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1. Introduction

Over 1 billion people worldwide lack access to
water and a total of 2.7 billion experience wa-
ter scarcity for at least one month of the year.
Many of the water systems that keep ecosys-
tems thriving and feed a growing human pop-
ulation have become stressed. Rivers, lakes,
and aquifers are drying up or becoming too pol-
luted to use, especially in the urban environ-
ment. Climate change is altering patterns of
weather and water around the world, causing
shortages and droughts in some areas and floods
in others. The extent of human water require-
ments is increasing rapidly at the global scale
and it is crucial to analyze the possible imbal-
ance between water demands and supply under
various scenarios of climate change and across
various temporal and spatial scales. Due to their
high population density and water-intensive ac-
tivities, urban areas frequently use the most wa-
ter and are susceptible to water stress. Water
shortage is a problem in many regions as a re-
sult of the continued urbanization and growth of
the world’s population (Lambin and Meyfroidt,
2011). As a result, in recent years, the em-

phasis on managing urban water resources has
switched from just creating infrastructure to ac-
commodate urban growth to implementing more
sustainable and all-encompassing water demand
management (Diaz et al., 2016; Brown et al.,
2009). Knowledge of when, where, and how
people use water is essential to model water de-
mands and inform demand management strate-
gies. However, lack of data on residential water
consumption at the household level often limits
our knowledge on past and current water de-
mands with high spatial and temporal resolu-
tion. A primary source of difficulties is the ab-
sence of water consumption monitoring infras-
tructure (i.e., water meters) which, when avail-
able, consists of analog sensors that do not au-
tomatically log and transmit data on water con-
sumption. The absence of standardization in
data collection and reporting is another source of
issues. In many countries, data gathering on res-
idential water consumption is sporadic and in-
consistent, preventing comparison across regions
or time periods. Furthermore, water consump-
tion data are often stored by water utilities, but
are hardly accessible for research purposes,
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sumption estimation.

when available. Without reliable data, it is dif-
ficult to identify the most significant drivers of
water consumption and evaluate the effective-
ness of different water-efficient technologies and
water conservation practices. In this context,
the thesis project consists in estimating the res-
idential daily water consumption relying exclu-
sively on publicly available data and machine
learning techniques.

2. Methodology

The methodology implemented (Figure 1) in this
study involves the use of separate models for
processing Google Street View (GSV) images,
socio-demographic features, and open building
data based on specific building addresses. These
models generate distinct sets of features, which
are combined and considered as inputs to a
machine learning (ML) model for estimating
the daily water consumption of each building.
Firstly, GSV images of building addresses (1
steps in Figure 1) are filtered using a Convo-
lutional Neural Network (CNN) to extract only
the ones showing buildings with clearly identifi-
able facades (steps 5, 6). Thus, the height of the
building is estimated through a regression CNN
applied to the building image (step 7). The rel-
ative area is retrieved from the public shapefile
(step 3), as it will be explained in Section 3. Ad-
ditionally, publicly available socio-demographic
data, such as the population density of the dis-
trict where the buildings are located, represent
the last feature branch fed in the final model
(step 2). Different machine learning algorithms
are evaluated to predict the daily water con-
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sumption of residential buildings and their per-
formance is compared (step 8). However, the
target variable was also discretized into differ-
ent consumption levels, leading to a change in
the problem type from regression to classifica-
tion.

2.1. GSV images acquisition and se-
lection

Starting from a specific building address, the
GSV image is extracted through the relative
API. Since some street view images are unsuit-
able, i.e., buildings are blurred, or an image only
shows streets or vegetation, a CNN classifica-
tion is applied to select relevant images, i.e.,
those that show clearly identifiable buildings.
Each available GSV image can be requested in a
HTTP URL form using the GSV Image API. By
defining URL parameters sent through a stan-
dard HTTP request using the GSV Image API,
users can get a static image in any direction and
at any angle for any point where GSV is avail-
able. After the image acquisition, a pretrained
CNN was used to filter the GSV images; the ob-
jective is to remove invalid images such as the
interior of buildings and those in which facades
had been obscured by large vehicles (e.g., buses)
or greenery. The CNN used is called Places365-
VGG16 and it is a CNN pretrained on a sub-
set of Place dataset a quasi-exhaustive repos-
itory of 10 million scene photographs, labeled
with 434 scene semantic categories (Zhou et al.,
2017). The CNN was applied to the GSV raw
images and the list of all detected scenes were re-
ported with the relative probability. After sort-



