
Anomaly Detection in Multivariate
Time Series:

Comparison of Selected Inference
Models and Threshold Definition

Methods

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Author: Gioele Verze

Student ID: 966400
Advisor: Prof. Piero Fraternali
Co-advisors: Nicolò Oreste Pinciroli Vago
Academic Year: 2021-22

i

Abstract

Anomaly detection is an essential analysis that regards various fields ranging from medical
detection to industrial damage detection, from intrusion detection to fraud. It is focused
on automatically monitoring different types of data, such as images or time series, to
predict and detect possible malfunctions or unexpected and unpredicted behaviors. An
accurate, quick, precise, and efficient anomaly detection makes it possible to achieve
significant benefits, mainly in time and economics. This work presents anomaly detection
methods based on several neural networks method analyzing two different datasets: SKAB
and Exathlon. They both contain a multivariate time series that, respectively, record
tests on a test bench and some Spark application execution. Different inference models,
combined with several thresholding techniques, have been tested to evaluate whether the
most relevant contribution to detecting anomalies regards the model or the thresholding
method.

Keywords: Anomaly Detection, Multivariate Time Series, Threshold

Abstract in lingua italiana

Il rilevamento delle anomalie è un’analisi essenziale che copre svariati campi, dal rileva-
mento di anomalie in campo medico a quello dei danni industriali, dal rilevamento delle
intrusioni a quello delle frodi. Si concentra sul monitoraggio automatico di diversi tipi
di dati, come immagini o serie temporali, per prevedere e rilevare malfunzionamenti o
comportamenti inaspettati e non previsti. Un rilevamento accurato, rapido, preciso ed
efficiente delle anomalie produce vantaggi significativi, soprattutto in termini di tempo
e di costi. Il lavoro presenta metodi di rilevamento delle anomalie basati su diverse reti
neurali, analizzando due diversi set di dati: SKAB ed Exathlon. Entrambi contengono
una serie temporale multivariata che registrano rispettivamente i test su un banco di
prova e l’esecuzione di dieci applicazioni Spark. Sono stati testati diversi modelli di
inferenza, combinati con varie tecniche di threshold, per valutare se il contributo più
rilevante nell’induviduare le anomalie riguarda il modello o il metodo di threshold.

Parole chiave: Anomaly Detection, Serie Temporale Multivariata, Threshold

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Background 5
2.1 Time Series . 5

2.1.1 Definition . 5
2.1.2 Components . 5
2.1.3 Univariate and Multivariate . 6
2.1.4 Stationarity . 7

2.1.4.1 Dickey-Fuller test . 8
2.2 Anomaly Detection in Time Series . 9

2.2.1 Defining Anomaly . 10
2.2.2 Anomaly Detection Paradigms . 12
2.2.3 Anomaly Detection Applications 14

2.2.3.1 Intrusion Detection . 14
2.2.3.2 Fraud Detection . 15
2.2.3.3 Medical and Public Health Anomaly Detection 15
2.2.3.4 Industrial Damage Detection 16
2.2.3.5 Image processing . 16
2.2.3.6 Sensor Networks . 16

2.2.4 Anomaly Detection Techniques . 17
2.2.4.1 Classification-based . 17
2.2.4.2 Nearest Neighbors Distance-Based 18
2.2.4.3 Clustering-based . 18

vi | Contents

2.2.4.4 Statistical . 19
2.2.4.5 Ensemble . 19

2.2.5 Anomaly Detection Output and Evaluation 20
2.2.5.1 Median Absolute Deviation 21
2.2.5.2 Inter-Quartile Range . 22
2.2.5.3 Standard Deviation . 23
2.2.5.4 Max Value . 24

2.2.6 Threshold Related Work . 24
2.3 Works on Data . 25

2.3.1 Data Preprocessing . 25
2.3.2 Data Splitting . 27

2.3.2.1 Problem and Technique 28
2.4 Result evaluation metrics . 31

2.4.1 Threshold-independent evaluation 32
2.4.2 Threshold-dependent evaluation . 33

3 Model design 35
3.1 Long Short-Term Memory . 35

3.1.1 Architecture . 35
3.2 Autoencoder . 36

3.2.1 Architecture . 36
3.2.2 Autoencoder parameters . 37

3.3 Variational Autoencoder . 39
3.3.1 Architecture . 39
3.3.2 Loss Function . 39
3.3.3 Reparametrization trick . 41
3.3.4 Latent Space . 42
3.3.5 Difference between AE and VAE 44
3.3.6 Variational Autoencoder approaches 44

3.3.6.1 Latent space methods . 45
3.3.6.2 VAE and KNN . 46
3.3.6.3 VAE and Isolation Forest 48
3.3.6.4 VAE and Re-encoding . 50

3.4 Convolutional-Autoencoder . 52
3.4.1 Architecture . 52
3.4.2 CONV-AE vs. LSTM-AE . 53

3.5 Unsupervised Anomaly Detection . 54

| Contents vii

3.5.1 Architecture . 54
3.5.2 Detection Phase . 56

3.6 ELM-MI . 57
3.6.1 Architecture . 58

3.7 Anomaly score range . 61

4 Implementation and Dataset analysis 63
4.1 Introduction . 63
4.2 Dataset . 64

4.2.1 SKAB dataset . 64
4.2.1.1 Dataset analysis . 64
4.2.1.2 Data processing . 65

4.2.2 Exathlon dataset . 66
4.2.2.1 Dataset analysis . 66
4.2.2.2 Data Processing . 67

4.3 Neural Network model . 69
4.3.1 LSTM Autoencoder . 69
4.3.2 LSTM . 70
4.3.3 Variational Autoencoder . 71
4.3.4 Convolutional Autoencoder . 72
4.3.5 USAD . 73
4.3.6 ELM-MI . 74

5 Evaluation 75
5.1 Thresholding . 75
5.2 SKAB Dataset . 76

5.2.1 Analysis of the anomaly score distribution on the validation set . . 76
5.2.2 Analysis of the anomaly score distribution on the test set 78
5.2.3 Reconstruction and score analysis 80
5.2.4 AUROC . 88
5.2.5 Analysis by overlapping window . 90
5.2.6 Threshold . 93
5.2.7 VAE vs ReEncoding . 95
5.2.8 Thesis vs. State-of-Art . 96
5.2.9 Summary Results . 100

5.3 Exathlon . 102
5.3.1 Analysis of the anomaly score distribution on the validation set . . 102
5.3.2 Analysis of the anomaly score distribution on the test set 104

5.3.3 AUROC . 106
5.3.4 Threshold . 108
5.3.5 Thesis vs. State-of-Art . 111
5.3.6 Summary Result . 113

6 Conclusions and Future work 117

Bibliography 119

List of Figures 131

List of Tables 135

List of Abbrevations 137

Acknowledgements 139

1

1| Introduction

Anomaly detection is a technique used to identify behaviors that deviate from normality.
It allows monitoring and detecting possible anomalous events in the data retrieved to
prevent and detect failures, malfunctions, fraud, intrusion, medical diseases, and, more in
general, unexpected behavior in a timely fashion to minimize their impact on the overall
system [14].

Anomaly detection techniques have been proposed for diverse types of data, including
images [19, 36, 36, 87] and time series [12, 63, 86]. This thesis focuses on anomaly
detection applied to multivariate time series collected through sensors. In particular, two
different multivariate datasets are considered. The first is SKAB [52], a dataset containing
experiments collected from sensors installed on a water pump. The other, Exathlon [46],
refers to the recording of different repeated executions of ten Spark streaming applications
on the same cluster.

In the context of time series, several approaches address anomaly detection tasks [14],
including statistical [71], clustering-based [83], nearest neighbors distance-based [117],
and ensemble [15] approaches. This thesis focuses on neural networks and a classification-
based approach in the context of unsupervised anomaly detection.

Generally, the output of the anomaly detection model could be of two types. It can
label each test instance directly, classifying if it is normal or not, or it can return an
anomaly score for each test instance representing the degree of anomaly. The higher the
score, the more the test instance could be anomalous. A threshold is necessary for models
that return a score to distinguish anomalies from normal samples. Typically, higher
thresholds minimize false positives (i.e., normal points predicted as anomalous), while
lower thresholds minimize false negatives (i.e., anomalous points predicted as normal).

Related works present several techniques to calculate the threshold. An approach pro-
posed by [2, 8, 99], is to use as a threshold a value that maximizes one of the evaluation
metrics such as precision, recall, or F1-Score. However, since it needs all the tests set to
compute the threshold is not applicable to online anomaly detection. Other approaches,
such as MAD, STD, and IQR proposed by [46], consist in calculating the threshold on a

2 1| Introduction

small portion of the dataset, called validation, and then applying it to all scores. Another
similar approach, computed on a small validation set and proposed by [101], is to con-
sider the maximum score value as a threshold considering all the data in the validation
set normal.

Several neural architectures have been proposed and analyzed in detail to compute the
anomaly score. Each architecture, according to how it works, generates different results,
which are compared together and to state of the art. The simplest architecture used
is a Recurrent Neural Network called LSTM, which predicts a future sequence starting
from what it has learned in training and based on previous sequences [70]. Then a
particular neural network configuration, called autoencoder, is analyzed. Autoencoders
are composed of the encoder, the latent space, and the decoder. First, the encoder
compresses the input data into a lower-dimensional space (the latent space). Then, the
decoder, starting from the latent space data, tries to reconstruct the input sequence.
The more the data to analyze in the input are normal and describe the normal behavior
learned in training, the more precise and accurate the reconstruction. On the other hand,
if the sequence in input describes an anomalous behavior, the reconstruction is not precise
and deviates consistently from the ground truth. So, reconstruction and original data are
compared and generate an anomaly score to be evaluated to distinguish anomalies. In
detail, according to the type of layer used in the implementation of the neural network,
are analyzed DENSE-AE, CONV-AE, LSTM-AE, and VAE. The latter is quite different
from others, and using it is possible to detect anomalies by analyzing the latent space
distribution using KNN [22], Isolation Forest [66], and the method proposed in [114].
Moreover, since the state of the art of examined dataset, they produce good results,
ELM-MI [81], and USAD [7] models are adapted and used.

The scope of the work is to analyze different inference models and thresholding techniques
to understand which components contribute more to the final metrics result. In other
words, according to the different datasets analyzed, the work shows if the most significant
contribution to the anomaly detection results belongs to the choice of the model or to the
threshold method. What emerges is that the choice of model has a relevant impact on
the result. Some models generate a score distribution where normal and anomalous data
are clearly separated, and the final results are better than models that separate normal
and anomalous data worst. The impact of the threshold technique on the final results is
highly dependent on how it is constituted and what values the validation set contains.

The thesis is organized as follows:

Chapter 2 introduces time series and anomaly detection in general and provides

1| Introduction 3

an overview of anomaly detection approaches for time series. It also contains several
thresholding techniques with their related work;

Chapter 3 presents the inference models analyzed and implemented in this thesis;

Chapter 4 present the datasets, SKAB [52] and Exathlon [46], and provides an
overview of relevant hyper-parameters of the machine learning models;

Chapter 5 presents qualitative and quantitative results for both datasets with the
implemented models and compares them to the available state of art results;

Chapter 6 draws conclusions and proposes future directions for research.

5

2| Background

2.1. Time Series

2.1.1. Definition

A time series is a discrete sequence of values indexed by time. The time order is the
principal feature of a time series where each value is assigned a timestamp according to
when it was observed. The analysis of a time series shows how a variable changes over
time and can show the dependencies between different variables.

Time series are used in different fields [30], ranging from statistics to signal processing,
finance to pattern recognition, astronomy, and weather forecasting. More generally, time
series are used in applied science and engineering domains involving temporal measure-
ments.

2.1.2. Components

Time series can be represented as the combination of simpler components that can be
added or multiplied according to the formula [42]:

yt = Tt × Ct × St ×Rt

yt = Tt + Ct + St +Rt

where yt is a value at the instant t of the time series. The components S, C, T and R in
the formula are respectively [49]:

• Seasonal component (S): the seasonal component refers to the seasonality of a
time series. It reflects variations that recur every season to the same extent. For
example, in a time series that contains retail sales, there is an evident seasonal
component corresponding to December, where, each year, the sales increase due to
Christmas shopping. Generally, this component is important when a time series
exhibits regular fluctuations based on the season (e.g., every month/quarter/year),

6 2| Background

which is fixed and known.

• Cyclical component (C): the cyclical component exists when data exhibit rises
and falls, not of fixed periods. For example, a time series containing retail sales could
have a cyclical component corresponding to boom, slump, recession, and recovery
periods.

• Trend component (T): the trend component corresponds to a pattern in data
that shows the movement to relatively higher or lower values over a long period. It
is observed when there is an increasing or decreasing slope in the time series. The
trend usually does not repeat. A trend could be:

– Uptrend : shows a general upward pattern. For example, it is visible in a time
series that represents a country’s energy consumption; its value is constantly
growing over the years.

– Downtrend : shows a general downward pattern. In a time series that reports
sales of a particular product, a downtrend may be visible due to a reduction
in sales caused by the marketing of another competing good.

– Horizontal trend : no general pattern is observed.

• Random component (R): the random component is unpredictable. Every time
series has some unpredictable component that makes data change randomly. These
variations are fluctuations in time series that last short and follow no regularity in
the occurrence pattern. Random component refers to what is not considered by
trend, cyclical, and seasonal variations. For example, [50] shows that the random
component may occur due to wars, earthquakes, or floods.

2.1.3. Univariate and Multivariate

Time series can be categorized based on the number of values associated with a single
timestamp. They can be divided into two categories [12]:

• Univariate time series: A univariate time series X = {xt}t∈T is defined as an
ordered set of real-valued observation, xt, where each observation is at a specific
time t ∈ T ⊆ Z+

• Multivariate time series: A multivariate time series X = {xt}t∈T is defined as
an ordered set of k-dimensional vectors, xt = (x1t, ..., xkt), where each observation
is recorded at a specific time t ∈ T ⊆ Z+

Compared to a univariate time series, a multivariate time series has a more comprehensive

2| Background 7

vision of the environment to which it refers, as it relates to multiple quantities.

The analysis of univariate time series considers a single-time dependent variable, whereas
an analysis of a multivariate one considers simultaneously more than one variable. Alter-
natively, univariate analyses can be performed on multivariate time series processing each
time-dependent variable without considering the dependencies that may exist between
the variables. Considering multivariate time series, dimensionality reduction allows for
reducing the number of variables. PCA [5] or autoencoders can perform dimensionality
reduction, as shown in [105].

2.1.4. Stationarity

Stationarity means that the time series generating process’s statistical properties remain
constant over time. Not necessarily data is constant. Instead, the way it changes is
consistent. A stationary time series’ mean, variance, and autocorrelation remain constant.
An example of a stationarity time series is visible in Figure 2.1. On the other hand, time
series with a changing mean or variance are non-stationary, as shown in Figure 2.2. A
time series exhibiting trend or seasonality, for example, would be non-stationary because
these components affect both the mean and variance. A further distinction in stationary
processes is [23]:

• Strict stationarity [84]: The time series Xt, t ∈ Z is said to be strict stationary if
the joint distribution of (Xt1 , Xt2 , ..., Xtn) is the same as (Xt1+h

, Xt2+h
, ..., Xtn+h

)

meaning that the joint distribution depends only on h and not on time (t1, ...tn).

• Weak Stationarity : The time series Xt, T ∈ Z is said to be weak stationary if the
following three conditions are verified:

E[X2
t] < ∞ ∀t ∈ Z

E[Xt] = µ ∀t ∈ Z

Cov(Xs, Xt) = Cov(Xs+h, Xt+h) ∀t, s, h ∈ Z

where E[Xt] is the expected value at time t and µ is the mean of the series, E[X2
t]

corresponds to the root-mean-square value and

Cov(Xs, Xt) = E[(Xs −X[Xs])(Xt −X[Xt])]

Given the assumption that the mean and the root-mean-squared exist and are finite,

8 2| Background

strict stationarity implies weak stationarity.

Figure 2.1: Stationary time series of Current value from SKAB dataset[52]

Figure 2.2: Non-stationary time series of Thermocouple value from SKAB dataset[52]

2.1.4.1. Dickey-Fuller test

To determine if a time series is stationary, a method that can be used is the Dickey-Fuller
[25] test. It is a unit root test that statistically detects stochastic behaviors in time series
using a hypothesis test. Starting from an autoregressive model defined as:

Yt = ρYt−1 + ϵt

Where Yt is the variable of interest at time t, ϵt is an error term, and ρ is a coefficient
that defines the unit root, the stationarity classification can be performed by testing the
coefficient value according to the following hypothesis:

H0 : ρ = 1

HA : ρ ̸= 1

2| Background 9

The model is non-stationary if the null hypothesis is verified. On the other hand, the time
series is stationary by rejecting the null hypothesis. This approach generated two prob-
lems. Mainly the t-test cannot be applied to an autoregressive model, and, by definition,
the null hypothesis has to be ρ = 0 and not ρ = 1. So, to overcome these problems, the
equation can be manipulated by subtracting Yt−1 from both sides of the autoregressive
model.

Yt − Yt−1 = ρYt−1 − Yt−1 + ϵt

∆Yt = (ρ− 1)Yt−1 + ϵt

Then, by substituting α = (ρ− 1), the t-test is applied to the null hypothesis α = 0.

2.2. Anomaly Detection in Time Series

Anomaly detection is a problem that affects a wide variety of domains [113], including
cybersecurity, fraud detection, industry [73], and medical analysis [31]. It consists of
detecting expectations, deviations, and differences from most of the data [96].

Figure 2.3: Key component of anomaly detection [14]

The basis of anomaly detection is to distinguish normal and anomalous behaviors. This
task poses several challenges. First, defining intervals representing every possible normal
behavior is challenging, as the boundaries to distinguish normal and anomalous samples
are often not precise. This could generate a lot of mispredictions. Moreover, depending
on the data, a slight fluctuation may represent anomalous behaviors, while in other data,
the same change is irrelevant. For example [14], in the medical field, a small deviation
from normal body temperature is an anomaly, while a similar fluctuation in the stock
market domain could be normal. The last issue concerns the quality of the data, which
can contain noise. The noise is erroneous or random contamination sample recorded
incorrectly. The noise is not interesting in anomaly detection, but it can be used to rate
the quality of the instrument to collect data [85]. The challenge is distinguishing real

10 2| Background

anomalies from noise. So, before doing anomaly detection, noise is detected and removed
by denoising algorithms [53].

Moreover, in many domains, such as medical and healthy care, normal behavior keeps
evolving, so a current definition of normal behavior might not represent the future [14].

2.2.1. Defining Anomaly

In the work of [3], outliers are commonly used as synonyms for abnormalities, discordant,
deviants, or anomalies. Grubbs [32], in 1969, defines an outlier as follows: "outlier is
one that appears to deviate markedly from other members of the sample in which it
occurs". Then Hawkins [38], in 1980, redefined it as: "an observation which deviates so
significantly from other observations as to arouse suspicion that it was generated by a
different mechanism". Finally, a recent definition of outlier is provided by Barnett and
Lewis [11], in 1994, defining it as: "observations or a subset of observations which appears
to be inconsistent with the remainder of that data set".

All three definitions have a point in common; when referring to outliers, something anoma-
lous is mentioned, which is very different compared to other data. Despite being very
similar, the three definitions have considerable differences. The first two definitions refer
only to single and separated anomalies, while the most recent one offers a wider definition
by also including sequences of points, which are regarded as anomalous when considered
together.

Anomalies can be divided into three main categories: point outliers, collective outliers,
and contextual outliers.

Point outliers : point outliers, Figure 2.4, refer to single data instances that deviate
significantly from the rest of the data. They represent the simplest type of anomaly. They
have a relevant role in time series analysis. For example, these types of anomalies appear
in the analysis of credit card transactions where purchases with an unusual transaction
value can indicate potential fraud [95].

Contextual outliers : contextual outliers, Figure 2.4b, refer to single data instances
that, taken individually, appear normal but are anomalous in a specific context. This
means that two points with the same value could be classified differently. Contextual
anomalies are determined by combining contextual and behavioral attributes [95]. The
former is used to determine the context of each data instance. For example, contextual
attributes could correspond to latitude and longitude in a spatial dataset or in time

2| Background 11

series that corresponds to the time. The latter refers to the noncontextual characteristic
of an instance corresponding to the value of each sample. An example is temperature
measurement, where two equal high temperatures are classified differently, one normal
and the other anomalous, according to the period in which they are taken.

Collective outliers : collective outlier, Figure 2.4a, refer to consecutive and related
data that are considered abnormal with respect to most of the data in the dataset. A single
data instance taken individually from a collective anomaly may not be an anomaly, but
the interval in which it is contained is anomalous. However, often the values considered
collective outliers are point anomalies, Therefore, these outliers are significant in time-
series analysis, indicating anomalies for consecutive timestamps.

(a) Collective outlier retrieved from a time series representing the ’Volume Flow
Rate’ from SKAB [52] dataset

(b) Contextual outlier retrieved from a time series representing the ’Pressure’
from SKAB [52] dataset

12 2| Background

(c) Point outlier retrieved by a latent
space analysis of VAE, a machine learning
model described later in section 3.3 and in
section 3.8b

Figure 2.4: Contextual, collective, point outlier representation

2.2.2. Anomaly Detection Paradigms

Depending on whether the dataset contains a label representing the anomalies or not,
three different learning paradigms [89] can be implemented to detect anomalies.

In Supervised Learning, the training set data must be labeled into two different cat-
egories: normal and anomalous. In this case, the quality of the training set is essential.
Often, conspicuous manual work could be necessary to label data correctly. In super-
vised learning, the model tries to extract anomalous patterns from training data and
detect them in the test set. Despite performing precise and accurate anomaly detection,
it has the disadvantage of being an expensive and slow process. Another relevant limit
concerned the data. Supervised data represent only existent data which not represents
all the possible features and behavior of the system analyzed. So, the supervised model
learns in a limited way, not having a complete view of the system [69], and the anomalies
detected are only those similar to the ones in the training set.

In Unsupervised Learning, the data of the training set are not labeled, so anomalous
data are not explicitly marked. This learning paradigm is used to create models able to
mark an input value as normal or anomalous based on a model of normal behaviors [26].
Unsupervised learning in anomaly detection of time series consists in learning how the
analyzed system normally behaves by learning the pattern and trend of the training data.
The anomalies can be detected in different ways. The main consist in [12]:

• isolated samples that deviated consistently from the training data. It is a common
approach exploited by Isolation Forest [66], nearest neighbors distance-based model

2| Background 13

[33], and clustering-based model [63].

• consider anomalous the samples that, compared to the prediction performed by a
neural network model according to what it has learned during the training, differ
more than a threshold value. It is a common approach exploited by RNN [70].

• consider anomalous the samples that, after a reconstruction performed by a neural
network model according to what it has learned during the training, are recon-
structed badly differing from the ground truth more than a threshold value. It is a
common approach exploited by autoencoders [54].

Unlike supervised learning, unsupervised learning does not require a labeled dataset,
so it can be applied to all datasets. In addition, it is effective for unstructured and
huge datasets. Moreover, it can detect all types of anomalies, while supervised anomaly
detection can detect only the anomalies contained in training data [13].

Figure 2.5: Representation of supervised, unsupervised and semisupervised learning

In general Semi-Supervised Learning, only a small portion of the training data is
labeled. In that case, two different approaches can be used. The first is not to consider
the labels and use the unsupervised learning method. Conversely, the second allows
using the supervised method thanks to the label propagation [45]. It consists of training
the model with the marked data and then using it to label the unlabeled portion of
the training set. After that, the training set is ready to be processed by a supervised
method. It is a method commonly used in image classification where only a small part
of the training set is labeled. In the particular case of semi-supervised learning applied
to anomaly detection, the training data has labeled instances only for normal data, and
anomalies are not explicitly labeled. Since semi-supervised techniques do not require
labels for anomalies, they are more widely applicable than the supervised approach [14].

14 2| Background

The approach is to build a model for the normal data and then use it to identify anomalies
in the test data. The semi-supervised learning is not commonly used since it is difficult to
have a training set that covers all possible anomalous behavior that can occur on the data.
It has the advantage of being more accurate than unsupervised learning. Furthermore,
compared with supervised learning, it is a faster and less costly process because it does
not require all the data in the dataset to be marked.

2.2.3. Anomaly Detection Applications

The Anomaly detection field comprises a lot of different usage and application. According
to [14] anomaly detection techniques and the field in which anomaly detection is used can
be classified as:

• Intrusion Detection

• Fraud Detection

• Medical and Public Health Anomaly Detection

• Industrial Damage Detection

• Image Processing

• Sensor Networks

2.2.3.1. Intrusion Detection

A field in which anomaly detection is involved is intrusion detection [57], which consists
of unauthorized access and manipulation of information or making a system unreliable.
There are two different ways to classify the intrusion; one can be performed from outside
the system, and the other by someone inside who knows the system’s vulnerabilities.
The approach to detect an intrusion is to create a normal historical profile for each user
and then, by comparing them to new activities, detect possible intrusion. Moreover, the
available data corresponds to the normal behavior, and usually, anomalous data are few
or do not exist. So the most used approach in this domain is the unsupervised and
semi-supervised anomaly detection technique which learns the normal behavior and can
distinguish anomalies considering the sample that deviate consistently from what the
model has learned. The advantage of this approach is the ability to detect any intrusion,
including novel attacks on the system. However, a limit of this approach is a high false
alarm rate where normal activities could be classified as intrusions being the detection,
less accurate than the supervised approach.

2| Background 15

2.2.3.2. Fraud Detection

With the expansion of modern technology and global communication, fraud is increasing,
and fraud detection [57] plays a vital role in the anomaly detection field. Fraudulent
activities involve many areas of daily life, such as banking, E-commerce, and mobile
communication. They happen when malicious agents consume resources provided by
the attacked organization in an unauthorized way. Fraud detection consists in detecting
fraud as quickly as possible to prevent economic losses; responsiveness and reactivity are
the main features. In addition, fraud detection methods must be continually developed
and updated as criminals continue to adapt and create new ways to bypass the existing
detection methods. Credit card fraud [24] is one of the most relevant fields in which
fraud detection is involved. This fraud could happen using a stolen physical card or via
the web, where only some card details are needed. To detect fraud can be used different
methods that analyze each credit card transaction. The supervised approach consists of
comparing each transaction with historical data previously classified. The limitation of
this approach is that it detects only fraud of a type that has once occurred. On the
other hand, an unsupervised system can detect new types of fraud which do not need
prior knowledge of fraudulent and non-fraudulent transactions. In addition, it detects
unusual transactions, thus transactions that deviate consistently from normal ones. Fraud
detection can also detect insider trading [58]. It happens on the market when people
make illegal profits by leaking inside information before it is made public. Therefore, to
prevent illegal profit fraud has to be detected as soon as possible online. Fraud detection
involved also mobile phone fraud [9], which consists of phone cloning or subscription
fraud using false identification.

