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Abstract

Modern manufacturing is characterized by small-batched, rapidly varying pro-

duction mixes, requiring some repetitive operations, that should be executed by

industrial robots, and others that are too complex for them. Despite their speed

and accuracy, traditional robots are not well suited for this new kind of tasks,

since they lack the flexibility and soft skills of the human beings.

The Industry 4.0 paradigm aims at solving this problem through collaborative

robotics. Cobots are endowed with particular sensors and control systems that al-

low them to work alongside human workers, without the need of safety barriers

that prevent a direct interaction with them.

One important field of collaborative robotics is physical human robot interaction,

where the operator is physically in contact with the mechanical structure of the

manipulator, usually in correspondence of its end-effector. A particular branch is

formed by manual guidance operations, where a robotic manipulator and a human

worker collaborate in the transportation of heavy and usually bulky objects that

a human is not able to move alone. The robot compensates for the gravitational

load, and the operator guides the end-effector to the correct target, applying a

force on an appropriate handle. This solution allows great flexibility in terms

of different types of transported object and multiple destinations, thanks to the

combination of the robot strength and human cognitive capabilities.

However, there might be cases where the bulky size of the transported object

obstructs the human field of view, increasing the risk of accidental collisions dur-

ing the movement and reducing the accuracy of the final positioning/insertion

phase. Hence the overall performance would considerably decrease while the

risks would increase.
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In the present work, a new variable admittance control strategy, which is able to

provide a directional haptic feedback to the operator in a manual guidance task,

is proposed. Thanks to this feedback, the user is able to navigate in cluttered

working spaces, reaching the predefined target position with very low final posi-

tioning error, even with closed eyes.

To achieve this objective, an environment exploring structure is constructed. Then,

at each time instant, an optimal motion direction is determined based on the end-

effector position with respect to the exploring structure and on the user force di-

rection, which is a symptom of his/her motion intention. The admittance param-

eters are suitably varied according to the optimal movement direction, in order

to realize an intuitive and effective directional haptic feedback for the operator.

The performance of the developed algorithms is evaluated through three set of

experiments, which were executed by multiple volunteers assisted by a Comau

Smart Six manipulator.



Sommario

L’industria manifatturiera odierna è caratterizzata da una produzione in piccole

quantità e ad elevata variabilità, che richiede sia operazioni ripetitive eseguite

da robot industriali, sia azioni per loro troppo elaborate. Nonostante l’elevata

velocità e accuratezza, i robot tradizionali non sono adatti a questo tipo di com-

piti, poiché mancano della flessibilità e delle soft-skills proprie dell’uomo.

Il paradigma dell’Industria 4.0 suggerisce la robotica collaborativa come

soluzione. I Cobot sono dotati di sensori e sistemi di controllo particolari

che permettono loro di collaborare con i lavoratori umani, eliminando le barriere

di sicurezza che impediscono l’interazione diretta tra le due parti.

Un importante campo applicativo della robotica collaborativa è l’interazione

fisica tra uomo e robot, dove l’operatore è fisicamente in contatto con la struttura

del manipolatore, solitamente in corrispondenza dell’organo terminale del robot.

Una particolare categoria è costituita dalle operazioni di guida manuale, dove un

manipolatore robotico e un operaio umano collaborano nel trasporto di oggetti

pesanti e spesso voluminosi, che l’uomo non sarebbe in grado di sollevare da

solo. Il manipolatore compensa il peso del carico, mentre l’operatore guida

l’organo terminale del robot verso la destinazione corretta, applicando una forza

su un’opportuna maniglia. Grazie alla combinazione tra forza del robot e capac-

ità cognitive dell’uomo, questa soluzione permette una grande flessibilità, sia in

termini di tipi di oggetto diversi trasportabili, sia di destinazioni variabili.

Tuttavia, ci sono casi in cui le dimensioni dell’oggetto trasportato sono tali

da ostruire il campo visivo del lavoratore, aumentando il rischio di colli-

sioni accidentali durante il movimento e peggiorando l’accuratezza del po-

sizionamento/inserimento finale. Di conseguenza, l’efficienza dell’operazione
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diminuirebbe mentre i rischi aumenterebbero.

In questa tesi viene presentata una nuova strategia di controllo ad ammettenza

variabile, in grado di fornire un feedback tattile all’operatore durante la guida

manuale. Grazie a questo riscontro, l’utente è in grado raggiungere la des-

tinazione con un minimo errore sul posizionamento finale, attraversando un

ambiente di lavoro ricco di ostacoli, anche ad occhi chiusi.

A questo scopo, viene generata una struttura di esplorazione dell’ambiente. Ad ogni

istante di tempo, viene determinata una direzione di moto ottimale basandosi

sulla posizione dell’organo terminale rispetto alla struttura e sulla direzione della

forza esercitata dall’utente, che indica la sua intenzione di moto. I parametri

dell’ammettenza vengono modificati in base alla direzione di moto ottimale, così

da realizzare un feedback tattile direzionale intuitivo ed efficace per l’operatore.

La performance dell’algoritmo sviluppato è state valutata con tre set di esper-

imenti, eseguiti da più volontari, assistiti da un manipolatore Comau Smart

Six.



Chapter 1

Introduction

When the first Unimate robot was installed inside one of the General Motor auto-

motive plants in 1961, a revolution sparked in the manufacturing industry. Until

that moment, the workers were responsible for each operation in the production

chain. Instead, with the introduction of industrial robots, human presence in the

line gradually decreased. Early major applications included manipulating heavy

spot-welding guns, manning spray-painting equipment, and many other jobs

that resulted unpleasant or dangerous for the human workers.

In the following sixty years, constant hardware and software improvements

granted these machines higher levels of speed and precision: robots can handle

heavy loads, work continuously and efficiently, without the restriction of bad

environmental conditions, fatigue and stress. Their ability of executing series

of cyclical operations with high speed and precision boosted the productivity of

large assembly and production lines. The number of workers required for certain

tasks was reduced, and, in many cases robots completely took over manual labor,

like in the case of Tesla automated factories, depicted in figure 1.1. The worker

figure gradually adapted from machine operator to machine supervisor.
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Figure 1.1: Tesla car automated assembly line.

However, in the past ten years the manufacturing product mixes have under-

gone some dramatic changes. Producers are moving to smaller batch sizes, made

to respond to the rapidly varying demands of their customers. Manufacturers are

also intervening to drive down the cost of production of materials and of logistics

in the factory. Automation is an answer to these demands, but traditional robotics

is not well suited to this task [1]. Classical robotic work cells, endowed with tra-

ditional manipulators, lack versatility and flexibility, making it difficult to adapt

to dynamic environments or to efficiently fabricate small-batched production.

Some of the actions which must be performed in a production line are still too

complex for a robot and each minimal change in the operation sequence, dictated

by high levels of customization in the final product, would require continuous re-

configuration of the workstation. A solution to this problem is to reintroduce the

flexibility and cognitive soft skills of humans in the line. Nevertheless, safety of

the workers in the vicinity of traditional robots would result in strict regulations

requiring rigorous safety provisions, like steel cages around the robot workspace.
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Then, it would be impossible for humans and robots to work on the same object

at the same time.

Industry 4.0 attempts to fulfill the new manufacturing requirements by intro-

ducing the concept of collaborative robotics. This new type of robots should be

designed to work alongside humans rather than in their own space. In a sense,

they become like co-workers, which are able to solve simple and repetitive tasks

with high precision. By sharing the same workspace, it is possible to provide

the production lines with huge benefits. Robots force, speed and accuracy mixed

with human intelligence and manual skills improve not only the industrial pro-

cesses efficiency, but also the health of the worker, whose fatigue and alienation

associated with cyclic tasks are thus reduced.

1.1 Collaborative robotics

The idea of collaborative robots, namely cobots, is strictly bonded to the advance-

ments of automation, but it differs in how the robot is seen inside the production

chain: it is not just a mechanical object, executing a series of cyclical tasks, but a

device that can learn from humans and act along with them.

Figure 1.2: Example of a collaborative task.
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The concept of collaboration between humans and robots is not new, with its

first appearance in publications dating back to 1996, but it boomed only in 2017,

both in the literature, with more than 700 articles published, and in the indus-

trial world, with a market value of $600 millions that year and a forecast of $7.6

billions for 2027 [2].

The main difference between traditional robots and cobots is in the direct interac-

tion with the workers. The first require safety barriers, such as metal cages, in

order to protect the operator from their elevated speed and power. The cobots, in-

stead, are characterized by a lightweight design and by intrinsic safety features:

recent hardware advances of the robotic platforms enabled the implementation

of various control techniques for improved interactions with humans and un-

structured environments[3]. Hence, cobots can co-habit with human workers in

the same environment, as portrayed in figure 1.2.

The classical division of labor, still today prevalent on factory floors, is overcome:

the worker and the robot are able to collaborate in the production line, combin-

ing the speed and strength advantages of automation with the human innate flex-

ibility, the ability to adapt to unforeseen events and the capacity of maintaining

strong decision making skills also in dynamic and complex environments. The

machines perform all sorts of high-precision tasks. Humans might be capable

of accomplishing the same jobs alone, but by delegating the repetitive actions to

cobots, they can be freed-up for more essential duties.

Additionally, the use of collaborative robots in industrial processes is proven to

be beneficial considering the fact that they can be managed and taught through

more intuitive interfaces. Instead of relying on a programmer to tell them what to

do, cobots are often taught by example. An operator physically moves the robot

thanks to a lead-through control, running it through the necessary tasks key-

points. The robot can then remember different tasks and perform them again

and again with perfect recall and execution. On the contrary, traditional indus-

trial robots require expert engineers to program them [4].

The introduction of cobots in the production lines not only improves the effi-

ciency, but also provides multiple benefits to the workers. In some instances,
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these machines take over when tasks are not ergonomic, relieving the operator

from fatigue and bio-mechanical stress accumulation and protecting them from

injuries. Moreover, the most repetitive tasks may be assigned to the robotic co-

workers, reducing the alienation of the operator and improving job satisfaction.

Thanks to their flexibility and efficiency, cobots can be beneficial in a wide va-

riety of operations. In particular, an important sub-set is constituted by Physical

Human-Robot Interaction (pHRI) tasks, which includes the activities where hu-

mans enter in direct physical contact with the robots.

One example is represented by quality inspection operations, where the finished

part is compared with the manufacturing specifications to verify the absence of

defects and imperfections. These tasks usually involve multiple high resolution

cameras to take pictures of the part for its analysis, or probes that must be posi-

tioned with high accuracy and held still during the tests. Potential mental fatigue

can cause inspectors to miss problems, but collaborative robots can decrease their

alienation, consequently improving the efficiency of this repetitive task and the

overall quality of the batches.

Figure 1.3: Example of a collaborative welding operation.
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Moreover, cobots can be of particular use in manufacturing operations such

as welding or polishing of parts. In fact, a completely automated process may

not be able to handle errors from pre-machining and distortions induced by heat

correctly. As it can be seen in figure 1.3, in a collaborative set-up the complexities

are tackled by the human skills and flexible mindset, while the robot is responsi-

ble to relieve the operator from keeping the heavy-duty tools in position by hand,

improving the task ergonomics and the precision of the welds.

Figure 1.4: Example of a Manual Guidance Application.

Another important pHRI application is Pick and Place operations. These con-

sist in the transportation of objects, such as raw materials for processing or finite

parts for packaging and pallettizing, across the workspace. Manual transport jobs

require a lot of repetition, that may often lead to mistakes and inefficiency along

the production chain and can inflict workers with strains and injuries. A remark-

able case study, portrayed in figure 1.4, is manual guidance: a task where the



1.2 State of the art 11

cobot and the human concur in moving heavy or bulky items, the types of which

the worker might not be able to transport alone. In this case, the robot is re-

sponsible for the compensation of the object weight, while the operator plans the

correct path to reach the unloading position. The limitations of a fully automatic

system are overcome by the human smart thinking and adaptation capabilities,

and the operator is relieved from fatigue and alienation deriving from this job.

Collaborative manual guidance is the focus of this thesis.

1.2 State of the art

In the last 40 years, continuous hardware improvements, faster controllers and

more affordable and accurate force measuring devices sped up the development

of Physical Human Robot Interaction techniques. In particular, the recent drive

towards collaborative working cells, which are able to improve the flexibility of

the production chain, boosted innovation in the hand guidance sub-field. In

this type of pHRI operation, the user manually interacts with the manipulator

to transport an object across the working space. The robot has to deduce the in-

tention of the user from the force exerted on the end-effector and comply with it.

When a robot interacts with the environment (the human hand in this specific

context), reaction forces occur and have to be managed in the correct way: failing

to do so would result in an undesired behavior and eventually would damage the

robot and hurt the operator. Classical position control is not suitable in this case,

since the contact forces would cause a deviation from the nominal trajectory that

the controller would try to compensate for, increasing their intensity instead of

managing them. For this reason, a peculiar set of interaction control laws must

be adopted.

Hogan [5] provided a vital contribution to interaction control with the introduc-

tion of the impedance control law. He demonstrated that, if the reaction forces

between the robot and the environment are known, either by measuring them

with a force/torque sensor or by estimating them, then it is possible to simplify

the dynamics of the interaction to a set of decoupled impedance relations, each
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one representing a mass-spring-damper system.

There exists also a dual strategy, known as admittance control, that can be imple-

mented to impose the desired impedance relation. Depending on the causality

of the control problem at hand, an impedance or admittance control should be

adopted. Impedance control extract a force reference from a displacement. It is

more suitable to render lower inertia but it is sensible to disturbances and ap-

proximation errors in the manipulator dynamic model. It is commonly adopted

in teleoperation tasks.

On the other hand admittance control [6] computes a displacement reference

from the interaction force. As a result, it is possible to make the end-effector nat-

urally compliant with the force exerted by the human, which is preferable in a

hand guidance operation. The force applied by the operator is measured with a

Force/Torque sensor placed on the end-effector, then, it is converted into a posi-

tion reference, which is tracked by the fast low level position controllers of the

robot. Such conversion is performed through an admittance filter, whose equation

in Laplace domain is:

xd(s) =
1

s(ms+ d)
fH (s)

where xd(s) is the new position reference, fH (s) is the force applied on the end-

effector, m and d are the virtual inertia and damping perceived by the human

during the motion. In such a case, the elastic term is not used, since in manual

guidance applications there is not a fixed equilibrium position.

However, the adoption of an invariable admittance filter, meaning that the vir-

tual mass and damping coefficients are constant during task execution, entails

a trade-off between performance in the traveling phase and precision in final

positioning. When the user accelerates or travels at cruise speed, a low damping

factor is more suitable to lower the physical effort. On the contrary, when the

user reaches the target position, the end-effector must slow down: in that case,

a high damping value is preferable in order to improve his/her positioning

accuracy.

It is straightforward to notice that, adapting the filter coefficients based on

the working situation, improves the quality of the interaction and reduces the
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human effort required to execute the task. For this reason, various researchers

focused on developing strategies, collected under the name of Variable Admit-

tance Control, to estimate the user intention and vary the virtual parameters

accordingly.

Ikeura et al. [8] proposed the adoption of two different admittance filters: a high

virtual damping value is used for lower speed and a low damping parameter is

applied when the absolute value of the velocity overcomes a certain threshold.

The virtual inertia is kept at a low, constant value.

In [9] the damping coefficient is varied according to the velocity module. At

low speeds, a constant high damping value is enforced, then it is decreased

according to an inversely proportional law until the minimum value admissible

for stability is reached. Additionally, high damping is enforced at high speed as

a safety feature.

In [7], the cooperative characteristics of the human is modeled as a pure damp-

ing. Then, a set of experiments, where the operator has to drive a slider along a

linear path, is performed. During such experiments, the time varying viscosity

component is estimated through recursive least squares method. An optimal,

time varying, damping equation is fitted to the obtained estimates. A variable

admittance control strategy, based on the aforementioned optimal damping

characteristic equation, is adopted for the cooperative transportation task. The

outcomes show that the proposed optimal variable admittance approach pro-

duces a trajectory very close to the minimum jerk one.

In [10] the virtual damping is exponentially decreased based on the velocity.

Moreover, different admittance filter configurations are tested: the best perfor-

mances are obtained with a low, constant virtual mass and a variable damping.

Duchaine et al. [11] propose a variable admittance model based on the online

estimation of the user intention. An increase in force magnitude in the direction

of the velocity is interpreted as the desire to accelerate, hence the damping is

lowered. On the contrary an increase in the opposite direction corresponds

to a deceleration and the damping is increased. In [12] the cooperation task

is subdivided into 4 sections based on a passivity index, which measures the



14 Introduction

amount of energy exchanged between the robot and the human. When this index

crosses a predefined threshold, the movement beginning phase is detected and

the mass and damping are minimized. Then, during the motion at cruise speed,

the virtual parameter are kept constant and minimal. A negative passivity index

signals the beginning of the deceleration phase, hence the damping is increased.

