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1. Introduction
Simulating earthquake ground motion in seis-
mic regions to explore its effects on geological
or man-made structures is a subject of great in-
terest.
Traditional numerical methods typically take
into account a single model that encompasses
the entire geological structure in the domain,
from the seismic source to the localized structure
under study. However, this approach necessarily
leads to some approximations in the maximum
frequency of propagation and in the lowest prop-
agation velocity. Moreover, the construction of
a mesh that takes into account features that can
be modeled with a variation of about three/four
orders of magnitude is very complicated. In ad-
dition, these methods appear particularly disad-
vantageous when the seismic source is very far
from the site of interest.

In light of this, the Domain Reduction Method,
referred to hereinafter as DRM, represents an al-
ternative and valuable approach (see [1]). More
precisely, the DRM is a sub-structuring tech-
nique in which the problem is subdivided into
two sequential parts. From the first one (aux-
iliary problem) it is computed the ground mo-

tion obtained in absence of the structure, the
so-called free-field motion. After that, it is con-
sidered only a reduced part of the computational
domain, referred to as reduced problem, in which
the seismic source and most of the propagation
path are not taken into consideration. Seis-
mic excitation are introduced to this model in
the form of localized effective forces, calculated
thanks to the free-field motion obtained with the
auxiliary domain.

We implement the DRM in SPEED (SPectral
Elements in Elastodynamics with Discontinuous
Galerkin), a high performance open-source nu-
merical code (see [3]), under the assumption of
either vertical or oblique incident plane waves.
This last hypothesis turns out to be reasonable
especially when the source is located far away
from the site under study.
Moreover, suitable Matlab scripts have been de-
veloped for the creation of the input files neces-
sary for running SPEED with the DRM.

Finally, three different three-dimensional geolog-
ical models have been considered to validate the
code.
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2. The Domain Reduction
Method

The Domain Reduction Method (DRM) is a two-
step finite element (FE) methodology in which
an equivalent seismic excitation is applied at a
fictitious boundary that ideally divides the re-
gion of interest (e.g., the Near field) from an
external region (e.g., the Far field). More pre-
cisely, the original problem (STEP 0) is divided
into two numerical simpler sub-problems anal-
ysed sequentially:

− STEP 1, auxiliary problem: the auxiliary
domain contains the seismic source and the
propagation path, while the localized struc-
ture and the geological features of inter-
est are neglected and replaced with a back-
ground structure having the same materials
of the surrounding soil. In this step it is
computed the free-field ground motion, i.e.,
the ground motion evaluated in absence of
any type of structure.

− STEP 2, reduced problem: the initial do-
main is restricted in such a way as to de-
limit the presence of structures and geolog-
ical features which are in turn examined.
The seismic input is introduced as a col-
lection of equivalent effective nodal forces
acting within a single layer of elements at
an ideal interface between the region of in-
terest and an external domain.

2.1. Theoretical formulation of the
DRM

We outline the three-dimensional theoretical
formulation of the method described above as
proposed by [1] with the contribution given by
[4].
For STEP 0 (original problem) we consider a
semi-infinite seismic region that contains local-
ized geological features (e.g. basin, hill, cave) as
well as man-made structures, henceforth simply
called "structure", under earthquake excitation.
Since the causative fault may be far from the
structure, we want to define a new problem in
which the seismic excitation is brought closer
to the region of interest. To do so, we imagine
to artificially divide by a surface Γi our original
domain into one interior domain Ωi and one
exterior domain Ωe (see Figure 1, top panel).
ue, ui and ub represent the vector field of

displacements in Ωe, Ωi and Γi, respectively,
while the earthquake excitation (extended fault
or plane wavefront) can be expressed in terms
of a set of equivalent body forces Pe operating
close to the fault. It is worth underline that the
displacements ub are continuous across Γi and
Pb correspond to the forces transmitted from
Ωe onto Ωi.
Then, it is possible to express the equations of
motion in Ωi and Ωe in the following partitioned
form after spatial discretization (for example
by the use of spectral elements or discontinuous
finite elements, without loss of generality):[
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for the exterior domain Ωe.
Here M denotes the mass matrix, C the damp-
ing matrix and K the stiffness matrix.