2.2.3.3. Medical and Public Health Anomaly Detection

Anomaly detection performs a crucial role also in medical and public health infor-
mation [31]. From physiological data, anomaly detection can be performed to predict
the patient’s future conditions or diagnose tasks. For diagnosing studies, physiological
data are analyzed to recognize pathological signs of medical conditions. So, medical and
public health anomaly detection is crucial and needs high precision and accuracy. Typ-
ically, this application analyzes data of different types, such as patient age, weight, and
blood group or data related to temporal aspects. A relevant use is in analyzing electrical
and biomedical signals, such as the electrocardiogram (ECG), electroencephalogram, or
magnetoencephalography. For example, studying ECG series anomaly detection methods
[17] can screen irregular electrical activities and find stressed regions. Another common
use of anomaly detection techniques is the analysis of biomedical images [36] such as x-

16 2| Background

ray radiography, computed tomography, or magnetic resonance images. Frequently, the
techniques used a semi-supervised approach given an extensive data history with corre-
sponding normal anomaly classification.

2.2.3.4. Industrial Damage Detection

Due to the continuous usage and normal wear and tear, anomaly detection has a relevant
role in detecting industrial damage. Also, in this field, responsiveness is essential to
prevent further breakdowns and economic loss. Therefore, by considering information
from different sensors, it is possible to identify malfunctions in industrial machinery to
detect anomalies early to prevent damage [86]. Industrial damage detection can be further
classified according to its scope. For example, fault detection in mechanical units [29] is
about monitoring industrial components’ performance, such as motor, turbine, and fluid
flows. Instead, structural defect detection [68] deals with physical structure defects such
as beam cracks.

A possible example of industrial damage detection is the one used on the SKAB [52]
dataset, used in the thesis’s implementation part. In detail, the dataset contains a multi-
variate dataset that describes a test bench performed on a water pump. By analyzing the
multivariate time series, different neural network model tries to detect possible anomalies
representing pump malfunction.

2.2.3.5. Image processing

Image processing occupies a relevant area in anomaly detection. It consists in analyzing
both static images and images that change over time. The static analysis consists of
detecting anomaly points or regions that appear abnormal and assume an important role
also in medical and public health detection [36] and industrial and damage detection [87].
The video analysis [75] focuses on how images change over time, checking attributes such
as color, lightness, and texture to detect anomalies caused by motion, insertion of foreign
objects, or intrusions [118]. The principal issue of image processing is to work with a large
input size that reduces performance, and for video analysis, online detection is mandatory.

2.2.3.6. Sensor Networks

Anomaly detection has an important role in analyzing data collected from IoT sensors.
Sensors, by their findings, can describe the environment in which they are installed. So an
accurate analysis of them is helpful to detect any changes in the environmental state and
consequently register anomalies such as sensors fault or intrusions. Anomaly detection

2| Background 17

based on sensor networks is used in very different areas [115]:

• Environment monitoring: sensors are used to monitor the natural environment,
such as temperature and humidity.

• Industrial monitoring: sensors are used to monitor the machinery behavior, and
an analysis of their measurement shows and can predict possible malfunctions.

• Target tracking: sensors are used to track in a real-time way moving objects.

• Healt and medical monitoring: sensor on the human body to monitor electrical
and biomedical signals to detect potential diseases.

• Surveillance monitoring: sensors are used to monitor a given area to detect
unauthorized access and potential attack.

An issue that makes the detection more difficult is that sensor records often contain
missing or noisy data due to the communication channel. The presence of noise makes
anomaly detection more challenging because detector models must distinguish between
the noise and the real anomaly. Also, in this area, anomaly detection techniques are
required to operate online to detect anomalies as soon as possible to mitigate the effect
of the anomalies.

2.2.4. Anomaly Detection Techniques

According to [103] and to [14], there are different anomaly detection techniques based on
the problem statement, the input data type, and if they are marked or not, the desired
output, and if the problem needs a reactive or proactive response to the anomalies.

2.2.4.1. Classification-based

The classification-based anomaly detection technique [14] is a two-phase algorithm divided
into training and testing. It is based on a model, also called a classifier, that, starting from
training data, can learn their feature and then apply the classification to the testing data.
According to what has been learned, the classified can distinguish between normal and
abnormal classes. According to the training data, classification-based anomaly detection
techniques can be split into multi-class and one-class anomaly detection techniques. Sup-
pose the training set comprises only one type of data, normal instances. In that case, the
one-class classification is used where the model learns a discriminative boundary around
the normal sample, and any testing instance that does not fit in it is classified as anoma-
lous. The opposite technique is multi-class classification, where the training data belongs

18 2| Background

to different classes, and the model learns to distinguish between classes. Approaches that
exploit this technique are:

• Neural networks-based: This approach uses a neural network model to recon-
struct the input data. Then, according to a score function defined by comparing the
input data and the reconstructed one, classify each sample as normal or anomalous.

• Bayesian networks-based [39]: it is an approach used in the multi-class setting.
Bayesian networks are a graphical probabilistic model that represents the depen-
dency between data features in which it is applied throw a direct acyclic graph.

• Support vector machine based [97]: Support vector machine is a linear classifi-
cation method using a kernel function to map training data in a multivariate space.
Then, each test instance is checked if it falls into the training region and determines
whether it is anomalous.

• Rule-based [27]: It learns the rule that captures the system’s normal behavior by
processing the training data and then considers anomaly the testing data which are
not covered by any rule. It works well both for multi-class and one-class settings.

2.2.4.2. Nearest Neighbors Distance-Based

The nearest neighbors distance-based anomaly detection technique [117] checks the num-
ber of the neighbors of data, which is defined by a radius. A value is considered an
outlier if it does not have enough points in the neighborhood. It can be defined as a
region of a size determined by an input parameter around the considered value. This
method depends on a Multi-dimensional Index, which controls whether the neighborhood
of each data contains enough points to be considered not anomalous. Nearest neighbors
distance-based methods also scale well to multidimensional space. A problem can occur
if the dataset contains dense and sparse regions because the detection is based on a single
value of a custom parameter. The values in dense areas can be classified as normal, and
the values in sparse regions can be classified as anomalous increasing the number of false
negatives and false positives, respectively.

2.2.4.3. Clustering-based

The clustering-based anomaly detection technique [83] works by grouping similar data
into clusters. It is based on the projections of the data into a multidimensional space,
and the model, by analyzing the cluster’s density, can classify each point as normal or
not. There are three different approaches to analyzing the cluster. The first is based

2| Background 19

on assuming that normal data belongs to a cluster while anomalies do not. The second
approach is based on the fact that the more a point far from the cluster centroid, the
more is anomalous. Given that, it is assigned to each point an anomaly score. A limit of
this approach is that if anomalies are mapped in small clusters, they are not noted. To
solve this issue, the third approach is introduced, which analyzes each cluster’s density. If
data are mapped in small or sparse clusters are considered anomalous instances. On the
other hand, normal data are mapped into large and dense clusters. The clustering-based
approach works well with unsupervised modality and is fast since, usually, each instance is
compared with a small number of clusters. The limit is that it is highly dependent on the
clustering algorithms, which are not always optimized for anomaly detection problems.
The clustering-based technique may seem similar to the nearest neighbor distance-based
one, but they exploit two different aspects. One evaluates each instance concerning the
belongingness to a cluster, while the other analyzes each instance concerning its local
neighbors.

2.2.4.4. Statistical

The statistical and probabilistic technique [71] is based on modeling data using different
distributions and checking how data is probable to belong to the distribution. In other
words, it is based on modeling data based on its statistical properties and using this
information to estimate whether a test sample comes from the same distribution as the
training data or not, being anomalous. According to the technique used, the statistical
approach can be classified as parametric or non-parametric. For the parametric technique
is assumed that a parametric distribution with known parameters and probability distri-
bution normal data are generated. Then a statistical hypothesis test on the distribution
is performed to get the anomaly score of the test instance. Gaussian [90], and Regression
[74] model-based are two examples of the parametric technique. Instead, it is called non-
parametric, the technique that exploits the nonparametric statistical model. With this
technique, the model is not defined a priori but is determined by making some assump-
tions regarding the data. Examples of non-parametric analysis are histogram-based [55]
and kernel function-based [102] models.

2.2.4.5. Ensemble

In addition to being used alone, these techniques presented above can be combined in the
technique known as ensemble [15]. It is an anomaly detection technique that applies
together different algorithms, like predictive or clustering, to classify each data point.
Implementing a voting system combines the result of dependent or independent anomaly

20 2| Background

detection algorithms to obtain a unique result. It can improve the overall success of
detection, but according to the methods used, it can significantly increase the complexity
and the computational time.

Figure 2.6: Ensembre anomaly detection technique

For example [51], this technique is very powerful in datasets that contain different types
of anomalies. It could happen that a technique performs well in finding a certain type of
anomaly but cannot find one of another type. Therefore, combining this technique with
one that behaves oppositely can improve anomaly detection accuracy.

2.2.5. Anomaly Detection Output and Evaluation

The core of anomaly detection algorithms is to detect values that deviate consistently from
normal behavior. Even though there are a lot of algorithms and methods for anomaly
detection, the output produced could be of two types:

• Labels: it consists of assigning a label directly to each test instance, classifying if
it is normal or anomalous.

• Scores: scoring techniques assign a score to each test instance representing the
degree of anomaly. The more the score is high, the more it could be anomalous.
Then, by analyzing the score is possible to determine the classification by using a
cutoff threshold as a limit value.

Since the score indicates the degree of the anomaly of each sample, it must be evaluated
to define if a value has normal or abnormal behavior. So, a good anomaly detection
algorithm has to determine an optimal threshold, typically computed on a small portion
of the dataset and then applied over the entire dataset. The threshold represents a limit
value; the input data is considered anomalous if the score exceeds it. This means that
decreasing the threshold value increases the number of positives. On the other hand,
by increasing the threshold value, the number of detected anomalies decreases. This

2| Background 21

value sets the optimal trade-off between false positives and false negatives. There are
different techniques to compute a dynamic threshold that works differently according to
the distribution and the characteristic of the dataset on which the threshold is computed
[111].

2.2.5.1. Median Absolute Deviation

The Median Absolute Deviation (MAD) statistic is used in the anomaly detection field
to set the threshold. It is a measure of how spread out a set of data is. This method is
applied to a validation set of data to set the threshold value before the testing phase. It
is essentially based on the median, which is the data value in the middle of a list of data
ordered in increasing order. The median is less affected by the tail values than the mean.
So, it is used instead of the mean when the deviation needs to be less affected by extreme
value in the tail.

With the MAD method, the threshold value is calculated by the formula:

MAD = 1.4826 ·median(|score−median(score)|)

threshold = median(score) + thfactor ·MAD

Where MAD is the median absolute deviation from the score and the relative median
value multiplied by a constant, and thfactor is a constant that can assume different values
to increase or decrease the threshold. A further clarification is about the constant 1.4826
in the formula. The MAD value can be used similarly to the standard deviation for the
mean. To use MAD as a consistent estimator for the estimation of the standard deviation,
the correlation is:

σ = k ·MAD

Where k is a scale factor depending on the distribution. In this specific case, the scale
factor used is the one corresponding to the normal distribution and is defined as:

k =
1

(Φ−1(3
4
))

≈ 1.4826

Where Φ−1 corresponds to the inverse of the cumulative distribution function for the
standard normal distribution [62].

A possible limitation of the MAD method is caused by the presence of outliers in the
dataset on which the method is applied. If there are a lot of outliers, the median is
located outside the normal data.

22 2| Background

Figure 2.7: MAD threshold method applied on a validation anomaly score distribution

2.2.5.2. Inter-Quartile Range

The Inter-Quartile Range (IQR), shown in Figure 2.8, is a common method to find outliers
in a data set. Using IQR, the validation dataset is split into four equal parts called
quartiles, determined by three different values:

Q1 = quartile(score, 0.25)

Q2 = quartile(score, 0.50) = median(score)

Q3 = quartile(score, 0.75)

The difference between Q3 and Q1 is called Inter-Quartile Range:

IQR = Q3 −Q1

A decision range is defined to detect the outlier using this method, and each point outside
this range is considered anomalous. The range is given as follows:

LowerBound = Q1 − thfactor · IQR

UpperBound = Q3 + thfactor · IQR

2| Background 23

Where thfactor is a constant that can assume different values to increase or decrease the
threshold. But, given that the score as it is calculated represents how much a value is
anomalous and the lower the score is, the lower the probability that the corresponding
value is anomalous, it does not make sense to consider the lower bound. So, the threshold
is:

threshold = UpperBound = Q3 + thfactor · IQR

Also, the IQR method is affected by outliers. Problems may occur if Q3 is located within
outliers.

Figure 2.8: IQR threshold method applied on a validation anomaly score distribution

2.2.5.3. Standard Deviation

Another method used to find a good threshold in anomaly detection is Mean and Standard
Deviation (STD). It consists of calculating the mean and the standard deviation of the
score of the validation set. Then the threshold is defined as:

threshold = mean(score) + thfactor · std(score)

Where thfactor is a constant that can assume different values to increase or decrease the
threshold.

STD method is very sensitive to outliers. Only a few outliers directly affect the mean and
the standard deviation value.

24 2| Background

Figure 2.9: STD threshold method applied on a validation anomaly score distribution

2.2.5.4. Max Value

Another intuitive approach that can be used is to set the maximum score value of the
validation set as a threshold. The intuition is that since it is composed of only normal
data, all the score values of the validation set are acceptable. When this approach is used,
it must be checked on the training set. Suppose the validation and training data are very
similar, so much so that there is no difference by overlapping them. In that case, it could
happen that samples from the training set might be marked as anomalous, which is a
contradiction since all the training data are normal. So, before applying the threshold
to the test score, there is a check on the training set, and if some anomalous data are
detected, the threshold is increased to the max value of the training set.

This technique cannot be used if the dataset on which the threshold is calculated contains
outliers. This is because only a single outlier that deviates consistently from other score
values generates a threshold too high to evaluate the score effectively.

2.2.6. Threshold Related Work

The thresholding techniques just presented are those exploited in the thesis experiments.
However, since thresholds are fundamental to evaluating the anomaly score and directly
impact the anomaly detection results, several available works propose different techniques.

The work in [112] uses log-likelihood, [10] shows the effectiveness of IQR (Interquar-

2| Background 25

tile Range) both in terms of time required for training and ability to detect anomalies
when compared with Elliptic Envelope and Isolation Forest. [46] uses IQR (Inter-Quartile
Range), MAD (Median Absolute Deviation), and STD (Standard Deviation), as they are
among the most used automatic thresholding techniques.

The work in [82], which employs LSTM-based autoencoders for unsupervised anomaly
detection, sets the threshold value as the 99.9% quantile of the anomaly scores computed
on the test data. The work in [101] uses Graph Neural Networks and LSTMs to consider
both the correlation among time series captured from different sensors and the sequential
dependency in the temporal dimension. It sets the threshold to the maximum value of the
anomaly score computed with an ad hoc validation data set. The study does not specify
the thresholding approach used in the compared methods (LSTM-VAE, KNN, and AE).
The work in [40] proposes an approach for detecting anomalies in multivariate telemetry
time series using LSTMs and a nonparametric dynamic thresholding method that does
not assume a specific underlying distribution of the anomaly scores. The method relies on
the standard deviation of the smoothed prediction errors and on a single parameter (z),
which is set experimentally and shown to have little impact on performances. The work in
[64] computes the threshold as the cut-off value leading to the optimal separation between
normal and anomalous data in the test set. Usad [7] is another unsupervised anomaly
detection approach for multivariate time series data, which selects the threshold as the
value that maximizes the F1 score on the test set. The work in [98] exploits the Extreme
Value Theory [93] for determining the threshold without resorting to assumptions in the
data distribution. Their approach requires tuning two parameters selected empirically,
but the effects of their variation are not studied in depth.

2.3. Works on Data

Once retrieved, data cannot be used just as they are but have to be checked and trans-
formed to improve the data quality. Therefore, data must be split into three parts to
train, validate and test the AI model.

2.3.1. Data Preprocessing

After performing different transformations, the data preprocessing phase takes in raw
input data and gives output data ready to be split into training, validation, and test set.

It is composed of three different stages:

1. Data Cleaning: In this stage, there is a check for missing values, represented by

26 2| Background

timestamps with no corresponding values. To solve this issue, there are two different
methods[43]:

• Ignoring missing values : If the dataset is huge, numerous tuples with missing
values can be deleted. Another type of deletion can be done on datasets with
multiple features where features characterized by a high percentage of missing
data can be deleted. The advantage is to get a more accurate AI model. But,
on the other hand, there is a loss of information.

• Fill in missing values : Instead of ignoring missing values, another approach is
to replace them with other values. To achieve this, many methods exist, such as
filling them manually, predicting them using regression methods, or replacing
them with the mean, mode, or median. These are commons approach when
the dataset size is small and prevent data loss by deleting some timestamps or
features. But, it introduces some approximations.

2. Data Integration: In this stage, data from multiple sources are merged into a
single and larger dataset. Data Integration is not mandatory but is helpful to get a
complete dataset.

3. Data Transformation: Once the data have been cleaned and integrated, they
can be encoded and transformed. First, non-numerical values must be encoded
in numerical ones, or columns containing non-numerical data can be eliminated.
Then, data could be transformed to facilitate the ML model optimization process
and increases the probability of obtaining good results.

The main methods used for data transformation [4] are:

• Normalization: It is a common approach to re-scale features with a value
between two expressed ones, typically between 0 and 1. For each feature,
values are transformed according to the formula:

xnorm =
x−min(x)

max(x)−min(x)
(u− l) + l

Where xnorm corresponds to the normalized value, x is the value to transform,
min(x) and max(x) are, respectively, the minimum and the maximum value
of that feature, and l and u corresponds respectively to the lower bound and
the upper bound.

• Standardization: It is a common approach to ensure that the mean and the

2| Background 27

standard deviation are 0 and 1, respectively. It is calculated as:

xstand =
x− µ(x)

σ(x)

Where xstand corresponds to the standardized value, x is the value to transform,
and µ and σ are, respectively, the mean and the standard deviation of the
feature values.

The two forms of data transformation have distinct advantages and purposes [94].
Standardization is commonly used when the data to transform fit a Gaussian dis-
tribution; if not, normalization is better. Another significant difference concerns
the output data. Normalization forces them to be in range, typically between zero
and one, while standardization has no range limitation. This is very useful when
data with different scales have to be compared end used together. One aspect of
preferring standardization over normalization is the presence of outliers in the data;
normalization by scaling data to a small range is less resistant to outliers.

2.3.2. Data Splitting

To use a dataset in a machine learning model, it has to be split into three parts used to
train, validate and test the model.

Training set :

It is the data set used to train and make the model learn features and patterns in the data.
It is processed in the training phase, where the same dataset is fed to the neural network
architecture repeatedly, one time per epoch. The model continues to learn the features
of the data and checks how accurately it has learned according to the loss function, a
function that computes the distance between the input and the output and indicates
how well a model is learning. The training set can be structured in different ways. For
Neural networks that have to process images, it is composed of relevant images that best
represent the feature that the model needs to learn. On the other hand, for sequential
decision trees and random forests, the dataset would be composed of raw data that get
classified or processed to extract useful information. In the anomaly detection field, the
training dataset comprises only non-anomaly data because the neural network has to learn
only how normal data behave.

28 2| Background

Validation set :

The validation dataset, separated from the training set, is used to validate the neural
network model performance during the training. The validation process also gives infor-
mation on whether the model is learning well during the training or not. In the anomaly
detection field, it contains only the non-anomalous data, and usually, on it, the threshold
is calculated to evaluate if a value predicted by the model is anomalous or not.

Test set :

It is a separate data set used to test the model after completing the training phase. It
is composed of data to be processed by the neural network in the way learned during
the training phase. In anomaly detection, the test set is composed of both normal and
anomalous data.

Figure 2.10: How dataset is split

2.3.2.1. Problem and Technique

Data splitting is one of the most crucial phases to making a model learn accurately. It is
a delicate process, and there is not only one correct way to do it. According to the feature
of the data, starting from the entire dataset, there are several techniques [28] to split it
into training, validation, and testing sets.

• Simple random: Samples from the entire dataset are picked randomly and put in
the train, the validation, or the test set according to the ratio set.

• Stratified random: Before sampling randomly from the dataset to form the three
parts, the dataset is split into small, not overlapping groups based on common

2| Background 29

features. Then, data are randomly chosen according to the proportion of the group’s
size to the entire dataset. Compared with the simple random technique, it has the
advantage of representing a more accurate subdivision of the dataset, and it consents
to obtain the same results with fewer data in the training set.

• Temporal: For each dataset where time is involved, and the scope is to predict
something in the future, the technique is to split according to time. Most recent
samples are used for the validation and test sets, while the training set comprises
the oldest data.

Both simple and stratified random splits are used in image analysis, while on datasets
based on time, like time series, the technique used is the Temporal one.

(a) Random splitting (b) Temporal splitting

Depending on the analyzed dataset, you must apply the proper techniques to avoid some
problems[56]. The first problem that can be verified is the overfitting. It happens when
the model does not learn but almost memorizes the training data. The consequence is
that the model is very accurate on the training data but inexact on the testing data
because it cannot generalize the new data. Furthermore, with overfitting, the model
learns random fluctuations or noises in training data instead of the relationship between
different features. This noise is a characteristic of the data and, being casual, it does not
be learned during the training. The opposite problem is the underfitting. It happens
when the training set is too poor, and the model does not have enough training data to
learn. With underfitting, the model cannot even reconstruct the training data accurately,
and consequently, the result is that the model cannot be generalized on test data. In
addition to being a data-splitting problem, it could be caused by an overly simple model
that cannot learn. Another relevant problem to consider and pay attention to is the
low-quality of the training set. To improve the model’s performance, the quality of
the training data is a crucial point. The model cannot perform well if training data is
’garbage’. A slight variation or error in the training set can lead to significant errors in

30 2| Background

the model performance. This happens because the model learns wrongly, so it cannot
generalize the results on the test data.

To solve and attenuate these problems, the choice of the size of the three parts and
the data-splitting technique is crucial. There is no unique choice regarding the training,
validation, and test size. The percentage of the splitting has to consider the following:

• Computational cost for the training and the evaluation of the model

• Train and test representativeness to mitigate the overfitting and underfitting prob-
lems

2| Background 31

2.4. Result evaluation metrics

This section presents the different techniques used to evaluate how different anomaly
detection models detect anomalies. Each technique is based on the confusion matrix
which is used to analyze the error made by the machine learning model. The confusion
matrix is very useful for evaluating the quality of the classification model. Specifically, it
highlights where the model goes wrong, in which instances it responds worse, and which
ones are better.

Figure 2.11: Definition of confusion matrix

The confusion matrix is composed essentially of four cells where each cell assumes a value
according to the relation between the real value and the predicted one. The four categories
are:

• True Positive (TP): refers to a sample belonging to the positive class being clas-
sified correctly;

• True Negative (TN): refers to a sample belonging to the negative class being
classified correctly;

• False Positive (FP): refers to a sample belonging to the negative class but being
classified wrongly because predicted as a positive one;

• False Negative (FN): refers to a sample belonging to the positive class but being
classified wrongly because predicted as a negative one;

32 2| Background

2.4.1. Threshold-independent evaluation

To evaluate how an anomaly detection model is able to detect anomalies independently
from the threshold value, the Receiver-Operating-Characteristic (ROC) and the Precision-
Recall (PR) curve are used. They both evaluate an anomaly score, obtained by an infer-
ence model, to the ground truth value. The ROC curve [78] is a plot that represents the
correlation between the false positive rate on the x-axis and the true positive rate on the
y-axis for several different thresholds. The true positive rate is defined as:

TPR =
TP

TP + FN

while the false positive rate is calculated as:

FPR =
FP

FP + TN

It is an effective method of evaluating the performance of anomaly detection classification.
When analyzing a ROC curve, the interest is placed on the area subtended by the curve
itself, called the AUROC. It represents how much a model can distinguish between classes.
The higher its value, the better the model can distinguish anomalies from normal values.

Figure 2.12: Example of ROC curve obtained after processing the test Exathlon dataset
[46] with the CONV-AE models. In that case, the AUROC value is equal to 0.89538

2| Background 33

Another approach similar to the ROC curve is the PR curve [20]. PR curve is a plot that
represents the correlation between the precision on the y-axis and the recall on the x-axis,
for different thresholds. The precision is computed as:

Precision =
TP

TP + FP

while the recall is:
Recall =

TP

TP + FN

The precision-recall curve shows the tradeoff between precision and recall for different
thresholds. Greater the area under the curve, the better the recall and precision are.

2.4.2. Threshold-dependent evaluation

To evaluate how different anomaly detection methods work according to different thresh-
olding techniques, the confusion matrix is computed. It is computed by comparing the
ground truth value and the anomaly score after applying the threshold to it. So, it com-
pares the real anomalies to the predicted ones. Starting from the confusion matrix, other
different metrics can be calculated to compare the result of the different models.

1. Precision: it corresponds to the proportion of true positives to all predicted positive
values predicted

Precision =
TP

TP + FP

2. Recall: it corresponds to the proportion of the positive value predicted correctly
to all the positive presented in the test set

Recall =
TP

TP + FN

3. Accuracy: it corresponds to the proportion of samples correctly classified to all
samples present in the test set

Accurancy =
TP + TN

TP + FP + TN + FN

4. F1-score: it represents the harmonic mean between the precision and the recall

F1Score =
2× Precision×Recall

Precision+Recall

34 2| Background

5. False Alarm Rate (FAR): it is the proportion of false positive samples to all the
negative samples in the test set

FAR =
FP

FP + TN

6. Missing Alarm Rate (MAR): it is the proportion of false negative samples to
all the positive samples presented in the test set

MAR =
FN

FN + TP

35

3| Model design

This section presents different types of neural networks, which are the basis of the im-
plementation part of the thesis. Some models are based on autoencoder structures like
LTSM-AE, Variational-AE, Convolutional-AE, or USAD, and others, like LSTM or ELM-
MI, are based on more straightforward methods.