Afterwards, if the average of the passivity index returns normal, the virtual mass

and damping are reset for another movement.

In general, the interaction with the human arm is identified as an instability

source for admittance controllers. Its behavior is often modeled as a pure stiff-

ness. In [13] an admittance model is applied to control the interaction with a

robotic exoskeleton. The stiffness of the arm is estimated from the derivative of

the measured force, then it is used to evaluate an appropriate virtual damping,

while the inertial component is kept at a minimum constant value.

In [14] and [15], some methods to detect the instability generated by the stiff

contact with the environment are reported. When a deviation from the nominal

behavior is detected, the virtual inertia is increased in order to regain stability.

In more recent studies, researchers proposed variable admittance techniques

based on machine learning algorithms. In [16] and [17] a Fuzzy Model Reference

Learning Controller is proposed, which is able to compute the correct virtual

damping based on the input force and velocity. The models are trained according

to a learning function which minimizes the error between the velocity and the

minimum jerk velocity.

In [18] a multi-layer perceptron is trained with a series of repetitive movements

in order to compute the correct admittance parameters in future hand guidance

tasks.

An important contribution to interaction control in manual guidance operations

is provided by Bazzi et al. [19]. For the first time, a geometrical interpretation

of the admittance filter is presented and the variation of the virtual parameters

according to the spatial direction of the applied force is examined. According to

this new interpretation, Goal-driven variable admittance control can be used to

provide a directional haptic feedback to the operator, leading him/her along a
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specific direction without the need of an explicit visual indication. This approach

becomes fundamental in situations where the bulky size of the transported object

blocks the operator field of view, like in the case depicted in figure 1.4. Thanks to

the varying resistances perceived by the human during the motion, it is possible

to passively drive him/her towards a specific target in the working space, even

in case this destination is invisible.

However, the assumption that the motion happens in an empty environment

limits the applicability of this approach. In fact, a realistic collaborative work

cell contains furniture, machines and other obstacles that prevent the user from

following simple paths. It would be interesting and valuable to endow this

new variable admittance control with obstacle avoidance capabilities in order

to allow the human to reach even invisible target positions in such cluttered

environment, overcoming the obstacles that lie behind the transported object,

outside his/her field of view.

Obstacle avoidance is a fundamental problem of path planning. Over the

years, many researchers proposed strategies for the automatic computation of

collision-free paths, to allow traditional industrial manipulators to reach a spe-

cific target position in a cluttered workspace. Usually, the path planning problem

is addressed in the configuration space (C-space) of the robot: for industrial ma-

nipulators, the common choice adopted is the joint space. However, solving the

problem in C-space requires all obstacles to be mapped from the workspace to this

new space, which usually is a complex and computationally expensive process.

For this reason, its not uncommon to address the problem directly at workspace

level, which is a low dimension space: a path is planned for the end-effector, then

an optimization problem is solved to find a collision avoiding configuration for

the rest of the robot arm.

In [20] the path is planned across different Tool Center Point (TCP) through an

iterative algorithm: the kinematic inversion problem is solved as an optimization

process which minimizes the squared distance from the starting position to the

target. Additionally a Gaussian therm, representing the estimated risk of colli-
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sion is added in the cost function. Then a new TCP is evaluated along the gradient

of the objective function. This process is repeated to compute the complete path.

In [21] path planning in the workspace is reinterpreted as a disjunctive program-

ming problem, solvable with modern optimization algorithms. The joint posi-

tions at given time instants become decision variables and the Kinematic and

Dynamic Constraints of the manipulator, as well as collision against obstacles,

are treated as constraints for the problem. The average kinetic energy is assumed

as the optimization function to be minimized.

In [22] an artificial potential field-based solution to the path planning problem

in operational space is reported. Such field is obtained from the superposition

of an attractive field propagating from the target position, and multiple repul-

sive fields propagating from the obstacles that are present in the workspace. To

compute a complete path, an artificial force, defined as the negative gradient of

the potential field, is evaluated and used to compute a new position for the end-

effector. The artificial force can also be computed for any point belonging to the

manipulator, preventing collisions of the rest of the robot structure. Unfortu-

nately, this strategy does not always produce a valid solution, since it is sensitive

to local minima of the potential field that can be originated from peculiar obsta-

cles dispositions.

In [23] a countermeasure to the local minima of artificial potential fields is pro-

posed. The problem is addressed with a two step algorithm: first the oscillations

around the minimum are detected with an observer, then a virtual obstacle is

placed in the direction opposite to the target in order to produce a repulsive

field, erasing the minimum.

In [24] a hybrid strategy for path planning in the configuration space is proposed.

At first Probabilistic Road Map, a sampling-based approach which is very effi-

cient in high-dimensional spaces, constructs a graph of interconnected samples

of C-space. Then Q-learning method is used to plan a path. An agent continu-

ously attempts to find collision-free paths from the starting configuration to the

final one. When a path is found, an Action value Q is assigned to each graph

edge belonging to the path: higher Q corresponds to paths which are shorter and
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travel further from the obstacles. Then, the optimal path is selected as the one

that minimize the sum of all Q values of the connections.

In [25] the end-effector path is computed using the Rapidly exploring Random

Tree algorithm. The workspace free-space is randomly sampled to construct a

tree, rooted at the starting position and growing progressively towards the ob-

jective. When one tree node is in proximity of the target, the algorithm termi-

nates. The output is a sequence of nodes, representing a feasible path from the

starting to the final position. Following the same principles Yuan et al.[26] pro-

pose heuristics to improve the efficiency of RRT algorithm: the probability of

sampling the free-space in the target direction is increased and the new samples

are projected towards the destination, hence fewer nodes are needed to reach it.

Moreover, the Douglas-Peucker algorithm is used to reduce the number of con-

trol points obtained from RRT, then a final smooth trajectory is computed using

B-spline fitting algorithm.

In [27] another sampling-based path planning strategy is presented. The C-space

is evenly sampled according to an Halton sequence pattern. Then, a path from

the starting configuration to the target is constructed using the A* algorithm. The

adopted heuristic is a function of the distance from the objective, the total con-

nection cost, and the mean value of the danger field along each connection.

In recent times, the development of machine learning techniques lead to new

path planning solutions. As an example, in [28] obstacle avoidance is treated as

a minimization problem, where the target end-effector pose and the manipulator

kinematic chain are enforced as constraints. A genetic algorithm is used to solve

it: a sequence of joint configuration is created, then the path is checked for colli-

sions. If no collision happens, then the fitness function assumes a high value and

the sequence is likely to be copied in the next generation, otherwise the fitness

function return a low value and the sequence is discarded.

Moreover, in [29] a locally connected Neural network is used to represent the

topology of the C-space. A positive excitation input is provided by the target po-

sition, while an inhibitory one comes from the obstacles. The dynamic state of

the neural network is gradually updated with a gradient ascent approach, hence
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the inputs are propagated inside the map. At any time it is possible to produce

the next configuration/position by finding the maximum state value between the

connected nodes.

1.3 Thesis purpose

The purpose of this work is to develop a variable admittance control strategy

for manual guidance in a cluttered working environment, where the presence of

obstacles forces the operator to follow complex trajectories. The obstacle distri-

bution and shape is considered known and fixed, but the operator field of view

may be obstructed by the bulkiness of the transported cargo. Hence he/she acts

based on a partial knowledge of the surroundings. The risk of collisions with the

obstacles is high and the goal position is out of sight.

Through variable admittance, the developed approach must provide a haptic

feedback to the operator about the correctness of the selected motion direction.

This makes the operator aware of which are the available direction and which,

instead, lead to collisions.

Moreover, it is desirable to introduce an adaptive behavior that tries to accom-

modate the human motion intention in order to reduce wasted energy and avoid

collisions in case the human intention is slightly different from the optimal path

determined by the robot.

The result will be a control algorithm that is able to help the human operator

in directing towards an unknown target position with high accuracy, allowing

him/her to overcome all the obstacles, minimize the collisions, and reduce the

physical effort and the execution time.

1.4 Thesis contribution

In this thesis, the goal-driven variable admittance control [19], which is func-

tional in obstruction-free spaces, is adapted to the navigation inside realistic

working environments, where the presence of obstacles forces the user to fol-
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low complex paths. This form of assistance has its application field in situations

where the user has to transport an object with large dimensions and/or inertia.

In these cases the operator field of view may be partially or totally obstructed,

hence it is easy for him/her to loose orientation: in the best case he/she will pro-

ceed slowly, wasting time and energy during the transportation task, in worst

cases he/she may cause an accidental collision that would ruin the cargo. By

applying this innovative type of variable admittance control it is possible to sub-

stitute the visual feedback, which is compromised, with a tactile one, provided

by the variable resistances to motion of the end-effector.

The damping parameter of the admittance filter varies according to the misalign-

ment between the input force and a defined optimal direction. Such direction is

selected in real time according to the obstacles, the goal position and an estimate

of the user intention. Minimal effort is perceived by the operator if he/she drives

the end-effector along a feasible path to reach the target, while high fatigue would

make him/her aware of the directions that lead to collisions. As a result, the hu-

man is led along a complex path that avoids all the obstacles.

Mutual adaptation strategies between the worker and the robot are able to reduce

the execution time and the energy required for the operation. Moreover, since the

intention of motion is kept in consideration, the user remains in full control of

the transported object path: in case multiple routes to reach the target position

exist, he/she is able to choose his/her preferred one, and the manipulator will

comply with his/her choice and reduce the effort required, as long as the chosen

path is feasible and collision-free.

A first approach to achieve this objective is based on the discretization of the

space by multi-layers grid. This aims at describing the working space with higher

resolution in correspondence of the obstacles and unsafe areas, and lower reso-

lution in safe free-space zone. A strategy to select the local optimal direction

(minimum effort one) is defined.

Due to the drawbacks shown by this first approach, another more powerful and

general technique is developed. This exploits a tree-based description of the free

space. A random tree is constructed from the goal position and covers the entire



20 Introduction

working space, providing optimal reference paths that lead to the target position

from whatever admissible position.

To evaluate the performance of the developed approaches, an experimental cam-

paign was conducted, where multiple volunteers performed manual guidance

tasks in collaboration with a Comau Smart Six manipulator. The outcomes of the

experiments showed that the tree-based approach is able to overcome the draw-

backs of the grid-based method, producing far better results in therms of intu-

itiveness of the haptic feedback, efficiency and collision avoidance. When tree-

based variable admittance control was in use, the inexpert users always managed

to complete the task, even in case of complex and articulated working environ-

ments, where the obstacles and the unloading position are invisible and unknown

to the human. In 70% of the experiments, inexpert users managed to avoid all

collisions, and the average final positioning error with respect to the target po-

sition was under 2cm. Moreover, according to the post-task survey answers, all

users found themselves comfortable interacting with the robot, and agreed on the

effectiveness and intuitiveness of the developed control strategy.

1.5 Thesis structure

The rest of this thesis is organized as follows:

• Chapter 2: the working principles of admittance control are described

in this chapter. At first, an overview on classical admittance control is

provided. Then, the drawbacks of a constant parameter filter are high-

lighted and the importance of a variable strategy in manual guidance

is remarked. Finally, goal-driven variable admittance control (GDVAC),

which represents the starting point of this thesis, is presented.

• Chapter 3: the problem of manual guidance in a realistic working envi-

ronment is presented, highlighting the limitations of the basic GDVAC so-

lution. The focus is set on the importance of providing a clear directional

feedback to the operator. Eventually, two modified damping shapes, that

are able to improve the user sensibility, are presented.



1.5 Thesis structure 21

• Chapter 4: all the preliminary concepts that are necessary to understand

the proposed algorithm are presented. Then, the two developed approaches

are analyzed in detail. The first one (grid-based) represents a more reactive

strategy for manual guidance, while the second one (tree-based) is a more

complex solution to the problem, also implying a global optimization on

the planned trajectories. Afterwards, the complete control strategy is thor-

oughly described in all its steps.

• Chapter 5: the two developed variable admittance control algorithms are

compared to the classical invariant one. At first, the experimental setup is

presented. Then, three sets of experiments and their outcomes are analyzed

to evaluate the effectiveness of the proposed strategies. The first set is ex-

ecuted in a completely known environment, where the operator is aware

of the surroundings. In the second one, the map is hidden and the user

has to rely on the feedback provided by the robot. The third set validates

RRT-based manual guidance for the navigation in a complex workspace and

investigates the relationship between the level of autonomy left to the oper-

ator and the quality of the interaction.

• Chapter 6: a final analysis of the developed approaches is provided. More-

over, possible future developments are discussed.



22 Introduction



Chapter 2

Goal driven variable admittance

control in manual guidance

2.1 Introduction

The vast majority of the robotics applications requires compliance between the

robot and the environment that surrounds it. In this kind of situations the

implementation of a pure position control, imposing a predefined trajectory to

the robot, may lead to unstable behavior and, eventually, damages to the envi-

ronment or the manipulator itself. This is due to the fact that a traditional robot

controller does not make the manipulator compliant, namely it does not take care

of the possible interactions with an external environment, but it has to follow a

predefined position and velocity reference whatever happens. Therefore, if the

robot, during the motion, enters in contact with the external environment, then

it cannot track the predefined trajectory and, instead of becoming compliant

modifying the nominal path, it continuously increases the actuation torques in

order to overcome the obstacle by means of brute force.

In most of the insertion tasks, where the interaction between robot and envi-

ronment consists in the insertion of a piece held by the robot inside a hole with

small tolerances (peg-in-hole problem) a simple, passive approach can easily be a

solution. A Remote Center of Compliance (RCC), is a mechanical device capable

of deforming elastically; if applied at the end-effector of the manipulator, then
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it nullifies the disturbances originated from the environment irregularities by

naturally complying with them.

Nevertheless, there are applications, such as machining or collaborative-robotics,

where it’s fundamental to quantify the energy and take into account the forces

generated by the interaction between robot and environment.

Control approaches that consider interaction forces can be generally subdivided

into two branches: hybrid force-position control and impedance/admittance control.

In the first case, the degrees of freedom of the manipulator end-effector are well

divided in position controlled and force controlled directions. The first ones

have to follow a predefined trajectory while the second ones have to realize a

desired reference force profile on the environment. This approach is best suited

when a precise force profile is needed and a clear separation between position

and force controlled directions is identifiable, like in a milling operation on a

predefined working piece.

Instead, the impedance/admittance control does not make any distinctions

among end-effector degrees of freedom and it does not allow to impose a prede-

fined force profile on the environment. On the contrary, it just imposes a desired

dynamic relation between the end-effector position error and the external forces

acting on it in every direction. Usually, this desired dynamic relation is chosen as

the one that links the position of a mass-spring-damper system with the external

force exerted on it. The success of this relationship stands in its simplicity and

intrinsic stability. This control method is also adopted in manual guidance

operations, where the robot is used to lift a heavy object and the operator pushes

the end-effector to move the cargo inside the workspace. In these cases it is

mandatory to introduce a control technique that makes the manipulator compli-

ant with whatever external force applied on the end-effector by the environment

(corresponding to the human in manual guidance applications).

Specifically, impedance and admittance control, while based on the same general

idea, are opposed concerning the causality between outputs and inputs of the

filter they implement. In Impedance control, the end-effector position and

speed displacements are converted into torque references for the motors, in
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order to simplify its motion to the one of a simpler mass-spring-damper system.

However, this approach has many limitations: it requires low uncertainty in the

robot model, perfect cancellation of its non-linearities and needs to access the

motor torques in the controller which, usually, it is impossible for industrial

manipulators. On the opposite, Admittance control filters the forces measured

on the end-effector and generates compliant position displacements. These

displacements can then be fed to the low level position controllers of the robot,

avoiding the impedance control limitations while obtaining the same results.

For these reasons, admittance control can be identified as the best suited control

method for the framework proposed in this thesis, as it will be further described

in the next chapter.

2.2 Introduction to admittance control

As mentioned in the introduction, the purpose of an admittance controller is

to simplify the dynamics of a system interacting with the environment: the re-

sulting dynamic is the same as a mass-spring-damper system, which naturally

complies to external forces with a damped harmonic type of motion.

To explain how this method can be applied on a manipulator, it’s useful to make

an example with a simpler model and then generalize on the full robot dynamic

model.

Figure 2.1: Representation of a 1 degree of freedom system.
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The system depicted in figure 2.1 consists of a massm subjected to an external

force fext and a control action u. Its dynamic equation is:

ma = u + fext (2.1)

where a represents the acceleration of the mass m.

