maintenance scheduling process.

The maintenance is the part in which not only is executed the actual repair

on the asset, but also the data gained during the condition monitoring are

elaborated a posteriori. This allows to improve the future actions learning

from the past experiences.

Finally, the third level of detail consists in a further specification of some

parts of the condition monitoring block: the RUL prediction and the main-

tenance prediction.

The RUL prediction step aims, as the name suggests, to estimate the

remaining useful life of the asset. Here is described the main improvement

made to this process, which is the continuous choice of the degradation func-

tion basing on the sensor data acquired.

In the maintenance prediction is decided which is the type of repair to

be executed at next maintenance. This involves the estimation of the fail-

ure mode responsible of the deterioration and a consequent decision-making

phase based on the past experiences recorded.
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The operative framework of the model is exposed in detail in Chapter 5. In

particular, the explanation is organised in terms of sections and subsections

in order to reflect the hierarchical relationships represented in Figure 4.1.

Furthermore, most of the blocks composing the framework are presented

in a flow-chart form, in order to highlight the functioning of the processes

involved together with the related flow of information.

4.2.2 Framework assessment

The second step consists in the assessment of the framework for the CBM

model presented. This is performed starting from a dataset regarding the

vibrations along the spindle axis of a drilling machine, made available by

the Industry 4.0 Lab at Politecnico di Milano. Such dataset in fact con-

stitutes the basis for the simulated experimental campaign designed: here

degradation histories are created in order to verify the correct functioning

of the different features of the CBM model implemented, with particular

attention to the learning and predictive capabilities, remaining at the same

time coherent with the original dataset. The results are then analysed with

the aid of charts and graphics.

The assessment of the framework is exposed in Chapter 6. As it is possible

to deduce, this part is focused on a specific situation, with specific choices

regarding some model aspects, which are indicated and motivated when

necessary. In addition, it acts also as a practical example of the framework

implemented, permitting to show the execution of its main features.
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Chapter 5

Operative framework

presentation

As anticipated in Section 4.2, the current chapter aims to present the model

framework elaborated to answer the gaps emerged from the literature anal-

ysis. After having delineated the problem in Section 5.1, formulating the

main assumptions, the thesis continues by presenting the actual operative

framework developed in Section 5.2, describing the different parts and mod-

els composing it in detail.

5.1 Problem setting and assumptions

The main purpose of this work is to develop a framework for a condition-

based maintenance model capable of determining prognostics on the asset

in order to schedule the future repairs efficiently. This is assumed to work in

a context where the machine is continuously monitored by sensors, making

necessary to collect and process a large amount of data, and where there are

different failure modes which can evolve in time, making the degradation of

the asset increase; to these ones are then associated different types of main-

tenance. In particular, these types are imperfect since they are assumed

to restore the degradation caused only by the corresponding failure mode,

leaving the others unvaried. Since it is hypothesised, to answer to the lit-

erature gaps, that no information is available regarding not only the failure

of the asset, but also about the degradation behaviour and the effects of

the imperfect maintenance actions, it is necessary to learn how the different

failure modes evolve and what happens when a maintenance intervention

is implemented. The information gained in this way can be then used to

improve the prognostic phase, suggesting which failure mode is occurring
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and which type of maintenance (perfect or imperfect) is necessary to apply.

Summarizing what written in the previous paragraph, the basic assumptions

of the model are:

1. The system is continuously monitored through sensors.

2. Maintenance actions are scheduled according to a CBM policy.

3. Absence of data regarding failure events and the degradation evolution

of each of the failure modes of the machine considered.

4. The maintenance actions are constituted by imperfect ones of various

types, each acting on a single failure mode, plus a perfect maintenance,

able to restore the machine to an as-good-as-new condition.

5. The different types of imperfect maintenance (and so the related failure

modes) are known a priori, but there is no information (i.e. quantifi-

cation) about their effects.

6. Imperfect maintenance effects depend on the number of interventions

of the same type already done from last perfect maintenance.

7. Each failure mode develops independently from the others.

8. Inspections executed during maintenance are perfect, i.e. they are

always able to determine the main failure mode responsible of the

degradation of the asset.

9. The maintenance lead time is the same for all types of intervention.

Regarding the previous assumptions, it is necessary to explain better some

of them.

First of all, the 6. states that maintenance effects, whatever they are, de-

pend on the number of interventions of the same type. As it is possible to

see from Section 3.3, this hypothesis is common among the analysed papers:

it explicates the idea that executing only partial maintenance its effect be-

comes lower and lower, until a perfect one is necessary. In this work such

behaviour is incorporated as well, since it gives more generality to the model.

Then, the 7. states that each failure mode, in its evolution, does not influ-

ence the other ones. This assumption derives from a similar one which is

done, for example, in [47], [61], [65] and [78], where there are different causes

which, independently from each other, increase the degradation level of the

system, thus leading to the occurrence of subsequent failure modes.
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Notations

tmaintenance Time at which the maintenance is scheduled

tc Current time

LTmaintenance Maintenance lead time

ρ Safety coefficient used on the maintenance lead time

Dup Feature threshold between healthy and unhealthy state

Dfault Feature value at which the system is expected to fail

Dlimit Safety feature threshold used to compute the remaining useful life

η Safety coefficient used on Dfault

NFM Number of failure modes of the system

FMi i-th failure mode (i = 1, . . . , NFM )

IPMi Imperfect preventive maintenance of type i

ni
Number of observations of failure mode of type i

since last perfect maintenance

MTBMi(ni)
Mean time between maintenance related to failure

mode and imperfect maintenance of type i

m
Number of condition monitoring cycles since last perfect

maintenance

Nfun Number of degradation functions taken into consideration

fj(t) j-th degradation function (j = 1, . . . , Nfun)

Nreg Number of functions taken into consideration for the MTBM regression

gl(n) l-th maintenance interval function (l = 1, . . . , Nreg)

λ Validation accuracy threshold for the failure modes classification model

RUL Remaining useful life

Finally the 9., according to which the lead time is always the same, deserves

a special mention, since it is probably the strongest one. In fact, this can be

true only when the maintenance actions are similar to each other, like in the

case of minor ones, while in general different types of intervention require

different forewarning time, depending on the resources needed. However,

this choice is done since the main purpose of the thesis is to focus more on

the degradation of the asset which brings to a specific maintenance than the

intervention itself. This further generalization about the maintenance lead

time represents a possible future work.

Set the problem with the related assumptions, it is now possible to begin

with the actual presentation of the operative framework developed. As al-

ready stated, this one is presented in a hierarchical model form organised

on more levels; thus, the presentation will start from the general framework

and progressively will enter more and more in detail, expanding the related

blocks.
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Figure 5.1: General framework of the CBM model

5.2 General framework

The general framework (first level of the operative framework) is shown in

Figure 5.1. As it is possible to see, it is constituted by three main parts: the

control data, the condition monitoring of the system and the maintenance.

The control data contain all the required information to set the monitor-

ing system and evaluate correctly the conditions of the asset. They are

explained more in detail in Section 5.2.1. The condition monitoring (ref.

Section 5.2.2), as already seen, aims at supervising the health of the ma-

chine and detect the presence of degradation, which can be caused by the

insurgence of one or more failure modes. The inputs of this part are the al-

ready cited control data and the sensor data. When the deterioration of the

asset is foreseen to reach a critical value, a preventive maintenance is sched-

uled. Therefore, the outputs of the condition monitoring block are both the

time at which the maintenance has to be executed (tmaintenance), according

to the remaining useful life estimation, and the type of intervention needed,

which can be perfect or imperfect. In particular, the capability of evaluat-
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ing the type of maintenance represents one of the main innovation points of

this work, expanding the predictive step of a condition-based maintenance

policy. As it is better described in the dedicated section, this information

derives mainly from a classification of the different failure modes (here called

FMi) based on their degradation behaviour.

Once the scheduled time arrives, the maintenance (ref. Section 5.2.3) is exe-

cuted to restore the degradation caused by the main failure mode developed,

if it is imperfect, or to bring the asset to an as-good-as-new condition, in

case the intervention is perfect. The main outputs of the maintenance block

are the classification model of the failure modes, which is trained at every

intervention basing on the new degradation data acquired, and the mean

time between maintenance (MTBMi(ni)) curves for the main failure mode

just observed. This second outcome is a function which expresses how much

time is predicted to pass before a given failure mode FMi shows up again

from its last related maintenance and requires another intervention. Such

behaviour is obtained from historical recordings, whose data are updated at

every maintenance and associated to the number of times the same failure

mode is observed since last perfect intervention (ni); this is done according

to the assumption that the imperfect maintenance effects depend on the

number of actions executed. As it is possible to see from Figure 5.1, the

classification model and the MTBMi(ni) functions are sent back as inputs

to the condition monitoring block, where they are used to predict the failure

mode and decide the type of intervention to do every time. In this way, it

is implemented a machine learning system which uses both condition moni-

toring and historical event data; these information are then accessed in real

time, with the overall target of improving the present actions.

Finally, the last output of the maintenance block is the restart command to

the machine and the acquisition system, so that the cycle can be repeated.

5.2.1 Control data

As already introduced, the control data represent the information needed

to execute correctly the condition monitoring of the system, schedule main-

tenance interventions and run the minor models part of the overall model

framework.

