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Abstract

The use of data science is tending to become more widespread in industry and

production. The present thesis was developed during an intership at EDF, the

leading producer and supplier of electricity in France and Europe, within the

UNIE-GMAP team, which is in charge of organising and optimising the mainte-

nance of nuclear power plants, as well as defining maintenance strategies and

programs. In this context, this work presents four independent data science mis-

sions. The first part concerns a survival analysis of pneumatic valve diaphragms.

The objective of this mission is to carry out the survival analysis on all the mem-

branes of the French nuclear park and then to possibly propose an optimal main-

tenance period for each type of pneumatic valve. The second mission concerns

the control clusters, which are used to reduce the power or completely shut

down a nuclear reactor. Here, the aim is to develop a functional data analysis

tool that automatically examines a control cluster fall time curve, and detects

whether the curve studied is within the norm or not and, if necessary, to carry

out an initial diagnosis based on previously analysed curves. The third mission

again deals with pneumatic valves, and represents a preliminary feasibility study

of a tool to predict in advance an incident or malfunction of a valve by determin-

ing relevant indicators for the detection of such an event. Finally, the fourth and

final mission concerns the rails used to guide the fall of the control clusters into

the reactor, also known as cluster guides. The purpose of the study is, on the ba-

sis of the latest measurements made, to estimate the wear at the time of the next

inspection so as to better quantify the number of cluster guides to be replaced.

In this work, quantile regression forests are used, allowing us to improve the esti-

mation accuracy with respect to the classical regression methods that have been

used until now, and to cope with the very noisy nature of the data.

Key-words: survival analysis, functional data, outlier detection, classification,

quantile regression forest
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Sommario

L’uso della data science tende a diffondersi nell’industria e nella produzione. La

presente tesi è stata sviluppata nel corso di un tirocinio presso EDF, il principale

produttore e fornitore di energia elettrica in Francia e in Europa, all’interno del

team UNIE-GMAP, che si occupa dell’organizzazione e dell’ottimizzazione della

manutenzione delle centrali nucleari, nonché della definizione delle strategie

e dei programmi di manutenzione. In questo contesto, questo lavoro presenta

quattro missioni indipendenti di data science. La prima parte riguarda l’analisi

della sopravvivenza dei diaframmi delle valvole pneumatiche. L’obiettivo di questa

missione è di effettuare l’analisi di sopravvivenza su tutte le membrane del parco

nucleare francese e di proporre eventualmente un periodo di manutenzione

ottimale per ogni tipo di valvola pneumatica. La seconda missione riguarda i

gruppi di controllo, che servono a ridurre la potenza o a spegnere completa-

mente un reattore nucleare. In questo caso, l’obiettivo è quello di sviluppare

uno strumento di analisi funzionale dei dati che esamini automaticamente una

curva del tempo di caduta dei cluster di controllo, e rilevi se la curva studiata è

nella norma o meno e, se necessario, di effettuare una diagnosi iniziale basata

sulle curve analizzate in precedenza. La terza missione si occupa ancora una

volta di valvole pneumatiche, e rappresenta uno studio preliminare di fattibil-

ità di uno strumento per prevedere in anticipo un incidente o un malfunziona-

mento di una valvola, determinando indicatori rilevanti per la rilevazione di un

tale evento. Infine, la quarta e ultima missione riguarda le rotaie utilizzate per

guidare la caduta dei gruppi di controllo nel reattore, note anche come guide dei

gruppi. Lo scopo dello studio è, sulla base delle ultime misurazioni effettuate,

di stimare l’usura al momento della prossima ispezione in modo da quantificare

meglio il numero di guide dei cluster da sostituire. In questo lavoro vengono

utilizzate quantile regression forests, che permettono di migliorare l’accuratezza

della stima rispetto ai metodi di regressione classici finora utilizzati, e di far

fronte alla natura molto rumorosa dei dati.

Parole chiave: analisi di sopravvivenza, dati funzionali, rilevamento di anoma-

lie, classificazione, quantile regression forest
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Chapter 1

Introduction

The use of data science is tending to become more widespread in industry and

production. This is notably the case at EDF, the leading producer and supplier

of electricity in France and Europe in which I did a 6-month internship. I was

attached to the UNIE-GMAP team, which is in charge of organising and optimis-

ing the maintenance of nuclear power plants, as well as defining maintenance

strategies and programs.

Until recently, maintenance-related strategy adjustments and optimisations

were mainly based on feedback, but few large-scale data analysis studies were

carried out for this purpose. To encourage the teams in charge of maintenance

management to use these technologies in their work, project managers have

been appointed in each of the concerned teams. Their aim is to make their col-

leagues aware of data analysis and to encourage them to train in this field.

It is in this context that I was able to carry out four independent data science

missions. The structure of this dissertation is therefore in four parts completely

independent of each other.

First part The first part concerns the survival analysis of pneumatic valve di-

aphragms. A previous study carried out on a reduced perimeter showed that the

current preventive maintenance period could be increased, thus potentially re-

ducing human and material needs. The objective of this mission is to carry out

the survival analysis on all the membranes of the French nuclear park and then

to possibly propose an optimal maintenance period for each type of pneumatic

valve.

Second part The second mission concerns the control clusters, which are used

to reduce the power or completely shut down a nuclear reactor. Until now, the

14



analysis of the free-fall tests carried out on each of these clusters was done man-

ually by an agent. This analysis consists of observing a speed versus time curve

and detecting the presence or absence of anomalies. The objective of this mis-

sion is to develop a tool that automatically analyses a fall time curve, to detect

whether the curve studied is within the norm or not and, if necessary, to carry

out an initial diagnosis based on previously analysed curves.

Third part The third chapter again deals with pneumatic valves. Using a tool

developed by R&D called Curiosity coupled with Python scripts, it is possible to

extract the evolution over time of the flow rate measured by a sensor in the vicin-

ity of any valve in the nuclear park. In doing so, it is possible to obtain a time

series describing precisely the manoeuvres of each of the valves. Ultimately, the

objective would be to develop a tool to predict in advance an incident or mal-

function of a valve. In my case, the aim is to carry out a preliminary feasibility

study of this tool by determining relevant indicators for the detection of such an

event.

Fourth part Finally, the fourth and final mission concerns the rails used to

guide the fall of the control clusters into the reactor, also known as cluster guides.

The control clusters are coated with an anti-wear treatment that protects them

from wear but leads to faster wear of the cluster guides. To ensure that the clus-

ter guides continue to perform their function - i.e. that the clusters fit into the

core quickly enough in the event that an automatic shutdown is required - this

wear should not be too great. Therefore, EDF carries out periodic checks and,

during these controls, replaces the cluster guides that are likely to be too worn

by the next control.

The purpose of the study is, on the basis of the latest measurements made, to

estimate the wear at the time of the next inspection so as to better quantify the

number of cluster guides to be replaced. Feedback shows that estimating the

volumes used on the basis of a single linear extrapolation of the last inspections

leads to forecasting too many replacements and thus to mobilising unnecessary

resources and unnecessarily lengthening unit outage schedules.

The main difficulty of this study lies in the data, which is very noisy.

For the sake of confidentiality, all the data presented in the following have

been anonymized.
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Chapter 2

Valve membranes survival
analysis

2.1 Introduction

2.1.1 Background

On French nuclear power plants, the operation (opening/closing) of many valves

is ensured by pneumatic actuators.

(a) Pneumatic actuator

diagram

(b) Pneumatic actuator membrane

Figure 2.1: Pneumatic actuator along with its membrane

The opening and closing of the valve is fully controlled by the variation of

air pressure. Some valves must be closed by default to guarantee the safety of

16



the plant: the choice and the setting of the springs allows to have actuators that

close the valve in case of loss of compressed air supply. In other cases, on the

contrary, the valves must be open by default: a different choice of springs leads

to their automatic opening in case of loss of compressed air supply to the actu-

ator.

This pressure variation is allowed by the movement of an elastomer mem-

brane, which is therefore solicited at each movement of the valve.

(a) Membrane in closed position (b) Membrane in open position

Figure 2.2: Variation of the membrane’s position

To date, a membrane is replaced approximately every ten years. In view of

the large number of valves involved, the systematic replacement of these mem-

branes represents a major economic challenge. The purpose of this study is to

analyze their lifetime on the basis of maintenance actions carried out on these

valves for about 25 years, with the aim, if possible, of optimizing the frequency

of their replacement.

(a) Torn fasteners (b) Torn central part of a membrane

Figure 2.4: Torn membranes
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Figure 2.3: Deformed membrane

2.1.2 Problem

A first survival analysis had previously been carried out on a small perimeter

containing approximately 200 valves over a period ranging from the commis-

sioning of the corresponding nuclear power plants until today.

Figure 2.5: Kaplan-Meier estimator (in years) for the first study perimeter

This study shows that the membranes’ fatigue is overstated, at least in the

chosen perimeter, and the purpose of this first mission is to evaluate whether

this result is global or not.

18



2.1.3 Methodology

The first part of the study will consist of redoing the study previously carried out

on all the membranes of the nuclear park. Then, multivariate weibull model will

be used to determine the optimal replacement frequency depending on various

factors.

2.2 Theoretical background

To better understand the tools that will be used in this whole study, let us intro-

duce some of the fundamental notions in survival analysis.

Definition. For T the positive random variable representing time to event of in-

terest, the survival function is defined as

S(t ) = P (T > t ) = 1−F (t )

Then, let us define the hazard function, also known as the conditional failure

rate, as

h(t ) = f (t )

S(t )

It describes the instantaneous risk that the event of interest happens within a

very narrow time frame, and is commonly used to model which periods have the

highest or lowest chances of an event.

Definition. Censoring

• Right censoring occurs when a subject leaves the study before an event oc-

curs or the study end before the event has occurred.

• Interval censoring occurs when the exact time of failure is not known; only

an interval of time in which the failure occurred is recorded.

Proposition. A way of performing a survival analysis taking into account the

different types of censoring introduced above is to define for each event a couple

of times (T1,T2) such that:

• T1 = T2 <∞ if the event is not censored

• T1 < T2 =∞ if the event is right-censored with censoring time C = T1

• T1 < T2 <∞ if the event is interval censored
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One of the most commonly used tools to estimate the survival function is

the so-called Kaplan-Meier estimator. It is defined as follows.

Definition. Let us define the Kaplan-Meier estimate as

Ŝ(t ) = ∏
i :ti≤t

(1− ĥi ) = ∏
i :ti≤t

(
1− di

ni

)

where ĥi = di

ni
is an estimate of the hazard function, di is the number of events

that happened at time ti and ni the individuals known to have survived (have

not yet had an event or been censored) up to time ti .