ing the detected classes according to the prob-
ability given the GSV image, if none from the
top 5 most probable predicted classes belong to
the building list exceeding a specified threshold
probability, the image is filtered out. Figure 2
and 3 show respectively an example of an invalid
and valid image.
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Figure 2: Places365-VGG16 predictions on GSV
invalid image.
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Figure 3: Places365-VGG16 predictions on GSV
valid image.

2.2. Convolutional Neural Network
for building height estimation

Once the valid building’s GSV images are ex-
tracted, the building height associated with
them was considered as a target to train a new
Convolutional Neural Network. To reach the
best height estimation, different kinds of archi-
tectures, input preprocess functions and training
procedures were taken into consideration. The
dataset contains about 4245 images. It was split
into a training set of 2717 samples, a validation
set of 679 samples and a test set of 849 samples.

2.2.1.

As a baseline CNN, a handcrafted Convolutional
Neural Network architecture was designed for
image regression tasks. The architecture con-
sists of several convolutional layers, each fol-
lowed by a max pooling layer. The used convolu-
tional layers contain in sequence 16, 32, 64, 128
and 256 filters, 3x3 kernel size, ReLLU activation,

Baseline model

and the same padding. The max pooling layers
following them have 2x2 pool size. The last con-
volutional layer is followed by a flattening layer
that converts the output into a 1-dimensional
vector, which is then passed through two fully
connected layers with dropout (Srivastava et al.,
2014) regularization, and finally to an output
layer with a single output unit and linear acti-
vation. The architecture is shown in Figure 4.

@ InputLayer . Conv2D . MaxPooling2D . Flatten . Dropout @ Dense

Figure 4: Baseline CNN architecture.

After an initial standard training, in the suc-
cessive steps, some improvements were actuated
to increase the performance both on the archi-
tecture and on the input data. In addition to
considering simple rescaled images as input, also
data augmentation (Perez and Wang, 2017) was
applied to the training dataset. It is a tech-
nique to modify image characteristics by apply-
ing flips, rotation (at 90 degrees and finer an-
gles), translation, scaling, noise addition, etc.
By generating new images with different vari-
ations, the CNN is exposed to more diverse ex-
amples, which can help to improve its robustness
to generalize to new, unseen images.

In addition, since the baseline architecture was
designed manually and arbitrarily, KerasTuner
has been leveraged to tune at least the most im-
portant parameters that compose the structure.
It is an open-source hyperparameter tuning li-
brary for Keras that automates the process of
hyperparameter tuning and architecture search
by searching over a defined search space of hy-
perparameters using several search methods, the
one chosen for the project is the hyperband one
(Li et al., 2016).



2.2.2. Pretrained models:
ResNet50 and
VGG16

One of the major challenges in developing effec-
tive CNN is the requirement for a large amount
of data to enable the model to recognize under-
lying patterns and long-term trends. To over-
come this issue and improve performance, trans-
fer learning has been employed. This technique
involves storing the knowledge gained from a
specific task in a model that can be repur-
posed for a different but related task. There-
fore, some models already pretrained on Ima-
geNet were chosen: VGG16 (Simonyan and Zis-
serman, 2014) and ResNet50 (He et al., 2015).
The original classification objective of the Im-
ageNet CNNs was to classify images from the
ImageNet dataset into one of 1,000 object cat-
egories. In addition to ImageNet, the Places
dataset (Zhou et al., 2017) and its related model
trained on it that has been used for the GSV
image classification (Places365-VGG16) is also
used for transfer learning: the CNN was used
to recognize different scenes, including the char-
acteristics of the buildings framed, and it can
certainly be influential in the new task of es-
timating building heights. The workflow was to
take these successfully pretrained CNNs, remove
and design the new final fully-connected layers
to match the new problem, freeze the weights
of the previous layers and train the added lay-
ers in the new network using the training data.
Since the target is the height, the CNN problem
is a regression one; in that case, the old final
layers used for the classification were removed
for each CNN (ResNet50, VGG16, Places365-
VGG16) and the introduced final architecture is
designed to have as output layer only one neu-
ron with a linear activation function to match
the new regression task.