Degradation control data

To monitor the degradation of the asset it is first of all necessary to set prop-

erly the acquisition system. With the great development of sensor technol-

ogy during last years, in fact, a large variety of signals became available to be
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Figure 5.2: General framework: control data

monitored, the most common ones including vibrations, acoustic emissions,

oil analysis, temperature, pressure, moisture, humidity, environment data,

etc. The correct choice of the signal to monitor is hugely dependent on the

specific application and represents a fundamental step in order to assess cor-

rectly the health condition and, consequently, having a precise prediction of

its future evolution. Decided the data to be acquired, it necessary to select

and extract features from them, i.e. possible indicators of the health state

of the machine. Different descriptive statistics are available for this purpose,

the most common ones being mean, peak-to-peak, standard deviation, crest

factor, root mean square (rms), skewness and kurtosis.

Set properly the acquisition system, the two most important data to control

the health condition of the asset are two feature thresholds, one indicating

the beginning of degradation (Dup) and the other representing the value at

which the system is expected to fail (Dfault).

Regarding the Dup threshold, it derives from the division of the degradation

process in more health stages. According to Lei et al. [27], in fact, numer-

ous systems tend to have a degradation process composed by two health

stages, respectively called healthy and unhealthy (or abnormal) stage. Dur-

ing the first one, the signal maintains an approximately steady behaviour

with some fluctuations and therefore it is unnecessary to predict the re-

maining useful life; in the unhealthy stage, on the contrary, the feature level
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begins to increase, marking the starting of the actual degradation and the

need of computing the RUL to avoid failure. The Dup value can be esti-

mated through tests, monitoring the asset in normal working conditions; a

practical example of such methodology is given in Section 6.3.1.

Regarding then the failure threshold (Dfault), it is a very important value

for the RUL prediction and typically can be retrieved by analysing the his-

torical data and identifying the faults. Even though in this work is assumed

a lack of availability of run-to-failure data, as noticed by Vega Ortega [79]

it is possible to determine approximately this limit by taking as reference

similar assets for which this data are available. The uncertainty on the exact

limit given by this approach can then be managed by introducing a safety

coefficient (η ∈ [0, 1]) on Dfault, thus lowering the reference value for the

remaining useful life estimation.

Figure 5.3: The two degradation thresholds expressed in terms of RMS. RMSup indi-

cates the passage between healthy and unhealthy or abnormal state, while RMSfault

the feature value over which the system is expected to fail. Figure from [79]

Logistic data

The most important logistic data for the condition monitoring is the mainte-

nance lead time (LTmaintenance), which is the lapse of time required between
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the initiation of the maintenance scheduling process and its effective execu-

tion; this value can then be accompanied by a safety coefficient ρ ≥ 1. A

maintenance intervention, in fact, in order to be organized and executed effi-

ciently needs to be scheduled with a sufficient forewarning. This time should

be assessed depending on the company’s organization and maintenance ca-

pability. In particular, according to Crespo Marquez [25], it is influenced

by factors like the identification and assignment of resources (personnel,

external materials and communication), the acquisition of spare parts, the

availability of the equipment required and eventual procedures to be fol-

lowed. As previously stated, for modelling choice the maintenance lead time

in this work is assumed to be the same for all the types of intervention.

Figure 5.4: Summary of the control data

Models inputs

Finally, to operate correctly the models in the framework are needed some

other input data. First of all, it is necessary to give as input which are

the failure modes that it is expected to observe (here called FMi for i =

1, . . . , NFM , where NFM is their number). This information, by assump-

tion, is known in advanced; in addition, it comprehends also the imperfect

preventive maintenance types (IPMi), which are associated to the failure

modes themselves.

Another important model input is constituted by the degradation functions

which, as the name suggests, are all the functions taken into consideration

102



Politecnico di Milano Andrea Puglisi

to fit the degradation data of the asset and then predict the remaining use-

ful life. As already seen in Section 3.3, several degradation models can be

used for this task; the target, as later explained, consists in finding the best

one to describe the degradation behaviour depending on the failure mode

responsible of it. These functions are indicated as fj(t) for j = 1, . . . , Nfun,

where Nfun is their number.

In a similar way, it is possible to define as inputs the maintenance inter-

val functions, i.e. the ones taken into consideration to fit the mean time

between maintenance (MTBM) data regarding the different failure modes,

so that the effects of the maintenance actions, expressed as the time for

each FM to develop, can be adequately captured and represented in order

to improve the decision making. In this case, they are indicated as gl(n)

for l = 1, . . . , Nreg, where Nreg is once again their number. In general, they

should be selected to have an overall decreasing behaviour, since it is ex-

pected from the literature that an imperfect maintenance loses efficacy with

the number of actions, making the failure modes reappear more often.

Finally, it should be defined in advance the validation accuracy threshold

λ ∈ [0, 1] of the failure modes classification model; this is a percentage value

of accuracy over which it is worth to make a prediction. As it is possible to

see in the maintenance prediction framework further on (ref. Section 5.2.2),

where its utility is explained in detail together with the classification model

itself, such value should be set basing on the cost of a wrong failure mode

prediction.

5.2.2 Condition monitoring

The second part of the general framework is the condition monitoring, which

is illustrated in Figure 5.6. As already mentioned, this block receives, among

the other inputs, the so called control data to give as outputs, at the end,

the time at which executing maintenance and the type of intervention.

Starting the explanation of the diagram from top to bottom, at the begin-

ning the system is simply monitored (monitor system block), receiving as

input the sensor data already processed. In particular, every time N data

are acquired, the program compares these ones with the Dup threshold: until

all these N data are not greater than that limit value it means that the asset

is in the healthy stage and the procedure is just repeated for the subsequent

set of data, without any further action. In fact, as already stated, during

this phase it has little sense to compute the remaining useful life, since the

feature level is almost constant. In addition, verifying this condition tak-
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Figure 5.5: General framework: condition monitoring

ing the last N data instead of simply the last one is a necessary measure

to avoid false alarms, which can occur if there is a sudden variation of the

signal without an actual degradation, making only few points to grow up

exceeding the limit.

At a certain point, with the increasing of the working time of the system,

the previous condition becomes satisfied and the asset enters the abnormal

or unhealthy state, showing signs of degradation. When this occurs, it is

necessary to start with the RUL prediction, in order to foresee how much

time the machine can be still operated before maintenance. This is once

again an iterative process, at every iteration of which new sensor data are

given as input; the difference from the previous situation is that now these

data are saved and used to compute the remaining useful life of the system,

being them degradation data. The block about the RUL prediction is ex-

panded and explained in greater detail later on, with a dedicated framework.

The iterative process continues untilRUL ∈ [LTmaintenance, ρ·LTmaintenance]:
it means that the iterations stop when the remaining useful life becomes

lower than the maintenance lead time increased by its safety coefficient; in

addition, it states also that the RUL must be greater than the necessary lead

time itself in order to schedule correctly the intervention. When the condi-

tion is satisfied, first of all is determined, using the remaining useful life, the

time in which to perform maintenance (tmaintenance), which constitutes one

of the two outputs of the condition monitoring block. Secondly, it is saved

104



Politecnico di Milano Andrea Puglisi

Figure 5.6: Condition monitoring framework
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the degradation function, with its parameters, which best fit the deteriora-

tion pattern seen until that moment. Such degradation model constitutes an

output of the RUL prediction block: for this reason, how a precise function

is chosen among the others is explained in the dedicated section.

Saved the degradation function with its parameters, they are sent as input

to the maintenance prediction block, whose scope consists in deciding the

type of intervention to be performed at the given time tmaintenance. The

other inputs of this step, which is expanded later as well, are: the classi-

fication model able to distinguish among the different failure modes; the

number of condition monitoring cycles executed since last perfect mainte-

nance (m); the mean time between maintenance functions (MTBMi(ni))

for each failure mode.

RUL prediction

Figure 5.7: Detail of the condition monitoring framework: the RUL prediction

As seen in the previous section, the remaining useful life estimation starts

when the asset enters the unhealthy stage. In Figure 5.8 is represented the

RUL prediction framework.

The main input of the process are the sensor data, which, differently from
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Figure 5.8: RUL prediction framework
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the monitoring during the healthy stage, are this time saved being them

degradation data. At this point, they are divided into two subsets: train-

ing data which, as the name suggests, are used to train and compute the

parameters of the different degradation functions fj(t) for j = 1, ..., Nfun

taken into consideration; test data, which serve to perform an assessment

and choose among the trained models.

This is a practice used in machine learning in order to avoid the over-fitting

phenomenon, i.e. the building of a model too much based on training data

and with scarce predictive capabilities. In addition, such division can be

performed in more ways: if the target consists in assessing the predicting

capabilities, like in this case, a good method could be labelling the first 70-

80% of collected data as training, and the remaining 20-30% as test data.

Thus it is possible to simulate how a degradation function is able to predict

future data out of its training interval.

Therefore, once all the degradation functions are trained, the error is com-

puted basing on the test data. Different statistics can be used for the error

evaluation: residual sum of squares (RSS), mean squared error (MSE) and

root mean squared error (RMSE) are all examples of error indicators based

on the residuals.