Definition. Weibull distribution

The probability density function of a Weibull random variable is:

f (x;λ,k) = k

λ

( x

λ

)k−1
·e

−
( x

λ

)k

1x≥0

where k > 0 is the shape parameter and λ> 0 is the scale parameter.

The Weibull distribution is often used to model time-to-failure. In this case,

the shape parameter k can be interpreted as follows :

• A value of k < 1 indicates that the failure rate decreases over time, i.e. there

is a significant "infant mortality"

• A value of k = 1 indicates a constant failure rate over time

• A value of k > 1 indicates that the failure rate increases with time. It is

often the case if there is an aging process.

The following definition is inspired by The asymptotic properties of nonpara-

metric tests for comparing survival distributions by David Schoenfeld [11].

Definition. The logrank test is a hypothesis test to compare survival distribu-

tions of two samples. It compares the hazard function of the two groupes at each

observed event time.

Let 1 and 2 be two groups of patients, N1,t and N2,t be the number of subjects at

risk at time t and O1,t and O2,t be the observed number of events in the groups at

time t. Define Nt = N1,t +N2,t and Ot =O1,t +O2,t .

The null hypothesis is that the two groups have identical hazard functions, H0 :

h1(t ) = h2(t ). Under H0, for each group i = 1,2, Oi ,t follows a hypergeometric dis-

tribution with parameters Nt , Ni ,t ,Ot , of mean Ei ,t and variance Vi ,t .
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For all t = t1, ..., tn , the logrank statistic compares Oi ,t to its expected value under

H0 Ei ,t . It is defined as

Z =
∑n

j=1(Oi ,t j −Ei ,t j )√∑n
j=1 Vi ,t j

d−→N (0,1)

for i = 1,2

If the two groups have the same survival function, the logrank statistic is ap-

proximately standard normal.

2.3 Available data

The initial dataset is a file containing all maintenance operations having been

made on the whole nuclear park’s valves. Note that this file comes from an old

database which is no longer active. Only some of them represent membrane

replacements. For each of these operations, a data mining process has been

implemented to extract from the written report whether the replacement was

due to a routine visit or to the breakage of the membrane. This data mining step

is a mandatory step considering the number of lines in this dataset but may have

led to slightly noisy data.

As explained in the previous part, the censorship of the survival times of the

membranes will be represented as intervals. After treatment and extraction of

the right data, the study’s dataset is as described in Figure 2.1.

RF Site Unit T1 T2

RCP111VV AAA 1 11 11

REN222VB BBB 3 33 35

... ... ... ... ...

Table 2.1: Membrane failure dataset

The RF feature is equivalent to an ID and is related to another feature called

RIN that encodes the valve type, the type of circuits it is linked to, the kind of

fluid flowing through the circuit, etc. It will be used later in order to build differ-

ent survival models depending on these parameters. In the same way, the Site

and Unit features will be used to separate the different types of nuclear power

plants that form the French nuclear park.
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To better understand how T1 and T1 are computed, let us define for each

nuclear power plant the following times:

• tst ar t : the commissioning year of the power plant

• tr ec : the commissioning year of the system recording all the events (tst ar t ≤
tr ec )

• tend : the year of the last recording in the database

The potential replacements that have occurred between the commissioning

of the nuclear power plant and the commissioning of the database are unknown,

this is why these two dates have to be taken into account.

The features T1 and T2 are built using the date of the maintenance events

and different cases occur.

On the one hand, if the membrane replacement at time t corresponds to a break-

age, then:

• if it is the first event for this valve, then T 1 = t − tr ec and T 2 = t − tst ar t

• if it is at least the second event for this valve, then T 1 = t − tl ast event and

T 2 = T 1

• if it is the last event for this valve, then a row is added with T 1 = tend − t

and T 2 =∞

On the other hand, if the membrane replacement happens to be a routine

replacement, then:

• if it is the first event for this valve, then T 1 = t − tr ec and T 2 =∞

• if it is at least the second event for this valve, then T 1 = t − tl ast event and

T 2 =∞

• if it is the last event for this valve, then a row is added with T 1 = tend − t

and T 2 =∞
Note that the rows for which T 2 < 2 are considered as outliers since a di-

aphragm breaking happening less than two years after a maintenance is without

a doubt due to a human error or to a manufacturing defect.

As introduced before, the whole dataset is now merged with the RIN dataset

(that contains the valves’ characteristics). Moreover, the Site feature is converted

into a MWe class that describes the output power of each station. There exists 5

categories of it: CP0, CP1, CP2, N4 and P4. Once the features extracted from the

RIN code, the dataset looks as Figure 2.2.
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T1 T2 Circuit Fluid MWe class Diameter Designation Area of use

11 11 AAA VV P4 80 C T

33 35 BBB VL N4 100 X X

... ... ... ... ... ... ... ...

Table 2.2: Final dataset

Note that the designation stands for the type of valve and the area of use for

the pressure and temperature the valve may be exposed to.

2.4 Results

2.4.1 Kaplan-Meier estimators and feature groupings

In the following part, R package icenReg [1] is used to deal with interval censored

data.

Let us first compute the Kaplan-Meier estimate for the whole dataset with-

out taking into account the features.

Figure 2.6: Kaplan-Meier estimator for the whole study dataset

The first impression here is that the result is significantly different with the

one obtained in the original study. There might be several reason for which this

difference is observed. Indeed, the first study perimeter is not a sample ran-

domly chosen among the whole French nuclear park’s valves. It is a sample con-

taining mainly data that concerns valves located on secondary circuits. There-

fore, two things are to emphasize. First of all, the chosen perimeter consists of
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valves that do not benefit from preventive maintenance. Then, since they be-

long to specific circuits, there may be a significant influence of both the circuit

and the fluid that flows through it on the membrane’s survival time.

To check this result, let us have a look at the distribution of the uncensored

survival times according to the category they belong to. Figure 2.7 shows the

boxplots for the 6 categorical features that are part of the study dataset.

Figure 2.7: Survival time boxplots

Several things can be observed on these boxplots. Firstly, median values of

the survival times seem to be less than 10 in general. Then, some surprising re-

sults such as the low influence of the power level (MWe class), of the designation

- which corresponds to the manufacturer - and of the diameter (except for D=40

which is a little represented value).

Only circuit, fluid and area of use features seem to have values that both

stand out among other and have a sufficient amount of members to be taken

into account.

Survival time against fluid feature Let us compute the Kaplan-Meier estima-

tor for each value of the fluid feature. Note that the intervals are not plotted for

more clarity.
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(a) Kaplan-meier estimator for each fluid

value

(b) Pairwise logrank test output

(c) Significance levels

Figure 2.8: Kaplan-Meier for each fluid value and the corresponding pairwise

logrank test

Several curves stand out among the others and it is possible to distinguish

between 2 and 4 groups of curves that share a similar shape. Then, using R pack-

age pairwise_survdiff [3], the pairwise logrank test gives an indication about

whether two values of the fluid feature may or not be clustered together in a

single group. Figure 2.8 shows the result of the corresponding test. The stars

represent the p-value of the pairwise test. The more stars there are, the lower

the p-value is and therefore the least these two values should be clustered to-

gether. Here, the choice is to gather two values of the fluid feature if the p-value

is greater than 0.1, i.e if there is no star.
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(a) Kaplan-meier estimator for each group of

fluid

(b) Groups of fluid (c) Corresponding pairwise lo-

grank

(d) Significance levels

Figure 2.9: Kaplan-Meier estimator once the clustering done

Figures 2.8 and 2.9 show the Kaplan-Meier before and after the groupings.

Once the first pairwise logrank test computed, each fluid value is grouped with

the other values for which the test is conclusive, i.e the ones with which the test

returns zero star. The obtained four groups are detailed on Figure 2.9.(b). Then,

a new Kaplan-Meier estimate is computed as well as a new pairwise logrank test

with the new fluid groups. This time, with the chosen threshold of 0.1, no group-

ing is needed and four groups remain.

Survival time against circuit and area of use features The same procedure has

been applied to both circuit and area of use features. The results can be found in

Appendix A, five circuit groups and four area of use ones are created in this way.

Now that the number of possible values for the triplet (Fluid, Circuit, Area

of Use) has been reduced to 4 ·5 ·4 = 100, a multivariate model can be built to

estimate the optimal maintenance period for any valve’s membrane.
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2.4.2 Multivariate Weibull model

Global model Before taking into account the three previously mentioned co-

variates, let us first have a look at the maximum likelihood estimate of the mem-

branes’ survival function.

Figure 2.10: General fitted weibull survival curve

Scale parameter Shape parameter

12.42 1.88

Table 2.3: Obtained Weibull parameters

The shape parameter is strictly greater than 1, which is an expected result.

Indeed, in the case of a Weibull model, k > 1 indicates that the failure rate in-

creases with time. This happens if there is an aging process i.e. if parts are more

likely to wear out and/or fail as time goes. This is therefore entirely expected for

elastomer membranes. Note that the scale parameter λ corresponds to the time

at which 63% of the membranes are defective.

Then, the mean of the Weibull distribution corresponds to the mean time

between failures (MTBF) and is computed as:

MT BF =µ=λ ·Γ
(
1+ 1

k

)
with λ the scale parameter and k the shape parameter. Here, MT BF ≈ 11.03

years. This supports the choice of a 10-year preventive maintenance period. An

other way of using a Weibull model to predict the optimal predictive mainte-

nance time is the one shown in Figure 2.11.
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Figure 2.11: Optimal predictive maintenance time obtained by summing up the

hazard function and the preventive intervention rate

The idea is to plot the hazard function corresponding to the fitted Weibull

model and the proportion of preventive replacement. Since the scale is here

in years, the hazard function represents the proportion of failure between t and

t+1 while the proportion of preventive replacement is the function t 7→ 1

t
. Sum-

ming up these two function, the proportion of replacements due to both failures

and preventive maintenance is obtained. Then, minimizing this function gives

an estimation of the optimal predictive maintenance time.

This time again, a value close to 10 years is obtained. Of course, this value

has to be adjusted to deal with other constraints such as the fact that there exist

light maintenance, during which an attempt is made to make a minimum of

replacements, and its opposite, heavy maintenance.

Nonetheless, one could imagine having a preventive maintenance period

that is specific for each valve or at least for each category of valves. This is the

purpose of the following paragraph.

Model with covariates A Cox proportional hazard regression is used in this

part. To use this, a strong assumption must be done. For each covariate, its ef-

fect must be independent of time. An easy way to verify it is to have a look at the

Kaplan-Meier estimator for each variation of the considered covariates and the

curves must not cross each other. With the groups that have been constituted

for the three considered covariates, this test is passed.