If we apply a control law obtained from a linear combination of a proportional

action k1 on the speed v and k2 on the position p of the mass:

u = −(k1v + k2p) (2.2)

the new dynamic equation, obtained by substituting 2.2 in 2.1, becomes:

ma+ k1v + k2p =ma+ ddv + kdp = fext (2.3)

which can be interpreted as a mass m attached to a spring kd = k1 and damper

dd = k2, subjected to an external force fext, with the stiffness and damping param-

eters completely tunable.

If, additionally, a force measurement is available, the control law can be modified

as:

u =
m
md

(−kdp − ddv + fext)− fext (2.4)

wheremd represent an arbitrary virtual mass coefficient, and the following equa-

tion is finally obtained:

mda+ ddv + kdp = fext (2.5)

where it’s also possible to tune the mass parameter md .

Equation 2.5 defines a mechanical impedance relation between the position of

the mass and the external force applied on it.

To generalize this approach to a manipulator, the generic robot dynamic

model must be introduced:

B(q)q̈ +C(q, q̇)q̇ + g(q)q = τ −JT (q)h (2.6)

were q is the vector of the joint coordinates, B is the inertia matrix, C represent

the centrifugal and Coriolis effects, g represents the gravitational term, τ con-

tains the actuator joint torques and JT (q)h represent the effects of the external
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wrench h (forces and moments) applied to the end-effector, mapped on the joints

torques through the geometrical Jacobian J .

Implementing the so called inverse dynamic control law in the operational space

of the manipulator:

τ =B(q)y +C(q, q̇)q̇ + g(q)q +JT (q)h (2.7)

with desired joint acceleration y selected as:

y = J−1
A Md

−1(Mdẍ+Dd
˙̃x+Kdx̃−MdJ̇A(q, q̇)q̇ −hA) (2.8)

where Md , Dd and Kd are diagonal positive definite matrices representing the

desired virtual inertia, damping and stiffness for the end-effector motion, JA is

the analytical Jacobian of the robot, x̃ = xd − x represents the Cartesian posi-

tion error of the robot end-effector and hA is the wrench expressed in the global

reference system (base of the robot), the dynamic model of the robot simplifies

in:

Md
¨̃x+Dd

˙̃x+Kdx̃ = hA (2.9)

The result is constituted by a set of six decoupled equations representing mono-

dimensional impedance relations corresponding to simple mass-spring-damper

systems. In particular, the first three equations correspond to translational

impedance, meaning that the error x̃ is the difference between the end-effector

position in the operative space p and the desired position pref : the translation

of the end-effector is bonded to the forces acting on it in each component of the

Cartesian space. The other three equations correspond to rotational impedance,

where x̃ stands for end-effector orientation error expressed in a minimal repre-

sentation and hA embodies the torques exerted at the robot end-effector.

The framework of this thesis is manual guidance operations where the end-

effector is guided inside the working space from a predefined starting position

to the unloading one, and no constraint is enforced on its orientation. Therefore,

the focus, from now on, will be only on translational impedance.

As mentioned before, due to the impossibility of a direct access to the motor

torques of the manipulator, instead of generating a force reference it’s more
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convenient to exploit the low-level position controllers provided by the robot

manufacturer. This is achieved with an Admittance Filter, whose equation is

obtained from the causality inversion of the impedance relation 2.9. The ex-

ternal force applied to the end-effector is measured or estimated, then through

the admittance filter a reference displacement is generated. This reference is

fed into the low-level controllers, resulting in the manipulator interacting as a

mass-spring-damper system.

This control method takes the name of Admittance Control (since the admittance

is the inverse relation of the impedance) and it is portrayed in figure 2.2.

Figure 2.2: Admittance control: block scheme representation.

In a manual guidance task, the lack of a predefined trajectory, namely of a ref-

erence position pref , makes the virtual stiffness parameterKd useless. Therefore,

the admittance filter equation in Laplacian domain reported in figure 2.2 can be

simplified to a first order filter generating a speed reference, vref :

vref =
fext(s)

Mds+Dd
=

1/Dd
Md
Dd
s+ 1

fext(s) =H(s)fext(s) (2.10)

Moreover, it can be observed that the virtual damping coefficient affects the

steady state value of the response, while the virtual mass to damping ratio

influence the bandwidth of the filter.
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Figure 2.3: Simplified admittance control scheme, adopted in manual guidance.

Focusing on the translational impedance concept, each Cartesian direction is

represented with a decoupled impedance relation: the dynamic of the displace-

ment in that direction is dominated only by the corresponding component of

the force applied at the end-effector. Therefore, an independent Admittance fil-

ter could be implemented for each component, but their parameters should be

selected equal in order to preserve a natural engagement between human and

robot. The three separate components can be rewritten in a unique equation in

vector form:

vrefvrefvref =
1

mds+ dd
f (2.11)

where f ∈ R3 represents the force applied by the operator, and vrefvrefvref is the result-

ing end-effector speed reference.

From this relation it is possible to notice that, when an admittance filter is used,

the output is scaled with respect to the input, but the direction is left unchanged.

Hence, the velocity reference obtained is aligned with the direction of the input

force.

2.3 Variable admittance control

Considering a manual guidance task, where an operator gently guides the end-

effector towards the unloading station, it is fundamental that the movements of
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the robot indulge the intention of the human. The resulting interaction would

feel more natural and produce better results in terms of transportation time, ac-

curacy and spent energy.

Until now, an admittance filter with constant coefficients was considered: the dy-

namics of the end effector is reduced to the one of a body with fixed inertia m

that is decelerated according to a predefined damping d during its motion. Small

virtual parameters entail a low effort and a reduced transportation time, but do

not provide the user with accuracy capabilities. On the contrary, high parameters

allow for precise positioning motion but induce high effort and large completion

time. Therefore, it is not convenient to adopt constant parameters, but it is better

to online change their values in an appropriate way during the different phases

composing the task, in order to facilitate the human in accomplishing each of

them.

It is possible to identify three sequential phases of the motion, depicted in figure

2.4: first the body, which is idling at zero velocity, is accelerated until it reaches

a certain cruise speed, then the human drives the cargo at that speed across

the workspace and, finally, near the destination, a deceleration phase concludes

the movement, followed by small adjustments to precisely place the transported

cargo. In the acceleration phase it is convenient that the operator feels a light

mass since the inertial effects prevail over the damping: with a small effort the

transported object quickly reaches cruise speed. During the second phase, cor-

responding to motion at cruise speed, the damping parameter must be reduced

in order not to waste energy, while the mass is not important due to the lack

of meaningful accelerations or deceleration. Finally, in the third phase, which

corresponds to a deceleration in the unloading position proximity, a high damp-

ing factor facilitates the deceleration of the transported load and a low mass is

advisable, since otherwise it would counteract the braking effect with inertia. Ad-

ditionally, high damping allows for more precise and slow movements, necessary

to reach the positioning goal of the cargo.
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Figure 2.4: Qualitative representation of the three phases of a manual guidance

task and the coefficients values prescribed by the literature.

As mentioned before, manual guidance is not a new, nor unaddressed issue in

the literature: many researchers presented possible solutions to enable variabil-

ity of the admittance filter parameters: some introduced hard thresholds on the

speed and accelerations in order to apply different filter configurations for dif-

ferent phases of the motion, others proposed estimators in order to predict user

intentions and vary the mass and damping accordingly. Only recently, the depen-

dency of the admittance filter coefficients on the spatial direction of human force

has been investigated. Indeed, a new physical interpretation of the admittance

filter vectorial equation presented in 2.11, and in particular of its parameters,

was introduced in [19].

If an optimal motion direction is defined, then the inertial and damping factors

can be modified according to the angle between such optimal direction and fext,

representing the force exerted by the operator on the end-effector. If the best

direction and force vectors are aligned, then the user is traveling in the correct

direction, and the virtual parameters should be low, easing his/her motion. How-
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ever, if the two vectors are opposite, then the user is proceeding in the wrong way,

and the admittance coefficients should be high, providing him/her a haptic feed-

back. Moreover, the virtual parameters rate of change between minimum and

maximum value should be a continuous increasing function of the misalignment

angle, in order to guarantee a smooth and intuitive interaction between the hu-

man and the robot.

Figure 2.5: 3D Geometrical interpretation of the traditional Admittance control

with constant virtual parameters.

Based on the proposed angular dependency, each parameter of a constant ad-

mittance filter can be seen in the Cartesian space as a geometrical sphere centered

in the end-effector with radius equal to its constant value. This translates the fact

that the value of each parameter is equal in any spatial direction (sphere shape)

and constant. Generally speaking, the value of each parameter can be seen as the

distance between the center of the sphere and the point of intersection between a

semi-line directed along the applied force and the sphere itself, as it can be seen

in figure 2.5.

Furthermore, whatever variable admittance technique in literature can be seen

as a strategy that changes in time the radius of such spheres based on estimators

or hard thresholds. Again, the coefficients will be left unchanged regardless of

the direction towards which the operator is pushing the end-effector.
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However, if the virtual mass and virtual damping spheres are not only modified

in radius, but also in shape, the effect of the filter varies also with respect to

the direction of the human force. This paves the way to more complex variable

coefficients strategies that makes the admittance perceived by the human force

direction dependent. In this way, admittance also assumes a Cartesian space di-

rection dependency (shape): for example the virtual parameters can vary with

respect to the relative position of the end-effector and the unloading zone. This

method takes the name of Goal driven Variable Admittance Control and it will

be thoroughly described in the next section.

2.4 An evolution of variable admittance control: goal

driven variable admittance control

In the previous section, a new parameter interpretation of both invariable and

variable admittance control approaches has been introduced. The virtual mass

and virtual damping parameters are associated to two spheres centered at the

end-effector position. The actual value of each coefficient is computed as the dis-

tance between the center of the sphere and the intersection point between the

sphere itself and a semi-line directed as the human force vector.

As mentioned before, it’s possible to implement parameters variability, intended

in a classical way, by varying the radius of the two spheres based on the intensity

of the force, velocity and accelerations of the end-effector or estimators of the

user intention. However, if the shape associated to the parameters is changed,

their value will also vary with respect to the direction of the input force. This

implementation becomes particularly useful in situations where a bulky cargo is

being transported: the size of the object can obstruct the view of the operator,

hence, some kind of directional cues about the best route towards the destination

position is required.

This is the main idea behind the Goal Driven Variable Admittance Control strat-

egy presented in this section: the spheres representing the mass and damping

parameters are converted into different shapes that allow to perceive the correct
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motion direction. In [19], the spheres are substituted with ellipsoids, which have

three orthogonal axes of symmetry of independent length and arbitrary spatial

orientation. The ellipsoids are centered in the end effector position. The first axis

is directed as the connecting line between the end-effector and the goal position

(unloading station) and has the minimum length, while the other two axis have

much higher values and belong to the plane normal to the first axis.

This way, the more aligned is the operator force with the objective, the smaller

will be the virtual mass and damping parameters of the admittance filter and,

consequently, the lower will be the energy demanded to guide the robot. There-

fore, the operator would perceive the direction towards the goal, i.e. the first axis

of the ellipsoid, as the minimum effort one.

The result of this natural feedback method will be a more precise reaching of the

goal position, even if the bulkiness of the transported object prevents the oper-

ator to clearly see the destination. Since the work presented in this thesis is an

evolution of the Goal Driven Variable Admittance Control approach, a more de-

tailed explanation of this method, complete with mathematical description, will

be given in the following subsections.

2.4.1 Basic goal driven variable admittance control

Figure 2.6: Representation of the ellipsoid that defines the parameters space de-

pendency.
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In the approach presented in [19], the shape representing the spatial relationship

of the virtual mass and damping parameters is modeled as an ellipsoid, centered

at the end-effector position and oriented according to the target, like the one

depicted in figure 2.6.

A generic ellipsoid is defined as a set of points x ∈ R
3 satisfying the following

equation:

ẋTAẋ = 1 (2.12)

where A is a 3x3 positive definite matrix whose eigenvectors vivivi represent the

principal axes directions and whose eigenvalues λi stand for the square inverse

of the semi-axes length. In the Goal-Driven strategy, the eigenvectors are chosen

according to the previous reasoning:

• the direction of the first main axis, v1v1v1, is set coincident to the direction of

the line connecting the actual position of the end-effector pe with the goal

position pG;

• the direction of v2v2v2 is set perpendicular to v1v1v1, in such a way that it belongs

to an horizontal plane parallel to the ground;

• the direction of v3v3v3 completes a Cartesian frame, according to the right-hand

rule.

Hence, the directions of the three main axes are computed as:
v1v1v1 =

pG −pe
‖pG −pe‖

v2v2v2 =
z ×v1v1v1

‖z ×v1v1v1‖
(2.13)

v3v3v3 = v1v1v1 ×v2v2v2

where z is the z-axis and all quantities are expressed in the global reference sys-

tem.

The three eigenvectors can then be arranged in a 3x3 matrixQ, in such a way that

the i-th column of Q is vivivi .

SinceQ contains three orthogonal and unitary vectors, reporting the direction of

the three main semi-axis of the ellipsoid, it also represent the orientation of such
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ellipsoid with respect to the global reference system. Furthermore, even though

the two parameters of the admittance filter require two different ellipsoid, the

rotation matrix Q can be reused for both, since the the two shapes are oriented

in the same way.

The length of the first semi-axis (the desired minimum effort direction) is set to

the minimum value of the corresponding parameter, while the length of the other

two axes is set to a much higher value. In order to set the specified lengths of the

semi-axes for the generic admittance parameter h (with h referring to both m and

d), that can assume values between hmin or hmax, the eigenvalues of matrix A are

chosen. According to the rules stated before, the eigenvalues are selected in the

following way: 

λ1 =
1(

hmin
)2

λ2 =
1(
h̄
)2 (2.14)

λ3 =
1(
h̄
)2

where h̄ is a value ∈ [hmin,hmax] much higher than hmin. These eigenvalues can be

collected inside a 3x3 diagonal matrix Λh.

The latter matrix represents, as it is, an ellipsoid with each semi-axis having the

desired length, but directed as the global reference system axes. To rotate the

shape accordingly we must apply the following transformation:

Ah =QΛhQ
−1 =QΛhQ

T (2.15)

Hence, two matrices,Am andAd, representing the two ellipsoids corresponding

to the two virtual parameters of the admittance filter can be obtained.

At each time instant, the ellipsoid orientation is updated and the value as-

sumed by the virtual mass and damping coefficients is calculated as the distance

from the center of the ellipsoid to the interception point between the surface of

ellipsoid and the line through the end-effector position, directed as the input
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force vector. This is numerically evaluated, for the generic parameter h, as:

h =
1√

uTfAhuf

(2.16)

where uf is the unit vector directed as the input force f and Ah is the matrix

defining the ellipsoid.

To sum-up the described method, two ellipsoid have been computed, one cor-

responding to the virtual mass and the other to the virtual damping; each one

has the first semi-axis directed towards the objective and has length equal to the

minimum value assumed by the corresponding parameter. The other spatial di-

rections determine higher values of the parameters. Therefore, if the operator

exerts a force directed towards the destination position, then the filter parame-

ters assume the lowest admissible value: this direction will be perceived as the

minimum effort one. Otherwise, if the operator pushes sideways, the energy re-

quired for the motion increases accordingly.

The control algorithm provides a natural feedback sensation to the user, who be-

comes able to perceive which directions of motion would bring him/her closer to

the unloading zone, even if his/her field of view is obstructed by the transported

cargo.

2.4.2 Damping ellipsoid

A problem arises with the basic ellipsoid shape introduced in Section 2.4.1: due

to its symmetry, the user would perceive minimum resistance both in the direc-

tion towards the goal and in the opposite way. Therefore, a modification to the

shape must be introduced.

According to the literature (see Section 2.3 and figure 2.4), a low mass is desir-

able both in the acceleration phase, when the operator is pushing towards the

goal, and in the deceleration phase, when he/she is pulling in the direction op-

posite to the goal, since a high velocity change can be obtained with a little effort.

Instead, a low damping value is preferable when the operator has to start the

movement and reach cruise speed relatively fast, while in the final phase a high
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damping coefficient is required, both to aid the human in braking the heavy load

and to ensure a more accurate positioning.

Figure 2.7: Representation of the improved shape for the damping constituted

by the union of two half-ellipsoids.

In order to obtain such behavior, the virtual damping ellipsoid Ad has to

be defined in a different way with respect to the basic one presented in the

previous subsection. The new definition must ensure that at the increasing

of the angle between the human force and the minimum effort direction, the

damping also monotonically increases. The new shape is obtained composing

two half-ellipsoids, divided by the plane identified by v2v2v2 and v3v3v3 as depicted in

figure 2.7.

If the half space containing the first semi-axis unit vector v1v1v1 is considered,

no change is required with respect to the method presented in Section 2.4.1.

Whereas, concerning the other half space, a new ellipsoid is constructed with an

increased length value for the first semi-axis. The second half differs from the

first one only in the length of the first axis of the ellipsoid, which is selected as

dmax instead of dmin.