Figure 5.9: Example of RUL prediction. The estimation, referred to Dlimit, is accom-

panied by confidence intervals based on the degradation function parameters.

Chosen the specific model fj(t) having the smallest error, this one can be
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retrained, using this time all the data available, in order to refine the pa-

rameters estimation. Finally, the model computed is used to predict the

remaining useful life, which is the interval between the current time and the

instant at which the degradation should reach the limit for maintenance.

Instead of selecting this limit as the value at which the asset should fail

(Dfault), it is safer to set it to a lower one, Dlimit = ηDfault, where η is

a safety coefficient. This is done in order to both mitigate the uncertainty

regarding the real value of the failure threshold and deal with unexpected

future degradation behaviours. In formula:

RUL = tmaintenance − tc (5.1)

Where tmaintenance is the time in which the fitted degradation model fj(t)

is expected to reach the threshold value Dlimit and tc is the current time at

the moment of the prediction.

The RUL is usually reported accompanied with a probability density func-

tion and confidence bounds, which derive from the variation that the esti-

mated parameters could have basing on the degradation history and can be

used as a further safety measure.

The remaining useful life prediction procedure is repeated every time new

data from sensors arrive. Thus, it is implemented a system which, instead

of selecting the degradation model at priori, makes this choice on the basis

of the data available, modifying it if the degradation behaviour changes

(for example if another failure mode becomes relevant) and providing a

continuous update of the related parameters.

Maintenance prediction

The last block to be detailed in the condition monitoring framework is the

one related to the maintenance prediction. The main target of this step

consists in defining the type of intervention to perform at next maintenance,

enabling a strengthen of the prognostic action. The development of this

process is represented in Figure 5.11.

The related framework is divided into two main parts: the classification and

the decision-making. Starting with the first, its main input consists in the

classification model trained at the time of maintenance using the degradation

patterns observed until that moment, with the overall aim of predicting the

main failure mode that is happening. In general, the classification is a

machine learning technique whose goal is to learn a mapping from inputs,

called predictors, to outputs, called responses or classes. Several methods
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Figure 5.10: Detail of the condition monitoring framework: the maintenance prediction

can be used for this purpose: k-nearest neighbour (KNN), decision trees,

support vector machines (SVM), etc. Regardless of the algorithm used, the

main target is to utilize the trained model to make predictions on new input

data. In this case, the response to be obtained is constituted by the main

failure mode which is causing the degradation. To make such prediction the

following types of data are used:

• Shape of degradation function: the first predictor is the specific

degradation model fj(t) which is able to best represent the feature pat-

tern seen. The function is selected during the RUL prediction frame-

work, according to the procedure already illustrated. The form of

the degradation model gives itself an important clue about the failure

modes, due to the assumption that each of them evolves always in a

similar way. Such hypothesis derives from the literature analysis (ref.

Section 3.3), where it is possible to notice that all the articles found

about imperfect maintenance use the same function to represent the

degradation for all the maintenance cycles, from the first to the last; in

some cases the function parameters are updated, but not its base form.

This holds also for those papers ([47], [61], [65] and [78]) in which the

degradation is determined by more causes: each source contributes

to the growth of the deterioration level independently from the oth-

ers and according to its own law, which remains unvaried with time.

However, this input alone is not enough for two reasons: on one hand,

there could be more failure modes with the same type of degradation

pattern, making the association not biunivocal; on the other, while a

failure mode is evolving there could be the insurgence of another one:
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Figure 5.11: Maintenance prediction framework

the overlapping of the two effects on the degradation could therefore

change the deterioration pattern that the main failure mode normally

would have and so the related degradation function fitted.

• Set of degradation function parameters: the second predictor

is constituted by the degradation model parameters, which are com-

puted as well during the RUL prediction. These coefficients provide

in fact a complete description of the deterioration pattern, including

information like its rate and thus allowing to distinguish between fail-

ure modes characterised by the same baseline degradation function.

In addition, such set of parameters allow to record the evolution of

the failure modes intervention after intervention: this is equivalent to

record the effects of the various types of imperfect maintenance, which

thus are updated continuously together with the classification model.

• Number of condition monitoring cycle: the last predictor used
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is the number of condition monitoring cycles, i.e. the number of times

the system has been run between two repairs since last perfect main-

tenance. This input allows to introduce a temporal dimension to char-

acterize the degradation pattern. In fact, the degradation parameters

during the first cycles after the perfect maintenance could be different

from the ones after several interventions, given the influence of main-

tenance on the deterioration behaviour. This is particularly useful in

those cases where failure modes with the same degradation function

have similar parameters in different phases of the asset life-cycle.

Figure 5.12: Inputs and outputs of the failure modes classification model

Every time the RUL approaches the maintenance lead time, these predictors

are used to estimate the main failure mode which is provoking the degra-

dation. However, such process is executed only if the classification model

accuracy is greater than a given threshold λ, being this last one a percentage

number which should be optimised basing on the error cost due to a wrong

prediction. The validation accuracy of the classification model represents
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an estimation of its performance on new data compared to the training data

and it is a statistic given as output at the moment of training. The point

behind this approach is that it has sense to make a prediction about the

type of intervention only if there is a high enough probability to make it

right; otherwise it is better to discover the causes of degradation only at the

moment of maintenance through inspection, reason why the type of inter-

vention is set to unknown in case the condition is not satisfied.

Assuming now that the validation accuracy is greater than the set threshold

and the classification model is used to predict the main failure mode FMi

which is evolving, the second part of the maintenance prediction framework

is the so called decision-making. In this phase it is decided, given the failure

mode estimation, the kind of maintenance to be performed next, if it should

be imperfect of a specific type or perfect. For this purpose, in addition to the

previous prediction, another type of input is used: the mean time between

maintenance MTBMi(ni) curves for all failure modes which have these data

already available.

These curves, as already introduced, express the elapse of time which is ex-

pected to pass before a specific type of imperfect maintenance is required

again. In other terms, they represent a kind of periodicity for the different

failure modes, which however depends on the number of times the same fail-

ure mode was observed since last perfect maintenance (ni). Therefore, the

MTBMi(ni) functions provide a high level information about the imperfect

maintenance effects, expressing it in a time dimension: after many inter-

ventions, in fact, it could be realistically expected from the literature that

a failure mode occurs more often and quickly due to the reduced efficacy

of the imperfect repairs. Consequently, the utility of this type of input is

twofold: on one hand it could help to decide after how many interventions

it has no more sense to execute an imperfect maintenance; on the other,

it provides an indication of when the different failure modes are going to

occur, allowing once again to decide which type of maintenance is better to

choose.

Completed the choice about the type of intervention, whether it is possible,

the system is run until the scheduled time tmaintenance arrives, when the

maintenance is effectively executed, concluding the condition monitoring

phase.
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Figure 5.13: The MTBM functions allow to have a first estimation of the time at which

another failure mode, in addition to the one currently monitored, is likely to emerge

5.2.3 Maintenance

The maintenance framework is represented in Figure 5.15.

When the scheduled time arrives, the first operation to be performed is the

inspection of the asset. According to the model assumptions, the inspections

are perfect, i.e. they are always able to individuate the main failure mode

responsible of the degradation. Therefore the target of this procedure con-

sists in fully investigating the asset in case the type of intervention is set to

unknown or verifying that the failure mode prediction done in the previous

part is correct. Obtained such information, the maintenance is effectively

executed, refining the decision about the type of intervention in case it is

necessary.

The output of the inspection block is the specific actual main failure mode

FMi in evolution and responsible of the degradation, being it already pre-

dicted or not. This information is used for two different processes, in ad-

dition to the actual repair: the training of the classification model and the

mean time between maintenance data regression.

Beginning with the first, the predictors previously used (the specific fj(t)

with its parameters and m) can be now labelled with certainty under a pre-

cise failure mode FMi. Therefore, these data are added to the ones of the

same type already recorded during the past repairs and used to train once

again the classification model; this last one can then be sent as output to-

gether with its validation accuracy. Thus a continuous training of the model

is performed, making possible to increase, maintenance after maintenance,

the knowledge of the asset and improve the prediction capability.
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Figure 5.14: General framework: maintenance

Regarding the second process, at the moment of maintenance is recorded

the operating time since the main failure mode individuated FMi was last

time repaired and this information is associated to the number of times the

same one was observed (i.e. ni). Such data are then added to a database

containing similar recorded information (called MTBMi data) related to

that failure mode, so that they can be fitted. The regression is done ac-

cording to a procedure similar to the one used for the degradation function

fitting (ref. Section 5.2.2), reason why the block is not further expanded. In

particular, a number Nreg of maintenance interval functions gl(n) is taken

into consideration and trained on the data available; then the one with

the smallest error is selected to represent the mean time between mainte-

nance behaviour MTBMi(ni) for the specific failure mode FMi and sent

back to the condition monitoring framework, together with the other simi-

lar functions available. Being the procedure repeated at every maintenance,

observation after observation it is possible to refine the knowledge about

the time taken by each failure mode to cause the degradation of the asset,

which is once again an expression of the imperfect maintenance effects. An

example of such curves is given in Section 6.3.3, during the assessment of

the model. The benefits of this process then consist in an improvement of

the decision-making phase, using historical event data to perform better in

the present.