Then, using the maximum likelihood estimator, a coefficient is returned for

each value of each covariate. These coefficients βFi , βCi and βAoUi can be used

28



to compute the conditional failure rate of a specific valve membrane. Not that

βF1 , βC1 and βAoU1 are fixed to zero since they correspond to the baseline. Then,

knowing the groups a specific valve belongs to, its conditional failure rate is

hi , j ,k (t ) = h(t ) · eβFi +βC j +βAoUk . The corresponding survival curves can be plot-

ted as follows.

Figure 2.12: Worst, average and best possible Weibull survival curves

These three curves allow to understand that a global value of the mainte-

nance period is not that easy to find. Although the value of 10 years that is cur-

rently used works well enough overall, an improvement would be to have a value

of the maintenance period for each group of valves. Let us apply the previous

graphical technique to the worst and the best combination of covariates values.
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(a) 16 years optimal preventive time

obtained in the best case

(b) 5 years optimal preventive time ob-

tained in the worst case

Figure 2.13: Optimal preventive maintenance time for the worst and the best

cases

Figure 2.13 confirms that there exists no absolute common optimal preven-

tive time. Indeed, the gap between the membranes that are most in need of re-

placement and the ones least in need of replacement is of more that 10 years.

Therefore, since maintenance cannot be carried out on a case-by-case basis

since it requires the reactor to be shut down, one could imagine having groups

of valves that are close in terms of maintenance time.

2.5 Discussion

Knowing that the dataset comes from an extraction work based on text min-

ing algorithms, errors from this step could have been included in the data used.

However, this amount of error is difficult to measure.

Nonetheless, survival analyses and Cox model allow a fine tuning of preven-

tive maintenance. The application of the graphical methods confirms the choice

of a 10-year predictive maintenance time.

However, it is possible to identify the equipment on which it would be pos-

sible to optimise the periodicity thanks to the Cox model. For example, in the

case of a valve belonging to the F4-C1-AU1 groups, it would make sense to apply

a maintenance time of approximately 16 years.
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Chapter 3

Control cluster behaviours
classification

3.1 Introduction

3.1.1 Background

On pressurized water reactors operated in France, the insertion of control clus-

ters into the reactor is one of the two means used to control reactivity. These

clusters are made up of 24 rods, themselves made up of a sheath containing neu-

trophage materials: inserting the bundles into the reactor thus makes it possible

to capture neutrons that are no longer available for the nuclear reaction, which

slows down the reaction. The 24 rods are fixed to a so called "spider" which is

attached to a steel rod.

Figure 3.1: Control rod

Figure 3.2: The structure to which the rods are fixed: the spider
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The triggering of the fall of the control cluster is driven by an electromagnet.

The total insertion of all the control clusters allows the shutdown of a reactor in

less than 2 seconds. Nonetheless, various issues can prevent this whole opera-

tion from running properly. These potential issues are often deformations of the

fuel assemblies or the swelling of the rods under irradiation.

Figure 3.3: Reactor in shutdown position: the control clusters are totally inserted

Therefore, free falling tests are carried out on a regular basis to verify the
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proper functioning of this shutdown procedure. These tests consist in measur-

ing the falling speed of the control clusters by letting them fall. The obtained

data are curves of velocity against time that must be analyzed to detect possible

anomalies.

3.1.2 Problem

Sometimes, some of these curves show some odd-looking patterns. The velocity

of the corresponding control clusters is either too low, too high, oscillating a

lot or having a very uncommon pattern while still respecting the two-seconds

criterion. For now, when this kind of event occurs, an agent takes apart each

abnormal curve and analyses it to determine whether the error comes from the

acquisition or from a physical phenomenon on the control cluster and, in the

second case, to identify the root of the problem. Therefore, the detection and

analysis of atypical curves is subjective.

The aim of this mission is to develop a tool that is able to automatically de-

tect an irregular curve and to give a first diagnosis on where the problem comes

from. To do so, a combination of an outlier detection algorithm and a classifica-

tion algorithm will be implemented.

3.1.3 Functional data processing

For every nuclear power plant, at each maintenance operation a folder is created

containing the data recorded during the falling test.

Each raw curve is made of three columns:

• a time measurement (in s or ms depending on the file)

• a first voltage measurement proportional to the control cluster velocity

• a second voltage measurement which is non-zero when the electromagnet

holding the control cluster is activated and zero when disabled

There is a proportionality factor between the first voltage measure and the

control cluster velocity. Moreover, the time at which the electromagnet is being

disabled can be interpreted as "zero time". With this in mind, a Python script

is built; it first loads the raw curve, then set the zero time, convert the voltage

into a velocity using the proportionality factor and finally adjusts the curve ac-

cording to parameters that are the type of control cluster, the reactor power, etc.

The obtained velocity curve contains 3000 points (1000 per second). It is lastly

exported in a csv file.
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(a) Raw data voltage curves
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(b) Converted velocity curve

Figure 3.4: Curve convertion algorithm input and output

Some strong oscillations can be observed on the right hand side of the ve-

locity curve of figure 3.4. These fluctuations correspond to the control cluster

hitting the bottom of the tank and bouncing until equilibrium. Due to the high

flexibility of the nuclear fuel rods and to the presence of springs between the

control cluster and the control stem, this part of the signal is extremely complex

to deal with. Therefore, the study will mainly focus on the evolution of velocity

before this fluctuating part.

To get rid of this oscillating part, an indicator called T5 is used. It corre-

sponds to the time at which the velocity curve reaches its maximum. When it

comes to analyzing a curve dataset, all the curves are truncated at t = T̃5 + 0.6

seconds, where T̃5 denotes its median. This choice is arbitrary but shows good

performances since it removes any late oscillation without avoiding the user to

analyze slow control cluster curves.

Once the truncation done, a last issue has to be dealt with. The raw data volt-

age curves acquisition is often disrupted by a 50 Hz noise. This noise is largely

removed by the Python script that converts the raw curves into velocity curves.

However, the obtained curves are too heavy to be analyzed quickly. In order to

deal with this issue, the idea is to sample and then smooth each curve. Each

curve is sampled with a sampling frequency of 100 Hz. In this way, the curves

csv files are lightened and no important information is lost. Then, using splines

of order 5, the general cross-validation plotted in Figure 3.5 is computed.
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(a) GCV as a function of the number of

basis

(b) Smoothed velocity curve for nba-

sis=30 along with its first and second

derivatives

Figure 3.5: Smoothing parameters choice and obtained result

An elbow is easily observable for a number of splines nbasis ≈ 30. On the

right of the figure, a smoothing attempt with nbasis= 30 is plotted. The smoothed

curve perfectly fits the original one but no overfitting can be observed. The first

and second derivative curves are indeed similar for both the smoothed and the

original data.

3.1.4 Methodology

This problem resolution consists of two distinct parts.

First of all, the building of a sample of known curves that contains both

curves with expected shapes and curves with abnormal shapes whose problem

is well-known. This step consists of classifying them into clusters using a K-

means algorithm. This classification is then refined by a domain expert. At this

stage, he is in charge of labelling each cluster and/or batching them into larger

clusters if they correspond to similar types of curves. Once this building step is

done, the so-called "curves library" is filled with every clustered curves as well

as a file that contains their classification. Their corresponding class is either the

class of expected shape curves or the physical problem that is directly linked to

the shape they have.

Then, using an outlier detection algorithm along with a classification algo-

rithm, any new control cluster velocity curve dataset can be classified. Here are

the several steps of the whole algorithm:

1. A new dataset is created, composed of both the known normal shape

curves and the new curves to classify
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2. For each new curve, if the outlier detection algorithm detects the new

curve as an outlier, go to step 3. Otherwise, classify the curve as a normal

curve.

3. Perform a supervised machine learning algorithm, using as training set

the whole sample of known curves and their associated classes, on the

detected outlier curves

3.2 Theoretical background

3.2.1 Outlier curves detection algorithms

This part refers to Shape Outlier Detection and Visualization for Functional Data:

the Outliergram by Ana Arribas-Gil & Juan Romo [2].

Let us first introduce two metrics that will be used to determine whether a

curve’s shape is usual or not among a functional dataset.

Definition. Modified Band Depth

MBD{x1,...,xn }(x) =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

λ({t ∈ I |min(xi (t ), x j (t )) ≤ x(t ) ≤ max(xi (t ), x j (t ))})

λ(I )

For a given curve C , the MBD index measures the mean proportion of "time"

spent by C in between two curves. For a curve that lays upward or below all the

others, MBD(C ) = 0. If a curve is the curve precisely located at the center of all

the functional dataset, then, MBD(C ) = 0.5 i.e. the maximum is reached.

Definition. Modified Epigraph Index

ME I{x1,...,xn }(x) = 1

n

n∑
i=1

λ({t ∈ I |xi (t ) ≥ x(t )})

λ(I )

For a given curve C , the MEI index measures the mean proportion of "time"

spent by C below each other curves. Therefore, ME I (C ) = 0 for a curve upward

every other ones and ME I (C ) = 1 for a curve below every other ones.
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Proposition. It can be proved that

MBD{x1,...,xn }(x) = a0 +a1ME I{x1,...,xn }(x)+a2
2ME I{x1,...,xn }(x)2

+a2

[
n∑

i=1

n∑
j=1

(
λ(Ei ,x ∩E j ,x )

λ(I )
− λ(Ei ,x )λ(E j ,x )

λ(I )2

)]

with a0 = a2 = −2

n(n −1)
, a1 = 2(n +1)

n −1
and Ei ,x = {t ∈ I |xi (t ) ≥ x(t )}.

Corollary. For any sample x1, ..., xn of continuous functions on I , it holds that for

any x ∈ {x1, ..., xn},

MBD{x1,...,xn }(x) ≤ a0 +a1ME I{x1,...,xn }(x)+a2
2ME I{x1,...,xn }(x)2

As explained in Shape Outlier Detection and Visualization for Functional Data:

the Outliergram by Ana Arribas-Gil & Juan Romo [2], the principle of the Outlier-

gram algorithm is to use the relation between MBD and MEI as introduced in

the previous section. It has been shown that all the (MEI, MBD) points lie be-

low a parabola and that the closest points to the parabola correspond to curves

with typical shape, whereas the most distant ones represent outlying curves in

terms of shape. Therefore, each curve is projected onto a plane defined by the

axis (MEI, MBD) and the curves whose projection is under the threshold de-

fined by mbi ≤ Pi −Qd3−1.5IQRd (see Algorithm 1 for more details) are defined

as outliers. The value of 1.5 is the default value but it is possible to modify it

in two different ways. On the one hand, the user can directly choose this infla-

tion value to rise or get down the threshold. On the other hand, the user can

choose the expected number of shape outliers in the sample and an additional

step in the algorithm computes the corresponding factor that multiplies IQRd .

This second version is called Adjusted Outliergram.