The result is an asymmetric but continuous shape, having the same advantages

stated before if the input force is directed towards the objective and the addi-

tional braking effect if the force is exerted in the opposite way. Moreover, thanks

to this deformation, the minimum effort direction becomes unique.



Chapter 3

Goal driven variable admittance

control: a new damping shape

3.1 Adapting to a realistic and articulated working

environment

In a manual guidance task, the operator moves a heavy load inside the working

area with the aid of a manipulator. In the near future, the most organized and

technological working area will have no barriers but just flexible working isles.

In case of production of heavy items, the working isles will be interconnected

by means of larger manipulators helping the operators in handling the semi-

finished products. The workspace will contain pallets, shelves, machinery, and

the path from the starting position to the unloading zone could be complex, and

so prone to possible collisions.

The goal-driven variable admittance control (GDVAC) approach introduced in

Chapter 2 solves the problem of guiding the human towards the goal position,

but it assumes that the motion happens in an obstacle-free environment. In an

ideal case this method is a good solution, but it would fail when applied to highly

structured working environments. Indeed, consider the workspace depicted in

figure 3.1, where a single pallet is placed between the start position pstart and the

goal one pgoal : it’s straightforward to notice that following a linear path would
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lead to a collision. Since the direct path towards the objective is obstructed, the

operator has to work around the obstacle. However, finding a path that avoids

all collisions is not a simple task.

Figure 3.1: Example of a realistic workspace: a box obstacle is placed between

the starting position and the objective.

In conventional manual guidance, the path planning task is assigned to the

human: however, the framework of this thesis consists in scenarios where the

operator field of view could be partially or totally obstructed by the bulkiness of

the transported object. Size, position and shape of the obstacles that are hidden

behind the lifted cargo are unknown, hence a totally human-based guidance

becomes very dangerous and highly stressful. The operator needs some kind

of assistance to navigate in the working environment and reach the unloading

station in a safe way without any kind of collisions.

In order to preserve manual guidance core principles, the robot should not

provide an active support, meaning that it can not move autonomously in the

workspace, but at most it can decide to stop the motion in case of an imminent

collision. The aid, instead, should be provided in the form of a intuitive direc-

tional haptic feedback: the main idea is that the user will be encouraged driving
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along the optimal path towards the goal position and penalized when his/her

actions lead to a collision.

If basic GDVAC was in use, the human would perceive minimum effort when

the cargo is pushed directly towards the objective and higher motion resistance

in every other direction. Therefore, the operator would follow the shortest path,

namely the linear one, towards the goal and would collide with the pallet.

Moreover, the user has no feedback on how far the end-effector should be moved

sideways to clear the obstacle safely. He/She might chose to move quickly and

based on his/her memory or to proceed with caution and have a look behind

the cargo: in the first case the risk of an accidental collision with the obstacle

is elevated, in the latter case the movement is slowed down and more time is

required to reach the destination.

Therefore, it is evident that the basic GDVAC has to be generalized in case of

realistic working environment where some obstacles may exist. The control

algorithm has to be endowed with some Obstacle Avoidance strategy. This is the

main core of this thesis, i.e. the adaptation of goal-driven variable admittance

control to a highly structured working environment. The physical interpreta-

tion of the admittance filter presented in Chapter 2 will be enriched with path

planning algorithms. In particular, the selection of the minimum effort direction

and the design of the damping shape will be rephrased and generalized. The

operator will drive the robot end-effector in complex environments, avoiding the

obstacles even with closed eyes. In this way, the developed strategy would be

effective even in case his/her view is obstructed, due to the dimensions of the

transported object.

3.2 Improving the human perception of the optimal

motion direction

Considering the problem of manual guidance in presence of obstacles, it is fun-

damental to point out to the operator which is the best motion direction towards



42 Goal driven variable admittance control: a new damping shape

the objective and which are the ones leading to a collision. The human perception

and its "resolution" are established by the shape of the admittance parameters.

In GDVAC [19], an ellipsoid shape is adopted: it represents the spatial depen-

dency of the damping value of the admittance filter in function of the alignment

between the minimum effort direction and the direction of the human force ex-

erted on the end-effector. Minimum effort, i.e. minimum damping dmin, is per-

ceived by the user when he/she pushes along the optimal direction, while higher

damping factor is selected when the user pushes in the opposite direction or side-

ways.

Figure 3.2: Example of a scenario where two obstacles form a corridor.

However, empirical results highlights that, in case of the ellipsoid shape pre-

viously described, human fails to clearly distinguish the optimal direction from

the other ones in its neighborhood (of almost 30° for each side). This means that

the ellipsoid adopted in [19] does not provide a very precise directional haptic

feedback. This is not imputable to the developed strategy but to the intrinsic

human difficulty in perceiving the tiny and progressive damping differences pro-

vided by the ellipsoid around the optimal direction. This aspect is problematic
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in the obstacle avoidance scenario since it could lead the human to commit some

collisions unconsciously. To better understand this concept, the environment por-

trayed in figure 3.2 is considered. Two obstacles form a corridor and the optimal

path is a linear path towards the goal position.

Unfortunately, due to the ellipsoidal shape used to design the damping param-

eter, if the user pushes slightly sideways, he/she would not perceive a sufficient

change in the damping value to make him/her aware of the misalignment. There-

fore, he/she is probably going to continue pushing in the slightly wrong direction

until a collision happens.

This issue cannot be solved by increasing the difference between the minimum

and maximum damping values. Therefore, the damping shape must be modified

to give the user a clearer directional haptic feedback about the optimal motion

direction by means of a sharper damping variation around v1v1v1.

To achieve this purpose, the frontal semi-half of the damping shape (the one that

includes the first semi-axis v1v1v1) is divided into three zones, depicted in figure 3.3,

depending on the angle α with respect to the optimal direction (α = 0 when the

considered direction is aligned with the optimal one):

• HIGH DAMPING ZONE (αhigh ≤ α ≤ π
2 ): a high damping factor is applied

to increase operator effort.

• LOW DAMPING ZONE (0 ≤ α ≤ αlow): it includes the directions that are

almost aligned to the principal axis v1v1v1, which coincides with the optimal

direction, where the lowest damping factor is applied.

• TRANSITION ZONE (αlow < α < αhigh): this zone avoids the creation of a

discontinuity between the other two zones that would result in an unpleas-

ant haptic feedback, due to abrupt changes in the damping value instantly

slowing down or easing the motion. The damping value is selected accord-

ing to a continuous function f (α).
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Figure 3.3: Representation of the three zone partition of the frontal semi-space.

Specifically, two types of modified shape, based on this space division are devel-

oped in the following subsections.

3.2.1 Concentric spheres

The first proposed solution adopts constant damping values inside the low and

high damping zones: d = dmin in the first one while d = d̄ >> dmin in the second

one. Since in these sectors the damping value does not depend on the angle α, its

shape is represented by pieces of concentric spheres, as it can be seen in figure

3.4. Consequently, feedback to the operator is simplified: constant low damping

is perceived if he/she pushes along the correct direction, while higher effort is

experienced if the force is misaligned of a tunable angle.

A 3rd degree polynomial interpolation is used to select the damping value inside

the transition zone:

d = f (α) = c0 + c1α + c2α
2 + c3α

3 (3.1)

where the coefficients ci are computed imposing the following initial and final

conditions:

• f (αlow) = dmin

• f ′(αlow) = 0
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• f (αhigh) = dmax

• f ′(αhigh) = 0

where f ′ is the first derivative of f with respect to alpha.

This is equivalent to solving the linear system Ax = b with:

x =



c0

c1

c2

c3


, A =



1 αlow α2
low α3

low

1 αhigh α2
high α3

high

0 1 2αlow 3α2
low

0 1 2αhigh 3α2
high


, b =



dmin

dmax

0

0


The established polynomial interpolation also ensures the continuity in the

derivative of f (α): a smooth change is expected both when transitioning from

the high damping zone to the low one, and vice-versa.

Figure 3.4: 2D representation of the modified damping shape (blue line) obtained

from the combination of a high damping sphere (in red) and a low damping one

(in green).

This first shape modification enhances the difference between correct and

wrong directions. However, no directional feedback is possible inside the high
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and low damping zones. In fact, the monotonic rate of change which is charac-

teristic of the ellipsoid is sacrificed in spite of the improved distinction between

the two zones.

As a result, this shape is more suited for beginner users, who needs a stronger

distinction between advisable and not advisable motion directions. For more

experienced users a continuous increase in the damping factor is preferable,

since they will be able to perceive smaller differences and perform finer control.

3.2.2 Ellipsoids interpolation

The second proposed damping shape is obtained from the adoption of two differ-

ent ellipsoids for the high and low damping zones, as portrayed in figure 3.5.

In particular, the ellipsoid adopted in the low damping zone has dmin as length

of the first semi-axis and dhigh as the length of the other two axes. Instead, the

ellipsoid used in the high damping zone has length of v1v1v1 equal to dlow and size

of v2v2v2 and v3v3v3 set to d̄. The two ellipsoids matrices are evaluated using the same

method presented in Chapter 2.

The damping values are chosen in such way that:

dmin < dlow <= dhigh < d̄

Regarding the transition zone, the damping value is obtained by means of an

interpolation between the low and high effort ellipsoids. The interpolating ellip-

soid is constructed using the following eigenvalues:

λ1 =
1(

dmin + (dhigh − dmin)
(

α−αlow
αhigh−αlow

)n)2

λ2,3 =
1(

dlow + (d̄ − dlow)
(

α−αlow
αhigh−αlow

)n)2 (3.2)

where n is a positive integer exponent used to modify the slope of the transition.

If n is set to 1, then a linear transition is implemented and the user feels a con-

tinuous growth between αlow and αhigh. If n > 1 the transition from low to high
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damping is smoother, while a harder transition is perceived when the user pass

from high to low damping. The opposite happens with n < 1.

Experimental results showed that the operator prefers an immediate response

when transitioning from a unadvisable direction (high damping zone) to a suit-

able one (low damping zone), and a smoother deceleration when he/she is devi-

ating away from the optimal path. Hence a value n > 1 is preferable.

Figure 3.5: 2D representation of the modified damping shape (blue line), ob-

tained from the combination of a high damping ellipsoid (in red) and a low

damping one (in green).

Comparing this shape to the concentric spheres, although more complex cal-

culations are required, no feedback resolution is lost when pushing along the

optimal direction or sideways. There are no constant damping zones: the coeffi-

cient is a monotonic increasing function of the angle α between the applied force

and the optimal direction.
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Chapter 4

Obstacle avoidance in manual

guidance

4.1 Introduction

As stated in Chapter 3 the main purpose of the developed algorithms is to assist

the operator during a manual guidance task in a realistic working scenario. Usu-

ally, the work cell has a specific layout and many components: pallets, machines

and other objects become hurdles that the operator has to avoid while reaching

the desired destination.

An intuitive directional haptic feedback can be provided to the operator thanks

to the developed technique described in Chapter 2 and 3. At each time instant,

the optimal direction v1v1v1 has to be determined in a suitable way. Indeed, its basic

formulation, provided in eq. 2.13, would fail in presence of a cluttered working

environment because it would suggest to the operator the straight line from the

actual position to the goal one as the optimal direction, regardless of the presence

of some obstacles. Therefore, a new and robust method, that establishes the min-

imum effort direction taking into account also the obstacles and the dimensions

of the robot working space, has to be set-up. Another remarkable achievement

would be taking into account also the motion intention of the user, in case more

than one collision free path towards the goal position exists.
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4.2 Working environment model

The term map will be used to refer to the largest projection on the horizontal

plane of the robot working space, namely the largest set of the end-effector posi-

tion reachable by the robot in an horizontal plane. The external perimeter of the

map is only determined by the robot mechanical structure and possibly by the

dimensions of the workspace, depending on which one is more restrictive. Both

rectangular and circular maps were considered in the development of this thesis

(see Fig. 4.1 for an example of a sector of circular map).

Figure 4.1: Example of a 2D circular map with 2 obstacles (in black), each one

surrounded by its red zone and yellow zone.

Its worth mentioning that only a bi-dimensional simplification of the envi-

ronment was used for testing, but the developed algorithms can be easily scaled

to a three-dimensional map.

Inside the bi-dimensional map, every obstacle is represented by a forbidden area

(like the two black areas in Fig. 4.1). The robot end-effector should never collide

against any of the obstacles to avoid potential damages. Obstacles are approx-

imated by means of generic convex polygons. This choice allows to implement
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simpler algorithms for free-space quantification, collision detection and distance

measurements. Nevertheless, more complex-shaped obstacles can be created by

clustering convex polygons together.

Two zones are constructed around each obstacle. These zones are concentric with

respect to the obstacle polygon and completely surround it, as it can be seen in

figure 4.1. The inner red zone has a safety purpose: its area is not considered as

free-space and should never be crossed by the robot end-effector. This zone en-

force that, at any time, a minimal safe distance is kept from the real obstacle. The

outer yellow zone, instead, prevents the algorithm to set path key-points too close

to the red-zone. However, a path can be planned across it.

A virtual wall is implemented around each obstacle perimeter as a final collision

counter-measure. Its purpose is to slow down the end-effector motion and stop

it before impact. The virtual wall is completely included inside the obstacle red

zone.

Once the working environment has been modeled, a starting position and a goal

one have to be placed on the free-space of the established map. Then, an auto-

matic procedure generating a static structure exploring the entire free space of

the working environment has to be set-up. Eventually, an online algorithm that,

based on the previously defined structure, establishes the optimal (minimum ef-

fort) direction v1v1v1, at each time instant, has to be defined.

Two types of environment exploring structures will be presented in the next two

sections. The first one is based on a grid structure while the second one on a tree

architecture. For each one, both the creation process and the online analysis is

discussed.

4.3 Recursive grid based obstacle avoidance

A first approach to the map discretization problem, namely to the definition of

the environment exploring structure, is based on a grid architecture. An example

is depicted in figure 4.2.
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Figure 4.2: Graphical representation of an orthogonal grid of points, used to

discretize the space between pstart and pgoal .

A uniform discretization is achieved by means of an orthogonal grid of points.

The grid is aligned with the line connecting the starting position and the destina-

tion, so that its rows represent a gradual progression from the start to the end of

the motion. θ is defined as the angle between the line connecting pstart to pgoal

and the global (robot base) x-axis.

To guide the user towards the goal, it would be sufficient to align v1v1v1 to a key-point

belonging to a row which is closer to the objective than the one corresponding to

the end-effector position and, possibly, directed towards the goal. The operator is

continuously led forward until the objective row is reached, then it can be redi-

rected towards the exact unloading position.

It is worth noting that, in obstacle proximity, a small grid step would be prefer-

able in order to perform more precise movements around the obstacle, while in

free-space, away from any obstruction, only a few samples, taken at larger dis-

tance from each other, are required. Therefore, a variable grid step strategy, to

achieve the required resolution requirements, occurs to be defined.



4.3 Recursive grid based obstacle avoidance 53

This is addressed with recursion: the cells of the grid that are close to the obsta-

cles are further discretized by generating a smaller grid inside them. This process

can be repeated recursively on the sub-grid cells until the desired level of detail

is obtained.

Figure 4.3: Example of a squared map with one central obstacle. Concentric

zones are added around it with increasing detail lobst, up to lobst = lmax = 3.

To determine how many nested sub-grids are necessary in a certain location,

the obstacles are provided with additional concentric zones (see figure 4.3). A

level of detail lobst is assigned to every area: its maximum value lmax is assigned to

the zone that surrounds the yellow zone. Every other concentric zone is assigned a

gradually decreasing level until the minimum value of 1 is reached, correspond-

ing to the main grid detail. A complete recursive grid, constructed according to

the concentric zones, is portrayed in figure 4.4.
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Figure 4.4: Example of a complete recursive grid, constructed according to the

layout and concentric zones depicted in figure 4.3.

4.3.1 Recursive grid creation

To define the main grid it is necessary to assign the starting position pstart, objec-

tive position pgoal and the grid base dimension nb, which must be an odd natural

number. The base grid is composed by n2
b points, equally distributed in the space

between the two end-points of the motion.

Moreover, it is possible to specify two parameters nlateral and nover : the first one

adds additional columns of nodes at each side of the main grid, the second adds

rows at the end of the grid over the objective row, to address possible over-

shooting of the goal position. Therefore, the complete main grid is composed

by nb +nover rows and nb + 2nlateral columns, as it can be seen in figure 4.5.

Each node can be identified by a set of coordinates (i, j), representing its column

and row inside the grid. The columns are numbered from the left-most (with

respect to the line connecting pstart to pgoal) to the right-most, and the rows are

indexed starting from the one including pstart, increasing towards pgoal .
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Figure 4.5: Example of a main grid structure with nb = 5, nlateral = 2, nover = 3.