3.1. Long Short-Term Memory

Recurrent neural networks are a particular type of neural network where the output of a
step is fed as input in the next one. The problem with standard RNNs is the long-term
dependencies that do not allow the RNN to predict the data stored in long-term memory.
Long-term memory is used to save into the model the data that happened before the series
that is being analyzed. To solve this issue, it is introduced and used the Long Short-Term
Memory (LSTM) [65] recurrent neural network. LSTM, thanks to its structure, can retain
information about a quite long period and can learn long-term dependencies in sequential
data belonging to that period. Due to this feature, they are commonly used for speech
recognition, time series forecasting, and language translation.

3.1.1. Architecture

To solve the long-term problem of RNN, LSTM has a memory cell that can hold informa-
tion for an extended period. Three gates control the memory cell: the input, the forget,
and the output gate. These gates decide what information to add and remove from the
memory cell.

• Input Gate: it identifies the essential features and elements that must be added
to the memory cell.

• Forget Gate: it decides what information contained in the cell memory should be
maintained and forgotten.

• Output Gate: it is the component in charge of extracting useful information from

36 3| Model design

the current state to be presented as output.

Figure 3.1: LSTM Structure [35]

The LSTM layer introduced before can be used in different configurations as a part of the
encoder or the decoder in an autoencoder network or in a simpler structure in a model able
to predict a future time sequence starting from a known one. In all the configurations,
LSTM layers can be used alone or stacked with others. Stacking LSTM layers makes the
model deeper and more accurate. The addition of layers adds levels of abstraction of the
input over time. Using a neural network with a single layer can be obtained the same
result as a neural network with stacked LSTM layers. To do so, the number of neurons of
the single layer has to be increased, but the execution time of the training is increased.

3.2. Autoencoder

Autoencoders are artificial neural networks used to learn data in an unsupervised way.
Autoencoders aim to learn a lower-dimension representation for higher-dimensional data
by training the network to capture the most crucial features of the input data.

3.2.1. Architecture

All types of autoencoders have a simple architecture made of three different components:

3| Model design 37

Encoder The encoder is the module that compresses the input data into a represen-
tation smaller than the original. Its output is a vector that corresponds to the latent
space.

Bottleneck or Latent Space The bottleneck is the smallest module composed of the
data obtained by the encoding phase. It is the most important part of the network because
it contains the compressed knowledge input representation. A compressed representation
prevents the network from memorizing the input and overfitting the data. On the other
hand, a too-small bottleneck would restrict the amount of information storable, and the
input data, encoded, can not be correctly reconstructed by the decoder.

Decoder It is the module with the opposite function of the encoder. It takes the
compressed data of the bottleneck and reconstructs them into the original input data.
Typically, the decoder module comprises the same encoder components in reverse order.

Figure 3.2: Autoencoder architecture representation

3.2.2. Autoencoder parameters

Before training, the phase in which the neural network learns the model, there are four
hyperparameters to define:

1. Bottleneck size: The bottleneck size decides how much the data has to be com-
pressed, and it can also act as a regularization term.

2. Number of layers: This parameter represents the depth of the encoder and the
decoder. A higher depth increases the model’s complexity, while a lower depth is

38 3| Model design

faster to process. A depth model increases the level of abstraction of the data in
such a way as to highlight the main features of the input data.

3. Number of nodes per layer: According to the number of nodes in the middle,
autoencoders can be classified as Undercomplete Autoencoders where the dimension
of the layer in the middle is less than the input and output one, and as Overcomplete
Autoencoders where the size of the layers in the middle is greater than the input
end output one. Typically in undercomplete autoencoders, starting from the first
encoder layer to the latent space, the number of nodes decreases gradually, while
the decoder has the opposite behavior.

4. Loss function: When data are encoded and then decoded by the autoencoders
module, some information is lost. Therefore lossy is a crucial feature of autoen-
coders, and one of the training scopes is to reduce the loss of each epoch according
to the loss function. The loss function corresponds to the reconstruction loss and
represents the input and output data differences. Typically, it can be implemented
in two different ways according to the application.

• Binary Classification loss function: Is used in predictive modeling problems
where data are assigned one of two categories, and the scope of the function is
predicting the probability of the data belonging to one of two categories. The
common function used is binary cross-entropy.

• Regression loss function: Is used in a regression predictive modeling problem
that involves data prediction. Typically it consists of comparing the original
data with the reconstructed one. There are a lot of different implementations
[48] as:

– Mean Absolute Error (MAE): it is the absolute difference between the
original data and the predicted one defined as:

loss = MAE =
1

N

N∑
i=1

|xi − yi|

where xi is the original data, yi is the prediction, and N is the number
of samples. It is used due to its simplicity and because it is less sensitive
toward outliers. Conversely, a disadvantage is that all errors are considered
equally because of the meaning calculation.

– Mean Squared Error (MSE): is the squared difference between the input

3| Model design 39

and the reconstructed data. It is defined as:

loss = MSE =
1

N

N∑
i=1

(xi − yi)
2

where xi is the original data, yi is the prediction, and N is the number
of samples. It is a method used because it is sensible to outliers, but a
disadvantage is its quadratic component. If the model makes a single bad
prediction, with xi − yi greater than 1, the quadratic part of the function
amplifies the error.

3.3. Variational Autoencoder

Variational Autoencoder (VAE) is a particular type of autoencoder created to improve
its effectiveness and add new features as the generative characteristic of the latent space.
Autoencoder generally has a non-regularized latent space that can be used only by the
decoder to reconstruct the input data. In a VAE, instead of outputting the vector in the
latent space, the encoder gives in outputs two different vectors representing the mean and
the variance of the distribution of the latent space. VAE, by sampling from mean and
variance and with its loss function, forces the latent space to be normally distributed in
a regular and continuous way

3.3.1. Architecture

The structure of a VAE is the usual architecture of an autoencoder. An encoder, a
decoder, and the latent space make it. The decoder works similarly to the one in AE;
it takes the content of the latent space and reconstructs it into the input. The relevant
differences concern the latent space and the encoder. The latent space is not the output
of the encoder; it is obtained by sampling from the mean and the standard deviation
obtained by the encoder. The encoder works similarly to the AE, reducing the input size,
but it does not return directly in the output the latent space.

3.3.2. Loss Function

The loss function of a VAE is different from a standard autoencoder one. It is composed
of two components:

loss = ReconstructionLoss+ SimilarityLoss

40 3| Model design

Figure 3.3: VAE structure representation

The reconstruction loss corresponds to the loss of a standard autoencoder and represents
the differences between the input and the output data. Less is its value, and the more the
network has learned. The similarity loss is a significant parameter introduced in VAE.
It corresponds to the Kullback-Leibner divergence between the latent space distribution
and a standard Gaussian with zero mean and unit variance. Thanks to this function
and another, called the reparameterization trick, the latent space is normally distributed,
smooth and continuous. The Kullback-Leibner divergence or KL divergence is a
type of statistical distance. It measures how a probability distribution is different from
another.

KL divergence Definition: For continuous probability distribution P and Q defined
on the same probability space, X, KL divergence is defined as [116]:

DKL(P||Q) =

∫
x∈X

P (x)log

(
P (x)

Q(x)

)
= −

∫
x∈X

P (x)log

(
Q(x)

P (x)

)
And the probability density function of Normal multivariate distribution is:

p(x) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(µ1 − µ0)

TΣ−1(µ1 − µ0)

)
So, by applying the KL divergence definition to two normal distributions, N (µp,Σp) and
N (µq,Σq), it is obtained:

DKL(p||q) = Ep[log(p)− log(q)]

3| Model design 41

=
1

2
Ep(log

(
|Σq|
|Σp|

)
− (x− µp)

TΣ−1
p (x− µp) + (x− µq)

TΣ−1
q (x− µq))

=
1

2
Ep(log

(
|Σq|
|Σp|

)
− 1

2
Ep((x− µp)

TΣ−1
p (x− µp)) +

1

2
Ep((x− µq)

TΣ−1
q (x− µq))

=
1

2
log

(
|Σq|
|Σp|

)
− 1

2
Ep((x− µp)

TΣ−1
p (x− µp)) +

1

2
Ep((x− µq)

TΣ−1
q (x− µq))

Then, since (x− µp)
TΣ−1

p (x− µp) in the second term ∈ R, it can be written as:

tr(x− µp)
TΣ−1

p (x− µp) where tr{} is the trace operator. Now it is obtained that:

=
1

2
tr{Ep[(x− µp)

T (x− µp)]Σ
−1
p }

=
1

2
tr{ΣpΣ

−1
p } =

1

2
tr{Ik} =

k

2

By combining all this is obtained:

DKL(p||q) =
1

2

(
log

(
|Σq|
|Σp|

)
− k + (µp − µq)

TΣ−1
q (µp − µq + tr{Σ−1

q Σp}
)

In the VAE case, KL divergence is applied to a standard normal distribution (with zero
mean and unit variance) and the normal distribution with mean and variance calculated
by the network encoder. So, the KL divergence becomes calculated as follows:

DKL(p||N(0,I)) =
1

2

[
µ2
p + Σ2

p − k − log|Σp|
]

3.3.3. Reparametrization trick

The VAE calculates parameters by sampling from a distribution with mean and variance
calculated by the encoder network. This process is not differentiable; in other words,
each network component must be deterministic because it can cause problems during the
backpropagation. This issue is easily solved by applying the reparameterization trick to
the sampling phase used to generate the latent space. The reparametrization trick treats
the random sampling as a noise term sampled from a Gaussian distribution with zero
mean and unit variance. So, the noise term is independent and not parameterized by the
model. According to the reparameterization trick, the diagram changes in this way 3.4:

When z is sampled stochastically from the parameterized distribution, the propagation
flows through a stochastic node. Reparameterization allows a path through deterministic

42 3| Model design

Figure 3.4: Reparameterization trick effect

nodes and relegates the stochastic component to a noise vector separated from the flows.
It works thanks to a property of Gaussian distribution that allows scaled sampling from
a Gaussian with zero mean and unit variance to a distribution with other mean and
variance. z is obtained by:

z = µ+ σ ⊙ ϵ

where ϵ ∼ N (0,1) and z is equivalent to z̃ ∼ N (µ, σ).

3.3.4. Latent Space

The latent space is the core of a VAE. To make generative processes possible, the regularity
of the latent space can be expressed through two main properties:

• Continuity: It means that two close points in the latent space, when decoded,
should not give two completely different contents but something with some features
in common.

• Completeness: When decoded, z random value sampled from the latent space
generates a meaningful output.

To ensure continuity and completeness, it is not sufficient that the decoder input is a
distribution instead of being simple points. Furthermore, without a well-defined regu-
larization term, the model behaves almost like a standard autoencoder. To ensure these
two properties, the covariance matrix and the mean of the distribution returned by the
encoder must be regularized. The regularization is done by enforcing distributions to be
closer to a normal one with zero mean and unit variance. In this way, the covariance ma-
trices are closed to the identity, preventing punctual distribution, and the mean is close
to 0, preventing points from being too far apart from each other.

3| Model design 43

Figure 3.5: Latent space view without and with regularization

Figure 3.6: Relationship between neighbor points in the latent space

Moreover, continuity and completeness, obtained with regularization, tend to create a
relationship over the information contained in the latent space. In other words, a point
of the latent space between the mean of two encoded distributions should be decoded in
something that is somewhere between the data encoded in the two distributions.

44 3| Model design

3.3.5. Difference between AE and VAE

Simple AE and VAE, being both autoencoders, have the same structure. They both be
composites with an encoder, a decoder, and the latent space. The only difference is how
the latent space is obtained and its properties.

AE

• The latent space is composed of a
compressed transformation of the in-
put data encoded. Each input data
has a deterministic mapping into the
latent space. This means that differ-
ent training on the same dataset al-
ways generates the same latent space.

• The latent space being not regular-
ized is not complete. This means that
it has some discontinuity.

• The latent space is not able to gener-
ate new output. This means that only
data encoded into the latent space
can be decoded, and a random sam-
ple from the latent space generates a
non-significative output.

VAE

• The latent space obtained by sam-
pling the mean and the variance is de-
termined in a non-deterministic way.
This means that different training on
the same dataset can create a differ-
ent latent space shape

• The latent space does not have any
discontinuity, so it is continuous and
smooth. This means that data are
not encoded in separated and distant
clusters corresponding to their fea-
ture, but the cluster in which they are
encoded are near and intersect. In the
intersection of the cluster are encoded
the data with mixed features, while in
the center of each cluster are encoded
data with ’pure’ features.

• Due to the feature of its latent space,
the most significant difference is the
generative ability. This means that
a random sampling decoded from the
latent space generates a new output
unrelated to an input sequence.

3.3.6. Variational Autoencoder approaches

Due to how they manage the latent space, Variational Autoencoders, compared to other
autoencoders, can be used in the anomaly detection field using four approaches.

• Reconstructed value: it is the only approach that can be used for all autoencoders.

3| Model design 45

Figure 3.7: Difference between AE (deterministic) and VAE (probabilistic)

It compares the ground truth to the processed and reconstructed data and detects
anomalies according to the comparison results and the threshold.

• VAE combined with K-nearest neighbors: it is an approach that analyzes the latent
space distribution with the K-nearest neighbor method [34].

• VAE combined with isolation forest: it is an approach that analyzes the latent space
distribution with isolation forest [67].

• VAE with re-encoding: it is an approach that compares two different latent space
distributions. The first is obtained by a single encoding, while the second is obtained
after an encoding-decoding-encoding process.

The following sections present each method concerning the latent space in depth.

3.3.6.1. Latent space methods

VAE can detect anomalies by analyzing the latent space distribution, while non-variational
AE cannot. This is because of the different characteristics of the two models described in
Section 3.3.5. VAE latent space, contrary to an AE one, is regularized, smooth, continu-
ous, and has generative properties. To better understand these differences, it is necessary
to analyze and compare the latent space distribution obtained by the two algorithms.

As Figure 3.8 shows, the scatter plots of the two latent spaces obtained using VAE and
AE have very different shapes. They both represent the same encoded time series from
the SKAB dataset, which contains normal and anomalous data. For a better comparison,
samples taken from the time series with the same value are represented in the plots with
the same color. In addition, the two plots represent anomalous samples using crosses and

46 3| Model design

(a) AE latent space distribution (b) VAE latent space distribution

Figure 3.8: The two figures compare the latent space of a simple AE to the latent space
of a VAE. The color represents the value of each sample before being processed by the
model. The shape of each point corresponds to its classification: the cross represents the
anomalies, while the bullets are the normal ones. They are obtained by processing the
same time series taken from the SKAB dataset [52]

normal samples using points. The first difference between the two plots is the distribution
of the points. For VAE, normal points are mapped compactly, assuming a distribution
with zero mean and unit variance, and the more the input data are similar, the more are
mapped closer. Instead, anomalous points are mapped sparsely and are easy to isolate
and detect. Concerning the AE latent space, it is immediately noticeable that it is non-
regularized. As a result, normal points are mapped sparsely and more distant compared
to the normal points in the VAE latent space, with the consequences explained in Section
3.3.4. The principal feature that allows anomaly detection by analyzing the latent space
is where anomalous and non-anomalous data are mapped. AE latent space, normal data
take up all the space, and outliers are mapped together, making it more difficult to
efficiently apply algorithms based on density distribution or nearest neighbor distance.
On the other hand, in VAE latent space, all normal data are mapped close together,
being similar data, and anomalous data are mapped far away from that dense region. For
this reason, anomalies can be separated better from normal points.

3.3.6.2. VAE and KNN

The K-nearest neighbors (KNN) [34] is a non-parametric classification method. It can be
applied to identify anomalies directly on the time series or on preprocessed data. In this
case, it is used to analyze the latent space generated by the encoder to detect outliers.

3| Model design 47

Using it with VAE is very effective since the encoder is able to amplify the difference
between normal and anomalous data. Given a sample to be classified, the algorithm
forms its neighborhood by retrieving its k nearest neighbors. Then a majority voting
system is used among data in its neighborhood to classify it. To define the concept of the
nearest neighbor, it is important to define a distance metric. A metric [22] must respect
four properties:

• non-negative: d(x, y) ≥ 0

• identity: d(x, y) = 0 if and only if x = y

• symmetry: d(x, y) = d(y, x)

• triangle inequality: d(x, z) ≥ d(x, y) + d(y, z)

where x, y and z represent three different points, and d(x, y) refers to the distance between
two points. The distance metrics most used in KNN are the Euclidean and the Manhattan
distance because they scale well to multiple dimensions [60]. In detail, they are defined
as:

• Manhattan distance [21]: it is the sum of the absolute difference between points
across all dimensions, and it is calculated as:

D(x, y) =
n∑

i=1

|xi − yi|

Where x = (x1, x2, .., xn) and y = (y1, y2, .., yn) are two points in the n-dimensional
space.

• Euclidean distance [110]: it is the shortest distance between two points calculated
as:

D(x, y) =

√√√√ n∑
i=1

(xi − yi)2

Where x = (x1, x2, .., xn) and y = (y1, y2, .., yn) are two points in the n-dimensional
space.

The number of neighbors composing the neighborhood is based only on the parameter k,
so the choice of its value is fundamental for accurate classification. A possible option is to
run the algorithm many times with different k values and choose the one corresponding to
the best results. In the anomaly detection field, based on historical data, the k value can
be stable whether the process is subject to anomalies or whether the anomalies are rare.
So, according to the percentage of anomalies in the entire dataset is possible to set the

48 3| Model design

k parameter. Namely, if the anomalies are rare, the number of neighbors will be greater
than the case with several anomalies [100]. KNN categorizes test samples according to

Figure 3.9: The figure represents the training data distribution represented by the red
and green points and two test samples, colored in blue and orange, which have to be
classified. The color of the training points is chosen according to the contamination

parameter, which determines the percentage of training data to be considered anomalous.
Concerning the test sample, their k-nearest points are retrieved to classify them.

the training set. For classification, the training set is composed of data belonging to
different categories known in advance. This method works well for supervised anomaly
detection, where the training data are labeled anomalous or normal. However, a slightly
different approach must be used in unsupervised anomaly detection, where the training
data comprises only normal data. Therefore, it is necessary to indicate a contamination

term showing the percentage of training data to be classified as anomalous, and it is used
as a threshold. The more the contamination value is small, the higher the threshold is,
and fewer anomalies are detected. Analyzing the 3.9 is useful to understand this concept
better. The figure contains the training data distribution with points colored in green
and red and two test points that have to be classified. According to the contamination

[34] value, the training data are divided into anomalous, colored in red and mapped at
the edges of distribution, and into normal, colored in green. When a test sample has to
be classified is compared with its k-nearest neighbor. The test point colored in orange is
classified as anomalous since the majority of its k-nearest neighbor are anomalous, while
the test point colored in blue is normal, being most of his neighbors normal.

3.3.6.3. VAE and Isolation Forest

Instead of KNN, a latent space analysis can be performed using Isolation Forest [67].
After the encoding phase, it is generated the latent space contains normal data in dense

3| Model design 49

regions and anomalies in sparse regions. Also, Isolation Forest is an effective method that
can be applied directly to the time series. However, since the difference between normal
and anomalous data is amplified after being processed by an encoder, Isolation Forest is
more effective for analyzing the latent space.

Isolation Forest is an unsupervised decision-tree-based algorithm. The concept behind
Isolation Forest is to separate a value from the rest of the distribution. So, it adapts well
to anomaly detection because outliers, being few and different, are easier to isolate.

The process used to isolate each point is called random partitioning. First, it divides the
distribution, which contains the samples to evaluate, into two parts. Then each part is
recursively divided until all points are separated. In that way, a tree is generated, its
root corresponds to the initial distribution, its nodes to the partitioning, and the leaves
to the isolated point. The partitioning is called random because the value to perform
the splitting is casual and different execution generates different trees. By analyzing the
tree, the result is that outliers are more likely to be isolated in early partitions, so the
probability that points in the tree with shorter paths are anomalous is higher. On the
other hand, more random splittings are necessary to isolate normal points because they
are located in dense regions. Thus, they are inserted in the tree with a long path from
the root.

Being a random splitting process, to obtain consistent results, the tree must be computed
several times, and the path length of each point corresponds to the average one over
the number of trees. The Isolation Forest process comprises two phases: fitting and
prediction. The fitting stage takes as input the training set to create the distribution,
which is used to analyze the test instance in the prediction phase. The prediction phase
generates the anomaly score for each test instance, corresponding to the average depth
level of the tree in which the corresponding point is isolated. To evaluate the score, a
threshold is necessary. It is defined by a contamination parameter which indicates the
proportion of outliers in the dataset and is used to set the depth of the tree over which a
point is normal. If the depth in which a test sample is isolated is greater than the limit set
by the threshold, the point is classified as normal. On the other hand, it is an anomaly.

Isolation Forest has some advantages compared to KNN. It utilizes no distance or density
measures to detect anomalies reducing the computational costs [67]. Isolation forest has
a linear time complexity since the execution time increases linearly with the input size
[109], and low memory requirements are necessary to obtain the same result of distance
and density models. Moreover, Isolation Forest can scale well, handling large datasets
and high-dimensional problems.

50 3| Model design

(a) Isolation of an anomalous point (b) Isolation of a normal point

Figure 3.10: The two plots represent the same scatter plot of samples from a normal
distribution. The horizontal and vertical lines are the random split performed by Isolation
Forest, and the red points represent the isolated points.

3.3.6.4. VAE and Re-encoding

VAE with re-encoding is the last anomaly detection method based on the Variational
Autoencoder. It exploits the concepts presented in [114]. Usually, the anomaly detec-
tion methods base on autoencoder models exploits the reconstruction error. First, they
compare the ground true value with the same value processed and reconstructed by the
autoencoder model generating a score. Then they compare the score with a limit value to
detect anomalies. The VAE with re-encoding is based on a completely different approach.
It compares two latent spaces, one obtained after encoding the input sequence and the
other obtained by encoding, decoding, and re-encoding it.

Intuition: Analyzing a sequence reconstructed by a VAE is necessary to understand
why this model works well. In unsupervised anomaly detection, a neural network model
is trained with a training dataset that not contains anomalies. So, the model learns the
normal behavior of the time series and can reconstruct the test sequence in two different
ways. If the test sequence represents normal behavior, the model accurately reconstructs
the sequence. In contrast, if the test sequence represents an unexpected behavior, the
result is that the reconstruction deviates significantly from the input sequence. In that
way, starting from an input sequence x and processing it with the VAE, a new sequence

3| Model design 51

x′ is obtained in output. x′ is similar to x for non-anomalous sequences and deviates
consistently for anomalous sequences. Then, applying an encoding to x′, a re-encoded
latent space is obtained. By comparing it with the latent space, anomalies can be found.
Normal data with a similar value in x and x′ are encoded closer, while outliers, having a
different value in x and x′, are mapped in a different position amplifying their diversity.

Figure 3.11: The figure compares two latent space distributions according to how they are
computed. The left plot represents the latent space obtained after the encoding phase,
while the right one is obtained after a re-encoding. Normal values circled in green are
encoded similarly in the two latent spaces. Instead, the two latent spaces’ anomalous
values circled in red are mapped differently. The figure is obtained by analyzing a file
from the SKAB dataset [52]

Model and score definition: The model used is a VAE. It comprises an encoder that
gives the mean and the variance vector as output, a decoder that decodes the latent space
data, and the latent space obtained by sampling from the encoder output.

Figure 3.12: The structure of the network and the different steps to which each test
sequence is subjected to obtain each variable of the score function.

52 3| Model design

First, the input sequence x is encoded to obtain the µ, σ vector, and the latent space z.
Then the latent space is decoded to obtain the reconstructed data x′. The last step is to
process x′ throw the same encoder used before getting µ′, σ′ vector, and the reconstructed
latent space z′.

In that way, what remains to be done is to define the score function. It can be defined as:

score(x) = α||x− x′||2 + β||z − z′||2

Where α and β are two positive parameters that summed are equal to one and indicate
which part of the score is predominant. In the case of anomaly detection based on re-
construction loss, β is equal to zero to minimize the contribution of the re-encoded latent
space, and α is one. On the other hand, if β is one, by definition, α must be zero, and
the score corresponds only to the mean squared error between the latent space and the
re-encoded one.

3.4. Convolutional-Autoencoder

A Convolutional Neural Network (CNN) is a particular neural network comprising one or
more convolutional layers designed for processed data arrays such as images. CNNs are
commonly used in computer vision to process and classify images but have succeeded in
natural language processing and time series analysis. CNNs are very powerful in image
processing since they are very good at picking up patterns in input images. The power of
Convolutional neural networks comes from the convolutional layers that, stacked on each
other, can recognize the specific feature of the input. A common configuration of CNN is
in autoencoder shape using convolutional and deconvolutional layers.

3.4.1. Architecture

CNNs are composed of convolutional layers. The convolutional layer is visualized as
kernels, which slide over the input images and try to find patterns. Where the part of the
images matches the kernel’s pattern, it returns a large positive value; conversely, if it does
not correspond, the kernel returns zero or a smaller value. The CNN comprises a series
of these layers, an activation function, and a downscaling convolutional layer repeating
many times. Repeating this combination, the network can detect more complex patterns.
In the anomaly detection field, the convolutional layers can be used in Convolutional
Autoencoder for Image Noise Reduction. The anomalous data are seen as noise, so the
model can detect anomalies by comparing the input and the denoise images in the output.

3| Model design 53

The convolutional autoencoder implemented comprises two convolutional layers and two
deconvolutional layers to reconstruct the denoised output image.

Figure 3.13: Convolutional Autoencoder structure

Usually, the convolutional autoencoder works on images where the shape of the input is
H ×W × C where H is the height, W is the width, and C is the number of channels of
the images. To adapt the model to a time series analysis, the input has to be a single
time instant of the time series. So, in the input shape, H corresponds to the window size,
W is the number of features of the multivariate series, and C is equal to one.