Nonetheless, this whole reasoning might fail with curves that lie above or

below the majority of the curves in the sample, that is, with MEI values close

to 0 or 1. Indeed, for such curves the modified band depth will always be low,

since they are surrounded by very few curves, independently of the fact that they

might present an atypical shape or not. However, if the curve presented a typi-

cal shape and and is now shifted vertically towards the center of the sample its

MBD in the new location should increase (as MEI increases or decreases). On

the other hand, if the curve’s shape was atypical, even when placed in the cen-

ter of the sample, its MBD would remain low. That motivates the addition of
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Data: A set of velocity curves x1, ..., xn

Result: A set of index corresponding to shape outliers

for i in [[1,n]] do
Compute mbi = MBD(xi )

Compute mei = ME I (xi )

Compute Pi = a0 +a1mei +n2a2mei

Compute di = Pi −mei

end

Compute third quartile and inter-quartile range of the sample d1, ...,dn ,

Qd3 and IQRd

for i in [[1,n]] do

if mbi ≤ Pi −Qd3 −1.5IQRd then
SO ← SO ∪ {i }

end

end

for i in [[1,n]]\SO do

if ∃t ∈ I s.t. xi (t ) < mi n j 6=i x j (t ) then
Define x̃i (t ) = xi (t )−mi nt {xi (t )−mi n j 6=i x j (t )}

end

if ∃t ∈ I s.t. xi (t ) > max j 6=i x j (t ) then
Define x̃i (t ) = xi (t )−maxt {xi (t )−max j 6=i x j (t )}

end

Compute m̃bi , m̃e i and P̃i

if m̃bi ≤ P̃i −Qd3 −1.5IQRd then
SO ← SO ∪ {i }

end

end

Algorithm 1: Outliergram algorithm

a second step in the shape outlier detection procedure in which the more ex-

treme curves are vertically shifted towards the center of the sample one by one.

They would be considered shape outliers if the new (MBD,MEI) point lies in the

outlying region previously determined.

To detect magnitude outliers, an extension of the classical boxplot is used:

the functional boxplot. This time, the central region is defined as:

C0.5 = {y : ∀t ∈ I , ∃ (q,r ) ∈ (1, ..,
⌊n

2

⌋
)2 s.t . ybqc(t ) ≤ y(t ) ≤ ybr c(t )}

where ybic is the curve with the i th largest MBD
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Data: A set of velocity curves x1, ..., xn to analyse and a set of known

curves with normal shapes y1, ..., yn

Result: The set of curves to analyse that seem abnormal

X ← {x1, ..., xn}∪ {y1, ..., yn}

O ←Outl i er g r am(X )∪Functi onalBoxplot (X )

O ←O ∩ {x1, ..., xn}

Algorithm 2: Outlier curves detection algorithm

This 50% central region is the analogue of the inter-quartile range (IQR) and

gives us a useful indication of the spread of the central 50% of the curves. This

region is not affected by outliers or extreme values, therefore it can be used to

detect outliers. To do so, the 1.5 times IQR empirical outlier criterion is extended

to the functional boxplot. The envelope of the 50% central region is inflated by

1.5 times the range of the 50% central region. Any curves outside this inflated

envelope will be considered as a potential outlier.

The final outlier curves detection algorithm is a simple combination of the

two previous algorithms. Every curve detected as a shape outlier by the out-

liergram or as a magnitude outlier by the functional boxplot will be considered a

potential outlier. The following part will explain the classification of these curves

into either:

• the set of normal curves if the curve is detected as an outlier but is only an

extreme value among the curves that have an usual shape (e.g the mini-

mum and maximum acceptable falling time curves)

• one of the types of well-known problems that happen on control clusters

• the set of abnormal curves that do not correspond to any well-known prob-

lem; in this case a further technical analysis is needed
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Figure 3.6: Outliergram and functional boxplot applied to generated data

The Figure 3.6 is the plot given by the final algorithm using the generated

functional dataset on the right. Both pink and blue curves are detected as shape

outliers since they appear under the dotted parabola on the left while the two

other colored curves are detected as magnitude outliers but not as shape ones.

3.2.2 Functional K-nearest-neighbors algorithm

Standard KNN algorithm

This part refers to k-Nearest-Neighbors Classifiers by Padraig Cunningham and

Sarah Jane Delany [4].

The K-Nearest-Neighbors (KNN) algorithm is a supervised learning algo-

rithm. It is a non-parametric classification method in which a new observation

is classified in the majority class of the input’s neighborhood among the training

sample.

To determine this neighborhood, a metric is required. In the case of functional

data, the most common choice is the L2 distance defined as:

d2( f , g ) = || f − g ||2L2

An issue with this version of the KNN algorithm is that it does not take into

account the distance between the outlier and each of the curves among the K

nearest neighbors. This could lead to misclassifications, mostly in cases of rare

problems that do not have multiple representatives in the training set. One of

the solution is to weight each of the neighbors depending on the distance to the

curve to classify when computing the majority vote.
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Data: A curve x to classify and a set of known curves y1, ..., yn and their

associated classes C1, ...,Cn

Result: A given class for x

D ← (d2(x, yi ))i=1,...,n

K N N ← ar g mi nK (D)

C l ass ← ma j or i t y{ j∈K N N }(C j )

Algorithm 3: Functional KNN algorithm

Weighted KNN algorithm

Before introducing the disparities between the two algorithms, let us introduce

a fundamental notion: the kernel function.

Definition. A kernel function is a function f : ℜ−→ℜ+ such that:

•
∫ ∞

−∞
f (x)dx = 1

• f (d) ≥ 0 ∀d ∈ℜ

• maxd∈ℜ f (d) = f (0)

• f (d) descents monotonically for d −→±∞

Examples. The following functions are such functions:

• Rectangular kernel: R : d −→ 1

2
1|d |≤1

• Biweight kernel: BW : d −→ 15

16
(1−d 2)2 1|d |≤1

• Gauss kernel: GK : d −→ 1p
2π

exp(−d 2

2
)
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Figure 3.7: Kernel functions

The biweight kernel function is both smooth enough to take into account ev-

ery neighbor and with a sufficient gradient to differentiate the neighbors on the

basis of their distance to the curve to classify. See Algorithme des k plus proches

voisins pondérés et application en diagnostic by Eve Mathieu-Dupas [8] for more

details. The next step is to standardize the neighbors’ distances so that they all

fit in [−1,1]. To do so, once the selection of the K nearest neighbors done, each

of their distance is standardized with the (k +1)th neighbor, i.e:

D(x, y (i )) = d(x, y (i ))

d(x, y (k+1))
for i = 1, ...,k

In particular, now every standardized distance fits in the interval [0,1]. Note

that in the algorithm implementation, a constant ε> 0 is added to d(x, y (k+1)) to

avoid null weights.

Once this computation done for the whole neighborhood, the new case x is

given the class C of maximum weight in its K-neighborhood, i.e:

C = maxr

(
K∑

i=1
BW (D(x, y (i )))1C (i )=r

)
where BW represents the biweight kernel function.
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Note that the main advantage of this weighted method is that it relies less

on the choice of K than in the standard KNN method. Indeed, if K is chosen too

high, then the influence of the furthest neighbors is reduced by the weights.

Refering to Weighted k-Nearest-Neighbor Techniques and Ordinal Classification

by Klaus Hechenbichler [6], the full algorithm is described in Algorithm 4.

Data: A curve x to classify and a set of known curves y1, ..., yn and their

associated classes C1, ...,Cn

Result: A given class for x

D ← (d2(x, yi ))i=1,...,n

D ← sor t (D)

D (i )
st and ← D(x, y (i ))

D(x, y (k+1))
= d2(x, yi )

d2(x, yk+1)
, i = 1, ...,k

w (i ) ← BW (D (i )
st and )

C l ass ← ar g maxr
(∑k

i=1 w (i )1C (i )=r

)
Algorithm 4: Functional weighted KNN algorithm

3.2.3 Functional K-means algorithm

This part refers to K-means alignment for curve clustering by Laura Maria San-

galli, Piecesare Secchi, Simone Vantini & Valeria Vitelli [10].

K-means algorithm is a clustering algorithm that aims to partition n obser-

vations into k clusters. The given clusters minimize the within-cluster variances.

The functional version of K-means is alike in all respects to the standard one

except for the chosen metric. In what follows, the considered metric is the L2

distance.

In the corresponding part, the R package fdakma [10] is used. Note that it

will be used without any alignment.

3.3 Obtained results

In the following part, the algorithms have been tested on a subset of the total

data that concerns nuclear power plants that belong to a specific power level

for which the problems encountered with control clusters are well-known. It is

important to note that the final algorithm needs to be used in this way. Indeed,

some disparities may occur from one power level to another. Therefore, a curves

library will be created independently for each nuclear power level.
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Data: A functional dataset D = {x1, ..., xn}, a number of desired clusters k

Result: k clusters C1, ...,Ck

t ← 0

Randomly initialize k centroids µt
1, ...,µt

k among x1, ..., xn

repeat
t ← t +1

C j ←; for all j = 1, ...,k

for x j ∈ D do
j∗ ← ar g mini d(x j ,µt−1

i )

C j∗ ←C j∗ ∪ {x j }

end

for i ∈ �1,k� do

µt
i ←

1

|Ci |
∑

x j∈Ci
x j

end

until
∑k

i=1 d(µt
i ,µt−1

i ) ≤ ε;
Algorithm 5: Functional K-means algorithm

3.3.1 Curves library creation

Figure 3.8 shows the whole dataset that will be used in this result part. Some un-

usually shaped curves are visible to the naked eye. As explained before, the aim

here is to organize these curves into shape clusters that reflect specific control

cluster issues. To do so, two steps are needed. First, a functional k-means algo-

rithm is used in order to obtain shapes clusters. Then, these obtained clusters

are refined or regrouped by a field expert.

Figure 3.8: Velocity curves before clustering
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The objective is to increase clusters cohesion, i.e similarity within groups,

while not having more clusters than there are types of issues. Since there are at

least normal shape curves and curves of control rods that fall too quickly or too

slowly, the minimum number of considered clusters has to be 3. In what follows,

the R package fdakma [10] is used. This library contains a k-means function

that can be used conventionally or with an alignment feature that modifies the x

coordinate for each curve in order to align them. In the case of this study, since

the x coordinate is a time with a well-defined zero time and since the interest is

to detect slow control rods, this feature will not be used.

(a) Obtained clusters for k=3 (b) Similarity within clusters boxplots

before and after clustering

Figure 3.9: K-means output for k=3

Figure 3.9 shows that most curves have their within cluster similarity indexes

almost reaching 1 after clustering. However, the curves that correspond to slow

control rods belong to the second cluster, a cluster that contains as well curves

that have an absolutely usual shape. Therefore, a supplementary cluster seems

to be needed.