To compute the coordinates of each node, it is necessary to evaluate the angle

of inclination of the main grid θ, the grid step sgrid and the grid origin Ogrid ,

which correspond to the position of the node at coordinates (0,0).

The grid step is computed by measuring the distance between pstart and pgoal

and dividing it by nb − 1, which is the number of grid cells separating the first

row, where the starting position is located, from the nb-th row, corresponding to

the goal.

A translation is applied to compute the grid origin, knowing that the grid is sym-

metric and the starting position is located in the middle column:

Ogrid = pstart − sgrid(
nb − 1

2
+nlateral)

 sin(θ)

−cos(θ)


Once the main grid dimensions and core elements are established, the map

is sampled to define the state of each node. The position of a node in the grid

located at generic coordinates (i, j) is given by:xy
 =Ogrid + sgrid

 sin(θ) cos(θ)

−cos(θ) sin(θ)


ij
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If the point at (x,y) is out of the free-space, then the corresponding node of the

grid will not be considered an available node. Instead, if the point belongs to the

free-space, two different scenarios may occur, depending on its relative position

with respect to the obstacles. If the grid cell corresponding to node (i, j), namely

the area defined by the nodes (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1), does not

intersect any obstacle concentric zone of level lobst > 1, then it is considered an

available node and no further discretization of the corresponding cell is needed.

Otherwise, if the grid cell intersects an obstacle concentric zone of level lobst > 1,

a finer space discretization is required. Therefore, a subgrid of nsg × nsg nodes is

generated inside the cell, having as origin the position of the node (i, j), inclina-

tion θ equal to the main grid and step ssg =
sgrid
nsg

. The subgrid is populated in the

same manner as the main grid: for each node a new point of the map is sampled

and, based on its position, it can be an available node or not. Additionally, this

procedure is recursively applied on the sub-cells, depending on their distance

from the obstacles, up to the maximum level of detail lmax. The estimated com-

putational complexity of the grid creation process is O(n2+2lmax), where n = nb.

An example of a grid structure, generated in a circular map containing only one

obstacle and with three levels of detail (lmax = 3), is depicted in figure 4.6.

Figure 4.6: Example of a grid-based environment exploring structure with lmax =

3, nb = 7, nlateral = 2, nover = 2, nsg = 3, generated inside a circular map.
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4.3.2 Online recursive grid analysis for optimal

direction selection

In order to proceed towards the objective a new point must be chosen from a row

which is closer to the objective row jgoal than the one corresponding to the end-

effector jee.

The first step is to find the coordinates cee = (iee, jee) of the node associated to the

grid cell which contains the end-effector position. To do so, a linear system must

be solved: ieejee
 =

s−1
grid

sin(θ) −cos(θ)

cos(θ) sin(θ)

 (pee −Ogrid)


If the coordinates (iee, jee) correspond to a node which is origin of a subgrid, then

the procedure is recursively repeated by substitutingOgrid with the origin of the

subgrid. The final result are the coordinates cee of the end-effector position down

to the lowest recursive grid level.

Figure 4.7: Graphical representation of the optimal direction selection process

for the grid-based approach, with jf = 2.
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The second step is to find the coordinates copt of the optimal available node,

namely the node that allows to perform the shortest local path towards the next

grid row avoiding the obstacles. The human intention of motion to overcome

the obstacle on the left or right side is also taken into account. Then, the direc-

tion from the actual end-effector position pee to the location of coordinates copt,

is selected as the optimal direction v1v1v1, namely the minimum effort direction for

variable admittance control.

The j-th coordinate of copt is chosen as the one of cee increased by a predeter-

mined integer number jf > 1, representing how many rows ahead with respect ot

the current one the locally optimal node is searched. The greater jf , the more the

operator is pushed forward, but the less precise will be the movements near the

obstacles. The i-th coordinate of the optimal node, is determined based on the

human intention of motion, as it can be seen in figure 4.7.

Indeed, the projection fproj of the applied human force f on the direction of the

x-axis of the grid, which is normal to the line connecting pstart to pgoal , is con-

sidered:

iopt =


iee + 1, if fproj ·Xgrid ≥ 0

iee, otherwise

In obstacles proximity, there might be cases where the optimal coordinates copt

correspond to a node which is outside of the free-space or the path from the cur-

rent end-effector position pee to copt is not collision-free. In these cases, the new

candidate node for being the optimal one is selected as the nearest to copt, on the

same row jopt and in direction of fproj . If also the new candidate optimal node

is not available, then the searching procedure of a new optimal node is repeated

until a fixed maximum number of lateral steps is reached. If no available route

has been found yet, jopt is decreased until it becomes equal to jee − jf , while the

lateral steps are kept at the maximum value. If no node has been selected still,

the lateral steps are gradually decreased with jopt = jee − jf .

The result, as it can be seen in figure 4.8 is a complete exploration of the direc-

tions aligned with the user intention. If no available node is found this way, then
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the user effort will be high in the current force direction, prompting him/her to

reverse his/her push and explore the other half-grid.

Finally, when jopt equals jgoal the user has reached the objective row. At this stage

the obstacles have been cleared and it is necessary to reach the goal position. User

autonomy is reduced: the force projection is no longer taken into consideration,

only the coordinates of the end-effector relative to the goal is examined. The op-

erator is then guided towards the objective coordinates to obtain an accurate final

positioning.

Figure 4.8: Depiction of the the locally explored directions with jf = 2 and a

maximum of two lateral steps, ordered from the first to the last analyzed.

If, at any point, the end-effector position belongs to a subgrid, then it is pos-

sible to exploit the recursive properties of the grid to improve the quality of the

optimal direction choice. In particular, two possible strategies can be applied re-

garding jf , as depicted in figure 4.9.

The first one consist in keeping the step forward length-wise constant (see figure

4.9a). The number of steps forward at the main grid level j(1)
f is converted to a
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number of equivalent sub-steps j(lee)
f , depending on the maximum level of detail

lee available at the end-effector location:

j
(lee)
f = j(1)

f (nsg)lee

The new node coordinates copt are computed at the deepest level of detail (lee).

As a result the distance between the end-effector row j
(lee)
ee and the new point row

is kept constant despite the change in detail level.

The second strategy, instead, is to impose a constant number of forward steps, in-

dependent of the change in detail (see figure 4.9b). j(lee)
f = j(1)

f is adopted, meaning

that the distances among the current row and the optimal one reduces with the

increasing of the resolution of the grid.

Figure 4.9: Comparison between the two possible subgrid exploration ap-

proaches with jf = 2. To the left the constant length strategy, to the right the

constant number one.

In the event that the new coordinates copt correspond to a node with lnew < lee,

it is impossible to find the optimal direction while keeping the current detail. The

forward steps conversion is repeated, ignoring the deepest level of detail and us-

ing lnew. However these events occur when the end-effector is moving away from
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the obstacles, hence a loss of detail is acceptable.

Both strategies have advantages and drawbacks. In fact, adopting the first ap-

proach is equivalent to maintaining a constant prediction horizon. The map is

examined at a greater distance in front of the end-effector and the chosen key-

point is far from pee. Thanks to the large prediction horizon, the presence of

an obstacle in the direction of the motion will influence the choice of v1v1v1 early,

hence, through the haptic feedback, it is possible to make the operator aware

of the obstacle when the end-effector is still far from it. However, this strategy is

not preferable when multiple obstacles are close to each other, forming corridors,

since less nodes are available for the choice: the fewer are the points, the less is

the probability of finding a collision-free key-point at a long distance from the

end-effector.

On the contrary, the second solution sacrifices the longer prediction horizon in

spite of a better exploitation of the recursive sub-grids. The user is less forced to

take a specific path since the key-point choice happens at a finer level of detail,

where more nodes are available. However, if an obstacle is in the direction of

the motion, then the algorithm would react slower when compared to the first

strategy.

In the experimental campaign described in Chapter 5, only the second grid anal-

ysis strategy was put to the test. The working environments proposed in the

experiments often required the operator to cross narrow passages and overcome

multiple obstacles. As mentioned before, the first strategy is not suitable in such

cases. The second strategy, instead, allows for a finer exploration of the available

space, which is fundamental in complex and highly structured environments.

Since only a determined and localized portion of the grid is explored to select

the optimal direction, the computational complexity of the grid analysis phase

depends only on the complexity of the algorithm chosen for collision detection,

which, in our case, is O(nobstacles).
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4.3.3 Recursive grid limitations

The recursive grid structure presented above allows to find the locally best direc-

tion to reach the objective, considering the end-effector current position, the map

and the user intention of motion. However, some intrinsic limitations are hereby

presented.

The first consideration is that the grid approach is only reactive, meaning that the

user is made aware of the obstacle presence only when the end-effector is close

to it and he/she is pushing towards it. In free space, away from any obstacle, the

operator is only guided forward towards the goal: no path optimization is imple-

mented, the only objective is to proceed inside the grid and the only feedback is

reactive to the obstacles.

Moreover, since the structure analysis is only local, this method is sensitive to

local minima. If the user drives the end-effector in a dead-end, this algorithm

guides him/her forward until an obstacle is in proximity, despite the fact that no

feasible path towards the objective is available by following that route.

Additionally, only a rectangular portion of the map is explored, the one com-

prised between the starting and goal position, hence this approach is not well

suited for maps having a complex shape or a complicated obstacle layout.

Furthermore, a known initial position is necessary for the grid creation, hence, a

new grid must be created each time a new movement with different end-points

needs to be executed.

Therefore, a second approach aiming to solve all these drawbacks has been con-

ceived and will be described in the next section.



4.4 RRT based obstacle avoidance 63

4.4 RRT based obstacle avoidance

The second proposed environment exploring structure solves most of the Recursive

Grid drawbacks, highlighted in the previous section. The orthogonal grid struc-

ture, made of single nodes independent of each other, is substituted with a set of

randomly sampled points that are interconnected in a meaningful way.

In fact, it is possible to create an ordered graph, where each node corresponds to

a point in the free-space and each edge represent the collision-free path to follow

to reach the goal position. This kind of graph is commonly named tree and it is

created starting from one given point, called the root. The peculiarity of the tree

is that it is always possible to reach the root from whatever node belonging to

the tree by following the nodes edges. The creation of such structure is inspired

from the Rapidly exploring Random Tree (RRT) algorithm, a well known path

planning algorithm adopted in traditional robotics to find a collision free path

form a starting robot configuration to a final one.

Normally, once a path is found, the robot cyclically repeats exactly the same path

in an automatic way. Instead, in manual guidance, since the human drives the

robot end-effector, a certain path cannot be repeated exactly. Moreover, the cur-

rent position will always be out of the optimal path and the initial position may

vary a lot even if the unloading position remains the same. Therefore, the classi-

cal obstacle avoidance problem adopting a tree structure has to be formulated to

face all these differences. The tree will have to cover all the working environment

starting from the goal position regardless of the initial position. Then, it will be

used as a reference to follow to reach the goal independently by the starting or

current position.

In this adaptation of RRT, the generated tree is rooted in the objective position and

its branches spans across the whole map, exploring all the feasible path around

the obstacles. Moreover it is possible to re-rout the connections according to dif-

ferent cost functions, allowing for different path optimizations. For example, the

operator may prefer a safer path, that keeps him/her away from the obstacles, or

a more direct one, optimized only on distances between the nodes.
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The structure is generated before the motion, hence the complex computation

and optimizations are performed offline. Only the structure analysis, which con-

sists in choosing the next target key-point and hence the minimum effort direc-

tion, is executed online. Additionally, since the structure creation requires only a

known goal position, it’s possible to use the same structure for many movements

even with different starting positions, as long as the objective does not change.

4.4.1 RRT in the literature

Given a path planning problem, with known starting (qinit) and final (qgoal) con-

figurations, Rapidly-exploring Random Tree algorithm aims at the creation of a

tree structure, rooted at the initial configuration and built incrementally to reach

the goal. A complete tree represents a set of feasible paths to the goal configura-

tion. A pseudo-code description of basic RRT can be found in algorithm 1.

Algorithm 1 RRT

V ← {qinit};

E←∅;

for i = 1..N do

qrand ← SampleFree;

qnearest←Nearest(G,qrand);

qnew← Steer(qnearest,qrand);

if CollisionFree(qnearest,qnew) then

V ← V ∪ {qnew};

E← E ∪ {(qnearest,qnew)};

end if

end for

return G = (V ,E)

At each iteration, the SampleFree function extract a new configuration qrand ,

sampling it from the free-space (figure 4.10a). Then qnearest, which is the nearest

tree node to qrand , is found (figure 4.10b). Afterwards, the Steer function extracts
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a new node configuration, qnew, in the direction of qrand , trying to locally optimize

the path by steering towards the goal. If the path between qnew and qnearest is

collision-free, qnew is added to the tree and it is connected to qnearest (figure 4.10c).

From now on, qnearest will be referred to as parent of qnew, namely the node to

follow from qnew in order to reach the root of the tree.

This loop is repeated until the objective configuration is connected to the tree or

the maximum number of iterations N have been executed.

Figure 4.10: Graphical representation of the RRT main procedures: Sampling (a),

Finding the nearest node (b), Steering (c).

However, the basic RRT algorithm utilizes a non-exact steering function and

computes only a generic path from initial to final configuration. It can be im-

proved by assigning a monotonic cost function to the nodes and minimizing it

during tree creation. The generated path is optimized according to the specified

cost. An optimal version of RRT, named RRT*, is reported in Algorithm 2.
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Algorithm 2 RRT*

V ← {qinit};

E←∅;

for i = 1..N do

qrand ← SampleFree;

qnearest←Nearest(G,qrand);

qnew← Steer(qnearest,qrand);

if CollisionFree(qnearest,qnew) then

Qnear ←Near
(
G,qnew,min

{
γRRT ∗(log(card(V ))/card(V ))1/d , rmax

})
;

V ← V ∪ {qnew};

qmin← qnearest;

cmin← Cost(qnearest) +Cost(qnearest,qnew);

for each qnear ∈Qnear do

cnew← Cost(qnear) +Cost(qnear ,qnew);

if CollisionFree(qnear ,qnew)∧ cnew < cmin then

qmin← qnear ;

cmin← cnew;

end if

end for

E← E ∪ {(qmin,qnew)};

for each qnear ∈Qnear do

c∗near ← Cost(qnew) +Cost(qnear ,qnew);

if CollisionFree(qnear ,qneew)∧ c∗near < Cost(qnear) then

qparent← P arent(qnear);

E← (E \ {(qparent,qnear)})∪ {(qnew,qnear)};

end if

end for

end if

end for

return G = (V ,E)
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In RRT*, the Steer function takes into account the robot kinematic constraints

and the actuators limits when the steered sample qnew is computed. Moreover,

the new node is not connected to its nearest anymore. Every node belonging to

a neighborhood around the new configuration is analyzed: a new edge is created

towards the node that does not cause a collision and minimizes the total cost,

which is the sum of the new parent cost and the connection cost (figure 4.11).

Figure 4.11: Graphical representation of the RRT* cost minimization phase.

The radius of the neighborhood is based on the optimal RRT* radius γRRT ∗ ,

which is:

γRRT ∗ > 2(1 + 1/d)1/d(µ(Qf ree)/ζd)1/d

where d is the dimension of the configuration space, ζd is the volume of the unit

ball and µ(Qf ree) is a Lebesgue measure of the obstacle-free space. The rate of

decay of the radius is a function of the sample dispersion of a set of n random

points sampled uniformly and independently, which is O
(
(log(n)/n)1/d

)
. The

more nodes are added to the tree, the more the radius is reduced.

Additionally, a tree rewiring phase is executed after the first optimization: the

new node and edge may open new paths for the nearby nodes. A new connection

is attempted from any node belonging to the neighborhood of the new node. If

a collision-free path that reduces the cost of a neighbor is available, a new edge

towards the center node replaces the old connection. The cost of each children is
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updated accordingly (see figures 4.12).

Figure 4.12: Graphical representation of the RRT* rewiring phase: a new sample

is extracted (e), then the nodes in the neighborhood are rewired in order to min-

imize the cost (f).

The algorithm runs until it’s possible to connect the target configuration to

the tree or the maximum number of iteration N has been reached. The final tree

contains a set of feasible paths towards the objective, fully optimized according

to the cost function.

4.4.2 A new implementation of RRT* for goal driven variable

admittance control

The developed environment exploring structure for manual guidance is largely

based on the RRT* algorithm, applied to find feasible paths for the robot end-

effector in the Cartesian space. However, a few implementation differences can

be identified.

The tree is not constructed from a generic starting position, but from the goal.