Then, we pass to STEP 1, in which the auxil-
iary domain is taken into consideration. This
time the nodal displacements u0

e, u0
b , u0

i , re-
ferred to as free-field motion, and the forces P 0

b

are related to the new interior domain Ω0
i (see

Figure 1, bottom left panel).
After some calculations and substitutions, it is
possible to replace the seismic forces Pe on the
fault by the effective nodal forces P eff , given
by:
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We note that in the previous computation are in-
volved only the matrices Mbe, Meb, Cbe, Ceb,
Kbe and Keb, that are defined on the exte-
rior domain Ωe. The latter entails that these
effective forces do not vanish only on a single
layer of elements in Ωe and adjacent to Γi. The
effective forces thus constitute the means by
which seismic excitation is introduced into the
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Fault

STEP 0: ORIGINAL PROBLEM

STEP 1: AUXILIARY PROBLEM STEP 2: REDUCED PROBLEM

Geological features

Fault

Figure 1: Domain Reduction Method (DRM) two-step procedure: the original problem is subdivided into two numerical submodels,
namely the auxiliary problem (STEP 1) and the reduced problem (STEP 2). Adapted from [1] and [4].

reduced domain as an equivalent dynamic exci-
tation (STEP 2).
Moreover, since in the outer domain Ωe all the
waves are outgoing, the external domain’s size
can be significantly reduced to get a smaller ex-
terior domain Ωr

e for solving equations of motion,
provided suitable absorbing boundaries are used
to reduce the occurrence of spurious waves (see
Figure 1, bottom right panel). It is exactly for
this reason that the method is called Domain
Reduction Method.

3. Implementation of the DRM
We proceed with the implementation of the
Domain Reduction Method within the code
SPEED. This code, particularly suitable for sim-
ulating seismic wave propagation in visco-elastic
heterogeneous three-dimensional media, is based
on the spectral element method (SEM) coupled
with the Discontinuous Galerkin (DG) technique
(for further details see [3]).

By exploiting the SEM, it is possible to pass
from the differential form of the wave equation
to the following system of ordinary differential
equations with respect to time:

MÜ(t) +KU(t) = F ext(t) + T (t).

Here U is the vector of nodal displacements, M
is the mass matrix and K is the stiffness matrix.
Moreover, vectors F ext and T represent the con-
tributions of external forces and tractions, re-
spectively. See [2] for more details.

Thanks to this formulation, one important sim-
plification occurs in the computation of the ef-
fective forces, cf. (1):

P eff =

P eff
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P eff
b

P eff
e

 =
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−KΩe
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b
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Indeed, the terms related to the extra-diagonal
components of the mass matrix M are 0 be-
cause the SE mass matrix is diagonal. Moreover,
without loss of generality, we assume the viscous
terms Cij in (2) to be understood.

Finally, looking at equation (2), we can state
that the effective forces only depend on the
stiffness matrix related to the DRM elements,
namely the elements at the interface between Γi

and Γe (see Section 2), and on the free-field dis-
placements obtained from the auxiliary problem.
The above stiffness matrix can be calculated for
each element el by exploiting the following for-
mula:

Kel =

∫
Vel

BTEBdV. (3)

Here B is the matrix containing the derivatives
of the shape functions used for the approxima-
tion of the solution in SEM, E is the elastic con-
stitutive matrix and Vel indicates the volume of
the element el. In particular, the application
of the DRM in three dimensions requires overall
the allocation of a matrix KDRM of dimensions
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[3NelDRM (N + 1)3, 3(N + 1)3], where NelDRM

is the number of elements composing the effec-
tive boundary.