3.4.2. CONV-AE vs. LSTM-AE

LSTM and CNN were initially used in different fields; one was created to process data
dependent on time, while the other was designed to process static data, such as images, not
reliant on time. New implementations point out that CNN can achieve LSTM results,
namely predicting sequences, but in a much faster and more computationally efficient
manner [107]. An LSTM model is designed to work differently than a CNN and is used
to process time-dependent data and make predictions given data sequences. In contrast,
CNN is used to exploit spatial correlation in data, so it works well on images. Both
models, especially in an autoencoder configuration, can analyze time series focusing on
different aspects. The LSTM models are focused on the dependency of data on time.
In contrast, due to its characteristic, CNN focuses on analyzing separated and time-
independent images exploiting the correlations between channels of the multivariate time
series. Despite CONV-AE and LSTM-AE being autoencoders, they have considerable
differences [107]. The first concerns the encoder. The encoder of LSTM-AE tries to

54 3| Model design

compress the data into a smaller representation by mapping, in the latent space, similar
points near. On the other hand, the encoder of a CONV-AE tries to extract relevant
patterns and the correlation between the multivariate time series features by applying
several convolutional filters. So, also, the latent space is different. For LSTM-AE, it
contains a compressed representation of the input, while for CONV-AE, the latent space
corresponds to feature maps. Feature maps contain data that help identify relevant input
data attributes. For example, it contains edges, vertical lines, and horizontal lines in the
image analysis. Concerning the decoder, the differences are about how they work. CONV-
AE decoder is made by deconvolutional layers, which implement the opposite function of
the convolutional layer. It is used to upsample input and learn how to fill in details
during the model training process. The decoder of LSTM-AE instead is used to decode
the compressed latent space bringing it back into the data input size.

3.5. Unsupervised Anomaly Detection

Unsupervised Anomaly Detection (USAD) [6] is based on the Autoencoder architecture
with two-phase training. The intuition behind it is to combine the anomaly detection
technique of autoencoder by, in the first phase of the training, comparing input and
reconstructed data and, in the second phase, amplifying the reconstruction error of inputs
containing anomalies.

3.5.1. Architecture

The USAD model is essentially composed of two autoencoders connected to each other.
They have a common encoder, and each autoencoder has its own decoder. Respectively
the two autoencoders are:

AE1(W) = Dec1(Enc(W))

AE2(W) = Dec2(Enc(W))

where W corresponds to the input data, Enc is the typical encoder, Dec1 is the decoder
of the first autoencoder, and Dec2 is the decoder of the second one.

The model needs two phases to be trained as composed of two autoencoders. One aims
to learn and reconstruct the input data. The other is done in an adversarial way where
AE1 tries to deceive AE2 and AE2 tries to recognize if data are real, coming from the
encoder, or reconstructed, coming from the other autoencoder. The two phases are:

1. Autoencoder training During this stage, the two autoencoders are trained with

3| Model design 55

Figure 3.14: USAD training and architecture representation

the usual training of an autoencoder model. The encoder encodes the input data
into the latent space, and the decoder decodes it to reconstruct the input data. In
this phase, the two autoencoders work in a parallel way, and the learning is regulated
by the reconstruction loss defined as:

LossAE1 = ||W − AE1(W)||2

LossAE2 = ||W − AE2(W)||2

And corresponds to the mean squared error between the input and reconstructed
data.

2. Adversarial training The scope of this phase is to amplify the reconstruction error
of inputs that contains anomalies. It exploits the feature of autoencoders that, when
they receive in input a sequence with anomalies, tend to reconstruct it in a way that
looks like a sequence with normal data which differs significantly from the original
one. So, to amplify the reconstruction error, it is sufficient to process the input
series twice. More in detail, the input series is first encoded and decoded by AE1,
then the result is encoded and decoded by AE2. Moreover, in this phase, the two
autoencoder work in different ways according to their loss function:

LossAE1 = +||W − AE2(AE1(W))||2

56 3| Model design

LossAE2 = −||W − AE2(AE1(W))||2

The scope of AE1 is to minimize the difference between the input data and the
data obtained by processing them in the two autoencoders. On the other hand,
the purpose of AE2 is exactly dual. AE2 tries to maximize the difference between
the input data and the data obtained by processing them in the two autoencoders
learning to distinguish if the data received in input comes from the original sequence
or if it is already processed by AE1

Combining the two-phase, it is obtained a complete loss function for both autoencoders:

LossAE1 =
1

n
||W − AE1(W)||2 + (1− 1

n
)||W − AE2(AE1(W))||2

LossAE2 =
1

n
||W − AE2(W)||2 − (1− 1

n
)||W − AE2(AE1(W))||2

Where n represents the epoch of the training. For low epochs, the Autoencoder training
loss is dominant, while during the training, increasing the epoch value, the adversarial
training makes the most significant contribution to the loss.

3.5.2. Detection Phase

The scope of this phase (Figure 3.15) is to define a score function that, compared to a
threshold, classifies a value as anomalous or not. The score is defined according to the
formula:

score(W) = α||W − AE1(W)||2 + β||W − AE2(AE1(W))||2

Where α + β = 1 are used to balance the false and true positives, and according to the
value of these two parameters, it is possible to have scores with different sensitivities on a
single trained model. This happens because the two terms of the equation assume slightly
different values. What is expected is that the reconstructed error is smaller than the error
obtained after processing the input first with AE1 and then with AE2. More in detail, if
α is greater than β, the score assumes a lower value, and so the value of positive reduces.
On the other hand, if α is lower than β, the score takes higher values as the significant
contribution is made by double encoding decoding, and many positives are detected.

3| Model design 57

Figure 3.15: USAD score definition

3.6. ELM-MI

Extreme Learning Machine (ELM) is a feedforward neural network with a single hidden
layer born to feature learning, clustering, regression, and classification. Standard learning
approaches learn by using the backpropagation technique. It is the method of fine-tuning
the weight of each neural network layer according to the error, calculated by the com-
parison between the input and the output obtained in the previous epoch. By proper
tuning of weights, the reconstruction error is reduced, and the network learns. ELM uses
a completely different approach because it does not use backpropagation. The hidden
node parameters might be assigned randomly or inherited from the predecessor and never
updated. In this way, the model learns the weights of the network nodes in a single step.
So, ELM can get good results performing faster than backpropagation networks. Thanks
to some changes, Extreme Learning Machines (ELM) can be used in the anomaly detec-
tion field. Firstly, it is combined with Mutual Information (MI), a method that measures
the relationship between two variables, to obtain an algorithm called ELM-MI [81]. Then
an important change has to be made in the structure of ELM. Being randomly initialized
on the test data can only be applied to offline inference, and the principal feature of
an anomaly detection problem is the response time. To solve this problem, the solution
is to use dynamic kernel selection, which, comparing training and test sequences, can
determine the networks parameter adaptively for each test sequence.

58 3| Model design

3.6.1. Architecture

ELM-MI method is composed of two different phases. The first is the training phase,
where is applied on data a hierarchical clustering procedure while in the second, the test
phase, the parameters of radial basis function kernels (RBK) are determined for each test
sequence based on the clustered data training, and anomalies are detected.

Figure 3.16: ELM-MI division in clusters splitting by days and applying CLA method

During the hierarchical clustering procedure, the first split is done in days if the training
data are longer than one day. However, this division is not performed for small datasets
that cover a short duration, less than a day. This happens because it is supposed that small
datasets have similar data, and no division is necessary. Then, to obtain a second layer
division, the daily clusters are split into sub-clusters. In general, any clustering technique
can be used. Specifically, as [81], the clustering method used is called Communication
with Local Agents (CLA) [106]. Figure 3.16. CLA uses a local gravitation approach
reflecting the relationship between a data point and its local neighbors. It considers each
data point as an object with mass that impacts its neighbors. More in detail, each point is
subject to an attraction force, represented as a vector, generated for each of its neighbors
according to their distance, so the closer the neighbor is, the greater the value of the force
is. By the vector sum of the forces to which each data point is subject, it is assigned a
parameter called local resultant force (LRF) as shown in Figure 3.17.

Moreover, according to the LRF value, each data point is assigned a parameter called
centrality (CE), representing the distance from the center of the future cluster. The
algorithm needs the number of neighbors in a cluster to obtain these two parameters

3| Model design 59

Figure 3.17: The black arrow corresponds to the LRF value of the black data point. It
corresponds to the vectorial sum of the force generated by its neighbors represented by
the colored arrow

as input. By computing LRF and CE, each data point finds a local agent with a large
CE and a small LRF and represents a central candidate of the future cluster. Then,
by communicating with each other, local agents set the cluster center and connect as a
cluster. Figure 3.18. So, points in the cluster center have a higher density than their
neighbors and a larger distance from points in other clusters.

Figure 3.18: The red dots are the point with the smallest CE, the blue dots are ones
individuated as local agents, and the yellow row represents the communication between
local agents to create the different clusters

The second phase of the ELM-MI method is where the anomaly data are detected. First of
all, thanks to the Dynamic Kernel Selection for each test sequence x ∈ RW×N is assigned
the corresponding cluster generated in the training phase. To do this, it is calculated the
Euclidean distance between x and the center c of each cluster by the formula:

d(x, c) =
√
(x − c)2

60 3| Model design

Figure 3.19: ELM-MI framework

So, the test sequence belongs to the cluster where d(x, c) is less. Having a 2-layers
clustering division, this step is applied sequentially, before on the days split, then to the
cluster created by CLA. After being assigned to the corresponding cluster, the next step
is to apply the Mutual Information (MI) method, which measures the correlation between
two random variables. To use this method for anomaly detection, the test sequence is
compared with a sequence containing non-anomalous data sampled from the training
set and belonging to the same cluster. The lower the MI value is, the more likely the
test sequence is anomalous. Being x ∈ RW×N the test sequence and y ∈ RW×N the
referencing sequence, where W represents the window size, and N represents the number
of the feature, the MI value for x and y can be calculated as:

MI(x,y) =
1

2

∫ ∫ (
p(x,y)
p(x)p(y)

− 1

)2

p(x)p(y)dxdy

where p(x) and p(y) represent the marginal probabilities of x and y, and p(x,y) is the
joint probability. Then, p(x,y)

p(x)p(y) function can be approximated as a linear combination of
multiple kernels defined as:

p(x,y)
p(x)p(y)

=
N∑
i=1

βiki(x,y)

where ki is the kernel function, βi is the weight of the corresponding kernel, and N

corresponds to the number of kernels for each cluster. The kernel function can be defined
as:

ki(x,y) = exp

(
−||x − µi||2

2σ2
i

)
exp

(
−||y − µi||2

2σ2
i

)
where µi and σi represent the mean and standard deviation of the i-th kernel.

3| Model design 61

Starting from the vector of all the kernel functions, k = [k1(x,y), .., kN(x,y)]T , the vector
of kernel weight, β = [βi, ..βN]

T , can be calculated by the formula:

β = (kkT + λI)−1k

where λ is a regularization parameter, and I is the identity matrix. Usually, in anomaly
detection problems, the higher the anomaly score is, the higher the probability of being
anomalous. So, to respect this rule, the score is calculated by the negative of the estimated
MI. The anomaly score is:

s(x,y) =
1

2
βTkkTβ − kTβ +

1

2

Once obtained, the anomaly score undergoes two further steps. First, on the score is
applied a maximum limit equal to 0.5. Each score values greater than 0.5 assumes that
value. The second step is to apply a smooth function to the score. It consists in averaging
the value of the score by several consecutive values equal to the smooth parameter. This
means that a point with a high anomaly score impacts the score of neighboring points.
Then the anomaly score is compared with a threshold to determine whether it corresponds
to an anomalous value or not.

3.7. Anomaly score range

In this section, it is shown the range of values that the score can assume according to the
model used to process the data.

Model Min Score Max Score
AE 0 No Limits
VAE + ReEnc 0 No Limits
VAE + Isof 0 1
VAE + KNN 0 1
LSTM 0 No Limits
USAD 0 No Limits
ELM-MI 0 0.5

Table 3.1: Score range according to the models. Concerning AE includes all the autoen-
coder implementations (DENSE-AE, LSTM-AE, VAE, CONV-AE). Further clarifications
are about VAE+Isof and VAE+KNN which the score obtained by the model is directly
the classification in normal and anomalous

63

4| Implementation and Dataset

analysis

4.1. Introduction

This chapter presents the implementation of the different neural network models intro-
duced in Chapter 3 by explaining and describing the implementation choices and the
datasets used for evaluating the methods. To process and visualize the data and evaluate
anomaly detection scores, the programming language used is Python [104]. More in detail,
the libraries that facilitate the coding are:

• Pandas [77]: a Python library that provides fast, flexible, and expressive data struc-
tures designed to process data easily and intuitively. It is used to manage the data
frames and the time series.

• Numpy [37]: a Python extension module providing a convenient and efficient way to
handle a significant amount of data. It is used to manage arrays and matrices.

• Matplotlib [41]: a Python library for creating static visualization.

Python is also used for the presence of machine learning libraries such as:

• Sklearn [80] is focused on machine learning tools with mathematical, statistical, and
general-purpose algorithms to implement machine learning models. In addition, it
is used to scale data and to implement machine learning algorithms like KNN.

• Keras [16] is a library used to implement the neural networks models together with
the Tensorflow [1] framework.

• PyTorch [79] is a framework that combines efficient GPU-accelerated backend li-
braries from torch with Python frontend and supports a wide variety of deep learn-
ing models.

All the NN models tested in the thesis are implemented in Python except ELM-MI [81],
which is implemented in Matlab [44] consistently with the original implementation.

64 4| Implementation and Dataset analysis

4.2. Dataset

4.2.1. SKAB dataset

4.2.1.1. Dataset analysis

The SKAB dataset contains multivariate time series collected from sensors installed on a
pump which undergoes several tests on a test bench. The tests simulate different work
conditions to record normal behavior and stress the pump to generate anomalies.

In detail, the sensors installed on the pump measure the following quantities:

• Accelerometer1RMS: shows a vibration acceleration [m/s2]

• Accelerometer2RMS: shows a vibration acceleration [m/s2]

• Current: shows the amperage on the electric motor [Ampere]

• Voltage: shows the voltage on the electric motor [V olt]

• Temperature: shows the temperature of the engine body [◦C]

• Thermocouple: represents the temperature of the fluid in the circulation loop [◦C]

• RateRMS: Represent the circulation flow rate of fluid inside the loop [L/min]

• Pressure: it corresponds to the pressure after the water pump [bar]

Figure 4.1: The test bench schema. The numbers 1, 2, 3, 4, 5, and 6 correspond to the
sensors installed on the pump that measure vibrations, current, voltage, water tempera-
ture, and thermocouple. Sensors 7 and 8 are positioned on the water circuit, measuring
the pressure and volume flow rate of the fluid.

4| Implementation and Dataset analysis 65

The dataset is formed by 34 files divided according to the anomalies they contain, di-
vided into three different groups of manually generated anomalies. Table 4.1 presents the
anomaly groups. The first type of anomaly is caused by closing the outlet valve of the
flow from the pump, and the second by closing the inlet valve to the pump. The last
group comprises data obtained from other experiments. For example, some are generated
by the simulation of fluid leaks and fluid additions, others by changing the behavior of
the rotor.

Anomaly Type Number of files Description

T1: Outlet Valve Closed 16
Anomalies obtained by closing the outlet
valve of the pump

T2: Inlet Valve Closed 4
Anomalies obtained by closing the inlet
valve of the pump

T3: Others 14

Simulation of fluid leaks
Simulation of fluid additions
Change the behavior of the rotor imbalance
A slow increase in the liquid quantity
A sudden increase in the liquid quantity
An increase in the liquid temperature

Table 4.1: SKAB dataset anomalies classification

The dataset is labeled, meaning that each sensor measurement is assigned a value indi-
cating whether it is retrieved during an anomaly phase or not. This information is not
used during the training of the models since only the test set contains anomalies. Labeled
data are used only to evaluate the performances of the model using the different metrics
presented in Section 2.4.

4.2.1.2. Data processing

The first phase of data processing is data cleaning. First, the presence of missing values
is addressed as proposed in [52], which ignores them and does not replace missing values.

Then, data are scaled. Data collected by different sensors can take values of different
magnitudes, so to have comparable values among the features, data are scaled by a min-
max scaler defined in Section 2.3.1.

Then, data must be split into training, validation, and testing, as proposed in [52]. The
first 400 samples of each file compose the training set, and the successive 50 samples corre-

66 4| Implementation and Dataset analysis

spond to the validation set, on which the threshold for discerning normal and anomalous
values is calculated. The remaining samples contain anomalies and are used for testing.

Finally, if the proposed method requires overlapping windows, the impact of five window
lengths ranging from 3 to 48 timestamps is evaluated.

4.2.2. Exathlon dataset

4.2.2.1. Dataset analysis

The labeled Exathalon [46] dataset is built from recording the repeated execution of ten
different Spark stream processing applications on a 4-node cluster. In this dataset, the
user clicks streams from the WorldCup 1998 Website are recorded at a given input rate.
To have a more realistic setting, the recorded applications are run concurrently in batches
of 5 to 10. The recording is done by Spark Monitoring and Instrumentations Interface,
which gives 2,283 features, and the Operating System monitoring of each of the 4 cluster
nodes. Each record has a sample rate of one second. The dataset is composed of 93
traces of 7 hours on average. Of these traces, 59 traces record the normal execution of
the Spark streaming application, and 34 traces contain disturbed data by events injected
during known and labeled time intervals. The anomalies can be classified into different
categories, as also shown in Table 4.2:

• Bursty Input Traces (T1): there are six different traces with these types of
anomalies. This error happens when the input rate of the data sender is increased
significantly for 15-30 minutes

• Bursty Input Until Crash Traces (T2): seven different traces contains this type
of anomaly. They are typically shorter than the others and happen when the input
rate of the data sender is increased greatly and maintained until the application
crashes.

• Stalled Input Traces (T3): these anomalies happen when the data sender stops
sending data for about 15 minutes. There are four traces containing this type of
anomaly.

• CPU Contention Traces (T4): these six traces are composed of the anomalies
where a Python program consumed all the CPU cores available on a given node
during a given period

• Process Failure Traces: these traces can contain two types of anomalies: Driver
Failure (T5): when the driver process of the application failed and Executor

4| Implementation and Dataset analysis 67

Trace Type Anomaly Type # of Traces Anomaly Instance Anomaly length: min, avg, max Data Items
Undisturbed N/A 59 N/A N/A 1.4M
Disturbed T1: Bursty Input 6 29 15min - 22min - 33min 360K
Disturbed T2: Bursty Input until crash 7 7 8min - 35min - 1.5hours 31K
Disturbed T3: Stalled Input 4 16 14min - 16min - 16min 187K
Disturbed T4: CPU Contention 6 26 8min - 15min - 27min 181K
Disturbed T5: Driver Failure 11 9 1min - 1min - 1min 128K
Disturbed T6: Executor Failure 10 2min - 23min - 2.8hours
Disturbed T7: Unknown 11 13 1min - 11min - 6min 132K

Table 4.2: Exathlon anomalies classification [46]

Failure (T6): when an executor process of the application failed.

• Unknown (T7): corresponds to anomalies detected manually because they cannot
be classified according to the previous categories

4.2.2.2. Data Processing

Data processing is split into five stages: Data Partitioning, Data Transformation, AD
Modelling, AD Inferring, and AD Evaluation. All these operations are the same done in
the referencing paper and repository to have comparable results because they are applied
to the same processed dataset.

Data Partitioning The first stage operates directly on raw data. First, it performs
data cleaning by replacing missing data with the mean. The next step is to concatenate
all the undisturbed traces into the training set to train models implemented with a unique
training set. Instead, the disturbed traces are the ones used to test the model.

Figure 4.2: Data preparation

Data Transforming In this stage, data undergo three different procedures. First,
because of the huge number of features, a reduction is performed to reduce the number
of features from 2,283 to 19 using Principal Component Analysis (PCA) [59]. PCA is
an unsupervised linear transformation technique used mainly for feature extraction and
dimension reduction. To reduce the data from a dimension d to the dimension k, a
d×k -dimensional transformation matrix is constructed. It maps sample vectors onto the
new k -dimensional feature subspace with fewer dimensions than the original feature space.

68 4| Implementation and Dataset analysis

Then, resampling reduces the number of timestamps and the cardinality of the time series.
The resampling factor used is 15, so a value in the resampled time series corresponds to
the mean of 15 consecutive samples. The last operation done in this stage is a min-max
rescaling between zero and one. It is done to align features whose raw values may differ
by orders of magnitude. For the implemented models that required overlapping windows,
such windows have a size of 40 samples.

Figure 4.3: Undisturbed trace division

AD Modelling All the operations in this stage are applied only to the undisturbed
trace. It is split into three parts: training data (70%), validation data (15%), and data on
which the threshold is calculated (15%). The training part is used to train each model and
the validation part is used to evaluate the performance of the model during the training.
For the Exathlon dataset, the threshold is not computed on the validation set but is
computed on the remaining 15% of the data. So the threshold is computed on data not
used for the training phase of the model. The methods used to determine the threshold
are STD, MAD, IQR, and MV.

Figure 4.4: Anomaly detection and evaluation

AD Inference Once the machine learning model is built and trained, the successive
phase focuses on finding anomalies. This stage takes as input the disturbed traces corre-
sponding to the test set, processed in the second stage, and the model processes it. The

4| Implementation and Dataset analysis 69

model gives as the output the predicted data that, compared with the input ones, generate
a score for each timestamp. Then the score is compared with the threshold computed at
the third stage, and if it is greater, the value is labeled as anomalous.

AD Evaluation The final stage inputs the score, the threshold computed in the previ-
ous stage, and the real anomalies. First, the score is compared with the threshold, and if
it is greater, the value is labeled as anomalous. Then the confusion matrix is computed by
comparing the predicted and the real anomalies. Once obtained the confusion matrix, the
different metrics like precision, recall, F1-score, false alarm rate (FAR), and missing alarm
rate (MAR) are calculated. Thanks to these values, it is possible to compare different
models and how they work compared to the state-of-the-art.

4.3. Neural Network model

Most of the models tested in the thesis are implemented in Python using the Keras

library. They comprise the LSTM model and all the models based on autoencoders,
such as convolutional, LSTM, and Variational. This choice has been made since are very
general and commonly used model with several related papers.

Not all of the neural network models analyzed and tested in the development of the thesis
are implemented from scratch. In detail, the implementations that follow this choice and
are made by readjusting the existing implementation are USAD and ELM-MI.

4.3.1. LSTM Autoencoder

The structure of the proposed LSTM Autoencoder is as follows:

Layer Output Shape
InputLayer (None, WindowSize, NFeature)
LSTM (None, WindowSize, 128)
LSTM (None, 64)
z (None, 64)
RepeatVector (None, WindowSize, 64)
LSTM (None, WindowSize, 64)
LSTM (None, WindowSize, 128)
OutputLayer (None,WindowSize,NFeature)

Table 4.3: LSTM-AE model detailed implementation. None corresponds to the dynamic
dimension of a batch, namely the number of samples propagated in the network

70 4| Implementation and Dataset analysis

More in detail:

• Input Layer and Output Layer correspond to the layers used to take in input
the data to process and to give in the output the predicted value in the correct
shape. The input and output layers have the same output shape but have different
implementations. The input layer acts as an intermediary to the next layer by
checking whether the input has the correct shape. The output layer instead is a
dense layer that reduces the third dimension from 128 to the number of features.
In that way, input and output have the same shape.

• LSTM layers are the core of the implementation. The first two consecutive form
the encoder, and the last two form the decoder. The principal design choice is to
use two consecutive layers with different shapes instead of only one. Stacking LSTM
layers makes the model more complex, deeper, and able to capture relevant features
in a better way [76]. On the other hand, obtaining the same result using a single
LSTM layer is possible, but it requires more neurons and, consequently, is slower
[91].

• z is the latent space made by a dense layer that takes in input data from the second
LSTM layer, and its output is processed by the repeatVector.

• RepeatVector is the layer implemented just before the latent space. It has the
role of repeating its input multiple times, transforming the latent space distribution
from a two-dimensional vector to a three-dimensional one. The three dimensions
correspond to the batch size, the window, and the features.

As an optimizer, it is used Adam implementation with its default learning rate.

4.3.2. LSTM

LSTM is a simple RNN implemented as follows:

Layer Output Shape
InputLayer (None, WindowSize, NFeature)
LSTM (None, WindowSize, 144)
LSTM (None,40)
OutputLayer (None, NFeature)

Table 4.4: LSTM model detailed implementation. None corresponds to the dynamic
dimension of a batch, namely the number of samples propagated in the network

4| Implementation and Dataset analysis 71

Relevant considerations have to be made on the shape of the output layer. This method,
not being an autoencoder, is not used to reconstruct the input but to predict the next
time series value starting from a series long as the window size. So, the output layer is
two-dimensional, where the two dimensions correspond to the timestamp and the feature
number. Also, in this configuration, two levels of LSTM layers are used, and their size is
chosen according to the parameter decided in the Exathlon repository.

4.3.3. Variational Autoencoder

All the models in which VAE is involved followed the following implementation:

Layer Output Shape
InputLayer (None, WindowSize, NFeature)
LSTM (None, WindowSize, 128)
LSTM (None, 64)
Mean (None, 64)
Variance (None, 64)
z (None, 64)
RepeatVector (None, WindowSize, 64)
LSTM (None, WindowSize, 64)
LSTM (None, WindowSize, 128)
OutputLayer (None, WindowSize, NFeature)

Table 4.5: Variational autoencoder detailed implementation. None corresponds to the
dynamic dimension of a batch, namely the number of samples propagated in the network

More in detail:

• Input Layer and Output Layer have the same function as in LSTM-AE. The
input layer has the function of checking if input data are in the correct configura-
tion. In contrast, the output layer, implemented by a dense layer, reduces the third
dimension from 128 to the number of features.

• LSTM layers form the encoder and the decoder.

• RepeatVector is the layer located immediately after the latent space and has the
function to transform 2-dimensional latent space to 3-dimensional. The transforma-
tion is done by repeating the latent space vector several times corresponding to the
window size. The three dimensions correspond to the batch size, the window, and
the features.

72 4| Implementation and Dataset analysis

• Mean and Variance are two vector obtained from the encoder. They represent
the mean and variation of the distribution from which the latent space is sampled.

• z is the latent space and is implemented by a Lambda layer. This type of layer can
execute a function; in this specific implementation, it executes the reparameteriza-
tion trick described in Section 3.3.3. Taking as input the mean and the variance
vector, it executes the sampling function through the reparametrization trick. It
takes the mean and the variance vector as input, and it performs the sampling
returning the latent space distribution.

As an optimizer, the Adam implementation is used with its default learning rate.