The reason behind this choice is twofold. First, in manual guidance applica-

tions the operator is not forced on a predefined collision-free path but he/she

drives the robot end-effector where he/she desires. Secondly, the same unload-

ing station (goal position) could be reached starting from whatever point of the
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free-space. Hence, it is fundamental to produce a structure with well defined

paths leading to the final position, independently of the current and starting

end-effector location. The tree generation must be based only on the specific map

and on the known target pgoal , while its branches will be constructed not to con-

nect a specific initial position to the goal one, but to cover the entire map. In this

way, regardless of the current and initial position, a reference collision path lead-

ing to the target can be found everywhere in the free working space. An example

of tree-based structure is portrayed in figure 4.13. Notice how the tree branches

spans across the entirety of the working environment, and how different branches

of the tree explore different paths around the obstacles.

Figure 4.13: Example of an environment exploring structure based on the RRT

approach, constructed in a circular map with multiple obstacles.

Since the objective of the tree is no more to connect initial and final position,

but becomes to cover the entire working space starting from the goal position

(root of the tree), the tree nodes must be evenly spread across the map. To achieve

this purpose, a maximum and minimum distance boundaries between samples is

prescribed. Specifically, a maximum value dstep is assigned, and the minimum

boundary is set to
dstep

2 .
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Moreover, a different terminating condition must be established for the algo-

rithm. The total number of nodes ntotal must be estimated before the creation

since it is not possible to determine when the map is fully explored. A heuris-

tic approach is used to solve this problem that is interpreted as a circle packing

problem. Indeed, the nodes can be seen as circles, whose radius is the prescribed

minimum distance of
dstep

2 , and the map is the container: finding ntotal is equiva-

lent to determine the maximum number of circles that can be packed inside the

container. The free space is measured by evaluating the map area and subtract-

ing the space occupied by the obstacles and the yellow zones around them, taking

into account possible overlapping between different obstacles.

The final estimate is:

ntotal =
⌊
Amap −

∑
Ayellow +

∑
Aoverlap

π(
dstep

2 )2

⌋
The algorithm adds a new node at each iteration, sampling its position from

the free-space. As already mentioned, the sampling is no more aimed at reaching

a known point like in classic RRT: the entirety of the map has to be explored.

Figure 4.14: Graphical representation of the reinterpreted NewSteer function ef-

fects on new samples.
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RRT Steer function is reinterpreted, as there is no need to deviate towards an

objective. Instead, the NewSteer function ensures that the prescribed maximum

(dstep) and minimum (
dstep

2 ) distance boundaries are respected. If the random

sample is too close to a tree node, it is discarded. Vice versa, if the distance

between the random sample and its nearest node in the tree is higher than dstep,

then a new sample at distance dstep is taken along the line connecting the nearest

node and the random sample, as depicted in figure 4.14.

When the new point has been defined, it is compared with all the nodes inside

a neighborhood of fixed radius r = 3
2dstep around it. The new node is connected

to the node inside the neighborhood that minimizes its cost copt, provided that

the new edge is not in collision with any obstacle red zone. The minimum cost

neighbor becomes the parent of the new node (see figure 4.15). There is no use in

defining a variable neighborhood radius strategy like in RRT*, since the map is

sampled at predetermined distances and the maximum number of nodes ntotal is

assigned.

Figure 4.15: Geometrical representation of the three components of the connec-

tion cost. The new sample (in blue) is connected to its parent (in red), which is

the node inside the neighborhood (brown dashed line) that minimizes its total

cost.
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The cost function of the connection cconn is chosen as a linear combination of

three quantities:

cconn = a ∗ dparent + b ∗ acos(δ) + c ∗ l−1
obst (4.1)

where dparent is the distance between the node and its parent, δ is the angle be-

tween the edge connecting the new node to the parent and the edge between the

parent and its parent, l−1
obst is the reciprocal of the distance from the new node to

the closest obstacle. The coefficients a, b and c represent the weight of each term.

The total cost of the new node copt is obtained like in classical RRT* by adding

the connection cost cconn to the parent cost cparent.

All three weighted quantities are positive and monotonically increasing func-

tions, therefore, minimizing this cost function is equivalent to, respectively, re-

ducing the total travel distance, creating a smoother path with less deviation

between connected edges and increasing the overall distance from the obstacles.

Since these quantities are weighted, the operator can choose to optimize his/her

path according to one or more of them and how much they impact on the total

cost.

Figure 4.16: Representation of a RRT-based environment exploring structure with

dstep = 0.1m, created in the same map as the one of figure 4.6.
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It is worth mentioning that, since the goal position is the root of the tree, its

cost is cgoal = 0. Moreover, it is impossible to evaluate the angle δ of a node con-

nected to the root. Therefore, its children angular component of the connection

cost must be set zero.

Finally, a connection from each node ni inside the neighborhood to the new node

is attempted. These connections are confirmed only if the edge is not in collision

and the total cost of the i-th node is reduced. An example of a optimized tree

structure is portrayed in figure 4.16.

The computational complexity of the tree creation phase is the same as the classi-

cal RRT* algorithm,O(nlog(n)), where n = ntotal is the estimated number of nodes

to completely discretize the map free-space.

4.4.3 Online tree analysis for optimal direction selection

The procedure to determine the optimal direction v1v1v1 follows the same principles

of the grid analysis, presented in section 4.3.2. It consists in finding the best node

in the structure considering the optimal path towards the objective, possible col-

lisions and the user intention. The selected node, nopt becomes an intermediate

goal position, popt, between the end-effector position pee and the target position

pgoal . The principal direction for the damping shape construction is aligned with

the line connecting pee to the optimal intermediate goal position.

It is worth mentioning that, since the environment exploring structure is a tree,

it is always possible to reach the final objective by exploiting the parent-children

relationship between the nodes. Moreover, each node parent minimizes the con-

nection cost inside the neighborhood, hence, once a locally optimal node has been

chosen, following the direction towards its parent is equivalent to follow an opti-

mal path to reach the objective.

Based on these considerations, nopt is selected as the parent of the node nbest with

the lowest total cost (the sum of the cost of nbest and the connection cost with pee)

inside a neighborhood of radius rn around the end-effector position pee.

To include user intention in the selection of the optimal node nopt, only the nodes

neighbors to pee whose parent is sufficiently aligned with the direction of the hu-
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man force are considered. An angular threshold αspan is set: it corresponds to

the maximum allowed angle between the force and the optimal direction, i.e. the

vector going from pee to popt.

Moreover, collisions with the obstacles must be avoided: therefore, the segment

connecting pee to popt must not intersect any of the obstacles red zone.

Finally, an additional constraint must be added to avoid proceeding in the wrong

direction along the tree: the selected optimal direction must point in the same

direction of the vector connecting the best node nbest in the neighborhood of pee

and its parent nopt.

A graphical representation of the selection process is provided in figure 4.17.

Figure 4.17: Illustration of the optimal direction choice process. nbest is the node

inside Ipee
that minimizes the total cost. Its parent nopt respects all the criteria:

the optimal direction v1v1v1 is the one towards nopt.

To summarize, a node nopt is selected according to the following criteria:

• Minimum Cost in the neighborhood:
Ipee
← ni : ‖pee −pi‖ ≤ rn

nbest← nj : cj +Cost(pee,pj) < ci +Cost(pee,pi), ∀ni , nj ∈ Ipee

nopt← P arent(nbest)
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where P arent(nk) is a function that retrieves the parent of the k-th node

of the tree, ck is the cost of such node, pk is its position in the map and

Cost(pee,pk) is a function that computes the connection cost between the

end-effector position and the k-th node position. Ipee
is a subset of the tree

nodes that contains all the nodes belonging to the neighborhood of radius

rn around the end-effector position pee.

• User intention:
(popt −pee) ·f
‖popt −pee‖ ‖f‖

≥ cos(αspan)

where popt is the position of the node nopt, selected according to the Mini-

mumCost constraint, f is the vector representing the input force exerted by

the human on the end-effector, expressed in global coordinates, and αspan is

the maximum misalignment threshold for the search.

• Collision Avoidance:

@P : P ∈ poptpee ∧ P ∈ red(obsti), ∀i : 1..#obst

where P is a point in the Cartesian space, poptpee is the segment connecting

nopt and the end-effector positions, red(obsti) represent the red zone around

the i-th obstacle of the map.

• Tree alignment:
(popt −pee) · (popt −pbest)
‖popt −pee‖ ‖popt −pbest‖

≥ 0

where pbest is the position of nbest, which is the node with minimum cost in

the neighborhood Ipee
(see Minimum Cost constraint).

However, few exceptions may occur. When the end-effector is in the objective

proximity, the root node may belong to the neighborhood of pee. In this case,

user intention should no longer be considered in the choice, since the purpose is

to reach the final position and the root has no parent. As a consequence, when

pgoal is inside the neighborhood and the direction towards it is collision-free, the

operator will be redirected directly to the goal position.

Moreover, the User intention constraint has to be discarded if no node satisfies
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it, meaning that no collision-free path is available in the direction that the user

has selected. To solve this problem, the selection process is repeated ignoring the

intention constraint and analyzing the entirety of the neighborhood, instead of

just a portion of it.

Additionally, it is possible to regulate how much the user is forced to follow the

optimal path. This is achieved by adjusting rn, the radius of the neighborhood

considered in the constrained minimization. The minimum value admissible as

radius is dstep, which correspond to the maximum distance between two con-

nected nodes in the tree. Choosing a value inferior than dstep may lead to an

empty neighborhood, meaning that no node is available for the selection.

Increasing rn, instead, is equivalent to including additional nodes in the selection

process. Therefore, the probability of finding a feasible path aligned with the

input force increases.

If the value of the neighborhood radius is low, a local search is enforced and its

more probable to choose the optimal node, ignoring the user intention constraint.

As a result the operator would be redirected on a path of optimally connected

nodes. If rn is larger, then it is more probable to accommodate the user intention:

the operator will follow a smoother but sub-optimal path. It is also more prob-

able that the tree root belongs to the neighborhood, hence, the user is redirected

faster to the goal provided that a linear and collision-free path towards pgoal is

available.

The main drawback of a larger neighborhood is an increased computational com-

plexity. The more nodes are included in the selection, the more constraint checks

are required to find nbest.

The computational complexity of the tree analysis phase is O(n), where n = ntotal

is the number of nodes in the tree.

4.5 Control strategy

The proposed manual guidance control strategy can be subdivided into two parts.

The main part correspond to the online control loop: variable admittance control
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is adopted to translate the joints position and velocity (q, q̇) and the force mea-

surement from the sensor (fs) into a new position and speed reference (qref , q̇ref )

for the robot low-level controllers to follow. It is fundamental to reduce the com-

putations performed in the online part, since the loop time must be lower than

robot controller sampling period.

The second part consists in a set of operations that are executed offline, before

the motion inside the map. In this case there is no restriction on the algorithm

complexity and execution time. This phase is used to construct an environment

exploring structure, as described previously in this chapter. The distinction be-

tween these two parts allow to perform only a minimal part of path planning

and collision avoidance at run-time, where the resources are limited.

Figure 4.18: Complete block scheme representation of the online control loop.

In figure 4.18 a complete scheme of the online control loop is sketched.

First, the input force measured by the sensor (fs) is translated into the robot base

(global) reference frame (fG). Then, the virtual walls effect is taken into consider-

ation and the force input is scaled accordingly. The position of the end-effector is

compared with every obstacle and the component of the force which is normal to

the closest side of the obstacle polygon is scaled according to a function inversely

proportional to the distance between the two. This works as a safety feature: if

the operator decides to ignore the feedback provided by the variable admittance

strategy, its motion is slowed down and eventually stopped, preventing the colli-
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sion with the obstacle.

Then, an environment exploring structure is analyzed to determine the locally op-

timal direction to follow v1v1v1, taking into account the position of the end-effector

inside the cluttered environment and the intention of motion of the operator.

This output is filtered with a low-pass filter to avoid discontinuities in the direc-

tion value that can result in a discontinuous selection of the damping parameter.

Based on the filtered optimal direction, the damping shape is constructed using

the procedures described in Chapter 3.

Finally, the shape is compared with the direction of the input force: the damping

coefficient d of the admittance filter is computed according to Chapter 3, while

the mass value m is chosen as 1
10 of the damping in order to keep the filter band-

width constant. The output of this filter is a Cartesian speed reference for the

end-effector, and Differential kinematic inversion is applied to obtain the final

joint speed and position reference for the robot.

The selection of the optimal direction is based on the analysis of an environment

exploring structure. The purpose of this structure is to discretize the available

space, providing a number of key-points (nodes) distributed in the free-space.

When the robot moves, the structure is analyzed in order to detect the best node

to be reached: the optimal direction is selected as the unit vector pointing to-

wards that key-point in the structure. The structure generation is based only on

the map, starting position and objective, hence it is performed in the secondary

offline phase, executed before the beginning of the motion. Moreover, it is pos-

sible to reuse the computed structure for different movements, as long as the

objective position and the layout do not change.

The distinction between creation and exploration allows to drastically reduce the

computations performed online. In fact, since the heavier map exploration is ex-

ecuted offline, it is only necessary to perform collision avoidance procedures in

a neighborhood of the end-effector position, reducing the loop time of the con-

troller and improving the quality of the human-machine interaction. Another

advantage is that it is possible to perform more complex optimizations during

the structure creation phase, improving the quality of the planned path.



Chapter 5

Experimental results

5.1 Experimental setup

Figure 5.1: Representation of the Comau Smart Six workspace.
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The experiments are conducted on a Comau Smart Six manipulator. This indus-

trial manipulator, commonly adopted for welding, assembly and packaging op-

erations, has a wrist payload of 6 kg and a maximum arm extension of 1.4 meters:

its working area, depicted in figure 5.1, is fully exploited to simulate a realistic

manual guidance experience, where the user has to drive the robot end-effector

inside the working cell not only with his/her arm, but also by following it with

the entire body.

The robot is endowed with a Comau C4G controller which, in its Open configura-

tion, is linked through an Ethernet connection to a real-time external PC running

RTAI-Linux extension. In Open modality, the trajectory planning algorithms of

the C4G are bypassed and the low level joint speed and position control loops

are preserved, in order to realize the references computed by the external pc.

The two devices communicate at frequency of 500 Hz: each 2 ms the joint mea-

surements are transferred from the C4G, acting as a client, to the PC, which is

the server.

Figure 5.2: The Comau Smart Six manipulator equipped with the F/T sensor and

the steel handle.
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An ATI 6-axis Force-Torque sensor is attached to the manipulator end-effector

and a steel handle is firmly connected to it, as it can be seen in figure 5.2. The

sensor is linked to the PC through a DAQ board, managed by the RTAI system,

and has a sample frequency of 10 kHz.

The PC enacts the strategies described in Chapter 3 and 4: the joint data is com-

bined with the force measurements coming from the sensor to compute new po-

sition and speed references. These references are sent back to the C4G controller,

which closes the inner control loop on the manipulator axes. The program runs

in hard real-time on the PC, meaning that it is perfectly in sync with the robot

controller and its execution time is kept under the 2 ms connection limit.

For each experiment, the user is asked to grab the steel handle and conduct the

robot end-effector towards a specific point inside the workspace. Since the devel-

oped approaches concern only translations of the end effector, the wrist is always

kept perpendicular to the ground and the rotations of the handle are blocked.

As mentioned in Chapter 3, obstacle avoidance is implemented considering a

bi-dimensional simplification of the environment. Hence, only the X and Y di-

rections are affected by the variable admittance control strategy. Along the Z axis,

an invariable admittance filter is implemented. Constraining obstacle avoidance

to a horizontal plane provides more meaningful results, preventing the height

of the operator from influencing the outcomes. The shape of the map is heavily

constrained by the dimensions of the robot operative space. The task must be

executed at a comfortable height for the operator, hence the end-effector travels

at an average of 1.25 meters on the Z-axis, where the manipulator reach is re-

duced. Moreover, configuration singularities should be considered in the map

limits: moving the end-effector too close or too far from the robot base may lead

to problems during the kinematic inversion, causing abrupt changes in the robot

speed that can harm the operator. As a result, the motion must be constrained be-

tween a specified minimum and maximum distance from the base. Consequently,

if a rectangular map were to be used, its dimensions would be reduced to account

for the operator safety. On the contrary, circular maps better exploit the shape of

the robot operative space, hence they are adopted for every experiment.
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Simple polygons represent the obstacles in every bi-dimensional map, such as

rectangles or hexagons. These kind of shapes approximates the impediments

that are commonly found in real working environments, like pallets, machines

or pillars. Moreover, a 5 cm thick red zone surrounds each obstacle: it has the

safety purpose described in Chapter 4 and it cannot be invaded. A new collision

will be counted each time the end-effector enter such zone. Additionally, a 5 cm

thick yellow zone is generated around each red zone. Its purpose is to prevent the

creation of trajectories that would lead the operator too close to the red zone.

5.2 Experimental campaign

Three sets of experiments involving fourteen volunteers were performed to

validate the variable admittance control techniques presented in Chapter 3 and

4.