Figure 3.10 is the output of the functional k-means algorithm with 4 clusters.

Once again, the boxplot after clustering is satisfactory overall. Moreover, this

time, a whole cluster, the first one, is dedicated to slow control clusters. After

consultation with a field expert, it has been agreed that clusters 1 and 3 are good

representatives of both slow and fast control clusters with the exception of a few

adjustments and that clusters 2 and 4 are as well good representatives of usual

control rods velocity curves. Therefore, these last two clusters are regrouped.
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(a) Obtained clusters for k=4 (b) Similarity within clusters boxplots

before and after clustering

Figure 3.10: K-means output for k=4

Note that this part of the study needs to be done for each power level and

that the number of final clusters is not fixed.

3.3.2 Outlier curves detection

Once the curves library creation completed, the aim is to be able to detect un-

sual curves among new datasets. The idea is to spot both control panels whose

velocity curves have odd-looking patterns and control panels reaching too high

or too low velocities. To do so, two different algorithms are combined: the Out-

liergram and the Functional Boxplot. The first one is aiming to detect shape

outliers while the second one is made to spot magnitude outliers.

To show this combination of algorithms’ outcome, the following tests have

been carried out with the same dataset as in the previous section. In this way,

all the control clusters are comparable since they have the same structure and

the same physical properties. In this dataset in particular, some of the curves

are expected to be abnormal since the free-fall time of the corresponding con-

trol clusters is already unusual. Therefore, these particular curves have to get

detected. There is no worry about detecting some additional curves since the

following classification part is simultaneously a way of giving a first diagnosis

and a way of reclassifying the normal curves detected as outliers.

Figure 3.11 represents the output of the detection algorithm without outlier-

gram adjustment. On the right hand side is the projection of each curve onto the

plane (MEI,MBD). The theoretical parabola fits far less well than with a gener-

ated dataset. It is quite logical since these are true acquisition that fluctuate de-
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Figure 3.11: Outliergram and functional boxplot applied to control cluster ve-

locity curves
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Figure 3.12: Adjusted outliergram (5%) and functional boxplot applied to control

cluster velocity curves

pending on lots of physical phenomena. Observe that a circled number means

that this curve has been vertically shifted towards the center of the sample to de-

termine whether it is a shape outlier or not. On a positive note, every curve that

looks abnormal is detected either by the outliergram or by the functional box-

plot. Nonetheless, the outliergram alone seems not to be sufficient since it only

detects few curves and that some other shape outliers are visible for the trained

eye.

However, both of the algorithm’s parts are needed in order to be efficient since

each abnormal curve is both a shape and a magnitude outlier (the area under

the curve being the same for each curve). In this particular case, the Adjusted
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Outliergram seems to be more effective. Indeed, in this case, a little less than 5%

of shape outlier curves is expected. Therefore, the adjusted algorithm is given

as an input a value of 5% to be sure not to miss any of these curves. This time,

the curves with clear unusual shapes are detected by the outliergram alone and

others are detected only by the functional boxplot. Moreover, all the expected

abnormal curves are among the algorithm outputs.

Nonetheless, the final algorithm lets the user chose between the Standard

and the Adjusted Outliergram since there are still cases in which the standard

one gives excellent results.

These two tests shows the effectiveness of the chosen outliers detection algo-

rithms. Note that in order to detect outliers among new curves that are not part

of the known curves library, the outliergram and the functional boxplot are ap-

plied to an artificial functional dataset composed of the new curves to examine

and the known curves that are known to have usual shapes. Then, the returned

outliers are the curves that both belong to the new dataset and are detected as

shape or magnitude outliers by the algorithm applied to the artificial dataset.

The aim of this whole project is to produce a tool that gives a first diagnosis to

any control cluster for which a velocity curve has been recorded. At this point,

any new curve can be classified as usual or unusual. This classification is enough

for usual shape curves but a more precise diagnosis needs to be done for out-

liers; this is the topic of the following section.

3.3.3 Outlier classification

Until now, the diagnosis of a problem happening on a control cluster has been

done on a case-by-case basis. After an inconclusive test had been carried out,

the maintenance engineer took a look at the corresponding curve and was ei-

ther able to recognize a well-known problem or had to check for new conditions

that may have caused the problem. Therefore, there is a good knowledge of the

various problems involving control clusters. The idea is to use this professional

knowledge to automate the diagnosis process, that is to use a supervised learn-

ing algorithm.

Experience shows that two control rods which curves look alike are likely to

share the same issue. Therefore, the choice fell on using a weighted K-nearest

neighbors with L2 distance as metric and the known curves library as training

set. The weighted dimension of the algorithm is there to classify new curves in

classes of issues that have a limited presence in the training set.

Unlike in the case of the standard KNN algorithm, this choice here is not

decisive. Indeed, while having too few neighbors may still skew the outcome,
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the risks related to having too many neighbors are cancelled by the weighted

dimension of the algorithm. Anyway, a minimum number of neighbors to be

considered needs to be determined. To do so, a 10 fold cross-validation is done

using as dataset an other well-known nuclear power level for which the library

creation has been done in the same way. For each value of k, the micro-averaged

F1-score is computed. Is is a generalization of the F1-score for multi-class pre-

diction. In the case of multi-class, it can be proved that it is equivalent to the

micro-accuracy and computed as:

F 1mi cr o = Accmi cr o = T P

T P +F P

, where True Positives correspond to values that are correctly predicted and False

Positives to prediction errors.

The obtained results are shown on Figure 3.13. An elbow can be observed for

k = 10 and this will be the chosen number of considered neighbors for the final

algorithm. Note that the obtained performance does not seem to decrease with

a large number of neighbors while it would have decreased a lot with the stan-

dard KNN method. This shows the interest of using weights and kernel functions

with an important gradient around zero.

Figure 3.13: Number of neighbors choice cross-validation

Now that the weighted KNN is ready for use, let us test the whole classifica-

tion algorithm on the dataset that has been used for the curves library creation
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part. To that end, the dataset is randomly divided into a training and a test sets

whose sizes are respectively 80% and 20% of the initial dataset’s size. The train-

ing set is used as the curves library while the test set represents new curves that

need to be classified.

The training set contains 116 curves divided into three classes: usual shape

curves, issue1 and issue2. The description of the issues are hidden to maintain

confidentiality. These curves are plotted with their respective classes on Figure

3.14.

Figure 3.14: Training set clusters. Blue curves correspond to usual shape curves

while green and red ones correspond respectively to Issue1 and Issue2

Then, the 29 remaining curves are given as inputs to the detection and classi-

fication algorithm. To compare the obtained results with the real classes, Figure

3.1 represents the corresponding confusion matrix.

Predicted

True
Usual Issue1 Issue2

Usual 23 1 0

Issue1 0 1 0

Issue2 0 0 4

Table 3.1: Confusion matrix for the test set
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Only one abnormal velocity curve seems to be misclassified. This can be ex-

plain by the fact that the Issue1 class (in green on Figure 3.14) contains curves

that represent control rods that are a bit too fast but that do not represent any

danger. Therefore, their shapes are very similar with the usual ones. Note that

the outlier detection algorithm returns 7 outliers and that one of them is suc-

cessfully reclassified as usual by the weighted KNN algorithm. This highlights

the importance of combining these two algorithms consecutively.

At this point the algorithm is functional to detect existing issues. Nonethe-

less, two main questions remain:

• How to deal with new issues that do not appear in the curves library ?

• How to ensure that the classification is correct ?

First of all if a new curves correspond to an unknown issue, there is at this point

no means to detect it: the curve will be classified into one of the existing classes

in the curves library. Then, if nothing else but a single class is returned by the al-

gorithm, the user cannot detect whether the class has been chosen unanimously

or if there were two or more classes competing for it. Therefore, some supple-

mentary information needs to be returned along with the output class.

First of all, a graphical output is given to the user. It contains the test set

clusters with the same colors as in Figure 3.14. It allows the user to check the

accuracy of the classification by eye. This graph is returned along with a PCA

plot. To perform this PCA, the first two principal components are computed

using as input data the training set. Then, each test set curve is projected on the

plane defined by (PC 1,PC 2). Figures 3.15 and 3.16 show these outputs.
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Figure 3.15: Test set clusters. Blue curves correspond to usual shape curves while

green and red ones correspond respectively to Issue1 and Issue2

Figure 3.16: Projection on the first two principal components computed on the

training set. The colors are the same as the ones used to represent clusters.

Crosses are the projection of the training set while dots are the test set’s ones

The PCA part is in this example very useful to detect that the misclassified

abnormal curve is in fact very close to curves that belong to the Issue1 class.

The projection of this specific curve is indeed a purple dot surrounded by green

crosses. Nonetheless, a new curve that would correspond to an unknown issue

could not appear as unusual on the principal components projection since they

are computed on the curves forming the library. Therefore, the last output re-
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turned by the algorithm is the distance between the input curve and its closest

neighbor among the curves library. This additional information gives an indica-

tion of the functioning of the final classification algorithm. If this value is about

average, the classification is probably correct while if this value is higher than

usual, a closer look on this specific curve needs to be taken. If this curve hap-

pens to correspond to a new problem, it is added to the known curves library to

detect future appearances of this phenomenon.

3.4 Discussion

The work carried out shows that it is possible to automatically detect atypical

falling time curves in a homogeneous and reproducible manner. It is also pos-

sible to propose a first diagnosis on the origin of the atypical character and thus

facilitate the analysis of atypical curves. Finally, the presentation of the results

in a graphical form allows a non-statistician user to easily detect a curve corre-

sponding to a new problem.

Overall, the feasibility of the approach is demonstrated and the proposed

method meets the expressed need.

However, the databases still need to be enriched with more curves for each

level, ideally all the curves recorded over a period of 5 years, i.e. about 40,000

curves on the scale of the 56 units operated by EDF. This will enable clusters to

be more representative of all the phenomena encountered and also more robust.

On this basis, the automatic and systematic analysis of the new curves can be

implemented.
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Chapter 4

ARE valves behaviour inventory

4.1 Introduction

4.1.1 Background

The water level in the steam generators is an important parameter for the safety

of nuclear reactors: it guarantees the availability of a sufficient quantity of water

to cool the reactor in the event of an incident. To ensure that it remains within

the expected ranges, it is regulated by an automaton that uses two levers that

play on the flow of water entering the steam generators: the rotation speed of

the feed turbopumps and the opening of the "ARE valves". When this regulation

is not sufficient to keep the expected water level in the steam generators, the

reactor protection mechanisms lead to an automatic shutdown in less than 2

seconds by triggering the fall of the control clusters.