In transfer learning, the pretrained model is used
as a feature extractor, where the features learned
by the pretrained model are fed into a new classi-
fier to make predictions on a new dataset. Typ-
ically, the pretrained model is kept unchanged
during this process, except for possibly the final
layer which is replaced with a new layer tailored
to the new task. In contrast, fine tuning involves
training not only the final layer but also some
of the earlier layers of the pretrained model on
the new dataset. It has been taken into con-

VGG16,
Places365-

sideration since transfer learning is a good op-
tion when the new task is similar to the task
the pretrained model was trained on (ImageNet
or Places), while fine-tuning can provide better
performance in the case that the new task (esti-
mating building height) is more from the origi-
nal task. The results of VGG16, ResNet50 and
Places365-VGG16 will be analyzed both using
transfer learning and fine tuning technique. The
optimization loss used during the CNNs training
is the Mean Squared Error (MSE):

1 N
MSE(y,9) =+ D (wi—d) (1)

while the performance metric is the Mean Abso-
lute Error (MAE):

N
] 1 .
MAE(y,9) ZNZ!yi—yi\ (2)
=1

where y represents the real target and g the es-
timation.

2.3. Machine learning models for wa-
ter consumption estimation

Once the height of the building is estimated, the
area and socio-demographic information associ-
ated with the neighborhood where the building
is located is normally publicly available. The
socio-demographic data can be divided into two
categories: data on the number of residents di-
vided by age and gender and data regarding the
size of families occupying the residential build-
ings in the urban neighborhood. Water con-
sumption may be related to many potential fac-
tors (determinants) with nonlinear relationships,
mostly unknown. The goal is to be able to dis-
cover and express and understand this nonlin-
earity using a machine learning model while re-
lying only on relevant input features. The target
of the model is to estimate the average daily wa-
ter consumption of a residential building (known
via water meter reading data from utilities) us-
ing only public information sources. The dataset
consists of 1699 samples, 80% of which will be
used as the training set and the remaining por-
tion as the test set. Several regression methods
were considered: Linear Regression, Polynomial
Regression, K-Nearest Neighbors, Random For-
est and Extreme Gradient Boost. Before involv-
ing all the features, a baseline model was eval-



uated having as input only the area and height
of the building while the target is daily water
consumption. The goal is to have a basic model
to understand how much building characteristics
were influential in estimating water consump-
tion and how estimation changes when inserting
socio-demographic information. For evaluating
the regression machine learning algorithms, R-
squared (R?) and MAE were calculated. The
formula for R? is:

, RSS
R =1- T35 (3)
N
RSS = (yi — 4i)° (4)
=1
N
TSS =) (yi—7)° (5)
=1

where the residual sum of squares (RSS) repre-
sents the squared difference the sum of the differ-
ences between the predicted ¢ and actual values
y of the dependent variable. The total sum of
squares (TSS) calculates the sum of the squared
differences between the actual values and the
mean value of the dependent variable. Apart
from considering the water consumption estima-
tion as a regression problem, the target was also
discretized identifying three levels of building
water usage as "low", "medium", or "high" wa-
ter use: the division of the classes took place via
percentiles. The 33rd percentile which defines
the upper limit for the "low" water consumption
set assumes a value of 4.19 m? while the 66th
percentile that is the lower bound for the "high"
water usage set is equal to 10.46 m3. The water
usage within those two limits identifies residen-
tial buildings belonging to the "medium" set.
The ML techniques for classification evaluated
the KNN, Decision Tree, Random Forest, Gaus-
sian Naive Bayes, Logistic Regressor, Ada Boost
and FEztremely Randomized Tree. The bagging
technique was combined with the KNN and De-
cision Tree as base models to increase the perfor-
mances. The metrics used to evaluate the per-
formance of the classification models in this the-
sis are accuracy, precision, recall, and F1 score.
These metrics are calculated using the following
formulas:

TP+TN (6)
TP+TN+ FP+FN

Accuracy =

TP

Precision = TP FP (7)
TP
Recall = m (8)

Fl— 94 Precision * Recall ()

Precision + Recall

where TP is the number of true positives, TN is
the number of true negatives, FP is the num-
ber of false positives, and FN is the number
of false negatives. Before training the regres-
sion and classification models, outliers are iden-
tified thanks to three different methods: local
outlier factor (Breunig et al., 2000), isolation
forest (Liu et al., 2008), and interquartile range.
All three methods will be applied separately, and
the one that yields the best result will be cho-
sen. The same type of analysis was performed
on the scaling methods. Standard scaler, ro-
bust scaler, and minmaz were applied individ-
ually to the data, and only the best one will
be taken into consideration. Additionally, to
have a more robust performance analysis of the
models on the chosen metric and select the best
ML algorithms hyperparameters, nested cross-
validation was applied. Nested cross-validation
is a technique commonly used in machine learn-
ing to evaluate the performance of a model and
to select its hyperparameters. It involves per-
forming an outer loop of k-fold cross-validation
to estimate the generalization performance of
the model, and an inner loop of k-fold cross-
validation to tune the hyperparameters of the
model.

3. Data

In this research, data from mainly 3 sources are
used: (i) time series water consumption dataset
for more than 1500 buildings in the city of Mi-
lan (Italy), (ii) a shapefile containing informa-
tion on building location and features, and (iii)
open datasets of socio-demographic features at
district level. The water consumption time se-
ries are used as targets for the ML models, while
the shapefile is used to extract the building’s
height used as a target for the CNN and the
area that will be considered as a direct input
with the socio-demographic features to the final
model. The time series water consumption is
data shared confidentially by the water utility



while the shapefile and socio-demographic fea-
tures are open and constitute all needed for the
model input.

3.1. Water consumption time series

The water consumption data are provided by
MM Spa. MM Spa is a company created by the
City of Milan in 1955 to design and build the
first underground lines. The water consumption
time series used in this study starts on 01-01-
2019 and end on 08-03-2020 and are collected
from a specific PDR (Punto di Riconsegna). The
PDR is a numerical code that uniquely identi-
fies the location of individual water use. The
displayed value represents the water consump-
tion of a building associated with the PDR in a
single day. For each building and corresponding
PDR, there are an associated address and civic
number, a flag indicating whether the structure
is residential or not, the NIL code and NIL name
where the structure is located, and finally its lat-
itude and longitude. A preprocessing phase was
necessary to manage missing and outliers values.
Figure 5 represents an example of the raw time
series that will be preprocessed and then used
for calculating the average daily water consump-
tion.

Water consumption time series
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Figure 5: Examples of two water consumption
time series associated to two different PDRs.

3.2. Building shapefile

A shapefile is a popular geospatial vector data
format for storing and sharing geographical
data. A city shapefile contains geographic in-
formation on the boundaries and features of a
particular city, typically represented as a collec-
tion of interconnected points, lines and polygons.
In the official Milan geoportal website (Milan-
Geoportal, 2012), it is possible to find, as public

data, shapefiles related to streets, buildings, wa-
terways, greenery, and other features that make
up the urban landscape of a city, providing valu-
able information for researchers studying various
aspects of city life and infrastructure. The one
related to the residential buildings is analysed
for its information regarding the building’s area
and height. The aim was to map the building
addresses in the water consumption dataset into
the shapefile to associate the area of the building
with its corresponding daily water usage. The
height extracted and building GSV image will
be part of the dataset for the dedicated CNN.
The point distribution of building addresses in
the water consumption dataset is shown in Fig-
ure 6.
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Figure 6: Red points represent the addresses as-
sociated with the water time series available in
the dataset. The blue polygons describe the Mi-
lan building footprints.