In the first set, grid-based (VAF-GRID) and tree-based (VAF-RRT) approaches

are compared to invariable admittance filter (IAF) in a standard manual guid-

ance task, executed by an operator which is fully aware of the surrounding

working environment. The volunteer is asked to reach a specific point in the

workspace as precisely as possible and in a reasonable amount of time, avoiding

the obstacles that are present in the environment. The objective position is

indicated with a mark on the ground and the obstacles are realized by means

of cardboard boxes. The volunteers are requested to complete three round trips

from the starting position to the target one. The obtained results are examined

in terms of Execution time, total path length, required energy and positioning error.

A detailed comparison between the performance achieved by the two developed

techniques and the classical invariable admittance filter is carried out.

The second set of experiments aims at demonstrating the advantages of the

developed methods in more difficult transportation tasks. Like in the first ex-

periment, the volunteers are asked to reach three times a specific point in space,

marked on the ground, in presence of three different cluttered maps. However,

the obstacles that are present in the environment are invisible and unknown to
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the human. This set-up allows to simulate a situation where the operator field of

view is obstructed by the dimensions of the transported object. IAF, VAF-GRID

and VAF-RRT are compared in terms of number of collisions occurred during task

execution and energy required to complete it.

Finally, the third set of experiments aims at exhibiting the full capabilities

of the VAF-RRT method for the transportation of bulky objects in a complex

workspace, where VAF-GRID and IAF would inevitably fail. The volunteers

have to overcome three different maps containing convex shaped obstacles and

dead-ends. Both obstacle layout and target position are unknown, hence the

human can only rely on the haptic feedback provided by the robot via VAF-RRT

to successfully accomplish the tasks. The number of collisions occurred and the

final positioning error will be considered as performance indicators. Additionally,

in this third set of experiments, tree based manual guidance is tested with two

different degrees of user autonomy. On one hand, high autonomy RRT (RRT),

which is the same algorithm used in the previous experiments, has a large search

radius to better adapt to the user intention of motion. On the other hand, op-

timal RRT (OPT-RRT) adopts a minimal neighborhood radius for the selection

process, so it restricts the operator freedom of motion and constrain him/her on

an optimized path. After each set of experiments, the volunteers are asked to

evaluate their experience in a survey.

5.3 First experiment

For the first set of experiments, the volunteer is asked to guide the end-effector

from a given starting position to a specific destination. A realistic work cell layout

is simulated by placing two cardboard boxes between the start and goal position,

as it can be seen in figure 5.3. The two boxes emulate obstacles laying inside the

workspace, that the operator has to avoid to prevent damages to the transported

cargo. A small flag on the ground marks the objective position that the human

has to reach as accurately as possible. When he/she is satisfied with the final po-

sitioning, then he/she has to return to the starting point. This process is repeated
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for a total of three round trips to gather sufficient data for the analysis.

Figure 5.3: To the left, a volunteer performing the first experiment in the realistic

obstacle layout. To the right, the 2D virtual representation of the workspace.

At first, the user adopts invariable admittance filter (IAF). This translates the

human force in a displacement of the end-effector aligned with it, independently

from the obstacle layout. This case corresponds to the classic control strategy

adopted in manual guidance, where the trajectory planning task is left entirely

to the human and the robot reduces uniformly his/her effort. An average damp-

ing value of dcost = 100Nm/s is adopted for the constant admittance filter: it

represents a good compromise between the ease of motion obtained with a low

damping coefficient (dmin = 50Nm/s) and the precision in final positioning, im-

proved with high damping (dmax = 1000Nm/s).

Then, the experiment is repeated on the same map with the two variable admit-

tance control strategies conceived in this thesis:

1. Grid-based Variable Admittance Filter (GRID-VAF) with:

• Construction parameters: nb = 9, nlateral = 2, nover = 2, nsg = 3, lmax = 2

• A 10cm thick area zone around the yellow zone of each obstacle, for

subgrid creation.

• Exploration parameters: sf = 2
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2. RRT-based Variable Admittance Filter (RRT-VAF) with:

• Construction parameters: dstep = 0.1m, weights = [10 5 1] (respec-

tively for parent distance, alignment, obstacle distance)

• Exploration parameters: rn = ∞ (all nodes are considered in the

search), αspan = 20◦.

These variable approaches provide a directional haptic feedback to the user

during the navigation towards the objective. They allow the human to discrimi-

nate between the directions that are available and the ones that lead to collisions

by perceiving different resistances to the end-effector motion. The damping coef-

ficient is computed through the variable admittance algorithms, while the mass

parameter is always evaluated as m = d/10. In this way, a 10 rad/s bandwidth is

enforced for the admittance filter while the operator is maneuvering the robot,

resulting in a more intuitive collaboration. The purpose of this test is to compare

the developed approaches to the invariable admittance control strategy when ap-

plied to the classical manual guidance problem, which assumes that the operator

is fully aware of the surroundings.

Execution time, total path length, required energy and final positioning error of the

results are analyzed to determine if the variable admittance strategies improve

the quality of the collaboration task. At the end of the experiment the users are

asked to fill-in a survey concerning their impressions on the assisted guidance.

For each of the three proposed control strategies, the user has to answer a set of

five questions which topics are described in the following:

• Q1: The amount of physical effort perceived during task execution.

• Q2: The ease in reaching the objective and avoiding all the obstacles.

• Q3: The robot motion coherence with respect to human intention.

• Q4: The perception of the robot assistance in avoiding all the obstacles.

• Q5: The perception of the robot assistance in the final positioning.
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5.3.1 Outcomes

In this sub-section the performances of IAF, VAF-GRID and VAF-RRT are com-

pared in therms of execution time, required energy, total path length and final

positioning error. Additionally, since the trajectories followed by the different

volunteers are very similar, the evolution of the damping coefficient along the

path will be analyzed, highlighting the peculiarities of each control technique.

Figure 5.4: Statistics of the execution time for the first experiment.

As it can be seen in figure 5.4, there is not a significant difference between

IAF and VAF-RRT in the amount of time required to complete the task. How-

ever, the adoption of VAF-GRID causes a 25% increase in average completion

time. These results highlight the behavioral difference of the two variable admit-

tance approaches. VAF-GRID is a simpler approach, its purpose is to guide the

operator away from the obstacles while driving him/her along the grid principal

direction, hence it tends to redirect the user in a not always straightforward and

intuitive way. As a consequence, additional time is spent understanding the hap-

tic feedback. On the other hand, VAF-RRT is a more accommodating approach:

there is not a principal motion direction like in the grid case, and it indulges the
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user intention of motion, reducing the execution time. Similar considerations can

be made concerning the average path length followed by the operator.

Figure 5.5: Statistics of the total distance traveled in the first experiment.

Inspecting figure 5.5, it can be noticed that the distance traveled by the end-

effector from the start to the goal position is equivalent in case of IAF or VAF-

RRT. With VAF-GRID, instead, the average path length slightly increases. The

grid-based variable admittance control tends to drive the end effector further

from the obstacles than the RRT-based approach, increasing the traveled distance

and, consequently, the time required to complete the task.

The advantages of the variable admittance control techniques with respect

to the invariable damping coefficient become apparent when the human energy

required to complete the task is considered.

From figure 5.6 it can be observed that the human effort required to execute the

manual guidance task under the IAF approach is higher than the one needed

with the variable admittance strategies. A 25% reduction of the human energy is

obtained with VAF-GRID and a 35% decrease with VAF-RRT.
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Figure 5.6: Statistics of the energy consumed by the operator during the execu-

tion of the first experiment.

Although the VAF-GRID results seem in contrast with the execution time and

path length outcomes, it is possible to explain the energy reduction by analyzing

the interaction between the human and the robot. In fact, when the operator per-

ceives a negative directional feedback, he slows down the motion and explores

other directions. When he discovers the minimum effort direction he adapts to

the robot suggestion and he is awarded with a lower resistance to the motion. As

a consequence, the total energy is reduced, while the path length and execution

time increase.

An even greater reduction in human effort is obtained with the VAF-RRT ap-

proach, due to the interaction mechanism mentioned before. In RRT-based man-

ual guidance, however, the human intention of motion has a greater impact on

the selection of the minimum effort direction, as described in Chapter 4. The re-

sult is a mutual adaptation between the human and the robot that ensures mini-

mal resistance for the majority of the path described by the end-effector, reducing

the total required energy accordingly.

To better understand the differences between the two variable admittance tech-
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niques, it is worth examining the behavior of the damping coefficient during the

execution of the task. This is possible since the trajectories followed by distinct

users in a completely visible environment are very similar.

Figure 5.7: Evolution of the mean values (continuous line) of the damping pa-

rameter, along with its 25th and 75th percentiles (dashed lines), in a normalized

time scale during the travel phase of the first experiment. The background colors

refer to the different sectors of the map portrayed in figure 5.3 on the right.

Such comparison is depicted in figure 5.7, where the average damping coeffi-

cients computed by the three different control strategies are reported with con-

tinuous line on a normalized time scale. The 25th and 75th percentiles are rep-

resented by means of dashed lines with the same colors. In this graph, only the

travel phase is shown, namely it spans from the instant when the operator grabs

the end-effector at the starting position to the moment when he/she reaches, for

the first time, a point within 7cm from the goal position. The plot is subdivided

into three zones, identified by different background colors, which correspond to

the ones used in figure 5.3 to highlight the specific sector of the map associated

with the damping trends of figure 5.7.

In the first sector, painted in yellow, the user has to move slightly on the left
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side in order to drive the robot end-effector towards the corridor formed by the

two box obstacles, avoiding the first one on the right. As it can be seen in figure

5.7, VAF-GRID and VAF-RRT behave very differently in this situation. Remem-

ber that grid-based obstacle avoidance relies on a structure aligned with the line

connecting the starting and goal position, and works by guiding the operator for-

ward along that direction. In this layout, an obstacle is placed sideways with

respect to the grid principal direction, hence the user is first brought forward

and then redirected along the obstacle side. The result is a non-intuitive interac-

tion with the user, since he/she would prefer a smoother, curved trajectory that

starts sideways and overcomes the obstacle by crossing closer to its angle. This

situation highlights one of the major disadvantages of VAF-GRID: motion is not

facilitated in the direction which is normal to the grid principal direction, and,

in general, a higher damping factor is chosen. Moreover, this section of the graph

is characterized by high dispersion, caused by the different reactions of the vol-

unteers. Some of the users explore the different directions and adapt faster to the

robot, decreasing the damping, while others try to force the movement in their

preferred direction, increasing it. On the opposite, VAF-RRT is based on a mu-

tual adaptation with the human: the selection of the minimum effort direction is

strongly based on the intention of the operator, estimated from the force exerted

on the end-effector. The user is accommodated as long as he/she drives the robot

along a feasible path towards the goal. Hence, in the first part of the movement,

the values assumed by the damping coefficient are very close to the minimum.

The second section of the graph, highlighted in red, corresponds to the sector

of the map where a change in direction must occur. The user has moved to the

side of the obstacle and the goal position is in view, hence the variable admittance

control strategies start redirecting him/her towards the destination by increasing

the damping factor. This behavior is particularly evident in the VAF-RRT trend,

where the damping coefficient is increased to make the operator aware of the new

optimal direction and then decreased once he/she exits the red sector and starts

moving towards the goal position.

In the final part of the motion (green background color), the user travels along
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an almost straight path towards the objective. The damping is minimized in both

cases, reducing the human effort and the wasted energy. This trend remains con-

stant for the last part of the travel phase, until the goal position is in proximity:

at that point the damping value increases again to improve the final positioning

precision as it can be noticed in figure 5.8.

Figure 5.8: Behavior of the mean values (continuous line) of the damping param-

eter, along with its 25th and 75th percentiles (dashed lines), in a normalized time

scale during the positioning phase.

When the user has overcome the obstacles and reached the destination zone,

variable admittance control strategies increase the damping coefficient, while

IAF maintains a constant value. Such increase is justified by the vicinity of the

objective: in fact, the purpose of both VAF-GRID and VAF-RRT is to reduce

the final positioning error by exploiting the directional feedback provided to the

user. Since the interaction is passive, the operator achieves the final positioning

through small circular explorations, while he is constantly redirected towards

the target position. The more he/she reduces the error, the higher are the damp-

ing factors perceived when drifting away from the goal: this is represented in

the graph as a wave trend which tends to increase in time. Despite the fact that
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the positioning phase lasts about 20% of the total execution time, its impact on

the total energy is negligible, since the exploration movements performed in this

phase are characterized by a reduced input force and velocity.

Figure 5.9: Statistics of the final positioning error in the first experiment.

The advantages of the variable admittance control feedback can be also ob-

served when the average positioning precision is considered. Figure 5.9 shows

that a 40% reduction in average positioning error is obtained by choosing VAF-

GRID and VAF-RRT over IAF. The precision of the operator is increased consid-

erably, since he no longer relies only on his/her visual feedback, which is sensible

to perspective distortions, but he/she is helped also through the haptic feedback

provided by the robot.

At the end of this set of experiments, the volunteers were asked to fill-in

a small survey concerning their impressions about the three proposed control

strategies. For each of the five questions, reported in section 5.3, they were asked

to rate (in a 1 to 10 scale) their collaboration experience.
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Figure 5.10: Statistics of the answers provided by the volunteers at the end of the

first experiment.
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The results of the survey are reported in figure 5.10, subdivided into five

graphs comparing the three different approaches. The answers provided by the

users confirm all the observations expressed in this section that, so far, were based

only on the analysis of the experimental results. From Q1 it is evident that the

effort perceived by the operator is lower when one of the variable admittance

control technique is in use. Q3 highlights the negative impact of the VAF-GRID

limitations on the quality of the interaction: the intention of the operator in the

first part of the movement result incoherent with the feedback provided by the

robot. From Q4 and Q5 it possible to conclude that the user clearly perceives

the benefits of the assisted guidance in keeping the end-effector away from the

obstacles and in helping him/her with the final positioning.

In general, from the analysis of the opinion of the volunteers, it is apparent that

VAF-RRT is superior than the other two approaches, concerning the reduction of

the human fatigue, the coherence with user intention and the assistance provided

during the task execution.

5.4 Second experiment

The outcomes of the first set of experiments highlighted the features of the ob-

stacle avoidance approaches applied to the classical manual guidance problem.

The user was fully aware of the surroundings, hence he could plan a trajectory

even in the absence of a feedback from the robot. However, the purpose of this

thesis is to allow the operator to reach the goal position even in case the bulkiness

of the transported object obstructs his/her field of view. For this reason, the sec-

ond set of experiments aims at validating the developed strategies in this harder

guidance task. To achieve this objective, an unknown and invisible working en-

vironment is implemented, and the volunteer is asked to reach a specific point

in the workspace, marked on the ground like in the first experiment, minimiz-

ing the collisions with the invisible obstacles in the map. Nevertheless, it is not

recommended to execute the task while blindfolded for obvious safety reasons.

Therefore, the obstruction are generated only in the 2D map and not recreated in
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reality: collisions are reproduced by surrounding all obstacles with virtual walls,

hence if the end-effector is driven too close to the obstacle perimeter, then it is

slowed down and stopped, simulating an impact.

Three different scenarios were created, with increasing level of difficulty. The

first one includes a simple gate, i.e. a narrow passage between two obstacles (see

figure 5.11).

Figure 5.11: Example of an imaginary scenario for the second experiment, be-

longing to the first level of complexity.

The second presents two obstacles that force the user to change the direction

twice (shown in figure 5.12).
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Figure 5.12: Example of an imaginary scenario for the second experiment, be-

longing to the second level of complexity.

The third, portrayed in figure 5.13, contains both a gate and another obstacle

positioned sideways, creating a dead end where the operator might get stuck.

Figure 5.13: Example of an imaginary scenario for the second experiment, be-

longing to the third level of complexity.
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The user is asked to reach the objective as accurately as possible and with the

least number of collision. To minimize the impacts the operator must rely on the

feedback provided by the robot.

The experiment is repeated one time for each of the three complexity level con-

sidered, testing the three control strategies: IAF, VAF-GRID and VAF-RRT. The

order of execution and the map selection is randomized, hence the users cannot

alter the result by orienting themselves based on their memories. At the end of

this set of manual guidance tasks in an unknown environment, the volunteers are

asked to fill-in a second survey involving three questions. The topics are hereby

described:

• Q1: The ease of reaching the objective, avoiding all the obstacles.

• Q2: The confidence in having completed the task without any collision.

• Q3: The perception of the robot assistance in the final positioning.