For the computation of the free-field motion,
instead, the DRM can be coupled with differ-
ent semi-analytical solutions for pressure (P ) or
shear (S) plane waves propagating in horizon-
tally layered media with arbitrary angle of in-
cidence. In this work, the analytical solutions
are computed through the Haskell-Thomson (H-
T) propagation matrix method. This method
allows to minimize the errors caused by spu-
rious reflections emanating from the absorbing
boundaries, making it particularly appropriate
for three dimensional applications.

Finally, making reference to equation (2), we are
able to compute the effective forces by means of
the stiffness matrix (see equation (3)) and the
free-field motion at the interface nodes.

3.1. DRM for plane wave propagation
The DRM was implemented in SPEED to deal
with plane waves propagation problems. This
was accomplished by adapting the implementa-
tion done in [4] for the 3D parallel version of
GeoELSE (GeoELastodynamics by Spectral Ele-
ments).

SPEED has been provided with a set of subrou-
tines that can compute the effective nodal forces
from the analytical free-field solution computed
as above.
More precisely, we depict in Figure 2 all the steps
of the algorithm, that are:

1. Definition of the input parameters: time
dependence of the imposed plane displace-
ment wavefront, mechanical properties of
the background geological model that con-
stitute the auxiliary problem, type of the
plane wave source, angle of incidence γ.

2. Computation of the effective boundary
nodes in which the effective boundary forces
will be evaluated (Legendre-Gauss-Lobatto
nodes).

3. Definition of a one-dimensional reference
soil profile made of Nf layers in the ver-
tical direction. Each layer is delimited by
two adjacent non-coinciding LGL nodes.

4. Computation of the free-field displacement
time histories at the (Nf + 1) interfaces by
means of the (H-T) matrix method for the
1D soil profile determined at previous point.

5. Computation of the free-field displacements
at the entire set of effective boundary nodes
of the reduced problem.

Construction of the reduced problem
Reference 1D soil profile: calculation of

displacement time histories (H-T method)

Computation of the free-field motion
for the entire set of effective nodes

Introduction of the effective forces P and
resolution of wave propagation analysis

Figure 2: Plane wave propagation analyses in arbitrary complex media: sketch of the implementation. Adapted from [4].
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6. Computation of the effective nodal forces
P eff exploiting the free-field displacements
obtained at the previous step.

This approach for modeling plane wave propa-
gation leads to several advantages with respect
to the conventional approach, such as:

• Minimization of the spurious reflections due
to the absorbing boundary conditions ap-
plied on the external boundary of the com-
putational domain.

• Treatment of non orthogonal plane wave in-
cidence to the free surface.

4. Input files generation
We focus on the generation of the input files nec-
essary for the use of the SPEED library coupled
with the Domain Reduction Method.

This process requires the following steps:

1. Creation of the spectral element (SE) re-
duced model using the software CUBIT
(https://cubit.sandia.gov/) by means
of quadrilateral and hexahedral elements.
In order to apply the effective forces to the
irregular structure of interest, the compu-
tational grid must include an appropriate
strip of spectral elements, i.e. the effec-
tive DRM boundary. Fundamental, at this
point, is the definition of the different blocks
that characterise the domain under study.
These blocks can be of different type: soil
layers, DRM boundary elements, absorbing
boundary conditions etc.
Then, from the file generated with Cubit, it
is possible to obtain the mesh file, that con-
tains all the information on the grid com-
posing the computational domain.

2. Generation of the Legendre-Gauss-Lobatto
nodes, necessary for the computation of the
effective forces. We recall that, in one di-
mension, the LGL nodes are defined as the
roots of the first space derivatives of the
Legendre polynomial of degree N ≥ 1, be-
yond the two extremes ±1 (see [2]). In or-
der to compute the LGL nodes for the en-
tire strip of DRM elements, the user has
to run the Matlab script read_grid_test.m.
The latter considers, in particular, a suit-
able tensorization process to compute the

LGL nodes for each three-dimensional hex-
ahedron.