Finally, when the maintenance operations are finished and the two processes
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Figure 5.15: Maintenance framework

described above are terminated it is possible to give the restart command

to the machine. In this way, the last block of the framework ends and the

cycle can begin once again.

5.3 Conclusions

The chapter illustrated the framework for the CBM model elaborated in this

work. After the setting of the problem, which presented the main assump-

tions done and other general comments, the actual framework was detailed.

In particular, the explanation was conducted by dividing the general scheme

into three main parts: the control data, the condition monitoring and the

maintenance.

The control data are the information needed for the CBM model implemen-

tation and execution. They were further categorized in degradation control

data, which are the information needed to monitor correctly the asset; lo-

gistic data, comprehending for example the lead time for maintenance, es-

sential information to schedule the repairs; models inputs, which constitute
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the other data needed to run properly the parts and models constituting the

framework.

The condition monitoring has the main target to control the degradation of

the machinery and schedule the maintenance when necessary. The first in-

novation point here lies in the remaining useful life prediction: it was in fact

added a feature which allows to choose every time new data are acquired the

degradation function most adapted to represent the deterioration pattern,

continuously updating at the same time the curve coefficients and the RUL

estimation; this provides an answer to GAP 3.

The second innovation point of this part is then the maintenance prediction,

which has the target to determine the type of intervention to be performed.

This is achieved mainly using two machine learning approaches: a classifica-

tion model of the failure modes, which records how they evolve maintenance

after maintenance, allowing to make predictions about them; the regression

of the repair intervals, creating the mean time between maintenance func-

tions MTBMi(ni) for i = 1, ..., NFM which indicate when each failure mode

is going to reappear after being maintained. They both represent, in differ-

ent ways, an expression of the effects of the types of imperfect maintenance,

whose behaviour is thus captured, answering thence GAP 4, and used to

improve the prognostic step.

Finally, the maintenance is the part in which the repair is performed and

the data acquired during the last condition monitoring cycle are processed.

In particular, the main innovation here is the updating of both the classifi-

cation model and the mean time between maintenance (MTBM) functions:

thus it is obtained a continuous update of the effects of the imperfect main-

tenance types, whose aim is to increase the knowledge of the phenomena

occurring in order to do better in the future. Such update, together with

the one of the degradation parameters in the RUL prediction, represents an

answer to GAP 2.

Ended the presentation of the framework, Chapter 6 deals with the assess-

ment of the overall CBM model illustrated. This is done by starting from a

real asset and, using a reference dataset, designing a simulated experimental

campaign in order to test the main innovative parts and models composing

the framework. In addition, such part gives also a practical example of the

different aspects presented, allowing a further clarification of their function-

ing and of their targets.
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Chapter 6

Framework assessment

Concluded the presentation of the framework for the CBM model in Chapter

5, the current chapter aims to illustrate how the assessment of the same is

performed. After a brief explanation of the methodology followed in Section

6.1, in Section 6.2 the context of the Industry 4.0 Lab at Politecnico di

Milano is described together with the specific application used as real case

of study. Then, Section 6.3 illustrates the actual assessment. In particular,

this one is articulated in Section 6.3.1, which provides a description of the

experimental dataset made available by the laboratory; in Section 6.3.2,

with the explanation about how the same is used to model the degradation

histories for the simulated experimental campaign; in Section 6.3.3, which

reports the actual simulations together with the description of their settings,

the analysis of the results and the related conclusions.

Figure 6.1: The three assessment steps executed

6.1 Assessment methodology

In this section is illustrated the methodology followed to perform the assess-

ment of the framework for the CBM model. It consists in three main steps
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(ref. Figure 6.1): the analysis and description of the original dataset, the

manipulation of such dataset to achieve the testing purposes and, finally,

the execution of the actual experiments.

As already noticed, the starting point for the framework assessment con-

sists in an experimental dataset made available by the Industry 4.0 Lab at

Politecnico di Milano. Such dataset describes the vibration signal, acquired

through accelerometers, along the three working axes of a drilling machine.

Therefore, first of all are reported the settings used to acquire the data to-

gether with the processing of these last ones, which is done utilizing the

root mean square (RMS) as health indicator. After that, since the dataset

is representative of the vibrations recorded in standard working condition

without sign of degradation, i.e. during the healthy state, it is shown the

procedure which, starting from such data, allows to compute the threshold

value Dup. Similarly, it is reported how the related indicator Dfault can be

estimated in absence of run-to-failure data. As already noticed in Section

5.2.1, these values represent, respectively, the threshold which separates the

healthy from the abnormal state and the feature level at which failure is

expected, and are control data of the model developed.

The second step is the manipulation of the dataset, i.e. the generation of a

similar one for testing purposes. In order to be coherent with the original

ones, the generated data are created respecting its characteristics in terms

of mean and variance. Moreover, to allow the execution of the simulated

experimental campaigns, they are modelled so that the degradation history

shows the presence of more failure modes. In particular, the deterioration

pattern seen has different characteristics basing on its cause and it is created

in order to be influenced by the imperfect maintenance performed, according

to the assumptions presented in Section 5.1. These choices allow in fact to

test the main features of the model, i.e. the improvements done to the RUL

prediction and the machine learning techniques applied to characterize the

imperfect maintenance effects.

Finally, the third step consists in the actual simulations and the analysis of

the related results. Here are reported first of all the various settings and

the specific modelling choices adopted; an example is constituted by the

selection of the degradation and regression functions. After that, the actual

simulated experimental campaign is run, with the scope of testing primarily

the following features: the degradation function choice in the RUL predic-

tion, the classification of the failure modes and the regression of the mean
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time between maintenance (MTBM) data. The results are then reported

with the aid of graphics and pictures. These ones are analysed both from

the technical point of view, verifying the right functioning of the above cited

innovative features, and from a managerial one, making considerations about

how the model itself can improve the maintenance management processes.

6.2 Experimental context

Before entering in detail with the previously cited assessment steps, the cur-

rent section aims to describe the experimental context in which the original

dataset of reference is generated, motivating also the reasons of its choice

for the model developed.

6.2.1 I.4.0 at Politecnico di Milano

The Industry 4.0 Laboratory of the School of Management of Politecnico di

Milano, located in the Department of Management, Economics and Indus-

trial Engineering, is an entity designed to carry out research and teaching

activities in a real-like Industry 4.0 environment. The laboratory is equipped

with industrial assets in order to represent the state of the art of the current

equipment and technology, allowing to test research’s results and develop

customised solutions. In addition, such researches are conducted in collab-

oration with various industrial partners and centres, making the lab a pole

of excellence and education for universities and companies [80].

There are three main assets which compose the Industry 4.0 Lab:

• Production line: it is a physical production line installed in the lab-

oratory. It is equipped with industrial PLC, sensors, actuators and

interfaces to assembly products in a real environment.

• Collaborative robots: such asset allows to perform assembly and disas-

sembly operations in environment characterized by side by side work-

ing conditions between operators and industrial equipment.

• Automated Guided Vehicle (AGV): it is an autonomous vehicle used

to transport materials between different workstations of a shop floor,

without the need of an operator.

Regarding in particular the production line of the laboratory, it consists

in an automated assembly line to simulate the manufacturing process of a
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Figure 6.2: The Industry 4.0 Lab at Politecnico di Milano. Picture from [79]

fuzzy classic cell phone. The line is composed by various production modules

connected through a transfer line and capable of executing each a different

operation, which can be defined at the moment of the production order. In

particular, such workstations are three assembly modules, a manufacturing

module (the drilling station), a quality control module and a manual station

in order to retrieve the workpiece [79].

As already introduced, the dataset taken as reference to model the degra-

dation histories comes from the drilling module. Therefore, in the next

paragraphs it is explained how such machine tool works and the reasons of

choice of that specific dataset.

6.2.2 Drilling machine

The drilling is a manufacturing process which consists in creating a circu-

lar hole in a workpiece. This operation is executed by mean of a rotating

cylindrical tool with two cutting edges on the frontal face, usually having a

helicoidal form, called drill bit. This one penetrates the workpiece held still

on the workbench, creating a hole of the same diameter. The machine tool

used to perform such process is called drilling machine or drill.

122



Politecnico di Milano Andrea Puglisi

Figure 6.3: The production line of the Industry 4.0 Lab at Politecnico di Milano. Picture

from [80]

Regarding in particular the drilling unit in the drilling station of the labo-

ratory, it has the main task of simulating the drilling of holes on the front

cover of the cell phone produced in the assembly line. The manufacturing

module is equipped with different movement sensors which allow to track the

workpiece through the station, detecting when the carrier reaches the right

position so that the drilling operation can correctly and automatically take

place according to the instructions communicated. When this one ends, it is

given signal to the carrier to bring the workpiece to the next module, while

the drilling machine remains idle waiting for the successive part. Therefore,

the normal operating conditions of such machinery are constituted by a suc-

cession of working cycles interposed by intervals in which the unit is in an

idle state.