5.4.1 Outcomes

Although the first and second set of experiments may seem very similar, the dif-

ferences in their execution are significant. If the obstacles are visible, then the op-

erator is confident that all collisions will be avoided, and guides the end-effector

faster. Instead, in an invisible workspace layout he/she moves slowly, exploring

the available space and relying on haptic perceptions to reach the objective safely

if one of the variable admittance control techniques is adopted. Moreover, in the

first experiment the human can plan an optimized path, while in the second one

it is impossible. If IAF is adopted, the user proceeds blindly in the environment,

mapping the workspace by trial and error. If VAF-GRID or VAF-RRT are in use,

the path that he/she follows depends on the quality of the haptic feedback pro-

vided by the robot and on the user sensitivity.

Since the path varies between different maps, comparing the execution times,

path length or damping behavior, like in the first experiment, would be mean-

ingless. Instead, the three approaches will be compared in terms of number of
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collisions occurred, total energy required to reach the objective, final positioning

error and average distance from the obstacles.

Figure 5.14: Statistics of the number of collisions occurred during the execution

of the second experiment. Three graphs are reported representing the three dif-

ferent maps with increasing level of difficulty.

Figure 5.14 shows three box-plots comparing the number of collisions oc-

curred during task execution. Each graph corresponds to a different virtual

workspace, constructed in order to simulate three realistic environments with
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increasing levels of complexity. In the first map, the statistics show that if IAF

is in use, meaning that no directional haptic feedback is generated by the robot,

then an average of 1 collision is registered. Nevertheless it is possible for the

operator to cross the central gate by chance, without hitting any obstacle. In the

same layout VAF-GRID and VAF-RRT reduce the average number of collisions

to 0. In the second map, the positive effects of VAF-GRID and VAF-RRT are

noticeable: the two variable admittance strategies manage to nullify the average

number of collisions and reduce its variability with respect to IAF, ensuring a

smoother execution of the task. In the third map, the human faces the most

complex obstacle layout, composed of a gate and a wall oriented diagonally,

which creates a dead end (refer to figure 5.13). From the graphical comparison

it is apparent that IAF is not suitable to solve the task: out of the 14 volunteers,

no one was able to avoid collisions. An average of 6 collisions per experiment

has been measured and the variability of the results is elevated. Furthermore,

similar outcomes are obtained when VAF-GRID is in use. The average number

of collision has decreased to 4.5 and the variability is lower, but no operator was

able to complete the task without collisions. In fact, this experiment highlight

another limit of the grid-based approach: the lack of a global planning strategy.

As mentioned before VAF-GRID is a simple and reactive approach, which pur-

pose is to guide the operator forward in a direction parallel to the line connecting

starting and goal position. The grid structure generation and analysis is based

only on a local exploration of the available space: the minimum effort direction

never leads to an immediate collision, but there is no certainty that the objective

will eventually be reached by following it. Consequently, grid-based obstacle

avoidance treat dead ends like the rest of the environment. The user is guided

forward until the frontal obstacle is detected, and then, since it is not possible

to proceed forward, the user will be redirected backwards. The global path

planning task is left to the operator, he/she must drive the end-effector back

and try other paths. However, these experiment demonstrate that this process

confuses the human and, in general, increases the number of collisions. On the

other hand, VAF-RRT is based on the analysis of a tree structure, hence it is
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always possible to proceed towards the objective independently of the current

position. The limitation of VAF-GRID is automatically overcome, since the tree

branches are always pointing out of dead-ends by construction. The statistics

show that when RRT-based obstacle avoidance is in use, the average number

of collision is brought to zero and the variance between different users is reduced.

Figure 5.15: Statistics of the human energy consumed in the second experiment.
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The observations on the number of collisions are confirmed when the energy

required to complete the task is taken into consideration, as it can be seen in fig-

ure 5.15.

The first map represent a very simple scenario, in fact, there is no significant dif-

ference in energy consumption between the three manual guidance strategies. In

the second map, the benefits of the proposed approaches are underlined by a 20%

and 40% energy decrease, respectively for VAF-GRID and VAF-RRT, compared

to IAF. As expected, the third map results show that VAF-GRID is ineffective,

due to the limitations described before: 50% more energy is wasted with this

strategy. VAF-RRT, instead, is proven to be effective even in this complex sce-

nario, as demonstrated by the 70% reduction in total energy consumed.

In figure 5.16 the average distance from the end effector to the closest obstacle

is reported on a normalized time scale, along with its 25th and 75th percentiles.

From this representation it is possible to notice the positive effects of the navi-

gation assistance on the trajectory described by the user. When IAF is adopted,

the operator tends to travel closer to the obstacles with respect to VAF-GRID and

VAF-RRT case. In fact, this behavior is observable in all three maps of the second

experiment. While the two variable admittance techniques try to guide the user

away from the obstacles, on a safer trajectory, IAF does not provide any feedback,

hence there are instants when the end-effector come too close to an obstacle, fol-

lowed by instants when it drifts away from them more than necessary.

Moreover, the variance of the distance is lower in VAF-GRID and VAF-RRT cases

with respect to the IAF case: this is due to the fact that the passive feedback pro-

vided by the two variable admittance approaches constrain the operators on a

smoother trajectory, that minimizes the risk of collisions.
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Figure 5.16: Graph representation of the average distance from the closest ob-

stacle (continuous line) in a normalized time scale, with its 25th and 75th per-

centiles (dashed lines).
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Concluded this set of experiments, a second survey is proposed to the vol-

unteers. They are asked to grade (from 1 to 10) their collaborative experience

during the manual guidance operation, the impact of the feedback on the task

execution and their confidence in having reached the goal without collisions.

Figure 5.17: Questionnaire statistics about the second experiment.

The statistics of their answers, depicted in figure 5.17, are in line with the

consideration reported in this section. As expected, IAF fails to solve the naviga-

tion problem in an unknown environment. It is hard for the users to find a safe

path towards the goal position: to do so they have to proceed blindly, colliding

with the invisible obstacles until, by trial and error, they reach the objective.
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Furthermore, Q1 and Q2 highlight the fact that, despite providing some form as-

sistance in avoiding impacts, VAF-GRID is not able to satisfy the operators due

to its strong limitations. Eventually, it is possible to conclude that VAF-RRT pro-

vides a valuable haptic feedback to the operator during the interaction, allowing

him/her to reach the target position quickly, even in case he/she is not aware of

the surrounding obstacles.

5.5 Third experiment

In this set of experiments the volunteer is asked to reach an unknown goal po-

sition inside an unknown complex workspace. As a result, his/her guidance is

entirely based on the feedback provided by the robot. A set of three possible lay-

outs is proposed to the operator: each of them contain multiple obstacles creating

elaborated patterns. The three unknown maps are depicted in figure 5.18. Due

to the high complexity level, only tree-based manual guidance (VAF-RRT), is

applied to solve these navigation problems. In fact, both IAF and VAF-GRID ap-

proaches would fail. Indeed, IAF is equivalent to walking blindly in the environ-

ment, while VAF-GRID is discarded because of its multiple limitations demon-

strated in the first and second experiments.

The objective of this third set of experiments is twofold: the main purpose is

to show the full capabilities of VAF-RRT as an effective obstacle avoidance ap-

proach for manual guidance also in highly structured and complex scenarios,

while the secondary goal is to compare the effects of different levels of autonomy

allowed to the user. This variation is obtained by modifying the neighborhood

radius rn, including different amounts of nodes in the search for the optimal di-

rection (see Chapter 4).
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Figure 5.18: The three maps for the third experiment, with increasing level of

complexity.
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The volunteer has to repeat the experiment two times for each of the three

maps, with two different variants of tree-based manual guidance:

1. RRT-based Variable Admittance Filter (VAF-RRT): this is the same algo-

rithm used in the other two sets of experiments, and it has a search radius

rn = ∞. All the nodes belonging to the tree structure are included in the

selection of the minimum effort direction. In this case user autonomy is

maximized because of the higher probability of finding an available node

aligned with the direction of the input force.

2. Optimal RRT-based Variable Admittance Filter (OPT-RRT): this version

acts with a reduced search radius rn = 3
2dstep. Only the nodes close to the

end-effector position are included in the selection of the optimal direction

to follow and the chances that one of them is aligned with the input force

are low. Consequently, the probability of redirecting the user along an op-

timal trajectory, ignoring his/her intentions, is high.

The two variants are compared in therms of execution time, required energy and

number of collisions to determine if the quality of the human-machine collabora-

tion is influenced by the user autonomy. Afterwards, a third survey is proposed

to the volunteers, regarding the following five topics:

• Q1: The ease in perceiving the correct direction to follow.

• Q2: The impact of practice on the perception of the feedback.

• Q3: The ease in perceiving that the target has been reached.

• Q4: The confidence in final positioning accuracy.

• Q5: The confidence in having completed the task without any collision.
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5.5.1 Outcomes

Concerning the analysis of the required energy, path length, execution time, number

of collisions and positioning error, no relevant differences between VAF-RRT and

OPT-RRT were observed. For this reason, only the results obtained by adopt-

ing VAF-RRT are presented in this section. The results show that a high final

positioning precision and a low number of collisions are achievable with VAF-

RRT, even if the volunteers had to rely only on their tactile perception in order

to complete the tasks.

Figure 5.19: Statistics of the number of collisions occurred during the execution

of the third experiment, navigating in three complex scenarios.

Figure 5.19 reports the number of collisions occurred in each of the three com-

plex scenarios. No collision occurred in the first scenario for all the volunteers.

In the second map the user is required to guide the end-effector in a narrow cor-

ridor, following a zig-zag pattern. The graph shows that, although in some cases

a limited number of collision took place, on average VAF-RRT is able to prevent

them all. The third map presents a positioning challenge: the volunteer has to

avoid a wall and then reach the unloading position which is located inside a C-
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shaped obstacle, as represented in figure 5.18. Even in this third scenario, the

analysis of the results indicates that, on average, only 0.5 collision happen under

VAF-RRT assistance.

Furthermore, accuracy on the final positioning must be examined to verify that

RRT-based manual guidance is effective in reaching the unknown goal.

Figure 5.20: Statistics of the final positioning error with respect to an unknown

goal, subdivided for the three complex maps.

In figure 5.20 the positioning error performances are shown. Even though the

user has to navigate inside a unknown complex environment to reach an invisible

destination, the variable haptic feedback provided by VAF-RRT allows him/her

to position the end-effector at an average of 2 cm from the real objective. More-

over, the variance of these results highlight the fact that, even in the worst case

scenario, the operator reached a final position within 10 cm from the target.

After this last set of experiments, the volunteers completed a third survey,

where they were asked to compare the high autonomy technique, VAF-RRT, to

the second more restrictive approach, OPT-RRT.
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Figure 5.21: Questionnaire statistics about the third experiment, comparing the

RRT-based approach with two different levels of autonomy.
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From the analysis of the operator responses, the results depicted in figure

5.21 are obtained. The user, in general, perceives the two approaches in a similar

way. However, upon closer inspection, Q1 and Q3 highlight that with VAF-RRT,

which adopts a higher level of autonomy, both directional perception and target

realization are enhanced. Additionally, Q2 reveals that the volunteers perceived

improvements in their sensibility while executing the three sets of experiments:

they realized that, with additional practice, they would obtain better results in

final positioning and task execution time.

The outcomes of the third set of experiments confirm the results obtained in the

other two. VAF-RRT is a valid control strategy that allows to reach a specific

point inside the workspace with high accuracy. Despite working only as a passive

feedback, it is able to guide the operator along complex trajectories, overcoming

multiple invisible obstacles. It allows to reduce the physical effort required to

complete the task and minimize the total number of collisions.
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Conclusions

In this thesis, a new variable admittance control strategy for manual guidance

operations in a cluttered workspace is proposed. A recent result in this field is

the goal-driven variable admittance control, reported in [19]: it presents a new

geometrical interpretation of the admittance filter, which is able to provide a di-

rectional feedback to the user and lead him/her towards an unknown objective.

However, it is limited by the assumption that the movement happens in a com-

pletely free environment.

The main contribution of this work is an improved version of that technique,

which is capable of guiding the human along complex trajectories towards the

objective position, minimizing collisions with the obstacles that are present in-

side the workspace, even if the operator field of view is obstructed by the bulky

size of the transported cargo.

The developed algorithm can be partitioned into two macro-phases. In the first

phase, which is executed offline, the workspace map is analyzed to create an envi-

ronment exploring structure, constituted by a set of organized samples describing

the available space. In the second phase, instead, the position of the end-effector

is compared to such structure in order to determine an optimal direction to fol-

low, where the resistance perceived by the human will be minimized. In this

case, also the user intention of motion is taken into consideration. Hence, a mu-

tual adaptation between the human and the robot is established, and unnecessary

movement restrictions that may increase the user fatigue are avoided.
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In this work, two types of environment exploring structure are developed. The first

one is based on a multiple layer grid. It enacts a reactive approach to obstacle

avoidance: the trajectories are only locally optimized in order to avoid nearby

obstacles. The second proposed structure, instead, is inspired by the Rapidly ex-

ploring Random Tree algorithm, a classical path generation procedure commonly

used in robotics. Not only it allows to avoid collisions, but it is also able to sug-

gest to the user an optimized feasible path in a proactive and farsighted way.

Once an optimal direction to follow has been determined, the admittance coeffi-

cients are modulated according to the principles of GDVAC [19]. The damping

coefficient for the filter is evaluated as the distance from the end-effector posi-

tion to the intersection point between the direction of the force applied by the

user and the associated damping shape, centered in the end-effector position and

oriented according to the optimal direction. The mass coefficient is selected as a

scaled version of the damping value, so that the bandwidth of the filter is kept

constant and the interaction results more intuitive. The operator perceives less

effort if the force applied on the end-effector is aligned to the optimal direction,

and a gradually increasing fatigue the more it is misaligned. Moreover, the shape

is opportunely modified in order to enhance the difference between the correct

direction to follow and the ones that would lead to collisions.

The effectiveness of the proposed control strategies is evaluated through three

sets of experiments on a Comau Smart Six manipulator, involving 14 volun-

teers. Grid-based manual guidance (VAF-GRID) and RRT-based manual guid-

ance (VAF-RRT) are compared to an invariable admittance filter (IAF) in terms

of execution time, required human energy, path length, number of collisions and

final positioning error.

The experimental results showed that, when applied to simple scenarios, both

VAF-GRID and VAF-RRT are able to reduce the operator effort and improve the

final positioning precision with respect to IAF. However, in more complex work-

ing environments, the limitations of VAF-GRID emerges, preventing an intuitive

and effective interaction with the human. On the other hand, VAF-RRT is able to

guide the operator on an optimized path, minimizing the impacts and lowering
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human fatigue by up to a 70% factor. In fact, the outcomes successfully validate

VAF-RRT as a solution for complex navigation tasks. The operators are able to

reach an invisible target in an unknown cluttered environment with high accu-

racy, with a maximum final error of 10 cm and an average one under 2 cm. The

collisions against invisible obstacles are minimized, with an average number of

impacts close to zero in all the proposed maps and no collisions registered in 70%

of the experiments.

6.1 Future developments

RRT-based variable admittance control has been proven a successful approach

to help the human operator in the execution of manual guidance tasks, both in

a completely visible setup and in an invisible workspace. For this reason, some

ideas describing possible future developments are provided in the following:

• As described in chapter 3, extending the developed algorithms to the third

dimension is not a hard task. Nevertheless, it would be interesting to

study the performance of the RRT-based approach in a three-dimensional

workspace, where the obstacles can be also passed over. Not only the

end-effector but also the manipulator arm should be considered for the

collision avoidance. Moreover, the proposed solutions were developed for

a six degree of freedom manipulator, but if a redundant robot were to be

used, then it is possible to exploit the extended Jacobian method to control

the entire robot configuration.

• Only translational admittance control is analyzed in this thesis and imple-

mented in the experiments. The end-effector is free to move in any Carte-

sian direction, but the handle is always constrained in a vertical orientation.

Additionally, the transported object is represented as a particle without di-

mensions, placed exactly in the hand of the manipulator. An interesting de-

velopment would be to simulate the transportation of a rigid body. In this

case, the different orientations of the end-effector would definitely have an
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impact on the path planning. A target orientation could be imposed and

then achieved through rotational admittance control methods.

• In this work, the proposed algorithms solve the problem of reaching a

unique goal position by navigating inside an unknown workspace. A possi-

ble improvement, however, could be to consider more than one destination:

a set of work stations evenly distributed inside the environment can be

specified, that the operator has to reach in a specific order or at random. A

possible solution would be to develop new environment exploring structures,

that include multiple objectives. These structures can then be used, in

combination with the estimated user intention of motion, in order to detect

which objective the human wants to reach and help him/her reaching it.

• Another interesting hint could be to introduce a vision system or a Lidar

scanner to map the environment in real time. In fact, a known and static

workspace layout is assumed in this work. However, in a realistic work cell,

the environment changes in time. New obstacle avoidance strategies can be

developed in order to redirect the operator in real time, guiding the user

to the target position and modifying the optimal path in order to avoid any

unforeseen or moving obstacle.
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