Figure 4.1: ARE valve
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The purpose of the study is therefore to develop indicators that could be

used to monitor the correct operation of this regulation and thus avoid auto-

matic shutdowns by detecting drifts before failures.

4.1.2 Methodology

Feedback shows a greater frequency of this type of shutdown on the 12 units of

the P’4 stage. It is thus on these units that the study will focus more precisely on

the behavior of the valves.

The speed variations of the food turbopumps are made in a few minutes

when a few seconds are enough to change the opening of an ARE valve.

The first step of the study consists in finding a method to filter the effects

of the speed variations of the feed turbopumps on the behavior of the taps and

then to propose indicators to characterize it.

Then, these indicators are calculated over a period of 20 years for the 12

slices studied. The analysis of their distribution then made it possible to specify

the intervals of the expected values in order to identify atypical behaviours more

easily.

Finally, the evolution of these indicators over the month(s) preceding the

various automatic shutdowns that have occurred (or almost occurred) at the

power plants was analysed in order to verify their relevance.

4.1.3 Data extraction

A way of examining the behaviour of a specific ARE valve is to have a look at the

evolution of the flow rate in the corresponding pipe. There exists an internal tool

called Curiosity which is an API containing a huge database and several widgets

that can be used to extract and manipulate the data. Curiosity is a tool devel-

oped by EdF R&D to facilitate the analysis of nuclear park data. In this study, it

will be used to access the instantaneous flow rates of the ARE circuit. The differ-

ent calculations (running average, difference between raw values and running

average, indicators) are then calculated in python scripts developed specifically

for this study.

The goal here is to examine the behaviour of the mechanism involved in

short-time regulations of the opening and the closing of the valve. Therefore,

the flow rate fluctuations caused by the turbopump’s rotation speed variations

need not to be taken into account. The period of these regulations is of a few

minutes while the valve’s period is of a few seconds. To deal with this issue, let

us introduce the moving average as follows.
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Definition. Moving average

Let (xi , ti )i∈[1,n] be the measurements and the corresponding times of measure-

ment. Then, we define the simple moving average over t in ti as:

x̄i ,t = 1

Ni ,t

∑
t j∈Ti ,t

xt j

where Ti ,t = [ti − t
2 , ti + t

2 ] and Ni ,t = |Ti ,t |.

By extracting the flow rate, computing the moving average over 2 minutes

in each point and subtracting the moving average to the raw data, a good ap-

proximation of the fluctuations of the flow rate directly caused by the opening

and the closing of the study’s ARE valve (see Mean difference graph on Figure

4.2) is obtained. Flow rate raw data contains in general a point every 2 seconds

with some missing values from time to time and missing data over a longer time

when the power station is shut down. In order to compute easily the moving

average during operating periods, a linear resampling function with a duration

time of 2 seconds is used. Its principle is simply to interpolate linearly between

the two closest values when a point is missing.

In order to be able to compare two different operation periods effectively, in-

teresting indicators from the mean difference graph can be extracted. The two

statistics that are both easy enough to look at and that enable the characteriza-

tion of the valve’s operations are the frequency and the amplitude of the instan-

taneous flow rate. On a time period T, let us use the two following indicators:

• the standard deviation, that gives an estimation of the mean amplitude

over T

• the number of zero crossings - or pseudo-frequency - that gives an esti-

mation of the mean frequency over T

4.2 Statistics monitoring over the country’s nuclear power

stations

The first part of the mission entails doing an assessment of the evolution of both

the indicators on a large time scale and on every nuclear power plant that have

had issues with this kind of valves. The indicators have finally been computed

on the whole P’4 level, for a total of 48 sensors, on a time scale from January 2010

to December 2019 with a 24 hour extraction per month. This choice of time
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Figure 4.2: One hour of raw data, moving average & mean difference
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scale is representative enough of the variations that both indicators may have

while not being too CPU-intensive. Of course, since the nuclear power station

are regularly under refuelling, there are some missing values which correspond

to blanks or zero-value troughs on the figure 4.3 graphs.

Figure 4.3: 10 years extraction of both the indicators on a nuclear station

Once the computations done for each nuclear power plant, two datasets are

created: one containing the pseudo-frequency values and another one contain-

ing the standard deviations. Then, a filter is applied, removing both the pseudo-

frequency and the standard deviations whose values are close to zero since they

reflect either white noise around a constant value or a shut down power sta-

tion. A second filter is applied to the pseudo-frequency, removing the values

over 15,000 using Nyquist-Shannon sampling theorem. At this point, the objec-

tive is to fit both data samples with appropriate distribution in order to set up

confidence intervals for further data. Let us introduce two measures that can be

used to determine the distributions to fit the data samples with.
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Figure 4.4: 10 years extraction of both the standard deviation on a every P’4 nu-

clear station

Figure 4.5: 10 years extraction of both the pseudo-frequency on a every P’4 nu-

clear station

Definition. Skewness
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For univariate data Y1, ...,YN , skewness is defined as:

g1 =
∑N

i=1(Yi − Ȳ )3

N · s3

where Ȳ is the sample mean, s the standard deviation and N the sample size.

Skewness is a measure of the lack of symmetry among the sample. It is zero for

a normal distribution or any other symmetric data, negative for skewed left data

and positive for right skewed ones.

Definition. Kurtosis

For univariate data Y1, ...,YN , kurtosis is defined as:

kur tosi s =
∑N

i=1(Yi − Ȳ )4

N · s4

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed in com-

parison with a normal distribution. Its value is 3 for a standard normal distribu-

tion.

A way of determining easily the best distribution to fit a data sample with is

to plot the kurtosis of it against its skewness, knowing well the theoretical values

of well-known distributions, on the so-called Cullen-Frey graph. Then, the den-

sity whose theoretical (skewness,kur tosi s) point is the closest to the data sam-

ple’s one is chosen. Let us plot the Cullen-Frey graph for both pseudo-frequency

and standard deviation using R package fitdistrplus [5].
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viation

Figure 4.6: Cullen-Frey graphs to determine the density to fit with
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The lognormal distribution seems very well-suited for the standard devia-

tion. For the sake on simplicity, the pseudo-frequency sample will be fitted using

a gaussian distribution.

(a) Real data and gaussian fit for

pseudo-frequency

(b) Real data and lognormal fit for stan-

dard deviation

Figure 4.7: Fitted models for pseudo-frequency and standard deviation

The obtained fitted models are the following:

P f ∼ N (7536,2165)

Std ∼ Log −N (2.5,0.38)

4.3 Evolution of the indicators before specific events

The objective here is to determine whether the statistics that have been defined

for the purpose of preventing future incidents on ARE valves are relevant or not.

To do so, several types of incidents that have involved ARE valves are extracted

from a maintenance database. Then, the indicators are computed on each day

during a substantial period preceding each incident and plotted on a graph on

which are also plotted the mean and the 80% fluctuation interval of the corre-

sponding indicator.

Figures 4.8, 4.9, 4.10 and 4.11 show different types of incidents that have hap-

pened on several P’4 ARE valves.
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(a) Standard deviation and pseudo-frequency

one month before the incident

(b) Raw data on one of the ze-

ros that shows missing data

Figure 4.8: Slow increasing of standard deviation and decreasing of pseudo-

frequency during the two weeks preceding an incident

Let us have a closer look at Figure 4.8. Since the two visible troughs are not

relevant and the fact that none of the indicators leaves the blue zone, the only

hint that could suggest a potential incident is the change in slope happening 2

weeks before the occurrence. Therefore, the first conclusion is that the indica-

tors may help preventing future incident not only by looking at their value but

also by looking at their gradients.
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(a) Standard deviation and pseudo-frequency

two months before the incident

(b) Raw data on the first day of

the extraction

(c) Raw data on the day corre-

sponding to the second trough

Figure 4.9: Two significant pseudo-frequency troughs before the incident

On Figure 4.9, the troughs seem to be early-warning signs for the upcoming

incident since they are not missing values. These frequency drops do not coin-

cide either to any standard deviation particular fluctuation. Therefore, they may

be signs of losses of responsiveness on the valve’s actuator. thus, the indicators

and the blue acceptance zone may be enough to prevent further incidents of this

type.
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Figure 4.10: Sudden change of both standard deviation and pseudo-frequency

values a month before the incident

The pattern on Figure 4.10 is rather clear. Both the indicators are relatively

stable until the occurrence happening on the 10/04. Then, the circuit keeps op-

erating despite the unusual values until the automatic switch-off. The sudden

change is highly visible but would be poorly detected by the current approach

since the older values are already outside the acceptance zone. Thus, a tool de-

tecting the sudden changes regardless the pointwise values obviously needs to

be included in the prevention algorithm.

Figure 4.11: Case in which the indicators do no hint the final incident

However, sometimes the indicators do not show any sign of what could be a

potential incident. This is the case on Figure 4.11.
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4.4 Discussion

This study proposes two indicators to monitor the behavior of the valves con-

tributing to the regulation of the water level on the steam generators of the P’4

power plants. It shows that it is possible to calculate them over a long period

of time and over all the units concerned and thus obtain an overall view of the

situation in the Park. It also shows that the evolution of these indicators seems

to be linked to proven failures.

Nevertheless, before its industrial and systematic implementation of moni-

toring based on these indicators on French nuclear power plants, it is necessary

to:

• consolidate these initial results by analyzing their evolution during nor-

mal operating transients and on all observed automatic shutdowns,

• analyze the link between the value and evolution of these indicators and

the condition of the valves observed during maintenance operations.

Convinced by these first results, EDF is investigating how to finalize this

study with the support of R&D with the aim of implementing a monitoring of

these valves.
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Chapter 5

Control cluster guides wearing
estimate

5.1 Introduction

5.1.1 Background

On pressurized water reactors operated in France, the insertion of control clus-

ters into the reactor is one of the two means used to control reactivity. These

clusters are made up of 24 rods, themselves made up of a sheath containing neu-

trophage materials: inserting the bundles into the reactor thus makes it possible

to capture neutrons that are no longer available for the nuclear reaction, which

slows down the reaction. The total insertion of all the control clusters allows the

shutdown of a reactor in less than 2 seconds.

A pencil sheath is a steel tube of a little less than 10 mm in diameter for a

length of more than 4 m: the control clusters are thus very flexible and need to

be guided during their insertion into the reactor.
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Figure 5.1: Top of a control cluster

This function is provided by a cluster guide. It is a fixed mechanical struc-

ture, consisting of a tube containing guiding cards: steel plates machined to al-

low the cluster’s pencils to pass through.