3. Calculation of the PDRM nodes (effective
DRM nodes) and FDRM functions (free-
field displacements computed at PDRM).
This is achieved by exploiting the Matlab
scripts created in [5].
Precisely, we make use of the Matlab in-
terface program input_4else_3D.m. The
latter considers as input, in addition to a
file containing the input parameters of the
model under study and a list of all the LGL
coordinates, a file containing the free-field
displacements at all interfaces of the 1D soil
profile used for linear visco-elastic analyses.
These are exactly the displacements calcu-
lated from the analytical free-field solution
for P -SV -SH plane wave propagation ob-
tained through the Haskell-Thomson (H-T)
matrix method.
Exploiting this, the solution at all effective
nodes is obtained by applying a suitable
time shift depending on the assumed direc-
tion of propagation. Note that for γ = 0
(vertical incident plane wave), time shift is
equal to 0 for all nodes.

Given this computation, the following files are
required to start the simulation:

• File mesh. It contains all the information
on the computational grid of the model.

• File mate. It contains all the features
characterising the blocks that compose the
reduced domain in addition to the PDRM
and FDRM as computed at point 3. The
latter allows to evaluate at run time the ef-
fective nodal forces necessary to propagate
the target plane wavefront.

• SPEED.input. It is the header file in which
are fixed the fundamental parameters of the
analysis, and the files and directories that
are used for the simulation.

• LS.input. It is the file containing all the co-
ordinates of the monitored points in which
the numerical solution is calculated.

One last consideration must be made on the
choice of the time step ∆t used for the simula-
tion in SPEED. Since the procedure adopted for
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Figure 3: Computational domains used for the three tests: homogeneous model (left panel), heterogeneous model (center panel)
and Croissant valley (right panel).

time discretization is the leap-frog scheme and,
being this an explicit scheme, it is not uncondi-
tionally stable (see [3]). In particular, it must
satisfy the Courant-Friedrichs-Levy (CFL) con-
dition, that reads as follows:

∆t ≤ CCFL
∆xmin

Vmax
. (4)

In the expression above, CCFL is a constant de-
pending on the dimension, the order of the space
discretization scheme, the mesh geometry and
the polynomial degree. It takes value in between
0 and 1.
∆xmin represents the minimum distance be-
tween any couple of adjacent LGL nodes, while
Vmax is the maximum propagation velocity.

5. Tests and results
The implementation of the code SPEED coupled
with the Domain Reduction Method (DRM) for
plane wave propagation has been validated on
three simple geological models to check the ac-
curacy of the numerical results against semi-
analytical solutions.

We report in Figure 3 the computational do-
mains of the tests.
The first two tests are a homogeneous (single

layer material) and a heterogeneous (double lay-
ers materials) models, respectively, and they are
studied under the action of both a compressional
P wave and a shear SV wave. We report here
only the results relative to the P wave, since for
the other wave type they are analogous.

We present in Figure 4 (top panel) the horizon-
tal ux and vertical uz displacement time histo-
ries obtained due to the incidence of a vertical
(γ = 0◦) plane P wave relative to the first test.
These displacements are evaluated in nine dif-
ferent monitored points, obtained starting from
the center of the free surface and going down
25 m each time in direction z.

For a complete analysis, we make a compari-
son between the semi-analytical solution (com-
puted with the Haskell-Thomson (HT) method
and depicted as a blue continuous line), the nu-
merical solution obtained with SPEED coupled
with Domain Reduction Method (dashed green
line), and the numerical solution obtained with
SPEED without the implementation of DRM
(dashed red line).

Then, in Figure 4 (bottom panel) we plot the
results obtained with the same conditions, ex-
cept for the angle of incidence γ, now set equal
to 10◦.
This time, the numerical solution obtained with
SPEED without DRM is not taken into consid-
eration, since it is not possible to compute it for
the case of inclined wave.
Comparing the two cases (vertical and inclined
plane wave), the results are very good in both
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t(s) t(s)

ux(m) uz(m)

D
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z
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D
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z
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)

Figure 4: Homogeneous model: horizontal displacement
ux (left panel) and vertical displacement uz (right panel) due
to the vertical (γ = 0◦) (bottom panel) and inclined (γ = 10◦)
incidence of a P plane wave.
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cases, since the numerical solution obtained with
the DRM is almost superimposed with the semi-
analytical one. However, in the second case,
some minimal spurious effects probably due to
Absorbing Boundary Conditions (ABCs) arise.