In order to monitor the conditions of the drilling machine, an accelerometer

is attached to the drill spindle axis, allowing thus to record the vibration

signals along the three working axes (X, Y and Z) of the machine tool. The

acceleration provides in fact a good description of the state of the machinery

in case of rotatory elements, like in the current case, since the vibrations

can be easily monitored while the system is running and give evidence of

anomalies with sufficient advance [27][79].

It is now possible to make some considerations about the choice of this spe-

cific application as case of study, from which the dataset taken as reference

for the simulations is generated.
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First of all, according to Perez [81] the level of vibrations on the spindle of

a machine tool is a fundamental parameter in order to monitor the health

conditions of the asset. In fact, the main function of the spindle is providing

the rotating motion, and so the cutting speed, to the tool, allowing the ma-

terial removal. Problems to this unit usually cause a lack of precision and

accuracy during the operations, making the machinery unable to perform

adequately its function [82]. In turn, one of the most common causes for

the increase of the level of vibrations in the spindle unit is given by issues

with its bearings [81]. These elements, in fact, have the fundamental role

of reducing friction and transmitting loads, ensuring at the same time that

the shaft maintains its correct position.

For this reason, the original laboratory dataset results to be particularly

interesting for the assessment of a CBM model which aims to improve the

maintenance of the asset, being it representative of the healthy conditions

of critical components (the bearings) in a critical part of the machine (the

spindle).

Figure 6.4: Scheme of a ball bearing. Figure from [81]

The second reason of choice regards the specific problems related to bearings.

In fact, according to Urb Group [83] the malfunctioning of these elements can

be caused, for example, by four common failure modes, to which correspond

four preventive maintenance actions:

• Lack of lubrication: it could happen that the sliding surfaces of the

bearing lack of lubricating fluid; in this case it is necessary to insert

the right substance or repair the lubricating system itself.

• Contamination: it is caused by the presence of material particles from
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other components or brought by the lubricating fluid; it makes neces-

sary to perform a cleaning, maybe with anti-corrosion additives.

• Misalignment of bearing components: it can be caused, for example,

by an axial overload or by a temporary shaft deflection; this issue is

corrected by a remounting and realignment operation.

• Fatigue: it is caused by the repeated cyclic stresses the component is

subjected to; usually in this case the only solution is the substitution

of the bearing itself.

Figure 6.5: Fault bearings due to lack of lubrication (top-left), contamination (top-

right), misalignment (bottom-left) and fatigue related wear (bottom-right). Pictures

from [83]

As noticed by Yang et al. [84], operations like the lubrication and the clean-

ing of the bearing can be considered as imperfect maintenance actions, since

targeted minor repairs which does not restore completely its conditions. For

analogy and for identical reasons, it is therefore possible to consider the re-

mounting and realignment of the bearing elements in the same way. On the
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other hand, the fatigue related wear of the component require its replace-

ment, which is a classical example of perfect maintenance.

The application chosen presents thence a degradation which can be associ-

ated to more failure modes in turn preventively repaired by some imperfect

maintenance actions. For this reason it results, together with the related

dataset, suitable as reference for the assessment of the framework for the

CBM model developed, which is based on these concepts.

6.3 Framework application

Described the experimental context from which the reference dataset takes

origin and justified its choice, it is now possible to proceed with the actual

steps of the assessment of the proposed framework: the original dataset

description, its manipulation and the effective simulations.

6.3.1 Dataset description

As previously introduced, the dataset taken as reference to model the sim-

ulated experimental campaign and made available by the Industry 4.0 Lab

contains the vibration data along the three working axes (X, Y and Z)

of a drilling machine, acquired through an accelerometer mounted on the

drill spindle axis. The data were sampled with an acquisition frequency of

200 Hz. Since, as already said in Section 6.2.2, the machine tool operates

with a succession of working cycles each one with an average duration of

11 seconds, it means that for every workpiece are collected 2200 values of

acceleration for each axis; in particular, the dataset is acquired through a

production order of 100 units. In addition, these data refer to the healthy

state of the drill, i.e. standard working conditions in absence of degradation.

In the next paragraphs is shown the method in order to extrapolate useful

information from the dataset in absence of run-to-failure data, according to

what done by Vega Ortega [79]. The numerical results reported are then

used in Section 6.3.2 to generate new data for the simulations.

Extrapolation of information from the dataset

First of all it is necessary to process the acceleration data in order obtain an

indicator about the conditions of the machine. One possible way of doing

it is the root mean square (RMS), which is a statistic linked to the amount

of energy dissipated through vibrations and used for rotatory components

[27]. Its formula reads:

126



Politecnico di Milano Andrea Puglisi

RMS =

√√√√ 1

N

N∑
i=1

x2i (6.1)

Where xi are the single acceleration points and N is the number of values

considered for the computation. This can be done so that a single RMS

value is calculated after a working cycle of the machine (N = 2200), thus

summarizing the data acquired between two idle times. The operation is

performed for both X, Y and Z axes.

Figure 6.6: The vibration data acquired during a cycle can be summarized in one RMS

point

After having computed the RMS values, the successive step is to link them

to the actual conditions of the asset, in order to execute correctly the condi-

tion monitoring. In other words, it means determining the threshold limits

Dup and Dfault which indicate, respectively, the passage from healthy to

abnormal state and the expected failure of the system. Normally, this task

could be executed by mean of a classification taking into consideration the

”normal”, the ”abnormal” and the failure data. However, since according

to the assumptions no run-to-failure data are available and the dataset rep-

resents only the healthy state, such method cannot be applied. Therefore,

different procedures should be done.

127



Andrea Puglisi Politecnico di Milano

For the estimation of the Dup threshold is necessary to perform a one-class

classification method, which aims to differentiate the initial group of data

(i.e. the healthy ones) from the others. It requires that the starting class fol-

lows a well-defined statistical distribution. For the dataset from the labora-

tory this assumption was already verified in [79], who demonstrated through

a normality test that the RMS values along the three axes can be modelled

according a normal distribution with the following characteristics:

RMSx ∼ N(µ = 1.134, σ = 0.1004) m/s2

RMSy ∼ N(µ = 1.090, σ = 0.06446) m/s2

RMSz ∼ N(µ = 1.101, σ = 0.08749) m/s2

At this point, the statistic theory states that a point can be considered

outlier of a given normal distribution if this one has a value more distant

than three standard deviations (σ) from the mean (µ). In fact, this crite-

rion ensures that the healthy state data falls in this interval with a 99.87%

of probability [85]. Applying the procedure to the previous results, it is

obtained:

RMSup,x = µx + 3σx = 1.4352 m/s2

RMSup,y = µy + 3σy = 1.2834 m/s2

RMSup,z = µz + 3σz = 1.3635 m/s2

Those upper bounds thence indicate the maximum limit in which is possible

to find healthy data.

For the estimation of the Dfault threshold, as previously noticed in Section

5.2.1, it is possible to use the data available from similar applications [85].

Such method was applied in [79], finding that for bearings the fault state

can be considered as four times greater than the threshold between healthy

and unhealthy stage. Therefore:

RMSfault,x = 4RMSx = 5.7408 m/s2

RMSfault,y = 4RMSup,y = 5.1336 m/s2

RMSfault,z = 4RMSup,z = 5.454 m/s2

This concludes the description of the laboratory dataset. In the next section

is explained how, starting from these reference results, the simulation dataset

is generated.

128



Politecnico di Milano Andrea Puglisi

6.3.2 Dataset manipulation

The actual dataset used to perform the assessment of the CBM model should

have two base characteristics: on one hand to be coherent with the original

one from the laboratory, on the other to be suitable for testing the frame-

work and its features.

To achieve the first target, the healthy state of the dataset is generated so

that it has the same characteristics of the original one, i.e. a RMS value

following a normal distribution with mean and variance according to the

previous results. In addition, instead of creating the raw acceleration signal

to be processed, the choice is to generate directly the RMS data: this allows

to speed up the simulations saving computational power. Moreover, only

one machine axis is taken into consideration for the sake of simplicity: the

procedure can in fact be applied in a similar way to the other axes too.

Thence, considering hereinafter only the X axis, in the healthy state for

every time unit (i.e. working cycle) a point of the feature to be monitored

D is generated according to the following distribution:

Dhealthy(t) ∼ N(µx, σx) = N(1.134, 0.1004) (6.2)

This represents the baseline signal, in absence of degradation, of the ma-

chine.

Characterized the healthy state, it is necessary to represent the deteriora-

tion of the system. In fact, in order to be able to perform the assessment of

the CBM model, the degradation history should present more failure modes

which make at a certain point the feature level (e.g. the vibrations) of the

machinery rise. In particular, depending on the failure mode involved, the

degradation pattern is expected to have different characteristics. Moreover,

when the deterioration approaches a critical level (i.e. Dfault), an imperfect

maintenance can be executed on the system: according to the assumptions

in Section 5.1, it restores the degradation caused by only one failure mode,

leaving untouched the others; on the other hand the same failure mode

healed repair after repair is expected to come back again more and more

rapidly, given the imperfection of the action. Finally, if a perfect mainte-

nance is done all the failure modes are restored completely and the asset

becomes as-good-as-new.

Made the previous considerations, each of the failure modes considered

should be modelled in order to have a history characterized by the following
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steps:

1. After a time TFM,i from the last perfect repair, where i is the index

indicating the specific failure mode, this one begins to make the degra-

dation increase according to a pattern which depends on the specific

failure mode itself.