(a) A cluster guide (b) A guiding card

Figure 5.2: Mechanical structures guiding the control clusters during their inser-

tion into the reactor

Due to friction between the control cluster pencil sleeves and the guide maps,

the guide maps wear out. A wear limit must not be exceeded in order to guaran-

tee the correct guidance of the control clusters in all situations. To ensure that

this limit is not exceeded, wear volume measurements are taken on a regular ba-

sis. If the criteria for ensuring the correct guidance of the control clusters are not

met, the cluster guide is replaced. This replacement is a relatively cumbersome
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operation that mobilizes scarce resources.

Therefore, before a cluster guide inspection and replacement operation, it is

necessary to realistically estimate the number of cluster guides that may need

to be replaced. Until now, these forecasts have been made on the basis of a lin-

ear extrapolation of the worn volumes measured during the previous inspection.

Nonetheless, feedback shows that this method leads to overestimating the num-

ber of cluster guides to be replaced and to mobilizing too many resources. The

purpose of this study is to propose a more realistic approach to better estimate

the number of cluster leaders to be replaced and to better size the resources to

be mobilized.

5.1.2 Worn volume measurements

When a cluster guide is inspected, three measures are made on each of its guid-

ing cards’ main bores. These measurements are called the gap width L f and the

ligament lengths Li , i = 1,2 (see Figure 5.3).

(a) Main guiding card bores (b) Gap width and ligament lengths

Figure 5.3: Measurements made when controlling the worn volume

In theory, the worn volume can be computed from L1 and L2. However,

when the ligaments are too thin or poorly measured, L f is used instead to avoid

measurement uncertainty. The worn volume is computed as follows:

• If the guide is of type 1:

– V OLUse =−75.89 · L1 +L2

2
+220.39 if L1 and L2 have been correctly

measured

– V OLUse = 24.302 ·L f +67.44 otherwise

68



• If the guide is of type 2:

– V OLUse =−77.893 · L1 +L2

2
+232.7 if L1 and L2 have been correctly

measured

– V OLUse = 28.648 ·L f +53.98 otherwise

Note that L f is not always measured, mainly in cases in which L1 and L2 are

easily measurable.

To decide whether a guide needs to be changed or not, the criterion is the

following: the guide is changed if the mean worn volume computed on the four

main bores exceeds 328mm2 on at least five consecutive guiding cards.

5.1.3 Data cleaning

The study dataset contains 68.000 measurements of L1, L2 and Lf and the cor-

responding computed worn volume. It also contains the number of hours the

guide spent in contact with a control cluster of type S (NbhS), a type C one

(NbhC) and a type N one (NbhN). Note that a worn volume was given in the

initial dataset; this value of worn volume was computed taking into account

measurement uncertainty and corresponded to the maximum of the obtained

interval. For that study, the volume has been recomputed using the formulas

introduced earlier.

ID Year L1 L2 Lf VOLUse NbhS NbhC NbhN

AAA1 A01 E1 GD01 2014 2.25 2.25 6.5 90.35 62371 127166 0

BBB1 A07 E3 GD04 2017 1.99 2.8 NN 68.98 66361 0 151987

... ... ... ... ... ... ... ... ...

Table 5.1: Wear measurements dataset

The ID represents the nuclear power plant, the guide position as well as the

guiding card and the main bore on which the measurement has been made.

First of all, since the study focuses on the evolution of the worn volume be-

tween two controls, only the guides whose wear has been measured at least

twice are kept. Then, the ones that have been replaced after the first control are

removed as well. Once this filtering done, let us plot the second worn volume

against the first one in order to have a first idea of the available data.
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Figure 5.4: 2nd measurement against the 1st one

It has two be noted that the data are quite noisy. Indeed, although in mean

the worn volume seems to increase between two controls, which is the expected

physical result, there are still lots of points that lay under the y = x curve. This is

due to several things including the uncertainty of measurement, the tool change

from one check to the other, etc. Then, some odd points are to notice as well:

the ones forming a cross around 80mm2 and the others forming an other cross at

about 250mm2. These points correspond to default values that are wrote down

in case of difficulty during measurement (centering error, too low value of L1 or

L2, etc.).

While the noise is an issue that cannot be dealt with at the risk of creating

bias, the default values have to be removed from the dataset since they create

bias by themselves.
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Figure 5.5: 2nd measurement against the 1st one after data cleaning

Then, a previous study has shown that the number of hours spent in contact

with a type S control cluster has no influence on the guide’s wear and that there

is a significant influence of the control cluster’s material on the wearing rate. Let

us retrieve this result. To do so, a simple linear regression of the type V OLUse =
αS N bhS +αC N bhC +αN N bhN is computed.

Coef Estimate p-value

NbhC 8.32∗10−4 < 2e−16

NbhN 1.39∗10−3 < 2e−16

NbhS 3.05∗10−5 0.17

Table 5.2: Equivalent hour coefficients with NbhS

The result confirms that the number of hours spent in contact with a type S

control cluster is not significant. Therefore, the model is reduced to V OLUse =
αC N bhC +αN N bhN . Here, the result is the following:

Coef Estimate p-value

NbhC 9.88∗10−4 < 2e−16

NbhN 1.50∗10−3 < 2e−16

Table 5.3: Equivalent hour coefficients without NbhS

with a R2 coefficient of 0.80 . An equivalent time N bheq ≈αC N bhC+αN N bhN

can now be defined; it will be used later to define the wearing rate at the time of

the first measurement.
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5.2 Theoretical background

In the following part, S := {xi , yi }i∈�1,n� designs the input and target values of the

training set.

5.2.1 Regression tree

This part refers to Classification and Regression Trees by Wei-Yin Loh [7].

A regression tree is a classifier that partitions the input space into a set of

rectangular regions R j , j = 1, ...,r and assigns the label l j to all input vectors xi

falling in a region R j . In other terms, the predicted value corresponding to xi is:

ỹi = f (xi ) =
r∑

j=1
l j 1x∈R j

At each step, a new node nk is created using the feature jk and the threshold

sk . In order to minimize the error while growing the tree, a metric called node

impurity is computed and minimized at each new node creation.

Definition. Node impurity

We define the node impurity as the local mean squared error, i.e:

I (nk ) = 1

Nk

∑
xi∈Rnk

(yi − lnk )2

with nk the node, Nk the number of training data associated to the node, Rnk the

rectangular region corresponding to nk and lnk the preliminary classification of

input vectors falling within Rnk .

Note that at each node, the preliminary classification lnk is computed as the

majority vote for the input vectors vectors falling within the corresponding re-

gion, i.e:

∀x ∈ Rnk , lnk = fnk (x) = 1

Nk

∑
xi∈Rnk

yi

Then, at each iteration, the new feature and threshold are chosen as:

( jk , sk ) = ar g min
j ,s

I (n1
k )+ I (n2

k )

where n1
k ans n2

k are the two children nodes of nk .

Once the tree fully built, the predicted value for a new input vector is the leaf

classification value where it falls following the tree’s nodes. In other terms, the

predicted value is the classification value corresponding to the final rectangular

region the vector falls within.
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5.2.2 Random forests

Random forests is an ensemble learning algorithm that builds many small re-

gression trees in parallel in order to form a single, stronger learner by averaging

the result found by each tree.

For each tree in the forest, a bootstrap sample S(i )- i.e a subset with replace-

ment - is selected from S. Then a modified regression tree is learnt from this

new sample. The algorithm is modified is the sense that at each node of the tree,

instead of examining all possible feature-spits, a subset of the features f ⊂ F is

selected randomly. The node then splits on the best feature in f rather than in

F .

Data: A training set S := (x1, y1), ..., (xn , yn), features F , the number of

trees in forest B and the number of features to select at each node

n f

Result: A random forest containing B regression trees

H ←;
for i ∈ �1,B� do

S(i ) ← A bootstrap sample from S

hi ← RandomizedRegressionTreeLearn(S(i ), F , n f )

H ← H ∪ {hi }
end

Algorithm 6: Random forest learning algorithm

Once the learning done, the prediction for a new-coming data vector is the

average of the predicted value found by each regression tree componing the ran-

dom forest.

Data: A data vector x and a built random forest H

Result: A predicted value ỹ

ỹ ← 0

for i ∈ �1,B� do
ỹ ← ỹ + RegressionTreePrediction(x, H (i ))

end

ỹ ← ỹ

B

Algorithm 7: Random forest prediction algorithm
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5.2.3 Random forest prediction intervals

While determining prediction interval is straight forward in the case of a linear

regression, it is less obvious for a random forest. Refering to Quantile Regres-

sion Forests by Nicolai Meinshausen [9], let us introduce the main concepts for

prediction interval building in this particular case.

First of all, remind that random forests approximate the conditional mean

E(Y | X = x). The conditional distribution function of Y, given X = x, is given by:

F (y | X = x) = P (Y ≤ y | X = x) = E(1Y ≤y | X = x)

Therefore, there is a strong analogy between the random forest approxima-

tion of the conditional mean E(Y | X = x) and the conditional distribution func-

tion of Y given X = x. Indeed, just as E(Y | X = x) is approximated by a weighted

mean over the observations of Y, E(1Y ≤y | X = x) is approximated by the weighted

mean over the observations of 1Y ≤y , i.e:

F̂ (y | X = x) = 1

B

B∑
i=1

 1

N i
nx

∑
x j∈R i

nx

1ỹ j≤y


where R i

nx
is the rectangular region of tree i whose x is part of and N i

nx
its cardi-

nality.

This approximation is at the heart of the so-called quantile regression forests

algorithm.

Therefore, when using quantile regression forest instead of a standard ran-

dom forest, when growing the trees, all observations in every leaf of every tree

have to be recorded while only the average is needed in the case of a standard

random forest.

Then, estimating the conditional quantiles - and in this way building predic-

tion intervals - is straightforward, indeed:

Q̂α(x) = inf{y : F̂ (y | X = x) ≥α}

This will be used later to build prediction intervals while using random forests.

5.3 Prediction algorithms

5.3.1 Linear regression

The goal here is to provide an estimation of the worn volume difference between

the first two controls. The main idea is that there is a relation between the wear-

ing rate at the time of the first control and the wearing rate between the two
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controls. Therefore, the first attempt will be to build a linear model that tries to

estimate the worn volume difference knowing the first control wearing rate and

the time between the two controls.

To do so, let us first create a new dataset whose rows will contain all informa-

tion for a single ID. Note that the features Year, NbhS, L1, L2 and Lf are left be-

hind since they are no longer useful. Once this operation done, the new dataset

looks as follows:

ID VOLUse1 VOLUse2 NbhC1 NbhN1 NbhC2 NbhN2

AAA1 A01 E1 GD01 90.35 108.12 127166 0 0 62821

BBB1 A07 E3 GD04 68.98 81.34 0 151987 0 72491

... ... ... ... ... ... ...