4.3.4. Convolutional Autoencoder

The convolutional autoencoder implemented in the thesis is:

Layer Output Shape
InputLayer (None, WindowSize, NFeature)
Conv1D (None, WindowSize

2
, 128)

Dropout(rate=0.2) (None, WindowSize
2

, 128)
Conv1D (None, WindowSize

4
, 64)

z (None, WindowSize
4

, 64)
Conv1D_Transpose (None, WindowSize

2
, 64)

Dropout(rate=0.2) (None, WindowSize
2

, 64)
Conv1D_Transpose (None, WindowSize, 128)
OutputLayer (None, WindowSize, NFeature)

Table 4.6: Convolutional AE model detailed implementation. None corresponds to the
dynamic dimension of a batch, namely the number of samples propagated in the network

More in the details:

• Input Layer and Output Layer correspond exactly to the layers described in the
LSTM-AE implementation. The only clarification that needs to be made concerns
the window size dimension. Since the encoder comprises two convolutional layers
and the dimension corresponding to the window size is halved at each layer, the
window size must be divisible by four.

• Conv1D layers are used in the encoder. Their convolutional kernels are convolved
with their input over a single dimension to extract the most significant features.

4| Implementation and Dataset analysis 73

• Conv1DTranspose layers are used in the decoder and are opposed to Conv1D lay-
ers in the encoder having dual behavior. Conv1DTranspose is used for upsampling
its input, increasing the output size.

• Dropout layer is a regularization term. According to the rate parameter, it ran-
domly ignores some input data, making the training process noisy. The scope is to
avoid overfitting.

As an optimizer, it is used Adam implementation with its default learning rate.

4.3.5. USAD

The USAD model is implemented in Python using the library PyTorch. USAD is com-
posed of two identical autoencoders with a shared encoder and two separated decoders
implemented as:

Layer Output Shape
Encoder

InputLayer (None, WindowSize × NFeature)
Linear (None, WindowSize×NFeature

2
)

Linear (None, WindowSize×NFeature
4

)
z : Linear (None, 64)

Decoder

Linear (None, WindowSize×NFeature
4

)
Linear (None, WindowSize×NFeature

2
)

OutputLayer : Linear (None, WindowSize × NFeature)

Table 4.7: USAD detailed implementation. None corresponds to the dynamic dimension
of a batch, namely the number of samples propagated in the network

More in detail:

• Input Layer and Output Layer represent the layers used to take in input data
and return the processed ones. Differently from the model described before, they
do not process a two-dimension array corresponding to the window size and the
number of features, but a reshaped one-dimension array with the size equivalent to
the window size multiplied by the number of features. Moreover, the output layer
is implemented with a Linear layer which corresponds to the dense one in Keras.

74 4| Implementation and Dataset analysis

• Linear layers are used in the encoder and the decoder. The focus is on the output
dimension; it is halved at each layer in the encoder and doubled at each decoder
layer.

As an optimizer, the Adam implementation is used with its default learning rate.

4.3.6. ELM-MI

The ELM-MI method is implemented by readjusting the original implementation. The
structure is profusely described in Section 3.6.1. The implementation decision regards
only the choice of the parameters to pass to the model:

Parameter SKAB Exathlon
Num days 1 1
Num Kernel 100 300
CLA Parameter 5 15
Lamda 0.01 0.01
Smooth Parameter 50 50
Score Limit 0.5 0.5

Table 4.8: ELM-MI parameters

The parameter values for the SKAB dataset are the same as written in the reference
paper. Therefore, the only estimated parameter value is the CLA Parameter, which is
decided by executing the original code many times and picking the one that gives the
same paper results. The parameters for the Exatlhlon dataset are obtained starting from
the value of the SKAB parameter. The parameters for creating the cluster, the number
of kernels and the CLA parameter, are incremented according to the ratio of the sizes of
the two datasets. The choice of other parameters is to maintain the same value for both
datasets.

A parameter that has to be explained is the smooth parameter. It is used in the smooth
function, which is applied to the score and averages the value of the score by several
consecutive values equal to the smooth parameter. This means that a point with a very
high anomaly score impacts the score of neighboring points. Furthermore, the score
obtained with ELM-MI undergoes the effect of another parameter, the score limit. It has
the scope to limit the anomaly score to a certain value.

75

5| Evaluation

5.1. Thresholding

Both the SKAB and EXATHLON datasets are processed by the neural network models
described in Section 3. Except for VAE+isof and VAE+KNN, all the models return an
anomaly score that must be evaluated to determine whether a value is anomalous or not.
For each model, excluding ELM-MI and USAD, the score is computed as follows:

MSE =
1

N

N∑
i=0

(xi − yi)
2

Where N is the number of values processed, x is the ground truth, and y is the output
of the model. The score corresponds to a reconstruction error for the autoencoder-based
models, while for LSTM, the score is a prediction error. For ELM-MI, the score is calcu-
lated as thoroughly described in Section 3.6.1 while the USAD score is shown in Section
3.5.2.

In the case of SKAB, a threshold is calculated for each file that composes the dataset,
evaluating the score of a small validation set composed of 50 normal values. In the case
of EXATHLON, instead, the threshold is computed on the entire validation set. In both
cases, four thresholding approaches have been analyzed:

• Maximum Value (MV) computes the threshold as the maximum anomaly score on
the validation set:

τ = max(s)

• Standard Deviation (STD) relies on the anomaly score mean and standard deviation.
In this case, thfactor represents the minimum number of standard deviations to
consider a score anomalous. The threshold is:

τ = mean(s) + thfactor · std(s)

76 5| Evaluation

• Median Absolute Deviation (MAD) computes the median of the absolute differences
between each anomaly score and the median anomaly score, making this approach
less sensitive to outliers than the standard deviation. It is calculated as:

τ = median(s) + 1.4826 · thfactor ·median(|s−median(s)|)

• Inter-Quartile Range (IQR) is based on the difference between the 75th percentile
(Q3) and the 25th percentile (Q1) of the anomaly scores. It is calculated as follows:

τ = Q3 + thfactor · (Q3 −Q1)

Where τ is the threshold and thfactor is a constant.

Concerning VAE+isof and VAE+KNN, the output of the methods is not a score, but they
directly classify data as normal or anomalous. This is because they are not based directly
on a threshold but have a parameter called contamination that affects the classification.
Since Isof and KNN analyze the same distribution, it is chosen to use contamination =

0.001. To set this value, different tests are executed, and the one corresponding to the
best results is selected. Moreover, it is noted that using several contamination values, the
results do not vary considerably, specifically by a maximum of 1%. Concerning KNN,
another parameter, K, which corresponds to the nearest neighbors, can affect the results.
Also, in this case, several tests are performed, and the results vary by a maximum of 1%.
So, it is chosen K = 35, which has the best results.

5.2. SKAB Dataset

5.2.1. Analysis of the anomaly score distribution on the valida-
tion set

This section presents and analyzes the distributions of the validation set anomaly score
used to compute the threshold. Figure 5.1 shows representative validation set unimodal
distributions. This distribution is expected, as the validation sets contain only normal
values reconstructed by the proposed algorithms. Figure 5.1 also shows that different
approaches generate scores in different ranges. For all models, the validation score as-
sumes values which does not deviate much from the score mean being included in a range
corresponding to the mean ±3 standard deviations. Consequently, not being values that
deviate consistently from the mean, the MV thresholding technique can be used.

5| Evaluation 77

Figure 5.1: Different histograms of the anomaly scores computed on the validation set
using all the neural network models. Since the dataset comprises 34 files, too much to be
shown in a single graph, in this figure are shown only three different files, one for each
type of anomaly

78 5| Evaluation

Comparing the plot of different models, it is noticed that, despite assuming the same
shape, the scale change according to the models. The autoencoder model generates a
score with similar values, such as CONV-AE, DENSE-AE, LSTM-AE, and VAE. This is
because they compare the ground truth to the reconstruction; despite the reconstruction
being slightly different from each model, the score values do not change significantly. Also,
the validation score values are similar for USAD, being an autoencoder too. The LSTM
model is the one with the highest validation score value. This happens because working
by predicting the following sequence starting from a note one and the prediction is not
precis as a reconstruction. The model that gives the lowest score value is VAE+ReEnc.
Since the score is obtained by measuring the distance of where points are mapped into
two latent spaces, and the data into the latent space assumes shallow values, the result is
that the score is of the same order of magnitude.

There are no considerable differences in the different types of anomalies (T1, T2, T3
shown in Table 4.1). Therefore, each model has a score comparable for each anomaly
type.

5.2.2. Analysis of the anomaly score distribution on the test set

This section analyzes the different distributions of the test score upon which the threshold
is applied to detect anomalies.

Figure 5.2 presents representative test set anomaly score distributions. Since test sets
contain both normal and anomalous data, the score distribution assumes a bimodal dis-
tribution. The two peaks correspond respectively to a prevalence of anomalous and normal
data. In some cases, the anomaly score distribution is not bimodal. This happens ba-
sically for three reasons. The first is that the score of these anomalies assumes values
similar to the score of normal data, so the neural network model does not detect some
anomalies. Meaning that anomalous and normal scores are mixed, making the separation
of anomalous from normal data impossible. The second reason is that anomalous and
normal scores do not differ too much to generate two separate visible peaks. This does
not mean that the results are bad for sure, but finding a threshold to separate anomalous
from normal scores is more challenging. The latter reason concerned the nature of the
data on which the score is calculated. The fewer anomalies in the data on which the score
is calculated, the less visible the relative peak. The ability to distinguish anomalous and
normal values depends on the ability of the model to reconstruct normal values correctly
and anomalous values incorrectly. The distributions in Figure 5.2 show that different
neural network models generate different anomaly score distributions.

5| Evaluation 79

Figure 5.2: Different histograms of the anomaly scores computed on the test set using all
the neural network models. Since the dataset comprises 34 files, too much to be shown in
a single graph, the figure shows the score of only three files, one for each type of anomaly.
Files that correspond to the one represented in Figure 5.1. For a better comparison, the
y-axis representing the occurrence of each score value is in logarithmic scale

80 5| Evaluation

Autoencoder-based models, excluding DENSE-AE, generate a clearly bimodal score dis-
tribution. The reason lies in how they work; they have very inaccurate reconstruction
for anomalous data. It is evident for USAD, which has the greatest distance between
normal and anomalous distribution. By adversarial training, it tries to amplify the recon-
struction error between anomalous values. DENSE-AE have result different from other
autoencoders. The reason is that they are the most straightforward implementation of au-
toencoders, and the reconstruction both for normal and anomalous data is worse, as shown
in the following section. Different score distributions are obtained using non-autoencoder
models. LSTM, a prediction-based model, cannot separate anomalies from normal data
as autoencoders. For this dataset, the prediction is less accurate than the reconstruction.
It is evident by comparing the score distribution of normal data for LSTM and VAE.
For VAE, scores of normal data are similar, appearing more compactly in the histogram.
Concerning ELM-MI, which is clustering based, the score distribution assumes a clearly
different shape. Normal data have a similar score, so the score distribution of normal
data corresponds to only a column in the histogram. Instead, the anomalous data have
distributions similar to other models.

The presence of anomalous and normal scores mixed, indicated by red and blue bars
shuffled together in Figure 5.2, corresponds to incorrect prediction value generating a too-
low score for anomalous samples and too-high score for normal samples. The consequence
is that it is impossible to separate these values, generating many false negatives or false
positives.

This section presents a qualitative analysis of the score distribution. The quantitative
approach is in Section 5.2.4, where the analysis focuses on the ROC curve.

5.2.3. Reconstruction and score analysis

This section presents two different analyses: the reconstruction and the score. The former
presents a representative qualitative example of how the autoencoder-based approaches
reconstruct the input data. The latter focuses on the anomaly score of all the different
models analyzed. The presented plots refer to a file from the SKAB dataset for simplicity.
Still, their behavior is analogous and easily extendible to the entire dataset. Below is
presented a qualitative analysis of how the eight features of the SKAB multivariate time
series are respectively reconstructed by DENSE-AE Figure 5.3, LSTM-AE Figure 5.4,
VAE Figure 5.5, and CONV-AE Figure 5.6.

5| Evaluation 81

Figure 5.3: Original sequences compared with the reconstruction ones computed by
DENSE-AE

82 5| Evaluation

Figure 5.4: Original sequences compared with the reconstruction ones computed by
LSTM-AE

5| Evaluation 83

Figure 5.5: Original sequences compared with the reconstruction ones computed by VAE

84 5| Evaluation

Figure 5.6: Original sequences compared with the reconstruction ones computed by
CONV-AE

Looking at the reconstructed figure shown above, it is evident that for each autoencoder,
as expected, the reconstruction is closer to the ground truth data for normal data, while

5| Evaluation 85

it deviates considerably for anomalous data. Moreover, the closer the timestamp is to
the anomaly, the more the correspondent sample has a worse reconstruction. It is also
shown how the reconstruction change for each feature, so it is evident that the value
of some features, such as Temperature, Thermocouple, and Volume Flow rate, change
considerably according to the normal and anomalous behavior of the system and have
a huge impact on the anomaly score. On the other hand, other feature values, such as
Current and Voltage, are less affected by anomalies and have a minimal contribution to
the score value.

Comparing the reconstruction of each autoencoder, it is evident that each autoencoder
model reconstructs data differently. As Figure 5.3 shows, DENSE-AE is the autoencoder
that reconstructs in the worst way. The reason for this behavior is it is the most straight-
forward implementation of an autoencoder network. It is clear that by using a more
complex structure that exploits more advanced layers such as LSTM and convolutional,
the reconstructed data are more accurate [18]. Conv-AE, LSTM-AE, and VAE all recon-
struct the input accurately, especially, as expected, for normal values, but they have some
differences, which this section discusses in more detail. LSTM-AE and VAE reconstruct
quite similarly, being based on the same structure LSTM structure, but due to a better
latent space encoding, VAE works better, as shown in the following sections. This is
evident by observing the reconstruction plots in Figures 5.5 and 5.4, where the original
and the reconstructed lines almost coincide.

Concerning CONV-AE, analyzing its reconstruction graph (Figure 5.6) and comparing
the scale of its score graph with others, it is evident that it reconstructs the input in two
ways. The reconstruction is accurate for normal data and diverges a lot for anomalous
data.

Figure 5.7: Results obtained by processing data with VAE+Isof and VAE+KNN

Regarding the anomaly score, different observations can be made. First, for VAE+KNN
and VAE+Isof shown in Figure 5.7, the anomaly score is not computed. The two models

86 5| Evaluation

immediately classify each value returning directly if each value is anomalous or not without
any further classification.

Figure 5.8: Anomaly score of a test of the SKAB dataset processed with the machine
learning methods implemented

To better analyze how the anomaly score change according to anomalies, it is necessary to
analyze together the quantitative comparison in Table 5.1 and the qualitative comparison
shown in Figure 5.8.

By the qualitative comparison emerges that the score of each model assumes high values
in correspondence with the anomalies, which means that the reconstruction is bad. On

5| Evaluation 87

VAE CONV-AE DENSE-AE LSTM-AE REENC LSTM USAD ELM
ANOMALY mean 0.28209 0.11170 0.08851 0.18022 0.00651 0.26377 0.42038 0.28743
NORMAL mean 0.01639 0.01158 0.03448 0.02308 0.00017 0.03787 0.05194 0.00724
ANOMALY
NORMAL

17.21295 9.64627 2.56739 5.22746 38.88773 6.96490 8.09394 39.68548

Table 5.1: Mean score of normal and anomalous samples relative to the single test shown
in Figure 5.8. The last row of the table corresponds to the ratio between normal and
anomalous scores. The greater it is. the easier it is to distinguish between normal and
anomalous scores

the other hand, the score is very low for normal data, meaning that the neural network
model performs well in predicting or reconstructing.

The worst score is the one obtained with DENSE-AE, and it is the score where the means
of normal and anomalous scores are more similar, being one twice the other. This happens
because, as shown in the early part of this section, it is the autoencoder method that
learns worse. This is also confirmed by comparing the normal mean score in the table with
another autoencoder. Between autoencoders, CONV-AE performs the best reconstruction
of normal data, while the VAE has the higher anomaly score mean. Moreover, VAE is
the one where the ratio between the mean of anomalies and normal samples is greater.
Under this perspective, also USAD has the same behavior. As designed, it does not
focus on reconstructing its input sequence but tries to maximize the score for anomalous
data. Concerning LSTM-AE compared with VAE, despite having a similar architecture,
worst reconstructs the normal data, and the mean score for anomalies increases less. This
happens due to the different latent spaces of the two models, which are presented in Section
3.3.4. For LSTM, the score has more fluctuation than autoencoders. This is related to
how the score is calculated. Since LSTM predicts the value of the following timestamp
of the input sequence, the score to the mean squared error of only one timestamp. On
the other hand, since autoencoders reconstruct the input sequence, the score is computed
as the mean square error on several timestamps. The result is that the score is more
stable, with fluctuations not so evident. The method that generates the lowest score is
VAE+ReEnc. This is consistent with what is expected because the score represents a
distance, which is very small, between where the same value is mapped in two different
latent spaces. Moreover, together with ELM-MI is the method that produces the higher
ratio between anomaly and normal score. The last consideration is that the score coming
from ELM-MI methods differs from the others. It is not characterized by fluctuations
typical of other scores but has a less noisy trend. This is exactly the effect of the smooth
function used in the algorithm to propagate the anomaly effect of a point to its neighbors.
Moreover, the maximum value that the ELM-MI score can assume is 0.5, as specified

88 5| Evaluation

in [81]. Being obtained by processing the same file, all the scores follow the same trend
where the first ≈ 500 timestamps are associated with low values representing the normal
value. Instead, the last ≈ 200 timestamps are associated with high values representing
the anomalies. In addition, in the timestamps preceding the real anomaly, highlighted in
red, there is a relevant increment of the anomaly score value, indicating that abnormal
behavior is about to occur.

5.2.4. AUROC

The Receiver Operating Characteristic (ROC) curve is defined as "a plot of test sensi-
tivity as the y coordinate versus its 1-specificity or false positive rate (FPR) as the x
coordinate" [78]. It is an effective method of evaluating the performance of anomaly de-
tection classification. When analyzing a ROC curve, the interest is placed on the area
subtended by the curve itself, called the AUROC. It represents how much a model can
distinguish between classes. The higher its value, the better the model can distinguish
anomalies from normal values. This section analyses the AUROC value obtained from the
ground truth value and the scores for each model. Since each file of the SKAB dataset is
processed separately and has a different validation set, the AUROC of each model is the
average of per-file results and is shown in Table 5.2.

METHOD Conv-AE VAE ReEnc USAD ELM-MI LSTM LSTM-AE Dense-AE
AUROC 0.94221 0.92289 0.91611 0.90503 0.89592 0.87697 0.87045 0.85651

Table 5.2: AUROC value for each method

Since AUROC measures how well the model separates the positive and negative classes,
the distribution of the anomaly score has to be analyzed to understand why different
models have different values. In this specific is useful to compare the distribution of the
model score with the best and worst AUROC by considering Figure 5.9. It shows the
score distribution of CONV-AE, which has the best AUROC, and DENSE-AE, which has
the worst AUROC.

5| Evaluation 89

(a) Test score obtained from the CONV-AE (b) Test score obtained from DENSE-AE

Figure 5.9: Anomaly score distribution showing the value assumed by normal and anoma-
lous value

Concerning the CONV-AE, the score distribution is clearly bimodal, with a clear dis-
tinction between normal and anomalous points. With a coherent threshold value, it is
possible to obtain a precise classification by getting good results in detecting anomalies.
On the other hand, the distribution relative to the DENSE-AE score is not bimodal since
anomalous and normal value assumes similar value. The effect is that it is more difficult
to classify each value correctly. This generates, for every threshold choice, a lot of false
positives and negatives, significantly reducing the AUROC value.

AUROC is a score that does not depend on a threshold value, but it can be compared with
threshold-dependent evaluations to understand the behavior of each anomaly detection
model. To evaluate how accurately a model and a threshold method can distinguish
anomalies, the F1-Score is used. It is the harmonic mean between the precision and the
recall calculated as:

F1Score =
2× Precision×Recall

Precision+Recall

Where Precision = TP
TP+FP

and Recall = TP
TP+FN

.

By applying the different threshold values, computed by MAD, IQR, STD, and MAX,
on the anomaly score, the anomaly prediction is obtained. Then by comparing it to the
ground truth, the F1-Score is computed. Finally, having several thresholding techniques
and threshold factors, for each machine learning architecture, the maximum F1-Score
is compared with the AUROC. As Figure 5.10 shows, AUROC and F1-Score behave
similarly. Models such as CONV-AE, VAE, and ReEnc, which have the best AUROC

90 5| Evaluation

score, are the better for F1-Score. This trend is observed because better separation of
anomalies from the normal point allows getting a better F1-Score.

Figure 5.10: Analysis of the relation between the AUROC value and the F1-Score

5.2.5. Analysis by overlapping window

After implementing a version of each neural network model and evaluating them by com-
paring the obtained result to state-of-the-art, the successive step is to evaluate each model
by changing the overlapping window size. It consists of changing the temporal view that
the single data processed by a model has. Except for ELM-MI and CONV-AE, more in
detail, overlapping windows of size 3, 6, 12, 24, and 48 are analyzed, meaning that the
small window describes the system behavior for only three seconds while the greater has
the longest view of 48 seconds. For ELM-MI, this analysis is not performed since in [81],
it is explicitly written that the best results of this model are obtained with a size of 2.
Also, for CONV-AE, the windows used are of different sizes than other models. As it
is implemented, it requires overlapping windows divisible by four, so the size considered
are 8, 24, and 48. Moreover, to have comparable results, independent from the threshold
methods and threshold factor, the chosen modality is the MV, assigning the maximum
value of the validation score to the threshold. Considering Figure 5.11 and Table 5.3, it
is evident that F1-score does not vary much according to the window size. In addition, it
has a stable behavior for values like 12 or 24, and the performance slightly decreases for
the smallest and maximum sizes.

5| Evaluation 91

The only significant changes occur with VAE+ReEnc and VAE+KNN methods. The two
methods behave similarly regarding the F1-Score but have opposite behavior concerning
the FAR and MAR. Moreover, it can see a significant collapse of the F1-Score with the
largest overlapping window size. For VAE+ReEnc, it is caused by the small data set
in which the threshold is calculated. Having a window of 48 values and a validation
set of 50 values, the threshold is calculated on a few values. In detail, the threshold
value is very low, detecting a lot of false positives, causing a high FAR and low Precision
value. On the other hand, for VAE+KNN, since few true positives and a lot of false
negatives are detected, the Recall is low and MAR high. What may seem strange is the
different behavior of VAE+KNN and VAE+Isof with a window of size 48, despite the
fact they both analyze the same latent space distribution. The different result is due to
how KNN and Isolation Forest work. Since Isolation Forest performs recursive division
to isolate each value, it is not affected by the number of samples present in the latent
space. Contrary, KNN is dependent on the parameter K, so, having a K similar to the
number of validation samples, the model does not have enough points to compute the
neighbor distance and classify the test instances correctly.

Figure 5.11: Analysis performed on different overlapping window size

To conclude, the window size used in the other sections to obtain all the results is as
follows in Table 5.4.

Model LSTM-AE VAE ReEnc DENSE-AE CONV-AE LSTM USAD ELM
WinSize 12 12 6 12 8 6 24 2

Table 5.4: Window size chosen according to the maximum F1-Score in table 5.3

92 5| Evaluation

MODEL WINDOWS F1 PRECISION RECALL FAR MAR
LSTM-AE 3 0.7459 0.7372 0.7697 11.48% 27.63%
LSTM-AE 6 0.7468 0.6879 0.8112 19.60% 18.88%
LSTM-AE 12 0.7518 0.7271 0.7784 15.48% 22.16%
LSTM-AE 24 0.7323 0.6109 0.9137 30.83% 8.63%
LSTM-AE 48 0.7047 0.5692 0.9248 37.09% 7.51%
VAE 3 0.7163 0.7411 0.6931 12.83% 30.69%
VAE 6 0.7773 0.7355 0.8243 15.71% 17.57%
VAE 12 0.7810 0.7360 0.8318 15.80% 16.82%
VAE 24 0.7809 0.6842 0.9095 21.94% 9.08%
VAE 48 0.7571 0.6286 0.9519 29.80% 4.81%
VAE+ISOF 3 0.7711 0.6798 0.8907 22.22% 10.93%
VAE+ISOF 6 0.7706 0.6669 0.9124 24.15% 8.76%
VAE+ISOF 12 0.7747 0.6733 0.9133 23.45% 8.67%
VAE+ISOF 24 0.7684 0.6614 0.9168 24.86% 8.32%
VAE+ISOF 48 0.7474 0.6313 0.9157 28.33% 8.43%
VAE+KNN 3 0.7811 0.7195 0.8544 17.65% 14.56%
VAE+KNN 6 0.7796 0.6952 0.8873 20.61% 11.27%
VAE+KNN 12 0.7728 0.6836 0.8914 21.68% 10.68%
VAE+KNN 24 0.7651 0.6858 0.8653 21.00% 13.47%
VAE+KNN 48 0.6177 0.5369 0.7271 10.68% 46.31%
VAE+REENC 3 0.7471 0.7243 0.7714 15.56% 22.86%
VAE+REENC 6 0.7888 0.7313 0.8559 16.66% 14.41%
VAE+REENC 12 0.7651 0.7043 0.8373 18.62% 16.27%
VAE+REENC 24 0.7691 0.6955 0.8601 19.96% 13.99%
VAE+REENC 48 0.6202 0.8657 0.4832 49.06% 13.43%
CONV-AE 8 0.8084 0.7399 0.8908 16.59% 10.91%
CONV-AE 24 0.7918 0.6934 0.9228 21.62% 7.72%
CONV-AE 48 0.7646 0.6338 0.9639 29.49% 3.65%
USAD 3 0.7503 0.6521 0.8834 21.82% 11.66%
USAD 6 0.7555 0.6612 0.8812 21.11% 12.02%
USAD 12 0.7556 0.6536 0.8953 21.93% 11.53%
USAD 24 0.7576 0.6401 0.9278 27.64% 7.21%
USAD 48 0.7432 0.6123 0.9452 28.73% 6.36%
DENSE-AE 3 0.6506 0.5063 0.9098 47.20% 9.02%
DENSE-AE 6 0.6647 0.5432 0.8563 36.02% 14.93%
DENSE-AE 12 0.6708 0.5576 0.8415 35.37% 15.84%
DENSE-AE 24 0.6691 0.5626 0.8254 34.25% 17.02%
DENSE-AE 48 0.6457 0.5235 0.8423 37.21% 15.72%
LSTM 3 0.7193 0.6551 0.7989 22.51% 20.12%
LSTM 6 0.7238 0.7706 0.6824 10.76% 31.76%
LSTM 12 0.7201 0.6521 0.8039 22.73% 19.60%
LSTM 24 0.7176 0.6166 0.8581 28.28% 14.14%
LSTM 48 0.6789 0.5567 0.8873 39.45% 11.25%

Table 5.3: SKAB analysis according to the size of the windows

5| Evaluation 93

5.2.6. Threshold

This section analyzes the impact of the four different thresholding techniques on the F1
Score: STD, MAD, IQR, and MV.