2. When the degradation approaches critical levels, an imperfect main-

tenance is performed on that failure mode, restoring completely the

deterioration caused by it.

3. After a time T
′
FM,i < TFM,i, i.e. after a smaller interval than before,

the failure mode makes once again the degradation increase with a

higher rate, until another imperfect maintenance is executed.

The steps are repeated in a similar way until the choice of a perfect mainte-

nance action, which erases the memory of the system and makes the process

to restart from the beginning, being the asset returned to an as-good-as-new

condition.

For the current assessment, two failure modes are considered, with different

patterns. The first one is modelled to have a linear pattern (ref. Equation

6.3), while the second an exponential one (ref. Equation 6.4):

DFM,1(t) = (t− trepair,1 − TFM,1) · kFM,1 (6.3)

DFM,2(t) = ekFM,2(t−trepair,2−TFM,2) − 1 (6.4)

Where DFM,i(t) is the contribution to the degradation, set to be monotoni-

cally increasing and starting from zero, of failure mode i at the current time

t, which is expressed in time units (i.e. cycles); trepair,i is the time at which

the failure mode i was last time repaired through a perfect or imperfect

action; TFM,i, as already introduced, is the lapse of time before the failure

mode i causes degradation; kFM,i represents the degradation rate of failure

mode i, i.e. how quickly it makes the feature level increase.

In order to simulate the variability which can characterize the real-life de-

terioration histories and test better the machine learning techniques used,

the values TFM,i and kFM,i for every failure mode are sorted from a random

distribution, selected to be normal:

TFM,i ∼ N(µT,i, σT,i) (6.5)

130



Politecnico di Milano Andrea Puglisi

kFM,i ∼ N(µk,i, σk,i) (6.6)

Therefore, a new value for both coefficients is determined after every repair;

the values of mean and variance are then different between the two failure

modes. Moreover, the mean of TFM,i is modelled to be linearly decreasing

with ni, i.e. with the number of observations of the same failure mode (ref.

Section 5.1); on the contrary, the mean of kFM,i is programmed to be linearly

increasing with ni. This choice is done in order to simulate the influence of

the imperfect maintenance actions, which make the failure mode reappear

earlier and with a higher degradation rate. The numerical details about the

coefficients are given in Section 6.3.3 with the other specific settings.

Figure 6.7: Example of degradation history involving two failure modes, FM1 and FM2.

After a certain time, FM1 appears (first red dot) causing degradation; after another

lapse of time (second red dot) FM2 appears too, and the resulting degradation is the

sum of the two contributions; when the feature level becomes critical, an imperfect

maintenance is executed (third and fourth red dots), removing the degradation caused

by FM1 but leaving unvaried the pattern of FM2.

To conclude, the total feature level D(t) results to be the sum of three
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contributions: the healthy state level Dhealthy(t) and the degradation caused

by the two failure modes, DFM,1(t) and DFM,2(t). Therefore, the general

law modelled, with respect of time t (which is counted from last perfect

maintenance) and according to the effects superposition principle, is:

• If t− trepair,1 < TFM,1 AND t− trepair,2 < TFM,2:

D(t) = Dhealthy(t) (6.7)

• If t− trepair,1 ≥ TFM,1 AND t− trepair,2 < TFM,2:

D(t) = Dhealthy(t) +DFM,1(t) (6.8)

• If t− trepair,1 < TFM,1 AND t− trepair,2 ≥ TFM,2:

D(t) = Dhealthy(t) +DFM,2(t) (6.9)

• If t− trepair,1 ≥ TFM,1 AND t− trepair,2 ≥ TFM,2:

D(t) = Dhealthy(t) +DFM,1(t) +DFM,2(t) (6.10)

Briefly, what summarized in the previous equations and exemplified in Fig-

ure 6.7 is that the contribution of the failure modes starts only after TFM,i

time units from the last repair. If this condition is not verified for any of the

failure modes, the overall feature level remains the one of the healthy state;

if it is verified for one of them, only its contribution is present, making the

degradation pattern assume a certain shape; finally, if it is verified for both

of them all the different contributions are summed up, implying that the

pattern characteristics change basing on which failure mode is dominant.

Such modelling choices, as already introduced, are done in order to test ef-

fectively the innovative features of the model, with particular attention to

the degradation function decision in the RUL estimation and the machine

learning techniques for the characterization of the imperfect maintenance

effects.

6.3.3 Simulations and results

Detailed how the degradation histories are modelled for the testing pur-

poses, the current section aims to show the results of the actual simulated

experimental campaign. First of all are reported the specific settings used,

132



Politecnico di Milano Andrea Puglisi

in terms of parameters values and modelling choices. They are then followed

by the presentation and the analysis of the actual results obtained. As al-

ready stated, the focus of this assessment is primarily to test the innovative

features of the overall CBM model: the correct choice of the degradation

function for the RUL estimation; the classification of the failure modes to

be used for their prediction; the regression of the maintenance intervals data

to obtain the mean time between maintenance (MTBM) curves.

Simulation settings

Table 6.1 summarizes the values of all the parameters set in order to perform

the simulations, according to the descriptions done in Chapter 5 and 6 and

divided per type, i.e. the modelling aspect they are related to.

Regarding first of all the degradation pattern, as already said the healthy

state is modelled according to the mean and the variance (µx and σx) ob-

served for the RMS along the X axis of the drilling machine of the laboratory,

as illustrated in Section 6.3.1. The same can be said for the two thresholds

Dup and Dfault, which were computed starting from that data. In particu-

lar, to this last one is applied a safety coefficient η = 0.8 in order to better

avoid failures.

Then are reported the means and the variances of the parameters TFM,i and

kFM,i for the two different failure modes. In general, these parameters are

selected to make the resulting graphics readable and ensure a reasonable

simulation time. It is possible to see that the means, as previously intro-

duced, depend linearly on the number of times ni the same failure mode is

observed from last perfect maintenance.

The parameters related to the maintenance scheduling are the maintenance

lead time LTmaintenance and its safety coefficient ρ. In this case too they are

set to be reasonably scaled with the degradation pattern modelled.

Finally, it is reported the validation accuracy threshold for the failure modes

classification model, selected to be a value reasonable for the related testing

purposes and set equal to 0.75 (75%).

Reported the parameters values, it is necessary to describe the specific mod-

elling decisions. A first one regards the choice of the degradation functions

used to predict the remaining useful life. Two candidates are here selected

for this scope:

• Exponential: f1(t) = aebt
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Type Parameter Value / Formula Unit of measure

Degradation

pattern

µx 1.134 m/s2

σx 0.1004 m/s2

µT,1 2000− 100n1 cycles

σT,1 300 cycles

µT,2 4200− 150n2 cycles

σT,2 300 cycles

µk,1 (n1 + 4)/4800 /

σk,1 1/12000 /

µk,2 (n2 + 3)/6000 /

σk,2 1/12000 /

RMSup 1.4352 m/s2

RMSfault 5.7408 m/s2

η 0.8 /

N 10 /

Maintenance

scheduling

LTmaintenance 300 cycles

ρ 1.05 /

Classification

model
λ 0.75 /

Table 6.1: Parameters used during the simulations

• Power: f2(t) = atb + c

Where fj(t) represents the degradation level at time t modelled with the

degradation function j and a, b and c are coefficients to be determined fit-

ting the data.

The reason behind the choice of these functions derives from multiple fac-

tors: firstly, they are simple functions already present and optimized in

the Matlab Curve Fitting Toolbox library, thus allowing fast computational

times for the degradation model selection with its coefficients, which is per-

formed continuously as new data arrive. Then, regarding in particular the

exponential function, which is a candidate together with the linear one, it is

chosen since it describes well the degradation for rotating elements. A third
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reason is that they can be derived from functions already used in literature:

in fact, as it is possible to notice from Section 3.3, the exponential function

derived directly from the exponential process (ref. Equation 3.5), while the

power one can be seen as a simplified form, without the diffusion coefficient,

of the Wiener process (ref. Equation 3.3). Finally, their form is coherent

with the one of the degradation pattern modelled, allowing to verify their

correct association to this one.

Secondly, another specific choice regards the maintenance interval functions,

i.e. the ones used to fit the mean time between maintenance data for each

failure mode. In this case, the candidate models are:

• Exponential: g1(n) = deht

• Linear: g2(n) = dt+ h

• Quadratic: g3(n) = dt2 + ht+ p

Where gl(n) is the expected lapse of time between two imperfect mainte-

nance of the same type at the n degradation cycle for the failure mode

monitored and d, h and p are coefficients to be determined performing the

fitting of the maintenance times data. In this case, such functions are se-

lected since they can have an overall decreasing behaviour, which is the one

expected, and once again are already present in the Matlab.