3.3. Socio-demographic information

The geoportal of the Milan municipality
contains various information on the socio-
demographic characteristics of its inhabitants.
The goal is to include useful features for the ML
model. Due to privacy concerns, the surveys are
at NIL level.

According to Milan Government Plan of the
Territory (PGT: Piano di Governo del Territo-
rio), Milan city area is divided into 88 NILs.
NIL stands for "Nuclei di Identificazione Lo-
cale" which translates to "Local Identification
Nuclei": they are administrative subdivisions



Test Set Validation Set
Model MAE [m] MSE [m?] MAE [m] MSE [m?]
Baseline CNN 4.09 28.84 4.08 27.19
VGG16 4.18 30.49 4.11 28.02
ResNet50 4.05 27.70 3.87 25.70
Places365-VGG16 | 4.20 30.74 4.15 28.44

Table 1: CNNs building height estimation performances.

that are used for a variety of purposes such as
census data collection, urban planning, and pub-
lic services. For each NIL, both the population
amount and the size of the neighborhood are in-
dicated. Using this information, it is possible
to calculate the population density in that area
of the city. Additionally, the population compo-
sition, i.e., the numbers of males, females, mi-
nors and people over 65 years old are public and
used in the final models developed in this the-
sis. Based on the number of members composing
them, the families are divided into three cate-
gories: (i) single families composed of only 1 per-
son, (ii) multi families composed of 2-4 people,
and (iii) large families with more than 4 people.
For each NIL, the number of these three kinds of
family was also used as socio-demographic fea-
ture for the model.

4. Results

4.1. CNNs performances for building
height estimation

Table 1 shows the best results for each type of
CNN. Regarding the baseline model, the best
performance on the test set was achieved by
training with the parameters selected by Keras-
Tuner. The VGG16 architecture performed bet-
ter using transfer learning technique and thus
utilizing the weights learned from ImageNet as
a basis for a new training for the new task of
predicting building heights. However, the re-
sult was not sufficient to outperform the sim-
pler baseline model with tuned hyperparameters
on the test set: it achieved a MAE of 4.09 m
while the VGG16 achieved 4.18 m. ResNet50,
on the other hand, achieved the best results
on both the test (4.05 m) and validation set
(27.70 m?) through a retraining of all its layers,
which brought the greatest benefits. The final
pretrained Places365-VGG16 did not reach the
same performances as the other CNN architec-

tures, demonstrating that the ImageNet dataset
was more related than Places365 to the final ob-
jective.

The CNNs estimations are slightly imprecise for
a main reason: despite the fact that invalid im-
ages were filtered out by the CNN Places365-
VGG16, there are many GSV images that cap-
ture multiple buildings of different heights, or
they are quite zoomed in and cannot capture
the entire height of the building. Surely this
can be a limitation in the final calculation of the
target. Overall, regardless of the architecture,
results are always very similar and consistent,
suggesting that all models are able to provide
fairly good estimations. The mean MAE value
on the test set is about 4m and so an uncertainty
a little bit higher than 1 floor.

Figure 7 shows two GSV images fed in input to
the ResNetb0 architecture.

uEst\mated height: 19.04m - [True: 18.97m] uEstimated height: 24.81m - [True: 25.20m]

Figure 7: ResNet50 buildings height prediction
on GSV images. On the left of the image ti-
tle, it is reported the height estimated by the
RseNet50 model while on the right it is showed
the true height.

All the GSV images are passed through a spe-
cific preprocess function before being fed into
the ResNetb0 CNN. That function will convert
the input images from RGB to BGR, then will
zero-center each color channel with respect to
the ImageNet dataset, without scaling. For that
reason the image color is different from the orig-
inal one.



4.2. ML performances for daily water
consumption estimation

The baseline ML model has only two features,
i.e., building height (m) and area (m?), while
the target variable is the daily water consump-
tion (m?). The performances shown in Table 2
suggest that polynomial regression achieves the
best performance. Yet, all baseline models do
not provide very accurate estimations of daily
water consumption in regression mode. We can
explain this as due to the following reasons: first
of all, trying to predict the water consumption of
a building considering only its physical charac-
teristics might be limited. Water usage is closely
related to human behavior and for this reason,
it is complex to calculate it even knowing the
smallest details.