For each threshold technique, the effect that different threshold factors have on the thresh-
old and the overall results are evaluated. IQR, MAD, and STD, since they depend on
various thresholding factors, generate several thresholds and results. Further precision
regards the F1-Score. Since the SKAB dataset is composed of several test files, the ap-
proach chosen is to compute the sum of the confusion matrix value of each file and then
compute a single F1-Score. This choice is coherent with the one of [52]. Figure 5.12
compares the F1-Score obtained with these three methods showing similar results. This
means that the three ways generate similar threshold values. By comparing the values at
line ∆ of Table 5.5, IQR is the approach associated with the lowest difference between
the maximum and minimum F1 values for each considered deep learning method. In con-
trast, the way that, according to the threshold factor, gets the most significant difference
between the maximum and the minimum value is STD. This is evident by observing the
boxplot where STD shows a broader distribution than IQR. STD and MAD have similar
boxplots because they are generated from similar F1-Score. This happens since MAD and
STD have correspondent thresholds as reported in Table 5.6

More in detail, in this case [61]:

mean(s) + std(s) ≈ median(s) + 1.4826 ·median(|s−median(s)|)

Where the s corresponds to the anomaly score. Since the validation score distribution,
shown in Section 5.2.1, is almost uniform with no value that deviates consistently from the
mean, mean(s) and median(s) coincide. Moreover [88], std(s) and 1.4826 ·median(|s −
median(s)|) almost coincide. So, the result is that the two methods in the SKAB dataset
generate a very close threshold, as shown in Table 5.6. Analyzing the table 5.5 and
comparing the F1-score corresponding to the threshold method MV to the other, it is
noted that for the SKAB dataset, using the maximum value in the validation set is a good
choice, obtaining an F1-Score closer to the maximum. It is an applicable thresholding
technique on SKAB dataset because, as shown in Section 5.2.1, all the validation scores
do not contain values that deviate consistently from the mean. Moreover, as shown in
Table 5.6, the thresholds calculated with MV and STD with thfactor equal to 2 are similar.
Having similar thresholds also, the F1-Score is similar. MV is the method that produces
better results for VAE+ReEnc.

94 5| Evaluation

Figure 5.12d, representing the F1-Score behavior according to all the thresholding tech-
niques, shows that MAD, IQR, and STD on the SKAB dataset give similar results.

CONV-AE DENSE-AE ELM LSTM LSTM-AE REENC USAD VAE
pred_method

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

SKAB (STD)

(a) STD threshold technique F1-score results

CONV-AE DENSE-AE ELM LSTM LSTM-AE REENC USAD VAE
pred_method

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

SKAB (MAD)

(b) MAD threshold technique F1-score results

CONV-AE DENSE-AE ELM LSTM LSTM-AE REENC USAD VAE
pred_method

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

SKAB (IQR)

(c) IQR threshold technique F1-score results

CONV-AE DENSE-AE ELM LSTM LSTM-AE REENC USAD VAE
pred_method

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825
SKAB (all)

(d) Average F1-score results

Figure 5.12: Overall results obtained by computing the threshold in three different ways

Threshol Method Th factor VAE LSTM-AE VAE+ReEnc DENSE-AE USAD CONV-AE LSTM ELM-MI
IQR 0.5 0.77949 0.73597 0.77333 0.66975 0.71814 0.78714 0.72052 0.72460

1 0.78070 0.74608 0.78083 0.68078 0.74219 0.80302 0.72782 0.73019
1.5 0.77702 0.74056 0.78405 0.68844 0.75665 0.81383 0.72262 0.72306
2 0.77412 0.73104 0.78557 0.69241 0.76220 0.82086 0.71465 0.72250
∆ 0.00658 0.01504 0.01224 0.02266 0.04406 0.03373 0.01317 0.00770

MAD 0.5 0.75930 0.68230 0.74500 0.65771 0.64784 0.75058 0.68300 0.71002
1 0.77460 0.71709 0.76114 0.66520 0.69091 0.77205 0.70880 0.71661
1.5 0.78395 0.73905 0.77130 0.67139 0.72375 0.78862 0.71853 0.72142
2 0.78644 0.74644 0.77772 0.67785 0.74292 0.80066 0.72314 0.72509
∆ 0.02714 0.06414 0.03273 0.02014 0.09508 0.05008 0.04014 0.01507

STD 0.5 0.76457 0.69093 0.75849 0.65747 0.66874 0.75792 0.69738 0.71520
1 0.77885 0.72509 0.77392 0.66211 0.70252 0.77699 0.72058 0.72178
1.5 0.78454 0.74590 0.78006 0.66812 0.72854 0.79284 0.72914 0.72708
2 0.78564 0.75371 0.78477 0.67426 0.74458 0.80434 0.72992 0.73071
∆ 0.02107 0.06279 0.02628 0.01678 0.07584 0.04642 0.03254 0.01550

MAX 0.78102 0.75184 0.78875 0.67081 0.75759 0.80843 0.72384 0.73056
minF1 0.75930 0.68230 0.74500 0.65747 0.64784 0.75058 0.68300 0.71002
maxF1 0.78644 0.75371 0.78875 0.69241 0.76220 0.82086 0.72992 0.73071
∆ Tot 0.02714 0.07142 0.04375 0.03493 0.11435 0.07028 0.04692 0.02069

Table 5.5: F1-score comparison between different threshold technique and threshold factor

5| Evaluation 95

Method Th_factor VAE LSTM-AE VAE+ReEnc DENSE-AE USAD CONV-AE LSTM ELM-MI
IQR 0.5 0.04191 0.04768 0.00086 0.04037 0.05280 0.02205 0.06864 0.01946

1 0.04871 0.05478 0.00105 0.04477 0.05861 0.02472 0.08450 0.02348
1.5 0.05552 0.06188 0.00124 0.04917 0.06442 0.02740 0.10036 0.02751
2 0.06232 0.06899 0.00144 0.05356 0.07023 0.03007 0.11622 0.03153

MAD 0.5 0.03215 0.03766 0.00056 0.03396 0.04315 0.01857 0.04667 0.01452
1 0.03697 0.04263 0.00068 0.03702 0.04672 0.02061 0.05812 0.01754
1.5 0.04178 0.04761 0.00080 0.04008 0.05029 0.02265 0.06958 0.02056
2 0.04660 0.05258 0.00091 0.04314 0.05387 0.02468 0.08104 0.02358

STD 0.5 0.03385 0.03907 0.00064 0.03443 0.04620 0.01908 0.05094 0.01378
1 0.03875 0.04414 0.00078 0.03733 0.05064 0.02122 0.06260 0.01617
1.5 0.04365 0.04920 0.00093 0.04023 0.05508 0.02336 0.07425 0.01856
2 0.04855 0.05426 0.00107 0.04313 0.05953 0.02549 0.08591 0.02095

MAX 0.05096 0.05593 0.00128 0.04279 0.05857 0.02675 0.09492 0.01936

Table 5.6: Threshold comparison between different threshold techniques and threshold
factor. The threshold value in the table corresponds to the average of all files comprises
in the dataset

5.2.7. VAE vs ReEncoding

This section analyzes the method of Variational Autoencoder with re-encoding according
to the different parameters, α and β, of its scoring function:

score(x) = α||x− x′||2 + β||z − z′||2

The first term corresponds to the score generated by the difference between the input and
the reconstructed output, while the difference between the latent space and the latent
space by re-encoding gives the second as described in Section 3.3.6.4.

The score with α = 1 corresponds to the VAE method, while the score with β = 1 is
the VAE+ReEnc method. To have comparable results, the same thresholding technique
is chosen. In this specific case, the analysis is performed by considering the MV method,
assigning to the threshold the maximum value of the validation set.

As Table 5.7 and Figure 5.13 shows, the value of F1-Score slightly increases according
to the increase of the β parameter. The increment is minimal as the extreme cases have
little different results.

In other words, the more significant the re-encoding part contributes, the greater the F1-
Score. Concerning the precision is almost constant while the recall follows the F1-Score
trend reaching the maximum value with the maximum β.

So, in all the sections where VAE+ReEnc appears, the score considered is the one with

96 5| Evaluation

Figure 5.13: Re-Encoding analysis according to β and α parameter. It is considered the
same input reconstruction (x′) and the same latent space reconstruction (z′). The only
parameters that changes are the ones in the score function.

β = 1.

Alpha Beta F1-score Precision Recall FAR MAR
1 0 0.781019 0.736064 0.831822 15.80% 16.82%
0.9 0.1 0.781009 0.735862 0.832059 15.82% 16.79%
0.8 0.2 0.781045 0.735679 0.832374 15.85% 16.76%
0.7 0.3 0.781200 0.735585 0.832847 15.86% 16.72%
0.6 0.4 0.781214 0.735118 0.833478 15.91% 16.65%
0.5 0.5 0.781325 0.734457 0.834582 15.99% 16.54%
0.4 0.6 0.781599 0.733906 0.835922 16.06% 16.41%
0.3 0.7 0.781971 0.730472 0.841284 16.45% 15.87%
0.2 0.8 0.782058 0.733200 0.837893 16.15% 16.21%
0.1 0.9 0.784569 0.729162 0.849089 16.71% 15.09%
0 1 0.788753 0.731339 0.855949 16.66% 14.41%

Table 5.7: SKAB ReEncoding analysis according to α and β value

5.2.8. Thesis vs. State-of-Art

In this section, it is performed an analysis of the results obtained by comparing all the
metrics. The analysis can be split into two parts; the first consists of comparing the

5| Evaluation 97

results obtained in the thesis test to those available in the SKAB repository. The second
consists of a comparison of all the available results. The comparison with the SKAB
repository comprises both metrics evaluation and training execution time. As Figure 5.14
shows, the model reimplemented performs better than the one implemented in the original
repository. However, the values are very different for several reasons:

• Normalization vs. Standardization: the way to scale data is normalization
rather than standardization, which is used in the SKAB repository. This method
is chosen as it is better suited for a multivariate time series containing data from
different sensors with very different scales. By normalization, it is possible to make
sure that all values are scaled in the same range and make the same contribution
to the final anomaly score. This improvement is evident by analyzing the Isolation
Forest results being the only change applied and increases the F1-Score by ten
percentual points.

• Number of Epochs: it is another relevant difference. In the model implemented
in the thesis, the training is performed for 400 epochs, while in the original im-
plementation, the training is performed for a few epochs. This impacts the total
execution time of the training but allows better prediction and reconstruction.

• Different Overlapping Window size: In the original implementation, the only
window analyzed is that long ten timestamps. In the thesis implementation, the
analysis is performed on different window sizes described in Section 5.2.5.

• Different Model Parameters A relevant change is on model implementation and
parameters used as shown in Table 5.8. Several implementations of each model are
tested to get better results, and by comparing the results, the one with the best
metric value is kept.

• Different Threshold Technique The technique used in the original implemen-
tation is the IQR technique. First, the quantile at 99 percent on the training and
validation set is calculated and then set and assigned as a threshold the three means
of the quantile value. The thesis implementation used a different approach. Dif-
ferent thresholding techniques are applied on the same validation set: MAD, IQR,
STD, and MV, described at the beginning of Section 5.2. The results in Table 5.9
correspond to the best one obtained by comparing the different threshold techniques.

Concerning the total training time, the model implemented performers worst since the
training lasts for many more epochs. Therefore, implementing a model that gives better
quality results was preferred at the sacrifice of time. Regarding the training time for each

98 5| Evaluation

Repository implementation My implementation
MODEL STRUCTURE W STRUCTURE W

Conv-AE

conv1D(32)
conv1D(16)
latentSpace: dense(16)
conv1Dtranspose(16)
conv1Dtranspose(32)

✓

conv1D(64)
conv1D(32)
latentSpace: dense(32)
conv1Dtranspose(32)
conv1Dtranspose(64)

✓

LSTM-AE
lstm(100)
latentSpace: dense(100)
lstm(100)

✓

lstm(128)
lstm(64)
latentSpace: dense(32)
lstm(64)
lstm(128)

✓

VAE
lstm(32)
latentSpace(100)
lstm(32)

✓

lstm(128)
lastm(64)
latentSpace: dense(32)
lstm(64)
lstm(128)

✓

LSTM lstm(100)
lstm(100) ✓

lstm(100)
lstm(64) ✓

DENSE-AE

dense(5)
dense(4)
latentSpace: dense(2)
dense(4)
dense(5)

✗

dense(64)
dense(32)
latentSpace: dense(16)
dense(32)
dense(64)

✓

Table 5.8: Comparison between the structure of the implemented model and the SKAB
repository ones. The W coloumn indicates if the model input has to be in overlapping
window configuration or not

5| Evaluation 99

epoch, the difference is minimal. First, all the values are measured using the same machine
for comparable results. For most models, the training time of the implemented version is
slightly greater than the original one as the model complexity increases. They give better
metrics results, but there is a relevant impact on the training time. The execution time of
isolation forest implementations is the same in both versions since the only change is in
the method used to scale data. The only improvement in the training time concerns the
VAE. The thesis implementation is faster since it uses a more compressed latent space.
Having µ and σ vector about half the size, the sampling process to generate the latent
space distribution is faster, significantly reducing the total training execution time.

Figure 5.14: It represents the difference between the implemented and available models
on the SKAB repository. It contains both F1-Score and the total training time. To show
time of different orders of magnitude, a logarithmic scale is used

Repository Result My Result
Model F1 FAR MAR F1 FAR MAR
CONV-AE 0.79 13.69% 17.77% 0.8209 14.40% 11.46%
LSTM-AE 0.68 14.24% 35.56% 0.7537 18.15% 18.80%
LSTM 0.64 15.40% 39.93% 0.7299 14.15% 27.18%
VAE 0.56 9.13% 55.03% 0.7864 17.82% 13.40%
Dense-AE 0.45 7.56% 66.57% 0.6924 28.16% 18.91%
Isolation Forest 0.4 15.40% 40.33% 0.5327 6.19% 59.04%

Table 5.9: Comparison of thesis result and SKAB state of art

100 5| Evaluation

Repository Result My Result
Model Time [s] Epochs [s/Epoch] Time [s] Epochs [s/Epoch]
Conv-AE 277.37 100 2.77 1849.85 400 4.62
LSTM-AE 672.32 100 6.72 3361.6 400 8.4
LSTM 149.98 25 6 2773.81 400 6.93
VAE 1800.93 20 90.05 22932 400 57.33
Dense-AE 75.84 40 1.9 1503.52 400 3.76
Isolation Forest* 5.87 - - 5.87 - -

Table 5.10: Comparison of execution time between thesis and SKAB state of art. (*The
training is not executed by epochs)

An important consideration must be done about the maximum F1-Score value available on
state of the art. The best result is calculated in the paper [81] with the ELM-MI method.
During the implementation of the thesis, this value is verified, and the conclusion is that
the results are computed not considering statistical information on a validation set but
directly on the test set. In the paper, to compute the threshold, they find the value that
maximizes the F1-Score by iterating on test data to find the best threshold.

Model F1-Score FAR MAR
ELM-MI paper implementation 87.51 7.85% 11.04%

5.2.9. Summary Results

This section compares the overall and summary result of the machine learning methods
analyzed and implemented. Concerning the F1-Score, as the histogram in Figure 5.15
and Table 5.11 show, the results are similar and within a range of 10 percentage points
are contained the results of eight models. This happens since the threshold method is
the same and calculated on a small validation set. The model reconstructs or predicts
a time series in more or less precise ways, and the threshold values vary according to
it. If the model reconstructs the input in an approximative way, the threshold assumes
a value greater than a threshold of a more precise model. The model that gives better
results is the CONV-AE while VAE and LSTM-AE, having a similar configuration with
only a few differences in the latent space, yield the same result. As expected from the
analysis carried out in the section 5.2.7, the model VAE+ReEnc performs better than
simple VAE. When dealing with an anomaly detection problem, important considerations
must be made on false and missing alarm rate values, where low values are better. All

5| Evaluation 101

models have similar FAR and the better corresponds to the better F1-Score. DENSE-AE
has a FAR of about 30% because it is the method that reconstructs the input data in
the worst way and a lot of normal data are considered anomalous. By analyzing the
MAR value, the best one is ELM-MI, the model that allows the detection of almost all
anomalies. It behaves in this way essentially for a reason. After obtaining an anomaly
score where each value corresponds to the score of each timestamp, a smooth function is
applied. It consists of propagating the anomaly score of a timestamp to all the scores with
a nearby timestamp according to the smooth parameter. This has the effect of increasing
the number of anomalies detected, obtaining a high FAR and a low MAR.

Figure 5.15: Summary results of SKAB dataset

102 5| Evaluation

MODEL F1 PRECISION RECALL FAR MAR
CONV-AE 0.82086 0.76513 0.88536 14.40% 11.46%
VAE+ReEnc 0.78875 0.73134 0.85595 16.66% 14.41%
VAE 0.78644 0.72029 0.86596 17.82% 13.40%
VAE+KNN 0.78110 0.71950 0.85440 17.65% 14.56%
VAE+ISOF 0.77470 0.67330 0.91330 23.45% 8.67%
USAD 0.76220 0.64723 0.92683 26.76% 7.32%
LSTM-AE 0.75371 0.70327 0.81195 18.15% 18.80%
ELM-MI 0.73019 0.60816 0.91351 31.18% 8.65%
LSTM 0.72992 0.73162 0.72822 14.15% 27.18%
DENSE-AE 0.69241 0.60411 0.81093 28.16% 18.91%
ISOF 0.50000 0.74531 0.38212 15.40% 40.33%

Table 5.11: SKAB summary results

The models with better F1-Score, as expected, are the ones that better balance the
percentage of MAR and FAR and so Precision and Recall.

5.3. Exathlon

5.3.1. Analysis of the anomaly score distribution on the valida-
tion set

This section discusses the different distributions of the validation score used to compute
the threshold. Contrary to the SKAB dataset, which has a validation set for each file,
the Exathlon dataset has a unique validation on which a single threshold is computed to
evaluate each test score. The validation score distribution, obtained from the different
neural network models, is shown in Figure 5.16.

The validation score distribution is very different from the SKAB one. It is not a unimodal
distribution. Moreover, it is noticed that the presence of extreme values made the MV
value thresholding technique extremely ineffective. For all models, excluding ELM-MI,
the validation scores assume similar distribution, having many concentrated values for low
scores and few and sparse for high score values assuming a distribution nearly exponential.

The effect is that the USAD thresholds are greater than the ones calculated on the score
generated by other models. ELM-MI is very different; the score assumes greater values
than the others but less than 0.5, with a completely opposite distribution.

5| Evaluation 103

Figure 5.16: Validation scores computed with all the neural network models. To better
show all values, the axis y uses a logarithmic scale

104 5| Evaluation

5.3.2. Analysis of the anomaly score distribution on the test set

This section focuses on analyzing the score distribution of the test set. Having several
test sets containing different types of anomalies, the scores assume different distributions
according to the anomalies contained.

Figure 5.17: Exathlon test score containing anomaly of type T1 with a visible distinction
between normal and anomalous data

5| Evaluation 105

Figure 5.18: Exathlon test score containing anomaly of type T4 with no distinction
between normal and anomalous data

Figure 5.17 represents the score obtained by processing a test file which contains anomaly
of type T1, Bursty Input. The distributions obtained are not properly bimodal, but
normal and anomalous data are well-separated, and it is easy, by applying a threshold, to
classify each sample correctly. All the distributions are similar except the ELM-MI one,
which is slightly different from the others. All the anomalous values assume closer and not

106 5| Evaluation

greater than 0.5. This is a consequence of the ELM-MI implementation where the score is
limited to 0.5 according to [81]. Not all test distributions follow this behavior. Analyzing
Figure 5.20, which contains anomaly of type T5, it is noticed the score does not assume
a bimodal distribution, and no clear separation between normal and anomalous data is
visible. This happens because anomalous and normal data assume similar score values;
consequently, the respective distributions overlap. Therefore, finding an optimal threshold
is more difficult. In addition, many false positives are detected using a low threshold, and
the false negative rate increases using a high threshold value. In that case, the model able
to better separate anomalies from normal data is ELM-MI, where anomalous scores are
mapped closer and assume a value similar to 0.5. To confirm this, ELM-MI is the method
with the best AUROC value, visible in Table 5.12 and analyzed in the following section.

5.3.3. AUROC

Models behave in different ways according to the ROC curve. By analyzing the area
under the curve, the AUROC value shown in Table 5.12, some models can better separate
anomalies from normal values than others.

METHOD ELM-MI Conv-AE ReEnc LSTM USAD VAE LSTM-AE DENSE-AE
AUROC 0.91557 0.89538 0.8880 0.87921 0.89079 0.85385 0.84996 0.75564

Table 5.12: AUROC value for each method

To begin with, it is useful to analyze the best and worst AUROC obtained by autoencoder-
based models and then compare them to the one with the best AUROC. To understand
why DENSE-AE and CONV-AE have so different AUROC, comparing the score distri-
bution obtained with the two methods is necessary. Figure 5.19 represents the score
distribution of the same file processed with the three models. Comparing CONV-AE and
DENSE-AE, CONV-AE separates anomalies from normal data cleanly. So it is possible
to get a high AUROC score. Concerning the DENSE-AE score, separating anomalous
and normal data is tricky, and getting a good AUROC score is impossible. The method
with the best AUROC is ELM-MI. Comparing the anomaly score distribution in Figure
5.19, ELM-MI and CONV-AE have a slightly different separation between normal and
anomalous data. For ELM-MI, unlike CONV-AE, anomalous and normal scores are not
mixed and concentrated in a unique bar in the histogram. As a consequence, ELM-MI
has a better AUROC than CONV-AE.

5| Evaluation 107

(a) Test score obtained from DENSE-AE (b) Test score obtained from CONV-AE

(c) Test score obtained from ELM-MI

Figure 5.19: Anomaly score distribution showing the value assumed by normal and anoma-
lous value

Comparing AUROC and the maximum F1-Score achievable with different models, it is
clear that high AUROC corresponds to high F1-Score as visible in Figure 5.20. For ELM-
MI, the method with the best F1-Score, the correlation between F1-Score and AUROC
is above the average. The explanation regards the different score distributions of other
methods and ELM-MI. All score distributions, excluding ELM-MI, can assume any value
greater than zero. Instead, the ELM-MI score distribution is limited to 0.5. For all values
greater than 0.5, assume that value. This affects the distribution parameter, such as the
mean. The consequence is that according to ELM-MI or the other models, the same
threshold technique assumes a completely different meaning. In this case, the methods
STD of ELM-MI works particularly well, generating a correlation between F1-Score and

108 5| Evaluation

AUROC above the average. The results might improve by applying other thresholding
techniques to the other method, generating a correlation between F1-Score and AUROC
similar to ELM-MI.

Figure 5.20: Analysis of the relation between the AUROC value and the F1-Score

5.3.4. Threshold

This section analyzes how the F1-Score according to evaluating the anomaly score with
the four different thresholding techniques, MAD, IQR, STD, and MV. Each threshold
technique, excluding MV, also explores the effect of different threshold factors on the
threshold and the overall results. IQR, MAD, and STD, since they depend on various
thresholding factors, generate several thresholds and results. Figure 5.21 compares the
F1-Score obtained with these three methods showing similar results. IQR is the method
that produces the lowest variance in the F1-Score, while STD is the most sensitive to the
threshold factor having the greater difference between maximum and minimum F1-Score
for all methods as visible in Table 5.15.

Contrary to what happens for the SKAB dataset, MAD and STD give different results.
This is caused by the difference between the mean and the median of the validation score.

5| Evaluation 109

VAE LSTM-AE VAE+ReEnc DENSE-AE USAD CONV-AE LSTM ELM-MI
Mean 0.41998 0.43112 0.00017 0.00161 0.89105 0.10814 0.52539 0.48218
Median 0.36782 0.36545 0.00010 0.00131 0.64188 0.07872 0.22578 0.48499

Table 5.13: Validation score mean and median comparison

Table 5.13 shows that, excluding ELM-MI, the mean and median deviate considerably.
This is caused by some values in the validation score that assume a very high value and
influence the mean value. This does not happen for the median since it corresponds to the
central value of the score increased ordered, which does not suffer the effect of very high
values. ELM-MI is the only model that not follows this rule because the score is limited to
0.5 by design [81]. Despite this, MAD and STD generate very different thresholds since:

std(s) >> 1.4826 ·median(|s−median(s)|)

For LSTM and USAD, the MAD method works better than STD, while ELM-MI generates
good results only if evaluated with the STD model. The threshold is too small with IQR
and MAD to detect anomalies well. Moreover, it is a model very sensitive to the threshold
value, and a slight threshold variation corresponds to a significant change in F1-Score as
visible by comparing Table 5.15 which contains the F1-Score and the Table 5.16 which
contains the threshold for each method. Moreover, the ELM-MI score is limited to 0.5
due to a design choice in [81]. Since having a threshold greater than the score has no
sense, the threshold is limited too, as happens for the method STD with th_facror = 2.

Table 5.15 shows that the MV method is ineffective on this dataset, except ELM-MI,
where the score, limited to 0.5, does not contain values that deviate consistently from
the score mean. As shown in Section 5.3.1, all other validation distributions have some
extreme value that makes the threshold too high to find anomalies. This is supported
by the results in Table 5.14 where are reported the N , correspondent to the number of
standard deviations necessary to verify the equation:

max(s) = mean(s) +N · std(s)

ELM-MI does not follow this rule, having a N lower than one, because validation and
test scores are limited to 0.5 as [81].