Finally, another specific choice for the model is about the classification al-

gorithm to be used for the failure modes prediction. As already stated in

Section 5.1, different classification models exist to fulfill this task, like k-

nearest neighbour (KNN), decision trees, support vector machines (SVM),

etc. For this reason, first some simulations with the same settings described

above were performed in order to obtain a set of predictors similar to the

actual one. At this point, various classification models were trained using

the Matlab Classification Learner Toolbox, and the results were analysed for

the choice. Among the different algorithms tested (i.e. decision trees, logis-

tic regression, naive Bayeses, SVMs, Ensembles), a Support Vector Machine

(SVM) using the fine-gaussian method obtained the best results in terms of

validation accuracy (98.3% using cross-validation on a sample of 240 obser-

vations generated with a reduced variability of parameters), having at the

same time a reasonable prediction speed (circa 10000 objects/s). Thence,

such model was selected for the actual simulated experimental campaign.
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6.3.4 Results

The simulated experimental campaign, run on a PC mounting a processor

Intel(R) Core(TM) i7-6700 CPU 3.40GHz (circa 5 hours of simulation), is

designed to be composed by 20 perfect maintenance cycles. Each one, in

turn, is constituted by 12 imperfect maintenance actions, for a total of 240

samples. This last choice is primarily made since it simplifies a lot the exe-

cutions of the simulations; such setting is then justified by the fact that the

main focus of the tests is an assessment of the innovative features of the CBM

model. It is however important to notice that in the framework presented

the end of a perfect maintenance cycle is dependent on the decision-making

phase and based on the actual information available rather than selected a

priori.

Figure 6.8: The healthy state modelled in the simulations

RUL prediction

The first aspect to verify regards the choice of the degradation function for

the remaining useful life estimation, which in the framework is under the

RUL prediction block (ref. Section 5.2).

First of all, Figure 6.8 represents the feature level in the healthy state during
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the simulations. The blue line is constituted by the RMS points generated;

the yellow line is the threshold Dup, after which the RUL is computed; the

black line is the Dfault value, at which failure is expected; the red line is the

safety value Dlimit = ηDfault used for the actual estimation of the remaining

useful life. The figure shows also that the maintenance time and the RUL

are reported as “Inf”, i.e. infinite, meaning that they are not computed in

this phase, on the contrary of what is possible to notice in the following pic-

tures, where it is reported their time values in cycles (1 cycle ≈ 11 second).

Figure 6.9: The two types of degradation pattern given by the linear (on the left) and

the exponential (on the right) failure mode in two successive moment (top and bottom

picture)

At a certain point, in fact, according to the values of TFM,i, one or both

the failure modes begin to make the monitored feature level rise and enter

the unhealthy state. The left part of Figure 6.9 shows what happens when

the failure mode modelled to have a linear behaviour appears. In particu-

lar, the prediction line used to compute the RUL and represented in green

marks evidence of a linear pattern, meaning that the model was capable
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of understanding the type of deterioration and consequently deciding the

right degradation function to be used (i.e. the power with coefficient equal

to 1). In addition, the figure shows the same degradation in two successive

moments, the ones in the bottom having more data acquired than the other.

From this comparison it is therefore possible to notice that the coefficient

bounds of the prediction line, represented in magenta, tighten up with the

passing of the working cycles and the increasing of data available, thus mak-

ing the prediction more reliable.

In the right part of Figure 6.9 is reported the degradation pattern given by

the failure mode having an exponential behaviour. In this case too the figure

shows evidence of the right selection of the fitting function and of the tight-

ening up of the prediction line confidence intervals as more data are acquired.

Seen the previous results, it is therefore possible to confirm the correct func-

tioning of the degradation function selection implemented in the model. The

consequence of this is a remaining useful life prediction method more robust

and capable of adapt automatically basing on the effective degradation his-

tory seen, allowing thus an improvement and a greater reliability of the

maintenance scheduling process.

Classification model

The second feature to be tested is the classification and relative prediction of

the failure modes. The predictors used in such classification are, as already

described: the degradation function (fi(t)) with the set of parameters (a, b

and c) which describe the deterioration pattern and the number of condition

monitoring cycles (m) done from last perfect maintenance. The target of

this feature is to learn how such predictors describe the failure modes, in

order to give an estimation of these last ones (ref. Section 5.2). A mapping

of two of these parameters (b and m), labelled with different colors basing

on the failure mode, is shown in Figure 6.10 for exemplification purposes;

similar pictures could anyway be generated for every combination of such

predictors.

Every time a maintenance is executed, the classification model (SVM with

fine-gaussian method) is retrained, in order to refine the mapping of the

failure modes and with that the prediction capabilities. An important in-

formation regards the behaviour training after training of the validation

accuracy of the classification model. In fact, such parameter is kept into

account to decide if the classification algorithm is sufficiently accurate to be

138



Politecnico di Milano Andrea Puglisi

Figure 6.10: The value of the function parameter b against the one of the number of

condition monitoring cycles m, labelled basing on the failure mode (in blue the linear,

while in red the exponential one)

used for the failure mode predictions. In particular, as seen in the framework

presentation, this condition is considered satisfied if the validation accuracy

becomes greater than a predetermined threshold, set here to be λ = 75%.

Figure 6.11 shows the validation accuracy behaviour as the number of ob-

servations used to train the classification model grows up. After a first very

short phase (not taken into consideration for the comparison) in which there

are large oscillation due to a training performed with very few data, the per-

centage of accuracy increases quite quickly until it approaches and surpasses

the yellow line indicating the λ value; this happens between 30 and 50 ob-

servations. Successively, it continues to gradually increase approaching at

the end the 90% of accuracy .

Thence, the information provided by the figure is that before the model

becomes effectively capable of making predictions it is necessary to wait 30-

50 repairs, since a new observation is acquired at every maintenance (ref.

Section 5.2.3). This could be an issue for this feature of the framework,

resulting in a lapse of time quite long for a single system monitored (various
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Figure 6.11: Validation accuracy of the classification model based on the number of

observations used for its training

months), depending on the entity of the different failure modes.

Regarding the actual capability of foreseeing the failure modes, Figure 6.12

reports a graphic of the prediction accuracy versus the number of predic-

tions done. The prediction accuracy is computed as the ratio between the

number of predictions resulted correct and the total number done, which is

slightly less than 200. The picture shows that, after a very first phase, the

accuracy increases constantly in an asymptotic exponential way, meaning

that at a certain point the model is capable of estimating correctly the fail-

ure modes for the greatest part. In fact, at the end the total percentage of

failure modes rightly predicted is equal to circa 85%.

Basing on the previous considerations and evidences it is therefore possible

to say that the classification model of the failure modes is effectively capa-

ble of learning a mapping of the characteristics of these ones, even with the

presence of many elements of variability, in order to generate predictions

about them while the machine is still working. Consequently, such feature

can act as a useful tool to provide the user more prognostic information

about the asset, enhancing the decision-making and allowing to improve the
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Figure 6.12: Prediction accuracy of the classification model based on the number of

predictions performed

organization of the maintenance actions.

MTBM data regression

Finally, the last results to be analysed regard the regression of the mean time

between maintenance data, i.e. the ones about the lapse of time between

two repairs involving the same failure mode. The outcomes of the fitting

done through the regression functions previously presented for, respectively,

the linear and the exponential failure mode are reported in Figure 6.13 and

Figure 6.14. The red dots indicate the maintenance event data object of fit-

ting, plotted against the number of times the same failure mode is observed

(i.e. causes degradation) since last perfect maintenance (ni), while the blue

curve is the actual fitting curve (the MTBM curve): in order to capture the

variability of the maintenance times, this one is plotted together with its

confidence bounds, represented in magenta.

What is possible to deduce from these figures is that the regression model is
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Figure 6.13: Mean Time Between Maintenance curve for the linear failure mode

effectively capable of recording a general trend of the expected time which

is necessary to wait before a failure mode, after a repair, causes the degra-

dation of the asset once again. For example, if a perfect maintenance is

executed, probably the linear failure mode is going to be repaired after circa

5000 cycles, which is the fitting value for n1 = 1; in fact, this is the first time

the failure mode is observed since the perfect action. On the other hand,

imperfect maintenance after imperfect maintenance the same failure mode

is going to reappear quickly, making the related interval of time between

two consecutive repairs decrease; for example, at the eighth time this one

is observed (n1 = 1), the expected interval is more or less halved. Similar

examples can be done for the other failure mode too.

Therefore, the regression of the mean time between maintenance demon-

strated to be effective in capturing the trend of these data, both in terms

of mean and variability, by choosing the correct function and coefficients to

perform such task. The information gained can then be used to estimate

firstly how quickly the imperfect maintenance actions lose their efficacy and,

secondly, to have a first estimation about how a certain type of intervention

is going to be required again. Thus, it can act as a tool capable of using the

142



Politecnico di Milano Andrea Puglisi

Figure 6.14: Mean Time Between Maintenance curve for the exponential failure mode

characterization of the maintenance effects to expand the prognostics on the

asset and improve once again the decision-making phase.

Conclusions

The previous paragraphs explained the results of the simulated experimental

campaign done in order to obtain an assessment of the framework proposed

in Chapter 5. In particular, three innovative features of the CBM model

were object of testing: the choice of the degradation function for the re-

maining useful life estimation, the failure modes classification model and

the regression of the mean time between maintenance (MTBM) data.