Table 5.4: Wear measurements comparison dataset

Now, using the regression values as well as the worn volume difference, sev-

eral new features can be created:

• H 1
eq = 9.88 ·10−4 ·N bhC 1+1.5 ·10−3 ·N bhN 1

• ∆Heq = 9.88 ·10−4 · (N bhC 2−N bhC 1)+1.5 ·10−3 · (N bhN 2−N bhN 1)

• ∆V ol =V OLUse2−V OLUse1

• ∆V olth = V OLUse1

H 1
eq

·∆Heq , the theoretical difference of worn volume if

the wearing rate remains the same in time

In theory, there should be a strong relation between ∆V ol and ∆V olth .

First attempt The first try is a simple linear model of the form ∆V ol = αth ·
∆V olth .

The obtained result shows an αth coefficient of 0.20 with a very poor R2 of 0.05.

It shows that in mean, the wearing rate decreases after the first control which is

the expected result but no prediction can be made with a model that inaccurate.

A plot of ∆V ol against ∆V olth confirms this analysis.
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Figure 5.6: ∆V ol against ∆V olth

Second attempt Are the data for which ∆V ol is negative located in specific

nuclear power plants ? If it is the case, these data could be removed from the

dataset without creating bias since their unexpected values already come from

mistakes or wrong measurements that create bias. Let us have a look at the dis-

tribution of ∆V ol values among each nuclear power plant (the plant names are

anonymized).
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Figure 5.7: Boxplots of ∆V ol for each power plant

No power plant seems to step out in term of mean but some of them show

lots of highly negative values, that cannot only be due to the uncertainty of mea-

surement. Let us remove all the data from power plants 5, 9 and 10 and try again

the previous simple linear model.

This time, an αth coefficient of 0.32 with a R2 coefficient of 0.09 are ob-

tained. These results are a bit better than the previous ones but still don’t meet

the needs.

Third attempt To make the linear model more efficient, some of the covariates

will be added to it. Amongst the possibilities, the following features are chosen

to complete the model:

• the nuclear power plant, since the measurement method may differ from

one another as well as the working power

• the guides’ location and bore
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• the volume at the time of the first control and the number of equivalent

hours between the two controls, since the wearing rate at the time of the

first control might not be sufficient in itself to explain its evolution later

on

This time the R2 coefficient reaches a value of 0.19, which is again a bit better

but still not enough to expect exploitable worn volumes predictions.

In conclusion, the data noise coupled with the non-linear behaviour of the

wear phenomenon seems to making the choice of using a linear model ineffec-

tive. Therefore, no attempt to make proper tests with this method will be done

since poor results are expected. Instead, let us move on an other method that

deals better with non-linear problems and high numbers of features: the ran-

dom forest algorithm.

5.3.2 Random forest

This time, the theoretical volume difference ∆V olth will not be amongst the ex-

planatory features since the random forest algorithm is supposed to find by itself

interesting patterns among features. Therefore, in this whole part, the aim will

be to predict ∆V ol as a function of V OLUse1, H 1
eq , ∆Heq as well as the nuclear

power plant and the guides’ bore and location in the core. Note that the used

dataset is the same as the one used in the last two attempts to build a linear

model.

First attempt The dataset is divided into a training and a test sets, each one

of a size of 80% and 20% of the dataset’s size respectively. Then, the random

forest is built with default settings, namely a number of grown trees of 500 and a

number of variables randomly sampled as candidates at each split of
p

3
where p

is the total number of features. Once the training done, a first thing to observe is

the importance of each variables. This information is provided in Figure 5.8 that

show the total amount of purity gained by each variable while growing the trees.
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Figure 5.8: Variables importance

This variables importance plot shows that the worn volume at the time of

the first control is a fundamental information to predict the difference of worn

volume between the two controls, as expected. Nonetheless, it also highlights

that H 1
eq and ∆Heq are not as important as V OLUse1. Therefore, the choice of

directly using the theoretical volume difference ∆V olth to explain the evolution

of∆V ol in the linear regression part might not be as relevant as it seemed. Then,

no other categorical feature seems to be less relevant than the others.

For this first attempts the obtained R2 coefficient is of 0.374. Let us try this

model with the test set.

The graph on Figure 5.9 shows the predicted values for the whole test set

along with their 90% prediction intervals. About 75% of the estimates are posi-

tive, while in theory all of them should be greater or equal than 0.
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Figure 5.9: Predicted value along with their 90% prediction intervals

Let us now analyze the prediction intervals in detail. To do so, the prediction

intervals as well as the true values of ∆V ol are centered toward zero. Then, they

are ordered from the lowest prediction interval to the highest one and plotted.

The result is shown on Figure 5.10.
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Figure 5.10: Centered true value along with their corresponding 90% prediction

intervals

The first observation is that despite the dispersion, more than 90% of the

real values are in their corresponding prediction interval. This consolidate the

choice of using quantile regression forests to perform these intervals. The sec-

ond thing to notice is that the size of the intervals, although acceptable on the

left of the graph, increases a lot on the right hand side. This leads to difficulties

when it comes to estimating precisely ∆V ol . Obviously, knowing the rather low

obtained R2 coefficient, one could not expect better results.

Does changing the default settings improve the outcome ? Table 5.5 contains

several tests that have been carried out.

Nb. candidates

Nb. trees
100 200 500 1000

2 0.351 0.369 0.374 0.374

3 0.349 0.362 0.371 0.372

4 0.351 0.354 0.359 0.359

Table 5.5: R2 values for different settings : the number of candidates is the num-

ber of variables that are randomly chosen and tested at each split

Hence, there seems to be no reason to modify the default settings. Note that
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no cross-validation is needed in the case of random forests since the out-of-bag

(OOB) error works in a similar way.

5.4 Practical test

Maintenance has been effectuated on 3 power stations recently and some guides

have been changed, some of them as preventive measures using the old model

and others due to deterioration. The aim here is to compare the guides that

should be changed according to the random forest predictions and the one that

have been changed due to deterioration. Remind that a cluster guide is changed

if 5 consecutive positions reach the worn volume threshold of 328mm2.

To estimate the needs of changing a control cluster, the procedure contains

the following steps:

1. for each guide position, compute the prediction interval [q5, q95] for∆V ol

2. add the volume at the time of the first control: [Q5,Q95] = V OLUse1 +
[q5, q95]

3. for each guide position, create two boolean features: test5 = (Q5 > 328)

and test95 = (Q95 > 328)

4. finally, classify the guides into three categories:

(a) 2, if test95 is true for at least five consecutive positions

(b) 1, if test5 is true for at least five consecutive positions

(c) 0 otherwise

The same dataset as before is used. Therefore, since the test set here contains

every guides situated in the corresponding 3 power stations, the random forest

cannot train using the power station feature. Thus, the results might not be as

good as in the previous part. A part of the result is shown in Figure 5.6.

ID Q5 Q50 Q95 test5 test95

AAA1 A01 E1 GD01 236.03 275.54 317.30 FALSE FALSE

AAA1 A01 E1 GD02 274.88 308.80 360.36 TRUE FALSE

AAA1 A01 E1 GD03 346.91 377.02 438.02 TRUE TRUE

... ... ... ... ... ...

Table 5.6: Prediction intervals and criterion test
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Once the prediction intervals built and the criterion tests done, the cluster

guides are classified into the three categories previously introduced.

The issue here is that up to this day the guides are changed if there is a risk

that the 328mm2 threshold is reached before the next maintenance. Therefore,

the obtained worn volume are inferior to the ones used at the time of the last

maintenance. Nonetheless, 100% of the guides classified as 1 or 2 have been

changed and only the upper 5% of the guides classified as 0 has been changed,

which reinforces, at the very least, the choice of this model.

5.5 Discussion

The aim of this mission was to develop a tool capable of realistically estimating

the number of cluster guides that may need to be replaced before a maintenance

operation. A simple linear model could have sufficed in the case of noiseless

data. However, in an industrial context where each measurement is carried out

by a technician with a tool that may differ from one control to another and where

the accuracy is not always optimal, noise is automatically generated. Therefore,

a noise treatment or most advanced regression methods must be used.

In the current state of affairs, the tool developed during this study cannot be

industrialized, due to a lack of precision when estimating the volume worn out.

Nevertheless, a campaign of measures in which noise reduction from one mea-

sure to another would be the main issue would undoubtedly make it possible to

use this tool in a sustainable manner.

In view of the simplicity of the current model for estimating a physical phe-

nomenon as complex as wear and tear, a model using machine learning such

as random forests would probably improve predictions and thus reduce main-

tenance costs. Finally, this study shows the complexity of data analysis in an

industrial and complex environment such as nuclear power, where a number of

physical, human and material phenomena impact each other and create noise

in the data.
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Chapter 6

Conclusion

During my internship, four missions were carried out.

Firstly, it could be shown that the maintenance period for the pneumatic

valve diaphragms used so far is good based on all the data available since the

commissioning of nuclear power plants. However, it is theoretically possible to

adapt this maintenance period to each type of valve in order to optimise costs

and downtime.

Next, a program was implemented to automate the analysis of the falling

time curves of the control clusters. This algorithm offers a combination of out-

lier detection and classification algorithms as well as a graphical method to make

it very accessible. It is ready to use and all that remains to be done is to feed the

library of known curves for all power levels in order to make it usable by the

agents.

A preliminary study concerning the implementation of a possible incident

prediction algorithm on pneumatic valves was also conducted. It identified two

indicators that seem to be relevant for the detection of this type of event. EDF,

convinced by the proposed approach, is going to implement this algorithm in

collaboration with R&D.

Finally, a study aimed at proposing a wear prediction model for the cluster

guides was carried out. Despite the noisy data, the use of a quantile regression

forest has made it possible to calculate prediction intervals that will then be used

to predict the guides to be changed during future maintenance. Furthermore, if

a way is found to reduce the initial noise in the data, the machine learning ap-

proach seems to be well suited to this type of problem.

This master thesis, which I did as a Data Scientist internship at EDF, allowed

me to discover different possible uses of data science in the context of nuclear
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power plant maintenance and industry in general as well as the difficulties that

can get in my way when it comes to analysing data from industry or production.

I had the opportunity to present all this work to specialists in nuclear power

plant maintenance and members of the Data Analytics team. Satisfied with the

results, more studies of this type should be carried out for the maintenance of

nuclear power plants in the coming months and years.
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Appendix A

Appendix: Kaplan-Meier

(a) Kaplan-meier estimator for each

type of circuit

(b) Kaplan-meier estimator for each

group of circuit

Figure A.1: Kaplan-Meier estimator before and after clustering by circuit using

pairwise Logrank test
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(a) Kaplan-meier estimator for each

type of area of use

(b) Kaplan-meier estimator for each

group of area of use

Figure A.2: Kaplan-Meier estimator before and after clustering by area of use

using pairwise Logrank test
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