110 5| Evaluation

VAE LSTM-AE ReEnc DENSE-AE USAD CONV-AE LSTM ELM-MI
SKAB 2.25 2.16 2.77 1.94 1.89 2.15 2.39 1.67
EXATHLON 50.62 42.68 52.76 41.94 15.29 51.26 70.83 1.25

Table 5.14: Comparison between SKAB and Exathlon of the number of standard deviation
needed. that summed to the mean. to reach the same value as the maximum value of the
score

Analyzing Figure 5.21d, which represents the F1-Score behavior according to the thresh-
olding technique, it is noticed that the results on the Exathlon dataset are highly depen-
dent on the threshold, and the model more threshold sensitive is LSTM.

CONV_AE DENSE_AE ELM LSTM LSTM_AE REENC USAD VAE
pred_method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
EXATHLON (STD)

(a) STD threshold technique F1-score results

CONV_AE DENSE_AE ELM LSTM LSTM_AE REENC USAD VAE
pred_method

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

EXATHLON (MAD)

(b) MAD threshold technique F1-score results

CONV_AE DENSE_AE ELM LSTM LSTM_AE REENC USAD VAE
pred_method

0.450

0.475

0.500

0.525

0.550

0.575

0.600

EXATHLON (IQR)

(c) IQR threshold technique F1-score results

CONV_AE DENSE_AE ELM LSTM LSTM_AE REENC USAD VAE
pred_method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
EXATHLON (all)

(d) Average F1-score results

Figure 5.21: Overall results obtained by computing the threshold in three different ways

5| Evaluation 111

Threshol Method Th factor VAE LSTM-AE VAE+ReEnc DENSE-AE USAD CONV-AE LSTM ELM-MI
IQR 0.5 0.56175 0.56483 0.56606 0.52692 0.57218 0.54313 0.59914 0.44326

1 0.55182 0.56428 0.58486 0.52646 0.55036 0.57336 0.60883 0.44446
1.5 0.53394 0.55144 0.58442 0.52503 0.53511 0.58548 0.60800 0.44592
2 0.51620 0.53209 0.57252 0.51945 0.50250 0.58682 0.60534 0.44728
∆ 0.04556 0.03274 0.01879 0.00747 0.06968 0.04369 0.00970 0.00401

MAD 0.5 0.50336 0.51413 0.49349 0.50250 0.58668 0.46786 0.52928 0.44169
1 0.54721 0.55407 0.53969 0.52036 0.58410 0.50639 0.57048 0.44178
1.5 0.56222 0.56553 0.56368 0.52705 0.56512 0.53983 0.59311 0.44178
2 0.55584 0.56523 0.58115 0.52554 0.55042 0.56409 0.60482 0.44187
∆ 0.05886 0.05140 0.08766 0.02455 0.03625 0.09623 0.07554 0.00018

STD 0.5 0.55985 0.56532 0.52666 0.42688 0.41965 0.58689 0.30587 0.47190
1 0.54469 0.53154 0.47860 0.37618 0.33513 0.57179 0.19188 0.75882
1.5 0.51419 0.50264 0.42352 0.34334 0.25385 0.56519 0.13661 0.76720
2 0.49627 0.43994 0.38488 0.31265 0.19333 0.55955 0.10893 0.56279
∆ 0.06358 0.12538 0.14178 0.11423 0.22633 0.02735 0.19695 0.29530

MAX 0.02261 0.01592 0.11406 0.02338 0.01670 0.02079 0.00243 0.44172
minF1 0.49627 0.43994 0.38488 0.31265 0.19333 0.46786 0.10893 0.44169
maxF1 0.56222 0.56553 0.58486 0.52705 0.58668 0.58689 0.60883 0.76720
∆Tot 0.06595 0.12558 0.19998 0.21440 0.39335 0.11903 0.49991 0.32551

Table 5.15: F1-score comparison between different threshold technique and threshold
factor

Threshol Method Th_factor VAE LSTM-AE VAE+ReEnc DENSE-AE USAD CONV-AE LSTM ELM-MI
IQR 0.5 0.64827 0.65070 0.00018 0.00167 0.97069 0.14112 0.53454 0.48521

1 0.78198 0.78649 0.00022 0.00184 1.13782 0.16934 0.67077 0.48543
1.5 0.91569 0.92227 0.00026 0.00200 1.30495 0.19756 0.80701 0.48564
2 1.04939 1.05806 0.00030 0.00217 1.47208 0.22579 0.94324 0.48586
∆ 0.40112 0.40736 0.00012 0.00050 0.50140 0.08467 0.40871 0.00064

MAD 0.5 0.46557 0.46505 0.00013 0.00143 0.76627 0.09875 0.31405 0.48500
1 0.56333 0.56464 0.00015 0.00155 0.89065 0.11879 0.40231 0.48500
1.5 0.66108 0.66424 0.00018 0.00167 1.01504 0.13882 0.49058 0.48501
2 0.75884 0.76383 0.00021 0.00179 1.13943 0.15885 0.57885 0.48502
∆ 0.29326 0.29879 0.00008 0.00035 0.37316 0.06010 0.26480 0.00002

STD ∆ 0.63607 0.74631 0.00050 0.00281 1.73216 0.22446 2.92662 0.48793
1 0.85216 1.06149 0.00084 0.00402 2.57326 0.34078 5.32785 0.49368
1.5 1.06824 1.37668 0.00118 0.00522 3.41437 0.45710 7.72909 0.49944
2 1.28433 1.69187 0.00152 0.00643 4.25547 0.57342 10.13032 0.50000
∆ 0.64826 0.94556 0.00101 0.00362 2.52332 0.34896 7.20370 0.01207

MAX 22.29737 27.33589 0.03574 0.10271 26.61404 12.03240 340.67161 0.48500

Table 5.16: Threshold value according to different threshold technique and threshold
factor

5.3.5. Thesis vs. State-of-Art

Relevant considerations must be made about comparing the results obtained with the
models implemented in the thesis and the available results. Extensive research does not
reveal better results than those included in the paper that introduces and analyzes the
dataset [46] [47]. They consider, as shown in Figure 5.22, four different anomaly detection
tasks according to when the anomalies are detected:

112 5| Evaluation

• Anomaly Existence is focused on detecting an anomaly within a ground truth
anomaly interval. The duration of the anomaly is not important; the focus is placed
on whether at least one anomaly within a real anomaly interval is detected. The
metrics results are better than other criteria since it is sufficient that an anomaly
matches a real anomaly interval and does not measure whether each anomaly within
a real anomaly interval is detected.

• Range Detection is focused not only on the existence but also on the precise time
range of the anomaly, comparing the anomaly prediction to the real anomaly point
by point

• Early Detection is focused on minimizing the detection latency, namely the time
difference between when the anomaly is detected and the starting time of the cor-
responding real one.

• Exactly-Once Detection is focused on reporting each anomaly instance only once.

Figure 5.22: Anomaly detection task performed in the state of art paper [46]

State of Art My Result
MODEL F1 PRECISION RECALL F1 PRECISION RECALL
BiGan 0.17000 0.90000 0.10000 - - -
DENSE-AE 0.56000 0.52000 0.68000 0.52705 0.45037 0.63518
LSTM 0.53000 0.59000 0.48000 0.60883 0.59614 0.62208

Table 5.17: Exathlon result comparison between thesis implementation and state-of-art

The results obtained on this dataset are compared with the one in state of the art,
corresponding to the range detection task. Therefore, the metrics are computed by com-
paring the prediction point-by-point and the ground truth. The references paper applies
only three different models to detect anomalies, while the thesis implementation offers a
broader analysis using several methods. Moreover, some choices made in the thesis imple-
mentation are the same as the referencing paper to obtain comparable results. First, the

5| Evaluation 113

training, validation, and test splitting are the same. Also, how the threshold is computed
is the same and performed on the same dataset part, and it kept the same overlapping
window size. Table 5.17 compares the result obtained by reimplementing the model avail-
able in state of the art. The first method used in the paper is BiGan [92], which gives poor
results with a very low F1-Score and is not analyzed in detail, focusing on methods that
work well. Instead, LSTM and DENSE-AE are deeply analyzed, giving different results.
Concerning DENSE-AE, despite using the same model configurations and parameters, the
results obtained in the thesis implementation are a bit lower. But using more complex
autoencoder methods based on convolutional or LSTM layers, the results are improved
as deeply analyzed in the following section.

The most relevant difference concerns the LSTM method, where the F1-Score is improved
by almost ten percentage points. The reason for this difference lies in how LSTM works
and how it is implemented. The LSTM method does not work like autoencoders which try
to reconstruct input data. Instead, it is used for forecasting, namely taking a sequence of
several timestamp samples as input and predicting the following timestamp behavior. So,
the main difference between the method implemented in the thesis and the one available
in the paper is the length of the overlapping window of the input data processed by the
model to predict the following sequence. One uses an overlapping window corresponding
to only one timestamp, while the other uses an overlapping window with 40 timestamps.
It is decided to use a window of 40 timestamps since it is the same window size used in
models based on autoencoder, and so it is possible to compare LSTM and autoencoder
on the same input. Moreover, as shown in [72], the importance of the time window in
LSTM is crucial because there is a relationship between the time window accuracy of
the prediction. Moreover, with more values in input, the model can learn better and
consequently make a more accurate prediction. As a check, the LSTM model of the paper
has been reimplemented and tested, giving results comparable to the paper ones.

5.3.6. Summary Result

Figure 5.23 and Table 5.18 clearly show that the models that work better on this dataset
are not based on the autoencoder structure. The reason concerns some limits of the
reconstruction-based model, the category to which autoencoders belong. For reconstruction-
based models, the scores tend to reduce peaks, while for prediction-based models, such
as LSTM, the score, calculated by averaging fewer values, presents more fluctuation. The
consequence [108] is that prediction-based models better detect point and short-lived
anomalies. Moreover, the dataset contains anomalies of different types. Autoencoders
can easily detect anomalies, such as Bursty Input Traces (T1), Bursty Input Until Crash

114 5| Evaluation

Traces (T2), Stalled Input Traces (T3), and CPU Contention Traces (T4), but gives
poor results for anomalies, such as Driver Failure (T5), Executor Failure (T6) which cor-
responds to short-lived anomalies. ELM-MI and LSTM, not being reconstruction model
based, can detect short-lived anomalies better, giving better F1-Score results. As fur-
ther evidence to non-reconstruction-model based corresponds the best MAR value. Also,
the models that analyze the latent space, such as VAE+Isof and VAE+KNN, work bet-
ter than purely autoencoder-based techniques. This happens because the classification
between normal and anomalous samples is not performed on an anomaly score but are
evaluated with density or distance-based model, which are highly functional for short-lived
anomalies.

ELM-MI, by far, is the best approach giving the best F1-Score and a very low False
Alarm Rate. The reason regards the different score distributions of other methods and
ELM-MI. All score distributions, excluding ELM-MI, can assume any value greater than
zero. Instead, the ELM-MI score distribution is limited to 0.5, and all values greater
than it assume that value. This affects the distribution parameter, such as the mean.
The consequence is that according to ELM-MI or the other models, the same threshold
technique assumes a completely different meaning. In this case, the methods STD of
ELM-MI works particularly well. In addition, it is evident that the FAR metrics for all
the methods are lower and reflects the F1-Score behavior. This happens because few false
positives are detected since the expected behavior is reconstructed or predicted precisely.

Figure 5.23: Summary results of Exathlon dataset

5| Evaluation 115

MODEL F1 PRECISION RECALL FAR MAR
ELM-MI 0.767203 0.782707 0.752301 3.06% 24.77%
VAE+ISOF 0.645091 0.629022 0.661991 5.51% 33.80%
VAE+KNN 0.638042 0.598261 0.683560 6.33% 31.65%
LSTM 0.608834 0.596141 0.622078 6.17% 37.79%
CONV-AE 0.586893 0.479022 0.757465 12.07% 24.25%
ReEnc 0.584855 0.483532 0.739900 11.58% 26.01%
USAD 0.584099 0.508044 0.686934 9.75% 31.31%
LSTM-AE 0.565528 0.466579 0.717741 12.02% 28.23%
VAE 0.562218 0.466685 0.706931 11.84% 29.31%
DENSE-AE 0.527047 0.450374 0.635184 11.36% 36.48%

Table 5.18: Exathlon summary result

117

6| Conclusions and Future work

This work performs unsupervised anomaly detection in two multivariate time series,
SKAB [52] and Exathlon [46], by processing the data with several inference models and
then by applying different thresholds, computed throw several thresholding techniques on
a validation set, on the score generated by each model. Therefore, it is analyzed if the
anomaly detection results, measured in terms of F1-Score, Recall, Precision, FAR, and
MAR, depend more on the inference model or on the thresholding technique.

What emerges is that both, the model and threshold, have to be chosen accurately. Using
models which generate bad predictions with low AUROC values, it is not possible to
get accurate and precise anomaly detection. On the other hand, also the threshold is
important.

Concerning the threshold techniques, they highly depend on the statistical feature of
the validation score on which the threshold is computed. If they are calculated on a
small validation set and the validation score assumes a nearly uniform distribution, the
threshold computed by different techniques is quite similar. Also, the contribution of
different thfactor is minimal. The result is that the neural network model is the principal
choice for better anomaly detection. On the other hand, for huge validation sets, the
behavior is the opposite. Being calculated on more value and score distribution containing
samples that deviate significantly from the mean, the thresholds assume different values
according to the technique used. Moreover, only statistically-based techniques can be
used since MV generates inconsistent results. The choice of the threshold factor instead
is not so important. It takes values only if the score distribution is limited by a maximum
value. The result is that in this type of validation score distribution, the most significant
contribution to the F1-Score, Precision, and Recall values corresponds to the choice of the
threshold method. This does not mean that the impact of the model is null but lower.

Many different adaptations, tests, and experiments have been left for the future due to
the lack of time. Future works concern the analysis of other thresholding techniques like
[40], which proposes an approach for detecting anomalies in multivariate telemetry time
series using LSTMs and a nonparametric dynamic thresholding method that does not

118 6| Conclusions and Future work

assume a specific underlying distribution of the anomaly scores. The method relies on
the standard deviation of the smoothed prediction errors and on a single parameter (z),
set experimentally and shown to have little impact on performances. Other future works
address applying the threshold technique presented in the thesis to other multivariate
datasets with the scope to have further data to determine whether it is possible to establish
a relationship between the threshold and the distribution of the testing anomaly score.

119

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorflow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[2] A. Abdulaal, Z. Liu, and T. Lancewicki. Practical approach to asynchronous mul-
tivariate time series anomaly detection and localization. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining, pages 2485–2494,
2021.

[3] C. C. Aggarwal. An Introduction to Outlier Analysis, pages 1–34. Springer In-
ternational Publishing, Cham, 2017. ISBN 978-3-319-47578-3. doi: 10.1007/
978-3-319-47578-3_1. URL https://doi.org/10.1007/978-3-319-47578-3_1.

[4] P. J. M. Ali, R. H. Faraj, E. Koya, P. J. M. Ali, and R. H. Faraj. Data normalization
and standardization: a technical report. Mach Learn Tech Rep, 1(1):1–6, 2014.

[5] M. Alkhayrat, M. Aljnidi, and K. Aljoumaa. A comparative dimensionality reduc-
tion study in telecom customer segmentation using deep learning and pca. Journal
of Big Data, 7:9, 02 2020. doi: 10.1186/s40537-020-0286-0.

[6] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga. Usad: Un-
supervised anomaly detection on multivariate time series. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’20, page 3395–3404, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403392. URL
https://doi.org/10.1145/3394486.3403392.

[7] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga. Usad: Unsu-

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-47578-3_1
https://doi.org/10.1145/3394486.3403392

120 | Bibliography

pervised anomaly detection on multivariate time series. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 3395–3404, 2020.

[8] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga. Do deep
neural networks contribute to multivariate time series anomaly detection? Pattern
Recognition, 132:108945, 2022.

[9] P. Barson, S. Field, N. Davey, G. McAskie, and R. Frank. The detection of fraud
in mobile phone networks. Neural Network World, 6(4):477–484, 1996.

[10] M. Belichovski, D. Stavrov, F. Donchevski, and G. Nadzinski. Unsupervised machine
learning approach for anomaly detection in e-coating plant. In 2022 IEEE 17th
International Conference on Control & Automation (ICCA), pages 992–997. IEEE,
2022.

[11] S. M. Bendre. Sankhyā: The Indian Journal of Statistics, Series B (1960-2002),
56(2):305–308, 1994. ISSN 05815738. URL http://www.jstor.org/stable/

25052847.

[12] A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano. A review on out-
lier/anomaly detection in time series data. ACM Computing Surveys (CSUR), 54
(3):1–33, 2021.

[13] N. Caballé, J. Castillo-Sequera, J. A. Gomez-Pulido, J. Gómez, and M. Polo-Luque.
Machine learning applied to diagnosis of human diseases: A systematic review.
Applied Sciences, 10:5135, 07 2020. doi: 10.3390/app10155135.

[14] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3), jul 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882.
URL https://doi.org/10.1145/1541880.1541882.

[15] A. Chiang, E. David, Y.-J. Lee, G. Leshem, and Y.-R. Yeh. A study on
anomaly detection ensembles. Journal of Applied Logic, 21:1–13, 2017. ISSN
1570-8683. doi: https://doi.org/10.1016/j.jal.2016.12.002. URL https://www.

sciencedirect.com/science/article/pii/S1570868316301240.

[16] F. Chollet et al. Keras. https://keras.io, 2015.

[17] M. C. Chuah and F. Fu. Ecg anomaly detection via time series analysis. In Frontiers
of High Performance Computing and Networking ISPA 2007 Workshops: ISPA 2007
International Workshops SSDSN, UPWN, WISH, SGC, ParDMCom, HiPCoMB,

http://www.jstor.org/stable/25052847
http://www.jstor.org/stable/25052847
https://doi.org/10.1145/1541880.1541882
https://www.sciencedirect.com/science/article/pii/S1570868316301240
https://www.sciencedirect.com/science/article/pii/S1570868316301240
https://keras.io

| Bibliography 121

and IST-AWSN Niagara Falls, Canada, August 28-September 1, 2007 Proceedings
5, pages 123–135. Springer, 2007.

[18] G. Coelho, L. M. Matos, P. J. Pereira, A. Ferreira, A. Pilastri, and P. Cortez. Deep
autoencoders for acoustic anomaly detection: experiments with working machine
and in-vehicle audio. Neural Computing and Applications, 34(22):19485–19499,
2022.

[19] N. Cohen and Y. Hoshen. Sub-image anomaly detection with deep pyramid corre-
spondences. arXiv preprint arXiv:2005.02357, 2020.

[20] J. Cook and V. Ramadas. When to consult precision-recall curves. The Stata
Journal, 20(1):131–148, 2020.

[21] S. Craw. Manhattan Distance, pages 790–791. Springer US, Boston, MA, 2017.
ISBN 978-1-4899-7687-1. doi: 10.1007/978-1-4899-7687-1_511. URL https://

doi.org/10.1007/978-1-4899-7687-1_511.

[22] P. Cunningham and S. J. Delany. k-nearest neighbour classifiers-a tutorial. ACM
computing surveys (CSUR), 54(6):1–25, 2021.

[23] R. de Jong. Lecture 1: Stationarity time series. URL https://www.asc.

ohio-state.edu/de-jong.8/note1.pdf.

[24] L. Delamaire, H. Abdou, and J. Pointon. Credit card fraud and detection techniques:
a review. Banks and Bank systems, 4(2):57–68, 2009.

[25] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregressive
time series with a unit root. Journal of the American Statistical Association, 74
(366a):427–431, 1979. doi: 10.1080/01621459.1979.10482531. URL https://doi.

org/10.1080/01621459.1979.10482531.

[26] H. U. Dike, Y. Zhou, K. K. Deveerasetty, and Q. Wu. Unsupervised learning based
on artificial neural network: A review. In 2018 IEEE International Conference on
Cyborg and Bionic Systems (CBS), pages 322–327. IEEE, 2018.

[27] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg. Rule-based anomaly
detection on ip flows. In IEEE INFOCOM 2009, pages 424–432. IEEE, 2009.

[28] M. Elfil and A. Negida. Sampling methods in clinical research; an educational
review. Emergency, 5(1), 2017.

[29] M. Entezami, S. Hillmansen, P. Weston, and M. Papaelias. Fault detection and
diagnosis within a wind turbine mechanical braking system using condition mon-

https://doi.org/10.1007/978-1-4899-7687-1_511
https://doi.org/10.1007/978-1-4899-7687-1_511
https://www.asc.ohio-state.edu/de-jong.8/note1.pdf
https://www.asc.ohio-state.edu/de-jong.8/note1.pdf
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1080/01621459.1979.10482531

122 | Bibliography

itoring. Renewable Energy, 47:175–182, 2012. ISSN 0960-1481. doi: https:
//doi.org/10.1016/j.renene.2012.04.031. URL https://www.sciencedirect.com/

science/article/pii/S0960148112002728.

[30] P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys, 45(1):12,
2012. doi: 10.1145/2379776.2379788. URL https://hal.science/hal-01577883.

[31] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes. Deep learning
for medical anomaly detection–a survey. ACM Computing Surveys (CSUR), 54(7):
1–37, 2021.

[32] F. E. Grubbs. Procedures for detecting outlying observations in samples. Tech-
nometrics, 11(1):1–21, 1969. doi: 10.1080/00401706.1969.10490657. URL https:

//www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657.

[33] X. Gu, L. Akoglu, and A. Rinaldo. Statistical analysis of nearest neighbor methods
for anomaly detection. Advances in Neural Information Processing Systems, 32,
2019.

[34] G. Guo, H. Wang, D. Bell, and Y. Bi. Knn model-based approach in classification.
08 2004.

[35] Y. Guo, X. Cao, B. Liu, and K. Peng. El niño index prediction using deep learning
with ensemble empirical mode decomposition. Symmetry, 12:893, 2020.

[36] S. Hansen, S. Gautam, R. Jenssen, and M. Kampffmeyer. Anomaly detection-
inspired few-shot medical image segmentation through self-supervision with su-
pervoxels. Medical Image Analysis, 78:102385, 2022. ISSN 1361-8415. doi:
https://doi.org/10.1016/j.media.2022.102385. URL https://www.sciencedirect.

com/science/article/pii/S1361841522000378.

[37] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Ab-
basi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL https:

//doi.org/10.1038/s41586-020-2649-2.

[38] D. M. Hawkins. Identification of outliers, volume 11. Springer, 1980.

[39] N. A. Heard, D. J. Weston, K. Platanioti, and D. J. Hand. Bayesian anomaly
detection methods for social networks. 2010.

https://www.sciencedirect.com/science/article/pii/S0960148112002728
https://www.sciencedirect.com/science/article/pii/S0960148112002728
https://hal.science/hal-01577883
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
https://www.sciencedirect.com/science/article/pii/S1361841522000378
https://www.sciencedirect.com/science/article/pii/S1361841522000378
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

| Bibliography 123

[40] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. De-
tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding.
In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 387–395, 2018.

[41] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[42] A. Hyndman, R.J. G. (2018) Forecasting: principles and practice, 2nd edition.
OTexts: Melbourne, Australia, 2018, OTexts.com/fpp2. Accessed on 13/02/23.

[43] K. Hyun. The prevention and handling of the missing data. Korean J Anesthesiol,
64(5):402–406, 2013. doi: 10.4097/kjae.2013.64.5.402. URL http://ekja.org/

journal/view.php?number=7569.

[44] T. M. Inc. Matlab version: 9.13.0 (r2022b), 2022. URL https://www.mathworks.

com.

[45] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Label propagation for deep semi-
supervised learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[46] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, and N. Tatbul. Exathlon: A
benchmark for explainable anomaly detection over time series. arXiv preprint
arXiv:2010.05073, 2020.

[47] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, and N. Tatbul. A demonstration of
the exathlon benchmarking platform for explainable anomaly detection. Proceedings
of the VLDB Endowment (PVLDB), 2021.

[48] A. Jadon, A. Patil, and S. Jadon. A comprehensive survey of regression based loss
functions for time series forecasting. arXiv preprint arXiv:2211.02989, 2022.

[49] A. T. Jebb, L. Tay, W. Wang, and Q. Huang. Time series analysis for psychological
research: examining and forecasting change. Frontiers in Psychology, 6, 2015. ISSN
1664-1078. doi: 10.3389/fpsyg.2015.00727. URL https://www.frontiersin.org/

articles/10.3389/fpsyg.2015.00727.

[50] J. Jose. Introduction to time series analysis and its applications. 08 2022.

[51] S. Kandanaarachchi. Unsupervised anomaly detection ensembles using item re-
sponse theory. arXiv preprint arXiv:2106.06243, 2021.

http://ekja.org/journal/view.php?number=7569
http://ekja.org/journal/view.php?number=7569
https://www.mathworks.com
https://www.mathworks.com
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00727
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00727

124 | Bibliography

[52] I. D. Katser and V. O. Kozitsin. Skoltech anomaly benchmark (skab). https:

//www.kaggle.com/dsv/1693952, 2020.

[53] S. Khan, M. A. Alam, N. S. Ram, K. Mirza, and V. Chowdary. Noise reduction of
time-series satellite data using various de-noising algorithms. Int. J. Tech. Res. Sci,
(3):55–69, 2020.

[54] T. Kieu, B. Yang, C. Guo, and C. S. Jensen. Outlier detection for time series with
recurrent autoencoder ensembles. In IJCAI, pages 2725–2732, 2019.

[55] A. Kind, M. P. Stoecklin, and X. Dimitropoulos. Histogram-based traffic anomaly
detection. IEEE Transactions on Network and Service Management, 6(2):110–121,
2009.

[56] W. Koehrsen. Overfitting vs. underfitting: A complete example. Towards Data
Science, pages 1–12, 2018.

[57] Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P. Huang. Survey of fraud detection
techniques. In IEEE International Conference on Networking, Sensing and Control,
2004, volume 2, pages 749–754 Vol.2, 2004. doi: 10.1109/ICNSC.2004.1297040.

[58] A. Kulkarni, P. Mani, and C. Domeniconi. Network-based anomaly detection for
insider trading. arXiv preprint arXiv:1702.05809, 2017.

[59] T. Kurita. Principal component analysis (pca). Computer Vision: A Reference
Guide, pages 1–4, 2019.

[60] J. H. Lee, K. T. McDonnell, A. Zelenyuk, D. Imre, and K. Mueller. A structure-
based distance metric for high-dimensional space exploration with multidimensional
scaling. IEEE Transactions on Visualization and Computer Graphics, 20(3):351–
364, 2013.