Test Set
Model MAE [m3?] R2
Linear Regression 5.08 0.32
Polynomial Regression | 4.90 0.38
KNN 4.78 0.34
Random Forest 5.09 0.29
XGBoost 4.70 0.32

Table 2: Baseline models performances

Apart from considering the building shape in-
formation about area and height, the final
ML models are built considering also socio-
demographic features at NIL level in the input
set. Looking at Table 3, the introduction of new
features improves the overall performance of the
models, with decision tree-based algorithms be-
ing the ones that benefited the most.

Test Set
Model MAE [m3] R2
Linear Regression 4.66 0.28
Polynomial Regression | 4.70 0.25
KNN 4.68 0.27
Random Forest 4.49 0.39
XGBoost 4.19 0.38

Table 3: Final models performances

On the other hand, KNN did not improve due
to the curse of dimensionality: it refers to the
phenomenon where the performance of the K-
nearest neighbors (KNN) algorithm deteriorates
rapidly as the number of features or dimensions

in the data increases. The improvement due to
the new features is not so crucial, but it demon-
strates that by integrating demographic and so-
cial information, a better result can be achieved
and so it assesses that kind of information is in-
fluential in water consumption estimation. The
hypothesis is confirmed looking a the Figure 8
that describe the feature importance analysis
performed on the ML algorithms based on tree
structure: Random Forest and XBGoost. XG-
Boost algorithm seems to balance the relevance
of each feature even if there is still a certain dif-
ference between the height and area from the
other ones. It should be noticed that the im-
portance coefficient of building characteristics is
small and it is not so far from the values of the
socio-demographic factors differently from the
Random Forest case.
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Figure 8: Features importance for the Random
Forest and XGBoost algorithms.

The daily water consumption was discretized
into three intervals representing low, interme-
diate or high water consumption for that par-
ticular building: the division of the classes took
place via percentiles as explained in the method-
ology Section 2. Figure 9 shows the accuracy
calculated on the test set. Based on the re-
sults, the Bagging(Tree) algorithm achieved the
highest accuracy on the test set, followed closely
by KNN and Bagging(KNN). Random Forest
also achieved decent performance, but the Ex-
tremely Randomized Trees and Ada Boost algo-
rithms did not perform equally well. The Bag-
ging(Tree) model has the highest F1 score of
0.651, followed closely by Bagging(KNN) and



KNN with F1 scores of 0.647 and 0.639, respec-
tively.
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Figure 9: Comparison of models accuracy.

4.3. Water consumption approximate
formula: a comparison

In order to see if the effort spent in developing
and implementing deep learning and ML tech-
niques was justified in terms of improved ac-
curacy, the performances of the previously de-
scribed models are compared to the most ba-
sic water consumption estimation formula based
on approximation regarding the area, number of
stories, population per square meter and water
consumption per capita per day. ISTAT (Ital-
ian National Institute of Statistics) is the main
statistical institute in Italy. It is responsible
for collecting, processing, and disseminating of-
ficial statistics on the Italian economy, society,
and environment. The most recent data on wa-
ter consumption in Italy published by Istat is
for the year 2020, which shows that the aver-
age daily water consumption per capita in Italy
was 236 liters (ISTAT, 2022). However, as al-
ready explained, this is just an average and the
actual water consumption can vary depending
on a range of factors, including the region, the
time of year, and the type of building but for an
approximative comparative formula is enough.
The basic formula we consider is expressed as a
multiplication of several factors:

b_dwc = per capita _dwcx*b_areax
b_stories« NIL pop density (10)