Regarding the first, such feature was tested on two different failure modes

modelled to have distinct different patterns: one linear and the other expo-

nential. Here, the model showed to be effectively capable of selecting the

best function in order to represent the type of degradation seen. This results

in a more reliable and self-adaptable estimation of the remaining useful life,

with a consequent improvement in the maintenance scheduling process.
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For what concerns the failure modes classification model, it was discussed

by reporting two different graphics. The first one (ref. Figure 6.11) was

about the behaviour of the validation accuracy compared to the number

of observations used for the training of the model; in fact this statistic is

utilized to decide a priori if the model is sufficiently accurate to perform the

predictions. What emerged is that, with the elements of variability included,

there are necessary circa 30-50 observations to reach the accuracy required,

which would result in a quite long time for a single system. However, maybe

the learning curve for such process could be sped up by performing the same

operation on different assets simultaneously, introducing the concept of the

collaborative maintenance, which is then reported in Chapter 7 as a possible

future work. The second figure (ref. Figure 6.12), regarded then the actual

prediction accuracy and its behaviour against the number of predictions ef-

fectively done. It demonstrated that the classification model achieved good

estimation capabilities, predicting correctly the 85% of the times. For this

reason, such innovative feature results to be a potentially useful tool to ex-

pand the prognostics on the asset, allowing the user to know not only when

to execute maintenance, but also the dominant cause of degradation; this

additional information could enhance the decision-making phase about the

type of intervention and improve the maintenance organization process.

Finally, there were reported two figures (ref. Figure 6.13 and Figure 6.14)

showing, for each failure mode considered, the results of the regression of

the mean times between maintenance data. The analysis of such pictures

made possible to state that this feature of the model is effectively capable

of capturing the general trend, together with its variability, of the evolving

times for the failure modes. Thence, it results to be another potentially

useful tool, capable of understanding when the imperfect maintenance ac-

tions lose efficacy, making the user to opt for a more complete repair, and

allowing to have a first estimation of the time taken by the failure modes

to cause critical levels of degradation. It is therefore possible to conclude

that this innovative feature too could expand the prognostics capabilities

and improve the decision-making about maintenance.
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Chapter 7

Conclusions

This work had the target of investigating the concept of imperfect main-

tenance applied to a condition-based maintenance policy; in addition, the

choice was to do it in a context where no run-to-failure data are available,

in order to be closer to reality and to the modern industry exigences.

The first step of the research consisted in the literature review, which had

the aim of building a wide yet profound knowledge about the topic and

describe its state of the art. Such analysis was conducted by searching for

scientific publications through selected keywords. Then, from the more than

500 articles found through this method, a progressive selection led to the

choice of 47 scientific papers to be classified according to chosen drivers. In

particular, these articles were all published between 2012 and 2020: thus

they represented effectively the actual state of the art about the object of

study.

What in general emerged from the analysis is a tendency of the publications

to perform an optimization of the maintenance policy rather than using

the data acquired to characterize the system in terms of degradation and

imperfect maintenance effects, updating then the related parameters as new

information arrives; these aspects are in fact usually assumed at priori. This

was particularly true for systems monitored continuously through sensors

and for which the target was to predict their future conditions. In addition,

this is enhanced by the fact that the asset modelled is rarely specified or

treated as generic. These considerations brought to formulate the following

literature gaps:

• GAP 1 : Lack of models focusing on a real asset or fleet of machines

and giving detailed information about its nature, level and the type of

maintenance actions executed.
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• GAP 2 : Lack of models which use the data from the asset, acquired in

regime of continuous monitoring, to estimate and continually update

the parameters of both degradation pattern and imperfect mainte-

nance, in order to determine the remaining useful life of the machine.

• GAP 3 : Lack of models which, using the data acquired from the asset,

aim to estimate which is the most appropriate function to represent

the degradation pattern.

• GAP 4 : Lack of models which, aim to identify and quantify the effects

of imperfect maintenance actions through the acquired data, starting

from no previous knowledge of these effects.

The results of the literature review were used to set the direction of the

second part of the work. In particular, in order to contribute to the available

research areas individuated, and in particular to GAP 2, GAP 3 and GAP

4, the main objective of the thesis was formulated as follows:

”The development of a framework for a condition-based maintenance model

which aims to identify and quantify the degradation pattern and the

imperfect maintenance effects in order to improve the asset prognosis and

the recommendation of types of maintenance intervention.”

This goal was accomplished by formulating an operative framework which

has the function of guiding the user in the implementation of the CBM

model proposed. Its peculiarity consists in associating the concept of im-

perfect maintenance to the one of failure mode: the repairs are thence im-

perfect since they are able to restore only the damage caused by one failure

mode instead of healing completely the asset. Its presentation was divided

into three parts: the control data, containing the information to the cor-

rect setting; the condition monitoring, which has the target of controlling

the degradation of the asset and scheduling maintenance basing on the re-

maining useful life prediction and the recommendation about the type of

maintenance intervention; the actual maintenance.

The first innovation point consists in the remaining useful life estimation:

instead of selecting the degradation function to be used a priori it was in

fact developed a system to choose every time new data are acquired the

model which best interprets the deterioration seen. This continuous update

of function and related parameters allows thus to monitor more efficiently

the asset, adapting to eventual changes and improving the RUL prediction
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in comparison with standard methods.

Secondly, another innovation lies in the maintenance decision-making phase:

such process is in fact assisted by two machine learning techniques, respec-

tively a classification and a regression algorithm, which have the target of

using the information gained about the degradation process of the system

to predict its future behaviour and help choosing the most adequate type of

repair. In particular, the classification uses the degradation data acquired

during condition monitoring to create a mapping of the different failure

modes, while the regression method acquires the maintenance intervals data

to estimate when the same failure mode is going to show itself again caus-

ing the deterioration of the system. These two algorithms are updated at

every maintenance: thus it is achieved a dynamic characterization of the

degradation behaviour of the asset and thence of the different effects of the

imperfect maintenance actions, which are updated every time new informa-

tion is gained.

Finally, the framework was assessed by starting from a reference dataset

made available by the Industry 4.0 Lab at Politecnico di Milano and manip-

ulating it in order to simulate a degradation process and execute a simulated

experimental campaign. This one in particular focused on testing three as-

pects of the framework, i.e. the RUL prediction, the classification model for

the failure modes and the regression of the mean time between maintenance

(MTBM) data. The results were then analysed taking into consideration

both the technical point of view, i.e. their correct functioning, and making

considerations about how such innovative features could improve the main-

tenance management process. This practical part acted also as a practical

example of the CBM model elaborated.

To conclude, this thesis work presented a framework for a condition-based

maintenance model which includes machine learning techniques that com-

bine condition monitoring and historical event data in order to characterize

dynamically the system’s behaviour and improve the present actions. Such

framework therefore acts as a way to expand the prognostic part of a CBM

policy, estimating not only the remaining useful life, whose prediction was

anyway improved, but also forecasting the type of repair to execute, with the

overall aim of improving the maintenance management in complex systems.
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7.1 Future works

The work presented has possible investigation lines which could be expanded

in future studies. In particular, the main ones individuated are:

• Collaborative maintenance: the framework for the CBM model

presented has the feature of performing a dynamic characterization of

the asset as event and condition monitoring data are acquired. How-

ever, this learning process could be improved and sped up if applied to

numerous systems of the same type, which can then be linked through

a common database. Such kind of integration, as already seen, is one

of the main improvements given by Industry 4.0; this is leading to

innovative approaches classified under the concept of Social Internet

of industrial assets and a collaborative prognostics approach [86][87].

In particular, these concepts derive from the Internet of Things and

deliver the idea of a social network composed by smart assets capa-

ble of sharing different kinds of information and using them in order

to reach an awareness of their working context and take by conse-

quence collaboration initiatives [87]. Therefore, it could be interesting

to see how to apply in practice such an approach, keeping into account

the expanded prognostic information proposed in this work and facing

challenges like the storage of these data, their retrieval and their usage

between different machines.

• Multiple maintenance lead times: as stated in Section 5.1, the

present work approached to the maintenance scheduling more from a

prognostic perspective, by considering the degradation of the asset,

than from a logistic point of view. This brought to a simplification of

the logistic dimension needed for the maintenance organization, which

resulted primarily in the assumption of the same lead time for all kinds

of intervention. However, such hypothesis is true only in some situa-

tions, in which the actions are similar in terms of resources, personnel

required and methods adopted. Therefore, relaxing such constraint

would make possible not only a generalization of the framework, but

also the integration in it of the logistic aspect of maintenance, making

it closer to reality even if at the cost of an increased complexity.

• Maintenance optimization: the literature review showed a strong

presence of publications aiming for an optimization of the maintenance

policy, so much that two classification tables out of six in Section 3.3

were dedicated to it. For this reason, this worked focused on other
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aspects of maintenance, more oriented to a characterization of the re-

lated parameters and effects. However, the findings of this work, and

in particular the improvements in the RUL prediction and the recom-

mendations about the type of intervention, could be used to explore

new aspects of the optimization approach, which would benefit from

an enhanced prognostic on the asset. In addition, the above men-

tioned future works could find a place in such a logic, by introducing

in the problem other dimensions related to logistic and production

(as already done in some papers) and by considering it in a context

of cooperation between different machines, with the result of an opti-

mization oriented not only to the single asset, but ideally to the entire

factory.
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