[61] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata. Detecting outliers: Do
not use standard deviation around the mean, use absolute deviation around the
median. Journal of Experimental Social Psychology, 49(4):764–766, 2013. ISSN
0022-1031. doi: https://doi.org/10.1016/j.jesp.2013.03.013. URL https://www.

sciencedirect.com/science/article/pii/S0022103113000668.

[62] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata. Detecting outliers: Do not
use standard deviation around the mean, use absolute deviation around the median.
Journal of experimental social psychology, 49(4):764–766, 2013.

https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://www.sciencedirect.com/science/article/pii/S0022103113000668
https://www.sciencedirect.com/science/article/pii/S0022103113000668

| Bibliography 125

[63] J. Li, H. Izakian, W. Pedrycz, and I. Jamal. Clustering-based anomaly detection in
multivariate time series data. Applied Soft Computing, 100:106919, 2021.

[64] H. Liang, L. Song, J. Wang, L. Guo, X. Li, and J. Liang. Robust unsupervised
anomaly detection via multi-time scale dcgans with forgetting mechanism for in-
dustrial multivariate time series. Neurocomputing, 423:444–462, 2021.

[65] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich. A sur-
vey on long short-term memory networks for time series prediction. Proce-
dia CIRP, 99:650–655, 2021. ISSN 2212-8271. doi: https://doi.org/10.1016/
j.procir.2021.03.088. URL https://www.sciencedirect.com/science/article/

pii/S2212827121003796. 14th CIRP Conference on Intelligent Computation in
Manufacturing Engineering, 15-17 July 2020.

[66] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 2008 eighth ieee inter-
national conference on data mining, pages 413–422. IEEE, 2008.

[67] F. T. Liu, K. Ting, and Z.-H. Zhou. Isolation forest. pages 413 – 422, 01 2009. doi:
10.1109/ICDM.2008.17.

[68] R. M. Liu, S. K. Babanajad, T. Taylor, and F. Ansari. Experimental study on struc-
tural defect detection by monitoring distributed dynamic strain. Smart Materials
and Structures, 24(11):115038, oct 2015. doi: 10.1088/0964-1726/24/11/115038.
URL https://dx.doi.org/10.1088/0964-1726/24/11/115038.

[69] J. Ma, L. Sun, H. Wang, Y. Zhang, and U. Aickelin. Supervised anomaly detection in
uncertain pseudoperiodic data streams. ACM Transactions on Internet Technology
(TOIT), 16(1):1–20, 2016.

[70] P. Malhotra, L. Vig, G. Shroff, P. Agarwal, et al. Long short term memory networks
for anomaly detection in time series. In ESANN, volume 2015, page 89, 2015.

[71] C. Manikopoulos and S. Papavassiliou. Network intrusion and fault detection: a
statistical anomaly approach. IEEE Communications Magazine, 40(10):76–82, 2002.

[72] K. Martin-Chinea, J. Ortega, J. Gomez-Gonzalez, E. Pereda, J. Toledo, and
L. Acosta. Effect of time windows in lstm networks for eeg-based bcis. Cognitive
Neurodynamics, pages 1–14, 2022.

[73] L. Martí, N. Sanchez-Pi, J. M. Molina, and A. C. B. Garcia. Anomaly detection
based on sensor data in petroleum industry applications. Sensors, 15(2):2774–2797,
2015. ISSN 1424-8220. doi: 10.3390/s150202774. URL https://www.mdpi.com/

1424-8220/15/2/2774.

https://www.sciencedirect.com/science/article/pii/S2212827121003796
https://www.sciencedirect.com/science/article/pii/S2212827121003796
https://dx.doi.org/10.1088/0964-1726/24/11/115038
https://www.mdpi.com/1424-8220/15/2/2774
https://www.mdpi.com/1424-8220/15/2/2774

126 | Bibliography

[74] M. S. Mok, S. Y. Sohn, and Y. H. Ju. Random effects logistic regression model for
anomaly detection. expert systems with applications, 37(10):7162–7166, 2010.

[75] M. Murugesan and S. Thilagamani. Efficient anomaly detection in surveillance
videos based on multi layer perception recurrent neural network. Microprocessors
and Microsystems, 79:103303, 2020.

[76] R. Murugesan, E. Mishra, and A. Krishnan. Deep learning based models: Basic lstm,
bi lstm, stacked lstm, cnn lstm and conv lstm to forecast agricultural commodities
prices, 07 2021.

[77] T. pandas development team. pandas-dev/pandas: Pandas, Feb. 2020. URL https:

//doi.org/10.5281/zenodo.3509134.

[78] S. H. Park, J. M. Goo, and C.-H. Jo. Receiver operating characteristic (roc) curve:
practical review for radiologists. Korean journal of radiology, 5(1):11–18, 2004.

[79] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[80] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[81] X. Peng, H. Li, F. Yuan, S. G. Razul, Z. Chen, and Z. Lin. An extreme learning
machine for unsupervised online anomaly detection in multivariate time series. Neu-
rocomputing, 501:596–608, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.
neucom.2022.06.042. URL https://www.sciencedirect.com/science/article/

pii/S0925231222007615.

[82] O. I. Provotar, Y. M. Linder, and M. M. Veres. Unsupervised anomaly detection in
time series using lstm-based autoencoders. In 2019 IEEE International Conference
on Advanced Trends in Information Theory (ATIT), pages 513–517. IEEE, 2019.

[83] G. Pu, L. Wang, J. Shen, and F. Dong. A hybrid unsupervised clustering-based

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.sciencedirect.com/science/article/pii/S0925231222007615
https://www.sciencedirect.com/science/article/pii/S0925231222007615

| Bibliography 127

anomaly detection method. Tsinghua Science and Technology, 26(2):146–153, 2021.
doi: 10.26599/TST.2019.9010051.

[84] B. Quinn. Stationarity and invertibility of simple bilinear models. Stochastic Pro-
cesses and their Applications, 12(2):225–230, 1982. ISSN 0304-4149. doi: https://
doi.org/10.1016/0304-4149(82)90045-X. URL https://www.sciencedirect.com/

science/article/pii/030441498290045X.

[85] M. Raginsky, R. M. Willett, C. Horn, J. Silva, and R. F. Marcia. Sequential anomaly
detection in the presence of noise and limited feedback. IEEE Transactions on
Information Theory, 58(8):5544–5562, 2012.

[86] E. Ramasso, V. Placet, and M. L. Boubakar. Unsupervised consensus clustering of
acoustic emission time-series for robust damage sequence estimation in composites.
IEEE Transactions on Instrumentation and Measurement, 64(12):3297–3307, 2015.

[87] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler. Towards total
recall in industrial anomaly detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14318–14328, 2022.

[88] P. J. Rousseeuw and C. Croux. Alternatives to the median absolute deviation.
Journal of the American Statistical Association, 88(424):1273–1283, 1993. doi:
10.1080/01621459.1993.10476408. URL https://www.tandfonline.com/doi/abs/

10.1080/01621459.1993.10476408.

[89] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller,
and M. Kloft. Deep semi-supervised anomaly detection. arXiv preprint
arXiv:1906.02694, 2019.

[90] A. Saci, A. Al-Dweik, and A. Shami. Autocorrelation integrated gaussian based
anomaly detection using sensory data in industrial manufacturing. IEEE Sensors
Journal, 21(7):9231–9241, 2021.

[91] A. Sahar and D. Han. An lstm-based indoor positioning method using wi-fi signals.
pages 1–5, 08 2018. ISBN 978-1-4503-6529-1. doi: 10.1145/3271553.3271566.

[92] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs. Un-
supervised anomaly detection with generative adversarial networks to guide marker
discovery. In Information Processing in Medical Imaging: 25th International Confer-
ence, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings, pages 146–157.
Springer, 2017.

[93] A. Siffer, P. Fouque, A. Termier, and C. Largouët. Anomaly detection in streams

https://www.sciencedirect.com/science/article/pii/030441498290045X
https://www.sciencedirect.com/science/article/pii/030441498290045X
https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476408
https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476408

128 | Bibliography

with extreme value theory. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017, pages 1067–1075. ACM, 2017. doi: 10.1145/3097983.3098144. URL
https://doi.org/10.1145/3097983.3098144.

[94] Simplilearn. Normalization vs standardization - what’s the difference?
"https://www.simplilearn.com/normalization-vs-standardization-article", 01 2023.

[95] K. Singh and S. Upadhyaya. Outlier detection: applications and techniques. Inter-
national Journal of Computer Science Issues (IJCSI), 9(1):307, 2012.

[96] A. A. Sodemann, M. P. Ross, and B. J. Borghetti. A review of anomaly detection
in automated surveillance. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 42(6):1257–1272, 2012.

[97] V. A. Sotiris, W. T. Peter, and M. G. Pecht. Anomaly detection through a bayesian
support vector machine. IEEE Transactions on Reliability, 59(2):277–286, 2010.

[98] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 2828–2837, 2019.

[99] A. I. Tambuwal and D. Neagu. Deep quantile regression for unsupervised anomaly
detection in time-series. SN Computer Science, 2:1–16, 2021.

[100] J. Tian, M. H. Azarian, and M. Pecht. Anomaly detection using self-organizing
maps-based k-nearest neighbor algorithm. In PHM society European conference,
volume 2, 2014.

[101] Z. Tian, M. Zhuo, L. Liu, J. Chen, and S. Zhou. Anomaly detection using spatial
and temporal information in multivariate time series. Scientific Reports, 13(1):4400,
2023.

[102] K. M. Ting, B.-C. Xu, T. Washio, and Z.-H. Zhou. Isolation distributional ker-
nel: A new tool for kernel based anomaly detection. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, KDD ’20, page 198–206, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403062. URL
https://doi.org/10.1145/3394486.3403062.

[103] A. Toshniwal, K. Mahesh, and R. Jayashree. Overview of anomaly detection tech-
niques in machine learning. In 2020 Fourth International Conference on I-SMAC

https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3394486.3403062

| Bibliography 129

(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pages 808–815, 2020. doi:
10.1109/I-SMAC49090.2020.9243329.

[104] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[105] Y. Wang, H. Yao, and S. Zhao. Auto-encoder based dimensionality reduction.
Neurocomputing, 184:232–242, 2016.

[106] Z. Wang, Z. Yu, C. L. P. Chen, J. You, T. Gu, H.-S. Wong, and J. Zhang. Clustering
by local gravitation. IEEE Transactions on Cybernetics, 48(5):1383–1396, 2018. doi:
10.1109/TCYB.2017.2695218.

[107] H. Weytjens and J. De Weerdt. Process outcome prediction: Cnn vs. lstm (with at-
tention). In Business Process Management Workshops: BPM 2020 International
Workshops, Seville, Spain, September 13–18, 2020, Revised Selected Papers 18,
pages 321–333. Springer, 2020.

[108] L. Wong, D. Liu, L. Berti-Equille, S. Alnegheimish, and K. Veeramachaneni. Aer:
Auto-encoder with regression for time series anomaly detection. In 2022 IEEE
International Conference on Big Data (Big Data), pages 1152–1161, 2022. doi:
10.1109/BigData55660.2022.10020857.

[109] M. Wu and C. Jermaine. Outlier detection by sampling with accuracy guarantees.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, page 767–772, New York, NY, USA, 2006.
Association for Computing Machinery. ISBN 1595933395. doi: 10.1145/1150402.
1150501. URL https://doi.org/10.1145/1150402.1150501.

[110] S.-y. Xia, Z.-y. Xiong, Y.-g. Luo, Wei-Xu, and G.-h. Zhang. Effectiveness of the
euclidean distance in high dimensional spaces. Optik - International Journal for
Light and Electron Optics, 126, 09 2015. doi: 10.1016/j.ijleo.2015.09.093.

[111] J. Yang, S. Rahardja, and P. Fränti. Outlier detection: how to threshold outlier
scores? In Proceedings of the international conference on artificial intelligence,
information processing and cloud computing, pages 1–6, 2019.

[112] K. Yoshihara and K. Takahashi. A simple method for unsupervised anomaly detec-
tion: An application to web time series data. Plos one, 17(1):e0262463, 2022.

[113] H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar. Adversarially
learned anomaly detection. In 2018 IEEE International Conference on Data Mining
(ICDM), pages 727–736, 2018. doi: 10.1109/ICDM.2018.00088.

https://doi.org/10.1145/1150402.1150501

130 6| BIBLIOGRAPHY

[114] C. Zhang, S. Li, H. Zhang, and Y. Chen. Velc: A new variational autoencoder based
model for time series anomaly detection. arXiv preprint arXiv:1907.01702, 2019.

[115] Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for wireless
sensor networks: A survey. IEEE communications surveys & tutorials, 12(2):159–
170, 2010.

[116] Y. Zhang, W. Liu, Z. Chen, J. Wang, and K. Li. On the properties of kullback-
leibler divergence between multivariate gaussian distributions. arXiv preprint
arXiv:2102.05485, 2021.

[117] M. Zhao and V. Saligrama. Anomaly detection with score functions based on near-
est neighbor graphs. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems, volume 22.
Curran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper/

2009/file/996a7fa078cc36c46d02f9af3bef918b-Paper.pdf.

[118] J. T. Zhou, J. Du, H. Zhu, X. Peng, Y. Liu, and R. S. M. Goh. Anomalynet: An
anomaly detection network for video surveillance. IEEE Transactions on Informa-
tion Forensics and Security, 14(10):2537–2550, 2019.

https://proceedings.neurips.cc/paper/2009/file/996a7fa078cc36c46d02f9af3bef918b-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/996a7fa078cc36c46d02f9af3bef918b-Paper.pdf

131

List of Figures

2.1 Stationary time series of Current value from SKAB dataset[52] 8
2.2 Non-stationary time series of Thermocouple value from SKAB dataset[52] . 8
2.3 Key component of anomaly detection [14] 9
2.4 Contextual, collective, point outlier representation 12
2.5 Representation of supervised, unsupervised and semisupervised learning . . 13
2.6 Ensembre anomaly detection technique . 20
2.7 MAD threshold method applied on a validation anomaly score distribution 22
2.8 IQR threshold method applied on a validation anomaly score distribution . 23
2.9 STD threshold method applied on a validation anomaly score distribution . 24
2.10 How dataset is split . 28
2.11 Definition of confusion matrix . 31
2.12 Example of ROC curve obtained after processing the test Exathlon dataset

[46] with the CONV-AE models. In that case, the AUROC value is equal
to 0.89538 . 32

3.1 LSTM Structure [35] . 36
3.2 Autoencoder architecture representation 37
3.3 VAE structure representation . 40
3.4 Reparameterization trick effect . 42
3.5 Latent space view without and with regularization 43
3.6 Relationship between neighbor points in the latent space 43
3.7 Difference between AE (deterministic) and VAE (probabilistic) 45
3.8 The two figures compare the latent space of a simple AE to the latent

space of a VAE. The color represents the value of each sample before be-
ing processed by the model. The shape of each point corresponds to its
classification: the cross represents the anomalies, while the bullets are the
normal ones. They are obtained by processing the same time series taken
from the SKAB dataset [52] . 46

132 | List of Figures

3.9 The figure represents the training data distribution represented by the red
and green points and two test samples, colored in blue and orange, which
have to be classified. The color of the training points is chosen according to
the contamination parameter, which determines the percentage of training
data to be considered anomalous. Concerning the test sample, their k-
nearest points are retrieved to classify them. 48

3.10 The two plots represent the same scatter plot of samples from a normal dis-
tribution. The horizontal and vertical lines are the random split performed
by Isolation Forest, and the red points represent the isolated points. . . . 50

3.11 The figure compares two latent space distributions according to how they
are computed. The left plot represents the latent space obtained after the
encoding phase, while the right one is obtained after a re-encoding. Normal
values circled in green are encoded similarly in the two latent spaces. In-
stead, the two latent spaces’ anomalous values circled in red are mapped dif-
ferently. The figure is obtained by analyzing a file from the SKAB dataset
[52] . 51

3.12 The structure of the network and the different steps to which each test
sequence is subjected to obtain each variable of the score function. 51

3.13 Convolutional Autoencoder structure . 53
3.14 USAD training and architecture representation 55
3.15 USAD score definition . 57
3.16 ELM-MI division in clusters splitting by days and applying CLA method . 58
3.17 The black arrow corresponds to the LRF value of the black data point. It

corresponds to the vectorial sum of the force generated by its neighbors
represented by the colored arrow . 59

3.18 The red dots are the point with the smallest CE, the blue dots are ones indi-
viduated as local agents, and the yellow row represents the communication
between local agents to create the different clusters 59

3.19 ELM-MI framework . 60

4.1 The test bench schema. The numbers 1, 2, 3, 4, 5, and 6 correspond to the
sensors installed on the pump that measure vibrations, current, voltage,
water temperature, and thermocouple. Sensors 7 and 8 are positioned on
the water circuit, measuring the pressure and volume flow rate of the fluid. 64

4.2 Data preparation . 67
4.3 Undisturbed trace division . 68
4.4 Anomaly detection and evaluation . 68

| List of Figures 133

5.1 Different histograms of the anomaly scores computed on the validation set
using all the neural network models. Since the dataset comprises 34 files,
too much to be shown in a single graph, in this figure are shown only three
different files, one for each type of anomaly 77

5.2 Different histograms of the anomaly scores computed on the test set using
all the neural network models. Since the dataset comprises 34 files, too
much to be shown in a single graph, the figure shows the score of only
three files, one for each type of anomaly. Files that correspond to the one
represented in Figure 5.1. For a better comparison, the y-axis representing
the occurrence of each score value is in logarithmic scale 79

5.3 Original sequences compared with the reconstruction ones computed by
DENSE-AE . 81

5.4 Original sequences compared with the reconstruction ones computed by
LSTM-AE . 82

5.5 Original sequences compared with the reconstruction ones computed by VAE 83
5.6 Original sequences compared with the reconstruction ones computed by

CONV-AE . 84
5.7 Results obtained by processing data with VAE+Isof and VAE+KNN . . . 85
5.8 Anomaly score of a test of the SKAB dataset processed with the machine

learning methods implemented . 86
5.9 Anomaly score distribution showing the value assumed by normal and

anomalous value . 89
5.10 Analysis of the relation between the AUROC value and the F1-Score . . . 90
5.11 Analysis performed on different overlapping window size 91
5.12 Overall results obtained by computing the threshold in three different ways 94
5.13 Re-Encoding analysis according to β and α parameter. It is considered the

same input reconstruction (x′) and the same latent space reconstruction
(z′). The only parameters that changes are the ones in the score function. . 96

5.14 It represents the difference between the implemented and available models
on the SKAB repository. It contains both F1-Score and the total training
time. To show time of different orders of magnitude, a logarithmic scale is
used . 99

5.15 Summary results of SKAB dataset . 101
5.16 Validation scores computed with all the neural network models. To better

show all values, the axis y uses a logarithmic scale 103
5.17 Exathlon test score containing anomaly of type T1 with a visible distinction

between normal and anomalous data . 104

134 | List of Figures

5.18 Exathlon test score containing anomaly of type T4 with no distinction
between normal and anomalous data . 105

5.19 Anomaly score distribution showing the value assumed by normal and
anomalous value . 107

5.20 Analysis of the relation between the AUROC value and the F1-Score . . . 108
5.21 Overall results obtained by computing the threshold in three different ways 110
5.22 Anomaly detection task performed in the state of art paper [46] 112
5.23 Summary results of Exathlon dataset . 114

135

List of Tables

3.1 Score range according to the models. Concerning AE includes all the au-
toencoder implementations (DENSE-AE, LSTM-AE, VAE, CONV-AE).
Further clarifications are about VAE+Isof and VAE+KNN which the score
obtained by the model is directly the classification in normal and anomalous 61

4.1 SKAB dataset anomalies classification . 65
4.2 Exathlon anomalies classification [46] . 67
4.3 LSTM-AE model detailed implementation. None corresponds to the dy-

namic dimension of a batch, namely the number of samples propagated in
the network . 69

4.4 LSTM model detailed implementation. None corresponds to the dynamic
dimension of a batch, namely the number of samples propagated in the
network . 70

4.5 Variational autoencoder detailed implementation. None corresponds to the
dynamic dimension of a batch, namely the number of samples propagated
in the network . 71

4.6 Convolutional AE model detailed implementation. None corresponds to
the dynamic dimension of a batch, namely the number of samples propa-
gated in the network . 72

4.7 USAD detailed implementation. None corresponds to the dynamic dimen-
sion of a batch, namely the number of samples propagated in the network . 73

4.8 ELM-MI parameters . 74

5.1 Mean score of normal and anomalous samples relative to the single test
shown in Figure 5.8. The last row of the table corresponds to the ratio
between normal and anomalous scores. The greater it is. the easier it is to
distinguish between normal and anomalous scores 87

5.2 AUROC value for each method . 88
5.4 Window size chosen according to the maximum F1-Score in table 5.3 . . . 91
5.3 SKAB analysis according to the size of the windows 92

136 | List of Tables

5.5 F1-score comparison between different threshold technique and threshold
factor . 94

5.6 Threshold comparison between different threshold techniques and threshold
factor. The threshold value in the table corresponds to the average of all
files comprises in the dataset . 95

5.7 SKAB ReEncoding analysis according to α and β value 96
5.8 Comparison between the structure of the implemented model and the

SKAB repository ones. The W coloumn indicates if the model input has
to be in overlapping window configuration or not 98

5.9 Comparison of thesis result and SKAB state of art 99
5.10 Comparison of execution time between thesis and SKAB state of art. (*The

training is not executed by epochs) . 100
5.11 SKAB summary results . 102
5.12 AUROC value for each method . 106
5.13 Validation score mean and median comparison 109
5.14 Comparison between SKAB and Exathlon of the number of standard de-

viation needed. that summed to the mean. to reach the same value as the
maximum value of the score . 110

5.15 F1-score comparison between different threshold technique and threshold
factor . 111

5.16 Threshold value according to different threshold technique and threshold
factor . 111

5.17 Exathlon result comparison between thesis implementation and state-of-art 112
5.18 Exathlon summary result . 115

137

List of Abbrevations

Abbreviation Long word/phrase
AE Autoencoder
AI Artificial Intelligence
BigGAN Big Generative Adversarial Network
CE Centrality
CNN Convolutional Neural Network
CONV Convolutional
CV Computer Vision
ELM Extreme Learning Machine
FAR False Alarm Rate
FN False Negative
FP False Positive
GT Ground Truth
IoT Internet of Things
IQR Inter-Quantile Range
ISOF Isolation Forest
KNN k-Nearest Neighbors
LRF Local resultatnt Force
LSTM Long Short-Term Memory
MAD Median Absolute Deviation
MAR Missing Alarm Rate
MI Mutual Information
ML Machine Learning

138 | List of Abbrevations

PCA Principal Component Analysis
RBK Radial Basis Function Kernel
ReENC Re-Encoding
RNN Recursive Neural Network
SD Standard Deviation
SVM Support-Vector Machines
TN True Negative
TP True positive
USAD Unsupervised Anomaly Detection
VAE Variational Autoencoder

139

Acknowledgements

Vorrei riservare questo spazio finale della tesi per ringraziare tutte le persone che mi hanno
sostenuto ed aiutato nel mio percoso universitario.

Per prima cosa, vorrei ringraziare il mio relatore, Piero Fraternali, per i suoi consigli e
per la sua disponibilità. Con la grande passione e dedizione per il suo lavoro, ha fin da
subito fatto accrescere in me l’interesse verso gli argomenti trattati nella tesi.

Un ringraziamento particolare va al mio co-relatore, Nicolò Oreste Pinciroli Vago, per
tutto il tempo dedicatomi nella scrittura della tesi. Grazie per tutti i consigli forniti e per
la prontezza nel rispondere a qualunque richiesta.

Infine un sentito ringraziamento va alla mia famiglia. Grazie per aver sempre sostenuto
e appoggiato ogni mia decisione e per avermi dato l’opportunità di studiare ciò che mi
appassiona senza avermi mai fatto mancare nulla.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Time Series
	Definition
	Components
	Univariate and Multivariate
	Stationarity
	Dickey-Fuller test

	Anomaly Detection in Time Series
	Defining Anomaly
	Anomaly Detection Paradigms
	Anomaly Detection Applications
	Intrusion Detection
	Fraud Detection
	Medical and Public Health Anomaly Detection
	Industrial Damage Detection
	Image processing
	Sensor Networks

	Anomaly Detection Techniques
	Classification-based
	Nearest Neighbors Distance-Based
	Clustering-based
	Statistical
	Ensemble

	Anomaly Detection Output and Evaluation
	Median Absolute Deviation
	Inter-Quartile Range
	Standard Deviation
	Max Value

	Threshold Related Work

	Works on Data
	Data Preprocessing
	Data Splitting
	Problem and Technique

	Result evaluation metrics
	Threshold-independent evaluation
	Threshold-dependent evaluation

	Model design
	Long Short-Term Memory
	Architecture

	Autoencoder
	Architecture
	Autoencoder parameters

	Variational Autoencoder
	Architecture
	Loss Function
	Reparametrization trick
	Latent Space
	Difference between AE and VAE
	Variational Autoencoder approaches
	Latent space methods
	VAE and KNN
	VAE and Isolation Forest
	VAE and Re-encoding

	Convolutional-Autoencoder
	Architecture
	CONV-AE vs. LSTM-AE

	Unsupervised Anomaly Detection
	Architecture
	Detection Phase

	ELM-MI
	Architecture

	Anomaly score range

	Implementation and Dataset analysis
	Introduction
	Dataset
	SKAB dataset
	Dataset analysis
	Data processing

	Exathlon dataset
	Dataset analysis
	Data Processing

	Neural Network model
	LSTM Autoencoder
	LSTM
	Variational Autoencoder
	Convolutional Autoencoder
	USAD
	ELM-MI

	Evaluation
	Thresholding
	SKAB Dataset
	Analysis of the anomaly score distribution on the validation set
	Analysis of the anomaly score distribution on the test set
	Reconstruction and score analysis
	AUROC
	Analysis by overlapping window
	Threshold
	VAE vs ReEncoding
	Thesis vs. State-of-Art
	Summary Results

	Exathlon
	Analysis of the anomaly score distribution on the validation set
	Analysis of the anomaly score distribution on the test set
	AUROC
	Threshold
	Thesis vs. State-of-Art
	Summary Result

	Conclusions and Future work
	Bibliography
	List of Figures
	List of Tables
	List of Abbrevations
	Acknowledgements