Next, we consider in Figure 5 the results relative
to the heterogeneous case (cf. Figure 3, mid-
dle panel). These are obtained analogously to
the previous one, namely under the incidence of
both a vertical and an inclined (γ = 10◦) plane
wave.
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Figure 5: Heterogeneous model: horizontal displacement
ux (left panel) and vertical displacement uz (right panel) due
to the vertical (γ = 0◦) (bottom panel) and inclined (γ = 10◦)
incidence of a P plane wave.

This time, in both cases, the solution obtained
with SPEED coupled with DRM coincides with
the semi-analytical solution mostly in the first
part of the simulation (before ≈ 3.5sec), after
that it tends to dampen more slowly.
In particular, this is more evident for the mon-
itored points located closest to z = 0 and this
is probably due to the change of values of the
quality factors between the two physical layers
of the model. However, in general, we can say
that the comparison between the two solutions
is quite good.
It is worth noticing that, in this case, the numer-
ical solution obtained with the traditional im-
plementation of SPEED, namely without DRM,
is affected a lot from the spurious effects of
the ABCs, differently from what happens for
SPEED coupled with DRM. For this reason, in

order to obtain the results shown in Figure 5, the
model used for the simulation of SPEED with-
out DRM was equipped with Dirichlet boundary
conditions on the lateral surface.

The third test case concerns the analysis of a
three-dimensional alluvial valley under the ac-
tion of a vertical incident (γ = 0◦) shear SH
plane wave. We analyse the results in terms of
x and y displacements components for a series
of monitored points located on the free-surface
of the model. Precisely, 98 points laying on the
x− y plane for z = 0 have been taken into con-
siderations: 49 along the x-axis and 49 along the
y-axis. Each point is distant from the adjacent
one on the same axis by a distance of 320 m.
In Figure 6 we report a comparison between
the semi-analitycal solution obtained by indirect
boundary element method (IBEM), the numer-
ical solution computed by SPEED coupled with
DRM and the one obtained with SPEED with-
out DRM.

uy(x, 0, 0, t)

uy(0, y, 0, t)

t(s)

t(s)

Figure 6: Croissant valley: x component (top panel) and
y component (bottom panel) of the uy displacement corre-
sponding to the surface monitored points along x axis (top
panel) and y axis (bottom panel) due to the incidence of a
vertical (γ = 0◦) plane SH wave.
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Looking at the results, we can state that there
is a good correspondence in the three solutions,
specially for what concerns the x component of
the displacement. Once again, the good fit be-
tween the two numerical solutions obtained with
SPEED proves the capability of the DRM of not
being affected from impurities caused by ABCs.

6. Conclusions
The analysis of the results leads to highlight
some main advantages of using the DRM. First
of all, DRM seems more robust with respect to
numerical spurious effects due to ABCs. More-
over, DRM allows to reduce a lot the size of the
computational domain, thus permitting to de-
crease the computational cost of the simulation.
Moreover, this sub-structuring method allows
to the possibility of performing simulations in
which the plane wave is not vertical, in addition
to the possibility to perform parametric analyses
with respect to different input motions, includ-
ing accelerograms derived from seismic hazard
analysis.

Possible future developments include the follow-
ing improvements. We consider to analyze fur-
ther cases, for example with a different seismic
input type or considering more complex geome-
try.
Moreover, in the light of the obtained results,
some precautions need to be made in the imple-
mentation of the method. Indeed, especially if
we look at the results obtained for the heteroge-
neous test, the numerical solution obtained with
SPEED coupled with the DRM is not perfectly
capable of modeling the transition from one ma-
terial to another, and this produces spurious ef-
fects.
Another important future development regards
the implementation of the three-dimensional
parallel version of the code, currently imple-
mented only in sequential version. This will
lead, above all, to an advantageous reduction
of the computational time.
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