The final outcome of the formula (b _ dwc)
represents the building daily water consump-
tion expressed in liter per day. b area
and b _stories are the dimensional features of
the building expressed respectively in m? and

unit. per capita dwc is the daily water us-
age per single person estimate by ISTAT while
NIL pop density determines the number of
people per square meters for each single NIL.
Since the building daily water consumption es-
timated by the ML models is expressed in m3,
the formula outcome is converted from liters to
the target unit measure by dividing it by 1000.
With all the information at our disposal, the cal-
culation of the average water consumption was
applied to the entire dataset of 1699 samples.
Obviously, since it is a simple formula, it does
not require a training procedure but is simply
applied to each row of the dataframe. The es-
timated final quantity variable was eventually
discretized into three fundamental classes ac-
cording to the limits previously discussed. To
make the comparison between the approximate
formula and the best classification algorithm dis-
covered (bagging with Decision Tree) more reli-
able, the portion of the dataset used as the test
set in the algorithm training will be used for
evaluation. It contains 337 samples.

The results show (Table 4) that the bagging
tree model has higher accuracy, precision, re-
call, and F1 score compared to the approximate
model. This indicates that the machine learning
approach is providing better results than the ap-
proximate approach. The difference in accuracy
between the two models is quite significant. Sim-
ilarly, the difference in precision is 0.135, recall
is 0.157, and F1 score is 0.213.

Bagging Formula
(Tree)
Accuracy | 0.641 0.484
Precision | 0.644 0.509
Recall 0.641 0.484
F1 0.642 0.429

Table 4: Comparison between best ML classifier
developed and approximate formula.

These differences are meaningful and suggest
that the bagging tree model is able to provide
more accurate and precise predictions than the
approximate model.



5. Conclusion and future re-
search

This thesis contributed a data-driven machine
learning framework to predicting water con-
sumption using publicly available data. Differ-
ent machine learning methods were compara-
tively assessed to evaluate their suitability to
predict building-level water consumption. While
the regression and even more classification al-
gorithms achieved decent performances explain-
ing the weight of each feature in the final pre-
diction, our results also suggest that there is
room for improvement of those algorithms that
did not perform as well. Future research could
focus on identifying ways to optimize these al-
gorithms or developing new methods that can
outperform the current state of the art regard-
ing both the ML and deep learning fields. The
analysis presented in this thesis demonstrates
the value of using machine learning and deep
learning techniques for water consumption pre-
diction and highlights the potential of publicly
available data sources for this type of study.
The CNN that takes as input GSV images al-
lows the extraction of the height dimension of
the building and that technique is quite repro-
ducible considering different locations, provided
that certain conditions exist; the presence of the
GSV images must be ensured, and the buildings
exterior structure of the new targets should be
similar to Milan’s residential buildings as them
represents the training set for the CNN. One
possible improvement could be to expand the
dataset of GSV images to include different types
of buildings and make the model more general-
ized. Regarding the footprint of the structures,
during the development of the project, it was
considered as input data thanks to the Milan
shapefile. But for future improvement, satel-
lite images could be used to extract the area
of interest since the shapefiles may not be pub-
licly available or may not exist for certain ar-
eas. Even if shapefiles do exist, they may not
have accurate or up-to-date information on the
boundaries of the study area or the locations of
individual buildings within it. In this way, the
data related to the characteristics of the building
would be dependent only to GSV and satellite
images, two kinds of images that could be eas-
ily extracted on internet. As described in the
results chapter, CNNs for building height esti-
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mation showed more satisfactory results than
the final model. To increase the performance
of both models, obtaining higher-quality data
is certainly useful. Public data may not pro-
vide detailed socio-demographic and building di-
mension information and most of them have low
and aggregated spatial resolutions, which can
limit the effectiveness of water consumption esti-
mation. The public socio-demographic features
were collected at NIL level and increasing the
resolution of data can provide more accuracy.
The same type of problem is encountered in the
shapefile used for the physical characteristics of
the buildings: some structures are merged with
others in the same polygon reducing the resolu-
tion of the information.

The comparison evaluated between the devel-
oped final model and the most basic approx-
imate water consumption estimation formula
supports more complex approaches based on ma-
chine learning and data-driven techniques but at
the same time, they can be expensive in terms
of computational resources and development ef-
fort.
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